Fix: ust-consumer: metadata thread not woken-up after version change
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "common/index/ctf-index.h"
21 #define _LGPL_SOURCE
22 #include <assert.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/types.h>
30 #include <unistd.h>
31 #include <inttypes.h>
32 #include <signal.h>
33
34 #include <bin/lttng-consumerd/health-consumerd.h>
35 #include <common/common.h>
36 #include <common/utils.h>
37 #include <common/time.h>
38 #include <common/compat/poll.h>
39 #include <common/compat/endian.h>
40 #include <common/index/index.h>
41 #include <common/kernel-ctl/kernel-ctl.h>
42 #include <common/sessiond-comm/relayd.h>
43 #include <common/sessiond-comm/sessiond-comm.h>
44 #include <common/kernel-consumer/kernel-consumer.h>
45 #include <common/relayd/relayd.h>
46 #include <common/ust-consumer/ust-consumer.h>
47 #include <common/consumer/consumer-timer.h>
48 #include <common/consumer/consumer.h>
49 #include <common/consumer/consumer-stream.h>
50 #include <common/consumer/consumer-testpoint.h>
51 #include <common/align.h>
52 #include <common/consumer/consumer-metadata-cache.h>
53 #include <common/trace-chunk.h>
54 #include <common/trace-chunk-registry.h>
55 #include <common/string-utils/format.h>
56 #include <common/dynamic-array.h>
57
58 struct lttng_consumer_global_data consumer_data = {
59 .stream_count = 0,
60 .need_update = 1,
61 .type = LTTNG_CONSUMER_UNKNOWN,
62 };
63
64 enum consumer_channel_action {
65 CONSUMER_CHANNEL_ADD,
66 CONSUMER_CHANNEL_DEL,
67 CONSUMER_CHANNEL_QUIT,
68 };
69
70 struct consumer_channel_msg {
71 enum consumer_channel_action action;
72 struct lttng_consumer_channel *chan; /* add */
73 uint64_t key; /* del */
74 };
75
76 /* Flag used to temporarily pause data consumption from testpoints. */
77 int data_consumption_paused;
78
79 /*
80 * Flag to inform the polling thread to quit when all fd hung up. Updated by
81 * the consumer_thread_receive_fds when it notices that all fds has hung up.
82 * Also updated by the signal handler (consumer_should_exit()). Read by the
83 * polling threads.
84 */
85 int consumer_quit;
86
87 /*
88 * Global hash table containing respectively metadata and data streams. The
89 * stream element in this ht should only be updated by the metadata poll thread
90 * for the metadata and the data poll thread for the data.
91 */
92 static struct lttng_ht *metadata_ht;
93 static struct lttng_ht *data_ht;
94
95 /*
96 * Notify a thread lttng pipe to poll back again. This usually means that some
97 * global state has changed so we just send back the thread in a poll wait
98 * call.
99 */
100 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
101 {
102 struct lttng_consumer_stream *null_stream = NULL;
103
104 assert(pipe);
105
106 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
107 }
108
109 static void notify_health_quit_pipe(int *pipe)
110 {
111 ssize_t ret;
112
113 ret = lttng_write(pipe[1], "4", 1);
114 if (ret < 1) {
115 PERROR("write consumer health quit");
116 }
117 }
118
119 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
120 struct lttng_consumer_channel *chan,
121 uint64_t key,
122 enum consumer_channel_action action)
123 {
124 struct consumer_channel_msg msg;
125 ssize_t ret;
126
127 memset(&msg, 0, sizeof(msg));
128
129 msg.action = action;
130 msg.chan = chan;
131 msg.key = key;
132 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
133 if (ret < sizeof(msg)) {
134 PERROR("notify_channel_pipe write error");
135 }
136 }
137
138 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
139 uint64_t key)
140 {
141 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
142 }
143
144 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
145 struct lttng_consumer_channel **chan,
146 uint64_t *key,
147 enum consumer_channel_action *action)
148 {
149 struct consumer_channel_msg msg;
150 ssize_t ret;
151
152 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
153 if (ret < sizeof(msg)) {
154 ret = -1;
155 goto error;
156 }
157 *action = msg.action;
158 *chan = msg.chan;
159 *key = msg.key;
160 error:
161 return (int) ret;
162 }
163
164 /*
165 * Cleanup the stream list of a channel. Those streams are not yet globally
166 * visible
167 */
168 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
169 {
170 struct lttng_consumer_stream *stream, *stmp;
171
172 assert(channel);
173
174 /* Delete streams that might have been left in the stream list. */
175 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
176 send_node) {
177 cds_list_del(&stream->send_node);
178 /*
179 * Once a stream is added to this list, the buffers were created so we
180 * have a guarantee that this call will succeed. Setting the monitor
181 * mode to 0 so we don't lock nor try to delete the stream from the
182 * global hash table.
183 */
184 stream->monitor = 0;
185 consumer_stream_destroy(stream, NULL);
186 }
187 }
188
189 /*
190 * Find a stream. The consumer_data.lock must be locked during this
191 * call.
192 */
193 static struct lttng_consumer_stream *find_stream(uint64_t key,
194 struct lttng_ht *ht)
195 {
196 struct lttng_ht_iter iter;
197 struct lttng_ht_node_u64 *node;
198 struct lttng_consumer_stream *stream = NULL;
199
200 assert(ht);
201
202 /* -1ULL keys are lookup failures */
203 if (key == (uint64_t) -1ULL) {
204 return NULL;
205 }
206
207 rcu_read_lock();
208
209 lttng_ht_lookup(ht, &key, &iter);
210 node = lttng_ht_iter_get_node_u64(&iter);
211 if (node != NULL) {
212 stream = caa_container_of(node, struct lttng_consumer_stream, node);
213 }
214
215 rcu_read_unlock();
216
217 return stream;
218 }
219
220 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
221 {
222 struct lttng_consumer_stream *stream;
223
224 rcu_read_lock();
225 stream = find_stream(key, ht);
226 if (stream) {
227 stream->key = (uint64_t) -1ULL;
228 /*
229 * We don't want the lookup to match, but we still need
230 * to iterate on this stream when iterating over the hash table. Just
231 * change the node key.
232 */
233 stream->node.key = (uint64_t) -1ULL;
234 }
235 rcu_read_unlock();
236 }
237
238 /*
239 * Return a channel object for the given key.
240 *
241 * RCU read side lock MUST be acquired before calling this function and
242 * protects the channel ptr.
243 */
244 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
245 {
246 struct lttng_ht_iter iter;
247 struct lttng_ht_node_u64 *node;
248 struct lttng_consumer_channel *channel = NULL;
249
250 /* -1ULL keys are lookup failures */
251 if (key == (uint64_t) -1ULL) {
252 return NULL;
253 }
254
255 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
256 node = lttng_ht_iter_get_node_u64(&iter);
257 if (node != NULL) {
258 channel = caa_container_of(node, struct lttng_consumer_channel, node);
259 }
260
261 return channel;
262 }
263
264 /*
265 * There is a possibility that the consumer does not have enough time between
266 * the close of the channel on the session daemon and the cleanup in here thus
267 * once we have a channel add with an existing key, we know for sure that this
268 * channel will eventually get cleaned up by all streams being closed.
269 *
270 * This function just nullifies the already existing channel key.
271 */
272 static void steal_channel_key(uint64_t key)
273 {
274 struct lttng_consumer_channel *channel;
275
276 rcu_read_lock();
277 channel = consumer_find_channel(key);
278 if (channel) {
279 channel->key = (uint64_t) -1ULL;
280 /*
281 * We don't want the lookup to match, but we still need to iterate on
282 * this channel when iterating over the hash table. Just change the
283 * node key.
284 */
285 channel->node.key = (uint64_t) -1ULL;
286 }
287 rcu_read_unlock();
288 }
289
290 static void free_channel_rcu(struct rcu_head *head)
291 {
292 struct lttng_ht_node_u64 *node =
293 caa_container_of(head, struct lttng_ht_node_u64, head);
294 struct lttng_consumer_channel *channel =
295 caa_container_of(node, struct lttng_consumer_channel, node);
296
297 switch (consumer_data.type) {
298 case LTTNG_CONSUMER_KERNEL:
299 break;
300 case LTTNG_CONSUMER32_UST:
301 case LTTNG_CONSUMER64_UST:
302 lttng_ustconsumer_free_channel(channel);
303 break;
304 default:
305 ERR("Unknown consumer_data type");
306 abort();
307 }
308 free(channel);
309 }
310
311 /*
312 * RCU protected relayd socket pair free.
313 */
314 static void free_relayd_rcu(struct rcu_head *head)
315 {
316 struct lttng_ht_node_u64 *node =
317 caa_container_of(head, struct lttng_ht_node_u64, head);
318 struct consumer_relayd_sock_pair *relayd =
319 caa_container_of(node, struct consumer_relayd_sock_pair, node);
320
321 /*
322 * Close all sockets. This is done in the call RCU since we don't want the
323 * socket fds to be reassigned thus potentially creating bad state of the
324 * relayd object.
325 *
326 * We do not have to lock the control socket mutex here since at this stage
327 * there is no one referencing to this relayd object.
328 */
329 (void) relayd_close(&relayd->control_sock);
330 (void) relayd_close(&relayd->data_sock);
331
332 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
333 free(relayd);
334 }
335
336 /*
337 * Destroy and free relayd socket pair object.
338 */
339 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
340 {
341 int ret;
342 struct lttng_ht_iter iter;
343
344 if (relayd == NULL) {
345 return;
346 }
347
348 DBG("Consumer destroy and close relayd socket pair");
349
350 iter.iter.node = &relayd->node.node;
351 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
352 if (ret != 0) {
353 /* We assume the relayd is being or is destroyed */
354 return;
355 }
356
357 /* RCU free() call */
358 call_rcu(&relayd->node.head, free_relayd_rcu);
359 }
360
361 /*
362 * Remove a channel from the global list protected by a mutex. This function is
363 * also responsible for freeing its data structures.
364 */
365 void consumer_del_channel(struct lttng_consumer_channel *channel)
366 {
367 struct lttng_ht_iter iter;
368
369 DBG("Consumer delete channel key %" PRIu64, channel->key);
370
371 pthread_mutex_lock(&consumer_data.lock);
372 pthread_mutex_lock(&channel->lock);
373
374 /* Destroy streams that might have been left in the stream list. */
375 clean_channel_stream_list(channel);
376
377 if (channel->live_timer_enabled == 1) {
378 consumer_timer_live_stop(channel);
379 }
380 if (channel->monitor_timer_enabled == 1) {
381 consumer_timer_monitor_stop(channel);
382 }
383
384 switch (consumer_data.type) {
385 case LTTNG_CONSUMER_KERNEL:
386 break;
387 case LTTNG_CONSUMER32_UST:
388 case LTTNG_CONSUMER64_UST:
389 lttng_ustconsumer_del_channel(channel);
390 break;
391 default:
392 ERR("Unknown consumer_data type");
393 assert(0);
394 goto end;
395 }
396
397 lttng_trace_chunk_put(channel->trace_chunk);
398 channel->trace_chunk = NULL;
399
400 if (channel->is_published) {
401 int ret;
402
403 rcu_read_lock();
404 iter.iter.node = &channel->node.node;
405 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
406 assert(!ret);
407
408 iter.iter.node = &channel->channels_by_session_id_ht_node.node;
409 ret = lttng_ht_del(consumer_data.channels_by_session_id_ht,
410 &iter);
411 assert(!ret);
412 rcu_read_unlock();
413 }
414
415 channel->is_deleted = true;
416 call_rcu(&channel->node.head, free_channel_rcu);
417 end:
418 pthread_mutex_unlock(&channel->lock);
419 pthread_mutex_unlock(&consumer_data.lock);
420 }
421
422 /*
423 * Iterate over the relayd hash table and destroy each element. Finally,
424 * destroy the whole hash table.
425 */
426 static void cleanup_relayd_ht(void)
427 {
428 struct lttng_ht_iter iter;
429 struct consumer_relayd_sock_pair *relayd;
430
431 rcu_read_lock();
432
433 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
434 node.node) {
435 consumer_destroy_relayd(relayd);
436 }
437
438 rcu_read_unlock();
439
440 lttng_ht_destroy(consumer_data.relayd_ht);
441 }
442
443 /*
444 * Update the end point status of all streams having the given network sequence
445 * index (relayd index).
446 *
447 * It's atomically set without having the stream mutex locked which is fine
448 * because we handle the write/read race with a pipe wakeup for each thread.
449 */
450 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
451 enum consumer_endpoint_status status)
452 {
453 struct lttng_ht_iter iter;
454 struct lttng_consumer_stream *stream;
455
456 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
457
458 rcu_read_lock();
459
460 /* Let's begin with metadata */
461 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
462 if (stream->net_seq_idx == net_seq_idx) {
463 uatomic_set(&stream->endpoint_status, status);
464 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
465 }
466 }
467
468 /* Follow up by the data streams */
469 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
470 if (stream->net_seq_idx == net_seq_idx) {
471 uatomic_set(&stream->endpoint_status, status);
472 DBG("Delete flag set to data stream %d", stream->wait_fd);
473 }
474 }
475 rcu_read_unlock();
476 }
477
478 /*
479 * Cleanup a relayd object by flagging every associated streams for deletion,
480 * destroying the object meaning removing it from the relayd hash table,
481 * closing the sockets and freeing the memory in a RCU call.
482 *
483 * If a local data context is available, notify the threads that the streams'
484 * state have changed.
485 */
486 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair *relayd)
487 {
488 uint64_t netidx;
489
490 assert(relayd);
491
492 DBG("Cleaning up relayd object ID %"PRIu64, relayd->net_seq_idx);
493
494 /* Save the net sequence index before destroying the object */
495 netidx = relayd->net_seq_idx;
496
497 /*
498 * Delete the relayd from the relayd hash table, close the sockets and free
499 * the object in a RCU call.
500 */
501 consumer_destroy_relayd(relayd);
502
503 /* Set inactive endpoint to all streams */
504 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
505
506 /*
507 * With a local data context, notify the threads that the streams' state
508 * have changed. The write() action on the pipe acts as an "implicit"
509 * memory barrier ordering the updates of the end point status from the
510 * read of this status which happens AFTER receiving this notify.
511 */
512 notify_thread_lttng_pipe(relayd->ctx->consumer_data_pipe);
513 notify_thread_lttng_pipe(relayd->ctx->consumer_metadata_pipe);
514 }
515
516 /*
517 * Flag a relayd socket pair for destruction. Destroy it if the refcount
518 * reaches zero.
519 *
520 * RCU read side lock MUST be aquired before calling this function.
521 */
522 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
523 {
524 assert(relayd);
525
526 /* Set destroy flag for this object */
527 uatomic_set(&relayd->destroy_flag, 1);
528
529 /* Destroy the relayd if refcount is 0 */
530 if (uatomic_read(&relayd->refcount) == 0) {
531 consumer_destroy_relayd(relayd);
532 }
533 }
534
535 /*
536 * Completly destroy stream from every visiable data structure and the given
537 * hash table if one.
538 *
539 * One this call returns, the stream object is not longer usable nor visible.
540 */
541 void consumer_del_stream(struct lttng_consumer_stream *stream,
542 struct lttng_ht *ht)
543 {
544 consumer_stream_destroy(stream, ht);
545 }
546
547 /*
548 * XXX naming of del vs destroy is all mixed up.
549 */
550 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
551 {
552 consumer_stream_destroy(stream, data_ht);
553 }
554
555 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
556 {
557 consumer_stream_destroy(stream, metadata_ht);
558 }
559
560 void consumer_stream_update_channel_attributes(
561 struct lttng_consumer_stream *stream,
562 struct lttng_consumer_channel *channel)
563 {
564 stream->channel_read_only_attributes.tracefile_size =
565 channel->tracefile_size;
566 }
567
568 /*
569 * Add a stream to the global list protected by a mutex.
570 */
571 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
572 {
573 struct lttng_ht *ht = data_ht;
574
575 assert(stream);
576 assert(ht);
577
578 DBG3("Adding consumer stream %" PRIu64, stream->key);
579
580 pthread_mutex_lock(&consumer_data.lock);
581 pthread_mutex_lock(&stream->chan->lock);
582 pthread_mutex_lock(&stream->chan->timer_lock);
583 pthread_mutex_lock(&stream->lock);
584 rcu_read_lock();
585
586 /* Steal stream identifier to avoid having streams with the same key */
587 steal_stream_key(stream->key, ht);
588
589 lttng_ht_add_unique_u64(ht, &stream->node);
590
591 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
592 &stream->node_channel_id);
593
594 /*
595 * Add stream to the stream_list_ht of the consumer data. No need to steal
596 * the key since the HT does not use it and we allow to add redundant keys
597 * into this table.
598 */
599 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
600
601 /*
602 * When nb_init_stream_left reaches 0, we don't need to trigger any action
603 * in terms of destroying the associated channel, because the action that
604 * causes the count to become 0 also causes a stream to be added. The
605 * channel deletion will thus be triggered by the following removal of this
606 * stream.
607 */
608 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
609 /* Increment refcount before decrementing nb_init_stream_left */
610 cmm_smp_wmb();
611 uatomic_dec(&stream->chan->nb_init_stream_left);
612 }
613
614 /* Update consumer data once the node is inserted. */
615 consumer_data.stream_count++;
616 consumer_data.need_update = 1;
617
618 rcu_read_unlock();
619 pthread_mutex_unlock(&stream->lock);
620 pthread_mutex_unlock(&stream->chan->timer_lock);
621 pthread_mutex_unlock(&stream->chan->lock);
622 pthread_mutex_unlock(&consumer_data.lock);
623 }
624
625 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
626 {
627 consumer_del_stream(stream, data_ht);
628 }
629
630 /*
631 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
632 * be acquired before calling this.
633 */
634 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
635 {
636 int ret = 0;
637 struct lttng_ht_node_u64 *node;
638 struct lttng_ht_iter iter;
639
640 assert(relayd);
641
642 lttng_ht_lookup(consumer_data.relayd_ht,
643 &relayd->net_seq_idx, &iter);
644 node = lttng_ht_iter_get_node_u64(&iter);
645 if (node != NULL) {
646 goto end;
647 }
648 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
649
650 end:
651 return ret;
652 }
653
654 /*
655 * Allocate and return a consumer relayd socket.
656 */
657 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
658 uint64_t net_seq_idx)
659 {
660 struct consumer_relayd_sock_pair *obj = NULL;
661
662 /* net sequence index of -1 is a failure */
663 if (net_seq_idx == (uint64_t) -1ULL) {
664 goto error;
665 }
666
667 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
668 if (obj == NULL) {
669 PERROR("zmalloc relayd sock");
670 goto error;
671 }
672
673 obj->net_seq_idx = net_seq_idx;
674 obj->refcount = 0;
675 obj->destroy_flag = 0;
676 obj->control_sock.sock.fd = -1;
677 obj->data_sock.sock.fd = -1;
678 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
679 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
680
681 error:
682 return obj;
683 }
684
685 /*
686 * Find a relayd socket pair in the global consumer data.
687 *
688 * Return the object if found else NULL.
689 * RCU read-side lock must be held across this call and while using the
690 * returned object.
691 */
692 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
693 {
694 struct lttng_ht_iter iter;
695 struct lttng_ht_node_u64 *node;
696 struct consumer_relayd_sock_pair *relayd = NULL;
697
698 /* Negative keys are lookup failures */
699 if (key == (uint64_t) -1ULL) {
700 goto error;
701 }
702
703 lttng_ht_lookup(consumer_data.relayd_ht, &key,
704 &iter);
705 node = lttng_ht_iter_get_node_u64(&iter);
706 if (node != NULL) {
707 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
708 }
709
710 error:
711 return relayd;
712 }
713
714 /*
715 * Find a relayd and send the stream
716 *
717 * Returns 0 on success, < 0 on error
718 */
719 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
720 char *path)
721 {
722 int ret = 0;
723 struct consumer_relayd_sock_pair *relayd;
724
725 assert(stream);
726 assert(stream->net_seq_idx != -1ULL);
727 assert(path);
728
729 /* The stream is not metadata. Get relayd reference if exists. */
730 rcu_read_lock();
731 relayd = consumer_find_relayd(stream->net_seq_idx);
732 if (relayd != NULL) {
733 /* Add stream on the relayd */
734 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
735 ret = relayd_add_stream(&relayd->control_sock, stream->name,
736 path, &stream->relayd_stream_id,
737 stream->chan->tracefile_size,
738 stream->chan->tracefile_count,
739 stream->trace_chunk);
740 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
741 if (ret < 0) {
742 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
743 lttng_consumer_cleanup_relayd(relayd);
744 goto end;
745 }
746
747 uatomic_inc(&relayd->refcount);
748 stream->sent_to_relayd = 1;
749 } else {
750 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
751 stream->key, stream->net_seq_idx);
752 ret = -1;
753 goto end;
754 }
755
756 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
757 stream->name, stream->key, stream->net_seq_idx);
758
759 end:
760 rcu_read_unlock();
761 return ret;
762 }
763
764 /*
765 * Find a relayd and send the streams sent message
766 *
767 * Returns 0 on success, < 0 on error
768 */
769 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
770 {
771 int ret = 0;
772 struct consumer_relayd_sock_pair *relayd;
773
774 assert(net_seq_idx != -1ULL);
775
776 /* The stream is not metadata. Get relayd reference if exists. */
777 rcu_read_lock();
778 relayd = consumer_find_relayd(net_seq_idx);
779 if (relayd != NULL) {
780 /* Add stream on the relayd */
781 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
782 ret = relayd_streams_sent(&relayd->control_sock);
783 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
784 if (ret < 0) {
785 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
786 lttng_consumer_cleanup_relayd(relayd);
787 goto end;
788 }
789 } else {
790 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
791 net_seq_idx);
792 ret = -1;
793 goto end;
794 }
795
796 ret = 0;
797 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
798
799 end:
800 rcu_read_unlock();
801 return ret;
802 }
803
804 /*
805 * Find a relayd and close the stream
806 */
807 void close_relayd_stream(struct lttng_consumer_stream *stream)
808 {
809 struct consumer_relayd_sock_pair *relayd;
810
811 /* The stream is not metadata. Get relayd reference if exists. */
812 rcu_read_lock();
813 relayd = consumer_find_relayd(stream->net_seq_idx);
814 if (relayd) {
815 consumer_stream_relayd_close(stream, relayd);
816 }
817 rcu_read_unlock();
818 }
819
820 /*
821 * Handle stream for relayd transmission if the stream applies for network
822 * streaming where the net sequence index is set.
823 *
824 * Return destination file descriptor or negative value on error.
825 */
826 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
827 size_t data_size, unsigned long padding,
828 struct consumer_relayd_sock_pair *relayd)
829 {
830 int outfd = -1, ret;
831 struct lttcomm_relayd_data_hdr data_hdr;
832
833 /* Safety net */
834 assert(stream);
835 assert(relayd);
836
837 /* Reset data header */
838 memset(&data_hdr, 0, sizeof(data_hdr));
839
840 if (stream->metadata_flag) {
841 /* Caller MUST acquire the relayd control socket lock */
842 ret = relayd_send_metadata(&relayd->control_sock, data_size);
843 if (ret < 0) {
844 goto error;
845 }
846
847 /* Metadata are always sent on the control socket. */
848 outfd = relayd->control_sock.sock.fd;
849 } else {
850 /* Set header with stream information */
851 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
852 data_hdr.data_size = htobe32(data_size);
853 data_hdr.padding_size = htobe32(padding);
854
855 /*
856 * Note that net_seq_num below is assigned with the *current* value of
857 * next_net_seq_num and only after that the next_net_seq_num will be
858 * increment. This is why when issuing a command on the relayd using
859 * this next value, 1 should always be substracted in order to compare
860 * the last seen sequence number on the relayd side to the last sent.
861 */
862 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
863 /* Other fields are zeroed previously */
864
865 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
866 sizeof(data_hdr));
867 if (ret < 0) {
868 goto error;
869 }
870
871 ++stream->next_net_seq_num;
872
873 /* Set to go on data socket */
874 outfd = relayd->data_sock.sock.fd;
875 }
876
877 error:
878 return outfd;
879 }
880
881 /*
882 * Write a character on the metadata poll pipe to wake the metadata thread.
883 * Returns 0 on success, -1 on error.
884 */
885 int consumer_metadata_wakeup_pipe(const struct lttng_consumer_channel *channel)
886 {
887 int ret = 0;
888
889 DBG("Waking up metadata poll thread (writing to pipe): channel name = '%s'",
890 channel->name);
891 if (channel->monitor && channel->metadata_stream) {
892 const char dummy = 'c';
893 const ssize_t write_ret = lttng_write(
894 channel->metadata_stream->ust_metadata_poll_pipe[1],
895 &dummy, 1);
896
897 if (write_ret < 1) {
898 if (errno == EWOULDBLOCK) {
899 /*
900 * This is fine, the metadata poll thread
901 * is having a hard time keeping-up, but
902 * it will eventually wake-up and consume
903 * the available data.
904 */
905 ret = 0;
906 } else {
907 PERROR("Failed to write to UST metadata pipe while attempting to wake-up the metadata poll thread");
908 ret = -1;
909 goto end;
910 }
911 }
912 }
913
914 end:
915 return ret;
916 }
917
918 /*
919 * Trigger a dump of the metadata content. Following/during the succesful
920 * completion of this call, the metadata poll thread will start receiving
921 * metadata packets to consume.
922 *
923 * The caller must hold the channel and stream locks.
924 */
925 static
926 int consumer_metadata_stream_dump(struct lttng_consumer_stream *stream)
927 {
928 int ret;
929
930 ASSERT_LOCKED(stream->chan->lock);
931 ASSERT_LOCKED(stream->lock);
932 assert(stream->metadata_flag);
933 assert(stream->chan->trace_chunk);
934
935 switch (consumer_data.type) {
936 case LTTNG_CONSUMER_KERNEL:
937 /*
938 * Reset the position of what has been read from the
939 * metadata cache to 0 so we can dump it again.
940 */
941 ret = kernctl_metadata_cache_dump(stream->wait_fd);
942 break;
943 case LTTNG_CONSUMER32_UST:
944 case LTTNG_CONSUMER64_UST:
945 /*
946 * Reset the position pushed from the metadata cache so it
947 * will write from the beginning on the next push.
948 */
949 stream->ust_metadata_pushed = 0;
950 ret = consumer_metadata_wakeup_pipe(stream->chan);
951 break;
952 default:
953 ERR("Unknown consumer_data type");
954 abort();
955 }
956 if (ret < 0) {
957 ERR("Failed to dump the metadata cache");
958 }
959 return ret;
960 }
961
962 static
963 int lttng_consumer_channel_set_trace_chunk(
964 struct lttng_consumer_channel *channel,
965 struct lttng_trace_chunk *new_trace_chunk)
966 {
967 pthread_mutex_lock(&channel->lock);
968 if (channel->is_deleted) {
969 /*
970 * The channel has been logically deleted and should no longer
971 * be used. It has released its reference to its current trace
972 * chunk and should not acquire a new one.
973 *
974 * Return success as there is nothing for the caller to do.
975 */
976 goto end;
977 }
978
979 /*
980 * The acquisition of the reference cannot fail (barring
981 * a severe internal error) since a reference to the published
982 * chunk is already held by the caller.
983 */
984 if (new_trace_chunk) {
985 const bool acquired_reference = lttng_trace_chunk_get(
986 new_trace_chunk);
987
988 assert(acquired_reference);
989 }
990
991 lttng_trace_chunk_put(channel->trace_chunk);
992 channel->trace_chunk = new_trace_chunk;
993 end:
994 pthread_mutex_unlock(&channel->lock);
995 return 0;
996 }
997
998 /*
999 * Allocate and return a new lttng_consumer_channel object using the given key
1000 * to initialize the hash table node.
1001 *
1002 * On error, return NULL.
1003 */
1004 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
1005 uint64_t session_id,
1006 const uint64_t *chunk_id,
1007 const char *pathname,
1008 const char *name,
1009 uint64_t relayd_id,
1010 enum lttng_event_output output,
1011 uint64_t tracefile_size,
1012 uint64_t tracefile_count,
1013 uint64_t session_id_per_pid,
1014 unsigned int monitor,
1015 unsigned int live_timer_interval,
1016 bool is_in_live_session,
1017 const char *root_shm_path,
1018 const char *shm_path)
1019 {
1020 struct lttng_consumer_channel *channel = NULL;
1021 struct lttng_trace_chunk *trace_chunk = NULL;
1022
1023 if (chunk_id) {
1024 trace_chunk = lttng_trace_chunk_registry_find_chunk(
1025 consumer_data.chunk_registry, session_id,
1026 *chunk_id);
1027 if (!trace_chunk) {
1028 ERR("Failed to find trace chunk reference during creation of channel");
1029 goto end;
1030 }
1031 }
1032
1033 channel = zmalloc(sizeof(*channel));
1034 if (channel == NULL) {
1035 PERROR("malloc struct lttng_consumer_channel");
1036 goto end;
1037 }
1038
1039 channel->key = key;
1040 channel->refcount = 0;
1041 channel->session_id = session_id;
1042 channel->session_id_per_pid = session_id_per_pid;
1043 channel->relayd_id = relayd_id;
1044 channel->tracefile_size = tracefile_size;
1045 channel->tracefile_count = tracefile_count;
1046 channel->monitor = monitor;
1047 channel->live_timer_interval = live_timer_interval;
1048 channel->is_live = is_in_live_session;
1049 pthread_mutex_init(&channel->lock, NULL);
1050 pthread_mutex_init(&channel->timer_lock, NULL);
1051
1052 switch (output) {
1053 case LTTNG_EVENT_SPLICE:
1054 channel->output = CONSUMER_CHANNEL_SPLICE;
1055 break;
1056 case LTTNG_EVENT_MMAP:
1057 channel->output = CONSUMER_CHANNEL_MMAP;
1058 break;
1059 default:
1060 assert(0);
1061 free(channel);
1062 channel = NULL;
1063 goto end;
1064 }
1065
1066 /*
1067 * In monitor mode, the streams associated with the channel will be put in
1068 * a special list ONLY owned by this channel. So, the refcount is set to 1
1069 * here meaning that the channel itself has streams that are referenced.
1070 *
1071 * On a channel deletion, once the channel is no longer visible, the
1072 * refcount is decremented and checked for a zero value to delete it. With
1073 * streams in no monitor mode, it will now be safe to destroy the channel.
1074 */
1075 if (!channel->monitor) {
1076 channel->refcount = 1;
1077 }
1078
1079 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1080 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1081
1082 strncpy(channel->name, name, sizeof(channel->name));
1083 channel->name[sizeof(channel->name) - 1] = '\0';
1084
1085 if (root_shm_path) {
1086 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1087 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1088 }
1089 if (shm_path) {
1090 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1091 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1092 }
1093
1094 lttng_ht_node_init_u64(&channel->node, channel->key);
1095 lttng_ht_node_init_u64(&channel->channels_by_session_id_ht_node,
1096 channel->session_id);
1097
1098 channel->wait_fd = -1;
1099 CDS_INIT_LIST_HEAD(&channel->streams.head);
1100
1101 if (trace_chunk) {
1102 int ret = lttng_consumer_channel_set_trace_chunk(channel,
1103 trace_chunk);
1104 if (ret) {
1105 goto error;
1106 }
1107 }
1108
1109 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1110
1111 end:
1112 lttng_trace_chunk_put(trace_chunk);
1113 return channel;
1114 error:
1115 consumer_del_channel(channel);
1116 channel = NULL;
1117 goto end;
1118 }
1119
1120 /*
1121 * Add a channel to the global list protected by a mutex.
1122 *
1123 * Always return 0 indicating success.
1124 */
1125 int consumer_add_channel(struct lttng_consumer_channel *channel,
1126 struct lttng_consumer_local_data *ctx)
1127 {
1128 pthread_mutex_lock(&consumer_data.lock);
1129 pthread_mutex_lock(&channel->lock);
1130 pthread_mutex_lock(&channel->timer_lock);
1131
1132 /*
1133 * This gives us a guarantee that the channel we are about to add to the
1134 * channel hash table will be unique. See this function comment on the why
1135 * we need to steel the channel key at this stage.
1136 */
1137 steal_channel_key(channel->key);
1138
1139 rcu_read_lock();
1140 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1141 lttng_ht_add_u64(consumer_data.channels_by_session_id_ht,
1142 &channel->channels_by_session_id_ht_node);
1143 rcu_read_unlock();
1144 channel->is_published = true;
1145
1146 pthread_mutex_unlock(&channel->timer_lock);
1147 pthread_mutex_unlock(&channel->lock);
1148 pthread_mutex_unlock(&consumer_data.lock);
1149
1150 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1151 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1152 }
1153
1154 return 0;
1155 }
1156
1157 /*
1158 * Allocate the pollfd structure and the local view of the out fds to avoid
1159 * doing a lookup in the linked list and concurrency issues when writing is
1160 * needed. Called with consumer_data.lock held.
1161 *
1162 * Returns the number of fds in the structures.
1163 */
1164 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1165 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1166 struct lttng_ht *ht, int *nb_inactive_fd)
1167 {
1168 int i = 0;
1169 struct lttng_ht_iter iter;
1170 struct lttng_consumer_stream *stream;
1171
1172 assert(ctx);
1173 assert(ht);
1174 assert(pollfd);
1175 assert(local_stream);
1176
1177 DBG("Updating poll fd array");
1178 *nb_inactive_fd = 0;
1179 rcu_read_lock();
1180 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1181 /*
1182 * Only active streams with an active end point can be added to the
1183 * poll set and local stream storage of the thread.
1184 *
1185 * There is a potential race here for endpoint_status to be updated
1186 * just after the check. However, this is OK since the stream(s) will
1187 * be deleted once the thread is notified that the end point state has
1188 * changed where this function will be called back again.
1189 *
1190 * We track the number of inactive FDs because they still need to be
1191 * closed by the polling thread after a wakeup on the data_pipe or
1192 * metadata_pipe.
1193 */
1194 if (stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1195 (*nb_inactive_fd)++;
1196 continue;
1197 }
1198 /*
1199 * This clobbers way too much the debug output. Uncomment that if you
1200 * need it for debugging purposes.
1201 */
1202 (*pollfd)[i].fd = stream->wait_fd;
1203 (*pollfd)[i].events = POLLIN | POLLPRI;
1204 local_stream[i] = stream;
1205 i++;
1206 }
1207 rcu_read_unlock();
1208
1209 /*
1210 * Insert the consumer_data_pipe at the end of the array and don't
1211 * increment i so nb_fd is the number of real FD.
1212 */
1213 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1214 (*pollfd)[i].events = POLLIN | POLLPRI;
1215
1216 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1217 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1218 return i;
1219 }
1220
1221 /*
1222 * Poll on the should_quit pipe and the command socket return -1 on
1223 * error, 1 if should exit, 0 if data is available on the command socket
1224 */
1225 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1226 {
1227 int num_rdy;
1228
1229 restart:
1230 num_rdy = poll(consumer_sockpoll, 2, -1);
1231 if (num_rdy == -1) {
1232 /*
1233 * Restart interrupted system call.
1234 */
1235 if (errno == EINTR) {
1236 goto restart;
1237 }
1238 PERROR("Poll error");
1239 return -1;
1240 }
1241 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1242 DBG("consumer_should_quit wake up");
1243 return 1;
1244 }
1245 return 0;
1246 }
1247
1248 /*
1249 * Set the error socket.
1250 */
1251 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1252 int sock)
1253 {
1254 ctx->consumer_error_socket = sock;
1255 }
1256
1257 /*
1258 * Set the command socket path.
1259 */
1260 void lttng_consumer_set_command_sock_path(
1261 struct lttng_consumer_local_data *ctx, char *sock)
1262 {
1263 ctx->consumer_command_sock_path = sock;
1264 }
1265
1266 /*
1267 * Send return code to the session daemon.
1268 * If the socket is not defined, we return 0, it is not a fatal error
1269 */
1270 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1271 {
1272 if (ctx->consumer_error_socket > 0) {
1273 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1274 sizeof(enum lttcomm_sessiond_command));
1275 }
1276
1277 return 0;
1278 }
1279
1280 /*
1281 * Close all the tracefiles and stream fds and MUST be called when all
1282 * instances are destroyed i.e. when all threads were joined and are ended.
1283 */
1284 void lttng_consumer_cleanup(void)
1285 {
1286 struct lttng_ht_iter iter;
1287 struct lttng_consumer_channel *channel;
1288 unsigned int trace_chunks_left;
1289
1290 rcu_read_lock();
1291
1292 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1293 node.node) {
1294 consumer_del_channel(channel);
1295 }
1296
1297 rcu_read_unlock();
1298
1299 lttng_ht_destroy(consumer_data.channel_ht);
1300 lttng_ht_destroy(consumer_data.channels_by_session_id_ht);
1301
1302 cleanup_relayd_ht();
1303
1304 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1305
1306 /*
1307 * This HT contains streams that are freed by either the metadata thread or
1308 * the data thread so we do *nothing* on the hash table and simply destroy
1309 * it.
1310 */
1311 lttng_ht_destroy(consumer_data.stream_list_ht);
1312
1313 /*
1314 * Trace chunks in the registry may still exist if the session
1315 * daemon has encountered an internal error and could not
1316 * tear down its sessions and/or trace chunks properly.
1317 *
1318 * Release the session daemon's implicit reference to any remaining
1319 * trace chunk and print an error if any trace chunk was found. Note
1320 * that there are _no_ legitimate cases for trace chunks to be left,
1321 * it is a leak. However, it can happen following a crash of the
1322 * session daemon and not emptying the registry would cause an assertion
1323 * to hit.
1324 */
1325 trace_chunks_left = lttng_trace_chunk_registry_put_each_chunk(
1326 consumer_data.chunk_registry);
1327 if (trace_chunks_left) {
1328 ERR("%u trace chunks are leaked by lttng-consumerd. "
1329 "This can be caused by an internal error of the session daemon.",
1330 trace_chunks_left);
1331 }
1332 /* Run all callbacks freeing each chunk. */
1333 rcu_barrier();
1334 lttng_trace_chunk_registry_destroy(consumer_data.chunk_registry);
1335 }
1336
1337 /*
1338 * Called from signal handler.
1339 */
1340 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1341 {
1342 ssize_t ret;
1343
1344 CMM_STORE_SHARED(consumer_quit, 1);
1345 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1346 if (ret < 1) {
1347 PERROR("write consumer quit");
1348 }
1349
1350 DBG("Consumer flag that it should quit");
1351 }
1352
1353
1354 /*
1355 * Flush pending writes to trace output disk file.
1356 */
1357 static
1358 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1359 off_t orig_offset)
1360 {
1361 int ret;
1362 int outfd = stream->out_fd;
1363
1364 /*
1365 * This does a blocking write-and-wait on any page that belongs to the
1366 * subbuffer prior to the one we just wrote.
1367 * Don't care about error values, as these are just hints and ways to
1368 * limit the amount of page cache used.
1369 */
1370 if (orig_offset < stream->max_sb_size) {
1371 return;
1372 }
1373 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1374 stream->max_sb_size,
1375 SYNC_FILE_RANGE_WAIT_BEFORE
1376 | SYNC_FILE_RANGE_WRITE
1377 | SYNC_FILE_RANGE_WAIT_AFTER);
1378 /*
1379 * Give hints to the kernel about how we access the file:
1380 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1381 * we write it.
1382 *
1383 * We need to call fadvise again after the file grows because the
1384 * kernel does not seem to apply fadvise to non-existing parts of the
1385 * file.
1386 *
1387 * Call fadvise _after_ having waited for the page writeback to
1388 * complete because the dirty page writeback semantic is not well
1389 * defined. So it can be expected to lead to lower throughput in
1390 * streaming.
1391 */
1392 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1393 stream->max_sb_size, POSIX_FADV_DONTNEED);
1394 if (ret && ret != -ENOSYS) {
1395 errno = ret;
1396 PERROR("posix_fadvise on fd %i", outfd);
1397 }
1398 }
1399
1400 /*
1401 * Initialise the necessary environnement :
1402 * - create a new context
1403 * - create the poll_pipe
1404 * - create the should_quit pipe (for signal handler)
1405 * - create the thread pipe (for splice)
1406 *
1407 * Takes a function pointer as argument, this function is called when data is
1408 * available on a buffer. This function is responsible to do the
1409 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1410 * buffer configuration and then kernctl_put_next_subbuf at the end.
1411 *
1412 * Returns a pointer to the new context or NULL on error.
1413 */
1414 struct lttng_consumer_local_data *lttng_consumer_create(
1415 enum lttng_consumer_type type,
1416 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1417 struct lttng_consumer_local_data *ctx, bool locked_by_caller),
1418 int (*recv_channel)(struct lttng_consumer_channel *channel),
1419 int (*recv_stream)(struct lttng_consumer_stream *stream),
1420 int (*update_stream)(uint64_t stream_key, uint32_t state))
1421 {
1422 int ret;
1423 struct lttng_consumer_local_data *ctx;
1424
1425 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1426 consumer_data.type == type);
1427 consumer_data.type = type;
1428
1429 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1430 if (ctx == NULL) {
1431 PERROR("allocating context");
1432 goto error;
1433 }
1434
1435 ctx->consumer_error_socket = -1;
1436 ctx->consumer_metadata_socket = -1;
1437 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1438 /* assign the callbacks */
1439 ctx->on_buffer_ready = buffer_ready;
1440 ctx->on_recv_channel = recv_channel;
1441 ctx->on_recv_stream = recv_stream;
1442 ctx->on_update_stream = update_stream;
1443
1444 ctx->consumer_data_pipe = lttng_pipe_open(0);
1445 if (!ctx->consumer_data_pipe) {
1446 goto error_poll_pipe;
1447 }
1448
1449 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1450 if (!ctx->consumer_wakeup_pipe) {
1451 goto error_wakeup_pipe;
1452 }
1453
1454 ret = pipe(ctx->consumer_should_quit);
1455 if (ret < 0) {
1456 PERROR("Error creating recv pipe");
1457 goto error_quit_pipe;
1458 }
1459
1460 ret = pipe(ctx->consumer_channel_pipe);
1461 if (ret < 0) {
1462 PERROR("Error creating channel pipe");
1463 goto error_channel_pipe;
1464 }
1465
1466 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1467 if (!ctx->consumer_metadata_pipe) {
1468 goto error_metadata_pipe;
1469 }
1470
1471 ctx->channel_monitor_pipe = -1;
1472
1473 return ctx;
1474
1475 error_metadata_pipe:
1476 utils_close_pipe(ctx->consumer_channel_pipe);
1477 error_channel_pipe:
1478 utils_close_pipe(ctx->consumer_should_quit);
1479 error_quit_pipe:
1480 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1481 error_wakeup_pipe:
1482 lttng_pipe_destroy(ctx->consumer_data_pipe);
1483 error_poll_pipe:
1484 free(ctx);
1485 error:
1486 return NULL;
1487 }
1488
1489 /*
1490 * Iterate over all streams of the hashtable and free them properly.
1491 */
1492 static void destroy_data_stream_ht(struct lttng_ht *ht)
1493 {
1494 struct lttng_ht_iter iter;
1495 struct lttng_consumer_stream *stream;
1496
1497 if (ht == NULL) {
1498 return;
1499 }
1500
1501 rcu_read_lock();
1502 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1503 /*
1504 * Ignore return value since we are currently cleaning up so any error
1505 * can't be handled.
1506 */
1507 (void) consumer_del_stream(stream, ht);
1508 }
1509 rcu_read_unlock();
1510
1511 lttng_ht_destroy(ht);
1512 }
1513
1514 /*
1515 * Iterate over all streams of the metadata hashtable and free them
1516 * properly.
1517 */
1518 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1519 {
1520 struct lttng_ht_iter iter;
1521 struct lttng_consumer_stream *stream;
1522
1523 if (ht == NULL) {
1524 return;
1525 }
1526
1527 rcu_read_lock();
1528 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1529 /*
1530 * Ignore return value since we are currently cleaning up so any error
1531 * can't be handled.
1532 */
1533 (void) consumer_del_metadata_stream(stream, ht);
1534 }
1535 rcu_read_unlock();
1536
1537 lttng_ht_destroy(ht);
1538 }
1539
1540 /*
1541 * Close all fds associated with the instance and free the context.
1542 */
1543 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1544 {
1545 int ret;
1546
1547 DBG("Consumer destroying it. Closing everything.");
1548
1549 if (!ctx) {
1550 return;
1551 }
1552
1553 destroy_data_stream_ht(data_ht);
1554 destroy_metadata_stream_ht(metadata_ht);
1555
1556 ret = close(ctx->consumer_error_socket);
1557 if (ret) {
1558 PERROR("close");
1559 }
1560 ret = close(ctx->consumer_metadata_socket);
1561 if (ret) {
1562 PERROR("close");
1563 }
1564 utils_close_pipe(ctx->consumer_channel_pipe);
1565 lttng_pipe_destroy(ctx->consumer_data_pipe);
1566 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1567 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1568 utils_close_pipe(ctx->consumer_should_quit);
1569
1570 unlink(ctx->consumer_command_sock_path);
1571 free(ctx);
1572 }
1573
1574 /*
1575 * Write the metadata stream id on the specified file descriptor.
1576 */
1577 static int write_relayd_metadata_id(int fd,
1578 struct lttng_consumer_stream *stream,
1579 unsigned long padding)
1580 {
1581 ssize_t ret;
1582 struct lttcomm_relayd_metadata_payload hdr;
1583
1584 hdr.stream_id = htobe64(stream->relayd_stream_id);
1585 hdr.padding_size = htobe32(padding);
1586 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1587 if (ret < sizeof(hdr)) {
1588 /*
1589 * This error means that the fd's end is closed so ignore the PERROR
1590 * not to clubber the error output since this can happen in a normal
1591 * code path.
1592 */
1593 if (errno != EPIPE) {
1594 PERROR("write metadata stream id");
1595 }
1596 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1597 /*
1598 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1599 * handle writting the missing part so report that as an error and
1600 * don't lie to the caller.
1601 */
1602 ret = -1;
1603 goto end;
1604 }
1605 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1606 stream->relayd_stream_id, padding);
1607
1608 end:
1609 return (int) ret;
1610 }
1611
1612 /*
1613 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1614 * core function for writing trace buffers to either the local filesystem or
1615 * the network.
1616 *
1617 * It must be called with the stream and the channel lock held.
1618 *
1619 * Careful review MUST be put if any changes occur!
1620 *
1621 * Returns the number of bytes written
1622 */
1623 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1624 struct lttng_consumer_stream *stream,
1625 const struct lttng_buffer_view *buffer,
1626 unsigned long padding)
1627 {
1628 ssize_t ret = 0;
1629 off_t orig_offset = stream->out_fd_offset;
1630 /* Default is on the disk */
1631 int outfd = stream->out_fd;
1632 struct consumer_relayd_sock_pair *relayd = NULL;
1633 unsigned int relayd_hang_up = 0;
1634 const size_t subbuf_content_size = buffer->size - padding;
1635 size_t write_len;
1636
1637 /* RCU lock for the relayd pointer */
1638 rcu_read_lock();
1639 assert(stream->net_seq_idx != (uint64_t) -1ULL ||
1640 stream->trace_chunk);
1641
1642 /* Flag that the current stream if set for network streaming. */
1643 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1644 relayd = consumer_find_relayd(stream->net_seq_idx);
1645 if (relayd == NULL) {
1646 ret = -EPIPE;
1647 goto end;
1648 }
1649 }
1650
1651 /* Handle stream on the relayd if the output is on the network */
1652 if (relayd) {
1653 unsigned long netlen = subbuf_content_size;
1654
1655 /*
1656 * Lock the control socket for the complete duration of the function
1657 * since from this point on we will use the socket.
1658 */
1659 if (stream->metadata_flag) {
1660 /* Metadata requires the control socket. */
1661 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1662 if (stream->reset_metadata_flag) {
1663 ret = relayd_reset_metadata(&relayd->control_sock,
1664 stream->relayd_stream_id,
1665 stream->metadata_version);
1666 if (ret < 0) {
1667 relayd_hang_up = 1;
1668 goto write_error;
1669 }
1670 stream->reset_metadata_flag = 0;
1671 }
1672 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1673 }
1674
1675 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1676 if (ret < 0) {
1677 relayd_hang_up = 1;
1678 goto write_error;
1679 }
1680 /* Use the returned socket. */
1681 outfd = ret;
1682
1683 /* Write metadata stream id before payload */
1684 if (stream->metadata_flag) {
1685 ret = write_relayd_metadata_id(outfd, stream, padding);
1686 if (ret < 0) {
1687 relayd_hang_up = 1;
1688 goto write_error;
1689 }
1690 }
1691
1692 write_len = subbuf_content_size;
1693 } else {
1694 /* No streaming; we have to write the full padding. */
1695 if (stream->metadata_flag && stream->reset_metadata_flag) {
1696 ret = utils_truncate_stream_file(stream->out_fd, 0);
1697 if (ret < 0) {
1698 ERR("Reset metadata file");
1699 goto end;
1700 }
1701 stream->reset_metadata_flag = 0;
1702 }
1703
1704 /*
1705 * Check if we need to change the tracefile before writing the packet.
1706 */
1707 if (stream->chan->tracefile_size > 0 &&
1708 (stream->tracefile_size_current + buffer->size) >
1709 stream->chan->tracefile_size) {
1710 ret = consumer_stream_rotate_output_files(stream);
1711 if (ret) {
1712 goto end;
1713 }
1714 outfd = stream->out_fd;
1715 orig_offset = 0;
1716 }
1717 stream->tracefile_size_current += buffer->size;
1718 write_len = buffer->size;
1719 }
1720
1721 /*
1722 * This call guarantee that len or less is returned. It's impossible to
1723 * receive a ret value that is bigger than len.
1724 */
1725 ret = lttng_write(outfd, buffer->data, write_len);
1726 DBG("Consumer mmap write() ret %zd (len %zu)", ret, write_len);
1727 if (ret < 0 || ((size_t) ret != write_len)) {
1728 /*
1729 * Report error to caller if nothing was written else at least send the
1730 * amount written.
1731 */
1732 if (ret < 0) {
1733 ret = -errno;
1734 }
1735 relayd_hang_up = 1;
1736
1737 /* Socket operation failed. We consider the relayd dead */
1738 if (errno == EPIPE) {
1739 /*
1740 * This is possible if the fd is closed on the other side
1741 * (outfd) or any write problem. It can be verbose a bit for a
1742 * normal execution if for instance the relayd is stopped
1743 * abruptly. This can happen so set this to a DBG statement.
1744 */
1745 DBG("Consumer mmap write detected relayd hang up");
1746 } else {
1747 /* Unhandled error, print it and stop function right now. */
1748 PERROR("Error in write mmap (ret %zd != write_len %zu)", ret,
1749 write_len);
1750 }
1751 goto write_error;
1752 }
1753 stream->output_written += ret;
1754
1755 /* This call is useless on a socket so better save a syscall. */
1756 if (!relayd) {
1757 /* This won't block, but will start writeout asynchronously */
1758 lttng_sync_file_range(outfd, stream->out_fd_offset, write_len,
1759 SYNC_FILE_RANGE_WRITE);
1760 stream->out_fd_offset += write_len;
1761 lttng_consumer_sync_trace_file(stream, orig_offset);
1762 }
1763
1764 write_error:
1765 /*
1766 * This is a special case that the relayd has closed its socket. Let's
1767 * cleanup the relayd object and all associated streams.
1768 */
1769 if (relayd && relayd_hang_up) {
1770 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1771 lttng_consumer_cleanup_relayd(relayd);
1772 }
1773
1774 end:
1775 /* Unlock only if ctrl socket used */
1776 if (relayd && stream->metadata_flag) {
1777 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1778 }
1779
1780 rcu_read_unlock();
1781 return ret;
1782 }
1783
1784 /*
1785 * Splice the data from the ring buffer to the tracefile.
1786 *
1787 * It must be called with the stream lock held.
1788 *
1789 * Returns the number of bytes spliced.
1790 */
1791 ssize_t lttng_consumer_on_read_subbuffer_splice(
1792 struct lttng_consumer_local_data *ctx,
1793 struct lttng_consumer_stream *stream, unsigned long len,
1794 unsigned long padding)
1795 {
1796 ssize_t ret = 0, written = 0, ret_splice = 0;
1797 loff_t offset = 0;
1798 off_t orig_offset = stream->out_fd_offset;
1799 int fd = stream->wait_fd;
1800 /* Default is on the disk */
1801 int outfd = stream->out_fd;
1802 struct consumer_relayd_sock_pair *relayd = NULL;
1803 int *splice_pipe;
1804 unsigned int relayd_hang_up = 0;
1805
1806 switch (consumer_data.type) {
1807 case LTTNG_CONSUMER_KERNEL:
1808 break;
1809 case LTTNG_CONSUMER32_UST:
1810 case LTTNG_CONSUMER64_UST:
1811 /* Not supported for user space tracing */
1812 return -ENOSYS;
1813 default:
1814 ERR("Unknown consumer_data type");
1815 assert(0);
1816 }
1817
1818 /* RCU lock for the relayd pointer */
1819 rcu_read_lock();
1820
1821 /* Flag that the current stream if set for network streaming. */
1822 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1823 relayd = consumer_find_relayd(stream->net_seq_idx);
1824 if (relayd == NULL) {
1825 written = -ret;
1826 goto end;
1827 }
1828 }
1829 splice_pipe = stream->splice_pipe;
1830
1831 /* Write metadata stream id before payload */
1832 if (relayd) {
1833 unsigned long total_len = len;
1834
1835 if (stream->metadata_flag) {
1836 /*
1837 * Lock the control socket for the complete duration of the function
1838 * since from this point on we will use the socket.
1839 */
1840 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1841
1842 if (stream->reset_metadata_flag) {
1843 ret = relayd_reset_metadata(&relayd->control_sock,
1844 stream->relayd_stream_id,
1845 stream->metadata_version);
1846 if (ret < 0) {
1847 relayd_hang_up = 1;
1848 goto write_error;
1849 }
1850 stream->reset_metadata_flag = 0;
1851 }
1852 ret = write_relayd_metadata_id(splice_pipe[1], stream,
1853 padding);
1854 if (ret < 0) {
1855 written = ret;
1856 relayd_hang_up = 1;
1857 goto write_error;
1858 }
1859
1860 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1861 }
1862
1863 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1864 if (ret < 0) {
1865 written = ret;
1866 relayd_hang_up = 1;
1867 goto write_error;
1868 }
1869 /* Use the returned socket. */
1870 outfd = ret;
1871 } else {
1872 /* No streaming, we have to set the len with the full padding */
1873 len += padding;
1874
1875 if (stream->metadata_flag && stream->reset_metadata_flag) {
1876 ret = utils_truncate_stream_file(stream->out_fd, 0);
1877 if (ret < 0) {
1878 ERR("Reset metadata file");
1879 goto end;
1880 }
1881 stream->reset_metadata_flag = 0;
1882 }
1883 /*
1884 * Check if we need to change the tracefile before writing the packet.
1885 */
1886 if (stream->chan->tracefile_size > 0 &&
1887 (stream->tracefile_size_current + len) >
1888 stream->chan->tracefile_size) {
1889 ret = consumer_stream_rotate_output_files(stream);
1890 if (ret < 0) {
1891 written = ret;
1892 goto end;
1893 }
1894 outfd = stream->out_fd;
1895 orig_offset = 0;
1896 }
1897 stream->tracefile_size_current += len;
1898 }
1899
1900 while (len > 0) {
1901 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1902 (unsigned long)offset, len, fd, splice_pipe[1]);
1903 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1904 SPLICE_F_MOVE | SPLICE_F_MORE);
1905 DBG("splice chan to pipe, ret %zd", ret_splice);
1906 if (ret_splice < 0) {
1907 ret = errno;
1908 written = -ret;
1909 PERROR("Error in relay splice");
1910 goto splice_error;
1911 }
1912
1913 /* Handle stream on the relayd if the output is on the network */
1914 if (relayd && stream->metadata_flag) {
1915 size_t metadata_payload_size =
1916 sizeof(struct lttcomm_relayd_metadata_payload);
1917
1918 /* Update counter to fit the spliced data */
1919 ret_splice += metadata_payload_size;
1920 len += metadata_payload_size;
1921 /*
1922 * We do this so the return value can match the len passed as
1923 * argument to this function.
1924 */
1925 written -= metadata_payload_size;
1926 }
1927
1928 /* Splice data out */
1929 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1930 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1931 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1932 outfd, ret_splice);
1933 if (ret_splice < 0) {
1934 ret = errno;
1935 written = -ret;
1936 relayd_hang_up = 1;
1937 goto write_error;
1938 } else if (ret_splice > len) {
1939 /*
1940 * We don't expect this code path to be executed but you never know
1941 * so this is an extra protection agains a buggy splice().
1942 */
1943 ret = errno;
1944 written += ret_splice;
1945 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1946 len);
1947 goto splice_error;
1948 } else {
1949 /* All good, update current len and continue. */
1950 len -= ret_splice;
1951 }
1952
1953 /* This call is useless on a socket so better save a syscall. */
1954 if (!relayd) {
1955 /* This won't block, but will start writeout asynchronously */
1956 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1957 SYNC_FILE_RANGE_WRITE);
1958 stream->out_fd_offset += ret_splice;
1959 }
1960 stream->output_written += ret_splice;
1961 written += ret_splice;
1962 }
1963 if (!relayd) {
1964 lttng_consumer_sync_trace_file(stream, orig_offset);
1965 }
1966 goto end;
1967
1968 write_error:
1969 /*
1970 * This is a special case that the relayd has closed its socket. Let's
1971 * cleanup the relayd object and all associated streams.
1972 */
1973 if (relayd && relayd_hang_up) {
1974 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1975 lttng_consumer_cleanup_relayd(relayd);
1976 /* Skip splice error so the consumer does not fail */
1977 goto end;
1978 }
1979
1980 splice_error:
1981 /* send the appropriate error description to sessiond */
1982 switch (ret) {
1983 case EINVAL:
1984 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1985 break;
1986 case ENOMEM:
1987 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1988 break;
1989 case ESPIPE:
1990 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1991 break;
1992 }
1993
1994 end:
1995 if (relayd && stream->metadata_flag) {
1996 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1997 }
1998
1999 rcu_read_unlock();
2000 return written;
2001 }
2002
2003 /*
2004 * Sample the snapshot positions for a specific fd
2005 *
2006 * Returns 0 on success, < 0 on error
2007 */
2008 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
2009 {
2010 switch (consumer_data.type) {
2011 case LTTNG_CONSUMER_KERNEL:
2012 return lttng_kconsumer_sample_snapshot_positions(stream);
2013 case LTTNG_CONSUMER32_UST:
2014 case LTTNG_CONSUMER64_UST:
2015 return lttng_ustconsumer_sample_snapshot_positions(stream);
2016 default:
2017 ERR("Unknown consumer_data type");
2018 assert(0);
2019 return -ENOSYS;
2020 }
2021 }
2022 /*
2023 * Take a snapshot for a specific fd
2024 *
2025 * Returns 0 on success, < 0 on error
2026 */
2027 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
2028 {
2029 switch (consumer_data.type) {
2030 case LTTNG_CONSUMER_KERNEL:
2031 return lttng_kconsumer_take_snapshot(stream);
2032 case LTTNG_CONSUMER32_UST:
2033 case LTTNG_CONSUMER64_UST:
2034 return lttng_ustconsumer_take_snapshot(stream);
2035 default:
2036 ERR("Unknown consumer_data type");
2037 assert(0);
2038 return -ENOSYS;
2039 }
2040 }
2041
2042 /*
2043 * Get the produced position
2044 *
2045 * Returns 0 on success, < 0 on error
2046 */
2047 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2048 unsigned long *pos)
2049 {
2050 switch (consumer_data.type) {
2051 case LTTNG_CONSUMER_KERNEL:
2052 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2053 case LTTNG_CONSUMER32_UST:
2054 case LTTNG_CONSUMER64_UST:
2055 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2056 default:
2057 ERR("Unknown consumer_data type");
2058 assert(0);
2059 return -ENOSYS;
2060 }
2061 }
2062
2063 /*
2064 * Get the consumed position (free-running counter position in bytes).
2065 *
2066 * Returns 0 on success, < 0 on error
2067 */
2068 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2069 unsigned long *pos)
2070 {
2071 switch (consumer_data.type) {
2072 case LTTNG_CONSUMER_KERNEL:
2073 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2074 case LTTNG_CONSUMER32_UST:
2075 case LTTNG_CONSUMER64_UST:
2076 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2077 default:
2078 ERR("Unknown consumer_data type");
2079 assert(0);
2080 return -ENOSYS;
2081 }
2082 }
2083
2084 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2085 int sock, struct pollfd *consumer_sockpoll)
2086 {
2087 switch (consumer_data.type) {
2088 case LTTNG_CONSUMER_KERNEL:
2089 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2090 case LTTNG_CONSUMER32_UST:
2091 case LTTNG_CONSUMER64_UST:
2092 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2093 default:
2094 ERR("Unknown consumer_data type");
2095 assert(0);
2096 return -ENOSYS;
2097 }
2098 }
2099
2100 void lttng_consumer_close_all_metadata(void)
2101 {
2102 switch (consumer_data.type) {
2103 case LTTNG_CONSUMER_KERNEL:
2104 /*
2105 * The Kernel consumer has a different metadata scheme so we don't
2106 * close anything because the stream will be closed by the session
2107 * daemon.
2108 */
2109 break;
2110 case LTTNG_CONSUMER32_UST:
2111 case LTTNG_CONSUMER64_UST:
2112 /*
2113 * Close all metadata streams. The metadata hash table is passed and
2114 * this call iterates over it by closing all wakeup fd. This is safe
2115 * because at this point we are sure that the metadata producer is
2116 * either dead or blocked.
2117 */
2118 lttng_ustconsumer_close_all_metadata(metadata_ht);
2119 break;
2120 default:
2121 ERR("Unknown consumer_data type");
2122 assert(0);
2123 }
2124 }
2125
2126 /*
2127 * Clean up a metadata stream and free its memory.
2128 */
2129 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2130 struct lttng_ht *ht)
2131 {
2132 struct lttng_consumer_channel *channel = NULL;
2133 bool free_channel = false;
2134
2135 assert(stream);
2136 /*
2137 * This call should NEVER receive regular stream. It must always be
2138 * metadata stream and this is crucial for data structure synchronization.
2139 */
2140 assert(stream->metadata_flag);
2141
2142 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2143
2144 pthread_mutex_lock(&consumer_data.lock);
2145 /*
2146 * Note that this assumes that a stream's channel is never changed and
2147 * that the stream's lock doesn't need to be taken to sample its
2148 * channel.
2149 */
2150 channel = stream->chan;
2151 pthread_mutex_lock(&channel->lock);
2152 pthread_mutex_lock(&stream->lock);
2153 if (channel->metadata_cache) {
2154 /* Only applicable to userspace consumers. */
2155 pthread_mutex_lock(&channel->metadata_cache->lock);
2156 }
2157
2158 /* Remove any reference to that stream. */
2159 consumer_stream_delete(stream, ht);
2160
2161 /* Close down everything including the relayd if one. */
2162 consumer_stream_close(stream);
2163 /* Destroy tracer buffers of the stream. */
2164 consumer_stream_destroy_buffers(stream);
2165
2166 /* Atomically decrement channel refcount since other threads can use it. */
2167 if (!uatomic_sub_return(&channel->refcount, 1)
2168 && !uatomic_read(&channel->nb_init_stream_left)) {
2169 /* Go for channel deletion! */
2170 free_channel = true;
2171 }
2172 stream->chan = NULL;
2173
2174 /*
2175 * Nullify the stream reference so it is not used after deletion. The
2176 * channel lock MUST be acquired before being able to check for a NULL
2177 * pointer value.
2178 */
2179 channel->metadata_stream = NULL;
2180
2181 if (channel->metadata_cache) {
2182 pthread_mutex_unlock(&channel->metadata_cache->lock);
2183 }
2184 pthread_mutex_unlock(&stream->lock);
2185 pthread_mutex_unlock(&channel->lock);
2186 pthread_mutex_unlock(&consumer_data.lock);
2187
2188 if (free_channel) {
2189 consumer_del_channel(channel);
2190 }
2191
2192 lttng_trace_chunk_put(stream->trace_chunk);
2193 stream->trace_chunk = NULL;
2194 consumer_stream_free(stream);
2195 }
2196
2197 /*
2198 * Action done with the metadata stream when adding it to the consumer internal
2199 * data structures to handle it.
2200 */
2201 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2202 {
2203 struct lttng_ht *ht = metadata_ht;
2204 struct lttng_ht_iter iter;
2205 struct lttng_ht_node_u64 *node;
2206
2207 assert(stream);
2208 assert(ht);
2209
2210 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2211
2212 pthread_mutex_lock(&consumer_data.lock);
2213 pthread_mutex_lock(&stream->chan->lock);
2214 pthread_mutex_lock(&stream->chan->timer_lock);
2215 pthread_mutex_lock(&stream->lock);
2216
2217 /*
2218 * From here, refcounts are updated so be _careful_ when returning an error
2219 * after this point.
2220 */
2221
2222 rcu_read_lock();
2223
2224 /*
2225 * Lookup the stream just to make sure it does not exist in our internal
2226 * state. This should NEVER happen.
2227 */
2228 lttng_ht_lookup(ht, &stream->key, &iter);
2229 node = lttng_ht_iter_get_node_u64(&iter);
2230 assert(!node);
2231
2232 /*
2233 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2234 * in terms of destroying the associated channel, because the action that
2235 * causes the count to become 0 also causes a stream to be added. The
2236 * channel deletion will thus be triggered by the following removal of this
2237 * stream.
2238 */
2239 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2240 /* Increment refcount before decrementing nb_init_stream_left */
2241 cmm_smp_wmb();
2242 uatomic_dec(&stream->chan->nb_init_stream_left);
2243 }
2244
2245 lttng_ht_add_unique_u64(ht, &stream->node);
2246
2247 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2248 &stream->node_channel_id);
2249
2250 /*
2251 * Add stream to the stream_list_ht of the consumer data. No need to steal
2252 * the key since the HT does not use it and we allow to add redundant keys
2253 * into this table.
2254 */
2255 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2256
2257 rcu_read_unlock();
2258
2259 pthread_mutex_unlock(&stream->lock);
2260 pthread_mutex_unlock(&stream->chan->lock);
2261 pthread_mutex_unlock(&stream->chan->timer_lock);
2262 pthread_mutex_unlock(&consumer_data.lock);
2263 }
2264
2265 /*
2266 * Delete data stream that are flagged for deletion (endpoint_status).
2267 */
2268 static void validate_endpoint_status_data_stream(void)
2269 {
2270 struct lttng_ht_iter iter;
2271 struct lttng_consumer_stream *stream;
2272
2273 DBG("Consumer delete flagged data stream");
2274
2275 rcu_read_lock();
2276 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2277 /* Validate delete flag of the stream */
2278 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2279 continue;
2280 }
2281 /* Delete it right now */
2282 consumer_del_stream(stream, data_ht);
2283 }
2284 rcu_read_unlock();
2285 }
2286
2287 /*
2288 * Delete metadata stream that are flagged for deletion (endpoint_status).
2289 */
2290 static void validate_endpoint_status_metadata_stream(
2291 struct lttng_poll_event *pollset)
2292 {
2293 struct lttng_ht_iter iter;
2294 struct lttng_consumer_stream *stream;
2295
2296 DBG("Consumer delete flagged metadata stream");
2297
2298 assert(pollset);
2299
2300 rcu_read_lock();
2301 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2302 /* Validate delete flag of the stream */
2303 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2304 continue;
2305 }
2306 /*
2307 * Remove from pollset so the metadata thread can continue without
2308 * blocking on a deleted stream.
2309 */
2310 lttng_poll_del(pollset, stream->wait_fd);
2311
2312 /* Delete it right now */
2313 consumer_del_metadata_stream(stream, metadata_ht);
2314 }
2315 rcu_read_unlock();
2316 }
2317
2318 /*
2319 * Thread polls on metadata file descriptor and write them on disk or on the
2320 * network.
2321 */
2322 void *consumer_thread_metadata_poll(void *data)
2323 {
2324 int ret, i, pollfd, err = -1;
2325 uint32_t revents, nb_fd;
2326 struct lttng_consumer_stream *stream = NULL;
2327 struct lttng_ht_iter iter;
2328 struct lttng_ht_node_u64 *node;
2329 struct lttng_poll_event events;
2330 struct lttng_consumer_local_data *ctx = data;
2331 ssize_t len;
2332
2333 rcu_register_thread();
2334
2335 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2336
2337 if (testpoint(consumerd_thread_metadata)) {
2338 goto error_testpoint;
2339 }
2340
2341 health_code_update();
2342
2343 DBG("Thread metadata poll started");
2344
2345 /* Size is set to 1 for the consumer_metadata pipe */
2346 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2347 if (ret < 0) {
2348 ERR("Poll set creation failed");
2349 goto end_poll;
2350 }
2351
2352 ret = lttng_poll_add(&events,
2353 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2354 if (ret < 0) {
2355 goto end;
2356 }
2357
2358 /* Main loop */
2359 DBG("Metadata main loop started");
2360
2361 while (1) {
2362 restart:
2363 health_code_update();
2364 health_poll_entry();
2365 DBG("Metadata poll wait");
2366 ret = lttng_poll_wait(&events, -1);
2367 DBG("Metadata poll return from wait with %d fd(s)",
2368 LTTNG_POLL_GETNB(&events));
2369 health_poll_exit();
2370 DBG("Metadata event caught in thread");
2371 if (ret < 0) {
2372 if (errno == EINTR) {
2373 ERR("Poll EINTR caught");
2374 goto restart;
2375 }
2376 if (LTTNG_POLL_GETNB(&events) == 0) {
2377 err = 0; /* All is OK */
2378 }
2379 goto end;
2380 }
2381
2382 nb_fd = ret;
2383
2384 /* From here, the event is a metadata wait fd */
2385 for (i = 0; i < nb_fd; i++) {
2386 health_code_update();
2387
2388 revents = LTTNG_POLL_GETEV(&events, i);
2389 pollfd = LTTNG_POLL_GETFD(&events, i);
2390
2391 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2392 if (revents & LPOLLIN) {
2393 ssize_t pipe_len;
2394
2395 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2396 &stream, sizeof(stream));
2397 if (pipe_len < sizeof(stream)) {
2398 if (pipe_len < 0) {
2399 PERROR("read metadata stream");
2400 }
2401 /*
2402 * Remove the pipe from the poll set and continue the loop
2403 * since their might be data to consume.
2404 */
2405 lttng_poll_del(&events,
2406 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2407 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2408 continue;
2409 }
2410
2411 /* A NULL stream means that the state has changed. */
2412 if (stream == NULL) {
2413 /* Check for deleted streams. */
2414 validate_endpoint_status_metadata_stream(&events);
2415 goto restart;
2416 }
2417
2418 DBG("Adding metadata stream %d to poll set",
2419 stream->wait_fd);
2420
2421 /* Add metadata stream to the global poll events list */
2422 lttng_poll_add(&events, stream->wait_fd,
2423 LPOLLIN | LPOLLPRI | LPOLLHUP);
2424 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2425 DBG("Metadata thread pipe hung up");
2426 /*
2427 * Remove the pipe from the poll set and continue the loop
2428 * since their might be data to consume.
2429 */
2430 lttng_poll_del(&events,
2431 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2432 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2433 continue;
2434 } else {
2435 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2436 goto end;
2437 }
2438
2439 /* Handle other stream */
2440 continue;
2441 }
2442
2443 rcu_read_lock();
2444 {
2445 uint64_t tmp_id = (uint64_t) pollfd;
2446
2447 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2448 }
2449 node = lttng_ht_iter_get_node_u64(&iter);
2450 assert(node);
2451
2452 stream = caa_container_of(node, struct lttng_consumer_stream,
2453 node);
2454
2455 if (revents & (LPOLLIN | LPOLLPRI)) {
2456 /* Get the data out of the metadata file descriptor */
2457 DBG("Metadata available on fd %d", pollfd);
2458 assert(stream->wait_fd == pollfd);
2459
2460 do {
2461 health_code_update();
2462
2463 len = ctx->on_buffer_ready(stream, ctx, false);
2464 /*
2465 * We don't check the return value here since if we get
2466 * a negative len, it means an error occurred thus we
2467 * simply remove it from the poll set and free the
2468 * stream.
2469 */
2470 } while (len > 0);
2471
2472 /* It's ok to have an unavailable sub-buffer */
2473 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2474 /* Clean up stream from consumer and free it. */
2475 lttng_poll_del(&events, stream->wait_fd);
2476 consumer_del_metadata_stream(stream, metadata_ht);
2477 }
2478 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2479 DBG("Metadata fd %d is hup|err.", pollfd);
2480 if (!stream->hangup_flush_done
2481 && (consumer_data.type == LTTNG_CONSUMER32_UST
2482 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2483 DBG("Attempting to flush and consume the UST buffers");
2484 lttng_ustconsumer_on_stream_hangup(stream);
2485
2486 /* We just flushed the stream now read it. */
2487 do {
2488 health_code_update();
2489
2490 len = ctx->on_buffer_ready(stream, ctx, false);
2491 /*
2492 * We don't check the return value here since if we get
2493 * a negative len, it means an error occurred thus we
2494 * simply remove it from the poll set and free the
2495 * stream.
2496 */
2497 } while (len > 0);
2498 }
2499
2500 lttng_poll_del(&events, stream->wait_fd);
2501 /*
2502 * This call update the channel states, closes file descriptors
2503 * and securely free the stream.
2504 */
2505 consumer_del_metadata_stream(stream, metadata_ht);
2506 } else {
2507 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2508 rcu_read_unlock();
2509 goto end;
2510 }
2511 /* Release RCU lock for the stream looked up */
2512 rcu_read_unlock();
2513 }
2514 }
2515
2516 /* All is OK */
2517 err = 0;
2518 end:
2519 DBG("Metadata poll thread exiting");
2520
2521 lttng_poll_clean(&events);
2522 end_poll:
2523 error_testpoint:
2524 if (err) {
2525 health_error();
2526 ERR("Health error occurred in %s", __func__);
2527 }
2528 health_unregister(health_consumerd);
2529 rcu_unregister_thread();
2530 return NULL;
2531 }
2532
2533 /*
2534 * This thread polls the fds in the set to consume the data and write
2535 * it to tracefile if necessary.
2536 */
2537 void *consumer_thread_data_poll(void *data)
2538 {
2539 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2540 struct pollfd *pollfd = NULL;
2541 /* local view of the streams */
2542 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2543 /* local view of consumer_data.fds_count */
2544 int nb_fd = 0;
2545 /* 2 for the consumer_data_pipe and wake up pipe */
2546 const int nb_pipes_fd = 2;
2547 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2548 int nb_inactive_fd = 0;
2549 struct lttng_consumer_local_data *ctx = data;
2550 ssize_t len;
2551
2552 rcu_register_thread();
2553
2554 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2555
2556 if (testpoint(consumerd_thread_data)) {
2557 goto error_testpoint;
2558 }
2559
2560 health_code_update();
2561
2562 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2563 if (local_stream == NULL) {
2564 PERROR("local_stream malloc");
2565 goto end;
2566 }
2567
2568 while (1) {
2569 health_code_update();
2570
2571 high_prio = 0;
2572 num_hup = 0;
2573
2574 /*
2575 * the fds set has been updated, we need to update our
2576 * local array as well
2577 */
2578 pthread_mutex_lock(&consumer_data.lock);
2579 if (consumer_data.need_update) {
2580 free(pollfd);
2581 pollfd = NULL;
2582
2583 free(local_stream);
2584 local_stream = NULL;
2585
2586 /* Allocate for all fds */
2587 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2588 if (pollfd == NULL) {
2589 PERROR("pollfd malloc");
2590 pthread_mutex_unlock(&consumer_data.lock);
2591 goto end;
2592 }
2593
2594 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2595 sizeof(struct lttng_consumer_stream *));
2596 if (local_stream == NULL) {
2597 PERROR("local_stream malloc");
2598 pthread_mutex_unlock(&consumer_data.lock);
2599 goto end;
2600 }
2601 ret = update_poll_array(ctx, &pollfd, local_stream,
2602 data_ht, &nb_inactive_fd);
2603 if (ret < 0) {
2604 ERR("Error in allocating pollfd or local_outfds");
2605 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2606 pthread_mutex_unlock(&consumer_data.lock);
2607 goto end;
2608 }
2609 nb_fd = ret;
2610 consumer_data.need_update = 0;
2611 }
2612 pthread_mutex_unlock(&consumer_data.lock);
2613
2614 /* No FDs and consumer_quit, consumer_cleanup the thread */
2615 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2616 CMM_LOAD_SHARED(consumer_quit) == 1) {
2617 err = 0; /* All is OK */
2618 goto end;
2619 }
2620 /* poll on the array of fds */
2621 restart:
2622 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2623 if (testpoint(consumerd_thread_data_poll)) {
2624 goto end;
2625 }
2626 health_poll_entry();
2627 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2628 health_poll_exit();
2629 DBG("poll num_rdy : %d", num_rdy);
2630 if (num_rdy == -1) {
2631 /*
2632 * Restart interrupted system call.
2633 */
2634 if (errno == EINTR) {
2635 goto restart;
2636 }
2637 PERROR("Poll error");
2638 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2639 goto end;
2640 } else if (num_rdy == 0) {
2641 DBG("Polling thread timed out");
2642 goto end;
2643 }
2644
2645 if (caa_unlikely(data_consumption_paused)) {
2646 DBG("Data consumption paused, sleeping...");
2647 sleep(1);
2648 goto restart;
2649 }
2650
2651 /*
2652 * If the consumer_data_pipe triggered poll go directly to the
2653 * beginning of the loop to update the array. We want to prioritize
2654 * array update over low-priority reads.
2655 */
2656 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2657 ssize_t pipe_readlen;
2658
2659 DBG("consumer_data_pipe wake up");
2660 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2661 &new_stream, sizeof(new_stream));
2662 if (pipe_readlen < sizeof(new_stream)) {
2663 PERROR("Consumer data pipe");
2664 /* Continue so we can at least handle the current stream(s). */
2665 continue;
2666 }
2667
2668 /*
2669 * If the stream is NULL, just ignore it. It's also possible that
2670 * the sessiond poll thread changed the consumer_quit state and is
2671 * waking us up to test it.
2672 */
2673 if (new_stream == NULL) {
2674 validate_endpoint_status_data_stream();
2675 continue;
2676 }
2677
2678 /* Continue to update the local streams and handle prio ones */
2679 continue;
2680 }
2681
2682 /* Handle wakeup pipe. */
2683 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2684 char dummy;
2685 ssize_t pipe_readlen;
2686
2687 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2688 sizeof(dummy));
2689 if (pipe_readlen < 0) {
2690 PERROR("Consumer data wakeup pipe");
2691 }
2692 /* We've been awakened to handle stream(s). */
2693 ctx->has_wakeup = 0;
2694 }
2695
2696 /* Take care of high priority channels first. */
2697 for (i = 0; i < nb_fd; i++) {
2698 health_code_update();
2699
2700 if (local_stream[i] == NULL) {
2701 continue;
2702 }
2703 if (pollfd[i].revents & POLLPRI) {
2704 DBG("Urgent read on fd %d", pollfd[i].fd);
2705 high_prio = 1;
2706 len = ctx->on_buffer_ready(local_stream[i], ctx, false);
2707 /* it's ok to have an unavailable sub-buffer */
2708 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2709 /* Clean the stream and free it. */
2710 consumer_del_stream(local_stream[i], data_ht);
2711 local_stream[i] = NULL;
2712 } else if (len > 0) {
2713 local_stream[i]->data_read = 1;
2714 }
2715 }
2716 }
2717
2718 /*
2719 * If we read high prio channel in this loop, try again
2720 * for more high prio data.
2721 */
2722 if (high_prio) {
2723 continue;
2724 }
2725
2726 /* Take care of low priority channels. */
2727 for (i = 0; i < nb_fd; i++) {
2728 health_code_update();
2729
2730 if (local_stream[i] == NULL) {
2731 continue;
2732 }
2733 if ((pollfd[i].revents & POLLIN) ||
2734 local_stream[i]->hangup_flush_done ||
2735 local_stream[i]->has_data) {
2736 DBG("Normal read on fd %d", pollfd[i].fd);
2737 len = ctx->on_buffer_ready(local_stream[i], ctx, false);
2738 /* it's ok to have an unavailable sub-buffer */
2739 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2740 /* Clean the stream and free it. */
2741 consumer_del_stream(local_stream[i], data_ht);
2742 local_stream[i] = NULL;
2743 } else if (len > 0) {
2744 local_stream[i]->data_read = 1;
2745 }
2746 }
2747 }
2748
2749 /* Handle hangup and errors */
2750 for (i = 0; i < nb_fd; i++) {
2751 health_code_update();
2752
2753 if (local_stream[i] == NULL) {
2754 continue;
2755 }
2756 if (!local_stream[i]->hangup_flush_done
2757 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2758 && (consumer_data.type == LTTNG_CONSUMER32_UST
2759 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2760 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2761 pollfd[i].fd);
2762 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2763 /* Attempt read again, for the data we just flushed. */
2764 local_stream[i]->data_read = 1;
2765 }
2766 /*
2767 * If the poll flag is HUP/ERR/NVAL and we have
2768 * read no data in this pass, we can remove the
2769 * stream from its hash table.
2770 */
2771 if ((pollfd[i].revents & POLLHUP)) {
2772 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2773 if (!local_stream[i]->data_read) {
2774 consumer_del_stream(local_stream[i], data_ht);
2775 local_stream[i] = NULL;
2776 num_hup++;
2777 }
2778 } else if (pollfd[i].revents & POLLERR) {
2779 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2780 if (!local_stream[i]->data_read) {
2781 consumer_del_stream(local_stream[i], data_ht);
2782 local_stream[i] = NULL;
2783 num_hup++;
2784 }
2785 } else if (pollfd[i].revents & POLLNVAL) {
2786 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2787 if (!local_stream[i]->data_read) {
2788 consumer_del_stream(local_stream[i], data_ht);
2789 local_stream[i] = NULL;
2790 num_hup++;
2791 }
2792 }
2793 if (local_stream[i] != NULL) {
2794 local_stream[i]->data_read = 0;
2795 }
2796 }
2797 }
2798 /* All is OK */
2799 err = 0;
2800 end:
2801 DBG("polling thread exiting");
2802 free(pollfd);
2803 free(local_stream);
2804
2805 /*
2806 * Close the write side of the pipe so epoll_wait() in
2807 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2808 * read side of the pipe. If we close them both, epoll_wait strangely does
2809 * not return and could create a endless wait period if the pipe is the
2810 * only tracked fd in the poll set. The thread will take care of closing
2811 * the read side.
2812 */
2813 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2814
2815 error_testpoint:
2816 if (err) {
2817 health_error();
2818 ERR("Health error occurred in %s", __func__);
2819 }
2820 health_unregister(health_consumerd);
2821
2822 rcu_unregister_thread();
2823 return NULL;
2824 }
2825
2826 /*
2827 * Close wake-up end of each stream belonging to the channel. This will
2828 * allow the poll() on the stream read-side to detect when the
2829 * write-side (application) finally closes them.
2830 */
2831 static
2832 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2833 {
2834 struct lttng_ht *ht;
2835 struct lttng_consumer_stream *stream;
2836 struct lttng_ht_iter iter;
2837
2838 ht = consumer_data.stream_per_chan_id_ht;
2839
2840 rcu_read_lock();
2841 cds_lfht_for_each_entry_duplicate(ht->ht,
2842 ht->hash_fct(&channel->key, lttng_ht_seed),
2843 ht->match_fct, &channel->key,
2844 &iter.iter, stream, node_channel_id.node) {
2845 /*
2846 * Protect against teardown with mutex.
2847 */
2848 pthread_mutex_lock(&stream->lock);
2849 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2850 goto next;
2851 }
2852 switch (consumer_data.type) {
2853 case LTTNG_CONSUMER_KERNEL:
2854 break;
2855 case LTTNG_CONSUMER32_UST:
2856 case LTTNG_CONSUMER64_UST:
2857 if (stream->metadata_flag) {
2858 /* Safe and protected by the stream lock. */
2859 lttng_ustconsumer_close_metadata(stream->chan);
2860 } else {
2861 /*
2862 * Note: a mutex is taken internally within
2863 * liblttng-ust-ctl to protect timer wakeup_fd
2864 * use from concurrent close.
2865 */
2866 lttng_ustconsumer_close_stream_wakeup(stream);
2867 }
2868 break;
2869 default:
2870 ERR("Unknown consumer_data type");
2871 assert(0);
2872 }
2873 next:
2874 pthread_mutex_unlock(&stream->lock);
2875 }
2876 rcu_read_unlock();
2877 }
2878
2879 static void destroy_channel_ht(struct lttng_ht *ht)
2880 {
2881 struct lttng_ht_iter iter;
2882 struct lttng_consumer_channel *channel;
2883 int ret;
2884
2885 if (ht == NULL) {
2886 return;
2887 }
2888
2889 rcu_read_lock();
2890 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2891 ret = lttng_ht_del(ht, &iter);
2892 assert(ret != 0);
2893 }
2894 rcu_read_unlock();
2895
2896 lttng_ht_destroy(ht);
2897 }
2898
2899 /*
2900 * This thread polls the channel fds to detect when they are being
2901 * closed. It closes all related streams if the channel is detected as
2902 * closed. It is currently only used as a shim layer for UST because the
2903 * consumerd needs to keep the per-stream wakeup end of pipes open for
2904 * periodical flush.
2905 */
2906 void *consumer_thread_channel_poll(void *data)
2907 {
2908 int ret, i, pollfd, err = -1;
2909 uint32_t revents, nb_fd;
2910 struct lttng_consumer_channel *chan = NULL;
2911 struct lttng_ht_iter iter;
2912 struct lttng_ht_node_u64 *node;
2913 struct lttng_poll_event events;
2914 struct lttng_consumer_local_data *ctx = data;
2915 struct lttng_ht *channel_ht;
2916
2917 rcu_register_thread();
2918
2919 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2920
2921 if (testpoint(consumerd_thread_channel)) {
2922 goto error_testpoint;
2923 }
2924
2925 health_code_update();
2926
2927 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2928 if (!channel_ht) {
2929 /* ENOMEM at this point. Better to bail out. */
2930 goto end_ht;
2931 }
2932
2933 DBG("Thread channel poll started");
2934
2935 /* Size is set to 1 for the consumer_channel pipe */
2936 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2937 if (ret < 0) {
2938 ERR("Poll set creation failed");
2939 goto end_poll;
2940 }
2941
2942 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2943 if (ret < 0) {
2944 goto end;
2945 }
2946
2947 /* Main loop */
2948 DBG("Channel main loop started");
2949
2950 while (1) {
2951 restart:
2952 health_code_update();
2953 DBG("Channel poll wait");
2954 health_poll_entry();
2955 ret = lttng_poll_wait(&events, -1);
2956 DBG("Channel poll return from wait with %d fd(s)",
2957 LTTNG_POLL_GETNB(&events));
2958 health_poll_exit();
2959 DBG("Channel event caught in thread");
2960 if (ret < 0) {
2961 if (errno == EINTR) {
2962 ERR("Poll EINTR caught");
2963 goto restart;
2964 }
2965 if (LTTNG_POLL_GETNB(&events) == 0) {
2966 err = 0; /* All is OK */
2967 }
2968 goto end;
2969 }
2970
2971 nb_fd = ret;
2972
2973 /* From here, the event is a channel wait fd */
2974 for (i = 0; i < nb_fd; i++) {
2975 health_code_update();
2976
2977 revents = LTTNG_POLL_GETEV(&events, i);
2978 pollfd = LTTNG_POLL_GETFD(&events, i);
2979
2980 if (pollfd == ctx->consumer_channel_pipe[0]) {
2981 if (revents & LPOLLIN) {
2982 enum consumer_channel_action action;
2983 uint64_t key;
2984
2985 ret = read_channel_pipe(ctx, &chan, &key, &action);
2986 if (ret <= 0) {
2987 if (ret < 0) {
2988 ERR("Error reading channel pipe");
2989 }
2990 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2991 continue;
2992 }
2993
2994 switch (action) {
2995 case CONSUMER_CHANNEL_ADD:
2996 DBG("Adding channel %d to poll set",
2997 chan->wait_fd);
2998
2999 lttng_ht_node_init_u64(&chan->wait_fd_node,
3000 chan->wait_fd);
3001 rcu_read_lock();
3002 lttng_ht_add_unique_u64(channel_ht,
3003 &chan->wait_fd_node);
3004 rcu_read_unlock();
3005 /* Add channel to the global poll events list */
3006 lttng_poll_add(&events, chan->wait_fd,
3007 LPOLLERR | LPOLLHUP);
3008 break;
3009 case CONSUMER_CHANNEL_DEL:
3010 {
3011 /*
3012 * This command should never be called if the channel
3013 * has streams monitored by either the data or metadata
3014 * thread. The consumer only notify this thread with a
3015 * channel del. command if it receives a destroy
3016 * channel command from the session daemon that send it
3017 * if a command prior to the GET_CHANNEL failed.
3018 */
3019
3020 rcu_read_lock();
3021 chan = consumer_find_channel(key);
3022 if (!chan) {
3023 rcu_read_unlock();
3024 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
3025 break;
3026 }
3027 lttng_poll_del(&events, chan->wait_fd);
3028 iter.iter.node = &chan->wait_fd_node.node;
3029 ret = lttng_ht_del(channel_ht, &iter);
3030 assert(ret == 0);
3031
3032 switch (consumer_data.type) {
3033 case LTTNG_CONSUMER_KERNEL:
3034 break;
3035 case LTTNG_CONSUMER32_UST:
3036 case LTTNG_CONSUMER64_UST:
3037 health_code_update();
3038 /* Destroy streams that might have been left in the stream list. */
3039 clean_channel_stream_list(chan);
3040 break;
3041 default:
3042 ERR("Unknown consumer_data type");
3043 assert(0);
3044 }
3045
3046 /*
3047 * Release our own refcount. Force channel deletion even if
3048 * streams were not initialized.
3049 */
3050 if (!uatomic_sub_return(&chan->refcount, 1)) {
3051 consumer_del_channel(chan);
3052 }
3053 rcu_read_unlock();
3054 goto restart;
3055 }
3056 case CONSUMER_CHANNEL_QUIT:
3057 /*
3058 * Remove the pipe from the poll set and continue the loop
3059 * since their might be data to consume.
3060 */
3061 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3062 continue;
3063 default:
3064 ERR("Unknown action");
3065 break;
3066 }
3067 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3068 DBG("Channel thread pipe hung up");
3069 /*
3070 * Remove the pipe from the poll set and continue the loop
3071 * since their might be data to consume.
3072 */
3073 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3074 continue;
3075 } else {
3076 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3077 goto end;
3078 }
3079
3080 /* Handle other stream */
3081 continue;
3082 }
3083
3084 rcu_read_lock();
3085 {
3086 uint64_t tmp_id = (uint64_t) pollfd;
3087
3088 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3089 }
3090 node = lttng_ht_iter_get_node_u64(&iter);
3091 assert(node);
3092
3093 chan = caa_container_of(node, struct lttng_consumer_channel,
3094 wait_fd_node);
3095
3096 /* Check for error event */
3097 if (revents & (LPOLLERR | LPOLLHUP)) {
3098 DBG("Channel fd %d is hup|err.", pollfd);
3099
3100 lttng_poll_del(&events, chan->wait_fd);
3101 ret = lttng_ht_del(channel_ht, &iter);
3102 assert(ret == 0);
3103
3104 /*
3105 * This will close the wait fd for each stream associated to
3106 * this channel AND monitored by the data/metadata thread thus
3107 * will be clean by the right thread.
3108 */
3109 consumer_close_channel_streams(chan);
3110
3111 /* Release our own refcount */
3112 if (!uatomic_sub_return(&chan->refcount, 1)
3113 && !uatomic_read(&chan->nb_init_stream_left)) {
3114 consumer_del_channel(chan);
3115 }
3116 } else {
3117 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3118 rcu_read_unlock();
3119 goto end;
3120 }
3121
3122 /* Release RCU lock for the channel looked up */
3123 rcu_read_unlock();
3124 }
3125 }
3126
3127 /* All is OK */
3128 err = 0;
3129 end:
3130 lttng_poll_clean(&events);
3131 end_poll:
3132 destroy_channel_ht(channel_ht);
3133 end_ht:
3134 error_testpoint:
3135 DBG("Channel poll thread exiting");
3136 if (err) {
3137 health_error();
3138 ERR("Health error occurred in %s", __func__);
3139 }
3140 health_unregister(health_consumerd);
3141 rcu_unregister_thread();
3142 return NULL;
3143 }
3144
3145 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3146 struct pollfd *sockpoll, int client_socket)
3147 {
3148 int ret;
3149
3150 assert(ctx);
3151 assert(sockpoll);
3152
3153 ret = lttng_consumer_poll_socket(sockpoll);
3154 if (ret) {
3155 goto error;
3156 }
3157 DBG("Metadata connection on client_socket");
3158
3159 /* Blocking call, waiting for transmission */
3160 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3161 if (ctx->consumer_metadata_socket < 0) {
3162 WARN("On accept metadata");
3163 ret = -1;
3164 goto error;
3165 }
3166 ret = 0;
3167
3168 error:
3169 return ret;
3170 }
3171
3172 /*
3173 * This thread listens on the consumerd socket and receives the file
3174 * descriptors from the session daemon.
3175 */
3176 void *consumer_thread_sessiond_poll(void *data)
3177 {
3178 int sock = -1, client_socket, ret, err = -1;
3179 /*
3180 * structure to poll for incoming data on communication socket avoids
3181 * making blocking sockets.
3182 */
3183 struct pollfd consumer_sockpoll[2];
3184 struct lttng_consumer_local_data *ctx = data;
3185
3186 rcu_register_thread();
3187
3188 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3189
3190 if (testpoint(consumerd_thread_sessiond)) {
3191 goto error_testpoint;
3192 }
3193
3194 health_code_update();
3195
3196 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3197 unlink(ctx->consumer_command_sock_path);
3198 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3199 if (client_socket < 0) {
3200 ERR("Cannot create command socket");
3201 goto end;
3202 }
3203
3204 ret = lttcomm_listen_unix_sock(client_socket);
3205 if (ret < 0) {
3206 goto end;
3207 }
3208
3209 DBG("Sending ready command to lttng-sessiond");
3210 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3211 /* return < 0 on error, but == 0 is not fatal */
3212 if (ret < 0) {
3213 ERR("Error sending ready command to lttng-sessiond");
3214 goto end;
3215 }
3216
3217 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3218 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3219 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3220 consumer_sockpoll[1].fd = client_socket;
3221 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3222
3223 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3224 if (ret) {
3225 if (ret > 0) {
3226 /* should exit */
3227 err = 0;
3228 }
3229 goto end;
3230 }
3231 DBG("Connection on client_socket");
3232
3233 /* Blocking call, waiting for transmission */
3234 sock = lttcomm_accept_unix_sock(client_socket);
3235 if (sock < 0) {
3236 WARN("On accept");
3237 goto end;
3238 }
3239
3240 /*
3241 * Setup metadata socket which is the second socket connection on the
3242 * command unix socket.
3243 */
3244 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3245 if (ret) {
3246 if (ret > 0) {
3247 /* should exit */
3248 err = 0;
3249 }
3250 goto end;
3251 }
3252
3253 /* This socket is not useful anymore. */
3254 ret = close(client_socket);
3255 if (ret < 0) {
3256 PERROR("close client_socket");
3257 }
3258 client_socket = -1;
3259
3260 /* update the polling structure to poll on the established socket */
3261 consumer_sockpoll[1].fd = sock;
3262 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3263
3264 while (1) {
3265 health_code_update();
3266
3267 health_poll_entry();
3268 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3269 health_poll_exit();
3270 if (ret) {
3271 if (ret > 0) {
3272 /* should exit */
3273 err = 0;
3274 }
3275 goto end;
3276 }
3277 DBG("Incoming command on sock");
3278 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3279 if (ret <= 0) {
3280 /*
3281 * This could simply be a session daemon quitting. Don't output
3282 * ERR() here.
3283 */
3284 DBG("Communication interrupted on command socket");
3285 err = 0;
3286 goto end;
3287 }
3288 if (CMM_LOAD_SHARED(consumer_quit)) {
3289 DBG("consumer_thread_receive_fds received quit from signal");
3290 err = 0; /* All is OK */
3291 goto end;
3292 }
3293 DBG("Received command on sock");
3294 }
3295 /* All is OK */
3296 err = 0;
3297
3298 end:
3299 DBG("Consumer thread sessiond poll exiting");
3300
3301 /*
3302 * Close metadata streams since the producer is the session daemon which
3303 * just died.
3304 *
3305 * NOTE: for now, this only applies to the UST tracer.
3306 */
3307 lttng_consumer_close_all_metadata();
3308
3309 /*
3310 * when all fds have hung up, the polling thread
3311 * can exit cleanly
3312 */
3313 CMM_STORE_SHARED(consumer_quit, 1);
3314
3315 /*
3316 * Notify the data poll thread to poll back again and test the
3317 * consumer_quit state that we just set so to quit gracefully.
3318 */
3319 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3320
3321 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3322
3323 notify_health_quit_pipe(health_quit_pipe);
3324
3325 /* Cleaning up possibly open sockets. */
3326 if (sock >= 0) {
3327 ret = close(sock);
3328 if (ret < 0) {
3329 PERROR("close sock sessiond poll");
3330 }
3331 }
3332 if (client_socket >= 0) {
3333 ret = close(client_socket);
3334 if (ret < 0) {
3335 PERROR("close client_socket sessiond poll");
3336 }
3337 }
3338
3339 error_testpoint:
3340 if (err) {
3341 health_error();
3342 ERR("Health error occurred in %s", __func__);
3343 }
3344 health_unregister(health_consumerd);
3345
3346 rcu_unregister_thread();
3347 return NULL;
3348 }
3349
3350 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3351 struct lttng_consumer_local_data *ctx,
3352 bool locked_by_caller)
3353 {
3354 ssize_t ret, written_bytes = 0;
3355 int rotation_ret;
3356 struct stream_subbuffer subbuffer = {};
3357
3358 if (!locked_by_caller) {
3359 stream->read_subbuffer_ops.lock(stream);
3360 }
3361
3362 if (stream->read_subbuffer_ops.on_wake_up) {
3363 ret = stream->read_subbuffer_ops.on_wake_up(stream);
3364 if (ret) {
3365 goto end;
3366 }
3367 }
3368
3369 /*
3370 * If the stream was flagged to be ready for rotation before we extract
3371 * the next packet, rotate it now.
3372 */
3373 if (stream->rotate_ready) {
3374 DBG("Rotate stream before consuming data");
3375 ret = lttng_consumer_rotate_stream(ctx, stream);
3376 if (ret < 0) {
3377 ERR("Stream rotation error before consuming data");
3378 goto end;
3379 }
3380 }
3381
3382 ret = stream->read_subbuffer_ops.get_next_subbuffer(stream, &subbuffer);
3383 if (ret) {
3384 if (ret == -ENODATA) {
3385 /* Not an error. */
3386 ret = 0;
3387 goto sleep_stream;
3388 }
3389 goto end;
3390 }
3391
3392 ret = stream->read_subbuffer_ops.pre_consume_subbuffer(
3393 stream, &subbuffer);
3394 if (ret) {
3395 goto error_put_subbuf;
3396 }
3397
3398 written_bytes = stream->read_subbuffer_ops.consume_subbuffer(
3399 ctx, stream, &subbuffer);
3400 if (written_bytes <= 0) {
3401 ERR("Error consuming subbuffer: (%zd)", written_bytes);
3402 ret = (int) written_bytes;
3403 goto error_put_subbuf;
3404 }
3405
3406 ret = stream->read_subbuffer_ops.put_next_subbuffer(stream, &subbuffer);
3407 if (ret) {
3408 goto end;
3409 }
3410
3411 if (stream->read_subbuffer_ops.post_consume) {
3412 ret = stream->read_subbuffer_ops.post_consume(stream, &subbuffer, ctx);
3413 if (ret) {
3414 goto end;
3415 }
3416 }
3417
3418 /*
3419 * After extracting the packet, we check if the stream is now ready to
3420 * be rotated and perform the action immediately.
3421 *
3422 * Don't overwrite `ret` as callers expect the number of bytes
3423 * consumed to be returned on success.
3424 */
3425 rotation_ret = lttng_consumer_stream_is_rotate_ready(stream);
3426 if (rotation_ret == 1) {
3427 rotation_ret = lttng_consumer_rotate_stream(ctx, stream);
3428 if (rotation_ret < 0) {
3429 ret = rotation_ret;
3430 ERR("Stream rotation error after consuming data");
3431 goto end;
3432 }
3433 } else if (rotation_ret < 0) {
3434 ret = rotation_ret;
3435 ERR("Failed to check if stream was ready to rotate after consuming data");
3436 goto end;
3437 }
3438
3439 sleep_stream:
3440 if (stream->read_subbuffer_ops.on_sleep) {
3441 stream->read_subbuffer_ops.on_sleep(stream, ctx);
3442 }
3443
3444 ret = written_bytes;
3445 end:
3446 if (!locked_by_caller) {
3447 stream->read_subbuffer_ops.unlock(stream);
3448 }
3449
3450 return ret;
3451 error_put_subbuf:
3452 (void) stream->read_subbuffer_ops.put_next_subbuffer(stream, &subbuffer);
3453 goto end;
3454 }
3455
3456 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3457 {
3458 switch (consumer_data.type) {
3459 case LTTNG_CONSUMER_KERNEL:
3460 return lttng_kconsumer_on_recv_stream(stream);
3461 case LTTNG_CONSUMER32_UST:
3462 case LTTNG_CONSUMER64_UST:
3463 return lttng_ustconsumer_on_recv_stream(stream);
3464 default:
3465 ERR("Unknown consumer_data type");
3466 assert(0);
3467 return -ENOSYS;
3468 }
3469 }
3470
3471 /*
3472 * Allocate and set consumer data hash tables.
3473 */
3474 int lttng_consumer_init(void)
3475 {
3476 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3477 if (!consumer_data.channel_ht) {
3478 goto error;
3479 }
3480
3481 consumer_data.channels_by_session_id_ht =
3482 lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3483 if (!consumer_data.channels_by_session_id_ht) {
3484 goto error;
3485 }
3486
3487 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3488 if (!consumer_data.relayd_ht) {
3489 goto error;
3490 }
3491
3492 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3493 if (!consumer_data.stream_list_ht) {
3494 goto error;
3495 }
3496
3497 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3498 if (!consumer_data.stream_per_chan_id_ht) {
3499 goto error;
3500 }
3501
3502 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3503 if (!data_ht) {
3504 goto error;
3505 }
3506
3507 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3508 if (!metadata_ht) {
3509 goto error;
3510 }
3511
3512 consumer_data.chunk_registry = lttng_trace_chunk_registry_create();
3513 if (!consumer_data.chunk_registry) {
3514 goto error;
3515 }
3516
3517 return 0;
3518
3519 error:
3520 return -1;
3521 }
3522
3523 /*
3524 * Process the ADD_RELAYD command receive by a consumer.
3525 *
3526 * This will create a relayd socket pair and add it to the relayd hash table.
3527 * The caller MUST acquire a RCU read side lock before calling it.
3528 */
3529 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3530 struct lttng_consumer_local_data *ctx, int sock,
3531 struct pollfd *consumer_sockpoll,
3532 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3533 uint64_t relayd_session_id)
3534 {
3535 int fd = -1, ret = -1, relayd_created = 0;
3536 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3537 struct consumer_relayd_sock_pair *relayd = NULL;
3538
3539 assert(ctx);
3540 assert(relayd_sock);
3541
3542 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3543
3544 /* Get relayd reference if exists. */
3545 relayd = consumer_find_relayd(net_seq_idx);
3546 if (relayd == NULL) {
3547 assert(sock_type == LTTNG_STREAM_CONTROL);
3548 /* Not found. Allocate one. */
3549 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3550 if (relayd == NULL) {
3551 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3552 goto error;
3553 } else {
3554 relayd->sessiond_session_id = sessiond_id;
3555 relayd_created = 1;
3556 }
3557
3558 /*
3559 * This code path MUST continue to the consumer send status message to
3560 * we can notify the session daemon and continue our work without
3561 * killing everything.
3562 */
3563 } else {
3564 /*
3565 * relayd key should never be found for control socket.
3566 */
3567 assert(sock_type != LTTNG_STREAM_CONTROL);
3568 }
3569
3570 /* First send a status message before receiving the fds. */
3571 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3572 if (ret < 0) {
3573 /* Somehow, the session daemon is not responding anymore. */
3574 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3575 goto error_nosignal;
3576 }
3577
3578 /* Poll on consumer socket. */
3579 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3580 if (ret) {
3581 /* Needing to exit in the middle of a command: error. */
3582 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3583 goto error_nosignal;
3584 }
3585
3586 /* Get relayd socket from session daemon */
3587 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3588 if (ret != sizeof(fd)) {
3589 fd = -1; /* Just in case it gets set with an invalid value. */
3590
3591 /*
3592 * Failing to receive FDs might indicate a major problem such as
3593 * reaching a fd limit during the receive where the kernel returns a
3594 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3595 * don't take any chances and stop everything.
3596 *
3597 * XXX: Feature request #558 will fix that and avoid this possible
3598 * issue when reaching the fd limit.
3599 */
3600 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3601 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3602 goto error;
3603 }
3604
3605 /* Copy socket information and received FD */
3606 switch (sock_type) {
3607 case LTTNG_STREAM_CONTROL:
3608 /* Copy received lttcomm socket */
3609 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3610 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3611 /* Handle create_sock error. */
3612 if (ret < 0) {
3613 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3614 goto error;
3615 }
3616 /*
3617 * Close the socket created internally by
3618 * lttcomm_create_sock, so we can replace it by the one
3619 * received from sessiond.
3620 */
3621 if (close(relayd->control_sock.sock.fd)) {
3622 PERROR("close");
3623 }
3624
3625 /* Assign new file descriptor */
3626 relayd->control_sock.sock.fd = fd;
3627 /* Assign version values. */
3628 relayd->control_sock.major = relayd_sock->major;
3629 relayd->control_sock.minor = relayd_sock->minor;
3630
3631 relayd->relayd_session_id = relayd_session_id;
3632
3633 break;
3634 case LTTNG_STREAM_DATA:
3635 /* Copy received lttcomm socket */
3636 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3637 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3638 /* Handle create_sock error. */
3639 if (ret < 0) {
3640 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3641 goto error;
3642 }
3643 /*
3644 * Close the socket created internally by
3645 * lttcomm_create_sock, so we can replace it by the one
3646 * received from sessiond.
3647 */
3648 if (close(relayd->data_sock.sock.fd)) {
3649 PERROR("close");
3650 }
3651
3652 /* Assign new file descriptor */
3653 relayd->data_sock.sock.fd = fd;
3654 /* Assign version values. */
3655 relayd->data_sock.major = relayd_sock->major;
3656 relayd->data_sock.minor = relayd_sock->minor;
3657 break;
3658 default:
3659 ERR("Unknown relayd socket type (%d)", sock_type);
3660 ret_code = LTTCOMM_CONSUMERD_FATAL;
3661 goto error;
3662 }
3663
3664 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3665 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3666 relayd->net_seq_idx, fd);
3667 /*
3668 * We gave the ownership of the fd to the relayd structure. Set the
3669 * fd to -1 so we don't call close() on it in the error path below.
3670 */
3671 fd = -1;
3672
3673 /* We successfully added the socket. Send status back. */
3674 ret = consumer_send_status_msg(sock, ret_code);
3675 if (ret < 0) {
3676 /* Somehow, the session daemon is not responding anymore. */
3677 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3678 goto error_nosignal;
3679 }
3680
3681 /*
3682 * Add relayd socket pair to consumer data hashtable. If object already
3683 * exists or on error, the function gracefully returns.
3684 */
3685 relayd->ctx = ctx;
3686 add_relayd(relayd);
3687
3688 /* All good! */
3689 return;
3690
3691 error:
3692 if (consumer_send_status_msg(sock, ret_code) < 0) {
3693 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3694 }
3695
3696 error_nosignal:
3697 /* Close received socket if valid. */
3698 if (fd >= 0) {
3699 if (close(fd)) {
3700 PERROR("close received socket");
3701 }
3702 }
3703
3704 if (relayd_created) {
3705 free(relayd);
3706 }
3707 }
3708
3709 /*
3710 * Search for a relayd associated to the session id and return the reference.
3711 *
3712 * A rcu read side lock MUST be acquire before calling this function and locked
3713 * until the relayd object is no longer necessary.
3714 */
3715 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3716 {
3717 struct lttng_ht_iter iter;
3718 struct consumer_relayd_sock_pair *relayd = NULL;
3719
3720 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3721 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3722 node.node) {
3723 /*
3724 * Check by sessiond id which is unique here where the relayd session
3725 * id might not be when having multiple relayd.
3726 */
3727 if (relayd->sessiond_session_id == id) {
3728 /* Found the relayd. There can be only one per id. */
3729 goto found;
3730 }
3731 }
3732
3733 return NULL;
3734
3735 found:
3736 return relayd;
3737 }
3738
3739 /*
3740 * Check if for a given session id there is still data needed to be extract
3741 * from the buffers.
3742 *
3743 * Return 1 if data is pending or else 0 meaning ready to be read.
3744 */
3745 int consumer_data_pending(uint64_t id)
3746 {
3747 int ret;
3748 struct lttng_ht_iter iter;
3749 struct lttng_ht *ht;
3750 struct lttng_consumer_stream *stream;
3751 struct consumer_relayd_sock_pair *relayd = NULL;
3752 int (*data_pending)(struct lttng_consumer_stream *);
3753
3754 DBG("Consumer data pending command on session id %" PRIu64, id);
3755
3756 rcu_read_lock();
3757 pthread_mutex_lock(&consumer_data.lock);
3758
3759 switch (consumer_data.type) {
3760 case LTTNG_CONSUMER_KERNEL:
3761 data_pending = lttng_kconsumer_data_pending;
3762 break;
3763 case LTTNG_CONSUMER32_UST:
3764 case LTTNG_CONSUMER64_UST:
3765 data_pending = lttng_ustconsumer_data_pending;
3766 break;
3767 default:
3768 ERR("Unknown consumer data type");
3769 assert(0);
3770 }
3771
3772 /* Ease our life a bit */
3773 ht = consumer_data.stream_list_ht;
3774
3775 cds_lfht_for_each_entry_duplicate(ht->ht,
3776 ht->hash_fct(&id, lttng_ht_seed),
3777 ht->match_fct, &id,
3778 &iter.iter, stream, node_session_id.node) {
3779 pthread_mutex_lock(&stream->lock);
3780
3781 /*
3782 * A removed node from the hash table indicates that the stream has
3783 * been deleted thus having a guarantee that the buffers are closed
3784 * on the consumer side. However, data can still be transmitted
3785 * over the network so don't skip the relayd check.
3786 */
3787 ret = cds_lfht_is_node_deleted(&stream->node.node);
3788 if (!ret) {
3789 /* Check the stream if there is data in the buffers. */
3790 ret = data_pending(stream);
3791 if (ret == 1) {
3792 pthread_mutex_unlock(&stream->lock);
3793 goto data_pending;
3794 }
3795 }
3796
3797 pthread_mutex_unlock(&stream->lock);
3798 }
3799
3800 relayd = find_relayd_by_session_id(id);
3801 if (relayd) {
3802 unsigned int is_data_inflight = 0;
3803
3804 /* Send init command for data pending. */
3805 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3806 ret = relayd_begin_data_pending(&relayd->control_sock,
3807 relayd->relayd_session_id);
3808 if (ret < 0) {
3809 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3810 /* Communication error thus the relayd so no data pending. */
3811 goto data_not_pending;
3812 }
3813
3814 cds_lfht_for_each_entry_duplicate(ht->ht,
3815 ht->hash_fct(&id, lttng_ht_seed),
3816 ht->match_fct, &id,
3817 &iter.iter, stream, node_session_id.node) {
3818 if (stream->metadata_flag) {
3819 ret = relayd_quiescent_control(&relayd->control_sock,
3820 stream->relayd_stream_id);
3821 } else {
3822 ret = relayd_data_pending(&relayd->control_sock,
3823 stream->relayd_stream_id,
3824 stream->next_net_seq_num - 1);
3825 }
3826
3827 if (ret == 1) {
3828 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3829 goto data_pending;
3830 } else if (ret < 0) {
3831 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3832 lttng_consumer_cleanup_relayd(relayd);
3833 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3834 goto data_not_pending;
3835 }
3836 }
3837
3838 /* Send end command for data pending. */
3839 ret = relayd_end_data_pending(&relayd->control_sock,
3840 relayd->relayd_session_id, &is_data_inflight);
3841 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3842 if (ret < 0) {
3843 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3844 lttng_consumer_cleanup_relayd(relayd);
3845 goto data_not_pending;
3846 }
3847 if (is_data_inflight) {
3848 goto data_pending;
3849 }
3850 }
3851
3852 /*
3853 * Finding _no_ node in the hash table and no inflight data means that the
3854 * stream(s) have been removed thus data is guaranteed to be available for
3855 * analysis from the trace files.
3856 */
3857
3858 data_not_pending:
3859 /* Data is available to be read by a viewer. */
3860 pthread_mutex_unlock(&consumer_data.lock);
3861 rcu_read_unlock();
3862 return 0;
3863
3864 data_pending:
3865 /* Data is still being extracted from buffers. */
3866 pthread_mutex_unlock(&consumer_data.lock);
3867 rcu_read_unlock();
3868 return 1;
3869 }
3870
3871 /*
3872 * Send a ret code status message to the sessiond daemon.
3873 *
3874 * Return the sendmsg() return value.
3875 */
3876 int consumer_send_status_msg(int sock, int ret_code)
3877 {
3878 struct lttcomm_consumer_status_msg msg;
3879
3880 memset(&msg, 0, sizeof(msg));
3881 msg.ret_code = ret_code;
3882
3883 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3884 }
3885
3886 /*
3887 * Send a channel status message to the sessiond daemon.
3888 *
3889 * Return the sendmsg() return value.
3890 */
3891 int consumer_send_status_channel(int sock,
3892 struct lttng_consumer_channel *channel)
3893 {
3894 struct lttcomm_consumer_status_channel msg;
3895
3896 assert(sock >= 0);
3897
3898 memset(&msg, 0, sizeof(msg));
3899 if (!channel) {
3900 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3901 } else {
3902 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3903 msg.key = channel->key;
3904 msg.stream_count = channel->streams.count;
3905 }
3906
3907 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3908 }
3909
3910 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3911 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3912 uint64_t max_sb_size)
3913 {
3914 unsigned long start_pos;
3915
3916 if (!nb_packets_per_stream) {
3917 return consumed_pos; /* Grab everything */
3918 }
3919 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3920 start_pos -= max_sb_size * nb_packets_per_stream;
3921 if ((long) (start_pos - consumed_pos) < 0) {
3922 return consumed_pos; /* Grab everything */
3923 }
3924 return start_pos;
3925 }
3926
3927 static
3928 int consumer_flush_buffer(struct lttng_consumer_stream *stream, int producer_active)
3929 {
3930 int ret = 0;
3931
3932 switch (consumer_data.type) {
3933 case LTTNG_CONSUMER_KERNEL:
3934 if (producer_active) {
3935 ret = kernctl_buffer_flush(stream->wait_fd);
3936 if (ret < 0) {
3937 ERR("Failed to flush kernel stream");
3938 goto end;
3939 }
3940 } else {
3941 ret = kernctl_buffer_flush_empty(stream->wait_fd);
3942 if (ret < 0) {
3943 ERR("Failed to flush kernel stream");
3944 goto end;
3945 }
3946 }
3947 break;
3948 case LTTNG_CONSUMER32_UST:
3949 case LTTNG_CONSUMER64_UST:
3950 lttng_ustconsumer_flush_buffer(stream, producer_active);
3951 break;
3952 default:
3953 ERR("Unknown consumer_data type");
3954 abort();
3955 }
3956
3957 end:
3958 return ret;
3959 }
3960
3961 /*
3962 * Sample the rotate position for all the streams of a channel. If a stream
3963 * is already at the rotate position (produced == consumed), we flag it as
3964 * ready for rotation. The rotation of ready streams occurs after we have
3965 * replied to the session daemon that we have finished sampling the positions.
3966 * Must be called with RCU read-side lock held to ensure existence of channel.
3967 *
3968 * Returns 0 on success, < 0 on error
3969 */
3970 int lttng_consumer_rotate_channel(struct lttng_consumer_channel *channel,
3971 uint64_t key, uint64_t relayd_id, uint32_t metadata,
3972 struct lttng_consumer_local_data *ctx)
3973 {
3974 int ret;
3975 struct lttng_consumer_stream *stream;
3976 struct lttng_ht_iter iter;
3977 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
3978 struct lttng_dynamic_array stream_rotation_positions;
3979 uint64_t next_chunk_id, stream_count = 0;
3980 enum lttng_trace_chunk_status chunk_status;
3981 const bool is_local_trace = relayd_id == -1ULL;
3982 struct consumer_relayd_sock_pair *relayd = NULL;
3983 bool rotating_to_new_chunk = true;
3984
3985 DBG("Consumer sample rotate position for channel %" PRIu64, key);
3986
3987 lttng_dynamic_array_init(&stream_rotation_positions,
3988 sizeof(struct relayd_stream_rotation_position), NULL);
3989
3990 rcu_read_lock();
3991
3992 pthread_mutex_lock(&channel->lock);
3993 assert(channel->trace_chunk);
3994 chunk_status = lttng_trace_chunk_get_id(channel->trace_chunk,
3995 &next_chunk_id);
3996 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
3997 ret = -1;
3998 goto end_unlock_channel;
3999 }
4000
4001 cds_lfht_for_each_entry_duplicate(ht->ht,
4002 ht->hash_fct(&channel->key, lttng_ht_seed),
4003 ht->match_fct, &channel->key, &iter.iter,
4004 stream, node_channel_id.node) {
4005 unsigned long produced_pos = 0, consumed_pos = 0;
4006
4007 health_code_update();
4008
4009 /*
4010 * Lock stream because we are about to change its state.
4011 */
4012 pthread_mutex_lock(&stream->lock);
4013
4014 if (stream->trace_chunk == stream->chan->trace_chunk) {
4015 rotating_to_new_chunk = false;
4016 }
4017
4018 /*
4019 * Do not flush an empty packet when rotating from a NULL trace
4020 * chunk. The stream has no means to output data, and the prior
4021 * rotation which rotated to NULL performed that side-effect already.
4022 */
4023 if (stream->trace_chunk) {
4024 /*
4025 * For metadata stream, do an active flush, which does not
4026 * produce empty packets. For data streams, empty-flush;
4027 * ensures we have at least one packet in each stream per trace
4028 * chunk, even if no data was produced.
4029 */
4030 ret = consumer_flush_buffer(stream, stream->metadata_flag ? 1 : 0);
4031 if (ret < 0) {
4032 ERR("Failed to flush stream %" PRIu64 " during channel rotation",
4033 stream->key);
4034 goto end_unlock_stream;
4035 }
4036 }
4037
4038 ret = lttng_consumer_take_snapshot(stream);
4039 if (ret < 0 && ret != -ENODATA && ret != -EAGAIN) {
4040 ERR("Failed to sample snapshot position during channel rotation");
4041 goto end_unlock_stream;
4042 }
4043 if (!ret) {
4044 ret = lttng_consumer_get_produced_snapshot(stream,
4045 &produced_pos);
4046 if (ret < 0) {
4047 ERR("Failed to sample produced position during channel rotation");
4048 goto end_unlock_stream;
4049 }
4050
4051 ret = lttng_consumer_get_consumed_snapshot(stream,
4052 &consumed_pos);
4053 if (ret < 0) {
4054 ERR("Failed to sample consumed position during channel rotation");
4055 goto end_unlock_stream;
4056 }
4057 }
4058 /*
4059 * Align produced position on the start-of-packet boundary of the first
4060 * packet going into the next trace chunk.
4061 */
4062 produced_pos = ALIGN_FLOOR(produced_pos, stream->max_sb_size);
4063 if (consumed_pos == produced_pos) {
4064 stream->rotate_ready = true;
4065 }
4066 /*
4067 * The rotation position is based on the packet_seq_num of the
4068 * packet following the last packet that was consumed for this
4069 * stream, incremented by the offset between produced and
4070 * consumed positions. This rotation position is a lower bound
4071 * (inclusive) at which the next trace chunk starts. Since it
4072 * is a lower bound, it is OK if the packet_seq_num does not
4073 * correspond exactly to the same packet identified by the
4074 * consumed_pos, which can happen in overwrite mode.
4075 */
4076 if (stream->sequence_number_unavailable) {
4077 /*
4078 * Rotation should never be performed on a session which
4079 * interacts with a pre-2.8 lttng-modules, which does
4080 * not implement packet sequence number.
4081 */
4082 ERR("Failure to rotate stream %" PRIu64 ": sequence number unavailable",
4083 stream->key);
4084 ret = -1;
4085 goto end_unlock_stream;
4086 }
4087 stream->rotate_position = stream->last_sequence_number + 1 +
4088 ((produced_pos - consumed_pos) / stream->max_sb_size);
4089
4090 if (!is_local_trace) {
4091 /*
4092 * The relay daemon control protocol expects a rotation
4093 * position as "the sequence number of the first packet
4094 * _after_ the current trace chunk".
4095 */
4096 const struct relayd_stream_rotation_position position = {
4097 .stream_id = stream->relayd_stream_id,
4098 .rotate_at_seq_num = stream->rotate_position,
4099 };
4100
4101 ret = lttng_dynamic_array_add_element(
4102 &stream_rotation_positions,
4103 &position);
4104 if (ret) {
4105 ERR("Failed to allocate stream rotation position");
4106 goto end_unlock_stream;
4107 }
4108 stream_count++;
4109 }
4110 pthread_mutex_unlock(&stream->lock);
4111 }
4112 stream = NULL;
4113 pthread_mutex_unlock(&channel->lock);
4114
4115 if (is_local_trace) {
4116 ret = 0;
4117 goto end;
4118 }
4119
4120 relayd = consumer_find_relayd(relayd_id);
4121 if (!relayd) {
4122 ERR("Failed to find relayd %" PRIu64, relayd_id);
4123 ret = -1;
4124 goto end;
4125 }
4126
4127 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4128 ret = relayd_rotate_streams(&relayd->control_sock, stream_count,
4129 rotating_to_new_chunk ? &next_chunk_id : NULL,
4130 (const struct relayd_stream_rotation_position *)
4131 stream_rotation_positions.buffer.data);
4132 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4133 if (ret < 0) {
4134 ERR("Relayd rotate stream failed. Cleaning up relayd %" PRIu64,
4135 relayd->net_seq_idx);
4136 lttng_consumer_cleanup_relayd(relayd);
4137 goto end;
4138 }
4139
4140 ret = 0;
4141 goto end;
4142
4143 end_unlock_stream:
4144 pthread_mutex_unlock(&stream->lock);
4145 end_unlock_channel:
4146 pthread_mutex_unlock(&channel->lock);
4147 end:
4148 rcu_read_unlock();
4149 lttng_dynamic_array_reset(&stream_rotation_positions);
4150 return ret;
4151 }
4152
4153 /*
4154 * Check if a stream is ready to be rotated after extracting it.
4155 *
4156 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4157 * error. Stream lock must be held.
4158 */
4159 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream *stream)
4160 {
4161 if (stream->rotate_ready) {
4162 return 1;
4163 }
4164
4165 /*
4166 * If packet seq num is unavailable, it means we are interacting
4167 * with a pre-2.8 lttng-modules which does not implement the
4168 * sequence number. Rotation should never be used by sessiond in this
4169 * scenario.
4170 */
4171 if (stream->sequence_number_unavailable) {
4172 ERR("Internal error: rotation used on stream %" PRIu64
4173 " with unavailable sequence number",
4174 stream->key);
4175 return -1;
4176 }
4177
4178 if (stream->rotate_position == -1ULL ||
4179 stream->last_sequence_number == -1ULL) {
4180 return 0;
4181 }
4182
4183 /*
4184 * Rotate position not reached yet. The stream rotate position is
4185 * the position of the next packet belonging to the next trace chunk,
4186 * but consumerd considers rotation ready when reaching the last
4187 * packet of the current chunk, hence the "rotate_position - 1".
4188 */
4189 if (stream->last_sequence_number >= stream->rotate_position - 1) {
4190 return 1;
4191 }
4192
4193 return 0;
4194 }
4195
4196 /*
4197 * Reset the state for a stream after a rotation occurred.
4198 */
4199 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream *stream)
4200 {
4201 stream->rotate_position = -1ULL;
4202 stream->rotate_ready = false;
4203 }
4204
4205 /*
4206 * Perform the rotation a local stream file.
4207 */
4208 static
4209 int rotate_local_stream(struct lttng_consumer_local_data *ctx,
4210 struct lttng_consumer_stream *stream)
4211 {
4212 int ret = 0;
4213
4214 DBG("Rotate local stream: stream key %" PRIu64 ", channel key %" PRIu64,
4215 stream->key,
4216 stream->chan->key);
4217 stream->tracefile_size_current = 0;
4218 stream->tracefile_count_current = 0;
4219
4220 if (stream->out_fd >= 0) {
4221 ret = close(stream->out_fd);
4222 if (ret) {
4223 PERROR("Failed to close stream out_fd of channel \"%s\"",
4224 stream->chan->name);
4225 }
4226 stream->out_fd = -1;
4227 }
4228
4229 if (stream->index_file) {
4230 lttng_index_file_put(stream->index_file);
4231 stream->index_file = NULL;
4232 }
4233
4234 if (!stream->trace_chunk) {
4235 goto end;
4236 }
4237
4238 ret = consumer_stream_create_output_files(stream, true);
4239 end:
4240 return ret;
4241 }
4242
4243 /*
4244 * Performs the stream rotation for the rotate session feature if needed.
4245 * It must be called with the channel and stream locks held.
4246 *
4247 * Return 0 on success, a negative number of error.
4248 */
4249 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data *ctx,
4250 struct lttng_consumer_stream *stream)
4251 {
4252 int ret;
4253
4254 DBG("Consumer rotate stream %" PRIu64, stream->key);
4255
4256 /*
4257 * Update the stream's 'current' chunk to the session's (channel)
4258 * now-current chunk.
4259 */
4260 lttng_trace_chunk_put(stream->trace_chunk);
4261 if (stream->chan->trace_chunk == stream->trace_chunk) {
4262 /*
4263 * A channel can be rotated and not have a "next" chunk
4264 * to transition to. In that case, the channel's "current chunk"
4265 * has not been closed yet, but it has not been updated to
4266 * a "next" trace chunk either. Hence, the stream, like its
4267 * parent channel, becomes part of no chunk and can't output
4268 * anything until a new trace chunk is created.
4269 */
4270 stream->trace_chunk = NULL;
4271 } else if (stream->chan->trace_chunk &&
4272 !lttng_trace_chunk_get(stream->chan->trace_chunk)) {
4273 ERR("Failed to acquire a reference to channel's trace chunk during stream rotation");
4274 ret = -1;
4275 goto error;
4276 } else {
4277 /*
4278 * Update the stream's trace chunk to its parent channel's
4279 * current trace chunk.
4280 */
4281 stream->trace_chunk = stream->chan->trace_chunk;
4282 }
4283
4284 if (stream->net_seq_idx == (uint64_t) -1ULL) {
4285 ret = rotate_local_stream(ctx, stream);
4286 if (ret < 0) {
4287 ERR("Failed to rotate stream, ret = %i", ret);
4288 goto error;
4289 }
4290 }
4291
4292 if (stream->metadata_flag && stream->trace_chunk) {
4293 /*
4294 * If the stream has transitioned to a new trace
4295 * chunk, the metadata should be re-dumped to the
4296 * newest chunk.
4297 *
4298 * However, it is possible for a stream to transition to
4299 * a "no-chunk" state. This can happen if a rotation
4300 * occurs on an inactive session. In such cases, the metadata
4301 * regeneration will happen when the next trace chunk is
4302 * created.
4303 */
4304 ret = consumer_metadata_stream_dump(stream);
4305 if (ret) {
4306 goto error;
4307 }
4308 }
4309 lttng_consumer_reset_stream_rotate_state(stream);
4310
4311 ret = 0;
4312
4313 error:
4314 return ret;
4315 }
4316
4317 /*
4318 * Rotate all the ready streams now.
4319 *
4320 * This is especially important for low throughput streams that have already
4321 * been consumed, we cannot wait for their next packet to perform the
4322 * rotation.
4323 * Need to be called with RCU read-side lock held to ensure existence of
4324 * channel.
4325 *
4326 * Returns 0 on success, < 0 on error
4327 */
4328 int lttng_consumer_rotate_ready_streams(struct lttng_consumer_channel *channel,
4329 uint64_t key, struct lttng_consumer_local_data *ctx)
4330 {
4331 int ret;
4332 struct lttng_consumer_stream *stream;
4333 struct lttng_ht_iter iter;
4334 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4335
4336 rcu_read_lock();
4337
4338 DBG("Consumer rotate ready streams in channel %" PRIu64, key);
4339
4340 cds_lfht_for_each_entry_duplicate(ht->ht,
4341 ht->hash_fct(&channel->key, lttng_ht_seed),
4342 ht->match_fct, &channel->key, &iter.iter,
4343 stream, node_channel_id.node) {
4344 health_code_update();
4345
4346 pthread_mutex_lock(&stream->chan->lock);
4347 pthread_mutex_lock(&stream->lock);
4348
4349 if (!stream->rotate_ready) {
4350 pthread_mutex_unlock(&stream->lock);
4351 pthread_mutex_unlock(&stream->chan->lock);
4352 continue;
4353 }
4354 DBG("Consumer rotate ready stream %" PRIu64, stream->key);
4355
4356 ret = lttng_consumer_rotate_stream(ctx, stream);
4357 pthread_mutex_unlock(&stream->lock);
4358 pthread_mutex_unlock(&stream->chan->lock);
4359 if (ret) {
4360 goto end;
4361 }
4362 }
4363
4364 ret = 0;
4365
4366 end:
4367 rcu_read_unlock();
4368 return ret;
4369 }
4370
4371 enum lttcomm_return_code lttng_consumer_init_command(
4372 struct lttng_consumer_local_data *ctx,
4373 const lttng_uuid sessiond_uuid)
4374 {
4375 enum lttcomm_return_code ret;
4376 char uuid_str[UUID_STR_LEN];
4377
4378 if (ctx->sessiond_uuid.is_set) {
4379 ret = LTTCOMM_CONSUMERD_ALREADY_SET;
4380 goto end;
4381 }
4382
4383 ctx->sessiond_uuid.is_set = true;
4384 memcpy(ctx->sessiond_uuid.value, sessiond_uuid, sizeof(lttng_uuid));
4385 ret = LTTCOMM_CONSUMERD_SUCCESS;
4386 lttng_uuid_to_str(sessiond_uuid, uuid_str);
4387 DBG("Received session daemon UUID: %s", uuid_str);
4388 end:
4389 return ret;
4390 }
4391
4392 enum lttcomm_return_code lttng_consumer_create_trace_chunk(
4393 const uint64_t *relayd_id, uint64_t session_id,
4394 uint64_t chunk_id,
4395 time_t chunk_creation_timestamp,
4396 const char *chunk_override_name,
4397 const struct lttng_credentials *credentials,
4398 struct lttng_directory_handle *chunk_directory_handle)
4399 {
4400 int ret;
4401 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4402 struct lttng_trace_chunk *created_chunk = NULL, *published_chunk = NULL;
4403 enum lttng_trace_chunk_status chunk_status;
4404 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4405 char creation_timestamp_buffer[ISO8601_STR_LEN];
4406 const char *relayd_id_str = "(none)";
4407 const char *creation_timestamp_str;
4408 struct lttng_ht_iter iter;
4409 struct lttng_consumer_channel *channel;
4410
4411 if (relayd_id) {
4412 /* Only used for logging purposes. */
4413 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4414 "%" PRIu64, *relayd_id);
4415 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4416 relayd_id_str = relayd_id_buffer;
4417 } else {
4418 relayd_id_str = "(formatting error)";
4419 }
4420 }
4421
4422 /* Local protocol error. */
4423 assert(chunk_creation_timestamp);
4424 ret = time_to_iso8601_str(chunk_creation_timestamp,
4425 creation_timestamp_buffer,
4426 sizeof(creation_timestamp_buffer));
4427 creation_timestamp_str = !ret ? creation_timestamp_buffer :
4428 "(formatting error)";
4429
4430 DBG("Consumer create trace chunk command: relay_id = %s"
4431 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4432 ", chunk_override_name = %s"
4433 ", chunk_creation_timestamp = %s",
4434 relayd_id_str, session_id, chunk_id,
4435 chunk_override_name ? : "(none)",
4436 creation_timestamp_str);
4437
4438 /*
4439 * The trace chunk registry, as used by the consumer daemon, implicitly
4440 * owns the trace chunks. This is only needed in the consumer since
4441 * the consumer has no notion of a session beyond session IDs being
4442 * used to identify other objects.
4443 *
4444 * The lttng_trace_chunk_registry_publish() call below provides a
4445 * reference which is not released; it implicitly becomes the session
4446 * daemon's reference to the chunk in the consumer daemon.
4447 *
4448 * The lifetime of trace chunks in the consumer daemon is managed by
4449 * the session daemon through the LTTNG_CONSUMER_CREATE_TRACE_CHUNK
4450 * and LTTNG_CONSUMER_DESTROY_TRACE_CHUNK commands.
4451 */
4452 created_chunk = lttng_trace_chunk_create(chunk_id,
4453 chunk_creation_timestamp);
4454 if (!created_chunk) {
4455 ERR("Failed to create trace chunk");
4456 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4457 goto error;
4458 }
4459
4460 if (chunk_override_name) {
4461 chunk_status = lttng_trace_chunk_override_name(created_chunk,
4462 chunk_override_name);
4463 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4464 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4465 goto error;
4466 }
4467 }
4468
4469 if (chunk_directory_handle) {
4470 chunk_status = lttng_trace_chunk_set_credentials(created_chunk,
4471 credentials);
4472 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4473 ERR("Failed to set trace chunk credentials");
4474 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4475 goto error;
4476 }
4477 /*
4478 * The consumer daemon has no ownership of the chunk output
4479 * directory.
4480 */
4481 chunk_status = lttng_trace_chunk_set_as_user(created_chunk,
4482 chunk_directory_handle);
4483 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4484 ERR("Failed to set trace chunk's directory handle");
4485 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4486 goto error;
4487 }
4488 }
4489
4490 published_chunk = lttng_trace_chunk_registry_publish_chunk(
4491 consumer_data.chunk_registry, session_id,
4492 created_chunk);
4493 lttng_trace_chunk_put(created_chunk);
4494 created_chunk = NULL;
4495 if (!published_chunk) {
4496 ERR("Failed to publish trace chunk");
4497 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4498 goto error;
4499 }
4500
4501 rcu_read_lock();
4502 cds_lfht_for_each_entry_duplicate(consumer_data.channels_by_session_id_ht->ht,
4503 consumer_data.channels_by_session_id_ht->hash_fct(
4504 &session_id, lttng_ht_seed),
4505 consumer_data.channels_by_session_id_ht->match_fct,
4506 &session_id, &iter.iter, channel,
4507 channels_by_session_id_ht_node.node) {
4508 ret = lttng_consumer_channel_set_trace_chunk(channel,
4509 published_chunk);
4510 if (ret) {
4511 /*
4512 * Roll-back the creation of this chunk.
4513 *
4514 * This is important since the session daemon will
4515 * assume that the creation of this chunk failed and
4516 * will never ask for it to be closed, resulting
4517 * in a leak and an inconsistent state for some
4518 * channels.
4519 */
4520 enum lttcomm_return_code close_ret;
4521 char path[LTTNG_PATH_MAX];
4522
4523 DBG("Failed to set new trace chunk on existing channels, rolling back");
4524 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4525 session_id, chunk_id,
4526 chunk_creation_timestamp, NULL,
4527 path);
4528 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4529 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4530 session_id, chunk_id);
4531 }
4532
4533 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4534 break;
4535 }
4536 }
4537
4538 if (relayd_id) {
4539 struct consumer_relayd_sock_pair *relayd;
4540
4541 relayd = consumer_find_relayd(*relayd_id);
4542 if (relayd) {
4543 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4544 ret = relayd_create_trace_chunk(
4545 &relayd->control_sock, published_chunk);
4546 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4547 } else {
4548 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64, *relayd_id);
4549 }
4550
4551 if (!relayd || ret) {
4552 enum lttcomm_return_code close_ret;
4553 char path[LTTNG_PATH_MAX];
4554
4555 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4556 session_id,
4557 chunk_id,
4558 chunk_creation_timestamp,
4559 NULL, path);
4560 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4561 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4562 session_id,
4563 chunk_id);
4564 }
4565
4566 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4567 goto error_unlock;
4568 }
4569 }
4570 error_unlock:
4571 rcu_read_unlock();
4572 error:
4573 /* Release the reference returned by the "publish" operation. */
4574 lttng_trace_chunk_put(published_chunk);
4575 lttng_trace_chunk_put(created_chunk);
4576 return ret_code;
4577 }
4578
4579 enum lttcomm_return_code lttng_consumer_close_trace_chunk(
4580 const uint64_t *relayd_id, uint64_t session_id,
4581 uint64_t chunk_id, time_t chunk_close_timestamp,
4582 const enum lttng_trace_chunk_command_type *close_command,
4583 char *path)
4584 {
4585 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4586 struct lttng_trace_chunk *chunk;
4587 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4588 const char *relayd_id_str = "(none)";
4589 const char *close_command_name = "none";
4590 struct lttng_ht_iter iter;
4591 struct lttng_consumer_channel *channel;
4592 enum lttng_trace_chunk_status chunk_status;
4593
4594 if (relayd_id) {
4595 int ret;
4596
4597 /* Only used for logging purposes. */
4598 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4599 "%" PRIu64, *relayd_id);
4600 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4601 relayd_id_str = relayd_id_buffer;
4602 } else {
4603 relayd_id_str = "(formatting error)";
4604 }
4605 }
4606 if (close_command) {
4607 close_command_name = lttng_trace_chunk_command_type_get_name(
4608 *close_command);
4609 }
4610
4611 DBG("Consumer close trace chunk command: relayd_id = %s"
4612 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4613 ", close command = %s",
4614 relayd_id_str, session_id, chunk_id,
4615 close_command_name);
4616
4617 chunk = lttng_trace_chunk_registry_find_chunk(
4618 consumer_data.chunk_registry, session_id, chunk_id);
4619 if (!chunk) {
4620 ERR("Failed to find chunk: session_id = %" PRIu64
4621 ", chunk_id = %" PRIu64,
4622 session_id, chunk_id);
4623 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4624 goto end;
4625 }
4626
4627 chunk_status = lttng_trace_chunk_set_close_timestamp(chunk,
4628 chunk_close_timestamp);
4629 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4630 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4631 goto end;
4632 }
4633
4634 if (close_command) {
4635 chunk_status = lttng_trace_chunk_set_close_command(
4636 chunk, *close_command);
4637 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4638 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4639 goto end;
4640 }
4641 }
4642
4643 /*
4644 * chunk is now invalid to access as we no longer hold a reference to
4645 * it; it is only kept around to compare it (by address) to the
4646 * current chunk found in the session's channels.
4647 */
4648 rcu_read_lock();
4649 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter,
4650 channel, node.node) {
4651 int ret;
4652
4653 /*
4654 * Only change the channel's chunk to NULL if it still
4655 * references the chunk being closed. The channel may
4656 * reference a newer channel in the case of a session
4657 * rotation. When a session rotation occurs, the "next"
4658 * chunk is created before the "current" chunk is closed.
4659 */
4660 if (channel->trace_chunk != chunk) {
4661 continue;
4662 }
4663 ret = lttng_consumer_channel_set_trace_chunk(channel, NULL);
4664 if (ret) {
4665 /*
4666 * Attempt to close the chunk on as many channels as
4667 * possible.
4668 */
4669 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4670 }
4671 }
4672
4673 if (relayd_id) {
4674 int ret;
4675 struct consumer_relayd_sock_pair *relayd;
4676
4677 relayd = consumer_find_relayd(*relayd_id);
4678 if (relayd) {
4679 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4680 ret = relayd_close_trace_chunk(
4681 &relayd->control_sock, chunk,
4682 path);
4683 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4684 } else {
4685 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64,
4686 *relayd_id);
4687 }
4688
4689 if (!relayd || ret) {
4690 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4691 goto error_unlock;
4692 }
4693 }
4694 error_unlock:
4695 rcu_read_unlock();
4696 end:
4697 /*
4698 * Release the reference returned by the "find" operation and
4699 * the session daemon's implicit reference to the chunk.
4700 */
4701 lttng_trace_chunk_put(chunk);
4702 lttng_trace_chunk_put(chunk);
4703
4704 return ret_code;
4705 }
4706
4707 enum lttcomm_return_code lttng_consumer_trace_chunk_exists(
4708 const uint64_t *relayd_id, uint64_t session_id,
4709 uint64_t chunk_id)
4710 {
4711 int ret;
4712 enum lttcomm_return_code ret_code;
4713 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4714 const char *relayd_id_str = "(none)";
4715 const bool is_local_trace = !relayd_id;
4716 struct consumer_relayd_sock_pair *relayd = NULL;
4717 bool chunk_exists_local, chunk_exists_remote;
4718
4719 if (relayd_id) {
4720 int ret;
4721
4722 /* Only used for logging purposes. */
4723 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4724 "%" PRIu64, *relayd_id);
4725 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4726 relayd_id_str = relayd_id_buffer;
4727 } else {
4728 relayd_id_str = "(formatting error)";
4729 }
4730 }
4731
4732 DBG("Consumer trace chunk exists command: relayd_id = %s"
4733 ", chunk_id = %" PRIu64, relayd_id_str,
4734 chunk_id);
4735 ret = lttng_trace_chunk_registry_chunk_exists(
4736 consumer_data.chunk_registry, session_id,
4737 chunk_id, &chunk_exists_local);
4738 if (ret) {
4739 /* Internal error. */
4740 ERR("Failed to query the existence of a trace chunk");
4741 ret_code = LTTCOMM_CONSUMERD_FATAL;
4742 goto end;
4743 }
4744 DBG("Trace chunk %s locally",
4745 chunk_exists_local ? "exists" : "does not exist");
4746 if (chunk_exists_local) {
4747 ret_code = LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL;
4748 goto end;
4749 } else if (is_local_trace) {
4750 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4751 goto end;
4752 }
4753
4754 rcu_read_lock();
4755 relayd = consumer_find_relayd(*relayd_id);
4756 if (!relayd) {
4757 ERR("Failed to find relayd %" PRIu64, *relayd_id);
4758 ret_code = LTTCOMM_CONSUMERD_INVALID_PARAMETERS;
4759 goto end_rcu_unlock;
4760 }
4761 DBG("Looking up existence of trace chunk on relay daemon");
4762 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4763 ret = relayd_trace_chunk_exists(&relayd->control_sock, chunk_id,
4764 &chunk_exists_remote);
4765 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4766 if (ret < 0) {
4767 ERR("Failed to look-up the existence of trace chunk on relay daemon");
4768 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
4769 goto end_rcu_unlock;
4770 }
4771
4772 ret_code = chunk_exists_remote ?
4773 LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE :
4774 LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4775 DBG("Trace chunk %s on relay daemon",
4776 chunk_exists_remote ? "exists" : "does not exist");
4777
4778 end_rcu_unlock:
4779 rcu_read_unlock();
4780 end:
4781 return ret_code;
4782 }
This page took 0.180697 seconds and 4 git commands to generate.