Clean-up: ust-consumer: simplify metadata cache unlock on error path
[lttng-tools.git] / src / common / ust-consumer / ust-consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * Copyright (C) 2017 - Jérémie Galarneau <jeremie.galarneau@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <lttng/ust-ctl.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/stat.h>
30 #include <sys/types.h>
31 #include <inttypes.h>
32 #include <unistd.h>
33 #include <urcu/list.h>
34 #include <signal.h>
35 #include <stdbool.h>
36 #include <stdint.h>
37
38 #include <bin/lttng-consumerd/health-consumerd.h>
39 #include <common/common.h>
40 #include <common/sessiond-comm/sessiond-comm.h>
41 #include <common/relayd/relayd.h>
42 #include <common/compat/fcntl.h>
43 #include <common/compat/endian.h>
44 #include <common/consumer/consumer-metadata-cache.h>
45 #include <common/consumer/consumer-stream.h>
46 #include <common/consumer/consumer-timer.h>
47 #include <common/utils.h>
48 #include <common/index/index.h>
49 #include <common/consumer/consumer.h>
50 #include <common/optional.h>
51
52 #include "ust-consumer.h"
53
54 #define INT_MAX_STR_LEN 12 /* includes \0 */
55
56 extern struct lttng_consumer_global_data consumer_data;
57 extern int consumer_poll_timeout;
58
59 /*
60 * Free channel object and all streams associated with it. This MUST be used
61 * only and only if the channel has _NEVER_ been added to the global channel
62 * hash table.
63 */
64 static void destroy_channel(struct lttng_consumer_channel *channel)
65 {
66 struct lttng_consumer_stream *stream, *stmp;
67
68 assert(channel);
69
70 DBG("UST consumer cleaning stream list");
71
72 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
73 send_node) {
74
75 health_code_update();
76
77 cds_list_del(&stream->send_node);
78 ustctl_destroy_stream(stream->ustream);
79 lttng_trace_chunk_put(stream->trace_chunk);
80 free(stream);
81 }
82
83 /*
84 * If a channel is available meaning that was created before the streams
85 * were, delete it.
86 */
87 if (channel->uchan) {
88 lttng_ustconsumer_del_channel(channel);
89 lttng_ustconsumer_free_channel(channel);
90 }
91
92 if (channel->trace_chunk) {
93 lttng_trace_chunk_put(channel->trace_chunk);
94 }
95
96 free(channel);
97 }
98
99 /*
100 * Add channel to internal consumer state.
101 *
102 * Returns 0 on success or else a negative value.
103 */
104 static int add_channel(struct lttng_consumer_channel *channel,
105 struct lttng_consumer_local_data *ctx)
106 {
107 int ret = 0;
108
109 assert(channel);
110 assert(ctx);
111
112 if (ctx->on_recv_channel != NULL) {
113 ret = ctx->on_recv_channel(channel);
114 if (ret == 0) {
115 ret = consumer_add_channel(channel, ctx);
116 } else if (ret < 0) {
117 /* Most likely an ENOMEM. */
118 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
119 goto error;
120 }
121 } else {
122 ret = consumer_add_channel(channel, ctx);
123 }
124
125 DBG("UST consumer channel added (key: %" PRIu64 ")", channel->key);
126
127 error:
128 return ret;
129 }
130
131 /*
132 * Allocate and return a consumer stream object. If _alloc_ret is not NULL, the
133 * error value if applicable is set in it else it is kept untouched.
134 *
135 * Return NULL on error else the newly allocated stream object.
136 */
137 static struct lttng_consumer_stream *allocate_stream(int cpu, int key,
138 struct lttng_consumer_channel *channel,
139 struct lttng_consumer_local_data *ctx, int *_alloc_ret)
140 {
141 int alloc_ret;
142 struct lttng_consumer_stream *stream = NULL;
143
144 assert(channel);
145 assert(ctx);
146
147 stream = consumer_stream_create(
148 channel,
149 channel->key,
150 key,
151 channel->name,
152 channel->relayd_id,
153 channel->session_id,
154 channel->trace_chunk,
155 cpu,
156 &alloc_ret,
157 channel->type,
158 channel->monitor);
159 if (stream == NULL) {
160 switch (alloc_ret) {
161 case -ENOENT:
162 /*
163 * We could not find the channel. Can happen if cpu hotplug
164 * happens while tearing down.
165 */
166 DBG3("Could not find channel");
167 break;
168 case -ENOMEM:
169 case -EINVAL:
170 default:
171 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
172 break;
173 }
174 goto error;
175 }
176
177 consumer_stream_update_channel_attributes(stream, channel);
178
179 error:
180 if (_alloc_ret) {
181 *_alloc_ret = alloc_ret;
182 }
183 return stream;
184 }
185
186 /*
187 * Send the given stream pointer to the corresponding thread.
188 *
189 * Returns 0 on success else a negative value.
190 */
191 static int send_stream_to_thread(struct lttng_consumer_stream *stream,
192 struct lttng_consumer_local_data *ctx)
193 {
194 int ret;
195 struct lttng_pipe *stream_pipe;
196
197 /* Get the right pipe where the stream will be sent. */
198 if (stream->metadata_flag) {
199 consumer_add_metadata_stream(stream);
200 stream_pipe = ctx->consumer_metadata_pipe;
201 } else {
202 consumer_add_data_stream(stream);
203 stream_pipe = ctx->consumer_data_pipe;
204 }
205
206 /*
207 * From this point on, the stream's ownership has been moved away from
208 * the channel and it becomes globally visible. Hence, remove it from
209 * the local stream list to prevent the stream from being both local and
210 * global.
211 */
212 stream->globally_visible = 1;
213 cds_list_del(&stream->send_node);
214
215 ret = lttng_pipe_write(stream_pipe, &stream, sizeof(stream));
216 if (ret < 0) {
217 ERR("Consumer write %s stream to pipe %d",
218 stream->metadata_flag ? "metadata" : "data",
219 lttng_pipe_get_writefd(stream_pipe));
220 if (stream->metadata_flag) {
221 consumer_del_stream_for_metadata(stream);
222 } else {
223 consumer_del_stream_for_data(stream);
224 }
225 goto error;
226 }
227
228 error:
229 return ret;
230 }
231
232 static
233 int get_stream_shm_path(char *stream_shm_path, const char *shm_path, int cpu)
234 {
235 char cpu_nr[INT_MAX_STR_LEN]; /* int max len */
236 int ret;
237
238 strncpy(stream_shm_path, shm_path, PATH_MAX);
239 stream_shm_path[PATH_MAX - 1] = '\0';
240 ret = snprintf(cpu_nr, INT_MAX_STR_LEN, "%i", cpu);
241 if (ret < 0) {
242 PERROR("snprintf");
243 goto end;
244 }
245 strncat(stream_shm_path, cpu_nr,
246 PATH_MAX - strlen(stream_shm_path) - 1);
247 ret = 0;
248 end:
249 return ret;
250 }
251
252 /*
253 * Create streams for the given channel using liblttng-ust-ctl.
254 * The channel lock must be acquired by the caller.
255 *
256 * Return 0 on success else a negative value.
257 */
258 static int create_ust_streams(struct lttng_consumer_channel *channel,
259 struct lttng_consumer_local_data *ctx)
260 {
261 int ret, cpu = 0;
262 struct ustctl_consumer_stream *ustream;
263 struct lttng_consumer_stream *stream;
264 pthread_mutex_t *current_stream_lock = NULL;
265
266 assert(channel);
267 assert(ctx);
268
269 /*
270 * While a stream is available from ustctl. When NULL is returned, we've
271 * reached the end of the possible stream for the channel.
272 */
273 while ((ustream = ustctl_create_stream(channel->uchan, cpu))) {
274 int wait_fd;
275 int ust_metadata_pipe[2];
276
277 health_code_update();
278
279 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA && channel->monitor) {
280 ret = utils_create_pipe_cloexec_nonblock(ust_metadata_pipe);
281 if (ret < 0) {
282 ERR("Create ust metadata poll pipe");
283 goto error;
284 }
285 wait_fd = ust_metadata_pipe[0];
286 } else {
287 wait_fd = ustctl_stream_get_wait_fd(ustream);
288 }
289
290 /* Allocate consumer stream object. */
291 stream = allocate_stream(cpu, wait_fd, channel, ctx, &ret);
292 if (!stream) {
293 goto error_alloc;
294 }
295 stream->ustream = ustream;
296 /*
297 * Store it so we can save multiple function calls afterwards since
298 * this value is used heavily in the stream threads. This is UST
299 * specific so this is why it's done after allocation.
300 */
301 stream->wait_fd = wait_fd;
302
303 /*
304 * Increment channel refcount since the channel reference has now been
305 * assigned in the allocation process above.
306 */
307 if (stream->chan->monitor) {
308 uatomic_inc(&stream->chan->refcount);
309 }
310
311 pthread_mutex_lock(&stream->lock);
312 current_stream_lock = &stream->lock;
313 /*
314 * Order is important this is why a list is used. On error, the caller
315 * should clean this list.
316 */
317 cds_list_add_tail(&stream->send_node, &channel->streams.head);
318
319 ret = ustctl_get_max_subbuf_size(stream->ustream,
320 &stream->max_sb_size);
321 if (ret < 0) {
322 ERR("ustctl_get_max_subbuf_size failed for stream %s",
323 stream->name);
324 goto error;
325 }
326
327 /* Do actions once stream has been received. */
328 if (ctx->on_recv_stream) {
329 ret = ctx->on_recv_stream(stream);
330 if (ret < 0) {
331 goto error;
332 }
333 }
334
335 DBG("UST consumer add stream %s (key: %" PRIu64 ") with relayd id %" PRIu64,
336 stream->name, stream->key, stream->relayd_stream_id);
337
338 /* Set next CPU stream. */
339 channel->streams.count = ++cpu;
340
341 /* Keep stream reference when creating metadata. */
342 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA) {
343 channel->metadata_stream = stream;
344 if (channel->monitor) {
345 /* Set metadata poll pipe if we created one */
346 memcpy(stream->ust_metadata_poll_pipe,
347 ust_metadata_pipe,
348 sizeof(ust_metadata_pipe));
349 }
350 }
351 pthread_mutex_unlock(&stream->lock);
352 current_stream_lock = NULL;
353 }
354
355 return 0;
356
357 error:
358 error_alloc:
359 if (current_stream_lock) {
360 pthread_mutex_unlock(current_stream_lock);
361 }
362 return ret;
363 }
364
365 /*
366 * create_posix_shm is never called concurrently within a process.
367 */
368 static
369 int create_posix_shm(void)
370 {
371 char tmp_name[NAME_MAX];
372 int shmfd, ret;
373
374 ret = snprintf(tmp_name, NAME_MAX, "/ust-shm-consumer-%d", getpid());
375 if (ret < 0) {
376 PERROR("snprintf");
377 return -1;
378 }
379 /*
380 * Allocate shm, and immediately unlink its shm oject, keeping
381 * only the file descriptor as a reference to the object.
382 * We specifically do _not_ use the / at the beginning of the
383 * pathname so that some OS implementations can keep it local to
384 * the process (POSIX leaves this implementation-defined).
385 */
386 shmfd = shm_open(tmp_name, O_CREAT | O_EXCL | O_RDWR, 0700);
387 if (shmfd < 0) {
388 PERROR("shm_open");
389 goto error_shm_open;
390 }
391 ret = shm_unlink(tmp_name);
392 if (ret < 0 && errno != ENOENT) {
393 PERROR("shm_unlink");
394 goto error_shm_release;
395 }
396 return shmfd;
397
398 error_shm_release:
399 ret = close(shmfd);
400 if (ret) {
401 PERROR("close");
402 }
403 error_shm_open:
404 return -1;
405 }
406
407 static int open_ust_stream_fd(struct lttng_consumer_channel *channel, int cpu,
408 const struct lttng_credentials *session_credentials)
409 {
410 char shm_path[PATH_MAX];
411 int ret;
412
413 if (!channel->shm_path[0]) {
414 return create_posix_shm();
415 }
416 ret = get_stream_shm_path(shm_path, channel->shm_path, cpu);
417 if (ret) {
418 goto error_shm_path;
419 }
420 return run_as_open(shm_path,
421 O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR,
422 session_credentials->uid, session_credentials->gid);
423
424 error_shm_path:
425 return -1;
426 }
427
428 /*
429 * Create an UST channel with the given attributes and send it to the session
430 * daemon using the ust ctl API.
431 *
432 * Return 0 on success or else a negative value.
433 */
434 static int create_ust_channel(struct lttng_consumer_channel *channel,
435 struct ustctl_consumer_channel_attr *attr,
436 struct ustctl_consumer_channel **ust_chanp)
437 {
438 int ret, nr_stream_fds, i, j;
439 int *stream_fds;
440 struct ustctl_consumer_channel *ust_channel;
441
442 assert(channel);
443 assert(attr);
444 assert(ust_chanp);
445 assert(channel->buffer_credentials.is_set);
446
447 DBG3("Creating channel to ustctl with attr: [overwrite: %d, "
448 "subbuf_size: %" PRIu64 ", num_subbuf: %" PRIu64 ", "
449 "switch_timer_interval: %u, read_timer_interval: %u, "
450 "output: %d, type: %d", attr->overwrite, attr->subbuf_size,
451 attr->num_subbuf, attr->switch_timer_interval,
452 attr->read_timer_interval, attr->output, attr->type);
453
454 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA)
455 nr_stream_fds = 1;
456 else
457 nr_stream_fds = ustctl_get_nr_stream_per_channel();
458 stream_fds = zmalloc(nr_stream_fds * sizeof(*stream_fds));
459 if (!stream_fds) {
460 ret = -1;
461 goto error_alloc;
462 }
463 for (i = 0; i < nr_stream_fds; i++) {
464 stream_fds[i] = open_ust_stream_fd(channel, i,
465 &channel->buffer_credentials.value);
466 if (stream_fds[i] < 0) {
467 ret = -1;
468 goto error_open;
469 }
470 }
471 ust_channel = ustctl_create_channel(attr, stream_fds, nr_stream_fds);
472 if (!ust_channel) {
473 ret = -1;
474 goto error_create;
475 }
476 channel->nr_stream_fds = nr_stream_fds;
477 channel->stream_fds = stream_fds;
478 *ust_chanp = ust_channel;
479
480 return 0;
481
482 error_create:
483 error_open:
484 for (j = i - 1; j >= 0; j--) {
485 int closeret;
486
487 closeret = close(stream_fds[j]);
488 if (closeret) {
489 PERROR("close");
490 }
491 if (channel->shm_path[0]) {
492 char shm_path[PATH_MAX];
493
494 closeret = get_stream_shm_path(shm_path,
495 channel->shm_path, j);
496 if (closeret) {
497 ERR("Cannot get stream shm path");
498 }
499 closeret = run_as_unlink(shm_path,
500 channel->buffer_credentials.value.uid,
501 channel->buffer_credentials.value.gid);
502 if (closeret) {
503 PERROR("unlink %s", shm_path);
504 }
505 }
506 }
507 /* Try to rmdir all directories under shm_path root. */
508 if (channel->root_shm_path[0]) {
509 (void) run_as_rmdir_recursive(channel->root_shm_path,
510 channel->buffer_credentials.value.uid,
511 channel->buffer_credentials.value.gid,
512 LTTNG_DIRECTORY_HANDLE_SKIP_NON_EMPTY_FLAG);
513 }
514 free(stream_fds);
515 error_alloc:
516 return ret;
517 }
518
519 /*
520 * Send a single given stream to the session daemon using the sock.
521 *
522 * Return 0 on success else a negative value.
523 */
524 static int send_sessiond_stream(int sock, struct lttng_consumer_stream *stream)
525 {
526 int ret;
527
528 assert(stream);
529 assert(sock >= 0);
530
531 DBG("UST consumer sending stream %" PRIu64 " to sessiond", stream->key);
532
533 /* Send stream to session daemon. */
534 ret = ustctl_send_stream_to_sessiond(sock, stream->ustream);
535 if (ret < 0) {
536 goto error;
537 }
538
539 error:
540 return ret;
541 }
542
543 /*
544 * Send channel to sessiond and relayd if applicable.
545 *
546 * Return 0 on success or else a negative value.
547 */
548 static int send_channel_to_sessiond_and_relayd(int sock,
549 struct lttng_consumer_channel *channel,
550 struct lttng_consumer_local_data *ctx, int *relayd_error)
551 {
552 int ret, ret_code = LTTCOMM_CONSUMERD_SUCCESS;
553 struct lttng_consumer_stream *stream;
554 uint64_t net_seq_idx = -1ULL;
555
556 assert(channel);
557 assert(ctx);
558 assert(sock >= 0);
559
560 DBG("UST consumer sending channel %s to sessiond", channel->name);
561
562 if (channel->relayd_id != (uint64_t) -1ULL) {
563 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
564
565 health_code_update();
566
567 /* Try to send the stream to the relayd if one is available. */
568 DBG("Sending stream %" PRIu64 " of channel \"%s\" to relayd",
569 stream->key, channel->name);
570 ret = consumer_send_relayd_stream(stream, stream->chan->pathname);
571 if (ret < 0) {
572 /*
573 * Flag that the relayd was the problem here probably due to a
574 * communicaton error on the socket.
575 */
576 if (relayd_error) {
577 *relayd_error = 1;
578 }
579 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
580 }
581 if (net_seq_idx == -1ULL) {
582 net_seq_idx = stream->net_seq_idx;
583 }
584 }
585 }
586
587 /* Inform sessiond that we are about to send channel and streams. */
588 ret = consumer_send_status_msg(sock, ret_code);
589 if (ret < 0 || ret_code != LTTCOMM_CONSUMERD_SUCCESS) {
590 /*
591 * Either the session daemon is not responding or the relayd died so we
592 * stop now.
593 */
594 goto error;
595 }
596
597 /* Send channel to sessiond. */
598 ret = ustctl_send_channel_to_sessiond(sock, channel->uchan);
599 if (ret < 0) {
600 goto error;
601 }
602
603 ret = ustctl_channel_close_wakeup_fd(channel->uchan);
604 if (ret < 0) {
605 goto error;
606 }
607
608 /* The channel was sent successfully to the sessiond at this point. */
609 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
610
611 health_code_update();
612
613 /* Send stream to session daemon. */
614 ret = send_sessiond_stream(sock, stream);
615 if (ret < 0) {
616 goto error;
617 }
618 }
619
620 /* Tell sessiond there is no more stream. */
621 ret = ustctl_send_stream_to_sessiond(sock, NULL);
622 if (ret < 0) {
623 goto error;
624 }
625
626 DBG("UST consumer NULL stream sent to sessiond");
627
628 return 0;
629
630 error:
631 if (ret_code != LTTCOMM_CONSUMERD_SUCCESS) {
632 ret = -1;
633 }
634 return ret;
635 }
636
637 /*
638 * Creates a channel and streams and add the channel it to the channel internal
639 * state. The created stream must ONLY be sent once the GET_CHANNEL command is
640 * received.
641 *
642 * Return 0 on success or else, a negative value is returned and the channel
643 * MUST be destroyed by consumer_del_channel().
644 */
645 static int ask_channel(struct lttng_consumer_local_data *ctx,
646 struct lttng_consumer_channel *channel,
647 struct ustctl_consumer_channel_attr *attr)
648 {
649 int ret;
650
651 assert(ctx);
652 assert(channel);
653 assert(attr);
654
655 /*
656 * This value is still used by the kernel consumer since for the kernel,
657 * the stream ownership is not IN the consumer so we need to have the
658 * number of left stream that needs to be initialized so we can know when
659 * to delete the channel (see consumer.c).
660 *
661 * As for the user space tracer now, the consumer creates and sends the
662 * stream to the session daemon which only sends them to the application
663 * once every stream of a channel is received making this value useless
664 * because we they will be added to the poll thread before the application
665 * receives them. This ensures that a stream can not hang up during
666 * initilization of a channel.
667 */
668 channel->nb_init_stream_left = 0;
669
670 /* The reply msg status is handled in the following call. */
671 ret = create_ust_channel(channel, attr, &channel->uchan);
672 if (ret < 0) {
673 goto end;
674 }
675
676 channel->wait_fd = ustctl_channel_get_wait_fd(channel->uchan);
677
678 /*
679 * For the snapshots (no monitor), we create the metadata streams
680 * on demand, not during the channel creation.
681 */
682 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA && !channel->monitor) {
683 ret = 0;
684 goto end;
685 }
686
687 /* Open all streams for this channel. */
688 pthread_mutex_lock(&channel->lock);
689 ret = create_ust_streams(channel, ctx);
690 pthread_mutex_unlock(&channel->lock);
691 if (ret < 0) {
692 goto end;
693 }
694
695 end:
696 return ret;
697 }
698
699 /*
700 * Send all stream of a channel to the right thread handling it.
701 *
702 * On error, return a negative value else 0 on success.
703 */
704 static int send_streams_to_thread(struct lttng_consumer_channel *channel,
705 struct lttng_consumer_local_data *ctx)
706 {
707 int ret = 0;
708 struct lttng_consumer_stream *stream, *stmp;
709
710 assert(channel);
711 assert(ctx);
712
713 /* Send streams to the corresponding thread. */
714 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
715 send_node) {
716
717 health_code_update();
718
719 /* Sending the stream to the thread. */
720 ret = send_stream_to_thread(stream, ctx);
721 if (ret < 0) {
722 /*
723 * If we are unable to send the stream to the thread, there is
724 * a big problem so just stop everything.
725 */
726 goto error;
727 }
728 }
729
730 error:
731 return ret;
732 }
733
734 /*
735 * Flush channel's streams using the given key to retrieve the channel.
736 *
737 * Return 0 on success else an LTTng error code.
738 */
739 static int flush_channel(uint64_t chan_key)
740 {
741 int ret = 0;
742 struct lttng_consumer_channel *channel;
743 struct lttng_consumer_stream *stream;
744 struct lttng_ht *ht;
745 struct lttng_ht_iter iter;
746
747 DBG("UST consumer flush channel key %" PRIu64, chan_key);
748
749 rcu_read_lock();
750 channel = consumer_find_channel(chan_key);
751 if (!channel) {
752 ERR("UST consumer flush channel %" PRIu64 " not found", chan_key);
753 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
754 goto error;
755 }
756
757 ht = consumer_data.stream_per_chan_id_ht;
758
759 /* For each stream of the channel id, flush it. */
760 cds_lfht_for_each_entry_duplicate(ht->ht,
761 ht->hash_fct(&channel->key, lttng_ht_seed), ht->match_fct,
762 &channel->key, &iter.iter, stream, node_channel_id.node) {
763
764 health_code_update();
765
766 pthread_mutex_lock(&stream->lock);
767
768 /*
769 * Protect against concurrent teardown of a stream.
770 */
771 if (cds_lfht_is_node_deleted(&stream->node.node)) {
772 goto next;
773 }
774
775 if (!stream->quiescent) {
776 ustctl_flush_buffer(stream->ustream, 0);
777 stream->quiescent = true;
778 }
779 next:
780 pthread_mutex_unlock(&stream->lock);
781 }
782 error:
783 rcu_read_unlock();
784 return ret;
785 }
786
787 /*
788 * Clear quiescent state from channel's streams using the given key to
789 * retrieve the channel.
790 *
791 * Return 0 on success else an LTTng error code.
792 */
793 static int clear_quiescent_channel(uint64_t chan_key)
794 {
795 int ret = 0;
796 struct lttng_consumer_channel *channel;
797 struct lttng_consumer_stream *stream;
798 struct lttng_ht *ht;
799 struct lttng_ht_iter iter;
800
801 DBG("UST consumer clear quiescent channel key %" PRIu64, chan_key);
802
803 rcu_read_lock();
804 channel = consumer_find_channel(chan_key);
805 if (!channel) {
806 ERR("UST consumer clear quiescent channel %" PRIu64 " not found", chan_key);
807 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
808 goto error;
809 }
810
811 ht = consumer_data.stream_per_chan_id_ht;
812
813 /* For each stream of the channel id, clear quiescent state. */
814 cds_lfht_for_each_entry_duplicate(ht->ht,
815 ht->hash_fct(&channel->key, lttng_ht_seed), ht->match_fct,
816 &channel->key, &iter.iter, stream, node_channel_id.node) {
817
818 health_code_update();
819
820 pthread_mutex_lock(&stream->lock);
821 stream->quiescent = false;
822 pthread_mutex_unlock(&stream->lock);
823 }
824 error:
825 rcu_read_unlock();
826 return ret;
827 }
828
829 /*
830 * Close metadata stream wakeup_fd using the given key to retrieve the channel.
831 *
832 * Return 0 on success else an LTTng error code.
833 */
834 static int close_metadata(uint64_t chan_key)
835 {
836 int ret = 0;
837 struct lttng_consumer_channel *channel;
838 unsigned int channel_monitor;
839
840 DBG("UST consumer close metadata key %" PRIu64, chan_key);
841
842 channel = consumer_find_channel(chan_key);
843 if (!channel) {
844 /*
845 * This is possible if the metadata thread has issue a delete because
846 * the endpoint point of the stream hung up. There is no way the
847 * session daemon can know about it thus use a DBG instead of an actual
848 * error.
849 */
850 DBG("UST consumer close metadata %" PRIu64 " not found", chan_key);
851 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
852 goto error;
853 }
854
855 pthread_mutex_lock(&consumer_data.lock);
856 pthread_mutex_lock(&channel->lock);
857 channel_monitor = channel->monitor;
858 if (cds_lfht_is_node_deleted(&channel->node.node)) {
859 goto error_unlock;
860 }
861
862 lttng_ustconsumer_close_metadata(channel);
863 pthread_mutex_unlock(&channel->lock);
864 pthread_mutex_unlock(&consumer_data.lock);
865
866 /*
867 * The ownership of a metadata channel depends on the type of
868 * session to which it belongs. In effect, the monitor flag is checked
869 * to determine if this metadata channel is in "snapshot" mode or not.
870 *
871 * In the non-snapshot case, the metadata channel is created along with
872 * a single stream which will remain present until the metadata channel
873 * is destroyed (on the destruction of its session). In this case, the
874 * metadata stream in "monitored" by the metadata poll thread and holds
875 * the ownership of its channel.
876 *
877 * Closing the metadata will cause the metadata stream's "metadata poll
878 * pipe" to be closed. Closing this pipe will wake-up the metadata poll
879 * thread which will teardown the metadata stream which, in return,
880 * deletes the metadata channel.
881 *
882 * In the snapshot case, the metadata stream is created and destroyed
883 * on every snapshot record. Since the channel doesn't have an owner
884 * other than the session daemon, it is safe to destroy it immediately
885 * on reception of the CLOSE_METADATA command.
886 */
887 if (!channel_monitor) {
888 /*
889 * The channel and consumer_data locks must be
890 * released before this call since consumer_del_channel
891 * re-acquires the channel and consumer_data locks to teardown
892 * the channel and queue its reclamation by the "call_rcu"
893 * worker thread.
894 */
895 consumer_del_channel(channel);
896 }
897
898 return ret;
899 error_unlock:
900 pthread_mutex_unlock(&channel->lock);
901 pthread_mutex_unlock(&consumer_data.lock);
902 error:
903 return ret;
904 }
905
906 /*
907 * RCU read side lock MUST be acquired before calling this function.
908 *
909 * Return 0 on success else an LTTng error code.
910 */
911 static int setup_metadata(struct lttng_consumer_local_data *ctx, uint64_t key)
912 {
913 int ret;
914 struct lttng_consumer_channel *metadata;
915
916 DBG("UST consumer setup metadata key %" PRIu64, key);
917
918 metadata = consumer_find_channel(key);
919 if (!metadata) {
920 ERR("UST consumer push metadata %" PRIu64 " not found", key);
921 ret = LTTNG_ERR_UST_CHAN_NOT_FOUND;
922 goto end;
923 }
924
925 /*
926 * In no monitor mode, the metadata channel has no stream(s) so skip the
927 * ownership transfer to the metadata thread.
928 */
929 if (!metadata->monitor) {
930 DBG("Metadata channel in no monitor");
931 ret = 0;
932 goto end;
933 }
934
935 /*
936 * Send metadata stream to relayd if one available. Availability is
937 * known if the stream is still in the list of the channel.
938 */
939 if (cds_list_empty(&metadata->streams.head)) {
940 ERR("Metadata channel key %" PRIu64 ", no stream available.", key);
941 ret = LTTCOMM_CONSUMERD_ERROR_METADATA;
942 goto error_no_stream;
943 }
944
945 /* Send metadata stream to relayd if needed. */
946 if (metadata->metadata_stream->net_seq_idx != (uint64_t) -1ULL) {
947 ret = consumer_send_relayd_stream(metadata->metadata_stream,
948 metadata->pathname);
949 if (ret < 0) {
950 ret = LTTCOMM_CONSUMERD_ERROR_METADATA;
951 goto error;
952 }
953 ret = consumer_send_relayd_streams_sent(
954 metadata->metadata_stream->net_seq_idx);
955 if (ret < 0) {
956 ret = LTTCOMM_CONSUMERD_RELAYD_FAIL;
957 goto error;
958 }
959 }
960
961 /*
962 * Ownership of metadata stream is passed along. Freeing is handled by
963 * the callee.
964 */
965 ret = send_streams_to_thread(metadata, ctx);
966 if (ret < 0) {
967 /*
968 * If we are unable to send the stream to the thread, there is
969 * a big problem so just stop everything.
970 */
971 ret = LTTCOMM_CONSUMERD_FATAL;
972 goto send_streams_error;
973 }
974 /* List MUST be empty after or else it could be reused. */
975 assert(cds_list_empty(&metadata->streams.head));
976
977 ret = 0;
978 goto end;
979
980 error:
981 /*
982 * Delete metadata channel on error. At this point, the metadata stream can
983 * NOT be monitored by the metadata thread thus having the guarantee that
984 * the stream is still in the local stream list of the channel. This call
985 * will make sure to clean that list.
986 */
987 consumer_stream_destroy(metadata->metadata_stream, NULL);
988 cds_list_del(&metadata->metadata_stream->send_node);
989 metadata->metadata_stream = NULL;
990 send_streams_error:
991 error_no_stream:
992 end:
993 return ret;
994 }
995
996 /*
997 * Snapshot the whole metadata.
998 * RCU read-side lock must be held by the caller.
999 *
1000 * Returns 0 on success, < 0 on error
1001 */
1002 static int snapshot_metadata(struct lttng_consumer_channel *metadata_channel,
1003 uint64_t key, char *path, uint64_t relayd_id,
1004 struct lttng_consumer_local_data *ctx)
1005 {
1006 int ret = 0;
1007 struct lttng_consumer_stream *metadata_stream;
1008
1009 assert(path);
1010 assert(ctx);
1011
1012 DBG("UST consumer snapshot metadata with key %" PRIu64 " at path %s",
1013 key, path);
1014
1015 rcu_read_lock();
1016
1017 assert(!metadata_channel->monitor);
1018
1019 health_code_update();
1020
1021 /*
1022 * Ask the sessiond if we have new metadata waiting and update the
1023 * consumer metadata cache.
1024 */
1025 ret = lttng_ustconsumer_request_metadata(ctx, metadata_channel, 0, 1);
1026 if (ret < 0) {
1027 goto error;
1028 }
1029
1030 health_code_update();
1031
1032 /*
1033 * The metadata stream is NOT created in no monitor mode when the channel
1034 * is created on a sessiond ask channel command.
1035 */
1036 ret = create_ust_streams(metadata_channel, ctx);
1037 if (ret < 0) {
1038 goto error;
1039 }
1040
1041 metadata_stream = metadata_channel->metadata_stream;
1042 assert(metadata_stream);
1043
1044 pthread_mutex_lock(&metadata_stream->lock);
1045 if (relayd_id != (uint64_t) -1ULL) {
1046 metadata_stream->net_seq_idx = relayd_id;
1047 ret = consumer_send_relayd_stream(metadata_stream, path);
1048 } else {
1049 ret = consumer_stream_create_output_files(metadata_stream,
1050 false);
1051 }
1052 pthread_mutex_unlock(&metadata_stream->lock);
1053 if (ret < 0) {
1054 goto error_stream;
1055 }
1056
1057 do {
1058 health_code_update();
1059
1060 ret = lttng_consumer_read_subbuffer(metadata_stream, ctx, true);
1061 if (ret < 0) {
1062 goto error_stream;
1063 }
1064 } while (ret > 0);
1065
1066 error_stream:
1067 /*
1068 * Clean up the stream completly because the next snapshot will use a new
1069 * metadata stream.
1070 */
1071 consumer_stream_destroy(metadata_stream, NULL);
1072 cds_list_del(&metadata_stream->send_node);
1073 metadata_channel->metadata_stream = NULL;
1074
1075 error:
1076 rcu_read_unlock();
1077 return ret;
1078 }
1079
1080 static
1081 int get_current_subbuf_addr(struct lttng_consumer_stream *stream,
1082 const char **addr)
1083 {
1084 int ret;
1085 unsigned long mmap_offset;
1086 const char *mmap_base;
1087
1088 mmap_base = ustctl_get_mmap_base(stream->ustream);
1089 if (!mmap_base) {
1090 ERR("Failed to get mmap base for stream `%s`",
1091 stream->name);
1092 ret = -EPERM;
1093 goto error;
1094 }
1095
1096 ret = ustctl_get_mmap_read_offset(stream->ustream, &mmap_offset);
1097 if (ret != 0) {
1098 ERR("Failed to get mmap offset for stream `%s`", stream->name);
1099 ret = -EINVAL;
1100 goto error;
1101 }
1102
1103 *addr = mmap_base + mmap_offset;
1104 error:
1105 return ret;
1106
1107 }
1108
1109 /*
1110 * Take a snapshot of all the stream of a channel.
1111 * RCU read-side lock and the channel lock must be held by the caller.
1112 *
1113 * Returns 0 on success, < 0 on error
1114 */
1115 static int snapshot_channel(struct lttng_consumer_channel *channel,
1116 uint64_t key, char *path, uint64_t relayd_id,
1117 uint64_t nb_packets_per_stream,
1118 struct lttng_consumer_local_data *ctx)
1119 {
1120 int ret;
1121 unsigned use_relayd = 0;
1122 unsigned long consumed_pos, produced_pos;
1123 struct lttng_consumer_stream *stream;
1124
1125 assert(path);
1126 assert(ctx);
1127
1128 rcu_read_lock();
1129
1130 if (relayd_id != (uint64_t) -1ULL) {
1131 use_relayd = 1;
1132 }
1133
1134 assert(!channel->monitor);
1135 DBG("UST consumer snapshot channel %" PRIu64, key);
1136
1137 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
1138 health_code_update();
1139
1140 /* Lock stream because we are about to change its state. */
1141 pthread_mutex_lock(&stream->lock);
1142 assert(channel->trace_chunk);
1143 if (!lttng_trace_chunk_get(channel->trace_chunk)) {
1144 /*
1145 * Can't happen barring an internal error as the channel
1146 * holds a reference to the trace chunk.
1147 */
1148 ERR("Failed to acquire reference to channel's trace chunk");
1149 ret = -1;
1150 goto error_unlock;
1151 }
1152 assert(!stream->trace_chunk);
1153 stream->trace_chunk = channel->trace_chunk;
1154
1155 stream->net_seq_idx = relayd_id;
1156
1157 if (use_relayd) {
1158 ret = consumer_send_relayd_stream(stream, path);
1159 if (ret < 0) {
1160 goto error_unlock;
1161 }
1162 } else {
1163 ret = consumer_stream_create_output_files(stream,
1164 false);
1165 if (ret < 0) {
1166 goto error_unlock;
1167 }
1168 DBG("UST consumer snapshot stream (%" PRIu64 ")",
1169 stream->key);
1170 }
1171
1172 /*
1173 * If tracing is active, we want to perform a "full" buffer flush.
1174 * Else, if quiescent, it has already been done by the prior stop.
1175 */
1176 if (!stream->quiescent) {
1177 ustctl_flush_buffer(stream->ustream, 0);
1178 }
1179
1180 ret = lttng_ustconsumer_take_snapshot(stream);
1181 if (ret < 0) {
1182 ERR("Taking UST snapshot");
1183 goto error_unlock;
1184 }
1185
1186 ret = lttng_ustconsumer_get_produced_snapshot(stream, &produced_pos);
1187 if (ret < 0) {
1188 ERR("Produced UST snapshot position");
1189 goto error_unlock;
1190 }
1191
1192 ret = lttng_ustconsumer_get_consumed_snapshot(stream, &consumed_pos);
1193 if (ret < 0) {
1194 ERR("Consumerd UST snapshot position");
1195 goto error_unlock;
1196 }
1197
1198 /*
1199 * The original value is sent back if max stream size is larger than
1200 * the possible size of the snapshot. Also, we assume that the session
1201 * daemon should never send a maximum stream size that is lower than
1202 * subbuffer size.
1203 */
1204 consumed_pos = consumer_get_consume_start_pos(consumed_pos,
1205 produced_pos, nb_packets_per_stream,
1206 stream->max_sb_size);
1207
1208 while ((long) (consumed_pos - produced_pos) < 0) {
1209 ssize_t read_len;
1210 unsigned long len, padded_len;
1211 const char *subbuf_addr;
1212 struct lttng_buffer_view subbuf_view;
1213
1214 health_code_update();
1215
1216 DBG("UST consumer taking snapshot at pos %lu", consumed_pos);
1217
1218 ret = ustctl_get_subbuf(stream->ustream, &consumed_pos);
1219 if (ret < 0) {
1220 if (ret != -EAGAIN) {
1221 PERROR("ustctl_get_subbuf snapshot");
1222 goto error_close_stream;
1223 }
1224 DBG("UST consumer get subbuf failed. Skipping it.");
1225 consumed_pos += stream->max_sb_size;
1226 stream->chan->lost_packets++;
1227 continue;
1228 }
1229
1230 ret = ustctl_get_subbuf_size(stream->ustream, &len);
1231 if (ret < 0) {
1232 ERR("Snapshot ustctl_get_subbuf_size");
1233 goto error_put_subbuf;
1234 }
1235
1236 ret = ustctl_get_padded_subbuf_size(stream->ustream, &padded_len);
1237 if (ret < 0) {
1238 ERR("Snapshot ustctl_get_padded_subbuf_size");
1239 goto error_put_subbuf;
1240 }
1241
1242 ret = get_current_subbuf_addr(stream, &subbuf_addr);
1243 if (ret) {
1244 goto error_put_subbuf;
1245 }
1246
1247 subbuf_view = lttng_buffer_view_init(
1248 subbuf_addr, 0, padded_len);
1249 read_len = lttng_consumer_on_read_subbuffer_mmap(
1250 stream, &subbuf_view, padded_len - len);
1251 if (use_relayd) {
1252 if (read_len != len) {
1253 ret = -EPERM;
1254 goto error_put_subbuf;
1255 }
1256 } else {
1257 if (read_len != padded_len) {
1258 ret = -EPERM;
1259 goto error_put_subbuf;
1260 }
1261 }
1262
1263 ret = ustctl_put_subbuf(stream->ustream);
1264 if (ret < 0) {
1265 ERR("Snapshot ustctl_put_subbuf");
1266 goto error_close_stream;
1267 }
1268 consumed_pos += stream->max_sb_size;
1269 }
1270
1271 /* Simply close the stream so we can use it on the next snapshot. */
1272 consumer_stream_close(stream);
1273 pthread_mutex_unlock(&stream->lock);
1274 }
1275
1276 rcu_read_unlock();
1277 return 0;
1278
1279 error_put_subbuf:
1280 if (ustctl_put_subbuf(stream->ustream) < 0) {
1281 ERR("Snapshot ustctl_put_subbuf");
1282 }
1283 error_close_stream:
1284 consumer_stream_close(stream);
1285 error_unlock:
1286 pthread_mutex_unlock(&stream->lock);
1287 rcu_read_unlock();
1288 return ret;
1289 }
1290
1291 /*
1292 * Receive the metadata updates from the sessiond. Supports receiving
1293 * overlapping metadata, but is needs to always belong to a contiguous
1294 * range starting from 0.
1295 * Be careful about the locks held when calling this function: it needs
1296 * the metadata cache flush to concurrently progress in order to
1297 * complete.
1298 */
1299 int lttng_ustconsumer_recv_metadata(int sock, uint64_t key, uint64_t offset,
1300 uint64_t len, uint64_t version,
1301 struct lttng_consumer_channel *channel, int timer, int wait)
1302 {
1303 int ret, ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1304 char *metadata_str;
1305
1306 DBG("UST consumer push metadata key %" PRIu64 " of len %" PRIu64, key, len);
1307
1308 metadata_str = zmalloc(len * sizeof(char));
1309 if (!metadata_str) {
1310 PERROR("zmalloc metadata string");
1311 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
1312 goto end;
1313 }
1314
1315 health_code_update();
1316
1317 /* Receive metadata string. */
1318 ret = lttcomm_recv_unix_sock(sock, metadata_str, len);
1319 if (ret < 0) {
1320 /* Session daemon is dead so return gracefully. */
1321 ret_code = ret;
1322 goto end_free;
1323 }
1324
1325 health_code_update();
1326
1327 pthread_mutex_lock(&channel->metadata_cache->lock);
1328 ret = consumer_metadata_cache_write(channel, offset, len, version,
1329 metadata_str);
1330 pthread_mutex_unlock(&channel->metadata_cache->lock);
1331 if (ret < 0) {
1332 /* Unable to handle metadata. Notify session daemon. */
1333 ret_code = LTTCOMM_CONSUMERD_ERROR_METADATA;
1334 /*
1335 * Skip metadata flush on write error since the offset and len might
1336 * not have been updated which could create an infinite loop below when
1337 * waiting for the metadata cache to be flushed.
1338 */
1339 goto end_free;
1340 }
1341
1342 if (!wait) {
1343 goto end_free;
1344 }
1345 while (consumer_metadata_cache_flushed(channel, offset + len, timer)) {
1346 DBG("Waiting for metadata to be flushed");
1347
1348 health_code_update();
1349
1350 usleep(DEFAULT_METADATA_AVAILABILITY_WAIT_TIME);
1351 }
1352
1353 end_free:
1354 free(metadata_str);
1355 end:
1356 return ret_code;
1357 }
1358
1359 /*
1360 * Receive command from session daemon and process it.
1361 *
1362 * Return 1 on success else a negative value or 0.
1363 */
1364 int lttng_ustconsumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1365 int sock, struct pollfd *consumer_sockpoll)
1366 {
1367 ssize_t ret;
1368 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1369 struct lttcomm_consumer_msg msg;
1370 struct lttng_consumer_channel *channel = NULL;
1371
1372 health_code_update();
1373
1374 ret = lttcomm_recv_unix_sock(sock, &msg, sizeof(msg));
1375 if (ret != sizeof(msg)) {
1376 DBG("Consumer received unexpected message size %zd (expects %zu)",
1377 ret, sizeof(msg));
1378 /*
1379 * The ret value might 0 meaning an orderly shutdown but this is ok
1380 * since the caller handles this.
1381 */
1382 if (ret > 0) {
1383 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_CMD);
1384 ret = -1;
1385 }
1386 return ret;
1387 }
1388
1389 health_code_update();
1390
1391 /* deprecated */
1392 assert(msg.cmd_type != LTTNG_CONSUMER_STOP);
1393
1394 health_code_update();
1395
1396 /* relayd needs RCU read-side lock */
1397 rcu_read_lock();
1398
1399 switch (msg.cmd_type) {
1400 case LTTNG_CONSUMER_ADD_RELAYD_SOCKET:
1401 {
1402 /* Session daemon status message are handled in the following call. */
1403 consumer_add_relayd_socket(msg.u.relayd_sock.net_index,
1404 msg.u.relayd_sock.type, ctx, sock, consumer_sockpoll,
1405 &msg.u.relayd_sock.sock, msg.u.relayd_sock.session_id,
1406 msg.u.relayd_sock.relayd_session_id);
1407 goto end_nosignal;
1408 }
1409 case LTTNG_CONSUMER_DESTROY_RELAYD:
1410 {
1411 uint64_t index = msg.u.destroy_relayd.net_seq_idx;
1412 struct consumer_relayd_sock_pair *relayd;
1413
1414 DBG("UST consumer destroying relayd %" PRIu64, index);
1415
1416 /* Get relayd reference if exists. */
1417 relayd = consumer_find_relayd(index);
1418 if (relayd == NULL) {
1419 DBG("Unable to find relayd %" PRIu64, index);
1420 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
1421 }
1422
1423 /*
1424 * Each relayd socket pair has a refcount of stream attached to it
1425 * which tells if the relayd is still active or not depending on the
1426 * refcount value.
1427 *
1428 * This will set the destroy flag of the relayd object and destroy it
1429 * if the refcount reaches zero when called.
1430 *
1431 * The destroy can happen either here or when a stream fd hangs up.
1432 */
1433 if (relayd) {
1434 consumer_flag_relayd_for_destroy(relayd);
1435 }
1436
1437 goto end_msg_sessiond;
1438 }
1439 case LTTNG_CONSUMER_UPDATE_STREAM:
1440 {
1441 rcu_read_unlock();
1442 return -ENOSYS;
1443 }
1444 case LTTNG_CONSUMER_DATA_PENDING:
1445 {
1446 int ret, is_data_pending;
1447 uint64_t id = msg.u.data_pending.session_id;
1448
1449 DBG("UST consumer data pending command for id %" PRIu64, id);
1450
1451 is_data_pending = consumer_data_pending(id);
1452
1453 /* Send back returned value to session daemon */
1454 ret = lttcomm_send_unix_sock(sock, &is_data_pending,
1455 sizeof(is_data_pending));
1456 if (ret < 0) {
1457 DBG("Error when sending the data pending ret code: %d", ret);
1458 goto error_fatal;
1459 }
1460
1461 /*
1462 * No need to send back a status message since the data pending
1463 * returned value is the response.
1464 */
1465 break;
1466 }
1467 case LTTNG_CONSUMER_ASK_CHANNEL_CREATION:
1468 {
1469 int ret;
1470 struct ustctl_consumer_channel_attr attr;
1471 const uint64_t chunk_id = msg.u.ask_channel.chunk_id.value;
1472 const struct lttng_credentials buffer_credentials = {
1473 .uid = msg.u.ask_channel.buffer_credentials.uid,
1474 .gid = msg.u.ask_channel.buffer_credentials.gid,
1475 };
1476
1477 /* Create a plain object and reserve a channel key. */
1478 channel = consumer_allocate_channel(
1479 msg.u.ask_channel.key,
1480 msg.u.ask_channel.session_id,
1481 msg.u.ask_channel.chunk_id.is_set ?
1482 &chunk_id : NULL,
1483 msg.u.ask_channel.pathname,
1484 msg.u.ask_channel.name,
1485 msg.u.ask_channel.relayd_id,
1486 (enum lttng_event_output) msg.u.ask_channel.output,
1487 msg.u.ask_channel.tracefile_size,
1488 msg.u.ask_channel.tracefile_count,
1489 msg.u.ask_channel.session_id_per_pid,
1490 msg.u.ask_channel.monitor,
1491 msg.u.ask_channel.live_timer_interval,
1492 msg.u.ask_channel.is_live,
1493 msg.u.ask_channel.root_shm_path,
1494 msg.u.ask_channel.shm_path);
1495 if (!channel) {
1496 goto end_channel_error;
1497 }
1498
1499 LTTNG_OPTIONAL_SET(&channel->buffer_credentials,
1500 buffer_credentials);
1501
1502 /*
1503 * Assign UST application UID to the channel. This value is ignored for
1504 * per PID buffers. This is specific to UST thus setting this after the
1505 * allocation.
1506 */
1507 channel->ust_app_uid = msg.u.ask_channel.ust_app_uid;
1508
1509 /* Build channel attributes from received message. */
1510 attr.subbuf_size = msg.u.ask_channel.subbuf_size;
1511 attr.num_subbuf = msg.u.ask_channel.num_subbuf;
1512 attr.overwrite = msg.u.ask_channel.overwrite;
1513 attr.switch_timer_interval = msg.u.ask_channel.switch_timer_interval;
1514 attr.read_timer_interval = msg.u.ask_channel.read_timer_interval;
1515 attr.chan_id = msg.u.ask_channel.chan_id;
1516 memcpy(attr.uuid, msg.u.ask_channel.uuid, sizeof(attr.uuid));
1517 attr.blocking_timeout= msg.u.ask_channel.blocking_timeout;
1518
1519 /* Match channel buffer type to the UST abi. */
1520 switch (msg.u.ask_channel.output) {
1521 case LTTNG_EVENT_MMAP:
1522 default:
1523 attr.output = LTTNG_UST_MMAP;
1524 break;
1525 }
1526
1527 /* Translate and save channel type. */
1528 switch (msg.u.ask_channel.type) {
1529 case LTTNG_UST_CHAN_PER_CPU:
1530 channel->type = CONSUMER_CHANNEL_TYPE_DATA;
1531 attr.type = LTTNG_UST_CHAN_PER_CPU;
1532 /*
1533 * Set refcount to 1 for owner. Below, we will
1534 * pass ownership to the
1535 * consumer_thread_channel_poll() thread.
1536 */
1537 channel->refcount = 1;
1538 break;
1539 case LTTNG_UST_CHAN_METADATA:
1540 channel->type = CONSUMER_CHANNEL_TYPE_METADATA;
1541 attr.type = LTTNG_UST_CHAN_METADATA;
1542 break;
1543 default:
1544 assert(0);
1545 goto error_fatal;
1546 };
1547
1548 health_code_update();
1549
1550 ret = ask_channel(ctx, channel, &attr);
1551 if (ret < 0) {
1552 goto end_channel_error;
1553 }
1554
1555 if (msg.u.ask_channel.type == LTTNG_UST_CHAN_METADATA) {
1556 ret = consumer_metadata_cache_allocate(channel);
1557 if (ret < 0) {
1558 ERR("Allocating metadata cache");
1559 goto end_channel_error;
1560 }
1561 consumer_timer_switch_start(channel, attr.switch_timer_interval);
1562 attr.switch_timer_interval = 0;
1563 } else {
1564 int monitor_start_ret;
1565
1566 consumer_timer_live_start(channel,
1567 msg.u.ask_channel.live_timer_interval);
1568 monitor_start_ret = consumer_timer_monitor_start(
1569 channel,
1570 msg.u.ask_channel.monitor_timer_interval);
1571 if (monitor_start_ret < 0) {
1572 ERR("Starting channel monitoring timer failed");
1573 goto end_channel_error;
1574 }
1575 }
1576
1577 health_code_update();
1578
1579 /*
1580 * Add the channel to the internal state AFTER all streams were created
1581 * and successfully sent to session daemon. This way, all streams must
1582 * be ready before this channel is visible to the threads.
1583 * If add_channel succeeds, ownership of the channel is
1584 * passed to consumer_thread_channel_poll().
1585 */
1586 ret = add_channel(channel, ctx);
1587 if (ret < 0) {
1588 if (msg.u.ask_channel.type == LTTNG_UST_CHAN_METADATA) {
1589 if (channel->switch_timer_enabled == 1) {
1590 consumer_timer_switch_stop(channel);
1591 }
1592 consumer_metadata_cache_destroy(channel);
1593 }
1594 if (channel->live_timer_enabled == 1) {
1595 consumer_timer_live_stop(channel);
1596 }
1597 if (channel->monitor_timer_enabled == 1) {
1598 consumer_timer_monitor_stop(channel);
1599 }
1600 goto end_channel_error;
1601 }
1602
1603 health_code_update();
1604
1605 /*
1606 * Channel and streams are now created. Inform the session daemon that
1607 * everything went well and should wait to receive the channel and
1608 * streams with ustctl API.
1609 */
1610 ret = consumer_send_status_channel(sock, channel);
1611 if (ret < 0) {
1612 /*
1613 * There is probably a problem on the socket.
1614 */
1615 goto error_fatal;
1616 }
1617
1618 break;
1619 }
1620 case LTTNG_CONSUMER_GET_CHANNEL:
1621 {
1622 int ret, relayd_err = 0;
1623 uint64_t key = msg.u.get_channel.key;
1624 struct lttng_consumer_channel *channel;
1625
1626 channel = consumer_find_channel(key);
1627 if (!channel) {
1628 ERR("UST consumer get channel key %" PRIu64 " not found", key);
1629 ret_code = LTTCOMM_CONSUMERD_CHAN_NOT_FOUND;
1630 goto end_get_channel;
1631 }
1632
1633 health_code_update();
1634
1635 /* Send the channel to sessiond (and relayd, if applicable). */
1636 ret = send_channel_to_sessiond_and_relayd(sock, channel, ctx,
1637 &relayd_err);
1638 if (ret < 0) {
1639 if (relayd_err) {
1640 /*
1641 * We were unable to send to the relayd the stream so avoid
1642 * sending back a fatal error to the thread since this is OK
1643 * and the consumer can continue its work. The above call
1644 * has sent the error status message to the sessiond.
1645 */
1646 goto end_get_channel_nosignal;
1647 }
1648 /*
1649 * The communicaton was broken hence there is a bad state between
1650 * the consumer and sessiond so stop everything.
1651 */
1652 goto error_get_channel_fatal;
1653 }
1654
1655 health_code_update();
1656
1657 /*
1658 * In no monitor mode, the streams ownership is kept inside the channel
1659 * so don't send them to the data thread.
1660 */
1661 if (!channel->monitor) {
1662 goto end_get_channel;
1663 }
1664
1665 ret = send_streams_to_thread(channel, ctx);
1666 if (ret < 0) {
1667 /*
1668 * If we are unable to send the stream to the thread, there is
1669 * a big problem so just stop everything.
1670 */
1671 goto error_get_channel_fatal;
1672 }
1673 /* List MUST be empty after or else it could be reused. */
1674 assert(cds_list_empty(&channel->streams.head));
1675 end_get_channel:
1676 goto end_msg_sessiond;
1677 error_get_channel_fatal:
1678 goto error_fatal;
1679 end_get_channel_nosignal:
1680 goto end_nosignal;
1681 }
1682 case LTTNG_CONSUMER_DESTROY_CHANNEL:
1683 {
1684 uint64_t key = msg.u.destroy_channel.key;
1685
1686 /*
1687 * Only called if streams have not been sent to stream
1688 * manager thread. However, channel has been sent to
1689 * channel manager thread.
1690 */
1691 notify_thread_del_channel(ctx, key);
1692 goto end_msg_sessiond;
1693 }
1694 case LTTNG_CONSUMER_CLOSE_METADATA:
1695 {
1696 int ret;
1697
1698 ret = close_metadata(msg.u.close_metadata.key);
1699 if (ret != 0) {
1700 ret_code = ret;
1701 }
1702
1703 goto end_msg_sessiond;
1704 }
1705 case LTTNG_CONSUMER_FLUSH_CHANNEL:
1706 {
1707 int ret;
1708
1709 ret = flush_channel(msg.u.flush_channel.key);
1710 if (ret != 0) {
1711 ret_code = ret;
1712 }
1713
1714 goto end_msg_sessiond;
1715 }
1716 case LTTNG_CONSUMER_CLEAR_QUIESCENT_CHANNEL:
1717 {
1718 int ret;
1719
1720 ret = clear_quiescent_channel(
1721 msg.u.clear_quiescent_channel.key);
1722 if (ret != 0) {
1723 ret_code = ret;
1724 }
1725
1726 goto end_msg_sessiond;
1727 }
1728 case LTTNG_CONSUMER_PUSH_METADATA:
1729 {
1730 int ret;
1731 uint64_t len = msg.u.push_metadata.len;
1732 uint64_t key = msg.u.push_metadata.key;
1733 uint64_t offset = msg.u.push_metadata.target_offset;
1734 uint64_t version = msg.u.push_metadata.version;
1735 struct lttng_consumer_channel *channel;
1736
1737 DBG("UST consumer push metadata key %" PRIu64 " of len %" PRIu64, key,
1738 len);
1739
1740 channel = consumer_find_channel(key);
1741 if (!channel) {
1742 /*
1743 * This is possible if the metadata creation on the consumer side
1744 * is in flight vis-a-vis a concurrent push metadata from the
1745 * session daemon. Simply return that the channel failed and the
1746 * session daemon will handle that message correctly considering
1747 * that this race is acceptable thus the DBG() statement here.
1748 */
1749 DBG("UST consumer push metadata %" PRIu64 " not found", key);
1750 ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
1751 goto end_push_metadata_msg_sessiond;
1752 }
1753
1754 health_code_update();
1755
1756 if (!len) {
1757 /*
1758 * There is nothing to receive. We have simply
1759 * checked whether the channel can be found.
1760 */
1761 ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1762 goto end_push_metadata_msg_sessiond;
1763 }
1764
1765 /* Tell session daemon we are ready to receive the metadata. */
1766 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
1767 if (ret < 0) {
1768 /* Somehow, the session daemon is not responding anymore. */
1769 goto error_push_metadata_fatal;
1770 }
1771
1772 health_code_update();
1773
1774 /* Wait for more data. */
1775 health_poll_entry();
1776 ret = lttng_consumer_poll_socket(consumer_sockpoll);
1777 health_poll_exit();
1778 if (ret) {
1779 goto error_push_metadata_fatal;
1780 }
1781
1782 health_code_update();
1783
1784 ret = lttng_ustconsumer_recv_metadata(sock, key, offset,
1785 len, version, channel, 0, 1);
1786 if (ret < 0) {
1787 /* error receiving from sessiond */
1788 goto error_push_metadata_fatal;
1789 } else {
1790 ret_code = ret;
1791 goto end_push_metadata_msg_sessiond;
1792 }
1793 end_push_metadata_msg_sessiond:
1794 goto end_msg_sessiond;
1795 error_push_metadata_fatal:
1796 goto error_fatal;
1797 }
1798 case LTTNG_CONSUMER_SETUP_METADATA:
1799 {
1800 int ret;
1801
1802 ret = setup_metadata(ctx, msg.u.setup_metadata.key);
1803 if (ret) {
1804 ret_code = ret;
1805 }
1806 goto end_msg_sessiond;
1807 }
1808 case LTTNG_CONSUMER_SNAPSHOT_CHANNEL:
1809 {
1810 struct lttng_consumer_channel *channel;
1811 uint64_t key = msg.u.snapshot_channel.key;
1812
1813 channel = consumer_find_channel(key);
1814 if (!channel) {
1815 DBG("UST snapshot channel not found for key %" PRIu64, key);
1816 ret_code = LTTCOMM_CONSUMERD_CHAN_NOT_FOUND;
1817 } else {
1818 if (msg.u.snapshot_channel.metadata) {
1819 ret = snapshot_metadata(channel, key,
1820 msg.u.snapshot_channel.pathname,
1821 msg.u.snapshot_channel.relayd_id,
1822 ctx);
1823 if (ret < 0) {
1824 ERR("Snapshot metadata failed");
1825 ret_code = LTTCOMM_CONSUMERD_SNAPSHOT_FAILED;
1826 }
1827 } else {
1828 ret = snapshot_channel(channel, key,
1829 msg.u.snapshot_channel.pathname,
1830 msg.u.snapshot_channel.relayd_id,
1831 msg.u.snapshot_channel.nb_packets_per_stream,
1832 ctx);
1833 if (ret < 0) {
1834 ERR("Snapshot channel failed");
1835 ret_code = LTTCOMM_CONSUMERD_SNAPSHOT_FAILED;
1836 }
1837 }
1838 }
1839 health_code_update();
1840 ret = consumer_send_status_msg(sock, ret_code);
1841 if (ret < 0) {
1842 /* Somehow, the session daemon is not responding anymore. */
1843 goto end_nosignal;
1844 }
1845 health_code_update();
1846 break;
1847 }
1848 case LTTNG_CONSUMER_DISCARDED_EVENTS:
1849 {
1850 int ret = 0;
1851 uint64_t discarded_events;
1852 struct lttng_ht_iter iter;
1853 struct lttng_ht *ht;
1854 struct lttng_consumer_stream *stream;
1855 uint64_t id = msg.u.discarded_events.session_id;
1856 uint64_t key = msg.u.discarded_events.channel_key;
1857
1858 DBG("UST consumer discarded events command for session id %"
1859 PRIu64, id);
1860 rcu_read_lock();
1861 pthread_mutex_lock(&consumer_data.lock);
1862
1863 ht = consumer_data.stream_list_ht;
1864
1865 /*
1866 * We only need a reference to the channel, but they are not
1867 * directly indexed, so we just use the first matching stream
1868 * to extract the information we need, we default to 0 if not
1869 * found (no events are dropped if the channel is not yet in
1870 * use).
1871 */
1872 discarded_events = 0;
1873 cds_lfht_for_each_entry_duplicate(ht->ht,
1874 ht->hash_fct(&id, lttng_ht_seed),
1875 ht->match_fct, &id,
1876 &iter.iter, stream, node_session_id.node) {
1877 if (stream->chan->key == key) {
1878 discarded_events = stream->chan->discarded_events;
1879 break;
1880 }
1881 }
1882 pthread_mutex_unlock(&consumer_data.lock);
1883 rcu_read_unlock();
1884
1885 DBG("UST consumer discarded events command for session id %"
1886 PRIu64 ", channel key %" PRIu64, id, key);
1887
1888 health_code_update();
1889
1890 /* Send back returned value to session daemon */
1891 ret = lttcomm_send_unix_sock(sock, &discarded_events, sizeof(discarded_events));
1892 if (ret < 0) {
1893 PERROR("send discarded events");
1894 goto error_fatal;
1895 }
1896
1897 break;
1898 }
1899 case LTTNG_CONSUMER_LOST_PACKETS:
1900 {
1901 int ret;
1902 uint64_t lost_packets;
1903 struct lttng_ht_iter iter;
1904 struct lttng_ht *ht;
1905 struct lttng_consumer_stream *stream;
1906 uint64_t id = msg.u.lost_packets.session_id;
1907 uint64_t key = msg.u.lost_packets.channel_key;
1908
1909 DBG("UST consumer lost packets command for session id %"
1910 PRIu64, id);
1911 rcu_read_lock();
1912 pthread_mutex_lock(&consumer_data.lock);
1913
1914 ht = consumer_data.stream_list_ht;
1915
1916 /*
1917 * We only need a reference to the channel, but they are not
1918 * directly indexed, so we just use the first matching stream
1919 * to extract the information we need, we default to 0 if not
1920 * found (no packets lost if the channel is not yet in use).
1921 */
1922 lost_packets = 0;
1923 cds_lfht_for_each_entry_duplicate(ht->ht,
1924 ht->hash_fct(&id, lttng_ht_seed),
1925 ht->match_fct, &id,
1926 &iter.iter, stream, node_session_id.node) {
1927 if (stream->chan->key == key) {
1928 lost_packets = stream->chan->lost_packets;
1929 break;
1930 }
1931 }
1932 pthread_mutex_unlock(&consumer_data.lock);
1933 rcu_read_unlock();
1934
1935 DBG("UST consumer lost packets command for session id %"
1936 PRIu64 ", channel key %" PRIu64, id, key);
1937
1938 health_code_update();
1939
1940 /* Send back returned value to session daemon */
1941 ret = lttcomm_send_unix_sock(sock, &lost_packets,
1942 sizeof(lost_packets));
1943 if (ret < 0) {
1944 PERROR("send lost packets");
1945 goto error_fatal;
1946 }
1947
1948 break;
1949 }
1950 case LTTNG_CONSUMER_SET_CHANNEL_MONITOR_PIPE:
1951 {
1952 int channel_monitor_pipe;
1953
1954 ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1955 /* Successfully received the command's type. */
1956 ret = consumer_send_status_msg(sock, ret_code);
1957 if (ret < 0) {
1958 goto error_fatal;
1959 }
1960
1961 ret = lttcomm_recv_fds_unix_sock(sock, &channel_monitor_pipe,
1962 1);
1963 if (ret != sizeof(channel_monitor_pipe)) {
1964 ERR("Failed to receive channel monitor pipe");
1965 goto error_fatal;
1966 }
1967
1968 DBG("Received channel monitor pipe (%d)", channel_monitor_pipe);
1969 ret = consumer_timer_thread_set_channel_monitor_pipe(
1970 channel_monitor_pipe);
1971 if (!ret) {
1972 int flags;
1973
1974 ret_code = LTTCOMM_CONSUMERD_SUCCESS;
1975 /* Set the pipe as non-blocking. */
1976 ret = fcntl(channel_monitor_pipe, F_GETFL, 0);
1977 if (ret == -1) {
1978 PERROR("fcntl get flags of the channel monitoring pipe");
1979 goto error_fatal;
1980 }
1981 flags = ret;
1982
1983 ret = fcntl(channel_monitor_pipe, F_SETFL,
1984 flags | O_NONBLOCK);
1985 if (ret == -1) {
1986 PERROR("fcntl set O_NONBLOCK flag of the channel monitoring pipe");
1987 goto error_fatal;
1988 }
1989 DBG("Channel monitor pipe set as non-blocking");
1990 } else {
1991 ret_code = LTTCOMM_CONSUMERD_ALREADY_SET;
1992 }
1993 goto end_msg_sessiond;
1994 }
1995 case LTTNG_CONSUMER_ROTATE_CHANNEL:
1996 {
1997 struct lttng_consumer_channel *channel;
1998 uint64_t key = msg.u.rotate_channel.key;
1999
2000 channel = consumer_find_channel(key);
2001 if (!channel) {
2002 DBG("Channel %" PRIu64 " not found", key);
2003 ret_code = LTTCOMM_CONSUMERD_CHAN_NOT_FOUND;
2004 } else {
2005 /*
2006 * Sample the rotate position of all the streams in
2007 * this channel.
2008 */
2009 ret = lttng_consumer_rotate_channel(channel, key,
2010 msg.u.rotate_channel.relayd_id,
2011 msg.u.rotate_channel.metadata,
2012 ctx);
2013 if (ret < 0) {
2014 ERR("Rotate channel failed");
2015 ret_code = LTTCOMM_CONSUMERD_ROTATION_FAIL;
2016 }
2017
2018 health_code_update();
2019 }
2020 ret = consumer_send_status_msg(sock, ret_code);
2021 if (ret < 0) {
2022 /* Somehow, the session daemon is not responding anymore. */
2023 goto end_rotate_channel_nosignal;
2024 }
2025
2026 /*
2027 * Rotate the streams that are ready right now.
2028 * FIXME: this is a second consecutive iteration over the
2029 * streams in a channel, there is probably a better way to
2030 * handle this, but it needs to be after the
2031 * consumer_send_status_msg() call.
2032 */
2033 if (channel) {
2034 ret = lttng_consumer_rotate_ready_streams(
2035 channel, key, ctx);
2036 if (ret < 0) {
2037 ERR("Rotate channel failed");
2038 }
2039 }
2040 break;
2041 end_rotate_channel_nosignal:
2042 goto end_nosignal;
2043 }
2044 case LTTNG_CONSUMER_INIT:
2045 {
2046 ret_code = lttng_consumer_init_command(ctx,
2047 msg.u.init.sessiond_uuid);
2048 health_code_update();
2049 ret = consumer_send_status_msg(sock, ret_code);
2050 if (ret < 0) {
2051 /* Somehow, the session daemon is not responding anymore. */
2052 goto end_nosignal;
2053 }
2054 break;
2055 }
2056 case LTTNG_CONSUMER_CREATE_TRACE_CHUNK:
2057 {
2058 const struct lttng_credentials credentials = {
2059 .uid = msg.u.create_trace_chunk.credentials.value.uid,
2060 .gid = msg.u.create_trace_chunk.credentials.value.gid,
2061 };
2062 const bool is_local_trace =
2063 !msg.u.create_trace_chunk.relayd_id.is_set;
2064 const uint64_t relayd_id =
2065 msg.u.create_trace_chunk.relayd_id.value;
2066 const char *chunk_override_name =
2067 *msg.u.create_trace_chunk.override_name ?
2068 msg.u.create_trace_chunk.override_name :
2069 NULL;
2070 LTTNG_OPTIONAL(struct lttng_directory_handle) chunk_directory_handle =
2071 LTTNG_OPTIONAL_INIT;
2072
2073 /*
2074 * The session daemon will only provide a chunk directory file
2075 * descriptor for local traces.
2076 */
2077 if (is_local_trace) {
2078 int chunk_dirfd;
2079
2080 /* Acnowledge the reception of the command. */
2081 ret = consumer_send_status_msg(sock,
2082 LTTCOMM_CONSUMERD_SUCCESS);
2083 if (ret < 0) {
2084 /* Somehow, the session daemon is not responding anymore. */
2085 goto end_nosignal;
2086 }
2087
2088 ret = lttcomm_recv_fds_unix_sock(sock, &chunk_dirfd, 1);
2089 if (ret != sizeof(chunk_dirfd)) {
2090 ERR("Failed to receive trace chunk directory file descriptor");
2091 goto error_fatal;
2092 }
2093
2094 DBG("Received trace chunk directory fd (%d)",
2095 chunk_dirfd);
2096 ret = lttng_directory_handle_init_from_dirfd(
2097 &chunk_directory_handle.value,
2098 chunk_dirfd);
2099 if (ret) {
2100 ERR("Failed to initialize chunk directory handle from directory file descriptor");
2101 if (close(chunk_dirfd)) {
2102 PERROR("Failed to close chunk directory file descriptor");
2103 }
2104 goto error_fatal;
2105 }
2106 chunk_directory_handle.is_set = true;
2107 }
2108
2109 ret_code = lttng_consumer_create_trace_chunk(
2110 !is_local_trace ? &relayd_id : NULL,
2111 msg.u.create_trace_chunk.session_id,
2112 msg.u.create_trace_chunk.chunk_id,
2113 (time_t) msg.u.create_trace_chunk
2114 .creation_timestamp,
2115 chunk_override_name,
2116 msg.u.create_trace_chunk.credentials.is_set ?
2117 &credentials :
2118 NULL,
2119 chunk_directory_handle.is_set ?
2120 &chunk_directory_handle.value :
2121 NULL);
2122
2123 if (chunk_directory_handle.is_set) {
2124 lttng_directory_handle_fini(
2125 &chunk_directory_handle.value);
2126 }
2127 goto end_msg_sessiond;
2128 }
2129 case LTTNG_CONSUMER_CLOSE_TRACE_CHUNK:
2130 {
2131 enum lttng_trace_chunk_command_type close_command =
2132 msg.u.close_trace_chunk.close_command.value;
2133 const uint64_t relayd_id =
2134 msg.u.close_trace_chunk.relayd_id.value;
2135 struct lttcomm_consumer_close_trace_chunk_reply reply;
2136 char closed_trace_chunk_path[LTTNG_PATH_MAX];
2137 int ret;
2138
2139 ret_code = lttng_consumer_close_trace_chunk(
2140 msg.u.close_trace_chunk.relayd_id.is_set ?
2141 &relayd_id :
2142 NULL,
2143 msg.u.close_trace_chunk.session_id,
2144 msg.u.close_trace_chunk.chunk_id,
2145 (time_t) msg.u.close_trace_chunk.close_timestamp,
2146 msg.u.close_trace_chunk.close_command.is_set ?
2147 &close_command :
2148 NULL, closed_trace_chunk_path);
2149 reply.ret_code = ret_code;
2150 reply.path_length = strlen(closed_trace_chunk_path) + 1;
2151 ret = lttcomm_send_unix_sock(sock, &reply, sizeof(reply));
2152 if (ret != sizeof(reply)) {
2153 goto error_fatal;
2154 }
2155 ret = lttcomm_send_unix_sock(sock, closed_trace_chunk_path,
2156 reply.path_length);
2157 if (ret != reply.path_length) {
2158 goto error_fatal;
2159 }
2160 goto end_nosignal;
2161 }
2162 case LTTNG_CONSUMER_TRACE_CHUNK_EXISTS:
2163 {
2164 const uint64_t relayd_id =
2165 msg.u.trace_chunk_exists.relayd_id.value;
2166
2167 ret_code = lttng_consumer_trace_chunk_exists(
2168 msg.u.trace_chunk_exists.relayd_id.is_set ?
2169 &relayd_id : NULL,
2170 msg.u.trace_chunk_exists.session_id,
2171 msg.u.trace_chunk_exists.chunk_id);
2172 goto end_msg_sessiond;
2173 }
2174 default:
2175 break;
2176 }
2177
2178 end_nosignal:
2179 /*
2180 * Return 1 to indicate success since the 0 value can be a socket
2181 * shutdown during the recv() or send() call.
2182 */
2183 ret = 1;
2184 goto end;
2185
2186 end_msg_sessiond:
2187 /*
2188 * The returned value here is not useful since either way we'll return 1 to
2189 * the caller because the session daemon socket management is done
2190 * elsewhere. Returning a negative code or 0 will shutdown the consumer.
2191 */
2192 ret = consumer_send_status_msg(sock, ret_code);
2193 if (ret < 0) {
2194 goto error_fatal;
2195 }
2196 ret = 1;
2197 goto end;
2198
2199 end_channel_error:
2200 if (channel) {
2201 /*
2202 * Free channel here since no one has a reference to it. We don't
2203 * free after that because a stream can store this pointer.
2204 */
2205 destroy_channel(channel);
2206 }
2207 /* We have to send a status channel message indicating an error. */
2208 ret = consumer_send_status_channel(sock, NULL);
2209 if (ret < 0) {
2210 /* Stop everything if session daemon can not be notified. */
2211 goto error_fatal;
2212 }
2213 ret = 1;
2214 goto end;
2215
2216 error_fatal:
2217 /* This will issue a consumer stop. */
2218 ret = -1;
2219 goto end;
2220
2221 end:
2222 rcu_read_unlock();
2223 health_code_update();
2224 return ret;
2225 }
2226
2227 void lttng_ustctl_flush_buffer(struct lttng_consumer_stream *stream,
2228 int producer_active)
2229 {
2230 assert(stream);
2231 assert(stream->ustream);
2232
2233 ustctl_flush_buffer(stream->ustream, producer_active);
2234 }
2235
2236 /*
2237 * Take a snapshot for a specific stream.
2238 *
2239 * Returns 0 on success, < 0 on error
2240 */
2241 int lttng_ustconsumer_take_snapshot(struct lttng_consumer_stream *stream)
2242 {
2243 assert(stream);
2244 assert(stream->ustream);
2245
2246 return ustctl_snapshot(stream->ustream);
2247 }
2248
2249 /*
2250 * Sample consumed and produced positions for a specific stream.
2251 *
2252 * Returns 0 on success, < 0 on error.
2253 */
2254 int lttng_ustconsumer_sample_snapshot_positions(
2255 struct lttng_consumer_stream *stream)
2256 {
2257 assert(stream);
2258 assert(stream->ustream);
2259
2260 return ustctl_snapshot_sample_positions(stream->ustream);
2261 }
2262
2263 /*
2264 * Get the produced position
2265 *
2266 * Returns 0 on success, < 0 on error
2267 */
2268 int lttng_ustconsumer_get_produced_snapshot(
2269 struct lttng_consumer_stream *stream, unsigned long *pos)
2270 {
2271 assert(stream);
2272 assert(stream->ustream);
2273 assert(pos);
2274
2275 return ustctl_snapshot_get_produced(stream->ustream, pos);
2276 }
2277
2278 /*
2279 * Get the consumed position
2280 *
2281 * Returns 0 on success, < 0 on error
2282 */
2283 int lttng_ustconsumer_get_consumed_snapshot(
2284 struct lttng_consumer_stream *stream, unsigned long *pos)
2285 {
2286 assert(stream);
2287 assert(stream->ustream);
2288 assert(pos);
2289
2290 return ustctl_snapshot_get_consumed(stream->ustream, pos);
2291 }
2292
2293 void lttng_ustconsumer_flush_buffer(struct lttng_consumer_stream *stream,
2294 int producer)
2295 {
2296 assert(stream);
2297 assert(stream->ustream);
2298
2299 ustctl_flush_buffer(stream->ustream, producer);
2300 }
2301
2302 int lttng_ustconsumer_get_current_timestamp(
2303 struct lttng_consumer_stream *stream, uint64_t *ts)
2304 {
2305 assert(stream);
2306 assert(stream->ustream);
2307 assert(ts);
2308
2309 return ustctl_get_current_timestamp(stream->ustream, ts);
2310 }
2311
2312 int lttng_ustconsumer_get_sequence_number(
2313 struct lttng_consumer_stream *stream, uint64_t *seq)
2314 {
2315 assert(stream);
2316 assert(stream->ustream);
2317 assert(seq);
2318
2319 return ustctl_get_sequence_number(stream->ustream, seq);
2320 }
2321
2322 /*
2323 * Called when the stream signals the consumer that it has hung up.
2324 */
2325 void lttng_ustconsumer_on_stream_hangup(struct lttng_consumer_stream *stream)
2326 {
2327 assert(stream);
2328 assert(stream->ustream);
2329
2330 pthread_mutex_lock(&stream->lock);
2331 if (!stream->quiescent) {
2332 ustctl_flush_buffer(stream->ustream, 0);
2333 stream->quiescent = true;
2334 }
2335 pthread_mutex_unlock(&stream->lock);
2336 stream->hangup_flush_done = 1;
2337 }
2338
2339 void lttng_ustconsumer_del_channel(struct lttng_consumer_channel *chan)
2340 {
2341 int i;
2342
2343 assert(chan);
2344 assert(chan->uchan);
2345 assert(chan->buffer_credentials.is_set);
2346
2347 if (chan->switch_timer_enabled == 1) {
2348 consumer_timer_switch_stop(chan);
2349 }
2350 for (i = 0; i < chan->nr_stream_fds; i++) {
2351 int ret;
2352
2353 ret = close(chan->stream_fds[i]);
2354 if (ret) {
2355 PERROR("close");
2356 }
2357 if (chan->shm_path[0]) {
2358 char shm_path[PATH_MAX];
2359
2360 ret = get_stream_shm_path(shm_path, chan->shm_path, i);
2361 if (ret) {
2362 ERR("Cannot get stream shm path");
2363 }
2364 ret = run_as_unlink(shm_path,
2365 chan->buffer_credentials.value.uid,
2366 chan->buffer_credentials.value.gid);
2367 if (ret) {
2368 PERROR("unlink %s", shm_path);
2369 }
2370 }
2371 }
2372 }
2373
2374 void lttng_ustconsumer_free_channel(struct lttng_consumer_channel *chan)
2375 {
2376 assert(chan);
2377 assert(chan->uchan);
2378 assert(chan->buffer_credentials.is_set);
2379
2380 consumer_metadata_cache_destroy(chan);
2381 ustctl_destroy_channel(chan->uchan);
2382 /* Try to rmdir all directories under shm_path root. */
2383 if (chan->root_shm_path[0]) {
2384 (void) run_as_rmdir_recursive(chan->root_shm_path,
2385 chan->buffer_credentials.value.uid,
2386 chan->buffer_credentials.value.gid,
2387 LTTNG_DIRECTORY_HANDLE_SKIP_NON_EMPTY_FLAG);
2388 }
2389 free(chan->stream_fds);
2390 }
2391
2392 void lttng_ustconsumer_del_stream(struct lttng_consumer_stream *stream)
2393 {
2394 assert(stream);
2395 assert(stream->ustream);
2396
2397 if (stream->chan->switch_timer_enabled == 1) {
2398 consumer_timer_switch_stop(stream->chan);
2399 }
2400 ustctl_destroy_stream(stream->ustream);
2401 }
2402
2403 int lttng_ustconsumer_get_wakeup_fd(struct lttng_consumer_stream *stream)
2404 {
2405 assert(stream);
2406 assert(stream->ustream);
2407
2408 return ustctl_stream_get_wakeup_fd(stream->ustream);
2409 }
2410
2411 int lttng_ustconsumer_close_wakeup_fd(struct lttng_consumer_stream *stream)
2412 {
2413 assert(stream);
2414 assert(stream->ustream);
2415
2416 return ustctl_stream_close_wakeup_fd(stream->ustream);
2417 }
2418
2419 static
2420 void metadata_stream_reset_cache_consumed_position(
2421 struct lttng_consumer_stream *stream)
2422 {
2423 DBG("Reset metadata cache of session %" PRIu64,
2424 stream->chan->session_id);
2425 stream->ust_metadata_pushed = 0;
2426 }
2427
2428 /*
2429 * Write up to one packet from the metadata cache to the channel.
2430 *
2431 * Returns the number of bytes pushed from the cache into the ring buffer, or a
2432 * negative value on error.
2433 */
2434 static
2435 int commit_one_metadata_packet(struct lttng_consumer_stream *stream)
2436 {
2437 ssize_t write_len;
2438 int ret;
2439
2440 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2441 if (stream->chan->metadata_cache->max_offset ==
2442 stream->ust_metadata_pushed) {
2443 /*
2444 * In the context of a user space metadata channel, a
2445 * change in version can be detected in two ways:
2446 * 1) During the pre-consume of the `read_subbuffer` loop,
2447 * 2) When populating the metadata ring buffer (i.e. here).
2448 *
2449 * This function is invoked when there is no metadata
2450 * available in the ring-buffer. If all data was consumed
2451 * up to the size of the metadata cache, there is no metadata
2452 * to insert in the ring-buffer.
2453 *
2454 * However, the metadata version could still have changed (a
2455 * regeneration without any new data will yield the same cache
2456 * size).
2457 *
2458 * The cache's version is checked for a version change and the
2459 * consumed position is reset if one occurred.
2460 *
2461 * This check is only necessary for the user space domain as
2462 * it has to manage the cache explicitly. If this reset was not
2463 * performed, no metadata would be consumed (and no reset would
2464 * occur as part of the pre-consume) until the metadata size
2465 * exceeded the cache size.
2466 */
2467 if (stream->metadata_version !=
2468 stream->chan->metadata_cache->version) {
2469 metadata_stream_reset_cache_consumed_position(stream);
2470 consumer_stream_metadata_set_version(stream,
2471 stream->chan->metadata_cache->version);
2472 } else {
2473 ret = 0;
2474 goto end;
2475 }
2476 }
2477
2478 write_len = ustctl_write_one_packet_to_channel(stream->chan->uchan,
2479 &stream->chan->metadata_cache->data[stream->ust_metadata_pushed],
2480 stream->chan->metadata_cache->max_offset
2481 - stream->ust_metadata_pushed);
2482 assert(write_len != 0);
2483 if (write_len < 0) {
2484 ERR("Writing one metadata packet");
2485 ret = write_len;
2486 goto end;
2487 }
2488 stream->ust_metadata_pushed += write_len;
2489
2490 assert(stream->chan->metadata_cache->max_offset >=
2491 stream->ust_metadata_pushed);
2492 ret = write_len;
2493
2494 /*
2495 * Switch packet (but don't open the next one) on every commit of
2496 * a metadata packet. Since the subbuffer is fully filled (with padding,
2497 * if needed), the stream is "quiescent" after this commit.
2498 */
2499 ustctl_flush_buffer(stream->ustream, 1);
2500 stream->quiescent = true;
2501 end:
2502 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2503 return ret;
2504 }
2505
2506
2507 /*
2508 * Sync metadata meaning request them to the session daemon and snapshot to the
2509 * metadata thread can consumer them.
2510 *
2511 * Metadata stream lock is held here, but we need to release it when
2512 * interacting with sessiond, else we cause a deadlock with live
2513 * awaiting on metadata to be pushed out.
2514 *
2515 * The RCU read side lock must be held by the caller.
2516 */
2517 enum sync_metadata_status lttng_ustconsumer_sync_metadata(
2518 struct lttng_consumer_local_data *ctx,
2519 struct lttng_consumer_stream *metadata_stream)
2520 {
2521 int ret;
2522 enum sync_metadata_status status;
2523 struct lttng_consumer_channel *metadata_channel;
2524
2525 assert(ctx);
2526 assert(metadata_stream);
2527
2528 metadata_channel = metadata_stream->chan;
2529 pthread_mutex_unlock(&metadata_stream->lock);
2530 /*
2531 * Request metadata from the sessiond, but don't wait for the flush
2532 * because we locked the metadata thread.
2533 */
2534 ret = lttng_ustconsumer_request_metadata(ctx, metadata_channel, 0, 0);
2535 pthread_mutex_lock(&metadata_stream->lock);
2536 if (ret < 0) {
2537 status = SYNC_METADATA_STATUS_ERROR;
2538 goto end;
2539 }
2540
2541 /*
2542 * The metadata stream and channel can be deleted while the
2543 * metadata stream lock was released. The streamed is checked
2544 * for deletion before we use it further.
2545 *
2546 * Note that it is safe to access a logically-deleted stream since its
2547 * existence is still guaranteed by the RCU read side lock. However,
2548 * it should no longer be used. The close/deletion of the metadata
2549 * channel and stream already guarantees that all metadata has been
2550 * consumed. Therefore, there is nothing left to do in this function.
2551 */
2552 if (consumer_stream_is_deleted(metadata_stream)) {
2553 DBG("Metadata stream %" PRIu64 " was deleted during the metadata synchronization",
2554 metadata_stream->key);
2555 status = SYNC_METADATA_STATUS_NO_DATA;
2556 goto end;
2557 }
2558
2559 ret = commit_one_metadata_packet(metadata_stream);
2560 if (ret < 0) {
2561 status = SYNC_METADATA_STATUS_ERROR;
2562 goto end;
2563 } else if (ret > 0) {
2564 status = SYNC_METADATA_STATUS_NEW_DATA;
2565 } else /* ret == 0 */ {
2566 status = SYNC_METADATA_STATUS_NO_DATA;
2567 goto end;
2568 }
2569
2570 ret = ustctl_snapshot(metadata_stream->ustream);
2571 if (ret < 0) {
2572 ERR("Failed to take a snapshot of the metadata ring-buffer positions, ret = %d", ret);
2573 status = SYNC_METADATA_STATUS_ERROR;
2574 goto end;
2575 }
2576
2577 end:
2578 return status;
2579 }
2580
2581 /*
2582 * Return 0 on success else a negative value.
2583 */
2584 static int notify_if_more_data(struct lttng_consumer_stream *stream,
2585 struct lttng_consumer_local_data *ctx)
2586 {
2587 int ret;
2588 struct ustctl_consumer_stream *ustream;
2589
2590 assert(stream);
2591 assert(ctx);
2592
2593 ustream = stream->ustream;
2594
2595 /*
2596 * First, we are going to check if there is a new subbuffer available
2597 * before reading the stream wait_fd.
2598 */
2599 /* Get the next subbuffer */
2600 ret = ustctl_get_next_subbuf(ustream);
2601 if (ret) {
2602 /* No more data found, flag the stream. */
2603 stream->has_data = 0;
2604 ret = 0;
2605 goto end;
2606 }
2607
2608 ret = ustctl_put_subbuf(ustream);
2609 assert(!ret);
2610
2611 /* This stream still has data. Flag it and wake up the data thread. */
2612 stream->has_data = 1;
2613
2614 if (stream->monitor && !stream->hangup_flush_done && !ctx->has_wakeup) {
2615 ssize_t writelen;
2616
2617 writelen = lttng_pipe_write(ctx->consumer_wakeup_pipe, "!", 1);
2618 if (writelen < 0 && errno != EAGAIN && errno != EWOULDBLOCK) {
2619 ret = writelen;
2620 goto end;
2621 }
2622
2623 /* The wake up pipe has been notified. */
2624 ctx->has_wakeup = 1;
2625 }
2626 ret = 0;
2627
2628 end:
2629 return ret;
2630 }
2631
2632 static int consumer_stream_ust_on_wake_up(struct lttng_consumer_stream *stream)
2633 {
2634 int ret = 0;
2635
2636 /*
2637 * We can consume the 1 byte written into the wait_fd by
2638 * UST. Don't trigger error if we cannot read this one byte
2639 * (read returns 0), or if the error is EAGAIN or EWOULDBLOCK.
2640 *
2641 * This is only done when the stream is monitored by a thread,
2642 * before the flush is done after a hangup and if the stream
2643 * is not flagged with data since there might be nothing to
2644 * consume in the wait fd but still have data available
2645 * flagged by the consumer wake up pipe.
2646 */
2647 if (stream->monitor && !stream->hangup_flush_done && !stream->has_data) {
2648 char dummy;
2649 ssize_t readlen;
2650
2651 readlen = lttng_read(stream->wait_fd, &dummy, 1);
2652 if (readlen < 0 && errno != EAGAIN && errno != EWOULDBLOCK) {
2653 ret = readlen;
2654 }
2655 }
2656
2657 return ret;
2658 }
2659
2660 static int extract_common_subbuffer_info(struct lttng_consumer_stream *stream,
2661 struct stream_subbuffer *subbuf)
2662 {
2663 int ret;
2664
2665 ret = ustctl_get_subbuf_size(
2666 stream->ustream, &subbuf->info.data.subbuf_size);
2667 if (ret) {
2668 goto end;
2669 }
2670
2671 ret = ustctl_get_padded_subbuf_size(
2672 stream->ustream, &subbuf->info.data.padded_subbuf_size);
2673 if (ret) {
2674 goto end;
2675 }
2676
2677 end:
2678 return ret;
2679 }
2680
2681 static int extract_metadata_subbuffer_info(struct lttng_consumer_stream *stream,
2682 struct stream_subbuffer *subbuf)
2683 {
2684 int ret;
2685
2686 ret = extract_common_subbuffer_info(stream, subbuf);
2687 if (ret) {
2688 goto end;
2689 }
2690
2691 subbuf->info.metadata.version = stream->metadata_version;
2692
2693 end:
2694 return ret;
2695 }
2696
2697 static int extract_data_subbuffer_info(struct lttng_consumer_stream *stream,
2698 struct stream_subbuffer *subbuf)
2699 {
2700 int ret;
2701
2702 ret = extract_common_subbuffer_info(stream, subbuf);
2703 if (ret) {
2704 goto end;
2705 }
2706
2707 ret = ustctl_get_packet_size(
2708 stream->ustream, &subbuf->info.data.packet_size);
2709 if (ret < 0) {
2710 PERROR("Failed to get sub-buffer packet size");
2711 goto end;
2712 }
2713
2714 ret = ustctl_get_content_size(
2715 stream->ustream, &subbuf->info.data.content_size);
2716 if (ret < 0) {
2717 PERROR("Failed to get sub-buffer content size");
2718 goto end;
2719 }
2720
2721 ret = ustctl_get_timestamp_begin(
2722 stream->ustream, &subbuf->info.data.timestamp_begin);
2723 if (ret < 0) {
2724 PERROR("Failed to get sub-buffer begin timestamp");
2725 goto end;
2726 }
2727
2728 ret = ustctl_get_timestamp_end(
2729 stream->ustream, &subbuf->info.data.timestamp_end);
2730 if (ret < 0) {
2731 PERROR("Failed to get sub-buffer end timestamp");
2732 goto end;
2733 }
2734
2735 ret = ustctl_get_events_discarded(
2736 stream->ustream, &subbuf->info.data.events_discarded);
2737 if (ret) {
2738 PERROR("Failed to get sub-buffer events discarded count");
2739 goto end;
2740 }
2741
2742 ret = ustctl_get_sequence_number(stream->ustream,
2743 &subbuf->info.data.sequence_number.value);
2744 if (ret) {
2745 /* May not be supported by older LTTng-modules. */
2746 if (ret != -ENOTTY) {
2747 PERROR("Failed to get sub-buffer sequence number");
2748 goto end;
2749 }
2750 } else {
2751 subbuf->info.data.sequence_number.is_set = true;
2752 }
2753
2754 ret = ustctl_get_stream_id(
2755 stream->ustream, &subbuf->info.data.stream_id);
2756 if (ret < 0) {
2757 PERROR("Failed to get stream id");
2758 goto end;
2759 }
2760
2761 ret = ustctl_get_instance_id(stream->ustream,
2762 &subbuf->info.data.stream_instance_id.value);
2763 if (ret) {
2764 /* May not be supported by older LTTng-modules. */
2765 if (ret != -ENOTTY) {
2766 PERROR("Failed to get stream instance id");
2767 goto end;
2768 }
2769 } else {
2770 subbuf->info.data.stream_instance_id.is_set = true;
2771 }
2772 end:
2773 return ret;
2774 }
2775
2776 static int get_next_subbuffer_common(struct lttng_consumer_stream *stream,
2777 struct stream_subbuffer *subbuffer)
2778 {
2779 int ret;
2780 const char *addr;
2781
2782 ret = stream->read_subbuffer_ops.extract_subbuffer_info(
2783 stream, subbuffer);
2784 if (ret) {
2785 goto end;
2786 }
2787
2788 ret = get_current_subbuf_addr(stream, &addr);
2789 if (ret) {
2790 goto end;
2791 }
2792
2793 subbuffer->buffer.buffer = lttng_buffer_view_init(
2794 addr, 0, subbuffer->info.data.padded_subbuf_size);
2795 assert(subbuffer->buffer.buffer.data != NULL);
2796 end:
2797 return ret;
2798 }
2799
2800 static int get_next_subbuffer(struct lttng_consumer_stream *stream,
2801 struct stream_subbuffer *subbuffer)
2802 {
2803 int ret;
2804
2805 ret = ustctl_get_next_subbuf(stream->ustream);
2806 if (ret) {
2807 goto end;
2808 }
2809
2810 ret = get_next_subbuffer_common(stream, subbuffer);
2811 if (ret) {
2812 goto end;
2813 }
2814 end:
2815 return ret;
2816 }
2817
2818 static int get_next_subbuffer_metadata(struct lttng_consumer_stream *stream,
2819 struct stream_subbuffer *subbuffer)
2820 {
2821 int ret;
2822 bool cache_empty;
2823 bool got_subbuffer;
2824 bool coherent;
2825 bool buffer_empty;
2826 unsigned long consumed_pos, produced_pos;
2827
2828 do {
2829 ret = ustctl_get_next_subbuf(stream->ustream);
2830 if (ret == 0) {
2831 got_subbuffer = true;
2832 } else {
2833 got_subbuffer = false;
2834 if (ret != -EAGAIN) {
2835 /* Fatal error. */
2836 goto end;
2837 }
2838 }
2839
2840 /*
2841 * Determine if the cache is empty and ensure that a sub-buffer
2842 * is made available if the cache is not empty.
2843 */
2844 if (!got_subbuffer) {
2845 ret = commit_one_metadata_packet(stream);
2846 if (ret < 0 && ret != -ENOBUFS) {
2847 goto end;
2848 } else if (ret == 0) {
2849 /* Not an error, the cache is empty. */
2850 cache_empty = true;
2851 ret = -ENODATA;
2852 goto end;
2853 } else {
2854 cache_empty = false;
2855 }
2856 } else {
2857 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2858 cache_empty = stream->chan->metadata_cache->max_offset ==
2859 stream->ust_metadata_pushed;
2860 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2861 }
2862 } while (!got_subbuffer);
2863
2864 /* Populate sub-buffer infos and view. */
2865 ret = get_next_subbuffer_common(stream, subbuffer);
2866 if (ret) {
2867 goto end;
2868 }
2869
2870 ret = lttng_ustconsumer_sample_snapshot_positions(stream);
2871 if (ret < 0) {
2872 /*
2873 * -EAGAIN is not expected since we got a sub-buffer and haven't
2874 * pushed the consumption position yet (on put_next).
2875 */
2876 PERROR("Failed to take a snapshot of metadata buffer positions");
2877 goto end;
2878 }
2879
2880 ret = lttng_ustconsumer_get_consumed_snapshot(stream, &consumed_pos);
2881 if (ret) {
2882 PERROR("Failed to get metadata consumed position");
2883 goto end;
2884 }
2885
2886 ret = lttng_ustconsumer_get_produced_snapshot(stream, &produced_pos);
2887 if (ret) {
2888 PERROR("Failed to get metadata produced position");
2889 goto end;
2890 }
2891
2892 /* Last sub-buffer of the ring buffer ? */
2893 buffer_empty = (consumed_pos + stream->max_sb_size) == produced_pos;
2894
2895 /*
2896 * The sessiond registry lock ensures that coherent units of metadata
2897 * are pushed to the consumer daemon at once. Hence, if a sub-buffer is
2898 * acquired, the cache is empty, and it is the only available sub-buffer
2899 * available, it is safe to assume that it is "coherent".
2900 */
2901 coherent = got_subbuffer && cache_empty && buffer_empty;
2902
2903 LTTNG_OPTIONAL_SET(&subbuffer->info.metadata.coherent, coherent);
2904 end:
2905 return ret;
2906 }
2907
2908 static int put_next_subbuffer(struct lttng_consumer_stream *stream,
2909 struct stream_subbuffer *subbuffer)
2910 {
2911 const int ret = ustctl_put_next_subbuf(stream->ustream);
2912
2913 assert(ret == 0);
2914 return ret;
2915 }
2916
2917 static int signal_metadata(struct lttng_consumer_stream *stream,
2918 struct lttng_consumer_local_data *ctx)
2919 {
2920 return pthread_cond_broadcast(&stream->metadata_rdv) ? -errno : 0;
2921 }
2922
2923 static int lttng_ustconsumer_set_stream_ops(
2924 struct lttng_consumer_stream *stream)
2925 {
2926 int ret = 0;
2927
2928 stream->read_subbuffer_ops.on_wake_up = consumer_stream_ust_on_wake_up;
2929 if (stream->metadata_flag) {
2930 stream->read_subbuffer_ops.get_next_subbuffer =
2931 get_next_subbuffer_metadata;
2932 stream->read_subbuffer_ops.extract_subbuffer_info =
2933 extract_metadata_subbuffer_info;
2934 stream->read_subbuffer_ops.reset_metadata =
2935 metadata_stream_reset_cache_consumed_position;
2936 if (stream->chan->is_live) {
2937 stream->read_subbuffer_ops.on_sleep = signal_metadata;
2938 ret = consumer_stream_enable_metadata_bucketization(
2939 stream);
2940 if (ret) {
2941 goto end;
2942 }
2943 }
2944 } else {
2945 stream->read_subbuffer_ops.get_next_subbuffer =
2946 get_next_subbuffer;
2947 stream->read_subbuffer_ops.extract_subbuffer_info =
2948 extract_data_subbuffer_info;
2949 stream->read_subbuffer_ops.on_sleep = notify_if_more_data;
2950 if (stream->chan->is_live) {
2951 stream->read_subbuffer_ops.send_live_beacon =
2952 consumer_flush_ust_index;
2953 }
2954 }
2955
2956 stream->read_subbuffer_ops.put_next_subbuffer = put_next_subbuffer;
2957 end:
2958 return ret;
2959 }
2960
2961 /*
2962 * Called when a stream is created.
2963 *
2964 * Return 0 on success or else a negative value.
2965 */
2966 int lttng_ustconsumer_on_recv_stream(struct lttng_consumer_stream *stream)
2967 {
2968 int ret;
2969
2970 assert(stream);
2971
2972 /*
2973 * Don't create anything if this is set for streaming or if there is
2974 * no current trace chunk on the parent channel.
2975 */
2976 if (stream->net_seq_idx == (uint64_t) -1ULL && stream->chan->monitor &&
2977 stream->chan->trace_chunk) {
2978 ret = consumer_stream_create_output_files(stream, true);
2979 if (ret) {
2980 goto error;
2981 }
2982 }
2983
2984 lttng_ustconsumer_set_stream_ops(stream);
2985 ret = 0;
2986
2987 error:
2988 return ret;
2989 }
2990
2991 /*
2992 * Check if data is still being extracted from the buffers for a specific
2993 * stream. Consumer data lock MUST be acquired before calling this function
2994 * and the stream lock.
2995 *
2996 * Return 1 if the traced data are still getting read else 0 meaning that the
2997 * data is available for trace viewer reading.
2998 */
2999 int lttng_ustconsumer_data_pending(struct lttng_consumer_stream *stream)
3000 {
3001 int ret;
3002
3003 assert(stream);
3004 assert(stream->ustream);
3005
3006 DBG("UST consumer checking data pending");
3007
3008 if (stream->endpoint_status != CONSUMER_ENDPOINT_ACTIVE) {
3009 ret = 0;
3010 goto end;
3011 }
3012
3013 if (stream->chan->type == CONSUMER_CHANNEL_TYPE_METADATA) {
3014 uint64_t contiguous, pushed;
3015
3016 /* Ease our life a bit. */
3017 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
3018 contiguous = stream->chan->metadata_cache->max_offset;
3019 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
3020 pushed = stream->ust_metadata_pushed;
3021
3022 /*
3023 * We can simply check whether all contiguously available data
3024 * has been pushed to the ring buffer, since the push operation
3025 * is performed within get_next_subbuf(), and because both
3026 * get_next_subbuf() and put_next_subbuf() are issued atomically
3027 * thanks to the stream lock within
3028 * lttng_ustconsumer_read_subbuffer(). This basically means that
3029 * whetnever ust_metadata_pushed is incremented, the associated
3030 * metadata has been consumed from the metadata stream.
3031 */
3032 DBG("UST consumer metadata pending check: contiguous %" PRIu64 " vs pushed %" PRIu64,
3033 contiguous, pushed);
3034 assert(((int64_t) (contiguous - pushed)) >= 0);
3035 if ((contiguous != pushed) ||
3036 (((int64_t) contiguous - pushed) > 0 || contiguous == 0)) {
3037 ret = 1; /* Data is pending */
3038 goto end;
3039 }
3040 } else {
3041 ret = ustctl_get_next_subbuf(stream->ustream);
3042 if (ret == 0) {
3043 /*
3044 * There is still data so let's put back this
3045 * subbuffer.
3046 */
3047 ret = ustctl_put_subbuf(stream->ustream);
3048 assert(ret == 0);
3049 ret = 1; /* Data is pending */
3050 goto end;
3051 }
3052 }
3053
3054 /* Data is NOT pending so ready to be read. */
3055 ret = 0;
3056
3057 end:
3058 return ret;
3059 }
3060
3061 /*
3062 * Stop a given metadata channel timer if enabled and close the wait fd which
3063 * is the poll pipe of the metadata stream.
3064 *
3065 * This MUST be called with the metadata channel lock acquired.
3066 */
3067 void lttng_ustconsumer_close_metadata(struct lttng_consumer_channel *metadata)
3068 {
3069 int ret;
3070
3071 assert(metadata);
3072 assert(metadata->type == CONSUMER_CHANNEL_TYPE_METADATA);
3073
3074 DBG("Closing metadata channel key %" PRIu64, metadata->key);
3075
3076 if (metadata->switch_timer_enabled == 1) {
3077 consumer_timer_switch_stop(metadata);
3078 }
3079
3080 if (!metadata->metadata_stream) {
3081 goto end;
3082 }
3083
3084 /*
3085 * Closing write side so the thread monitoring the stream wakes up if any
3086 * and clean the metadata stream.
3087 */
3088 if (metadata->metadata_stream->ust_metadata_poll_pipe[1] >= 0) {
3089 ret = close(metadata->metadata_stream->ust_metadata_poll_pipe[1]);
3090 if (ret < 0) {
3091 PERROR("closing metadata pipe write side");
3092 }
3093 metadata->metadata_stream->ust_metadata_poll_pipe[1] = -1;
3094 }
3095
3096 end:
3097 return;
3098 }
3099
3100 /*
3101 * Close every metadata stream wait fd of the metadata hash table. This
3102 * function MUST be used very carefully so not to run into a race between the
3103 * metadata thread handling streams and this function closing their wait fd.
3104 *
3105 * For UST, this is used when the session daemon hangs up. Its the metadata
3106 * producer so calling this is safe because we are assured that no state change
3107 * can occur in the metadata thread for the streams in the hash table.
3108 */
3109 void lttng_ustconsumer_close_all_metadata(struct lttng_ht *metadata_ht)
3110 {
3111 struct lttng_ht_iter iter;
3112 struct lttng_consumer_stream *stream;
3113
3114 assert(metadata_ht);
3115 assert(metadata_ht->ht);
3116
3117 DBG("UST consumer closing all metadata streams");
3118
3119 rcu_read_lock();
3120 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream,
3121 node.node) {
3122
3123 health_code_update();
3124
3125 pthread_mutex_lock(&stream->chan->lock);
3126 lttng_ustconsumer_close_metadata(stream->chan);
3127 pthread_mutex_unlock(&stream->chan->lock);
3128
3129 }
3130 rcu_read_unlock();
3131 }
3132
3133 void lttng_ustconsumer_close_stream_wakeup(struct lttng_consumer_stream *stream)
3134 {
3135 int ret;
3136
3137 ret = ustctl_stream_close_wakeup_fd(stream->ustream);
3138 if (ret < 0) {
3139 ERR("Unable to close wakeup fd");
3140 }
3141 }
3142
3143 /*
3144 * Please refer to consumer-timer.c before adding any lock within this
3145 * function or any of its callees. Timers have a very strict locking
3146 * semantic with respect to teardown. Failure to respect this semantic
3147 * introduces deadlocks.
3148 *
3149 * DON'T hold the metadata lock when calling this function, else this
3150 * can cause deadlock involving consumer awaiting for metadata to be
3151 * pushed out due to concurrent interaction with the session daemon.
3152 */
3153 int lttng_ustconsumer_request_metadata(struct lttng_consumer_local_data *ctx,
3154 struct lttng_consumer_channel *channel, int timer, int wait)
3155 {
3156 struct lttcomm_metadata_request_msg request;
3157 struct lttcomm_consumer_msg msg;
3158 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3159 uint64_t len, key, offset, version;
3160 int ret;
3161
3162 assert(channel);
3163 assert(channel->metadata_cache);
3164
3165 memset(&request, 0, sizeof(request));
3166
3167 /* send the metadata request to sessiond */
3168 switch (consumer_data.type) {
3169 case LTTNG_CONSUMER64_UST:
3170 request.bits_per_long = 64;
3171 break;
3172 case LTTNG_CONSUMER32_UST:
3173 request.bits_per_long = 32;
3174 break;
3175 default:
3176 request.bits_per_long = 0;
3177 break;
3178 }
3179
3180 request.session_id = channel->session_id;
3181 request.session_id_per_pid = channel->session_id_per_pid;
3182 /*
3183 * Request the application UID here so the metadata of that application can
3184 * be sent back. The channel UID corresponds to the user UID of the session
3185 * used for the rights on the stream file(s).
3186 */
3187 request.uid = channel->ust_app_uid;
3188 request.key = channel->key;
3189
3190 DBG("Sending metadata request to sessiond, session id %" PRIu64
3191 ", per-pid %" PRIu64 ", app UID %u and channel key %" PRIu64,
3192 request.session_id, request.session_id_per_pid, request.uid,
3193 request.key);
3194
3195 pthread_mutex_lock(&ctx->metadata_socket_lock);
3196
3197 health_code_update();
3198
3199 ret = lttcomm_send_unix_sock(ctx->consumer_metadata_socket, &request,
3200 sizeof(request));
3201 if (ret < 0) {
3202 ERR("Asking metadata to sessiond");
3203 goto end;
3204 }
3205
3206 health_code_update();
3207
3208 /* Receive the metadata from sessiond */
3209 ret = lttcomm_recv_unix_sock(ctx->consumer_metadata_socket, &msg,
3210 sizeof(msg));
3211 if (ret != sizeof(msg)) {
3212 DBG("Consumer received unexpected message size %d (expects %zu)",
3213 ret, sizeof(msg));
3214 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_CMD);
3215 /*
3216 * The ret value might 0 meaning an orderly shutdown but this is ok
3217 * since the caller handles this.
3218 */
3219 goto end;
3220 }
3221
3222 health_code_update();
3223
3224 if (msg.cmd_type == LTTNG_ERR_UND) {
3225 /* No registry found */
3226 (void) consumer_send_status_msg(ctx->consumer_metadata_socket,
3227 ret_code);
3228 ret = 0;
3229 goto end;
3230 } else if (msg.cmd_type != LTTNG_CONSUMER_PUSH_METADATA) {
3231 ERR("Unexpected cmd_type received %d", msg.cmd_type);
3232 ret = -1;
3233 goto end;
3234 }
3235
3236 len = msg.u.push_metadata.len;
3237 key = msg.u.push_metadata.key;
3238 offset = msg.u.push_metadata.target_offset;
3239 version = msg.u.push_metadata.version;
3240
3241 assert(key == channel->key);
3242 if (len == 0) {
3243 DBG("No new metadata to receive for key %" PRIu64, key);
3244 }
3245
3246 health_code_update();
3247
3248 /* Tell session daemon we are ready to receive the metadata. */
3249 ret = consumer_send_status_msg(ctx->consumer_metadata_socket,
3250 LTTCOMM_CONSUMERD_SUCCESS);
3251 if (ret < 0 || len == 0) {
3252 /*
3253 * Somehow, the session daemon is not responding anymore or there is
3254 * nothing to receive.
3255 */
3256 goto end;
3257 }
3258
3259 health_code_update();
3260
3261 ret = lttng_ustconsumer_recv_metadata(ctx->consumer_metadata_socket,
3262 key, offset, len, version, channel, timer, wait);
3263 if (ret >= 0) {
3264 /*
3265 * Only send the status msg if the sessiond is alive meaning a positive
3266 * ret code.
3267 */
3268 (void) consumer_send_status_msg(ctx->consumer_metadata_socket, ret);
3269 }
3270 ret = 0;
3271
3272 end:
3273 health_code_update();
3274
3275 pthread_mutex_unlock(&ctx->metadata_socket_lock);
3276 return ret;
3277 }
3278
3279 /*
3280 * Return the ustctl call for the get stream id.
3281 */
3282 int lttng_ustconsumer_get_stream_id(struct lttng_consumer_stream *stream,
3283 uint64_t *stream_id)
3284 {
3285 assert(stream);
3286 assert(stream_id);
3287
3288 return ustctl_get_stream_id(stream->ustream, stream_id);
3289 }
This page took 0.173105 seconds and 4 git commands to generate.