rculfhash: allow shrink
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <-
124 * | | |
125 * 2 | | 2 010 010 |
126 * | | | 3 011 110 <- |
127 * | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /*
160 * Per-CPU split-counters lazily update the global counter each 1024
161 * addition/removal. It automatically keeps track of resize required.
162 * We use the bucket length as indicator for need to expand for small
163 * tables and machines lacking per-cpu data suppport.
164 */
165 #define COUNT_COMMIT_ORDER 10
166 #define CHAIN_LEN_TARGET 1
167 #define CHAIN_LEN_RESIZE_THRESHOLD 3
168
169 #ifndef max
170 #define max(a, b) ((a) > (b) ? (a) : (b))
171 #endif
172
173 /*
174 * The removed flag needs to be updated atomically with the pointer.
175 * The dummy flag does not require to be updated atomically with the
176 * pointer, but it is added as a pointer low bit flag to save space.
177 */
178 #define REMOVED_FLAG (1UL << 0)
179 #define DUMMY_FLAG (1UL << 1)
180 #define FLAGS_MASK ((1UL << 2) - 1)
181
182 struct ht_items_count {
183 unsigned long add, remove;
184 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
185
186 struct rcu_level {
187 struct rcu_head head;
188 struct _cds_lfht_node nodes[0];
189 };
190
191 struct rcu_table {
192 unsigned long size; /* always a power of 2 */
193 unsigned long resize_target;
194 int resize_initiated;
195 struct rcu_head head;
196 struct rcu_level *tbl[0];
197 };
198
199 struct cds_lfht {
200 struct rcu_table *t; /* shared */
201 cds_lfht_hash_fct hash_fct;
202 cds_lfht_compare_fct compare_fct;
203 unsigned long hash_seed;
204 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
205 unsigned int in_progress_resize, in_progress_destroy;
206 void (*cds_lfht_call_rcu)(struct rcu_head *head,
207 void (*func)(struct rcu_head *head));
208 void (*cds_lfht_synchronize_rcu)(void);
209 unsigned long count; /* global approximate item count */
210 struct ht_items_count *percpu_count; /* per-cpu item count */
211 };
212
213 struct rcu_resize_work {
214 struct rcu_head head;
215 struct cds_lfht *ht;
216 };
217
218 /*
219 * Algorithm to reverse bits in a word by lookup table, extended to
220 * 64-bit words.
221 * Source:
222 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
223 * Originally from Public Domain.
224 */
225
226 static const uint8_t BitReverseTable256[256] =
227 {
228 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
229 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
230 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
231 R6(0), R6(2), R6(1), R6(3)
232 };
233 #undef R2
234 #undef R4
235 #undef R6
236
237 static
238 uint8_t bit_reverse_u8(uint8_t v)
239 {
240 return BitReverseTable256[v];
241 }
242
243 static __attribute__((unused))
244 uint32_t bit_reverse_u32(uint32_t v)
245 {
246 return ((uint32_t) bit_reverse_u8(v) << 24) |
247 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
248 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
249 ((uint32_t) bit_reverse_u8(v >> 24));
250 }
251
252 static __attribute__((unused))
253 uint64_t bit_reverse_u64(uint64_t v)
254 {
255 return ((uint64_t) bit_reverse_u8(v) << 56) |
256 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
257 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
258 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
259 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
260 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
261 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
262 ((uint64_t) bit_reverse_u8(v >> 56));
263 }
264
265 static
266 unsigned long bit_reverse_ulong(unsigned long v)
267 {
268 #if (CAA_BITS_PER_LONG == 32)
269 return bit_reverse_u32(v);
270 #else
271 return bit_reverse_u64(v);
272 #endif
273 }
274
275 /*
276 * fls: returns the position of the most significant bit.
277 * Returns 0 if no bit is set, else returns the position of the most
278 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
279 */
280 #if defined(__i386) || defined(__x86_64)
281 static inline
282 unsigned int fls_u32(uint32_t x)
283 {
284 int r;
285
286 asm("bsrl %1,%0\n\t"
287 "jnz 1f\n\t"
288 "movl $-1,%0\n\t"
289 "1:\n\t"
290 : "=r" (r) : "rm" (x));
291 return r + 1;
292 }
293 #define HAS_FLS_U32
294 #endif
295
296 #if defined(__x86_64)
297 static inline
298 unsigned int fls_u64(uint64_t x)
299 {
300 long r;
301
302 asm("bsrq %1,%0\n\t"
303 "jnz 1f\n\t"
304 "movq $-1,%0\n\t"
305 "1:\n\t"
306 : "=r" (r) : "rm" (x));
307 return r + 1;
308 }
309 #define HAS_FLS_U64
310 #endif
311
312 #ifndef HAS_FLS_U64
313 static __attribute__((unused))
314 unsigned int fls_u64(uint64_t x)
315 {
316 unsigned int r = 64;
317
318 if (!x)
319 return 0;
320
321 if (!(x & 0xFFFFFFFF00000000ULL)) {
322 x <<= 32;
323 r -= 32;
324 }
325 if (!(x & 0xFFFF000000000000ULL)) {
326 x <<= 16;
327 r -= 16;
328 }
329 if (!(x & 0xFF00000000000000ULL)) {
330 x <<= 8;
331 r -= 8;
332 }
333 if (!(x & 0xF000000000000000ULL)) {
334 x <<= 4;
335 r -= 4;
336 }
337 if (!(x & 0xC000000000000000ULL)) {
338 x <<= 2;
339 r -= 2;
340 }
341 if (!(x & 0x8000000000000000ULL)) {
342 x <<= 1;
343 r -= 1;
344 }
345 return r;
346 }
347 #endif
348
349 #ifndef HAS_FLS_U32
350 static __attribute__((unused))
351 unsigned int fls_u32(uint32_t x)
352 {
353 unsigned int r = 32;
354
355 if (!x)
356 return 0;
357 if (!(x & 0xFFFF0000U)) {
358 x <<= 16;
359 r -= 16;
360 }
361 if (!(x & 0xFF000000U)) {
362 x <<= 8;
363 r -= 8;
364 }
365 if (!(x & 0xF0000000U)) {
366 x <<= 4;
367 r -= 4;
368 }
369 if (!(x & 0xC0000000U)) {
370 x <<= 2;
371 r -= 2;
372 }
373 if (!(x & 0x80000000U)) {
374 x <<= 1;
375 r -= 1;
376 }
377 return r;
378 }
379 #endif
380
381 unsigned int fls_ulong(unsigned long x)
382 {
383 #if (CAA_BITS_PER_lONG == 32)
384 return fls_u32(x);
385 #else
386 return fls_u64(x);
387 #endif
388 }
389
390 int get_count_order_u32(uint32_t x)
391 {
392 int order;
393
394 order = fls_u32(x) - 1;
395 if (x & (x - 1))
396 order++;
397 return order;
398 }
399
400 int get_count_order_ulong(unsigned long x)
401 {
402 int order;
403
404 order = fls_ulong(x) - 1;
405 if (x & (x - 1))
406 order++;
407 return order;
408 }
409
410 static
411 void cds_lfht_resize_lazy(struct cds_lfht *ht, struct rcu_table *t, int growth);
412
413 /*
414 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
415 * available, then we support hash table item accounting.
416 * In the unfortunate event the number of CPUs reported would be
417 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
418 */
419 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
420
421 static
422 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, struct rcu_table *t,
423 unsigned long count);
424
425 static long nr_cpus_mask = -1;
426
427 static
428 struct ht_items_count *alloc_per_cpu_items_count(void)
429 {
430 struct ht_items_count *count;
431
432 switch (nr_cpus_mask) {
433 case -2:
434 return NULL;
435 case -1:
436 {
437 long maxcpus;
438
439 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
440 if (maxcpus <= 0) {
441 nr_cpus_mask = -2;
442 return NULL;
443 }
444 /*
445 * round up number of CPUs to next power of two, so we
446 * can use & for modulo.
447 */
448 maxcpus = 1UL << get_count_order_ulong(maxcpus);
449 nr_cpus_mask = maxcpus - 1;
450 }
451 /* Fall-through */
452 default:
453 return calloc(nr_cpus_mask + 1, sizeof(*count));
454 }
455 }
456
457 static
458 void free_per_cpu_items_count(struct ht_items_count *count)
459 {
460 free(count);
461 }
462
463 static
464 int ht_get_cpu(void)
465 {
466 int cpu;
467
468 assert(nr_cpus_mask >= 0);
469 cpu = sched_getcpu();
470 if (unlikely(cpu < 0))
471 return cpu;
472 else
473 return cpu & nr_cpus_mask;
474 }
475
476 static
477 void ht_count_add(struct cds_lfht *ht, struct rcu_table *t)
478 {
479 unsigned long percpu_count;
480 int cpu;
481
482 if (unlikely(!ht->percpu_count))
483 return;
484 cpu = ht_get_cpu();
485 if (unlikely(cpu < 0))
486 return;
487 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
488 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
489 unsigned long count;
490
491 dbg_printf("add percpu %lu\n", percpu_count);
492 count = uatomic_add_return(&ht->count,
493 1UL << COUNT_COMMIT_ORDER);
494 /* If power of 2 */
495 if (!(count & (count - 1))) {
496 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD)
497 < t->size)
498 return;
499 dbg_printf("add set global %lu\n", count);
500 cds_lfht_resize_lazy_count(ht, t,
501 count >> (CHAIN_LEN_TARGET - 1));
502 }
503 }
504 }
505
506 static
507 void ht_count_remove(struct cds_lfht *ht, struct rcu_table *t)
508 {
509 unsigned long percpu_count;
510 int cpu;
511
512 if (unlikely(!ht->percpu_count))
513 return;
514 cpu = ht_get_cpu();
515 if (unlikely(cpu < 0))
516 return;
517 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].remove, -1);
518 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
519 unsigned long count;
520
521 dbg_printf("remove percpu %lu\n", percpu_count);
522 count = uatomic_add_return(&ht->count,
523 -(1UL << COUNT_COMMIT_ORDER));
524 /* If power of 2 */
525 if (!(count & (count - 1))) {
526 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD)
527 >= t->size)
528 return;
529 dbg_printf("remove set global %lu\n", count);
530 cds_lfht_resize_lazy_count(ht, t,
531 count >> (CHAIN_LEN_TARGET - 1));
532 }
533 }
534 }
535
536 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
537
538 static const long nr_cpus_mask = -1;
539
540 static
541 struct ht_items_count *alloc_per_cpu_items_count(void)
542 {
543 return NULL;
544 }
545
546 static
547 void free_per_cpu_items_count(struct ht_items_count *count)
548 {
549 }
550
551 static
552 void ht_count_add(struct cds_lfht *ht, struct rcu_table *t)
553 {
554 }
555
556 static
557 void ht_count_remove(struct cds_lfht *ht, struct rcu_table *t)
558 {
559 }
560
561 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
562
563
564 static
565 void check_resize(struct cds_lfht *ht, struct rcu_table *t,
566 uint32_t chain_len)
567 {
568 unsigned long count;
569
570 count = uatomic_read(&ht->count);
571 /*
572 * Use bucket-local length for small table expand and for
573 * environments lacking per-cpu data support.
574 */
575 if (count >= (1UL << COUNT_COMMIT_ORDER))
576 return;
577 if (chain_len > 100)
578 dbg_printf("WARNING: large chain length: %u.\n",
579 chain_len);
580 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
581 cds_lfht_resize_lazy(ht, t,
582 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
583 }
584
585 static
586 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
587 {
588 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
589 }
590
591 static
592 int is_removed(struct cds_lfht_node *node)
593 {
594 return ((unsigned long) node) & REMOVED_FLAG;
595 }
596
597 static
598 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
599 {
600 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
601 }
602
603 static
604 int is_dummy(struct cds_lfht_node *node)
605 {
606 return ((unsigned long) node) & DUMMY_FLAG;
607 }
608
609 static
610 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
611 {
612 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
613 }
614
615 static
616 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
617 {
618 unsigned long old1, old2;
619
620 old1 = uatomic_read(ptr);
621 do {
622 old2 = old1;
623 if (old2 >= v)
624 return old2;
625 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
626 return v;
627 }
628
629 static
630 void cds_lfht_free_table_cb(struct rcu_head *head)
631 {
632 struct rcu_table *t =
633 caa_container_of(head, struct rcu_table, head);
634 free(t);
635 }
636
637 static
638 void cds_lfht_free_level(struct rcu_head *head)
639 {
640 struct rcu_level *l =
641 caa_container_of(head, struct rcu_level, head);
642 free(l);
643 }
644
645 /*
646 * Remove all logically deleted nodes from a bucket up to a certain node key.
647 */
648 static
649 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
650 {
651 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
652
653 for (;;) {
654 iter_prev = dummy;
655 /* We can always skip the dummy node initially */
656 iter = rcu_dereference(iter_prev->p.next);
657 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
658 for (;;) {
659 if (unlikely(!clear_flag(iter)))
660 return;
661 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
662 return;
663 next = rcu_dereference(clear_flag(iter)->p.next);
664 if (likely(is_removed(next)))
665 break;
666 iter_prev = clear_flag(iter);
667 iter = next;
668 }
669 assert(!is_removed(iter));
670 if (is_dummy(iter))
671 new_next = flag_dummy(clear_flag(next));
672 else
673 new_next = clear_flag(next);
674 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
675 }
676 }
677
678 static
679 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht, struct rcu_table *t,
680 struct cds_lfht_node *node, int unique, int dummy)
681 {
682 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
683 *dummy_node;
684 struct _cds_lfht_node *lookup;
685 unsigned long hash, index, order;
686
687 if (!t->size) {
688 assert(dummy);
689 node->p.next = flag_dummy(NULL);
690 return node; /* Initial first add (head) */
691 }
692 hash = bit_reverse_ulong(node->p.reverse_hash);
693 for (;;) {
694 uint32_t chain_len = 0;
695
696 /*
697 * iter_prev points to the non-removed node prior to the
698 * insert location.
699 */
700 index = hash & (t->size - 1);
701 order = get_count_order_ulong(index + 1);
702 lookup = &t->tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
703 iter_prev = (struct cds_lfht_node *) lookup;
704 /* We can always skip the dummy node initially */
705 iter = rcu_dereference(iter_prev->p.next);
706 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
707 for (;;) {
708 if (unlikely(!clear_flag(iter)))
709 goto insert;
710 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
711 goto insert;
712 next = rcu_dereference(clear_flag(iter)->p.next);
713 if (unlikely(is_removed(next)))
714 goto gc_node;
715 if (unique
716 && !is_dummy(next)
717 && !ht->compare_fct(node->key, node->key_len,
718 clear_flag(iter)->key,
719 clear_flag(iter)->key_len))
720 return clear_flag(iter);
721 /* Only account for identical reverse hash once */
722 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
723 && !is_dummy(next))
724 check_resize(ht, t, ++chain_len);
725 iter_prev = clear_flag(iter);
726 iter = next;
727 }
728 insert:
729 assert(node != clear_flag(iter));
730 assert(!is_removed(iter_prev));
731 assert(iter_prev != node);
732 if (!dummy)
733 node->p.next = clear_flag(iter);
734 else
735 node->p.next = flag_dummy(clear_flag(iter));
736 if (is_dummy(iter))
737 new_node = flag_dummy(node);
738 else
739 new_node = node;
740 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
741 new_node) != iter)
742 continue; /* retry */
743 else
744 goto gc_end;
745 gc_node:
746 assert(!is_removed(iter));
747 if (is_dummy(iter))
748 new_next = flag_dummy(clear_flag(next));
749 else
750 new_next = clear_flag(next);
751 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
752 /* retry */
753 }
754 gc_end:
755 /* Garbage collect logically removed nodes in the bucket */
756 index = hash & (t->size - 1);
757 order = get_count_order_ulong(index + 1);
758 lookup = &t->tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
759 dummy_node = (struct cds_lfht_node *) lookup;
760 _cds_lfht_gc_bucket(dummy_node, node);
761 return node;
762 }
763
764 static
765 int _cds_lfht_remove(struct cds_lfht *ht, struct rcu_table *t,
766 struct cds_lfht_node *node, int dummy_removal)
767 {
768 struct cds_lfht_node *dummy, *next, *old;
769 struct _cds_lfht_node *lookup;
770 int flagged = 0;
771 unsigned long hash, index, order;
772
773 /* logically delete the node */
774 old = rcu_dereference(node->p.next);
775 do {
776 next = old;
777 if (unlikely(is_removed(next)))
778 goto end;
779 if (dummy_removal)
780 assert(is_dummy(next));
781 else
782 assert(!is_dummy(next));
783 old = uatomic_cmpxchg(&node->p.next, next,
784 flag_removed(next));
785 } while (old != next);
786
787 /* We performed the (logical) deletion. */
788 flagged = 1;
789
790 if (dummy_removal)
791 node = clear_flag(node);
792
793 /*
794 * Ensure that the node is not visible to readers anymore: lookup for
795 * the node, and remove it (along with any other logically removed node)
796 * if found.
797 */
798 hash = bit_reverse_ulong(node->p.reverse_hash);
799 /*
800 * When removing a dummy node, we need to consider the lower
801 * order table, so we don't end up looking up the dummy nodes we
802 * are currently removing.
803 */
804
805 if (dummy_removal)
806 index = hash & ((t->size >> 1) - 1);
807 else
808 index = hash & (t->size - 1);
809 order = get_count_order_ulong(index + 1);
810 lookup = &t->tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
811 dummy = (struct cds_lfht_node *) lookup;
812 _cds_lfht_gc_bucket(dummy, node);
813 end:
814 /*
815 * Only the flagging action indicated that we (and no other)
816 * removed the node from the hash.
817 */
818 if (flagged) {
819 assert(is_removed(rcu_dereference(node->p.next)));
820 return 0;
821 } else
822 return -ENOENT;
823 }
824
825 static
826 void init_table(struct cds_lfht *ht, struct rcu_table *t,
827 unsigned long first_order, unsigned long len_order)
828 {
829 unsigned long i, end_order;
830
831 dbg_printf("init table: first_order %lu end_order %lu\n",
832 first_order, first_order + len_order);
833 end_order = first_order + len_order;
834 t->size = !first_order ? 0 : (1UL << (first_order - 1));
835 for (i = first_order; i < end_order; i++) {
836 unsigned long j, len;
837
838 len = !i ? 1 : 1UL << (i - 1);
839 dbg_printf("init order %lu len: %lu\n", i, len);
840 t->tbl[i] = calloc(1, sizeof(struct rcu_level)
841 + (len * sizeof(struct _cds_lfht_node)));
842 for (j = 0; j < len; j++) {
843 struct cds_lfht_node *new_node =
844 (struct cds_lfht_node *) &t->tbl[i]->nodes[j];
845
846 dbg_printf("init entry: i %lu j %lu hash %lu\n",
847 i, j, !i ? 0 : (1UL << (i - 1)) + j);
848 new_node->p.reverse_hash =
849 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
850 (void) _cds_lfht_add(ht, t, new_node, 0, 1);
851 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
852 break;
853 }
854 /* Update table size */
855 t->size = !i ? 1 : (1UL << i);
856 dbg_printf("init new size: %lu\n", t->size);
857 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
858 break;
859 }
860 t->resize_target = t->size;
861 t->resize_initiated = 0;
862 }
863
864 static
865 void fini_table(struct cds_lfht *ht, struct rcu_table *t,
866 unsigned long first_order, unsigned long len_order)
867 {
868 long i, end_order;
869
870 dbg_printf("fini table: first_order %lu end_order %lu\n",
871 first_order, first_order + len_order);
872 end_order = first_order + len_order;
873 assert(first_order > 0);
874 assert(t->size == (1UL << (end_order - 1)));
875 for (i = end_order - 1; i >= first_order; i--) {
876 unsigned long j, len;
877
878 len = !i ? 1 : 1UL << (i - 1);
879 dbg_printf("fini order %lu len: %lu\n", i, len);
880 /* Unlink */
881 for (j = 0; j < len; j++) {
882 struct cds_lfht_node *new_node =
883 (struct cds_lfht_node *) &t->tbl[i]->nodes[j];
884
885 dbg_printf("fini entry: i %lu j %lu hash %lu\n",
886 i, j, !i ? 0 : (1UL << (i - 1)) + j);
887 new_node->p.reverse_hash =
888 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
889 (void) _cds_lfht_remove(ht, t, new_node, 1);
890 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
891 break;
892 }
893 ht->cds_lfht_call_rcu(&t->tbl[i]->head, cds_lfht_free_level);
894 /* Update table size */
895 t->size = (i == 1) ? 0 : 1UL << (i - 2);
896 dbg_printf("fini new size: %lu\n", t->size);
897 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
898 break;
899 }
900 t->resize_target = t->size;
901 t->resize_initiated = 0;
902 }
903
904 struct cds_lfht *cds_lfht_new(cds_lfht_hash_fct hash_fct,
905 cds_lfht_compare_fct compare_fct,
906 unsigned long hash_seed,
907 unsigned long init_size,
908 void (*cds_lfht_call_rcu)(struct rcu_head *head,
909 void (*func)(struct rcu_head *head)),
910 void (*cds_lfht_synchronize_rcu)(void))
911 {
912 struct cds_lfht *ht;
913 unsigned long order;
914
915 /* init_size must be power of two */
916 if (init_size && (init_size & (init_size - 1)))
917 return NULL;
918 ht = calloc(1, sizeof(struct cds_lfht));
919 ht->hash_fct = hash_fct;
920 ht->compare_fct = compare_fct;
921 ht->hash_seed = hash_seed;
922 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
923 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
924 ht->in_progress_resize = 0;
925 ht->percpu_count = alloc_per_cpu_items_count();
926 /* this mutex should not nest in read-side C.S. */
927 pthread_mutex_init(&ht->resize_mutex, NULL);
928 order = get_count_order_ulong(max(init_size, 1)) + 1;
929 ht->t = calloc(1, sizeof(struct cds_lfht)
930 + (order * sizeof(struct rcu_level *)));
931 ht->t->size = 0;
932 pthread_mutex_lock(&ht->resize_mutex);
933 init_table(ht, ht->t, 0, order);
934 pthread_mutex_unlock(&ht->resize_mutex);
935 return ht;
936 }
937
938 struct cds_lfht_node *cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len)
939 {
940 struct rcu_table *t;
941 struct cds_lfht_node *node, *next;
942 struct _cds_lfht_node *lookup;
943 unsigned long hash, reverse_hash, index, order;
944
945 hash = ht->hash_fct(key, key_len, ht->hash_seed);
946 reverse_hash = bit_reverse_ulong(hash);
947
948 t = rcu_dereference(ht->t);
949 index = hash & (t->size - 1);
950 order = get_count_order_ulong(index + 1);
951 lookup = &t->tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
952 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
953 hash, index, order, index & ((1UL << (order - 1)) - 1));
954 node = (struct cds_lfht_node *) lookup;
955 for (;;) {
956 if (unlikely(!node))
957 break;
958 if (unlikely(node->p.reverse_hash > reverse_hash)) {
959 node = NULL;
960 break;
961 }
962 next = rcu_dereference(node->p.next);
963 if (likely(!is_removed(next))
964 && !is_dummy(next)
965 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
966 break;
967 }
968 node = clear_flag(next);
969 }
970 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
971 return node;
972 }
973
974 struct cds_lfht_node *cds_lfht_next(struct cds_lfht *ht,
975 struct cds_lfht_node *node)
976 {
977 struct cds_lfht_node *next;
978 unsigned long reverse_hash;
979 void *key;
980 size_t key_len;
981
982 reverse_hash = node->p.reverse_hash;
983 key = node->key;
984 key_len = node->key_len;
985 next = rcu_dereference(node->p.next);
986 node = clear_flag(next);
987
988 for (;;) {
989 if (unlikely(!node))
990 break;
991 if (unlikely(node->p.reverse_hash > reverse_hash)) {
992 node = NULL;
993 break;
994 }
995 next = rcu_dereference(node->p.next);
996 if (likely(!is_removed(next))
997 && !is_dummy(next)
998 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
999 break;
1000 }
1001 node = clear_flag(next);
1002 }
1003 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1004 return node;
1005 }
1006
1007 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1008 {
1009 struct rcu_table *t;
1010 unsigned long hash;
1011
1012 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1013 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1014
1015 t = rcu_dereference(ht->t);
1016 (void) _cds_lfht_add(ht, t, node, 0, 0);
1017 ht_count_add(ht, t);
1018 }
1019
1020 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1021 struct cds_lfht_node *node)
1022 {
1023 struct rcu_table *t;
1024 unsigned long hash;
1025 struct cds_lfht_node *ret;
1026
1027 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1028 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1029
1030 t = rcu_dereference(ht->t);
1031 ret = _cds_lfht_add(ht, t, node, 1, 0);
1032 if (ret != node)
1033 ht_count_add(ht, t);
1034 return ret;
1035 }
1036
1037 int cds_lfht_remove(struct cds_lfht *ht, struct cds_lfht_node *node)
1038 {
1039 struct rcu_table *t;
1040 int ret;
1041
1042 t = rcu_dereference(ht->t);
1043 ret = _cds_lfht_remove(ht, t, node, 0);
1044 if (!ret)
1045 ht_count_remove(ht, t);
1046 return ret;
1047 }
1048
1049 static
1050 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1051 {
1052 struct rcu_table *t;
1053 struct cds_lfht_node *node;
1054 struct _cds_lfht_node *lookup;
1055 unsigned long order, i;
1056
1057 t = ht->t;
1058 /* Check that the table is empty */
1059 lookup = &t->tbl[0]->nodes[0];
1060 node = (struct cds_lfht_node *) lookup;
1061 do {
1062 node = clear_flag(node)->p.next;
1063 if (!is_dummy(node))
1064 return -EPERM;
1065 assert(!is_removed(node));
1066 } while (clear_flag(node));
1067 /* Internal sanity check: all nodes left should be dummy */
1068 for (order = 0; order < get_count_order_ulong(t->size) + 1; order++) {
1069 unsigned long len;
1070
1071 len = !order ? 1 : 1UL << (order - 1);
1072 for (i = 0; i < len; i++) {
1073 dbg_printf("delete order %lu i %lu hash %lu\n",
1074 order, i,
1075 bit_reverse_ulong(t->tbl[order]->nodes[i].reverse_hash));
1076 assert(is_dummy(t->tbl[order]->nodes[i].next));
1077 }
1078 free(t->tbl[order]);
1079 }
1080 return 0;
1081 }
1082
1083 /*
1084 * Should only be called when no more concurrent readers nor writers can
1085 * possibly access the table.
1086 */
1087 int cds_lfht_destroy(struct cds_lfht *ht)
1088 {
1089 int ret;
1090
1091 /* Wait for in-flight resize operations to complete */
1092 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1093 while (uatomic_read(&ht->in_progress_resize))
1094 poll(NULL, 0, 100); /* wait for 100ms */
1095 ret = cds_lfht_delete_dummy(ht);
1096 if (ret)
1097 return ret;
1098 free(ht->t);
1099 free_per_cpu_items_count(ht->percpu_count);
1100 free(ht);
1101 return ret;
1102 }
1103
1104 void cds_lfht_count_nodes(struct cds_lfht *ht,
1105 unsigned long *count,
1106 unsigned long *removed)
1107 {
1108 struct rcu_table *t;
1109 struct cds_lfht_node *node, *next;
1110 struct _cds_lfht_node *lookup;
1111 unsigned long nr_dummy = 0;
1112
1113 *count = 0;
1114 *removed = 0;
1115
1116 t = rcu_dereference(ht->t);
1117 /* Count non-dummy nodes in the table */
1118 lookup = &t->tbl[0]->nodes[0];
1119 node = (struct cds_lfht_node *) lookup;
1120 do {
1121 next = rcu_dereference(node->p.next);
1122 if (is_removed(next)) {
1123 assert(!is_dummy(next));
1124 (*removed)++;
1125 } else if (!is_dummy(next))
1126 (*count)++;
1127 else
1128 (nr_dummy)++;
1129 node = clear_flag(next);
1130 } while (node);
1131 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1132 }
1133
1134 /* called with resize mutex held */
1135 static
1136 void _do_cds_lfht_grow(struct cds_lfht *ht, struct rcu_table *old_t,
1137 unsigned long old_size, unsigned long new_size)
1138 {
1139 unsigned long old_order, new_order;
1140 struct rcu_table *new_t;
1141
1142 old_order = get_count_order_ulong(old_size) + 1;
1143 new_order = get_count_order_ulong(new_size) + 1;
1144 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1145 old_size, old_order, new_size, new_order);
1146 new_t = malloc(sizeof(struct cds_lfht)
1147 + (new_order * sizeof(struct rcu_level *)));
1148 assert(new_size > old_size);
1149 memcpy(&new_t->tbl, &old_t->tbl,
1150 old_order * sizeof(struct rcu_level *));
1151 init_table(ht, new_t, old_order, new_order - old_order);
1152 /* Changing table and size atomically wrt lookups */
1153 rcu_assign_pointer(ht->t, new_t);
1154 ht->cds_lfht_call_rcu(&old_t->head, cds_lfht_free_table_cb);
1155 }
1156
1157 /* called with resize mutex held */
1158 static
1159 void _do_cds_lfht_shrink(struct cds_lfht *ht, struct rcu_table *old_t,
1160 unsigned long old_size, unsigned long new_size)
1161 {
1162 unsigned long old_order, new_order;
1163 struct rcu_table *new_t;
1164
1165 new_size = max(new_size, 1);
1166 old_order = get_count_order_ulong(old_size) + 1;
1167 new_order = get_count_order_ulong(new_size) + 1;
1168 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1169 old_size, old_order, new_size, new_order);
1170 new_t = malloc(sizeof(struct cds_lfht)
1171 + (new_order * sizeof(struct rcu_level *)));
1172 assert(new_size < old_size);
1173 memcpy(&new_t->tbl, &old_t->tbl,
1174 new_order * sizeof(struct rcu_level *));
1175 new_t->size = !new_order ? 1 : (1UL << (new_order - 1));
1176 new_t->resize_target = new_t->size;
1177 new_t->resize_initiated = 0;
1178
1179 /* Changing table and size atomically wrt lookups */
1180 rcu_assign_pointer(ht->t, new_t);
1181
1182 /*
1183 * We need to wait for all reader threads to reach Q.S. (and
1184 * thus use the new table for lookups) before we can start
1185 * releasing the old dummy nodes.
1186 */
1187 ht->cds_lfht_synchronize_rcu();
1188
1189 /* Unlink and remove all now-unused dummy node pointers. */
1190 fini_table(ht, old_t, new_order, old_order - new_order);
1191 ht->cds_lfht_call_rcu(&old_t->head, cds_lfht_free_table_cb);
1192 }
1193
1194
1195 /* called with resize mutex held */
1196 static
1197 void _do_cds_lfht_resize(struct cds_lfht *ht)
1198 {
1199 unsigned long new_size, old_size;
1200 struct rcu_table *old_t;
1201
1202 old_t = ht->t;
1203 old_size = old_t->size;
1204 new_size = CMM_LOAD_SHARED(old_t->resize_target);
1205 if (old_size < new_size)
1206 _do_cds_lfht_grow(ht, old_t, old_size, new_size);
1207 else if (old_size > new_size)
1208 _do_cds_lfht_shrink(ht, old_t, old_size, new_size);
1209 else
1210 CMM_STORE_SHARED(old_t->resize_initiated, 0);
1211 }
1212
1213 static
1214 unsigned long resize_target_update(struct rcu_table *t,
1215 int growth_order)
1216 {
1217 return _uatomic_max(&t->resize_target,
1218 t->size << growth_order);
1219 }
1220
1221 static
1222 unsigned long resize_target_update_count(struct rcu_table *t,
1223 unsigned long count)
1224 {
1225 count = max(count, 1);
1226 return uatomic_set(&t->resize_target, count);
1227 }
1228
1229 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1230 {
1231 struct rcu_table *t = rcu_dereference(ht->t);
1232 unsigned long target_size;
1233
1234 target_size = resize_target_update_count(t, new_size);
1235 CMM_STORE_SHARED(t->resize_initiated, 1);
1236 pthread_mutex_lock(&ht->resize_mutex);
1237 _do_cds_lfht_resize(ht);
1238 pthread_mutex_unlock(&ht->resize_mutex);
1239 }
1240
1241 static
1242 void do_resize_cb(struct rcu_head *head)
1243 {
1244 struct rcu_resize_work *work =
1245 caa_container_of(head, struct rcu_resize_work, head);
1246 struct cds_lfht *ht = work->ht;
1247
1248 pthread_mutex_lock(&ht->resize_mutex);
1249 _do_cds_lfht_resize(ht);
1250 pthread_mutex_unlock(&ht->resize_mutex);
1251 free(work);
1252 cmm_smp_mb(); /* finish resize before decrement */
1253 uatomic_dec(&ht->in_progress_resize);
1254 }
1255
1256 static
1257 void cds_lfht_resize_lazy(struct cds_lfht *ht, struct rcu_table *t, int growth)
1258 {
1259 struct rcu_resize_work *work;
1260 unsigned long target_size;
1261
1262 target_size = resize_target_update(t, growth);
1263 if (!CMM_LOAD_SHARED(t->resize_initiated) && t->size < target_size) {
1264 uatomic_inc(&ht->in_progress_resize);
1265 cmm_smp_mb(); /* increment resize count before calling it */
1266 work = malloc(sizeof(*work));
1267 work->ht = ht;
1268 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1269 CMM_STORE_SHARED(t->resize_initiated, 1);
1270 }
1271 }
1272
1273 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1274
1275 static
1276 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, struct rcu_table *t,
1277 unsigned long count)
1278 {
1279 struct rcu_resize_work *work;
1280 unsigned long target_size;
1281
1282 target_size = resize_target_update_count(t, count);
1283 if (!CMM_LOAD_SHARED(t->resize_initiated)) {
1284 uatomic_inc(&ht->in_progress_resize);
1285 cmm_smp_mb(); /* increment resize count before calling it */
1286 work = malloc(sizeof(*work));
1287 work->ht = ht;
1288 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1289 CMM_STORE_SHARED(t->resize_initiated, 1);
1290 }
1291 }
1292
1293 #endif
This page took 0.059869 seconds and 5 git commands to generate.