bfec997eec808019f28283aa2a42f6fdd7baf913
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /*
71 * Flag to inform the polling thread to quit when all fd hung up. Updated by
72 * the consumer_thread_receive_fds when it notices that all fds has hung up.
73 * Also updated by the signal handler (consumer_should_exit()). Read by the
74 * polling threads.
75 */
76 volatile int consumer_quit;
77
78 /*
79 * Global hash table containing respectively metadata and data streams. The
80 * stream element in this ht should only be updated by the metadata poll thread
81 * for the metadata and the data poll thread for the data.
82 */
83 static struct lttng_ht *metadata_ht;
84 static struct lttng_ht *data_ht;
85
86 /*
87 * Notify a thread lttng pipe to poll back again. This usually means that some
88 * global state has changed so we just send back the thread in a poll wait
89 * call.
90 */
91 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
92 {
93 struct lttng_consumer_stream *null_stream = NULL;
94
95 assert(pipe);
96
97 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
98 }
99
100 static void notify_health_quit_pipe(int *pipe)
101 {
102 ssize_t ret;
103
104 ret = lttng_write(pipe[1], "4", 1);
105 if (ret < 1) {
106 PERROR("write consumer health quit");
107 }
108 }
109
110 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
111 struct lttng_consumer_channel *chan,
112 uint64_t key,
113 enum consumer_channel_action action)
114 {
115 struct consumer_channel_msg msg;
116 ssize_t ret;
117
118 memset(&msg, 0, sizeof(msg));
119
120 msg.action = action;
121 msg.chan = chan;
122 msg.key = key;
123 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
124 if (ret < sizeof(msg)) {
125 PERROR("notify_channel_pipe write error");
126 }
127 }
128
129 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
130 uint64_t key)
131 {
132 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
133 }
134
135 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
136 struct lttng_consumer_channel **chan,
137 uint64_t *key,
138 enum consumer_channel_action *action)
139 {
140 struct consumer_channel_msg msg;
141 ssize_t ret;
142
143 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
144 if (ret < sizeof(msg)) {
145 ret = -1;
146 goto error;
147 }
148 *action = msg.action;
149 *chan = msg.chan;
150 *key = msg.key;
151 error:
152 return (int) ret;
153 }
154
155 /*
156 * Cleanup the stream list of a channel. Those streams are not yet globally
157 * visible
158 */
159 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
160 {
161 struct lttng_consumer_stream *stream, *stmp;
162
163 assert(channel);
164
165 /* Delete streams that might have been left in the stream list. */
166 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
167 send_node) {
168 cds_list_del(&stream->send_node);
169 /*
170 * Once a stream is added to this list, the buffers were created so we
171 * have a guarantee that this call will succeed. Setting the monitor
172 * mode to 0 so we don't lock nor try to delete the stream from the
173 * global hash table.
174 */
175 stream->monitor = 0;
176 consumer_stream_destroy(stream, NULL);
177 }
178 }
179
180 /*
181 * Find a stream. The consumer_data.lock must be locked during this
182 * call.
183 */
184 static struct lttng_consumer_stream *find_stream(uint64_t key,
185 struct lttng_ht *ht)
186 {
187 struct lttng_ht_iter iter;
188 struct lttng_ht_node_u64 *node;
189 struct lttng_consumer_stream *stream = NULL;
190
191 assert(ht);
192
193 /* -1ULL keys are lookup failures */
194 if (key == (uint64_t) -1ULL) {
195 return NULL;
196 }
197
198 rcu_read_lock();
199
200 lttng_ht_lookup(ht, &key, &iter);
201 node = lttng_ht_iter_get_node_u64(&iter);
202 if (node != NULL) {
203 stream = caa_container_of(node, struct lttng_consumer_stream, node);
204 }
205
206 rcu_read_unlock();
207
208 return stream;
209 }
210
211 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
212 {
213 struct lttng_consumer_stream *stream;
214
215 rcu_read_lock();
216 stream = find_stream(key, ht);
217 if (stream) {
218 stream->key = (uint64_t) -1ULL;
219 /*
220 * We don't want the lookup to match, but we still need
221 * to iterate on this stream when iterating over the hash table. Just
222 * change the node key.
223 */
224 stream->node.key = (uint64_t) -1ULL;
225 }
226 rcu_read_unlock();
227 }
228
229 /*
230 * Return a channel object for the given key.
231 *
232 * RCU read side lock MUST be acquired before calling this function and
233 * protects the channel ptr.
234 */
235 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
236 {
237 struct lttng_ht_iter iter;
238 struct lttng_ht_node_u64 *node;
239 struct lttng_consumer_channel *channel = NULL;
240
241 /* -1ULL keys are lookup failures */
242 if (key == (uint64_t) -1ULL) {
243 return NULL;
244 }
245
246 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
247 node = lttng_ht_iter_get_node_u64(&iter);
248 if (node != NULL) {
249 channel = caa_container_of(node, struct lttng_consumer_channel, node);
250 }
251
252 return channel;
253 }
254
255 /*
256 * There is a possibility that the consumer does not have enough time between
257 * the close of the channel on the session daemon and the cleanup in here thus
258 * once we have a channel add with an existing key, we know for sure that this
259 * channel will eventually get cleaned up by all streams being closed.
260 *
261 * This function just nullifies the already existing channel key.
262 */
263 static void steal_channel_key(uint64_t key)
264 {
265 struct lttng_consumer_channel *channel;
266
267 rcu_read_lock();
268 channel = consumer_find_channel(key);
269 if (channel) {
270 channel->key = (uint64_t) -1ULL;
271 /*
272 * We don't want the lookup to match, but we still need to iterate on
273 * this channel when iterating over the hash table. Just change the
274 * node key.
275 */
276 channel->node.key = (uint64_t) -1ULL;
277 }
278 rcu_read_unlock();
279 }
280
281 static void free_channel_rcu(struct rcu_head *head)
282 {
283 struct lttng_ht_node_u64 *node =
284 caa_container_of(head, struct lttng_ht_node_u64, head);
285 struct lttng_consumer_channel *channel =
286 caa_container_of(node, struct lttng_consumer_channel, node);
287
288 switch (consumer_data.type) {
289 case LTTNG_CONSUMER_KERNEL:
290 break;
291 case LTTNG_CONSUMER32_UST:
292 case LTTNG_CONSUMER64_UST:
293 lttng_ustconsumer_free_channel(channel);
294 break;
295 default:
296 ERR("Unknown consumer_data type");
297 abort();
298 }
299 free(channel);
300 }
301
302 /*
303 * RCU protected relayd socket pair free.
304 */
305 static void free_relayd_rcu(struct rcu_head *head)
306 {
307 struct lttng_ht_node_u64 *node =
308 caa_container_of(head, struct lttng_ht_node_u64, head);
309 struct consumer_relayd_sock_pair *relayd =
310 caa_container_of(node, struct consumer_relayd_sock_pair, node);
311
312 /*
313 * Close all sockets. This is done in the call RCU since we don't want the
314 * socket fds to be reassigned thus potentially creating bad state of the
315 * relayd object.
316 *
317 * We do not have to lock the control socket mutex here since at this stage
318 * there is no one referencing to this relayd object.
319 */
320 (void) relayd_close(&relayd->control_sock);
321 (void) relayd_close(&relayd->data_sock);
322
323 free(relayd);
324 }
325
326 /*
327 * Destroy and free relayd socket pair object.
328 */
329 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
330 {
331 int ret;
332 struct lttng_ht_iter iter;
333
334 if (relayd == NULL) {
335 return;
336 }
337
338 DBG("Consumer destroy and close relayd socket pair");
339
340 iter.iter.node = &relayd->node.node;
341 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
342 if (ret != 0) {
343 /* We assume the relayd is being or is destroyed */
344 return;
345 }
346
347 /* RCU free() call */
348 call_rcu(&relayd->node.head, free_relayd_rcu);
349 }
350
351 /*
352 * Remove a channel from the global list protected by a mutex. This function is
353 * also responsible for freeing its data structures.
354 */
355 void consumer_del_channel(struct lttng_consumer_channel *channel)
356 {
357 int ret;
358 struct lttng_ht_iter iter;
359
360 DBG("Consumer delete channel key %" PRIu64, channel->key);
361
362 pthread_mutex_lock(&consumer_data.lock);
363 pthread_mutex_lock(&channel->lock);
364
365 /* Destroy streams that might have been left in the stream list. */
366 clean_channel_stream_list(channel);
367
368 if (channel->live_timer_enabled == 1) {
369 consumer_timer_live_stop(channel);
370 }
371
372 switch (consumer_data.type) {
373 case LTTNG_CONSUMER_KERNEL:
374 break;
375 case LTTNG_CONSUMER32_UST:
376 case LTTNG_CONSUMER64_UST:
377 lttng_ustconsumer_del_channel(channel);
378 break;
379 default:
380 ERR("Unknown consumer_data type");
381 assert(0);
382 goto end;
383 }
384
385 rcu_read_lock();
386 iter.iter.node = &channel->node.node;
387 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
388 assert(!ret);
389 rcu_read_unlock();
390
391 call_rcu(&channel->node.head, free_channel_rcu);
392 end:
393 pthread_mutex_unlock(&channel->lock);
394 pthread_mutex_unlock(&consumer_data.lock);
395 }
396
397 /*
398 * Iterate over the relayd hash table and destroy each element. Finally,
399 * destroy the whole hash table.
400 */
401 static void cleanup_relayd_ht(void)
402 {
403 struct lttng_ht_iter iter;
404 struct consumer_relayd_sock_pair *relayd;
405
406 rcu_read_lock();
407
408 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
409 node.node) {
410 consumer_destroy_relayd(relayd);
411 }
412
413 rcu_read_unlock();
414
415 lttng_ht_destroy(consumer_data.relayd_ht);
416 }
417
418 /*
419 * Update the end point status of all streams having the given network sequence
420 * index (relayd index).
421 *
422 * It's atomically set without having the stream mutex locked which is fine
423 * because we handle the write/read race with a pipe wakeup for each thread.
424 */
425 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
426 enum consumer_endpoint_status status)
427 {
428 struct lttng_ht_iter iter;
429 struct lttng_consumer_stream *stream;
430
431 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
432
433 rcu_read_lock();
434
435 /* Let's begin with metadata */
436 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
437 if (stream->net_seq_idx == net_seq_idx) {
438 uatomic_set(&stream->endpoint_status, status);
439 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
440 }
441 }
442
443 /* Follow up by the data streams */
444 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
445 if (stream->net_seq_idx == net_seq_idx) {
446 uatomic_set(&stream->endpoint_status, status);
447 DBG("Delete flag set to data stream %d", stream->wait_fd);
448 }
449 }
450 rcu_read_unlock();
451 }
452
453 /*
454 * Cleanup a relayd object by flagging every associated streams for deletion,
455 * destroying the object meaning removing it from the relayd hash table,
456 * closing the sockets and freeing the memory in a RCU call.
457 *
458 * If a local data context is available, notify the threads that the streams'
459 * state have changed.
460 */
461 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
462 struct lttng_consumer_local_data *ctx)
463 {
464 uint64_t netidx;
465
466 assert(relayd);
467
468 DBG("Cleaning up relayd sockets");
469
470 /* Save the net sequence index before destroying the object */
471 netidx = relayd->net_seq_idx;
472
473 /*
474 * Delete the relayd from the relayd hash table, close the sockets and free
475 * the object in a RCU call.
476 */
477 consumer_destroy_relayd(relayd);
478
479 /* Set inactive endpoint to all streams */
480 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
481
482 /*
483 * With a local data context, notify the threads that the streams' state
484 * have changed. The write() action on the pipe acts as an "implicit"
485 * memory barrier ordering the updates of the end point status from the
486 * read of this status which happens AFTER receiving this notify.
487 */
488 if (ctx) {
489 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
490 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
491 }
492 }
493
494 /*
495 * Flag a relayd socket pair for destruction. Destroy it if the refcount
496 * reaches zero.
497 *
498 * RCU read side lock MUST be aquired before calling this function.
499 */
500 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
501 {
502 assert(relayd);
503
504 /* Set destroy flag for this object */
505 uatomic_set(&relayd->destroy_flag, 1);
506
507 /* Destroy the relayd if refcount is 0 */
508 if (uatomic_read(&relayd->refcount) == 0) {
509 consumer_destroy_relayd(relayd);
510 }
511 }
512
513 /*
514 * Completly destroy stream from every visiable data structure and the given
515 * hash table if one.
516 *
517 * One this call returns, the stream object is not longer usable nor visible.
518 */
519 void consumer_del_stream(struct lttng_consumer_stream *stream,
520 struct lttng_ht *ht)
521 {
522 consumer_stream_destroy(stream, ht);
523 }
524
525 /*
526 * XXX naming of del vs destroy is all mixed up.
527 */
528 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
529 {
530 consumer_stream_destroy(stream, data_ht);
531 }
532
533 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
534 {
535 consumer_stream_destroy(stream, metadata_ht);
536 }
537
538 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
539 uint64_t stream_key,
540 enum lttng_consumer_stream_state state,
541 const char *channel_name,
542 uid_t uid,
543 gid_t gid,
544 uint64_t relayd_id,
545 uint64_t session_id,
546 int cpu,
547 int *alloc_ret,
548 enum consumer_channel_type type,
549 unsigned int monitor)
550 {
551 int ret;
552 struct lttng_consumer_stream *stream;
553
554 stream = zmalloc(sizeof(*stream));
555 if (stream == NULL) {
556 PERROR("malloc struct lttng_consumer_stream");
557 ret = -ENOMEM;
558 goto end;
559 }
560
561 rcu_read_lock();
562
563 stream->key = stream_key;
564 stream->out_fd = -1;
565 stream->out_fd_offset = 0;
566 stream->output_written = 0;
567 stream->state = state;
568 stream->uid = uid;
569 stream->gid = gid;
570 stream->net_seq_idx = relayd_id;
571 stream->session_id = session_id;
572 stream->monitor = monitor;
573 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
574 stream->index_file = NULL;
575 stream->last_sequence_number = -1ULL;
576 pthread_mutex_init(&stream->lock, NULL);
577 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
578
579 /* If channel is the metadata, flag this stream as metadata. */
580 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
581 stream->metadata_flag = 1;
582 /* Metadata is flat out. */
583 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
584 /* Live rendez-vous point. */
585 pthread_cond_init(&stream->metadata_rdv, NULL);
586 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
587 } else {
588 /* Format stream name to <channel_name>_<cpu_number> */
589 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
590 channel_name, cpu);
591 if (ret < 0) {
592 PERROR("snprintf stream name");
593 goto error;
594 }
595 }
596
597 /* Key is always the wait_fd for streams. */
598 lttng_ht_node_init_u64(&stream->node, stream->key);
599
600 /* Init node per channel id key */
601 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
602
603 /* Init session id node with the stream session id */
604 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
605
606 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
607 " relayd_id %" PRIu64 ", session_id %" PRIu64,
608 stream->name, stream->key, channel_key,
609 stream->net_seq_idx, stream->session_id);
610
611 rcu_read_unlock();
612 return stream;
613
614 error:
615 rcu_read_unlock();
616 free(stream);
617 end:
618 if (alloc_ret) {
619 *alloc_ret = ret;
620 }
621 return NULL;
622 }
623
624 /*
625 * Add a stream to the global list protected by a mutex.
626 */
627 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
628 {
629 struct lttng_ht *ht = data_ht;
630 int ret = 0;
631
632 assert(stream);
633 assert(ht);
634
635 DBG3("Adding consumer stream %" PRIu64, stream->key);
636
637 pthread_mutex_lock(&consumer_data.lock);
638 pthread_mutex_lock(&stream->chan->lock);
639 pthread_mutex_lock(&stream->chan->timer_lock);
640 pthread_mutex_lock(&stream->lock);
641 rcu_read_lock();
642
643 /* Steal stream identifier to avoid having streams with the same key */
644 steal_stream_key(stream->key, ht);
645
646 lttng_ht_add_unique_u64(ht, &stream->node);
647
648 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
649 &stream->node_channel_id);
650
651 /*
652 * Add stream to the stream_list_ht of the consumer data. No need to steal
653 * the key since the HT does not use it and we allow to add redundant keys
654 * into this table.
655 */
656 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
657
658 /*
659 * When nb_init_stream_left reaches 0, we don't need to trigger any action
660 * in terms of destroying the associated channel, because the action that
661 * causes the count to become 0 also causes a stream to be added. The
662 * channel deletion will thus be triggered by the following removal of this
663 * stream.
664 */
665 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
666 /* Increment refcount before decrementing nb_init_stream_left */
667 cmm_smp_wmb();
668 uatomic_dec(&stream->chan->nb_init_stream_left);
669 }
670
671 /* Update consumer data once the node is inserted. */
672 consumer_data.stream_count++;
673 consumer_data.need_update = 1;
674
675 rcu_read_unlock();
676 pthread_mutex_unlock(&stream->lock);
677 pthread_mutex_unlock(&stream->chan->timer_lock);
678 pthread_mutex_unlock(&stream->chan->lock);
679 pthread_mutex_unlock(&consumer_data.lock);
680
681 return ret;
682 }
683
684 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
685 {
686 consumer_del_stream(stream, data_ht);
687 }
688
689 /*
690 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
691 * be acquired before calling this.
692 */
693 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
694 {
695 int ret = 0;
696 struct lttng_ht_node_u64 *node;
697 struct lttng_ht_iter iter;
698
699 assert(relayd);
700
701 lttng_ht_lookup(consumer_data.relayd_ht,
702 &relayd->net_seq_idx, &iter);
703 node = lttng_ht_iter_get_node_u64(&iter);
704 if (node != NULL) {
705 goto end;
706 }
707 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
708
709 end:
710 return ret;
711 }
712
713 /*
714 * Allocate and return a consumer relayd socket.
715 */
716 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
717 uint64_t net_seq_idx)
718 {
719 struct consumer_relayd_sock_pair *obj = NULL;
720
721 /* net sequence index of -1 is a failure */
722 if (net_seq_idx == (uint64_t) -1ULL) {
723 goto error;
724 }
725
726 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
727 if (obj == NULL) {
728 PERROR("zmalloc relayd sock");
729 goto error;
730 }
731
732 obj->net_seq_idx = net_seq_idx;
733 obj->refcount = 0;
734 obj->destroy_flag = 0;
735 obj->control_sock.sock.fd = -1;
736 obj->data_sock.sock.fd = -1;
737 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
738 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
739
740 error:
741 return obj;
742 }
743
744 /*
745 * Find a relayd socket pair in the global consumer data.
746 *
747 * Return the object if found else NULL.
748 * RCU read-side lock must be held across this call and while using the
749 * returned object.
750 */
751 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
752 {
753 struct lttng_ht_iter iter;
754 struct lttng_ht_node_u64 *node;
755 struct consumer_relayd_sock_pair *relayd = NULL;
756
757 /* Negative keys are lookup failures */
758 if (key == (uint64_t) -1ULL) {
759 goto error;
760 }
761
762 lttng_ht_lookup(consumer_data.relayd_ht, &key,
763 &iter);
764 node = lttng_ht_iter_get_node_u64(&iter);
765 if (node != NULL) {
766 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
767 }
768
769 error:
770 return relayd;
771 }
772
773 /*
774 * Find a relayd and send the stream
775 *
776 * Returns 0 on success, < 0 on error
777 */
778 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
779 char *path)
780 {
781 int ret = 0;
782 struct consumer_relayd_sock_pair *relayd;
783
784 assert(stream);
785 assert(stream->net_seq_idx != -1ULL);
786 assert(path);
787
788 /* The stream is not metadata. Get relayd reference if exists. */
789 rcu_read_lock();
790 relayd = consumer_find_relayd(stream->net_seq_idx);
791 if (relayd != NULL) {
792 /* Add stream on the relayd */
793 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
794 ret = relayd_add_stream(&relayd->control_sock, stream->name,
795 path, &stream->relayd_stream_id,
796 stream->chan->tracefile_size, stream->chan->tracefile_count);
797 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
798 if (ret < 0) {
799 goto end;
800 }
801
802 uatomic_inc(&relayd->refcount);
803 stream->sent_to_relayd = 1;
804 } else {
805 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
806 stream->key, stream->net_seq_idx);
807 ret = -1;
808 goto end;
809 }
810
811 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
812 stream->name, stream->key, stream->net_seq_idx);
813
814 end:
815 rcu_read_unlock();
816 return ret;
817 }
818
819 /*
820 * Find a relayd and send the streams sent message
821 *
822 * Returns 0 on success, < 0 on error
823 */
824 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
825 {
826 int ret = 0;
827 struct consumer_relayd_sock_pair *relayd;
828
829 assert(net_seq_idx != -1ULL);
830
831 /* The stream is not metadata. Get relayd reference if exists. */
832 rcu_read_lock();
833 relayd = consumer_find_relayd(net_seq_idx);
834 if (relayd != NULL) {
835 /* Add stream on the relayd */
836 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
837 ret = relayd_streams_sent(&relayd->control_sock);
838 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
839 if (ret < 0) {
840 goto end;
841 }
842 } else {
843 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
844 net_seq_idx);
845 ret = -1;
846 goto end;
847 }
848
849 ret = 0;
850 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
851
852 end:
853 rcu_read_unlock();
854 return ret;
855 }
856
857 /*
858 * Find a relayd and close the stream
859 */
860 void close_relayd_stream(struct lttng_consumer_stream *stream)
861 {
862 struct consumer_relayd_sock_pair *relayd;
863
864 /* The stream is not metadata. Get relayd reference if exists. */
865 rcu_read_lock();
866 relayd = consumer_find_relayd(stream->net_seq_idx);
867 if (relayd) {
868 consumer_stream_relayd_close(stream, relayd);
869 }
870 rcu_read_unlock();
871 }
872
873 /*
874 * Handle stream for relayd transmission if the stream applies for network
875 * streaming where the net sequence index is set.
876 *
877 * Return destination file descriptor or negative value on error.
878 */
879 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
880 size_t data_size, unsigned long padding,
881 struct consumer_relayd_sock_pair *relayd)
882 {
883 int outfd = -1, ret;
884 struct lttcomm_relayd_data_hdr data_hdr;
885
886 /* Safety net */
887 assert(stream);
888 assert(relayd);
889
890 /* Reset data header */
891 memset(&data_hdr, 0, sizeof(data_hdr));
892
893 if (stream->metadata_flag) {
894 /* Caller MUST acquire the relayd control socket lock */
895 ret = relayd_send_metadata(&relayd->control_sock, data_size);
896 if (ret < 0) {
897 goto error;
898 }
899
900 /* Metadata are always sent on the control socket. */
901 outfd = relayd->control_sock.sock.fd;
902 } else {
903 /* Set header with stream information */
904 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
905 data_hdr.data_size = htobe32(data_size);
906 data_hdr.padding_size = htobe32(padding);
907 /*
908 * Note that net_seq_num below is assigned with the *current* value of
909 * next_net_seq_num and only after that the next_net_seq_num will be
910 * increment. This is why when issuing a command on the relayd using
911 * this next value, 1 should always be substracted in order to compare
912 * the last seen sequence number on the relayd side to the last sent.
913 */
914 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
915 /* Other fields are zeroed previously */
916
917 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
918 sizeof(data_hdr));
919 if (ret < 0) {
920 goto error;
921 }
922
923 ++stream->next_net_seq_num;
924
925 /* Set to go on data socket */
926 outfd = relayd->data_sock.sock.fd;
927 }
928
929 error:
930 return outfd;
931 }
932
933 /*
934 * Allocate and return a new lttng_consumer_channel object using the given key
935 * to initialize the hash table node.
936 *
937 * On error, return NULL.
938 */
939 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
940 uint64_t session_id,
941 const char *pathname,
942 const char *name,
943 uid_t uid,
944 gid_t gid,
945 uint64_t relayd_id,
946 enum lttng_event_output output,
947 uint64_t tracefile_size,
948 uint64_t tracefile_count,
949 uint64_t session_id_per_pid,
950 unsigned int monitor,
951 unsigned int live_timer_interval,
952 const char *root_shm_path,
953 const char *shm_path)
954 {
955 struct lttng_consumer_channel *channel;
956
957 channel = zmalloc(sizeof(*channel));
958 if (channel == NULL) {
959 PERROR("malloc struct lttng_consumer_channel");
960 goto end;
961 }
962
963 channel->key = key;
964 channel->refcount = 0;
965 channel->session_id = session_id;
966 channel->session_id_per_pid = session_id_per_pid;
967 channel->uid = uid;
968 channel->gid = gid;
969 channel->relayd_id = relayd_id;
970 channel->tracefile_size = tracefile_size;
971 channel->tracefile_count = tracefile_count;
972 channel->monitor = monitor;
973 channel->live_timer_interval = live_timer_interval;
974 pthread_mutex_init(&channel->lock, NULL);
975 pthread_mutex_init(&channel->timer_lock, NULL);
976
977 switch (output) {
978 case LTTNG_EVENT_SPLICE:
979 channel->output = CONSUMER_CHANNEL_SPLICE;
980 break;
981 case LTTNG_EVENT_MMAP:
982 channel->output = CONSUMER_CHANNEL_MMAP;
983 break;
984 default:
985 assert(0);
986 free(channel);
987 channel = NULL;
988 goto end;
989 }
990
991 /*
992 * In monitor mode, the streams associated with the channel will be put in
993 * a special list ONLY owned by this channel. So, the refcount is set to 1
994 * here meaning that the channel itself has streams that are referenced.
995 *
996 * On a channel deletion, once the channel is no longer visible, the
997 * refcount is decremented and checked for a zero value to delete it. With
998 * streams in no monitor mode, it will now be safe to destroy the channel.
999 */
1000 if (!channel->monitor) {
1001 channel->refcount = 1;
1002 }
1003
1004 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1005 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1006
1007 strncpy(channel->name, name, sizeof(channel->name));
1008 channel->name[sizeof(channel->name) - 1] = '\0';
1009
1010 if (root_shm_path) {
1011 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1012 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1013 }
1014 if (shm_path) {
1015 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1016 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1017 }
1018
1019 lttng_ht_node_init_u64(&channel->node, channel->key);
1020
1021 channel->wait_fd = -1;
1022
1023 CDS_INIT_LIST_HEAD(&channel->streams.head);
1024
1025 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1026
1027 end:
1028 return channel;
1029 }
1030
1031 /*
1032 * Add a channel to the global list protected by a mutex.
1033 *
1034 * Always return 0 indicating success.
1035 */
1036 int consumer_add_channel(struct lttng_consumer_channel *channel,
1037 struct lttng_consumer_local_data *ctx)
1038 {
1039 pthread_mutex_lock(&consumer_data.lock);
1040 pthread_mutex_lock(&channel->lock);
1041 pthread_mutex_lock(&channel->timer_lock);
1042
1043 /*
1044 * This gives us a guarantee that the channel we are about to add to the
1045 * channel hash table will be unique. See this function comment on the why
1046 * we need to steel the channel key at this stage.
1047 */
1048 steal_channel_key(channel->key);
1049
1050 rcu_read_lock();
1051 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1052 rcu_read_unlock();
1053
1054 pthread_mutex_unlock(&channel->timer_lock);
1055 pthread_mutex_unlock(&channel->lock);
1056 pthread_mutex_unlock(&consumer_data.lock);
1057
1058 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1059 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1060 }
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * Allocate the pollfd structure and the local view of the out fds to avoid
1067 * doing a lookup in the linked list and concurrency issues when writing is
1068 * needed. Called with consumer_data.lock held.
1069 *
1070 * Returns the number of fds in the structures.
1071 */
1072 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1073 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1074 struct lttng_ht *ht)
1075 {
1076 int i = 0;
1077 struct lttng_ht_iter iter;
1078 struct lttng_consumer_stream *stream;
1079
1080 assert(ctx);
1081 assert(ht);
1082 assert(pollfd);
1083 assert(local_stream);
1084
1085 DBG("Updating poll fd array");
1086 rcu_read_lock();
1087 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1088 /*
1089 * Only active streams with an active end point can be added to the
1090 * poll set and local stream storage of the thread.
1091 *
1092 * There is a potential race here for endpoint_status to be updated
1093 * just after the check. However, this is OK since the stream(s) will
1094 * be deleted once the thread is notified that the end point state has
1095 * changed where this function will be called back again.
1096 */
1097 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1098 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1099 continue;
1100 }
1101 /*
1102 * This clobbers way too much the debug output. Uncomment that if you
1103 * need it for debugging purposes.
1104 *
1105 * DBG("Active FD %d", stream->wait_fd);
1106 */
1107 (*pollfd)[i].fd = stream->wait_fd;
1108 (*pollfd)[i].events = POLLIN | POLLPRI;
1109 local_stream[i] = stream;
1110 i++;
1111 }
1112 rcu_read_unlock();
1113
1114 /*
1115 * Insert the consumer_data_pipe at the end of the array and don't
1116 * increment i so nb_fd is the number of real FD.
1117 */
1118 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1119 (*pollfd)[i].events = POLLIN | POLLPRI;
1120
1121 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1122 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1123 return i;
1124 }
1125
1126 /*
1127 * Poll on the should_quit pipe and the command socket return -1 on
1128 * error, 1 if should exit, 0 if data is available on the command socket
1129 */
1130 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1131 {
1132 int num_rdy;
1133
1134 restart:
1135 num_rdy = poll(consumer_sockpoll, 2, -1);
1136 if (num_rdy == -1) {
1137 /*
1138 * Restart interrupted system call.
1139 */
1140 if (errno == EINTR) {
1141 goto restart;
1142 }
1143 PERROR("Poll error");
1144 return -1;
1145 }
1146 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1147 DBG("consumer_should_quit wake up");
1148 return 1;
1149 }
1150 return 0;
1151 }
1152
1153 /*
1154 * Set the error socket.
1155 */
1156 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1157 int sock)
1158 {
1159 ctx->consumer_error_socket = sock;
1160 }
1161
1162 /*
1163 * Set the command socket path.
1164 */
1165 void lttng_consumer_set_command_sock_path(
1166 struct lttng_consumer_local_data *ctx, char *sock)
1167 {
1168 ctx->consumer_command_sock_path = sock;
1169 }
1170
1171 /*
1172 * Send return code to the session daemon.
1173 * If the socket is not defined, we return 0, it is not a fatal error
1174 */
1175 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1176 {
1177 if (ctx->consumer_error_socket > 0) {
1178 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1179 sizeof(enum lttcomm_sessiond_command));
1180 }
1181
1182 return 0;
1183 }
1184
1185 /*
1186 * Close all the tracefiles and stream fds and MUST be called when all
1187 * instances are destroyed i.e. when all threads were joined and are ended.
1188 */
1189 void lttng_consumer_cleanup(void)
1190 {
1191 struct lttng_ht_iter iter;
1192 struct lttng_consumer_channel *channel;
1193
1194 rcu_read_lock();
1195
1196 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1197 node.node) {
1198 consumer_del_channel(channel);
1199 }
1200
1201 rcu_read_unlock();
1202
1203 lttng_ht_destroy(consumer_data.channel_ht);
1204
1205 cleanup_relayd_ht();
1206
1207 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1208
1209 /*
1210 * This HT contains streams that are freed by either the metadata thread or
1211 * the data thread so we do *nothing* on the hash table and simply destroy
1212 * it.
1213 */
1214 lttng_ht_destroy(consumer_data.stream_list_ht);
1215 }
1216
1217 /*
1218 * Called from signal handler.
1219 */
1220 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1221 {
1222 ssize_t ret;
1223
1224 consumer_quit = 1;
1225 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1226 if (ret < 1) {
1227 PERROR("write consumer quit");
1228 }
1229
1230 DBG("Consumer flag that it should quit");
1231 }
1232
1233
1234 /*
1235 * Flush pending writes to trace output disk file.
1236 */
1237 static
1238 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1239 off_t orig_offset)
1240 {
1241 int ret;
1242 int outfd = stream->out_fd;
1243
1244 /*
1245 * This does a blocking write-and-wait on any page that belongs to the
1246 * subbuffer prior to the one we just wrote.
1247 * Don't care about error values, as these are just hints and ways to
1248 * limit the amount of page cache used.
1249 */
1250 if (orig_offset < stream->max_sb_size) {
1251 return;
1252 }
1253 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1254 stream->max_sb_size,
1255 SYNC_FILE_RANGE_WAIT_BEFORE
1256 | SYNC_FILE_RANGE_WRITE
1257 | SYNC_FILE_RANGE_WAIT_AFTER);
1258 /*
1259 * Give hints to the kernel about how we access the file:
1260 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1261 * we write it.
1262 *
1263 * We need to call fadvise again after the file grows because the
1264 * kernel does not seem to apply fadvise to non-existing parts of the
1265 * file.
1266 *
1267 * Call fadvise _after_ having waited for the page writeback to
1268 * complete because the dirty page writeback semantic is not well
1269 * defined. So it can be expected to lead to lower throughput in
1270 * streaming.
1271 */
1272 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1273 stream->max_sb_size, POSIX_FADV_DONTNEED);
1274 if (ret && ret != -ENOSYS) {
1275 errno = ret;
1276 PERROR("posix_fadvise on fd %i", outfd);
1277 }
1278 }
1279
1280 /*
1281 * Initialise the necessary environnement :
1282 * - create a new context
1283 * - create the poll_pipe
1284 * - create the should_quit pipe (for signal handler)
1285 * - create the thread pipe (for splice)
1286 *
1287 * Takes a function pointer as argument, this function is called when data is
1288 * available on a buffer. This function is responsible to do the
1289 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1290 * buffer configuration and then kernctl_put_next_subbuf at the end.
1291 *
1292 * Returns a pointer to the new context or NULL on error.
1293 */
1294 struct lttng_consumer_local_data *lttng_consumer_create(
1295 enum lttng_consumer_type type,
1296 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1297 struct lttng_consumer_local_data *ctx),
1298 int (*recv_channel)(struct lttng_consumer_channel *channel),
1299 int (*recv_stream)(struct lttng_consumer_stream *stream),
1300 int (*update_stream)(uint64_t stream_key, uint32_t state))
1301 {
1302 int ret;
1303 struct lttng_consumer_local_data *ctx;
1304
1305 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1306 consumer_data.type == type);
1307 consumer_data.type = type;
1308
1309 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1310 if (ctx == NULL) {
1311 PERROR("allocating context");
1312 goto error;
1313 }
1314
1315 ctx->consumer_error_socket = -1;
1316 ctx->consumer_metadata_socket = -1;
1317 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1318 /* assign the callbacks */
1319 ctx->on_buffer_ready = buffer_ready;
1320 ctx->on_recv_channel = recv_channel;
1321 ctx->on_recv_stream = recv_stream;
1322 ctx->on_update_stream = update_stream;
1323
1324 ctx->consumer_data_pipe = lttng_pipe_open(0);
1325 if (!ctx->consumer_data_pipe) {
1326 goto error_poll_pipe;
1327 }
1328
1329 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1330 if (!ctx->consumer_wakeup_pipe) {
1331 goto error_wakeup_pipe;
1332 }
1333
1334 ret = pipe(ctx->consumer_should_quit);
1335 if (ret < 0) {
1336 PERROR("Error creating recv pipe");
1337 goto error_quit_pipe;
1338 }
1339
1340 ret = pipe(ctx->consumer_channel_pipe);
1341 if (ret < 0) {
1342 PERROR("Error creating channel pipe");
1343 goto error_channel_pipe;
1344 }
1345
1346 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1347 if (!ctx->consumer_metadata_pipe) {
1348 goto error_metadata_pipe;
1349 }
1350
1351 return ctx;
1352
1353 error_metadata_pipe:
1354 utils_close_pipe(ctx->consumer_channel_pipe);
1355 error_channel_pipe:
1356 utils_close_pipe(ctx->consumer_should_quit);
1357 error_quit_pipe:
1358 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1359 error_wakeup_pipe:
1360 lttng_pipe_destroy(ctx->consumer_data_pipe);
1361 error_poll_pipe:
1362 free(ctx);
1363 error:
1364 return NULL;
1365 }
1366
1367 /*
1368 * Iterate over all streams of the hashtable and free them properly.
1369 */
1370 static void destroy_data_stream_ht(struct lttng_ht *ht)
1371 {
1372 struct lttng_ht_iter iter;
1373 struct lttng_consumer_stream *stream;
1374
1375 if (ht == NULL) {
1376 return;
1377 }
1378
1379 rcu_read_lock();
1380 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1381 /*
1382 * Ignore return value since we are currently cleaning up so any error
1383 * can't be handled.
1384 */
1385 (void) consumer_del_stream(stream, ht);
1386 }
1387 rcu_read_unlock();
1388
1389 lttng_ht_destroy(ht);
1390 }
1391
1392 /*
1393 * Iterate over all streams of the metadata hashtable and free them
1394 * properly.
1395 */
1396 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1397 {
1398 struct lttng_ht_iter iter;
1399 struct lttng_consumer_stream *stream;
1400
1401 if (ht == NULL) {
1402 return;
1403 }
1404
1405 rcu_read_lock();
1406 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1407 /*
1408 * Ignore return value since we are currently cleaning up so any error
1409 * can't be handled.
1410 */
1411 (void) consumer_del_metadata_stream(stream, ht);
1412 }
1413 rcu_read_unlock();
1414
1415 lttng_ht_destroy(ht);
1416 }
1417
1418 /*
1419 * Close all fds associated with the instance and free the context.
1420 */
1421 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1422 {
1423 int ret;
1424
1425 DBG("Consumer destroying it. Closing everything.");
1426
1427 if (!ctx) {
1428 return;
1429 }
1430
1431 destroy_data_stream_ht(data_ht);
1432 destroy_metadata_stream_ht(metadata_ht);
1433
1434 ret = close(ctx->consumer_error_socket);
1435 if (ret) {
1436 PERROR("close");
1437 }
1438 ret = close(ctx->consumer_metadata_socket);
1439 if (ret) {
1440 PERROR("close");
1441 }
1442 utils_close_pipe(ctx->consumer_channel_pipe);
1443 lttng_pipe_destroy(ctx->consumer_data_pipe);
1444 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1445 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1446 utils_close_pipe(ctx->consumer_should_quit);
1447
1448 unlink(ctx->consumer_command_sock_path);
1449 free(ctx);
1450 }
1451
1452 /*
1453 * Write the metadata stream id on the specified file descriptor.
1454 */
1455 static int write_relayd_metadata_id(int fd,
1456 struct lttng_consumer_stream *stream,
1457 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1458 {
1459 ssize_t ret;
1460 struct lttcomm_relayd_metadata_payload hdr;
1461
1462 hdr.stream_id = htobe64(stream->relayd_stream_id);
1463 hdr.padding_size = htobe32(padding);
1464 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1465 if (ret < sizeof(hdr)) {
1466 /*
1467 * This error means that the fd's end is closed so ignore the PERROR
1468 * not to clubber the error output since this can happen in a normal
1469 * code path.
1470 */
1471 if (errno != EPIPE) {
1472 PERROR("write metadata stream id");
1473 }
1474 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1475 /*
1476 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1477 * handle writting the missing part so report that as an error and
1478 * don't lie to the caller.
1479 */
1480 ret = -1;
1481 goto end;
1482 }
1483 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1484 stream->relayd_stream_id, padding);
1485
1486 end:
1487 return (int) ret;
1488 }
1489
1490 /*
1491 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1492 * core function for writing trace buffers to either the local filesystem or
1493 * the network.
1494 *
1495 * It must be called with the stream lock held.
1496 *
1497 * Careful review MUST be put if any changes occur!
1498 *
1499 * Returns the number of bytes written
1500 */
1501 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1502 struct lttng_consumer_local_data *ctx,
1503 struct lttng_consumer_stream *stream, unsigned long len,
1504 unsigned long padding,
1505 struct ctf_packet_index *index)
1506 {
1507 unsigned long mmap_offset;
1508 void *mmap_base;
1509 ssize_t ret = 0;
1510 off_t orig_offset = stream->out_fd_offset;
1511 /* Default is on the disk */
1512 int outfd = stream->out_fd;
1513 struct consumer_relayd_sock_pair *relayd = NULL;
1514 unsigned int relayd_hang_up = 0;
1515
1516 /* RCU lock for the relayd pointer */
1517 rcu_read_lock();
1518
1519 /* Flag that the current stream if set for network streaming. */
1520 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1521 relayd = consumer_find_relayd(stream->net_seq_idx);
1522 if (relayd == NULL) {
1523 ret = -EPIPE;
1524 goto end;
1525 }
1526 }
1527
1528 /* get the offset inside the fd to mmap */
1529 switch (consumer_data.type) {
1530 case LTTNG_CONSUMER_KERNEL:
1531 mmap_base = stream->mmap_base;
1532 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1533 if (ret < 0) {
1534 ret = -errno;
1535 PERROR("tracer ctl get_mmap_read_offset");
1536 goto end;
1537 }
1538 break;
1539 case LTTNG_CONSUMER32_UST:
1540 case LTTNG_CONSUMER64_UST:
1541 mmap_base = lttng_ustctl_get_mmap_base(stream);
1542 if (!mmap_base) {
1543 ERR("read mmap get mmap base for stream %s", stream->name);
1544 ret = -EPERM;
1545 goto end;
1546 }
1547 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1548 if (ret != 0) {
1549 PERROR("tracer ctl get_mmap_read_offset");
1550 ret = -EINVAL;
1551 goto end;
1552 }
1553 break;
1554 default:
1555 ERR("Unknown consumer_data type");
1556 assert(0);
1557 }
1558
1559 /* Handle stream on the relayd if the output is on the network */
1560 if (relayd) {
1561 unsigned long netlen = len;
1562
1563 /*
1564 * Lock the control socket for the complete duration of the function
1565 * since from this point on we will use the socket.
1566 */
1567 if (stream->metadata_flag) {
1568 /* Metadata requires the control socket. */
1569 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1570 if (stream->reset_metadata_flag) {
1571 ret = relayd_reset_metadata(&relayd->control_sock,
1572 stream->relayd_stream_id,
1573 stream->metadata_version);
1574 if (ret < 0) {
1575 relayd_hang_up = 1;
1576 goto write_error;
1577 }
1578 stream->reset_metadata_flag = 0;
1579 }
1580 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1581 }
1582
1583 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1584 if (ret < 0) {
1585 relayd_hang_up = 1;
1586 goto write_error;
1587 }
1588 /* Use the returned socket. */
1589 outfd = ret;
1590
1591 /* Write metadata stream id before payload */
1592 if (stream->metadata_flag) {
1593 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1594 if (ret < 0) {
1595 relayd_hang_up = 1;
1596 goto write_error;
1597 }
1598 }
1599 } else {
1600 /* No streaming, we have to set the len with the full padding */
1601 len += padding;
1602
1603 if (stream->metadata_flag && stream->reset_metadata_flag) {
1604 ret = utils_truncate_stream_file(stream->out_fd, 0);
1605 if (ret < 0) {
1606 ERR("Reset metadata file");
1607 goto end;
1608 }
1609 stream->reset_metadata_flag = 0;
1610 }
1611
1612 /*
1613 * Check if we need to change the tracefile before writing the packet.
1614 */
1615 if (stream->chan->tracefile_size > 0 &&
1616 (stream->tracefile_size_current + len) >
1617 stream->chan->tracefile_size) {
1618 ret = utils_rotate_stream_file(stream->chan->pathname,
1619 stream->name, stream->chan->tracefile_size,
1620 stream->chan->tracefile_count, stream->uid, stream->gid,
1621 stream->out_fd, &(stream->tracefile_count_current),
1622 &stream->out_fd);
1623 if (ret < 0) {
1624 ERR("Rotating output file");
1625 goto end;
1626 }
1627 outfd = stream->out_fd;
1628
1629 if (stream->index_file) {
1630 lttng_index_file_put(stream->index_file);
1631 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1632 stream->name, stream->uid, stream->gid,
1633 stream->chan->tracefile_size,
1634 stream->tracefile_count_current,
1635 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1636 if (!stream->index_file) {
1637 goto end;
1638 }
1639 }
1640
1641 /* Reset current size because we just perform a rotation. */
1642 stream->tracefile_size_current = 0;
1643 stream->out_fd_offset = 0;
1644 orig_offset = 0;
1645 }
1646 stream->tracefile_size_current += len;
1647 if (index) {
1648 index->offset = htobe64(stream->out_fd_offset);
1649 }
1650 }
1651
1652 /*
1653 * This call guarantee that len or less is returned. It's impossible to
1654 * receive a ret value that is bigger than len.
1655 */
1656 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1657 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1658 if (ret < 0 || ((size_t) ret != len)) {
1659 /*
1660 * Report error to caller if nothing was written else at least send the
1661 * amount written.
1662 */
1663 if (ret < 0) {
1664 ret = -errno;
1665 }
1666 relayd_hang_up = 1;
1667
1668 /* Socket operation failed. We consider the relayd dead */
1669 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1670 /*
1671 * This is possible if the fd is closed on the other side
1672 * (outfd) or any write problem. It can be verbose a bit for a
1673 * normal execution if for instance the relayd is stopped
1674 * abruptly. This can happen so set this to a DBG statement.
1675 */
1676 DBG("Consumer mmap write detected relayd hang up");
1677 } else {
1678 /* Unhandled error, print it and stop function right now. */
1679 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1680 }
1681 goto write_error;
1682 }
1683 stream->output_written += ret;
1684
1685 /* This call is useless on a socket so better save a syscall. */
1686 if (!relayd) {
1687 /* This won't block, but will start writeout asynchronously */
1688 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1689 SYNC_FILE_RANGE_WRITE);
1690 stream->out_fd_offset += len;
1691 lttng_consumer_sync_trace_file(stream, orig_offset);
1692 }
1693
1694 write_error:
1695 /*
1696 * This is a special case that the relayd has closed its socket. Let's
1697 * cleanup the relayd object and all associated streams.
1698 */
1699 if (relayd && relayd_hang_up) {
1700 cleanup_relayd(relayd, ctx);
1701 }
1702
1703 end:
1704 /* Unlock only if ctrl socket used */
1705 if (relayd && stream->metadata_flag) {
1706 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1707 }
1708
1709 rcu_read_unlock();
1710 return ret;
1711 }
1712
1713 /*
1714 * Splice the data from the ring buffer to the tracefile.
1715 *
1716 * It must be called with the stream lock held.
1717 *
1718 * Returns the number of bytes spliced.
1719 */
1720 ssize_t lttng_consumer_on_read_subbuffer_splice(
1721 struct lttng_consumer_local_data *ctx,
1722 struct lttng_consumer_stream *stream, unsigned long len,
1723 unsigned long padding,
1724 struct ctf_packet_index *index)
1725 {
1726 ssize_t ret = 0, written = 0, ret_splice = 0;
1727 loff_t offset = 0;
1728 off_t orig_offset = stream->out_fd_offset;
1729 int fd = stream->wait_fd;
1730 /* Default is on the disk */
1731 int outfd = stream->out_fd;
1732 struct consumer_relayd_sock_pair *relayd = NULL;
1733 int *splice_pipe;
1734 unsigned int relayd_hang_up = 0;
1735
1736 switch (consumer_data.type) {
1737 case LTTNG_CONSUMER_KERNEL:
1738 break;
1739 case LTTNG_CONSUMER32_UST:
1740 case LTTNG_CONSUMER64_UST:
1741 /* Not supported for user space tracing */
1742 return -ENOSYS;
1743 default:
1744 ERR("Unknown consumer_data type");
1745 assert(0);
1746 }
1747
1748 /* RCU lock for the relayd pointer */
1749 rcu_read_lock();
1750
1751 /* Flag that the current stream if set for network streaming. */
1752 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1753 relayd = consumer_find_relayd(stream->net_seq_idx);
1754 if (relayd == NULL) {
1755 written = -ret;
1756 goto end;
1757 }
1758 }
1759 splice_pipe = stream->splice_pipe;
1760
1761 /* Write metadata stream id before payload */
1762 if (relayd) {
1763 unsigned long total_len = len;
1764
1765 if (stream->metadata_flag) {
1766 /*
1767 * Lock the control socket for the complete duration of the function
1768 * since from this point on we will use the socket.
1769 */
1770 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1771
1772 if (stream->reset_metadata_flag) {
1773 ret = relayd_reset_metadata(&relayd->control_sock,
1774 stream->relayd_stream_id,
1775 stream->metadata_version);
1776 if (ret < 0) {
1777 relayd_hang_up = 1;
1778 goto write_error;
1779 }
1780 stream->reset_metadata_flag = 0;
1781 }
1782 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1783 padding);
1784 if (ret < 0) {
1785 written = ret;
1786 relayd_hang_up = 1;
1787 goto write_error;
1788 }
1789
1790 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1791 }
1792
1793 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1794 if (ret < 0) {
1795 written = ret;
1796 relayd_hang_up = 1;
1797 goto write_error;
1798 }
1799 /* Use the returned socket. */
1800 outfd = ret;
1801 } else {
1802 /* No streaming, we have to set the len with the full padding */
1803 len += padding;
1804
1805 if (stream->metadata_flag && stream->reset_metadata_flag) {
1806 ret = utils_truncate_stream_file(stream->out_fd, 0);
1807 if (ret < 0) {
1808 ERR("Reset metadata file");
1809 goto end;
1810 }
1811 stream->reset_metadata_flag = 0;
1812 }
1813 /*
1814 * Check if we need to change the tracefile before writing the packet.
1815 */
1816 if (stream->chan->tracefile_size > 0 &&
1817 (stream->tracefile_size_current + len) >
1818 stream->chan->tracefile_size) {
1819 ret = utils_rotate_stream_file(stream->chan->pathname,
1820 stream->name, stream->chan->tracefile_size,
1821 stream->chan->tracefile_count, stream->uid, stream->gid,
1822 stream->out_fd, &(stream->tracefile_count_current),
1823 &stream->out_fd);
1824 if (ret < 0) {
1825 written = ret;
1826 ERR("Rotating output file");
1827 goto end;
1828 }
1829 outfd = stream->out_fd;
1830
1831 if (stream->index_file) {
1832 lttng_index_file_put(stream->index_file);
1833 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1834 stream->name, stream->uid, stream->gid,
1835 stream->chan->tracefile_size,
1836 stream->tracefile_count_current,
1837 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1838 if (!stream->index_file) {
1839 goto end;
1840 }
1841 }
1842
1843 /* Reset current size because we just perform a rotation. */
1844 stream->tracefile_size_current = 0;
1845 stream->out_fd_offset = 0;
1846 orig_offset = 0;
1847 }
1848 stream->tracefile_size_current += len;
1849 index->offset = htobe64(stream->out_fd_offset);
1850 }
1851
1852 while (len > 0) {
1853 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1854 (unsigned long)offset, len, fd, splice_pipe[1]);
1855 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1856 SPLICE_F_MOVE | SPLICE_F_MORE);
1857 DBG("splice chan to pipe, ret %zd", ret_splice);
1858 if (ret_splice < 0) {
1859 ret = errno;
1860 written = -ret;
1861 PERROR("Error in relay splice");
1862 goto splice_error;
1863 }
1864
1865 /* Handle stream on the relayd if the output is on the network */
1866 if (relayd && stream->metadata_flag) {
1867 size_t metadata_payload_size =
1868 sizeof(struct lttcomm_relayd_metadata_payload);
1869
1870 /* Update counter to fit the spliced data */
1871 ret_splice += metadata_payload_size;
1872 len += metadata_payload_size;
1873 /*
1874 * We do this so the return value can match the len passed as
1875 * argument to this function.
1876 */
1877 written -= metadata_payload_size;
1878 }
1879
1880 /* Splice data out */
1881 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1882 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1883 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1884 outfd, ret_splice);
1885 if (ret_splice < 0) {
1886 ret = errno;
1887 written = -ret;
1888 relayd_hang_up = 1;
1889 goto write_error;
1890 } else if (ret_splice > len) {
1891 /*
1892 * We don't expect this code path to be executed but you never know
1893 * so this is an extra protection agains a buggy splice().
1894 */
1895 ret = errno;
1896 written += ret_splice;
1897 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1898 len);
1899 goto splice_error;
1900 } else {
1901 /* All good, update current len and continue. */
1902 len -= ret_splice;
1903 }
1904
1905 /* This call is useless on a socket so better save a syscall. */
1906 if (!relayd) {
1907 /* This won't block, but will start writeout asynchronously */
1908 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1909 SYNC_FILE_RANGE_WRITE);
1910 stream->out_fd_offset += ret_splice;
1911 }
1912 stream->output_written += ret_splice;
1913 written += ret_splice;
1914 }
1915 if (!relayd) {
1916 lttng_consumer_sync_trace_file(stream, orig_offset);
1917 }
1918 goto end;
1919
1920 write_error:
1921 /*
1922 * This is a special case that the relayd has closed its socket. Let's
1923 * cleanup the relayd object and all associated streams.
1924 */
1925 if (relayd && relayd_hang_up) {
1926 cleanup_relayd(relayd, ctx);
1927 /* Skip splice error so the consumer does not fail */
1928 goto end;
1929 }
1930
1931 splice_error:
1932 /* send the appropriate error description to sessiond */
1933 switch (ret) {
1934 case EINVAL:
1935 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1936 break;
1937 case ENOMEM:
1938 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1939 break;
1940 case ESPIPE:
1941 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1942 break;
1943 }
1944
1945 end:
1946 if (relayd && stream->metadata_flag) {
1947 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1948 }
1949
1950 rcu_read_unlock();
1951 return written;
1952 }
1953
1954 /*
1955 * Take a snapshot for a specific fd
1956 *
1957 * Returns 0 on success, < 0 on error
1958 */
1959 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1960 {
1961 switch (consumer_data.type) {
1962 case LTTNG_CONSUMER_KERNEL:
1963 return lttng_kconsumer_take_snapshot(stream);
1964 case LTTNG_CONSUMER32_UST:
1965 case LTTNG_CONSUMER64_UST:
1966 return lttng_ustconsumer_take_snapshot(stream);
1967 default:
1968 ERR("Unknown consumer_data type");
1969 assert(0);
1970 return -ENOSYS;
1971 }
1972 }
1973
1974 /*
1975 * Get the produced position
1976 *
1977 * Returns 0 on success, < 0 on error
1978 */
1979 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1980 unsigned long *pos)
1981 {
1982 switch (consumer_data.type) {
1983 case LTTNG_CONSUMER_KERNEL:
1984 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1985 case LTTNG_CONSUMER32_UST:
1986 case LTTNG_CONSUMER64_UST:
1987 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1988 default:
1989 ERR("Unknown consumer_data type");
1990 assert(0);
1991 return -ENOSYS;
1992 }
1993 }
1994
1995 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1996 int sock, struct pollfd *consumer_sockpoll)
1997 {
1998 switch (consumer_data.type) {
1999 case LTTNG_CONSUMER_KERNEL:
2000 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2001 case LTTNG_CONSUMER32_UST:
2002 case LTTNG_CONSUMER64_UST:
2003 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2004 default:
2005 ERR("Unknown consumer_data type");
2006 assert(0);
2007 return -ENOSYS;
2008 }
2009 }
2010
2011 void lttng_consumer_close_all_metadata(void)
2012 {
2013 switch (consumer_data.type) {
2014 case LTTNG_CONSUMER_KERNEL:
2015 /*
2016 * The Kernel consumer has a different metadata scheme so we don't
2017 * close anything because the stream will be closed by the session
2018 * daemon.
2019 */
2020 break;
2021 case LTTNG_CONSUMER32_UST:
2022 case LTTNG_CONSUMER64_UST:
2023 /*
2024 * Close all metadata streams. The metadata hash table is passed and
2025 * this call iterates over it by closing all wakeup fd. This is safe
2026 * because at this point we are sure that the metadata producer is
2027 * either dead or blocked.
2028 */
2029 lttng_ustconsumer_close_all_metadata(metadata_ht);
2030 break;
2031 default:
2032 ERR("Unknown consumer_data type");
2033 assert(0);
2034 }
2035 }
2036
2037 /*
2038 * Clean up a metadata stream and free its memory.
2039 */
2040 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2041 struct lttng_ht *ht)
2042 {
2043 struct lttng_consumer_channel *free_chan = NULL;
2044
2045 assert(stream);
2046 /*
2047 * This call should NEVER receive regular stream. It must always be
2048 * metadata stream and this is crucial for data structure synchronization.
2049 */
2050 assert(stream->metadata_flag);
2051
2052 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2053
2054 pthread_mutex_lock(&consumer_data.lock);
2055 pthread_mutex_lock(&stream->chan->lock);
2056 if (stream->chan->metadata_cache) {
2057 /* Only applicable to userspace consumers. */
2058 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2059 }
2060 pthread_mutex_lock(&stream->lock);
2061
2062 /* Remove any reference to that stream. */
2063 consumer_stream_delete(stream, ht);
2064
2065 /* Close down everything including the relayd if one. */
2066 consumer_stream_close(stream);
2067 /* Destroy tracer buffers of the stream. */
2068 consumer_stream_destroy_buffers(stream);
2069
2070 /* Atomically decrement channel refcount since other threads can use it. */
2071 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2072 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2073 /* Go for channel deletion! */
2074 free_chan = stream->chan;
2075 }
2076
2077 /*
2078 * Nullify the stream reference so it is not used after deletion. The
2079 * channel lock MUST be acquired before being able to check for a NULL
2080 * pointer value.
2081 */
2082 stream->chan->metadata_stream = NULL;
2083
2084 pthread_mutex_unlock(&stream->lock);
2085 if (stream->chan->metadata_cache) {
2086 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2087 }
2088 pthread_mutex_unlock(&stream->chan->lock);
2089 pthread_mutex_unlock(&consumer_data.lock);
2090
2091 if (free_chan) {
2092 consumer_del_channel(free_chan);
2093 }
2094
2095 consumer_stream_free(stream);
2096 }
2097
2098 /*
2099 * Action done with the metadata stream when adding it to the consumer internal
2100 * data structures to handle it.
2101 */
2102 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2103 {
2104 struct lttng_ht *ht = metadata_ht;
2105 int ret = 0;
2106 struct lttng_ht_iter iter;
2107 struct lttng_ht_node_u64 *node;
2108
2109 assert(stream);
2110 assert(ht);
2111
2112 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2113
2114 pthread_mutex_lock(&consumer_data.lock);
2115 pthread_mutex_lock(&stream->chan->lock);
2116 pthread_mutex_lock(&stream->chan->timer_lock);
2117 pthread_mutex_lock(&stream->lock);
2118
2119 /*
2120 * From here, refcounts are updated so be _careful_ when returning an error
2121 * after this point.
2122 */
2123
2124 rcu_read_lock();
2125
2126 /*
2127 * Lookup the stream just to make sure it does not exist in our internal
2128 * state. This should NEVER happen.
2129 */
2130 lttng_ht_lookup(ht, &stream->key, &iter);
2131 node = lttng_ht_iter_get_node_u64(&iter);
2132 assert(!node);
2133
2134 /*
2135 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2136 * in terms of destroying the associated channel, because the action that
2137 * causes the count to become 0 also causes a stream to be added. The
2138 * channel deletion will thus be triggered by the following removal of this
2139 * stream.
2140 */
2141 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2142 /* Increment refcount before decrementing nb_init_stream_left */
2143 cmm_smp_wmb();
2144 uatomic_dec(&stream->chan->nb_init_stream_left);
2145 }
2146
2147 lttng_ht_add_unique_u64(ht, &stream->node);
2148
2149 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2150 &stream->node_channel_id);
2151
2152 /*
2153 * Add stream to the stream_list_ht of the consumer data. No need to steal
2154 * the key since the HT does not use it and we allow to add redundant keys
2155 * into this table.
2156 */
2157 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2158
2159 rcu_read_unlock();
2160
2161 pthread_mutex_unlock(&stream->lock);
2162 pthread_mutex_unlock(&stream->chan->lock);
2163 pthread_mutex_unlock(&stream->chan->timer_lock);
2164 pthread_mutex_unlock(&consumer_data.lock);
2165 return ret;
2166 }
2167
2168 /*
2169 * Delete data stream that are flagged for deletion (endpoint_status).
2170 */
2171 static void validate_endpoint_status_data_stream(void)
2172 {
2173 struct lttng_ht_iter iter;
2174 struct lttng_consumer_stream *stream;
2175
2176 DBG("Consumer delete flagged data stream");
2177
2178 rcu_read_lock();
2179 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2180 /* Validate delete flag of the stream */
2181 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2182 continue;
2183 }
2184 /* Delete it right now */
2185 consumer_del_stream(stream, data_ht);
2186 }
2187 rcu_read_unlock();
2188 }
2189
2190 /*
2191 * Delete metadata stream that are flagged for deletion (endpoint_status).
2192 */
2193 static void validate_endpoint_status_metadata_stream(
2194 struct lttng_poll_event *pollset)
2195 {
2196 struct lttng_ht_iter iter;
2197 struct lttng_consumer_stream *stream;
2198
2199 DBG("Consumer delete flagged metadata stream");
2200
2201 assert(pollset);
2202
2203 rcu_read_lock();
2204 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2205 /* Validate delete flag of the stream */
2206 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2207 continue;
2208 }
2209 /*
2210 * Remove from pollset so the metadata thread can continue without
2211 * blocking on a deleted stream.
2212 */
2213 lttng_poll_del(pollset, stream->wait_fd);
2214
2215 /* Delete it right now */
2216 consumer_del_metadata_stream(stream, metadata_ht);
2217 }
2218 rcu_read_unlock();
2219 }
2220
2221 /*
2222 * Thread polls on metadata file descriptor and write them on disk or on the
2223 * network.
2224 */
2225 void *consumer_thread_metadata_poll(void *data)
2226 {
2227 int ret, i, pollfd, err = -1;
2228 uint32_t revents, nb_fd;
2229 struct lttng_consumer_stream *stream = NULL;
2230 struct lttng_ht_iter iter;
2231 struct lttng_ht_node_u64 *node;
2232 struct lttng_poll_event events;
2233 struct lttng_consumer_local_data *ctx = data;
2234 ssize_t len;
2235
2236 rcu_register_thread();
2237
2238 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2239
2240 if (testpoint(consumerd_thread_metadata)) {
2241 goto error_testpoint;
2242 }
2243
2244 health_code_update();
2245
2246 DBG("Thread metadata poll started");
2247
2248 /* Size is set to 1 for the consumer_metadata pipe */
2249 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2250 if (ret < 0) {
2251 ERR("Poll set creation failed");
2252 goto end_poll;
2253 }
2254
2255 ret = lttng_poll_add(&events,
2256 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2257 if (ret < 0) {
2258 goto end;
2259 }
2260
2261 /* Main loop */
2262 DBG("Metadata main loop started");
2263
2264 while (1) {
2265 restart:
2266 health_code_update();
2267 health_poll_entry();
2268 DBG("Metadata poll wait");
2269 ret = lttng_poll_wait(&events, -1);
2270 DBG("Metadata poll return from wait with %d fd(s)",
2271 LTTNG_POLL_GETNB(&events));
2272 health_poll_exit();
2273 DBG("Metadata event caught in thread");
2274 if (ret < 0) {
2275 if (errno == EINTR) {
2276 ERR("Poll EINTR caught");
2277 goto restart;
2278 }
2279 if (LTTNG_POLL_GETNB(&events) == 0) {
2280 err = 0; /* All is OK */
2281 }
2282 goto end;
2283 }
2284
2285 nb_fd = ret;
2286
2287 /* From here, the event is a metadata wait fd */
2288 for (i = 0; i < nb_fd; i++) {
2289 health_code_update();
2290
2291 revents = LTTNG_POLL_GETEV(&events, i);
2292 pollfd = LTTNG_POLL_GETFD(&events, i);
2293
2294 if (!revents) {
2295 /* No activity for this FD (poll implementation). */
2296 continue;
2297 }
2298
2299 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2300 if (revents & LPOLLIN) {
2301 ssize_t pipe_len;
2302
2303 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2304 &stream, sizeof(stream));
2305 if (pipe_len < sizeof(stream)) {
2306 if (pipe_len < 0) {
2307 PERROR("read metadata stream");
2308 }
2309 /*
2310 * Remove the pipe from the poll set and continue the loop
2311 * since their might be data to consume.
2312 */
2313 lttng_poll_del(&events,
2314 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2315 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2316 continue;
2317 }
2318
2319 /* A NULL stream means that the state has changed. */
2320 if (stream == NULL) {
2321 /* Check for deleted streams. */
2322 validate_endpoint_status_metadata_stream(&events);
2323 goto restart;
2324 }
2325
2326 DBG("Adding metadata stream %d to poll set",
2327 stream->wait_fd);
2328
2329 /* Add metadata stream to the global poll events list */
2330 lttng_poll_add(&events, stream->wait_fd,
2331 LPOLLIN | LPOLLPRI | LPOLLHUP);
2332 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2333 DBG("Metadata thread pipe hung up");
2334 /*
2335 * Remove the pipe from the poll set and continue the loop
2336 * since their might be data to consume.
2337 */
2338 lttng_poll_del(&events,
2339 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2340 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2341 continue;
2342 } else {
2343 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2344 goto end;
2345 }
2346
2347 /* Handle other stream */
2348 continue;
2349 }
2350
2351 rcu_read_lock();
2352 {
2353 uint64_t tmp_id = (uint64_t) pollfd;
2354
2355 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2356 }
2357 node = lttng_ht_iter_get_node_u64(&iter);
2358 assert(node);
2359
2360 stream = caa_container_of(node, struct lttng_consumer_stream,
2361 node);
2362
2363 if (revents & (LPOLLIN | LPOLLPRI)) {
2364 /* Get the data out of the metadata file descriptor */
2365 DBG("Metadata available on fd %d", pollfd);
2366 assert(stream->wait_fd == pollfd);
2367
2368 do {
2369 health_code_update();
2370
2371 len = ctx->on_buffer_ready(stream, ctx);
2372 /*
2373 * We don't check the return value here since if we get
2374 * a negative len, it means an error occurred thus we
2375 * simply remove it from the poll set and free the
2376 * stream.
2377 */
2378 } while (len > 0);
2379
2380 /* It's ok to have an unavailable sub-buffer */
2381 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2382 /* Clean up stream from consumer and free it. */
2383 lttng_poll_del(&events, stream->wait_fd);
2384 consumer_del_metadata_stream(stream, metadata_ht);
2385 }
2386 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2387 DBG("Metadata fd %d is hup|err.", pollfd);
2388 if (!stream->hangup_flush_done
2389 && (consumer_data.type == LTTNG_CONSUMER32_UST
2390 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2391 DBG("Attempting to flush and consume the UST buffers");
2392 lttng_ustconsumer_on_stream_hangup(stream);
2393
2394 /* We just flushed the stream now read it. */
2395 do {
2396 health_code_update();
2397
2398 len = ctx->on_buffer_ready(stream, ctx);
2399 /*
2400 * We don't check the return value here since if we get
2401 * a negative len, it means an error occurred thus we
2402 * simply remove it from the poll set and free the
2403 * stream.
2404 */
2405 } while (len > 0);
2406 }
2407
2408 lttng_poll_del(&events, stream->wait_fd);
2409 /*
2410 * This call update the channel states, closes file descriptors
2411 * and securely free the stream.
2412 */
2413 consumer_del_metadata_stream(stream, metadata_ht);
2414 } else {
2415 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2416 rcu_read_unlock();
2417 goto end;
2418 }
2419 /* Release RCU lock for the stream looked up */
2420 rcu_read_unlock();
2421 }
2422 }
2423
2424 /* All is OK */
2425 err = 0;
2426 end:
2427 DBG("Metadata poll thread exiting");
2428
2429 lttng_poll_clean(&events);
2430 end_poll:
2431 error_testpoint:
2432 if (err) {
2433 health_error();
2434 ERR("Health error occurred in %s", __func__);
2435 }
2436 health_unregister(health_consumerd);
2437 rcu_unregister_thread();
2438 return NULL;
2439 }
2440
2441 /*
2442 * This thread polls the fds in the set to consume the data and write
2443 * it to tracefile if necessary.
2444 */
2445 void *consumer_thread_data_poll(void *data)
2446 {
2447 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2448 struct pollfd *pollfd = NULL;
2449 /* local view of the streams */
2450 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2451 /* local view of consumer_data.fds_count */
2452 int nb_fd = 0;
2453 struct lttng_consumer_local_data *ctx = data;
2454 ssize_t len;
2455
2456 rcu_register_thread();
2457
2458 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2459
2460 if (testpoint(consumerd_thread_data)) {
2461 goto error_testpoint;
2462 }
2463
2464 health_code_update();
2465
2466 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2467 if (local_stream == NULL) {
2468 PERROR("local_stream malloc");
2469 goto end;
2470 }
2471
2472 while (1) {
2473 health_code_update();
2474
2475 high_prio = 0;
2476 num_hup = 0;
2477
2478 /*
2479 * the fds set has been updated, we need to update our
2480 * local array as well
2481 */
2482 pthread_mutex_lock(&consumer_data.lock);
2483 if (consumer_data.need_update) {
2484 free(pollfd);
2485 pollfd = NULL;
2486
2487 free(local_stream);
2488 local_stream = NULL;
2489
2490 /*
2491 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2492 * wake up pipe.
2493 */
2494 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2495 if (pollfd == NULL) {
2496 PERROR("pollfd malloc");
2497 pthread_mutex_unlock(&consumer_data.lock);
2498 goto end;
2499 }
2500
2501 local_stream = zmalloc((consumer_data.stream_count + 2) *
2502 sizeof(struct lttng_consumer_stream *));
2503 if (local_stream == NULL) {
2504 PERROR("local_stream malloc");
2505 pthread_mutex_unlock(&consumer_data.lock);
2506 goto end;
2507 }
2508 ret = update_poll_array(ctx, &pollfd, local_stream,
2509 data_ht);
2510 if (ret < 0) {
2511 ERR("Error in allocating pollfd or local_outfds");
2512 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2513 pthread_mutex_unlock(&consumer_data.lock);
2514 goto end;
2515 }
2516 nb_fd = ret;
2517 consumer_data.need_update = 0;
2518 }
2519 pthread_mutex_unlock(&consumer_data.lock);
2520
2521 /* No FDs and consumer_quit, consumer_cleanup the thread */
2522 if (nb_fd == 0 && consumer_quit == 1) {
2523 err = 0; /* All is OK */
2524 goto end;
2525 }
2526 /* poll on the array of fds */
2527 restart:
2528 DBG("polling on %d fd", nb_fd + 2);
2529 health_poll_entry();
2530 num_rdy = poll(pollfd, nb_fd + 2, -1);
2531 health_poll_exit();
2532 DBG("poll num_rdy : %d", num_rdy);
2533 if (num_rdy == -1) {
2534 /*
2535 * Restart interrupted system call.
2536 */
2537 if (errno == EINTR) {
2538 goto restart;
2539 }
2540 PERROR("Poll error");
2541 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2542 goto end;
2543 } else if (num_rdy == 0) {
2544 DBG("Polling thread timed out");
2545 goto end;
2546 }
2547
2548 /*
2549 * If the consumer_data_pipe triggered poll go directly to the
2550 * beginning of the loop to update the array. We want to prioritize
2551 * array update over low-priority reads.
2552 */
2553 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2554 ssize_t pipe_readlen;
2555
2556 DBG("consumer_data_pipe wake up");
2557 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2558 &new_stream, sizeof(new_stream));
2559 if (pipe_readlen < sizeof(new_stream)) {
2560 PERROR("Consumer data pipe");
2561 /* Continue so we can at least handle the current stream(s). */
2562 continue;
2563 }
2564
2565 /*
2566 * If the stream is NULL, just ignore it. It's also possible that
2567 * the sessiond poll thread changed the consumer_quit state and is
2568 * waking us up to test it.
2569 */
2570 if (new_stream == NULL) {
2571 validate_endpoint_status_data_stream();
2572 continue;
2573 }
2574
2575 /* Continue to update the local streams and handle prio ones */
2576 continue;
2577 }
2578
2579 /* Handle wakeup pipe. */
2580 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2581 char dummy;
2582 ssize_t pipe_readlen;
2583
2584 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2585 sizeof(dummy));
2586 if (pipe_readlen < 0) {
2587 PERROR("Consumer data wakeup pipe");
2588 }
2589 /* We've been awakened to handle stream(s). */
2590 ctx->has_wakeup = 0;
2591 }
2592
2593 /* Take care of high priority channels first. */
2594 for (i = 0; i < nb_fd; i++) {
2595 health_code_update();
2596
2597 if (local_stream[i] == NULL) {
2598 continue;
2599 }
2600 if (pollfd[i].revents & POLLPRI) {
2601 DBG("Urgent read on fd %d", pollfd[i].fd);
2602 high_prio = 1;
2603 len = ctx->on_buffer_ready(local_stream[i], ctx);
2604 /* it's ok to have an unavailable sub-buffer */
2605 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2606 /* Clean the stream and free it. */
2607 consumer_del_stream(local_stream[i], data_ht);
2608 local_stream[i] = NULL;
2609 } else if (len > 0) {
2610 local_stream[i]->data_read = 1;
2611 }
2612 }
2613 }
2614
2615 /*
2616 * If we read high prio channel in this loop, try again
2617 * for more high prio data.
2618 */
2619 if (high_prio) {
2620 continue;
2621 }
2622
2623 /* Take care of low priority channels. */
2624 for (i = 0; i < nb_fd; i++) {
2625 health_code_update();
2626
2627 if (local_stream[i] == NULL) {
2628 continue;
2629 }
2630 if ((pollfd[i].revents & POLLIN) ||
2631 local_stream[i]->hangup_flush_done ||
2632 local_stream[i]->has_data) {
2633 DBG("Normal read on fd %d", pollfd[i].fd);
2634 len = ctx->on_buffer_ready(local_stream[i], ctx);
2635 /* it's ok to have an unavailable sub-buffer */
2636 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2637 /* Clean the stream and free it. */
2638 consumer_del_stream(local_stream[i], data_ht);
2639 local_stream[i] = NULL;
2640 } else if (len > 0) {
2641 local_stream[i]->data_read = 1;
2642 }
2643 }
2644 }
2645
2646 /* Handle hangup and errors */
2647 for (i = 0; i < nb_fd; i++) {
2648 health_code_update();
2649
2650 if (local_stream[i] == NULL) {
2651 continue;
2652 }
2653 if (!local_stream[i]->hangup_flush_done
2654 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2655 && (consumer_data.type == LTTNG_CONSUMER32_UST
2656 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2657 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2658 pollfd[i].fd);
2659 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2660 /* Attempt read again, for the data we just flushed. */
2661 local_stream[i]->data_read = 1;
2662 }
2663 /*
2664 * If the poll flag is HUP/ERR/NVAL and we have
2665 * read no data in this pass, we can remove the
2666 * stream from its hash table.
2667 */
2668 if ((pollfd[i].revents & POLLHUP)) {
2669 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2670 if (!local_stream[i]->data_read) {
2671 consumer_del_stream(local_stream[i], data_ht);
2672 local_stream[i] = NULL;
2673 num_hup++;
2674 }
2675 } else if (pollfd[i].revents & POLLERR) {
2676 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2677 if (!local_stream[i]->data_read) {
2678 consumer_del_stream(local_stream[i], data_ht);
2679 local_stream[i] = NULL;
2680 num_hup++;
2681 }
2682 } else if (pollfd[i].revents & POLLNVAL) {
2683 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2684 if (!local_stream[i]->data_read) {
2685 consumer_del_stream(local_stream[i], data_ht);
2686 local_stream[i] = NULL;
2687 num_hup++;
2688 }
2689 }
2690 if (local_stream[i] != NULL) {
2691 local_stream[i]->data_read = 0;
2692 }
2693 }
2694 }
2695 /* All is OK */
2696 err = 0;
2697 end:
2698 DBG("polling thread exiting");
2699 free(pollfd);
2700 free(local_stream);
2701
2702 /*
2703 * Close the write side of the pipe so epoll_wait() in
2704 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2705 * read side of the pipe. If we close them both, epoll_wait strangely does
2706 * not return and could create a endless wait period if the pipe is the
2707 * only tracked fd in the poll set. The thread will take care of closing
2708 * the read side.
2709 */
2710 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2711
2712 error_testpoint:
2713 if (err) {
2714 health_error();
2715 ERR("Health error occurred in %s", __func__);
2716 }
2717 health_unregister(health_consumerd);
2718
2719 rcu_unregister_thread();
2720 return NULL;
2721 }
2722
2723 /*
2724 * Close wake-up end of each stream belonging to the channel. This will
2725 * allow the poll() on the stream read-side to detect when the
2726 * write-side (application) finally closes them.
2727 */
2728 static
2729 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2730 {
2731 struct lttng_ht *ht;
2732 struct lttng_consumer_stream *stream;
2733 struct lttng_ht_iter iter;
2734
2735 ht = consumer_data.stream_per_chan_id_ht;
2736
2737 rcu_read_lock();
2738 cds_lfht_for_each_entry_duplicate(ht->ht,
2739 ht->hash_fct(&channel->key, lttng_ht_seed),
2740 ht->match_fct, &channel->key,
2741 &iter.iter, stream, node_channel_id.node) {
2742 /*
2743 * Protect against teardown with mutex.
2744 */
2745 pthread_mutex_lock(&stream->lock);
2746 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2747 goto next;
2748 }
2749 switch (consumer_data.type) {
2750 case LTTNG_CONSUMER_KERNEL:
2751 break;
2752 case LTTNG_CONSUMER32_UST:
2753 case LTTNG_CONSUMER64_UST:
2754 if (stream->metadata_flag) {
2755 /* Safe and protected by the stream lock. */
2756 lttng_ustconsumer_close_metadata(stream->chan);
2757 } else {
2758 /*
2759 * Note: a mutex is taken internally within
2760 * liblttng-ust-ctl to protect timer wakeup_fd
2761 * use from concurrent close.
2762 */
2763 lttng_ustconsumer_close_stream_wakeup(stream);
2764 }
2765 break;
2766 default:
2767 ERR("Unknown consumer_data type");
2768 assert(0);
2769 }
2770 next:
2771 pthread_mutex_unlock(&stream->lock);
2772 }
2773 rcu_read_unlock();
2774 }
2775
2776 static void destroy_channel_ht(struct lttng_ht *ht)
2777 {
2778 struct lttng_ht_iter iter;
2779 struct lttng_consumer_channel *channel;
2780 int ret;
2781
2782 if (ht == NULL) {
2783 return;
2784 }
2785
2786 rcu_read_lock();
2787 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2788 ret = lttng_ht_del(ht, &iter);
2789 assert(ret != 0);
2790 }
2791 rcu_read_unlock();
2792
2793 lttng_ht_destroy(ht);
2794 }
2795
2796 /*
2797 * This thread polls the channel fds to detect when they are being
2798 * closed. It closes all related streams if the channel is detected as
2799 * closed. It is currently only used as a shim layer for UST because the
2800 * consumerd needs to keep the per-stream wakeup end of pipes open for
2801 * periodical flush.
2802 */
2803 void *consumer_thread_channel_poll(void *data)
2804 {
2805 int ret, i, pollfd, err = -1;
2806 uint32_t revents, nb_fd;
2807 struct lttng_consumer_channel *chan = NULL;
2808 struct lttng_ht_iter iter;
2809 struct lttng_ht_node_u64 *node;
2810 struct lttng_poll_event events;
2811 struct lttng_consumer_local_data *ctx = data;
2812 struct lttng_ht *channel_ht;
2813
2814 rcu_register_thread();
2815
2816 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2817
2818 if (testpoint(consumerd_thread_channel)) {
2819 goto error_testpoint;
2820 }
2821
2822 health_code_update();
2823
2824 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2825 if (!channel_ht) {
2826 /* ENOMEM at this point. Better to bail out. */
2827 goto end_ht;
2828 }
2829
2830 DBG("Thread channel poll started");
2831
2832 /* Size is set to 1 for the consumer_channel pipe */
2833 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2834 if (ret < 0) {
2835 ERR("Poll set creation failed");
2836 goto end_poll;
2837 }
2838
2839 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2840 if (ret < 0) {
2841 goto end;
2842 }
2843
2844 /* Main loop */
2845 DBG("Channel main loop started");
2846
2847 while (1) {
2848 restart:
2849 health_code_update();
2850 DBG("Channel poll wait");
2851 health_poll_entry();
2852 ret = lttng_poll_wait(&events, -1);
2853 DBG("Channel poll return from wait with %d fd(s)",
2854 LTTNG_POLL_GETNB(&events));
2855 health_poll_exit();
2856 DBG("Channel event caught in thread");
2857 if (ret < 0) {
2858 if (errno == EINTR) {
2859 ERR("Poll EINTR caught");
2860 goto restart;
2861 }
2862 if (LTTNG_POLL_GETNB(&events) == 0) {
2863 err = 0; /* All is OK */
2864 }
2865 goto end;
2866 }
2867
2868 nb_fd = ret;
2869
2870 /* From here, the event is a channel wait fd */
2871 for (i = 0; i < nb_fd; i++) {
2872 health_code_update();
2873
2874 revents = LTTNG_POLL_GETEV(&events, i);
2875 pollfd = LTTNG_POLL_GETFD(&events, i);
2876
2877 if (!revents) {
2878 /* No activity for this FD (poll implementation). */
2879 continue;
2880 }
2881
2882 if (pollfd == ctx->consumer_channel_pipe[0]) {
2883 if (revents & LPOLLIN) {
2884 enum consumer_channel_action action;
2885 uint64_t key;
2886
2887 ret = read_channel_pipe(ctx, &chan, &key, &action);
2888 if (ret <= 0) {
2889 if (ret < 0) {
2890 ERR("Error reading channel pipe");
2891 }
2892 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2893 continue;
2894 }
2895
2896 switch (action) {
2897 case CONSUMER_CHANNEL_ADD:
2898 DBG("Adding channel %d to poll set",
2899 chan->wait_fd);
2900
2901 lttng_ht_node_init_u64(&chan->wait_fd_node,
2902 chan->wait_fd);
2903 rcu_read_lock();
2904 lttng_ht_add_unique_u64(channel_ht,
2905 &chan->wait_fd_node);
2906 rcu_read_unlock();
2907 /* Add channel to the global poll events list */
2908 lttng_poll_add(&events, chan->wait_fd,
2909 LPOLLERR | LPOLLHUP);
2910 break;
2911 case CONSUMER_CHANNEL_DEL:
2912 {
2913 /*
2914 * This command should never be called if the channel
2915 * has streams monitored by either the data or metadata
2916 * thread. The consumer only notify this thread with a
2917 * channel del. command if it receives a destroy
2918 * channel command from the session daemon that send it
2919 * if a command prior to the GET_CHANNEL failed.
2920 */
2921
2922 rcu_read_lock();
2923 chan = consumer_find_channel(key);
2924 if (!chan) {
2925 rcu_read_unlock();
2926 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2927 break;
2928 }
2929 lttng_poll_del(&events, chan->wait_fd);
2930 iter.iter.node = &chan->wait_fd_node.node;
2931 ret = lttng_ht_del(channel_ht, &iter);
2932 assert(ret == 0);
2933
2934 switch (consumer_data.type) {
2935 case LTTNG_CONSUMER_KERNEL:
2936 break;
2937 case LTTNG_CONSUMER32_UST:
2938 case LTTNG_CONSUMER64_UST:
2939 health_code_update();
2940 /* Destroy streams that might have been left in the stream list. */
2941 clean_channel_stream_list(chan);
2942 break;
2943 default:
2944 ERR("Unknown consumer_data type");
2945 assert(0);
2946 }
2947
2948 /*
2949 * Release our own refcount. Force channel deletion even if
2950 * streams were not initialized.
2951 */
2952 if (!uatomic_sub_return(&chan->refcount, 1)) {
2953 consumer_del_channel(chan);
2954 }
2955 rcu_read_unlock();
2956 goto restart;
2957 }
2958 case CONSUMER_CHANNEL_QUIT:
2959 /*
2960 * Remove the pipe from the poll set and continue the loop
2961 * since their might be data to consume.
2962 */
2963 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2964 continue;
2965 default:
2966 ERR("Unknown action");
2967 break;
2968 }
2969 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2970 DBG("Channel thread pipe hung up");
2971 /*
2972 * Remove the pipe from the poll set and continue the loop
2973 * since their might be data to consume.
2974 */
2975 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2976 continue;
2977 } else {
2978 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2979 goto end;
2980 }
2981
2982 /* Handle other stream */
2983 continue;
2984 }
2985
2986 rcu_read_lock();
2987 {
2988 uint64_t tmp_id = (uint64_t) pollfd;
2989
2990 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2991 }
2992 node = lttng_ht_iter_get_node_u64(&iter);
2993 assert(node);
2994
2995 chan = caa_container_of(node, struct lttng_consumer_channel,
2996 wait_fd_node);
2997
2998 /* Check for error event */
2999 if (revents & (LPOLLERR | LPOLLHUP)) {
3000 DBG("Channel fd %d is hup|err.", pollfd);
3001
3002 lttng_poll_del(&events, chan->wait_fd);
3003 ret = lttng_ht_del(channel_ht, &iter);
3004 assert(ret == 0);
3005
3006 /*
3007 * This will close the wait fd for each stream associated to
3008 * this channel AND monitored by the data/metadata thread thus
3009 * will be clean by the right thread.
3010 */
3011 consumer_close_channel_streams(chan);
3012
3013 /* Release our own refcount */
3014 if (!uatomic_sub_return(&chan->refcount, 1)
3015 && !uatomic_read(&chan->nb_init_stream_left)) {
3016 consumer_del_channel(chan);
3017 }
3018 } else {
3019 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3020 rcu_read_unlock();
3021 goto end;
3022 }
3023
3024 /* Release RCU lock for the channel looked up */
3025 rcu_read_unlock();
3026 }
3027 }
3028
3029 /* All is OK */
3030 err = 0;
3031 end:
3032 lttng_poll_clean(&events);
3033 end_poll:
3034 destroy_channel_ht(channel_ht);
3035 end_ht:
3036 error_testpoint:
3037 DBG("Channel poll thread exiting");
3038 if (err) {
3039 health_error();
3040 ERR("Health error occurred in %s", __func__);
3041 }
3042 health_unregister(health_consumerd);
3043 rcu_unregister_thread();
3044 return NULL;
3045 }
3046
3047 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3048 struct pollfd *sockpoll, int client_socket)
3049 {
3050 int ret;
3051
3052 assert(ctx);
3053 assert(sockpoll);
3054
3055 ret = lttng_consumer_poll_socket(sockpoll);
3056 if (ret) {
3057 goto error;
3058 }
3059 DBG("Metadata connection on client_socket");
3060
3061 /* Blocking call, waiting for transmission */
3062 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3063 if (ctx->consumer_metadata_socket < 0) {
3064 WARN("On accept metadata");
3065 ret = -1;
3066 goto error;
3067 }
3068 ret = 0;
3069
3070 error:
3071 return ret;
3072 }
3073
3074 /*
3075 * This thread listens on the consumerd socket and receives the file
3076 * descriptors from the session daemon.
3077 */
3078 void *consumer_thread_sessiond_poll(void *data)
3079 {
3080 int sock = -1, client_socket, ret, err = -1;
3081 /*
3082 * structure to poll for incoming data on communication socket avoids
3083 * making blocking sockets.
3084 */
3085 struct pollfd consumer_sockpoll[2];
3086 struct lttng_consumer_local_data *ctx = data;
3087
3088 rcu_register_thread();
3089
3090 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3091
3092 if (testpoint(consumerd_thread_sessiond)) {
3093 goto error_testpoint;
3094 }
3095
3096 health_code_update();
3097
3098 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3099 unlink(ctx->consumer_command_sock_path);
3100 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3101 if (client_socket < 0) {
3102 ERR("Cannot create command socket");
3103 goto end;
3104 }
3105
3106 ret = lttcomm_listen_unix_sock(client_socket);
3107 if (ret < 0) {
3108 goto end;
3109 }
3110
3111 DBG("Sending ready command to lttng-sessiond");
3112 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3113 /* return < 0 on error, but == 0 is not fatal */
3114 if (ret < 0) {
3115 ERR("Error sending ready command to lttng-sessiond");
3116 goto end;
3117 }
3118
3119 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3120 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3121 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3122 consumer_sockpoll[1].fd = client_socket;
3123 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3124
3125 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3126 if (ret) {
3127 if (ret > 0) {
3128 /* should exit */
3129 err = 0;
3130 }
3131 goto end;
3132 }
3133 DBG("Connection on client_socket");
3134
3135 /* Blocking call, waiting for transmission */
3136 sock = lttcomm_accept_unix_sock(client_socket);
3137 if (sock < 0) {
3138 WARN("On accept");
3139 goto end;
3140 }
3141
3142 /*
3143 * Setup metadata socket which is the second socket connection on the
3144 * command unix socket.
3145 */
3146 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3147 if (ret) {
3148 if (ret > 0) {
3149 /* should exit */
3150 err = 0;
3151 }
3152 goto end;
3153 }
3154
3155 /* This socket is not useful anymore. */
3156 ret = close(client_socket);
3157 if (ret < 0) {
3158 PERROR("close client_socket");
3159 }
3160 client_socket = -1;
3161
3162 /* update the polling structure to poll on the established socket */
3163 consumer_sockpoll[1].fd = sock;
3164 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3165
3166 while (1) {
3167 health_code_update();
3168
3169 health_poll_entry();
3170 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3171 health_poll_exit();
3172 if (ret) {
3173 if (ret > 0) {
3174 /* should exit */
3175 err = 0;
3176 }
3177 goto end;
3178 }
3179 DBG("Incoming command on sock");
3180 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3181 if (ret <= 0) {
3182 /*
3183 * This could simply be a session daemon quitting. Don't output
3184 * ERR() here.
3185 */
3186 DBG("Communication interrupted on command socket");
3187 err = 0;
3188 goto end;
3189 }
3190 if (consumer_quit) {
3191 DBG("consumer_thread_receive_fds received quit from signal");
3192 err = 0; /* All is OK */
3193 goto end;
3194 }
3195 DBG("received command on sock");
3196 }
3197 /* All is OK */
3198 err = 0;
3199
3200 end:
3201 DBG("Consumer thread sessiond poll exiting");
3202
3203 /*
3204 * Close metadata streams since the producer is the session daemon which
3205 * just died.
3206 *
3207 * NOTE: for now, this only applies to the UST tracer.
3208 */
3209 lttng_consumer_close_all_metadata();
3210
3211 /*
3212 * when all fds have hung up, the polling thread
3213 * can exit cleanly
3214 */
3215 consumer_quit = 1;
3216
3217 /*
3218 * Notify the data poll thread to poll back again and test the
3219 * consumer_quit state that we just set so to quit gracefully.
3220 */
3221 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3222
3223 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3224
3225 notify_health_quit_pipe(health_quit_pipe);
3226
3227 /* Cleaning up possibly open sockets. */
3228 if (sock >= 0) {
3229 ret = close(sock);
3230 if (ret < 0) {
3231 PERROR("close sock sessiond poll");
3232 }
3233 }
3234 if (client_socket >= 0) {
3235 ret = close(client_socket);
3236 if (ret < 0) {
3237 PERROR("close client_socket sessiond poll");
3238 }
3239 }
3240
3241 error_testpoint:
3242 if (err) {
3243 health_error();
3244 ERR("Health error occurred in %s", __func__);
3245 }
3246 health_unregister(health_consumerd);
3247
3248 rcu_unregister_thread();
3249 return NULL;
3250 }
3251
3252 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3253 struct lttng_consumer_local_data *ctx)
3254 {
3255 ssize_t ret;
3256
3257 pthread_mutex_lock(&stream->lock);
3258 if (stream->metadata_flag) {
3259 pthread_mutex_lock(&stream->metadata_rdv_lock);
3260 }
3261
3262 switch (consumer_data.type) {
3263 case LTTNG_CONSUMER_KERNEL:
3264 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3265 break;
3266 case LTTNG_CONSUMER32_UST:
3267 case LTTNG_CONSUMER64_UST:
3268 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3269 break;
3270 default:
3271 ERR("Unknown consumer_data type");
3272 assert(0);
3273 ret = -ENOSYS;
3274 break;
3275 }
3276
3277 if (stream->metadata_flag) {
3278 pthread_cond_broadcast(&stream->metadata_rdv);
3279 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3280 }
3281 pthread_mutex_unlock(&stream->lock);
3282 return ret;
3283 }
3284
3285 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3286 {
3287 switch (consumer_data.type) {
3288 case LTTNG_CONSUMER_KERNEL:
3289 return lttng_kconsumer_on_recv_stream(stream);
3290 case LTTNG_CONSUMER32_UST:
3291 case LTTNG_CONSUMER64_UST:
3292 return lttng_ustconsumer_on_recv_stream(stream);
3293 default:
3294 ERR("Unknown consumer_data type");
3295 assert(0);
3296 return -ENOSYS;
3297 }
3298 }
3299
3300 /*
3301 * Allocate and set consumer data hash tables.
3302 */
3303 int lttng_consumer_init(void)
3304 {
3305 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3306 if (!consumer_data.channel_ht) {
3307 goto error;
3308 }
3309
3310 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3311 if (!consumer_data.relayd_ht) {
3312 goto error;
3313 }
3314
3315 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3316 if (!consumer_data.stream_list_ht) {
3317 goto error;
3318 }
3319
3320 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3321 if (!consumer_data.stream_per_chan_id_ht) {
3322 goto error;
3323 }
3324
3325 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3326 if (!data_ht) {
3327 goto error;
3328 }
3329
3330 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3331 if (!metadata_ht) {
3332 goto error;
3333 }
3334
3335 return 0;
3336
3337 error:
3338 return -1;
3339 }
3340
3341 /*
3342 * Process the ADD_RELAYD command receive by a consumer.
3343 *
3344 * This will create a relayd socket pair and add it to the relayd hash table.
3345 * The caller MUST acquire a RCU read side lock before calling it.
3346 */
3347 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3348 struct lttng_consumer_local_data *ctx, int sock,
3349 struct pollfd *consumer_sockpoll,
3350 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3351 uint64_t relayd_session_id)
3352 {
3353 int fd = -1, ret = -1, relayd_created = 0;
3354 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3355 struct consumer_relayd_sock_pair *relayd = NULL;
3356
3357 assert(ctx);
3358 assert(relayd_sock);
3359
3360 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3361
3362 /* Get relayd reference if exists. */
3363 relayd = consumer_find_relayd(net_seq_idx);
3364 if (relayd == NULL) {
3365 assert(sock_type == LTTNG_STREAM_CONTROL);
3366 /* Not found. Allocate one. */
3367 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3368 if (relayd == NULL) {
3369 ret = -ENOMEM;
3370 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3371 goto error;
3372 } else {
3373 relayd->sessiond_session_id = sessiond_id;
3374 relayd_created = 1;
3375 }
3376
3377 /*
3378 * This code path MUST continue to the consumer send status message to
3379 * we can notify the session daemon and continue our work without
3380 * killing everything.
3381 */
3382 } else {
3383 /*
3384 * relayd key should never be found for control socket.
3385 */
3386 assert(sock_type != LTTNG_STREAM_CONTROL);
3387 }
3388
3389 /* First send a status message before receiving the fds. */
3390 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3391 if (ret < 0) {
3392 /* Somehow, the session daemon is not responding anymore. */
3393 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3394 goto error_nosignal;
3395 }
3396
3397 /* Poll on consumer socket. */
3398 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3399 if (ret) {
3400 /* Needing to exit in the middle of a command: error. */
3401 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3402 ret = -EINTR;
3403 goto error_nosignal;
3404 }
3405
3406 /* Get relayd socket from session daemon */
3407 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3408 if (ret != sizeof(fd)) {
3409 ret = -1;
3410 fd = -1; /* Just in case it gets set with an invalid value. */
3411
3412 /*
3413 * Failing to receive FDs might indicate a major problem such as
3414 * reaching a fd limit during the receive where the kernel returns a
3415 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3416 * don't take any chances and stop everything.
3417 *
3418 * XXX: Feature request #558 will fix that and avoid this possible
3419 * issue when reaching the fd limit.
3420 */
3421 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3422 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3423 goto error;
3424 }
3425
3426 /* Copy socket information and received FD */
3427 switch (sock_type) {
3428 case LTTNG_STREAM_CONTROL:
3429 /* Copy received lttcomm socket */
3430 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3431 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3432 /* Handle create_sock error. */
3433 if (ret < 0) {
3434 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3435 goto error;
3436 }
3437 /*
3438 * Close the socket created internally by
3439 * lttcomm_create_sock, so we can replace it by the one
3440 * received from sessiond.
3441 */
3442 if (close(relayd->control_sock.sock.fd)) {
3443 PERROR("close");
3444 }
3445
3446 /* Assign new file descriptor */
3447 relayd->control_sock.sock.fd = fd;
3448 fd = -1; /* For error path */
3449 /* Assign version values. */
3450 relayd->control_sock.major = relayd_sock->major;
3451 relayd->control_sock.minor = relayd_sock->minor;
3452
3453 relayd->relayd_session_id = relayd_session_id;
3454
3455 break;
3456 case LTTNG_STREAM_DATA:
3457 /* Copy received lttcomm socket */
3458 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3459 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3460 /* Handle create_sock error. */
3461 if (ret < 0) {
3462 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3463 goto error;
3464 }
3465 /*
3466 * Close the socket created internally by
3467 * lttcomm_create_sock, so we can replace it by the one
3468 * received from sessiond.
3469 */
3470 if (close(relayd->data_sock.sock.fd)) {
3471 PERROR("close");
3472 }
3473
3474 /* Assign new file descriptor */
3475 relayd->data_sock.sock.fd = fd;
3476 fd = -1; /* for eventual error paths */
3477 /* Assign version values. */
3478 relayd->data_sock.major = relayd_sock->major;
3479 relayd->data_sock.minor = relayd_sock->minor;
3480 break;
3481 default:
3482 ERR("Unknown relayd socket type (%d)", sock_type);
3483 ret = -1;
3484 ret_code = LTTCOMM_CONSUMERD_FATAL;
3485 goto error;
3486 }
3487
3488 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3489 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3490 relayd->net_seq_idx, fd);
3491
3492 /* We successfully added the socket. Send status back. */
3493 ret = consumer_send_status_msg(sock, ret_code);
3494 if (ret < 0) {
3495 /* Somehow, the session daemon is not responding anymore. */
3496 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3497 goto error_nosignal;
3498 }
3499
3500 /*
3501 * Add relayd socket pair to consumer data hashtable. If object already
3502 * exists or on error, the function gracefully returns.
3503 */
3504 add_relayd(relayd);
3505
3506 /* All good! */
3507 return 0;
3508
3509 error:
3510 if (consumer_send_status_msg(sock, ret_code) < 0) {
3511 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3512 }
3513
3514 error_nosignal:
3515 /* Close received socket if valid. */
3516 if (fd >= 0) {
3517 if (close(fd)) {
3518 PERROR("close received socket");
3519 }
3520 }
3521
3522 if (relayd_created) {
3523 free(relayd);
3524 }
3525
3526 return ret;
3527 }
3528
3529 /*
3530 * Try to lock the stream mutex.
3531 *
3532 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3533 */
3534 static int stream_try_lock(struct lttng_consumer_stream *stream)
3535 {
3536 int ret;
3537
3538 assert(stream);
3539
3540 /*
3541 * Try to lock the stream mutex. On failure, we know that the stream is
3542 * being used else where hence there is data still being extracted.
3543 */
3544 ret = pthread_mutex_trylock(&stream->lock);
3545 if (ret) {
3546 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3547 ret = 0;
3548 goto end;
3549 }
3550
3551 ret = 1;
3552
3553 end:
3554 return ret;
3555 }
3556
3557 /*
3558 * Search for a relayd associated to the session id and return the reference.
3559 *
3560 * A rcu read side lock MUST be acquire before calling this function and locked
3561 * until the relayd object is no longer necessary.
3562 */
3563 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3564 {
3565 struct lttng_ht_iter iter;
3566 struct consumer_relayd_sock_pair *relayd = NULL;
3567
3568 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3569 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3570 node.node) {
3571 /*
3572 * Check by sessiond id which is unique here where the relayd session
3573 * id might not be when having multiple relayd.
3574 */
3575 if (relayd->sessiond_session_id == id) {
3576 /* Found the relayd. There can be only one per id. */
3577 goto found;
3578 }
3579 }
3580
3581 return NULL;
3582
3583 found:
3584 return relayd;
3585 }
3586
3587 /*
3588 * Check if for a given session id there is still data needed to be extract
3589 * from the buffers.
3590 *
3591 * Return 1 if data is pending or else 0 meaning ready to be read.
3592 */
3593 int consumer_data_pending(uint64_t id)
3594 {
3595 int ret;
3596 struct lttng_ht_iter iter;
3597 struct lttng_ht *ht;
3598 struct lttng_consumer_stream *stream;
3599 struct consumer_relayd_sock_pair *relayd = NULL;
3600 int (*data_pending)(struct lttng_consumer_stream *);
3601
3602 DBG("Consumer data pending command on session id %" PRIu64, id);
3603
3604 rcu_read_lock();
3605 pthread_mutex_lock(&consumer_data.lock);
3606
3607 switch (consumer_data.type) {
3608 case LTTNG_CONSUMER_KERNEL:
3609 data_pending = lttng_kconsumer_data_pending;
3610 break;
3611 case LTTNG_CONSUMER32_UST:
3612 case LTTNG_CONSUMER64_UST:
3613 data_pending = lttng_ustconsumer_data_pending;
3614 break;
3615 default:
3616 ERR("Unknown consumer data type");
3617 assert(0);
3618 }
3619
3620 /* Ease our life a bit */
3621 ht = consumer_data.stream_list_ht;
3622
3623 relayd = find_relayd_by_session_id(id);
3624 if (relayd) {
3625 /* Send init command for data pending. */
3626 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3627 ret = relayd_begin_data_pending(&relayd->control_sock,
3628 relayd->relayd_session_id);
3629 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3630 if (ret < 0) {
3631 /* Communication error thus the relayd so no data pending. */
3632 goto data_not_pending;
3633 }
3634 }
3635
3636 cds_lfht_for_each_entry_duplicate(ht->ht,
3637 ht->hash_fct(&id, lttng_ht_seed),
3638 ht->match_fct, &id,
3639 &iter.iter, stream, node_session_id.node) {
3640 /* If this call fails, the stream is being used hence data pending. */
3641 ret = stream_try_lock(stream);
3642 if (!ret) {
3643 goto data_pending;
3644 }
3645
3646 /*
3647 * A removed node from the hash table indicates that the stream has
3648 * been deleted thus having a guarantee that the buffers are closed
3649 * on the consumer side. However, data can still be transmitted
3650 * over the network so don't skip the relayd check.
3651 */
3652 ret = cds_lfht_is_node_deleted(&stream->node.node);
3653 if (!ret) {
3654 /* Check the stream if there is data in the buffers. */
3655 ret = data_pending(stream);
3656 if (ret == 1) {
3657 pthread_mutex_unlock(&stream->lock);
3658 goto data_pending;
3659 }
3660 }
3661
3662 /* Relayd check */
3663 if (relayd) {
3664 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3665 if (stream->metadata_flag) {
3666 ret = relayd_quiescent_control(&relayd->control_sock,
3667 stream->relayd_stream_id);
3668 } else {
3669 ret = relayd_data_pending(&relayd->control_sock,
3670 stream->relayd_stream_id,
3671 stream->next_net_seq_num - 1);
3672 }
3673 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3674 if (ret == 1) {
3675 pthread_mutex_unlock(&stream->lock);
3676 goto data_pending;
3677 }
3678 }
3679 pthread_mutex_unlock(&stream->lock);
3680 }
3681
3682 if (relayd) {
3683 unsigned int is_data_inflight = 0;
3684
3685 /* Send init command for data pending. */
3686 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3687 ret = relayd_end_data_pending(&relayd->control_sock,
3688 relayd->relayd_session_id, &is_data_inflight);
3689 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3690 if (ret < 0) {
3691 goto data_not_pending;
3692 }
3693 if (is_data_inflight) {
3694 goto data_pending;
3695 }
3696 }
3697
3698 /*
3699 * Finding _no_ node in the hash table and no inflight data means that the
3700 * stream(s) have been removed thus data is guaranteed to be available for
3701 * analysis from the trace files.
3702 */
3703
3704 data_not_pending:
3705 /* Data is available to be read by a viewer. */
3706 pthread_mutex_unlock(&consumer_data.lock);
3707 rcu_read_unlock();
3708 return 0;
3709
3710 data_pending:
3711 /* Data is still being extracted from buffers. */
3712 pthread_mutex_unlock(&consumer_data.lock);
3713 rcu_read_unlock();
3714 return 1;
3715 }
3716
3717 /*
3718 * Send a ret code status message to the sessiond daemon.
3719 *
3720 * Return the sendmsg() return value.
3721 */
3722 int consumer_send_status_msg(int sock, int ret_code)
3723 {
3724 struct lttcomm_consumer_status_msg msg;
3725
3726 memset(&msg, 0, sizeof(msg));
3727 msg.ret_code = ret_code;
3728
3729 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3730 }
3731
3732 /*
3733 * Send a channel status message to the sessiond daemon.
3734 *
3735 * Return the sendmsg() return value.
3736 */
3737 int consumer_send_status_channel(int sock,
3738 struct lttng_consumer_channel *channel)
3739 {
3740 struct lttcomm_consumer_status_channel msg;
3741
3742 assert(sock >= 0);
3743
3744 memset(&msg, 0, sizeof(msg));
3745 if (!channel) {
3746 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3747 } else {
3748 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3749 msg.key = channel->key;
3750 msg.stream_count = channel->streams.count;
3751 }
3752
3753 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3754 }
3755
3756 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3757 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3758 uint64_t max_sb_size)
3759 {
3760 unsigned long start_pos;
3761
3762 if (!nb_packets_per_stream) {
3763 return consumed_pos; /* Grab everything */
3764 }
3765 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3766 start_pos -= max_sb_size * nb_packets_per_stream;
3767 if ((long) (start_pos - consumed_pos) < 0) {
3768 return consumed_pos; /* Grab everything */
3769 }
3770 return start_pos;
3771 }
This page took 0.184099 seconds and 3 git commands to generate.