Fix: relayd vs consumerd compatibility
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50
51 struct lttng_consumer_global_data consumer_data = {
52 .stream_count = 0,
53 .need_update = 1,
54 .type = LTTNG_CONSUMER_UNKNOWN,
55 };
56
57 enum consumer_channel_action {
58 CONSUMER_CHANNEL_ADD,
59 CONSUMER_CHANNEL_DEL,
60 CONSUMER_CHANNEL_QUIT,
61 };
62
63 struct consumer_channel_msg {
64 enum consumer_channel_action action;
65 struct lttng_consumer_channel *chan; /* add */
66 uint64_t key; /* del */
67 };
68
69 /*
70 * Flag to inform the polling thread to quit when all fd hung up. Updated by
71 * the consumer_thread_receive_fds when it notices that all fds has hung up.
72 * Also updated by the signal handler (consumer_should_exit()). Read by the
73 * polling threads.
74 */
75 volatile int consumer_quit;
76
77 /*
78 * Global hash table containing respectively metadata and data streams. The
79 * stream element in this ht should only be updated by the metadata poll thread
80 * for the metadata and the data poll thread for the data.
81 */
82 static struct lttng_ht *metadata_ht;
83 static struct lttng_ht *data_ht;
84
85 /*
86 * Notify a thread lttng pipe to poll back again. This usually means that some
87 * global state has changed so we just send back the thread in a poll wait
88 * call.
89 */
90 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
91 {
92 struct lttng_consumer_stream *null_stream = NULL;
93
94 assert(pipe);
95
96 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
97 }
98
99 static void notify_health_quit_pipe(int *pipe)
100 {
101 ssize_t ret;
102
103 ret = lttng_write(pipe[1], "4", 1);
104 if (ret < 1) {
105 PERROR("write consumer health quit");
106 }
107 }
108
109 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
110 struct lttng_consumer_channel *chan,
111 uint64_t key,
112 enum consumer_channel_action action)
113 {
114 struct consumer_channel_msg msg;
115 ssize_t ret;
116
117 memset(&msg, 0, sizeof(msg));
118
119 msg.action = action;
120 msg.chan = chan;
121 msg.key = key;
122 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
123 if (ret < sizeof(msg)) {
124 PERROR("notify_channel_pipe write error");
125 }
126 }
127
128 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
129 uint64_t key)
130 {
131 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
132 }
133
134 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
135 struct lttng_consumer_channel **chan,
136 uint64_t *key,
137 enum consumer_channel_action *action)
138 {
139 struct consumer_channel_msg msg;
140 ssize_t ret;
141
142 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
143 if (ret < sizeof(msg)) {
144 ret = -1;
145 goto error;
146 }
147 *action = msg.action;
148 *chan = msg.chan;
149 *key = msg.key;
150 error:
151 return (int) ret;
152 }
153
154 /*
155 * Cleanup the stream list of a channel. Those streams are not yet globally
156 * visible
157 */
158 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
159 {
160 struct lttng_consumer_stream *stream, *stmp;
161
162 assert(channel);
163
164 /* Delete streams that might have been left in the stream list. */
165 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
166 send_node) {
167 cds_list_del(&stream->send_node);
168 /*
169 * Once a stream is added to this list, the buffers were created so we
170 * have a guarantee that this call will succeed. Setting the monitor
171 * mode to 0 so we don't lock nor try to delete the stream from the
172 * global hash table.
173 */
174 stream->monitor = 0;
175 consumer_stream_destroy(stream, NULL);
176 }
177 }
178
179 /*
180 * Find a stream. The consumer_data.lock must be locked during this
181 * call.
182 */
183 static struct lttng_consumer_stream *find_stream(uint64_t key,
184 struct lttng_ht *ht)
185 {
186 struct lttng_ht_iter iter;
187 struct lttng_ht_node_u64 *node;
188 struct lttng_consumer_stream *stream = NULL;
189
190 assert(ht);
191
192 /* -1ULL keys are lookup failures */
193 if (key == (uint64_t) -1ULL) {
194 return NULL;
195 }
196
197 rcu_read_lock();
198
199 lttng_ht_lookup(ht, &key, &iter);
200 node = lttng_ht_iter_get_node_u64(&iter);
201 if (node != NULL) {
202 stream = caa_container_of(node, struct lttng_consumer_stream, node);
203 }
204
205 rcu_read_unlock();
206
207 return stream;
208 }
209
210 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
211 {
212 struct lttng_consumer_stream *stream;
213
214 rcu_read_lock();
215 stream = find_stream(key, ht);
216 if (stream) {
217 stream->key = (uint64_t) -1ULL;
218 /*
219 * We don't want the lookup to match, but we still need
220 * to iterate on this stream when iterating over the hash table. Just
221 * change the node key.
222 */
223 stream->node.key = (uint64_t) -1ULL;
224 }
225 rcu_read_unlock();
226 }
227
228 /*
229 * Return a channel object for the given key.
230 *
231 * RCU read side lock MUST be acquired before calling this function and
232 * protects the channel ptr.
233 */
234 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
235 {
236 struct lttng_ht_iter iter;
237 struct lttng_ht_node_u64 *node;
238 struct lttng_consumer_channel *channel = NULL;
239
240 /* -1ULL keys are lookup failures */
241 if (key == (uint64_t) -1ULL) {
242 return NULL;
243 }
244
245 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
246 node = lttng_ht_iter_get_node_u64(&iter);
247 if (node != NULL) {
248 channel = caa_container_of(node, struct lttng_consumer_channel, node);
249 }
250
251 return channel;
252 }
253
254 /*
255 * There is a possibility that the consumer does not have enough time between
256 * the close of the channel on the session daemon and the cleanup in here thus
257 * once we have a channel add with an existing key, we know for sure that this
258 * channel will eventually get cleaned up by all streams being closed.
259 *
260 * This function just nullifies the already existing channel key.
261 */
262 static void steal_channel_key(uint64_t key)
263 {
264 struct lttng_consumer_channel *channel;
265
266 rcu_read_lock();
267 channel = consumer_find_channel(key);
268 if (channel) {
269 channel->key = (uint64_t) -1ULL;
270 /*
271 * We don't want the lookup to match, but we still need to iterate on
272 * this channel when iterating over the hash table. Just change the
273 * node key.
274 */
275 channel->node.key = (uint64_t) -1ULL;
276 }
277 rcu_read_unlock();
278 }
279
280 static void free_channel_rcu(struct rcu_head *head)
281 {
282 struct lttng_ht_node_u64 *node =
283 caa_container_of(head, struct lttng_ht_node_u64, head);
284 struct lttng_consumer_channel *channel =
285 caa_container_of(node, struct lttng_consumer_channel, node);
286
287 switch (consumer_data.type) {
288 case LTTNG_CONSUMER_KERNEL:
289 break;
290 case LTTNG_CONSUMER32_UST:
291 case LTTNG_CONSUMER64_UST:
292 lttng_ustconsumer_free_channel(channel);
293 break;
294 default:
295 ERR("Unknown consumer_data type");
296 abort();
297 }
298 free(channel);
299 }
300
301 /*
302 * RCU protected relayd socket pair free.
303 */
304 static void free_relayd_rcu(struct rcu_head *head)
305 {
306 struct lttng_ht_node_u64 *node =
307 caa_container_of(head, struct lttng_ht_node_u64, head);
308 struct consumer_relayd_sock_pair *relayd =
309 caa_container_of(node, struct consumer_relayd_sock_pair, node);
310
311 /*
312 * Close all sockets. This is done in the call RCU since we don't want the
313 * socket fds to be reassigned thus potentially creating bad state of the
314 * relayd object.
315 *
316 * We do not have to lock the control socket mutex here since at this stage
317 * there is no one referencing to this relayd object.
318 */
319 (void) relayd_close(&relayd->control_sock);
320 (void) relayd_close(&relayd->data_sock);
321
322 free(relayd);
323 }
324
325 /*
326 * Destroy and free relayd socket pair object.
327 */
328 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
329 {
330 int ret;
331 struct lttng_ht_iter iter;
332
333 if (relayd == NULL) {
334 return;
335 }
336
337 DBG("Consumer destroy and close relayd socket pair");
338
339 iter.iter.node = &relayd->node.node;
340 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
341 if (ret != 0) {
342 /* We assume the relayd is being or is destroyed */
343 return;
344 }
345
346 /* RCU free() call */
347 call_rcu(&relayd->node.head, free_relayd_rcu);
348 }
349
350 /*
351 * Remove a channel from the global list protected by a mutex. This function is
352 * also responsible for freeing its data structures.
353 */
354 void consumer_del_channel(struct lttng_consumer_channel *channel)
355 {
356 int ret;
357 struct lttng_ht_iter iter;
358
359 DBG("Consumer delete channel key %" PRIu64, channel->key);
360
361 pthread_mutex_lock(&consumer_data.lock);
362 pthread_mutex_lock(&channel->lock);
363
364 /* Destroy streams that might have been left in the stream list. */
365 clean_channel_stream_list(channel);
366
367 if (channel->live_timer_enabled == 1) {
368 consumer_timer_live_stop(channel);
369 }
370
371 switch (consumer_data.type) {
372 case LTTNG_CONSUMER_KERNEL:
373 break;
374 case LTTNG_CONSUMER32_UST:
375 case LTTNG_CONSUMER64_UST:
376 lttng_ustconsumer_del_channel(channel);
377 break;
378 default:
379 ERR("Unknown consumer_data type");
380 assert(0);
381 goto end;
382 }
383
384 rcu_read_lock();
385 iter.iter.node = &channel->node.node;
386 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
387 assert(!ret);
388 rcu_read_unlock();
389
390 call_rcu(&channel->node.head, free_channel_rcu);
391 end:
392 pthread_mutex_unlock(&channel->lock);
393 pthread_mutex_unlock(&consumer_data.lock);
394 }
395
396 /*
397 * Iterate over the relayd hash table and destroy each element. Finally,
398 * destroy the whole hash table.
399 */
400 static void cleanup_relayd_ht(void)
401 {
402 struct lttng_ht_iter iter;
403 struct consumer_relayd_sock_pair *relayd;
404
405 rcu_read_lock();
406
407 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
408 node.node) {
409 consumer_destroy_relayd(relayd);
410 }
411
412 rcu_read_unlock();
413
414 lttng_ht_destroy(consumer_data.relayd_ht);
415 }
416
417 /*
418 * Update the end point status of all streams having the given network sequence
419 * index (relayd index).
420 *
421 * It's atomically set without having the stream mutex locked which is fine
422 * because we handle the write/read race with a pipe wakeup for each thread.
423 */
424 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
425 enum consumer_endpoint_status status)
426 {
427 struct lttng_ht_iter iter;
428 struct lttng_consumer_stream *stream;
429
430 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
431
432 rcu_read_lock();
433
434 /* Let's begin with metadata */
435 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
436 if (stream->net_seq_idx == net_seq_idx) {
437 uatomic_set(&stream->endpoint_status, status);
438 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
439 }
440 }
441
442 /* Follow up by the data streams */
443 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
444 if (stream->net_seq_idx == net_seq_idx) {
445 uatomic_set(&stream->endpoint_status, status);
446 DBG("Delete flag set to data stream %d", stream->wait_fd);
447 }
448 }
449 rcu_read_unlock();
450 }
451
452 /*
453 * Cleanup a relayd object by flagging every associated streams for deletion,
454 * destroying the object meaning removing it from the relayd hash table,
455 * closing the sockets and freeing the memory in a RCU call.
456 *
457 * If a local data context is available, notify the threads that the streams'
458 * state have changed.
459 */
460 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
461 struct lttng_consumer_local_data *ctx)
462 {
463 uint64_t netidx;
464
465 assert(relayd);
466
467 DBG("Cleaning up relayd sockets");
468
469 /* Save the net sequence index before destroying the object */
470 netidx = relayd->net_seq_idx;
471
472 /*
473 * Delete the relayd from the relayd hash table, close the sockets and free
474 * the object in a RCU call.
475 */
476 consumer_destroy_relayd(relayd);
477
478 /* Set inactive endpoint to all streams */
479 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
480
481 /*
482 * With a local data context, notify the threads that the streams' state
483 * have changed. The write() action on the pipe acts as an "implicit"
484 * memory barrier ordering the updates of the end point status from the
485 * read of this status which happens AFTER receiving this notify.
486 */
487 if (ctx) {
488 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
489 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
490 }
491 }
492
493 /*
494 * Flag a relayd socket pair for destruction. Destroy it if the refcount
495 * reaches zero.
496 *
497 * RCU read side lock MUST be aquired before calling this function.
498 */
499 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
500 {
501 assert(relayd);
502
503 /* Set destroy flag for this object */
504 uatomic_set(&relayd->destroy_flag, 1);
505
506 /* Destroy the relayd if refcount is 0 */
507 if (uatomic_read(&relayd->refcount) == 0) {
508 consumer_destroy_relayd(relayd);
509 }
510 }
511
512 /*
513 * Completly destroy stream from every visiable data structure and the given
514 * hash table if one.
515 *
516 * One this call returns, the stream object is not longer usable nor visible.
517 */
518 void consumer_del_stream(struct lttng_consumer_stream *stream,
519 struct lttng_ht *ht)
520 {
521 consumer_stream_destroy(stream, ht);
522 }
523
524 /*
525 * XXX naming of del vs destroy is all mixed up.
526 */
527 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
528 {
529 consumer_stream_destroy(stream, data_ht);
530 }
531
532 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
533 {
534 consumer_stream_destroy(stream, metadata_ht);
535 }
536
537 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
538 uint64_t stream_key,
539 enum lttng_consumer_stream_state state,
540 const char *channel_name,
541 uid_t uid,
542 gid_t gid,
543 uint64_t relayd_id,
544 uint64_t session_id,
545 int cpu,
546 int *alloc_ret,
547 enum consumer_channel_type type,
548 unsigned int monitor)
549 {
550 int ret;
551 struct lttng_consumer_stream *stream;
552
553 stream = zmalloc(sizeof(*stream));
554 if (stream == NULL) {
555 PERROR("malloc struct lttng_consumer_stream");
556 ret = -ENOMEM;
557 goto end;
558 }
559
560 rcu_read_lock();
561
562 stream->key = stream_key;
563 stream->out_fd = -1;
564 stream->out_fd_offset = 0;
565 stream->output_written = 0;
566 stream->state = state;
567 stream->uid = uid;
568 stream->gid = gid;
569 stream->net_seq_idx = relayd_id;
570 stream->session_id = session_id;
571 stream->monitor = monitor;
572 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
573 stream->index_file = NULL;
574 stream->last_sequence_number = -1ULL;
575 pthread_mutex_init(&stream->lock, NULL);
576 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
577
578 /* If channel is the metadata, flag this stream as metadata. */
579 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
580 stream->metadata_flag = 1;
581 /* Metadata is flat out. */
582 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
583 /* Live rendez-vous point. */
584 pthread_cond_init(&stream->metadata_rdv, NULL);
585 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
586 } else {
587 /* Format stream name to <channel_name>_<cpu_number> */
588 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
589 channel_name, cpu);
590 if (ret < 0) {
591 PERROR("snprintf stream name");
592 goto error;
593 }
594 }
595
596 /* Key is always the wait_fd for streams. */
597 lttng_ht_node_init_u64(&stream->node, stream->key);
598
599 /* Init node per channel id key */
600 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
601
602 /* Init session id node with the stream session id */
603 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
604
605 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
606 " relayd_id %" PRIu64 ", session_id %" PRIu64,
607 stream->name, stream->key, channel_key,
608 stream->net_seq_idx, stream->session_id);
609
610 rcu_read_unlock();
611 return stream;
612
613 error:
614 rcu_read_unlock();
615 free(stream);
616 end:
617 if (alloc_ret) {
618 *alloc_ret = ret;
619 }
620 return NULL;
621 }
622
623 /*
624 * Add a stream to the global list protected by a mutex.
625 */
626 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
627 {
628 struct lttng_ht *ht = data_ht;
629 int ret = 0;
630
631 assert(stream);
632 assert(ht);
633
634 DBG3("Adding consumer stream %" PRIu64, stream->key);
635
636 pthread_mutex_lock(&consumer_data.lock);
637 pthread_mutex_lock(&stream->chan->lock);
638 pthread_mutex_lock(&stream->chan->timer_lock);
639 pthread_mutex_lock(&stream->lock);
640 rcu_read_lock();
641
642 /* Steal stream identifier to avoid having streams with the same key */
643 steal_stream_key(stream->key, ht);
644
645 lttng_ht_add_unique_u64(ht, &stream->node);
646
647 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
648 &stream->node_channel_id);
649
650 /*
651 * Add stream to the stream_list_ht of the consumer data. No need to steal
652 * the key since the HT does not use it and we allow to add redundant keys
653 * into this table.
654 */
655 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
656
657 /*
658 * When nb_init_stream_left reaches 0, we don't need to trigger any action
659 * in terms of destroying the associated channel, because the action that
660 * causes the count to become 0 also causes a stream to be added. The
661 * channel deletion will thus be triggered by the following removal of this
662 * stream.
663 */
664 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
665 /* Increment refcount before decrementing nb_init_stream_left */
666 cmm_smp_wmb();
667 uatomic_dec(&stream->chan->nb_init_stream_left);
668 }
669
670 /* Update consumer data once the node is inserted. */
671 consumer_data.stream_count++;
672 consumer_data.need_update = 1;
673
674 rcu_read_unlock();
675 pthread_mutex_unlock(&stream->lock);
676 pthread_mutex_unlock(&stream->chan->timer_lock);
677 pthread_mutex_unlock(&stream->chan->lock);
678 pthread_mutex_unlock(&consumer_data.lock);
679
680 return ret;
681 }
682
683 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
684 {
685 consumer_del_stream(stream, data_ht);
686 }
687
688 /*
689 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
690 * be acquired before calling this.
691 */
692 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
693 {
694 int ret = 0;
695 struct lttng_ht_node_u64 *node;
696 struct lttng_ht_iter iter;
697
698 assert(relayd);
699
700 lttng_ht_lookup(consumer_data.relayd_ht,
701 &relayd->net_seq_idx, &iter);
702 node = lttng_ht_iter_get_node_u64(&iter);
703 if (node != NULL) {
704 goto end;
705 }
706 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
707
708 end:
709 return ret;
710 }
711
712 /*
713 * Allocate and return a consumer relayd socket.
714 */
715 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
716 uint64_t net_seq_idx)
717 {
718 struct consumer_relayd_sock_pair *obj = NULL;
719
720 /* net sequence index of -1 is a failure */
721 if (net_seq_idx == (uint64_t) -1ULL) {
722 goto error;
723 }
724
725 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
726 if (obj == NULL) {
727 PERROR("zmalloc relayd sock");
728 goto error;
729 }
730
731 obj->net_seq_idx = net_seq_idx;
732 obj->refcount = 0;
733 obj->destroy_flag = 0;
734 obj->control_sock.sock.fd = -1;
735 obj->data_sock.sock.fd = -1;
736 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
737 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
738
739 error:
740 return obj;
741 }
742
743 /*
744 * Find a relayd socket pair in the global consumer data.
745 *
746 * Return the object if found else NULL.
747 * RCU read-side lock must be held across this call and while using the
748 * returned object.
749 */
750 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
751 {
752 struct lttng_ht_iter iter;
753 struct lttng_ht_node_u64 *node;
754 struct consumer_relayd_sock_pair *relayd = NULL;
755
756 /* Negative keys are lookup failures */
757 if (key == (uint64_t) -1ULL) {
758 goto error;
759 }
760
761 lttng_ht_lookup(consumer_data.relayd_ht, &key,
762 &iter);
763 node = lttng_ht_iter_get_node_u64(&iter);
764 if (node != NULL) {
765 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
766 }
767
768 error:
769 return relayd;
770 }
771
772 /*
773 * Find a relayd and send the stream
774 *
775 * Returns 0 on success, < 0 on error
776 */
777 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
778 char *path)
779 {
780 int ret = 0;
781 struct consumer_relayd_sock_pair *relayd;
782
783 assert(stream);
784 assert(stream->net_seq_idx != -1ULL);
785 assert(path);
786
787 /* The stream is not metadata. Get relayd reference if exists. */
788 rcu_read_lock();
789 relayd = consumer_find_relayd(stream->net_seq_idx);
790 if (relayd != NULL) {
791 /* Add stream on the relayd */
792 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
793 ret = relayd_add_stream(&relayd->control_sock, stream->name,
794 path, &stream->relayd_stream_id,
795 stream->chan->tracefile_size, stream->chan->tracefile_count);
796 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
797 if (ret < 0) {
798 goto end;
799 }
800
801 uatomic_inc(&relayd->refcount);
802 stream->sent_to_relayd = 1;
803 } else {
804 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
805 stream->key, stream->net_seq_idx);
806 ret = -1;
807 goto end;
808 }
809
810 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
811 stream->name, stream->key, stream->net_seq_idx);
812
813 end:
814 rcu_read_unlock();
815 return ret;
816 }
817
818 /*
819 * Find a relayd and send the streams sent message
820 *
821 * Returns 0 on success, < 0 on error
822 */
823 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
824 {
825 int ret = 0;
826 struct consumer_relayd_sock_pair *relayd;
827
828 assert(net_seq_idx != -1ULL);
829
830 /* The stream is not metadata. Get relayd reference if exists. */
831 rcu_read_lock();
832 relayd = consumer_find_relayd(net_seq_idx);
833 if (relayd != NULL) {
834 /* Add stream on the relayd */
835 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
836 ret = relayd_streams_sent(&relayd->control_sock);
837 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
838 if (ret < 0) {
839 goto end;
840 }
841 } else {
842 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
843 net_seq_idx);
844 ret = -1;
845 goto end;
846 }
847
848 ret = 0;
849 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
850
851 end:
852 rcu_read_unlock();
853 return ret;
854 }
855
856 /*
857 * Find a relayd and close the stream
858 */
859 void close_relayd_stream(struct lttng_consumer_stream *stream)
860 {
861 struct consumer_relayd_sock_pair *relayd;
862
863 /* The stream is not metadata. Get relayd reference if exists. */
864 rcu_read_lock();
865 relayd = consumer_find_relayd(stream->net_seq_idx);
866 if (relayd) {
867 consumer_stream_relayd_close(stream, relayd);
868 }
869 rcu_read_unlock();
870 }
871
872 /*
873 * Handle stream for relayd transmission if the stream applies for network
874 * streaming where the net sequence index is set.
875 *
876 * Return destination file descriptor or negative value on error.
877 */
878 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
879 size_t data_size, unsigned long padding,
880 struct consumer_relayd_sock_pair *relayd)
881 {
882 int outfd = -1, ret;
883 struct lttcomm_relayd_data_hdr data_hdr;
884
885 /* Safety net */
886 assert(stream);
887 assert(relayd);
888
889 /* Reset data header */
890 memset(&data_hdr, 0, sizeof(data_hdr));
891
892 if (stream->metadata_flag) {
893 /* Caller MUST acquire the relayd control socket lock */
894 ret = relayd_send_metadata(&relayd->control_sock, data_size);
895 if (ret < 0) {
896 goto error;
897 }
898
899 /* Metadata are always sent on the control socket. */
900 outfd = relayd->control_sock.sock.fd;
901 } else {
902 /* Set header with stream information */
903 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
904 data_hdr.data_size = htobe32(data_size);
905 data_hdr.padding_size = htobe32(padding);
906 /*
907 * Note that net_seq_num below is assigned with the *current* value of
908 * next_net_seq_num and only after that the next_net_seq_num will be
909 * increment. This is why when issuing a command on the relayd using
910 * this next value, 1 should always be substracted in order to compare
911 * the last seen sequence number on the relayd side to the last sent.
912 */
913 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
914 /* Other fields are zeroed previously */
915
916 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
917 sizeof(data_hdr));
918 if (ret < 0) {
919 goto error;
920 }
921
922 ++stream->next_net_seq_num;
923
924 /* Set to go on data socket */
925 outfd = relayd->data_sock.sock.fd;
926 }
927
928 error:
929 return outfd;
930 }
931
932 /*
933 * Allocate and return a new lttng_consumer_channel object using the given key
934 * to initialize the hash table node.
935 *
936 * On error, return NULL.
937 */
938 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
939 uint64_t session_id,
940 const char *pathname,
941 const char *name,
942 uid_t uid,
943 gid_t gid,
944 uint64_t relayd_id,
945 enum lttng_event_output output,
946 uint64_t tracefile_size,
947 uint64_t tracefile_count,
948 uint64_t session_id_per_pid,
949 unsigned int monitor,
950 unsigned int live_timer_interval,
951 const char *root_shm_path,
952 const char *shm_path)
953 {
954 struct lttng_consumer_channel *channel;
955
956 channel = zmalloc(sizeof(*channel));
957 if (channel == NULL) {
958 PERROR("malloc struct lttng_consumer_channel");
959 goto end;
960 }
961
962 channel->key = key;
963 channel->refcount = 0;
964 channel->session_id = session_id;
965 channel->session_id_per_pid = session_id_per_pid;
966 channel->uid = uid;
967 channel->gid = gid;
968 channel->relayd_id = relayd_id;
969 channel->tracefile_size = tracefile_size;
970 channel->tracefile_count = tracefile_count;
971 channel->monitor = monitor;
972 channel->live_timer_interval = live_timer_interval;
973 pthread_mutex_init(&channel->lock, NULL);
974 pthread_mutex_init(&channel->timer_lock, NULL);
975
976 switch (output) {
977 case LTTNG_EVENT_SPLICE:
978 channel->output = CONSUMER_CHANNEL_SPLICE;
979 break;
980 case LTTNG_EVENT_MMAP:
981 channel->output = CONSUMER_CHANNEL_MMAP;
982 break;
983 default:
984 assert(0);
985 free(channel);
986 channel = NULL;
987 goto end;
988 }
989
990 /*
991 * In monitor mode, the streams associated with the channel will be put in
992 * a special list ONLY owned by this channel. So, the refcount is set to 1
993 * here meaning that the channel itself has streams that are referenced.
994 *
995 * On a channel deletion, once the channel is no longer visible, the
996 * refcount is decremented and checked for a zero value to delete it. With
997 * streams in no monitor mode, it will now be safe to destroy the channel.
998 */
999 if (!channel->monitor) {
1000 channel->refcount = 1;
1001 }
1002
1003 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1004 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1005
1006 strncpy(channel->name, name, sizeof(channel->name));
1007 channel->name[sizeof(channel->name) - 1] = '\0';
1008
1009 if (root_shm_path) {
1010 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1011 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1012 }
1013 if (shm_path) {
1014 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1015 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1016 }
1017
1018 lttng_ht_node_init_u64(&channel->node, channel->key);
1019
1020 channel->wait_fd = -1;
1021
1022 CDS_INIT_LIST_HEAD(&channel->streams.head);
1023
1024 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1025
1026 end:
1027 return channel;
1028 }
1029
1030 /*
1031 * Add a channel to the global list protected by a mutex.
1032 *
1033 * Always return 0 indicating success.
1034 */
1035 int consumer_add_channel(struct lttng_consumer_channel *channel,
1036 struct lttng_consumer_local_data *ctx)
1037 {
1038 pthread_mutex_lock(&consumer_data.lock);
1039 pthread_mutex_lock(&channel->lock);
1040 pthread_mutex_lock(&channel->timer_lock);
1041
1042 /*
1043 * This gives us a guarantee that the channel we are about to add to the
1044 * channel hash table will be unique. See this function comment on the why
1045 * we need to steel the channel key at this stage.
1046 */
1047 steal_channel_key(channel->key);
1048
1049 rcu_read_lock();
1050 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1051 rcu_read_unlock();
1052
1053 pthread_mutex_unlock(&channel->timer_lock);
1054 pthread_mutex_unlock(&channel->lock);
1055 pthread_mutex_unlock(&consumer_data.lock);
1056
1057 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1058 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1059 }
1060
1061 return 0;
1062 }
1063
1064 /*
1065 * Allocate the pollfd structure and the local view of the out fds to avoid
1066 * doing a lookup in the linked list and concurrency issues when writing is
1067 * needed. Called with consumer_data.lock held.
1068 *
1069 * Returns the number of fds in the structures.
1070 */
1071 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1072 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1073 struct lttng_ht *ht)
1074 {
1075 int i = 0;
1076 struct lttng_ht_iter iter;
1077 struct lttng_consumer_stream *stream;
1078
1079 assert(ctx);
1080 assert(ht);
1081 assert(pollfd);
1082 assert(local_stream);
1083
1084 DBG("Updating poll fd array");
1085 rcu_read_lock();
1086 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1087 /*
1088 * Only active streams with an active end point can be added to the
1089 * poll set and local stream storage of the thread.
1090 *
1091 * There is a potential race here for endpoint_status to be updated
1092 * just after the check. However, this is OK since the stream(s) will
1093 * be deleted once the thread is notified that the end point state has
1094 * changed where this function will be called back again.
1095 */
1096 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1097 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1098 continue;
1099 }
1100 /*
1101 * This clobbers way too much the debug output. Uncomment that if you
1102 * need it for debugging purposes.
1103 *
1104 * DBG("Active FD %d", stream->wait_fd);
1105 */
1106 (*pollfd)[i].fd = stream->wait_fd;
1107 (*pollfd)[i].events = POLLIN | POLLPRI;
1108 local_stream[i] = stream;
1109 i++;
1110 }
1111 rcu_read_unlock();
1112
1113 /*
1114 * Insert the consumer_data_pipe at the end of the array and don't
1115 * increment i so nb_fd is the number of real FD.
1116 */
1117 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1118 (*pollfd)[i].events = POLLIN | POLLPRI;
1119
1120 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1121 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1122 return i;
1123 }
1124
1125 /*
1126 * Poll on the should_quit pipe and the command socket return -1 on
1127 * error, 1 if should exit, 0 if data is available on the command socket
1128 */
1129 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1130 {
1131 int num_rdy;
1132
1133 restart:
1134 num_rdy = poll(consumer_sockpoll, 2, -1);
1135 if (num_rdy == -1) {
1136 /*
1137 * Restart interrupted system call.
1138 */
1139 if (errno == EINTR) {
1140 goto restart;
1141 }
1142 PERROR("Poll error");
1143 return -1;
1144 }
1145 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1146 DBG("consumer_should_quit wake up");
1147 return 1;
1148 }
1149 return 0;
1150 }
1151
1152 /*
1153 * Set the error socket.
1154 */
1155 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1156 int sock)
1157 {
1158 ctx->consumer_error_socket = sock;
1159 }
1160
1161 /*
1162 * Set the command socket path.
1163 */
1164 void lttng_consumer_set_command_sock_path(
1165 struct lttng_consumer_local_data *ctx, char *sock)
1166 {
1167 ctx->consumer_command_sock_path = sock;
1168 }
1169
1170 /*
1171 * Send return code to the session daemon.
1172 * If the socket is not defined, we return 0, it is not a fatal error
1173 */
1174 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1175 {
1176 if (ctx->consumer_error_socket > 0) {
1177 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1178 sizeof(enum lttcomm_sessiond_command));
1179 }
1180
1181 return 0;
1182 }
1183
1184 /*
1185 * Close all the tracefiles and stream fds and MUST be called when all
1186 * instances are destroyed i.e. when all threads were joined and are ended.
1187 */
1188 void lttng_consumer_cleanup(void)
1189 {
1190 struct lttng_ht_iter iter;
1191 struct lttng_consumer_channel *channel;
1192
1193 rcu_read_lock();
1194
1195 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1196 node.node) {
1197 consumer_del_channel(channel);
1198 }
1199
1200 rcu_read_unlock();
1201
1202 lttng_ht_destroy(consumer_data.channel_ht);
1203
1204 cleanup_relayd_ht();
1205
1206 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1207
1208 /*
1209 * This HT contains streams that are freed by either the metadata thread or
1210 * the data thread so we do *nothing* on the hash table and simply destroy
1211 * it.
1212 */
1213 lttng_ht_destroy(consumer_data.stream_list_ht);
1214 }
1215
1216 /*
1217 * Called from signal handler.
1218 */
1219 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1220 {
1221 ssize_t ret;
1222
1223 consumer_quit = 1;
1224 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1225 if (ret < 1) {
1226 PERROR("write consumer quit");
1227 }
1228
1229 DBG("Consumer flag that it should quit");
1230 }
1231
1232
1233 /*
1234 * Flush pending writes to trace output disk file.
1235 */
1236 static
1237 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1238 off_t orig_offset)
1239 {
1240 int ret;
1241 int outfd = stream->out_fd;
1242
1243 /*
1244 * This does a blocking write-and-wait on any page that belongs to the
1245 * subbuffer prior to the one we just wrote.
1246 * Don't care about error values, as these are just hints and ways to
1247 * limit the amount of page cache used.
1248 */
1249 if (orig_offset < stream->max_sb_size) {
1250 return;
1251 }
1252 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1253 stream->max_sb_size,
1254 SYNC_FILE_RANGE_WAIT_BEFORE
1255 | SYNC_FILE_RANGE_WRITE
1256 | SYNC_FILE_RANGE_WAIT_AFTER);
1257 /*
1258 * Give hints to the kernel about how we access the file:
1259 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1260 * we write it.
1261 *
1262 * We need to call fadvise again after the file grows because the
1263 * kernel does not seem to apply fadvise to non-existing parts of the
1264 * file.
1265 *
1266 * Call fadvise _after_ having waited for the page writeback to
1267 * complete because the dirty page writeback semantic is not well
1268 * defined. So it can be expected to lead to lower throughput in
1269 * streaming.
1270 */
1271 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1272 stream->max_sb_size, POSIX_FADV_DONTNEED);
1273 if (ret && ret != -ENOSYS) {
1274 errno = ret;
1275 PERROR("posix_fadvise on fd %i", outfd);
1276 }
1277 }
1278
1279 /*
1280 * Initialise the necessary environnement :
1281 * - create a new context
1282 * - create the poll_pipe
1283 * - create the should_quit pipe (for signal handler)
1284 * - create the thread pipe (for splice)
1285 *
1286 * Takes a function pointer as argument, this function is called when data is
1287 * available on a buffer. This function is responsible to do the
1288 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1289 * buffer configuration and then kernctl_put_next_subbuf at the end.
1290 *
1291 * Returns a pointer to the new context or NULL on error.
1292 */
1293 struct lttng_consumer_local_data *lttng_consumer_create(
1294 enum lttng_consumer_type type,
1295 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1296 struct lttng_consumer_local_data *ctx),
1297 int (*recv_channel)(struct lttng_consumer_channel *channel),
1298 int (*recv_stream)(struct lttng_consumer_stream *stream),
1299 int (*update_stream)(uint64_t stream_key, uint32_t state))
1300 {
1301 int ret;
1302 struct lttng_consumer_local_data *ctx;
1303
1304 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1305 consumer_data.type == type);
1306 consumer_data.type = type;
1307
1308 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1309 if (ctx == NULL) {
1310 PERROR("allocating context");
1311 goto error;
1312 }
1313
1314 ctx->consumer_error_socket = -1;
1315 ctx->consumer_metadata_socket = -1;
1316 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1317 /* assign the callbacks */
1318 ctx->on_buffer_ready = buffer_ready;
1319 ctx->on_recv_channel = recv_channel;
1320 ctx->on_recv_stream = recv_stream;
1321 ctx->on_update_stream = update_stream;
1322
1323 ctx->consumer_data_pipe = lttng_pipe_open(0);
1324 if (!ctx->consumer_data_pipe) {
1325 goto error_poll_pipe;
1326 }
1327
1328 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1329 if (!ctx->consumer_wakeup_pipe) {
1330 goto error_wakeup_pipe;
1331 }
1332
1333 ret = pipe(ctx->consumer_should_quit);
1334 if (ret < 0) {
1335 PERROR("Error creating recv pipe");
1336 goto error_quit_pipe;
1337 }
1338
1339 ret = pipe(ctx->consumer_channel_pipe);
1340 if (ret < 0) {
1341 PERROR("Error creating channel pipe");
1342 goto error_channel_pipe;
1343 }
1344
1345 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1346 if (!ctx->consumer_metadata_pipe) {
1347 goto error_metadata_pipe;
1348 }
1349
1350 return ctx;
1351
1352 error_metadata_pipe:
1353 utils_close_pipe(ctx->consumer_channel_pipe);
1354 error_channel_pipe:
1355 utils_close_pipe(ctx->consumer_should_quit);
1356 error_quit_pipe:
1357 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1358 error_wakeup_pipe:
1359 lttng_pipe_destroy(ctx->consumer_data_pipe);
1360 error_poll_pipe:
1361 free(ctx);
1362 error:
1363 return NULL;
1364 }
1365
1366 /*
1367 * Iterate over all streams of the hashtable and free them properly.
1368 */
1369 static void destroy_data_stream_ht(struct lttng_ht *ht)
1370 {
1371 struct lttng_ht_iter iter;
1372 struct lttng_consumer_stream *stream;
1373
1374 if (ht == NULL) {
1375 return;
1376 }
1377
1378 rcu_read_lock();
1379 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1380 /*
1381 * Ignore return value since we are currently cleaning up so any error
1382 * can't be handled.
1383 */
1384 (void) consumer_del_stream(stream, ht);
1385 }
1386 rcu_read_unlock();
1387
1388 lttng_ht_destroy(ht);
1389 }
1390
1391 /*
1392 * Iterate over all streams of the metadata hashtable and free them
1393 * properly.
1394 */
1395 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1396 {
1397 struct lttng_ht_iter iter;
1398 struct lttng_consumer_stream *stream;
1399
1400 if (ht == NULL) {
1401 return;
1402 }
1403
1404 rcu_read_lock();
1405 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1406 /*
1407 * Ignore return value since we are currently cleaning up so any error
1408 * can't be handled.
1409 */
1410 (void) consumer_del_metadata_stream(stream, ht);
1411 }
1412 rcu_read_unlock();
1413
1414 lttng_ht_destroy(ht);
1415 }
1416
1417 /*
1418 * Close all fds associated with the instance and free the context.
1419 */
1420 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1421 {
1422 int ret;
1423
1424 DBG("Consumer destroying it. Closing everything.");
1425
1426 if (!ctx) {
1427 return;
1428 }
1429
1430 destroy_data_stream_ht(data_ht);
1431 destroy_metadata_stream_ht(metadata_ht);
1432
1433 ret = close(ctx->consumer_error_socket);
1434 if (ret) {
1435 PERROR("close");
1436 }
1437 ret = close(ctx->consumer_metadata_socket);
1438 if (ret) {
1439 PERROR("close");
1440 }
1441 utils_close_pipe(ctx->consumer_channel_pipe);
1442 lttng_pipe_destroy(ctx->consumer_data_pipe);
1443 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1444 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1445 utils_close_pipe(ctx->consumer_should_quit);
1446
1447 unlink(ctx->consumer_command_sock_path);
1448 free(ctx);
1449 }
1450
1451 /*
1452 * Write the metadata stream id on the specified file descriptor.
1453 */
1454 static int write_relayd_metadata_id(int fd,
1455 struct lttng_consumer_stream *stream,
1456 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1457 {
1458 ssize_t ret;
1459 struct lttcomm_relayd_metadata_payload hdr;
1460
1461 hdr.stream_id = htobe64(stream->relayd_stream_id);
1462 hdr.padding_size = htobe32(padding);
1463 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1464 if (ret < sizeof(hdr)) {
1465 /*
1466 * This error means that the fd's end is closed so ignore the PERROR
1467 * not to clubber the error output since this can happen in a normal
1468 * code path.
1469 */
1470 if (errno != EPIPE) {
1471 PERROR("write metadata stream id");
1472 }
1473 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1474 /*
1475 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1476 * handle writting the missing part so report that as an error and
1477 * don't lie to the caller.
1478 */
1479 ret = -1;
1480 goto end;
1481 }
1482 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1483 stream->relayd_stream_id, padding);
1484
1485 end:
1486 return (int) ret;
1487 }
1488
1489 /*
1490 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1491 * core function for writing trace buffers to either the local filesystem or
1492 * the network.
1493 *
1494 * It must be called with the stream lock held.
1495 *
1496 * Careful review MUST be put if any changes occur!
1497 *
1498 * Returns the number of bytes written
1499 */
1500 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1501 struct lttng_consumer_local_data *ctx,
1502 struct lttng_consumer_stream *stream, unsigned long len,
1503 unsigned long padding,
1504 struct ctf_packet_index *index)
1505 {
1506 unsigned long mmap_offset;
1507 void *mmap_base;
1508 ssize_t ret = 0;
1509 off_t orig_offset = stream->out_fd_offset;
1510 /* Default is on the disk */
1511 int outfd = stream->out_fd;
1512 struct consumer_relayd_sock_pair *relayd = NULL;
1513 unsigned int relayd_hang_up = 0;
1514
1515 /* RCU lock for the relayd pointer */
1516 rcu_read_lock();
1517
1518 /* Flag that the current stream if set for network streaming. */
1519 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1520 relayd = consumer_find_relayd(stream->net_seq_idx);
1521 if (relayd == NULL) {
1522 ret = -EPIPE;
1523 goto end;
1524 }
1525 }
1526
1527 /* get the offset inside the fd to mmap */
1528 switch (consumer_data.type) {
1529 case LTTNG_CONSUMER_KERNEL:
1530 mmap_base = stream->mmap_base;
1531 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1532 if (ret < 0) {
1533 ret = -errno;
1534 PERROR("tracer ctl get_mmap_read_offset");
1535 goto end;
1536 }
1537 break;
1538 case LTTNG_CONSUMER32_UST:
1539 case LTTNG_CONSUMER64_UST:
1540 mmap_base = lttng_ustctl_get_mmap_base(stream);
1541 if (!mmap_base) {
1542 ERR("read mmap get mmap base for stream %s", stream->name);
1543 ret = -EPERM;
1544 goto end;
1545 }
1546 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1547 if (ret != 0) {
1548 PERROR("tracer ctl get_mmap_read_offset");
1549 ret = -EINVAL;
1550 goto end;
1551 }
1552 break;
1553 default:
1554 ERR("Unknown consumer_data type");
1555 assert(0);
1556 }
1557
1558 /* Handle stream on the relayd if the output is on the network */
1559 if (relayd) {
1560 unsigned long netlen = len;
1561
1562 /*
1563 * Lock the control socket for the complete duration of the function
1564 * since from this point on we will use the socket.
1565 */
1566 if (stream->metadata_flag) {
1567 /* Metadata requires the control socket. */
1568 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1569 if (stream->reset_metadata_flag) {
1570 ret = relayd_reset_metadata(&relayd->control_sock,
1571 stream->relayd_stream_id,
1572 stream->metadata_version);
1573 if (ret < 0) {
1574 relayd_hang_up = 1;
1575 goto write_error;
1576 }
1577 stream->reset_metadata_flag = 0;
1578 }
1579 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1580 }
1581
1582 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1583 if (ret < 0) {
1584 relayd_hang_up = 1;
1585 goto write_error;
1586 }
1587 /* Use the returned socket. */
1588 outfd = ret;
1589
1590 /* Write metadata stream id before payload */
1591 if (stream->metadata_flag) {
1592 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1593 if (ret < 0) {
1594 relayd_hang_up = 1;
1595 goto write_error;
1596 }
1597 }
1598 } else {
1599 /* No streaming, we have to set the len with the full padding */
1600 len += padding;
1601
1602 if (stream->metadata_flag && stream->reset_metadata_flag) {
1603 ret = utils_truncate_stream_file(stream->out_fd, 0);
1604 if (ret < 0) {
1605 ERR("Reset metadata file");
1606 goto end;
1607 }
1608 stream->reset_metadata_flag = 0;
1609 }
1610
1611 /*
1612 * Check if we need to change the tracefile before writing the packet.
1613 */
1614 if (stream->chan->tracefile_size > 0 &&
1615 (stream->tracefile_size_current + len) >
1616 stream->chan->tracefile_size) {
1617 ret = utils_rotate_stream_file(stream->chan->pathname,
1618 stream->name, stream->chan->tracefile_size,
1619 stream->chan->tracefile_count, stream->uid, stream->gid,
1620 stream->out_fd, &(stream->tracefile_count_current),
1621 &stream->out_fd);
1622 if (ret < 0) {
1623 ERR("Rotating output file");
1624 goto end;
1625 }
1626 outfd = stream->out_fd;
1627
1628 if (stream->index_file) {
1629 lttng_index_file_put(stream->index_file);
1630 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1631 stream->name, stream->uid, stream->gid,
1632 stream->chan->tracefile_size,
1633 stream->tracefile_count_current,
1634 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1635 if (!stream->index_file) {
1636 goto end;
1637 }
1638 }
1639
1640 /* Reset current size because we just perform a rotation. */
1641 stream->tracefile_size_current = 0;
1642 stream->out_fd_offset = 0;
1643 orig_offset = 0;
1644 }
1645 stream->tracefile_size_current += len;
1646 if (index) {
1647 index->offset = htobe64(stream->out_fd_offset);
1648 }
1649 }
1650
1651 /*
1652 * This call guarantee that len or less is returned. It's impossible to
1653 * receive a ret value that is bigger than len.
1654 */
1655 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1656 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1657 if (ret < 0 || ((size_t) ret != len)) {
1658 /*
1659 * Report error to caller if nothing was written else at least send the
1660 * amount written.
1661 */
1662 if (ret < 0) {
1663 ret = -errno;
1664 }
1665 relayd_hang_up = 1;
1666
1667 /* Socket operation failed. We consider the relayd dead */
1668 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1669 /*
1670 * This is possible if the fd is closed on the other side
1671 * (outfd) or any write problem. It can be verbose a bit for a
1672 * normal execution if for instance the relayd is stopped
1673 * abruptly. This can happen so set this to a DBG statement.
1674 */
1675 DBG("Consumer mmap write detected relayd hang up");
1676 } else {
1677 /* Unhandled error, print it and stop function right now. */
1678 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1679 }
1680 goto write_error;
1681 }
1682 stream->output_written += ret;
1683
1684 /* This call is useless on a socket so better save a syscall. */
1685 if (!relayd) {
1686 /* This won't block, but will start writeout asynchronously */
1687 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1688 SYNC_FILE_RANGE_WRITE);
1689 stream->out_fd_offset += len;
1690 lttng_consumer_sync_trace_file(stream, orig_offset);
1691 }
1692
1693 write_error:
1694 /*
1695 * This is a special case that the relayd has closed its socket. Let's
1696 * cleanup the relayd object and all associated streams.
1697 */
1698 if (relayd && relayd_hang_up) {
1699 cleanup_relayd(relayd, ctx);
1700 }
1701
1702 end:
1703 /* Unlock only if ctrl socket used */
1704 if (relayd && stream->metadata_flag) {
1705 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1706 }
1707
1708 rcu_read_unlock();
1709 return ret;
1710 }
1711
1712 /*
1713 * Splice the data from the ring buffer to the tracefile.
1714 *
1715 * It must be called with the stream lock held.
1716 *
1717 * Returns the number of bytes spliced.
1718 */
1719 ssize_t lttng_consumer_on_read_subbuffer_splice(
1720 struct lttng_consumer_local_data *ctx,
1721 struct lttng_consumer_stream *stream, unsigned long len,
1722 unsigned long padding,
1723 struct ctf_packet_index *index)
1724 {
1725 ssize_t ret = 0, written = 0, ret_splice = 0;
1726 loff_t offset = 0;
1727 off_t orig_offset = stream->out_fd_offset;
1728 int fd = stream->wait_fd;
1729 /* Default is on the disk */
1730 int outfd = stream->out_fd;
1731 struct consumer_relayd_sock_pair *relayd = NULL;
1732 int *splice_pipe;
1733 unsigned int relayd_hang_up = 0;
1734
1735 switch (consumer_data.type) {
1736 case LTTNG_CONSUMER_KERNEL:
1737 break;
1738 case LTTNG_CONSUMER32_UST:
1739 case LTTNG_CONSUMER64_UST:
1740 /* Not supported for user space tracing */
1741 return -ENOSYS;
1742 default:
1743 ERR("Unknown consumer_data type");
1744 assert(0);
1745 }
1746
1747 /* RCU lock for the relayd pointer */
1748 rcu_read_lock();
1749
1750 /* Flag that the current stream if set for network streaming. */
1751 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1752 relayd = consumer_find_relayd(stream->net_seq_idx);
1753 if (relayd == NULL) {
1754 written = -ret;
1755 goto end;
1756 }
1757 }
1758 splice_pipe = stream->splice_pipe;
1759
1760 /* Write metadata stream id before payload */
1761 if (relayd) {
1762 unsigned long total_len = len;
1763
1764 if (stream->metadata_flag) {
1765 /*
1766 * Lock the control socket for the complete duration of the function
1767 * since from this point on we will use the socket.
1768 */
1769 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1770
1771 if (stream->reset_metadata_flag) {
1772 ret = relayd_reset_metadata(&relayd->control_sock,
1773 stream->relayd_stream_id,
1774 stream->metadata_version);
1775 if (ret < 0) {
1776 relayd_hang_up = 1;
1777 goto write_error;
1778 }
1779 stream->reset_metadata_flag = 0;
1780 }
1781 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1782 padding);
1783 if (ret < 0) {
1784 written = ret;
1785 relayd_hang_up = 1;
1786 goto write_error;
1787 }
1788
1789 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1790 }
1791
1792 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1793 if (ret < 0) {
1794 written = ret;
1795 relayd_hang_up = 1;
1796 goto write_error;
1797 }
1798 /* Use the returned socket. */
1799 outfd = ret;
1800 } else {
1801 /* No streaming, we have to set the len with the full padding */
1802 len += padding;
1803
1804 if (stream->metadata_flag && stream->reset_metadata_flag) {
1805 ret = utils_truncate_stream_file(stream->out_fd, 0);
1806 if (ret < 0) {
1807 ERR("Reset metadata file");
1808 goto end;
1809 }
1810 stream->reset_metadata_flag = 0;
1811 }
1812 /*
1813 * Check if we need to change the tracefile before writing the packet.
1814 */
1815 if (stream->chan->tracefile_size > 0 &&
1816 (stream->tracefile_size_current + len) >
1817 stream->chan->tracefile_size) {
1818 ret = utils_rotate_stream_file(stream->chan->pathname,
1819 stream->name, stream->chan->tracefile_size,
1820 stream->chan->tracefile_count, stream->uid, stream->gid,
1821 stream->out_fd, &(stream->tracefile_count_current),
1822 &stream->out_fd);
1823 if (ret < 0) {
1824 written = ret;
1825 ERR("Rotating output file");
1826 goto end;
1827 }
1828 outfd = stream->out_fd;
1829
1830 if (stream->index_file) {
1831 lttng_index_file_put(stream->index_file);
1832 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1833 stream->name, stream->uid, stream->gid,
1834 stream->chan->tracefile_size,
1835 stream->tracefile_count_current,
1836 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1837 if (!stream->index_file) {
1838 goto end;
1839 }
1840 }
1841
1842 /* Reset current size because we just perform a rotation. */
1843 stream->tracefile_size_current = 0;
1844 stream->out_fd_offset = 0;
1845 orig_offset = 0;
1846 }
1847 stream->tracefile_size_current += len;
1848 index->offset = htobe64(stream->out_fd_offset);
1849 }
1850
1851 while (len > 0) {
1852 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1853 (unsigned long)offset, len, fd, splice_pipe[1]);
1854 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1855 SPLICE_F_MOVE | SPLICE_F_MORE);
1856 DBG("splice chan to pipe, ret %zd", ret_splice);
1857 if (ret_splice < 0) {
1858 ret = errno;
1859 written = -ret;
1860 PERROR("Error in relay splice");
1861 goto splice_error;
1862 }
1863
1864 /* Handle stream on the relayd if the output is on the network */
1865 if (relayd && stream->metadata_flag) {
1866 size_t metadata_payload_size =
1867 sizeof(struct lttcomm_relayd_metadata_payload);
1868
1869 /* Update counter to fit the spliced data */
1870 ret_splice += metadata_payload_size;
1871 len += metadata_payload_size;
1872 /*
1873 * We do this so the return value can match the len passed as
1874 * argument to this function.
1875 */
1876 written -= metadata_payload_size;
1877 }
1878
1879 /* Splice data out */
1880 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1881 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1882 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1883 outfd, ret_splice);
1884 if (ret_splice < 0) {
1885 ret = errno;
1886 written = -ret;
1887 relayd_hang_up = 1;
1888 goto write_error;
1889 } else if (ret_splice > len) {
1890 /*
1891 * We don't expect this code path to be executed but you never know
1892 * so this is an extra protection agains a buggy splice().
1893 */
1894 ret = errno;
1895 written += ret_splice;
1896 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1897 len);
1898 goto splice_error;
1899 } else {
1900 /* All good, update current len and continue. */
1901 len -= ret_splice;
1902 }
1903
1904 /* This call is useless on a socket so better save a syscall. */
1905 if (!relayd) {
1906 /* This won't block, but will start writeout asynchronously */
1907 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1908 SYNC_FILE_RANGE_WRITE);
1909 stream->out_fd_offset += ret_splice;
1910 }
1911 stream->output_written += ret_splice;
1912 written += ret_splice;
1913 }
1914 if (!relayd) {
1915 lttng_consumer_sync_trace_file(stream, orig_offset);
1916 }
1917 goto end;
1918
1919 write_error:
1920 /*
1921 * This is a special case that the relayd has closed its socket. Let's
1922 * cleanup the relayd object and all associated streams.
1923 */
1924 if (relayd && relayd_hang_up) {
1925 cleanup_relayd(relayd, ctx);
1926 /* Skip splice error so the consumer does not fail */
1927 goto end;
1928 }
1929
1930 splice_error:
1931 /* send the appropriate error description to sessiond */
1932 switch (ret) {
1933 case EINVAL:
1934 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1935 break;
1936 case ENOMEM:
1937 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1938 break;
1939 case ESPIPE:
1940 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1941 break;
1942 }
1943
1944 end:
1945 if (relayd && stream->metadata_flag) {
1946 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1947 }
1948
1949 rcu_read_unlock();
1950 return written;
1951 }
1952
1953 /*
1954 * Take a snapshot for a specific fd
1955 *
1956 * Returns 0 on success, < 0 on error
1957 */
1958 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1959 {
1960 switch (consumer_data.type) {
1961 case LTTNG_CONSUMER_KERNEL:
1962 return lttng_kconsumer_take_snapshot(stream);
1963 case LTTNG_CONSUMER32_UST:
1964 case LTTNG_CONSUMER64_UST:
1965 return lttng_ustconsumer_take_snapshot(stream);
1966 default:
1967 ERR("Unknown consumer_data type");
1968 assert(0);
1969 return -ENOSYS;
1970 }
1971 }
1972
1973 /*
1974 * Get the produced position
1975 *
1976 * Returns 0 on success, < 0 on error
1977 */
1978 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1979 unsigned long *pos)
1980 {
1981 switch (consumer_data.type) {
1982 case LTTNG_CONSUMER_KERNEL:
1983 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1984 case LTTNG_CONSUMER32_UST:
1985 case LTTNG_CONSUMER64_UST:
1986 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1987 default:
1988 ERR("Unknown consumer_data type");
1989 assert(0);
1990 return -ENOSYS;
1991 }
1992 }
1993
1994 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1995 int sock, struct pollfd *consumer_sockpoll)
1996 {
1997 switch (consumer_data.type) {
1998 case LTTNG_CONSUMER_KERNEL:
1999 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2000 case LTTNG_CONSUMER32_UST:
2001 case LTTNG_CONSUMER64_UST:
2002 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2003 default:
2004 ERR("Unknown consumer_data type");
2005 assert(0);
2006 return -ENOSYS;
2007 }
2008 }
2009
2010 void lttng_consumer_close_all_metadata(void)
2011 {
2012 switch (consumer_data.type) {
2013 case LTTNG_CONSUMER_KERNEL:
2014 /*
2015 * The Kernel consumer has a different metadata scheme so we don't
2016 * close anything because the stream will be closed by the session
2017 * daemon.
2018 */
2019 break;
2020 case LTTNG_CONSUMER32_UST:
2021 case LTTNG_CONSUMER64_UST:
2022 /*
2023 * Close all metadata streams. The metadata hash table is passed and
2024 * this call iterates over it by closing all wakeup fd. This is safe
2025 * because at this point we are sure that the metadata producer is
2026 * either dead or blocked.
2027 */
2028 lttng_ustconsumer_close_all_metadata(metadata_ht);
2029 break;
2030 default:
2031 ERR("Unknown consumer_data type");
2032 assert(0);
2033 }
2034 }
2035
2036 /*
2037 * Clean up a metadata stream and free its memory.
2038 */
2039 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2040 struct lttng_ht *ht)
2041 {
2042 struct lttng_consumer_channel *free_chan = NULL;
2043
2044 assert(stream);
2045 /*
2046 * This call should NEVER receive regular stream. It must always be
2047 * metadata stream and this is crucial for data structure synchronization.
2048 */
2049 assert(stream->metadata_flag);
2050
2051 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2052
2053 pthread_mutex_lock(&consumer_data.lock);
2054 pthread_mutex_lock(&stream->chan->lock);
2055 pthread_mutex_lock(&stream->lock);
2056
2057 /* Remove any reference to that stream. */
2058 consumer_stream_delete(stream, ht);
2059
2060 /* Close down everything including the relayd if one. */
2061 consumer_stream_close(stream);
2062 /* Destroy tracer buffers of the stream. */
2063 consumer_stream_destroy_buffers(stream);
2064
2065 /* Atomically decrement channel refcount since other threads can use it. */
2066 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2067 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2068 /* Go for channel deletion! */
2069 free_chan = stream->chan;
2070 }
2071
2072 /*
2073 * Nullify the stream reference so it is not used after deletion. The
2074 * channel lock MUST be acquired before being able to check for a NULL
2075 * pointer value.
2076 */
2077 stream->chan->metadata_stream = NULL;
2078
2079 pthread_mutex_unlock(&stream->lock);
2080 pthread_mutex_unlock(&stream->chan->lock);
2081 pthread_mutex_unlock(&consumer_data.lock);
2082
2083 if (free_chan) {
2084 consumer_del_channel(free_chan);
2085 }
2086
2087 consumer_stream_free(stream);
2088 }
2089
2090 /*
2091 * Action done with the metadata stream when adding it to the consumer internal
2092 * data structures to handle it.
2093 */
2094 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2095 {
2096 struct lttng_ht *ht = metadata_ht;
2097 int ret = 0;
2098 struct lttng_ht_iter iter;
2099 struct lttng_ht_node_u64 *node;
2100
2101 assert(stream);
2102 assert(ht);
2103
2104 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2105
2106 pthread_mutex_lock(&consumer_data.lock);
2107 pthread_mutex_lock(&stream->chan->lock);
2108 pthread_mutex_lock(&stream->chan->timer_lock);
2109 pthread_mutex_lock(&stream->lock);
2110
2111 /*
2112 * From here, refcounts are updated so be _careful_ when returning an error
2113 * after this point.
2114 */
2115
2116 rcu_read_lock();
2117
2118 /*
2119 * Lookup the stream just to make sure it does not exist in our internal
2120 * state. This should NEVER happen.
2121 */
2122 lttng_ht_lookup(ht, &stream->key, &iter);
2123 node = lttng_ht_iter_get_node_u64(&iter);
2124 assert(!node);
2125
2126 /*
2127 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2128 * in terms of destroying the associated channel, because the action that
2129 * causes the count to become 0 also causes a stream to be added. The
2130 * channel deletion will thus be triggered by the following removal of this
2131 * stream.
2132 */
2133 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2134 /* Increment refcount before decrementing nb_init_stream_left */
2135 cmm_smp_wmb();
2136 uatomic_dec(&stream->chan->nb_init_stream_left);
2137 }
2138
2139 lttng_ht_add_unique_u64(ht, &stream->node);
2140
2141 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2142 &stream->node_channel_id);
2143
2144 /*
2145 * Add stream to the stream_list_ht of the consumer data. No need to steal
2146 * the key since the HT does not use it and we allow to add redundant keys
2147 * into this table.
2148 */
2149 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2150
2151 rcu_read_unlock();
2152
2153 pthread_mutex_unlock(&stream->lock);
2154 pthread_mutex_unlock(&stream->chan->lock);
2155 pthread_mutex_unlock(&stream->chan->timer_lock);
2156 pthread_mutex_unlock(&consumer_data.lock);
2157 return ret;
2158 }
2159
2160 /*
2161 * Delete data stream that are flagged for deletion (endpoint_status).
2162 */
2163 static void validate_endpoint_status_data_stream(void)
2164 {
2165 struct lttng_ht_iter iter;
2166 struct lttng_consumer_stream *stream;
2167
2168 DBG("Consumer delete flagged data stream");
2169
2170 rcu_read_lock();
2171 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2172 /* Validate delete flag of the stream */
2173 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2174 continue;
2175 }
2176 /* Delete it right now */
2177 consumer_del_stream(stream, data_ht);
2178 }
2179 rcu_read_unlock();
2180 }
2181
2182 /*
2183 * Delete metadata stream that are flagged for deletion (endpoint_status).
2184 */
2185 static void validate_endpoint_status_metadata_stream(
2186 struct lttng_poll_event *pollset)
2187 {
2188 struct lttng_ht_iter iter;
2189 struct lttng_consumer_stream *stream;
2190
2191 DBG("Consumer delete flagged metadata stream");
2192
2193 assert(pollset);
2194
2195 rcu_read_lock();
2196 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2197 /* Validate delete flag of the stream */
2198 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2199 continue;
2200 }
2201 /*
2202 * Remove from pollset so the metadata thread can continue without
2203 * blocking on a deleted stream.
2204 */
2205 lttng_poll_del(pollset, stream->wait_fd);
2206
2207 /* Delete it right now */
2208 consumer_del_metadata_stream(stream, metadata_ht);
2209 }
2210 rcu_read_unlock();
2211 }
2212
2213 /*
2214 * Thread polls on metadata file descriptor and write them on disk or on the
2215 * network.
2216 */
2217 void *consumer_thread_metadata_poll(void *data)
2218 {
2219 int ret, i, pollfd, err = -1;
2220 uint32_t revents, nb_fd;
2221 struct lttng_consumer_stream *stream = NULL;
2222 struct lttng_ht_iter iter;
2223 struct lttng_ht_node_u64 *node;
2224 struct lttng_poll_event events;
2225 struct lttng_consumer_local_data *ctx = data;
2226 ssize_t len;
2227
2228 rcu_register_thread();
2229
2230 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2231
2232 if (testpoint(consumerd_thread_metadata)) {
2233 goto error_testpoint;
2234 }
2235
2236 health_code_update();
2237
2238 DBG("Thread metadata poll started");
2239
2240 /* Size is set to 1 for the consumer_metadata pipe */
2241 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2242 if (ret < 0) {
2243 ERR("Poll set creation failed");
2244 goto end_poll;
2245 }
2246
2247 ret = lttng_poll_add(&events,
2248 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2249 if (ret < 0) {
2250 goto end;
2251 }
2252
2253 /* Main loop */
2254 DBG("Metadata main loop started");
2255
2256 while (1) {
2257 restart:
2258 health_code_update();
2259 health_poll_entry();
2260 DBG("Metadata poll wait");
2261 ret = lttng_poll_wait(&events, -1);
2262 DBG("Metadata poll return from wait with %d fd(s)",
2263 LTTNG_POLL_GETNB(&events));
2264 health_poll_exit();
2265 DBG("Metadata event caught in thread");
2266 if (ret < 0) {
2267 if (errno == EINTR) {
2268 ERR("Poll EINTR caught");
2269 goto restart;
2270 }
2271 if (LTTNG_POLL_GETNB(&events) == 0) {
2272 err = 0; /* All is OK */
2273 }
2274 goto end;
2275 }
2276
2277 nb_fd = ret;
2278
2279 /* From here, the event is a metadata wait fd */
2280 for (i = 0; i < nb_fd; i++) {
2281 health_code_update();
2282
2283 revents = LTTNG_POLL_GETEV(&events, i);
2284 pollfd = LTTNG_POLL_GETFD(&events, i);
2285
2286 if (!revents) {
2287 /* No activity for this FD (poll implementation). */
2288 continue;
2289 }
2290
2291 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2292 if (revents & LPOLLIN) {
2293 ssize_t pipe_len;
2294
2295 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2296 &stream, sizeof(stream));
2297 if (pipe_len < sizeof(stream)) {
2298 if (pipe_len < 0) {
2299 PERROR("read metadata stream");
2300 }
2301 /*
2302 * Remove the pipe from the poll set and continue the loop
2303 * since their might be data to consume.
2304 */
2305 lttng_poll_del(&events,
2306 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2307 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2308 continue;
2309 }
2310
2311 /* A NULL stream means that the state has changed. */
2312 if (stream == NULL) {
2313 /* Check for deleted streams. */
2314 validate_endpoint_status_metadata_stream(&events);
2315 goto restart;
2316 }
2317
2318 DBG("Adding metadata stream %d to poll set",
2319 stream->wait_fd);
2320
2321 /* Add metadata stream to the global poll events list */
2322 lttng_poll_add(&events, stream->wait_fd,
2323 LPOLLIN | LPOLLPRI | LPOLLHUP);
2324 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2325 DBG("Metadata thread pipe hung up");
2326 /*
2327 * Remove the pipe from the poll set and continue the loop
2328 * since their might be data to consume.
2329 */
2330 lttng_poll_del(&events,
2331 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2332 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2333 continue;
2334 } else {
2335 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2336 goto end;
2337 }
2338
2339 /* Handle other stream */
2340 continue;
2341 }
2342
2343 rcu_read_lock();
2344 {
2345 uint64_t tmp_id = (uint64_t) pollfd;
2346
2347 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2348 }
2349 node = lttng_ht_iter_get_node_u64(&iter);
2350 assert(node);
2351
2352 stream = caa_container_of(node, struct lttng_consumer_stream,
2353 node);
2354
2355 if (revents & (LPOLLIN | LPOLLPRI)) {
2356 /* Get the data out of the metadata file descriptor */
2357 DBG("Metadata available on fd %d", pollfd);
2358 assert(stream->wait_fd == pollfd);
2359
2360 do {
2361 health_code_update();
2362
2363 len = ctx->on_buffer_ready(stream, ctx);
2364 /*
2365 * We don't check the return value here since if we get
2366 * a negative len, it means an error occurred thus we
2367 * simply remove it from the poll set and free the
2368 * stream.
2369 */
2370 } while (len > 0);
2371
2372 /* It's ok to have an unavailable sub-buffer */
2373 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2374 /* Clean up stream from consumer and free it. */
2375 lttng_poll_del(&events, stream->wait_fd);
2376 consumer_del_metadata_stream(stream, metadata_ht);
2377 }
2378 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2379 DBG("Metadata fd %d is hup|err.", pollfd);
2380 if (!stream->hangup_flush_done
2381 && (consumer_data.type == LTTNG_CONSUMER32_UST
2382 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2383 DBG("Attempting to flush and consume the UST buffers");
2384 lttng_ustconsumer_on_stream_hangup(stream);
2385
2386 /* We just flushed the stream now read it. */
2387 do {
2388 health_code_update();
2389
2390 len = ctx->on_buffer_ready(stream, ctx);
2391 /*
2392 * We don't check the return value here since if we get
2393 * a negative len, it means an error occurred thus we
2394 * simply remove it from the poll set and free the
2395 * stream.
2396 */
2397 } while (len > 0);
2398 }
2399
2400 lttng_poll_del(&events, stream->wait_fd);
2401 /*
2402 * This call update the channel states, closes file descriptors
2403 * and securely free the stream.
2404 */
2405 consumer_del_metadata_stream(stream, metadata_ht);
2406 } else {
2407 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2408 rcu_read_unlock();
2409 goto end;
2410 }
2411 /* Release RCU lock for the stream looked up */
2412 rcu_read_unlock();
2413 }
2414 }
2415
2416 /* All is OK */
2417 err = 0;
2418 end:
2419 DBG("Metadata poll thread exiting");
2420
2421 lttng_poll_clean(&events);
2422 end_poll:
2423 error_testpoint:
2424 if (err) {
2425 health_error();
2426 ERR("Health error occurred in %s", __func__);
2427 }
2428 health_unregister(health_consumerd);
2429 rcu_unregister_thread();
2430 return NULL;
2431 }
2432
2433 /*
2434 * This thread polls the fds in the set to consume the data and write
2435 * it to tracefile if necessary.
2436 */
2437 void *consumer_thread_data_poll(void *data)
2438 {
2439 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2440 struct pollfd *pollfd = NULL;
2441 /* local view of the streams */
2442 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2443 /* local view of consumer_data.fds_count */
2444 int nb_fd = 0;
2445 struct lttng_consumer_local_data *ctx = data;
2446 ssize_t len;
2447
2448 rcu_register_thread();
2449
2450 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2451
2452 if (testpoint(consumerd_thread_data)) {
2453 goto error_testpoint;
2454 }
2455
2456 health_code_update();
2457
2458 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2459 if (local_stream == NULL) {
2460 PERROR("local_stream malloc");
2461 goto end;
2462 }
2463
2464 while (1) {
2465 health_code_update();
2466
2467 high_prio = 0;
2468 num_hup = 0;
2469
2470 /*
2471 * the fds set has been updated, we need to update our
2472 * local array as well
2473 */
2474 pthread_mutex_lock(&consumer_data.lock);
2475 if (consumer_data.need_update) {
2476 free(pollfd);
2477 pollfd = NULL;
2478
2479 free(local_stream);
2480 local_stream = NULL;
2481
2482 /*
2483 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2484 * wake up pipe.
2485 */
2486 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2487 if (pollfd == NULL) {
2488 PERROR("pollfd malloc");
2489 pthread_mutex_unlock(&consumer_data.lock);
2490 goto end;
2491 }
2492
2493 local_stream = zmalloc((consumer_data.stream_count + 2) *
2494 sizeof(struct lttng_consumer_stream *));
2495 if (local_stream == NULL) {
2496 PERROR("local_stream malloc");
2497 pthread_mutex_unlock(&consumer_data.lock);
2498 goto end;
2499 }
2500 ret = update_poll_array(ctx, &pollfd, local_stream,
2501 data_ht);
2502 if (ret < 0) {
2503 ERR("Error in allocating pollfd or local_outfds");
2504 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2505 pthread_mutex_unlock(&consumer_data.lock);
2506 goto end;
2507 }
2508 nb_fd = ret;
2509 consumer_data.need_update = 0;
2510 }
2511 pthread_mutex_unlock(&consumer_data.lock);
2512
2513 /* No FDs and consumer_quit, consumer_cleanup the thread */
2514 if (nb_fd == 0 && consumer_quit == 1) {
2515 err = 0; /* All is OK */
2516 goto end;
2517 }
2518 /* poll on the array of fds */
2519 restart:
2520 DBG("polling on %d fd", nb_fd + 2);
2521 health_poll_entry();
2522 num_rdy = poll(pollfd, nb_fd + 2, -1);
2523 health_poll_exit();
2524 DBG("poll num_rdy : %d", num_rdy);
2525 if (num_rdy == -1) {
2526 /*
2527 * Restart interrupted system call.
2528 */
2529 if (errno == EINTR) {
2530 goto restart;
2531 }
2532 PERROR("Poll error");
2533 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2534 goto end;
2535 } else if (num_rdy == 0) {
2536 DBG("Polling thread timed out");
2537 goto end;
2538 }
2539
2540 /*
2541 * If the consumer_data_pipe triggered poll go directly to the
2542 * beginning of the loop to update the array. We want to prioritize
2543 * array update over low-priority reads.
2544 */
2545 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2546 ssize_t pipe_readlen;
2547
2548 DBG("consumer_data_pipe wake up");
2549 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2550 &new_stream, sizeof(new_stream));
2551 if (pipe_readlen < sizeof(new_stream)) {
2552 PERROR("Consumer data pipe");
2553 /* Continue so we can at least handle the current stream(s). */
2554 continue;
2555 }
2556
2557 /*
2558 * If the stream is NULL, just ignore it. It's also possible that
2559 * the sessiond poll thread changed the consumer_quit state and is
2560 * waking us up to test it.
2561 */
2562 if (new_stream == NULL) {
2563 validate_endpoint_status_data_stream();
2564 continue;
2565 }
2566
2567 /* Continue to update the local streams and handle prio ones */
2568 continue;
2569 }
2570
2571 /* Handle wakeup pipe. */
2572 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2573 char dummy;
2574 ssize_t pipe_readlen;
2575
2576 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2577 sizeof(dummy));
2578 if (pipe_readlen < 0) {
2579 PERROR("Consumer data wakeup pipe");
2580 }
2581 /* We've been awakened to handle stream(s). */
2582 ctx->has_wakeup = 0;
2583 }
2584
2585 /* Take care of high priority channels first. */
2586 for (i = 0; i < nb_fd; i++) {
2587 health_code_update();
2588
2589 if (local_stream[i] == NULL) {
2590 continue;
2591 }
2592 if (pollfd[i].revents & POLLPRI) {
2593 DBG("Urgent read on fd %d", pollfd[i].fd);
2594 high_prio = 1;
2595 len = ctx->on_buffer_ready(local_stream[i], ctx);
2596 /* it's ok to have an unavailable sub-buffer */
2597 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2598 /* Clean the stream and free it. */
2599 consumer_del_stream(local_stream[i], data_ht);
2600 local_stream[i] = NULL;
2601 } else if (len > 0) {
2602 local_stream[i]->data_read = 1;
2603 }
2604 }
2605 }
2606
2607 /*
2608 * If we read high prio channel in this loop, try again
2609 * for more high prio data.
2610 */
2611 if (high_prio) {
2612 continue;
2613 }
2614
2615 /* Take care of low priority channels. */
2616 for (i = 0; i < nb_fd; i++) {
2617 health_code_update();
2618
2619 if (local_stream[i] == NULL) {
2620 continue;
2621 }
2622 if ((pollfd[i].revents & POLLIN) ||
2623 local_stream[i]->hangup_flush_done ||
2624 local_stream[i]->has_data) {
2625 DBG("Normal read on fd %d", pollfd[i].fd);
2626 len = ctx->on_buffer_ready(local_stream[i], ctx);
2627 /* it's ok to have an unavailable sub-buffer */
2628 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2629 /* Clean the stream and free it. */
2630 consumer_del_stream(local_stream[i], data_ht);
2631 local_stream[i] = NULL;
2632 } else if (len > 0) {
2633 local_stream[i]->data_read = 1;
2634 }
2635 }
2636 }
2637
2638 /* Handle hangup and errors */
2639 for (i = 0; i < nb_fd; i++) {
2640 health_code_update();
2641
2642 if (local_stream[i] == NULL) {
2643 continue;
2644 }
2645 if (!local_stream[i]->hangup_flush_done
2646 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2647 && (consumer_data.type == LTTNG_CONSUMER32_UST
2648 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2649 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2650 pollfd[i].fd);
2651 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2652 /* Attempt read again, for the data we just flushed. */
2653 local_stream[i]->data_read = 1;
2654 }
2655 /*
2656 * If the poll flag is HUP/ERR/NVAL and we have
2657 * read no data in this pass, we can remove the
2658 * stream from its hash table.
2659 */
2660 if ((pollfd[i].revents & POLLHUP)) {
2661 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2662 if (!local_stream[i]->data_read) {
2663 consumer_del_stream(local_stream[i], data_ht);
2664 local_stream[i] = NULL;
2665 num_hup++;
2666 }
2667 } else if (pollfd[i].revents & POLLERR) {
2668 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2669 if (!local_stream[i]->data_read) {
2670 consumer_del_stream(local_stream[i], data_ht);
2671 local_stream[i] = NULL;
2672 num_hup++;
2673 }
2674 } else if (pollfd[i].revents & POLLNVAL) {
2675 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2676 if (!local_stream[i]->data_read) {
2677 consumer_del_stream(local_stream[i], data_ht);
2678 local_stream[i] = NULL;
2679 num_hup++;
2680 }
2681 }
2682 if (local_stream[i] != NULL) {
2683 local_stream[i]->data_read = 0;
2684 }
2685 }
2686 }
2687 /* All is OK */
2688 err = 0;
2689 end:
2690 DBG("polling thread exiting");
2691 free(pollfd);
2692 free(local_stream);
2693
2694 /*
2695 * Close the write side of the pipe so epoll_wait() in
2696 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2697 * read side of the pipe. If we close them both, epoll_wait strangely does
2698 * not return and could create a endless wait period if the pipe is the
2699 * only tracked fd in the poll set. The thread will take care of closing
2700 * the read side.
2701 */
2702 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2703
2704 error_testpoint:
2705 if (err) {
2706 health_error();
2707 ERR("Health error occurred in %s", __func__);
2708 }
2709 health_unregister(health_consumerd);
2710
2711 rcu_unregister_thread();
2712 return NULL;
2713 }
2714
2715 /*
2716 * Close wake-up end of each stream belonging to the channel. This will
2717 * allow the poll() on the stream read-side to detect when the
2718 * write-side (application) finally closes them.
2719 */
2720 static
2721 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2722 {
2723 struct lttng_ht *ht;
2724 struct lttng_consumer_stream *stream;
2725 struct lttng_ht_iter iter;
2726
2727 ht = consumer_data.stream_per_chan_id_ht;
2728
2729 rcu_read_lock();
2730 cds_lfht_for_each_entry_duplicate(ht->ht,
2731 ht->hash_fct(&channel->key, lttng_ht_seed),
2732 ht->match_fct, &channel->key,
2733 &iter.iter, stream, node_channel_id.node) {
2734 /*
2735 * Protect against teardown with mutex.
2736 */
2737 pthread_mutex_lock(&stream->lock);
2738 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2739 goto next;
2740 }
2741 switch (consumer_data.type) {
2742 case LTTNG_CONSUMER_KERNEL:
2743 break;
2744 case LTTNG_CONSUMER32_UST:
2745 case LTTNG_CONSUMER64_UST:
2746 if (stream->metadata_flag) {
2747 /* Safe and protected by the stream lock. */
2748 lttng_ustconsumer_close_metadata(stream->chan);
2749 } else {
2750 /*
2751 * Note: a mutex is taken internally within
2752 * liblttng-ust-ctl to protect timer wakeup_fd
2753 * use from concurrent close.
2754 */
2755 lttng_ustconsumer_close_stream_wakeup(stream);
2756 }
2757 break;
2758 default:
2759 ERR("Unknown consumer_data type");
2760 assert(0);
2761 }
2762 next:
2763 pthread_mutex_unlock(&stream->lock);
2764 }
2765 rcu_read_unlock();
2766 }
2767
2768 static void destroy_channel_ht(struct lttng_ht *ht)
2769 {
2770 struct lttng_ht_iter iter;
2771 struct lttng_consumer_channel *channel;
2772 int ret;
2773
2774 if (ht == NULL) {
2775 return;
2776 }
2777
2778 rcu_read_lock();
2779 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2780 ret = lttng_ht_del(ht, &iter);
2781 assert(ret != 0);
2782 }
2783 rcu_read_unlock();
2784
2785 lttng_ht_destroy(ht);
2786 }
2787
2788 /*
2789 * This thread polls the channel fds to detect when they are being
2790 * closed. It closes all related streams if the channel is detected as
2791 * closed. It is currently only used as a shim layer for UST because the
2792 * consumerd needs to keep the per-stream wakeup end of pipes open for
2793 * periodical flush.
2794 */
2795 void *consumer_thread_channel_poll(void *data)
2796 {
2797 int ret, i, pollfd, err = -1;
2798 uint32_t revents, nb_fd;
2799 struct lttng_consumer_channel *chan = NULL;
2800 struct lttng_ht_iter iter;
2801 struct lttng_ht_node_u64 *node;
2802 struct lttng_poll_event events;
2803 struct lttng_consumer_local_data *ctx = data;
2804 struct lttng_ht *channel_ht;
2805
2806 rcu_register_thread();
2807
2808 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2809
2810 if (testpoint(consumerd_thread_channel)) {
2811 goto error_testpoint;
2812 }
2813
2814 health_code_update();
2815
2816 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2817 if (!channel_ht) {
2818 /* ENOMEM at this point. Better to bail out. */
2819 goto end_ht;
2820 }
2821
2822 DBG("Thread channel poll started");
2823
2824 /* Size is set to 1 for the consumer_channel pipe */
2825 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2826 if (ret < 0) {
2827 ERR("Poll set creation failed");
2828 goto end_poll;
2829 }
2830
2831 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2832 if (ret < 0) {
2833 goto end;
2834 }
2835
2836 /* Main loop */
2837 DBG("Channel main loop started");
2838
2839 while (1) {
2840 restart:
2841 health_code_update();
2842 DBG("Channel poll wait");
2843 health_poll_entry();
2844 ret = lttng_poll_wait(&events, -1);
2845 DBG("Channel poll return from wait with %d fd(s)",
2846 LTTNG_POLL_GETNB(&events));
2847 health_poll_exit();
2848 DBG("Channel event caught in thread");
2849 if (ret < 0) {
2850 if (errno == EINTR) {
2851 ERR("Poll EINTR caught");
2852 goto restart;
2853 }
2854 if (LTTNG_POLL_GETNB(&events) == 0) {
2855 err = 0; /* All is OK */
2856 }
2857 goto end;
2858 }
2859
2860 nb_fd = ret;
2861
2862 /* From here, the event is a channel wait fd */
2863 for (i = 0; i < nb_fd; i++) {
2864 health_code_update();
2865
2866 revents = LTTNG_POLL_GETEV(&events, i);
2867 pollfd = LTTNG_POLL_GETFD(&events, i);
2868
2869 if (!revents) {
2870 /* No activity for this FD (poll implementation). */
2871 continue;
2872 }
2873
2874 if (pollfd == ctx->consumer_channel_pipe[0]) {
2875 if (revents & LPOLLIN) {
2876 enum consumer_channel_action action;
2877 uint64_t key;
2878
2879 ret = read_channel_pipe(ctx, &chan, &key, &action);
2880 if (ret <= 0) {
2881 if (ret < 0) {
2882 ERR("Error reading channel pipe");
2883 }
2884 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2885 continue;
2886 }
2887
2888 switch (action) {
2889 case CONSUMER_CHANNEL_ADD:
2890 DBG("Adding channel %d to poll set",
2891 chan->wait_fd);
2892
2893 lttng_ht_node_init_u64(&chan->wait_fd_node,
2894 chan->wait_fd);
2895 rcu_read_lock();
2896 lttng_ht_add_unique_u64(channel_ht,
2897 &chan->wait_fd_node);
2898 rcu_read_unlock();
2899 /* Add channel to the global poll events list */
2900 lttng_poll_add(&events, chan->wait_fd,
2901 LPOLLERR | LPOLLHUP);
2902 break;
2903 case CONSUMER_CHANNEL_DEL:
2904 {
2905 /*
2906 * This command should never be called if the channel
2907 * has streams monitored by either the data or metadata
2908 * thread. The consumer only notify this thread with a
2909 * channel del. command if it receives a destroy
2910 * channel command from the session daemon that send it
2911 * if a command prior to the GET_CHANNEL failed.
2912 */
2913
2914 rcu_read_lock();
2915 chan = consumer_find_channel(key);
2916 if (!chan) {
2917 rcu_read_unlock();
2918 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2919 break;
2920 }
2921 lttng_poll_del(&events, chan->wait_fd);
2922 iter.iter.node = &chan->wait_fd_node.node;
2923 ret = lttng_ht_del(channel_ht, &iter);
2924 assert(ret == 0);
2925
2926 switch (consumer_data.type) {
2927 case LTTNG_CONSUMER_KERNEL:
2928 break;
2929 case LTTNG_CONSUMER32_UST:
2930 case LTTNG_CONSUMER64_UST:
2931 health_code_update();
2932 /* Destroy streams that might have been left in the stream list. */
2933 clean_channel_stream_list(chan);
2934 break;
2935 default:
2936 ERR("Unknown consumer_data type");
2937 assert(0);
2938 }
2939
2940 /*
2941 * Release our own refcount. Force channel deletion even if
2942 * streams were not initialized.
2943 */
2944 if (!uatomic_sub_return(&chan->refcount, 1)) {
2945 consumer_del_channel(chan);
2946 }
2947 rcu_read_unlock();
2948 goto restart;
2949 }
2950 case CONSUMER_CHANNEL_QUIT:
2951 /*
2952 * Remove the pipe from the poll set and continue the loop
2953 * since their might be data to consume.
2954 */
2955 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2956 continue;
2957 default:
2958 ERR("Unknown action");
2959 break;
2960 }
2961 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2962 DBG("Channel thread pipe hung up");
2963 /*
2964 * Remove the pipe from the poll set and continue the loop
2965 * since their might be data to consume.
2966 */
2967 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2968 continue;
2969 } else {
2970 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2971 goto end;
2972 }
2973
2974 /* Handle other stream */
2975 continue;
2976 }
2977
2978 rcu_read_lock();
2979 {
2980 uint64_t tmp_id = (uint64_t) pollfd;
2981
2982 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2983 }
2984 node = lttng_ht_iter_get_node_u64(&iter);
2985 assert(node);
2986
2987 chan = caa_container_of(node, struct lttng_consumer_channel,
2988 wait_fd_node);
2989
2990 /* Check for error event */
2991 if (revents & (LPOLLERR | LPOLLHUP)) {
2992 DBG("Channel fd %d is hup|err.", pollfd);
2993
2994 lttng_poll_del(&events, chan->wait_fd);
2995 ret = lttng_ht_del(channel_ht, &iter);
2996 assert(ret == 0);
2997
2998 /*
2999 * This will close the wait fd for each stream associated to
3000 * this channel AND monitored by the data/metadata thread thus
3001 * will be clean by the right thread.
3002 */
3003 consumer_close_channel_streams(chan);
3004
3005 /* Release our own refcount */
3006 if (!uatomic_sub_return(&chan->refcount, 1)
3007 && !uatomic_read(&chan->nb_init_stream_left)) {
3008 consumer_del_channel(chan);
3009 }
3010 } else {
3011 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3012 rcu_read_unlock();
3013 goto end;
3014 }
3015
3016 /* Release RCU lock for the channel looked up */
3017 rcu_read_unlock();
3018 }
3019 }
3020
3021 /* All is OK */
3022 err = 0;
3023 end:
3024 lttng_poll_clean(&events);
3025 end_poll:
3026 destroy_channel_ht(channel_ht);
3027 end_ht:
3028 error_testpoint:
3029 DBG("Channel poll thread exiting");
3030 if (err) {
3031 health_error();
3032 ERR("Health error occurred in %s", __func__);
3033 }
3034 health_unregister(health_consumerd);
3035 rcu_unregister_thread();
3036 return NULL;
3037 }
3038
3039 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3040 struct pollfd *sockpoll, int client_socket)
3041 {
3042 int ret;
3043
3044 assert(ctx);
3045 assert(sockpoll);
3046
3047 ret = lttng_consumer_poll_socket(sockpoll);
3048 if (ret) {
3049 goto error;
3050 }
3051 DBG("Metadata connection on client_socket");
3052
3053 /* Blocking call, waiting for transmission */
3054 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3055 if (ctx->consumer_metadata_socket < 0) {
3056 WARN("On accept metadata");
3057 ret = -1;
3058 goto error;
3059 }
3060 ret = 0;
3061
3062 error:
3063 return ret;
3064 }
3065
3066 /*
3067 * This thread listens on the consumerd socket and receives the file
3068 * descriptors from the session daemon.
3069 */
3070 void *consumer_thread_sessiond_poll(void *data)
3071 {
3072 int sock = -1, client_socket, ret, err = -1;
3073 /*
3074 * structure to poll for incoming data on communication socket avoids
3075 * making blocking sockets.
3076 */
3077 struct pollfd consumer_sockpoll[2];
3078 struct lttng_consumer_local_data *ctx = data;
3079
3080 rcu_register_thread();
3081
3082 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3083
3084 if (testpoint(consumerd_thread_sessiond)) {
3085 goto error_testpoint;
3086 }
3087
3088 health_code_update();
3089
3090 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3091 unlink(ctx->consumer_command_sock_path);
3092 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3093 if (client_socket < 0) {
3094 ERR("Cannot create command socket");
3095 goto end;
3096 }
3097
3098 ret = lttcomm_listen_unix_sock(client_socket);
3099 if (ret < 0) {
3100 goto end;
3101 }
3102
3103 DBG("Sending ready command to lttng-sessiond");
3104 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3105 /* return < 0 on error, but == 0 is not fatal */
3106 if (ret < 0) {
3107 ERR("Error sending ready command to lttng-sessiond");
3108 goto end;
3109 }
3110
3111 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3112 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3113 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3114 consumer_sockpoll[1].fd = client_socket;
3115 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3116
3117 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3118 if (ret) {
3119 if (ret > 0) {
3120 /* should exit */
3121 err = 0;
3122 }
3123 goto end;
3124 }
3125 DBG("Connection on client_socket");
3126
3127 /* Blocking call, waiting for transmission */
3128 sock = lttcomm_accept_unix_sock(client_socket);
3129 if (sock < 0) {
3130 WARN("On accept");
3131 goto end;
3132 }
3133
3134 /*
3135 * Setup metadata socket which is the second socket connection on the
3136 * command unix socket.
3137 */
3138 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3139 if (ret) {
3140 if (ret > 0) {
3141 /* should exit */
3142 err = 0;
3143 }
3144 goto end;
3145 }
3146
3147 /* This socket is not useful anymore. */
3148 ret = close(client_socket);
3149 if (ret < 0) {
3150 PERROR("close client_socket");
3151 }
3152 client_socket = -1;
3153
3154 /* update the polling structure to poll on the established socket */
3155 consumer_sockpoll[1].fd = sock;
3156 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3157
3158 while (1) {
3159 health_code_update();
3160
3161 health_poll_entry();
3162 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3163 health_poll_exit();
3164 if (ret) {
3165 if (ret > 0) {
3166 /* should exit */
3167 err = 0;
3168 }
3169 goto end;
3170 }
3171 DBG("Incoming command on sock");
3172 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3173 if (ret <= 0) {
3174 /*
3175 * This could simply be a session daemon quitting. Don't output
3176 * ERR() here.
3177 */
3178 DBG("Communication interrupted on command socket");
3179 err = 0;
3180 goto end;
3181 }
3182 if (consumer_quit) {
3183 DBG("consumer_thread_receive_fds received quit from signal");
3184 err = 0; /* All is OK */
3185 goto end;
3186 }
3187 DBG("received command on sock");
3188 }
3189 /* All is OK */
3190 err = 0;
3191
3192 end:
3193 DBG("Consumer thread sessiond poll exiting");
3194
3195 /*
3196 * Close metadata streams since the producer is the session daemon which
3197 * just died.
3198 *
3199 * NOTE: for now, this only applies to the UST tracer.
3200 */
3201 lttng_consumer_close_all_metadata();
3202
3203 /*
3204 * when all fds have hung up, the polling thread
3205 * can exit cleanly
3206 */
3207 consumer_quit = 1;
3208
3209 /*
3210 * Notify the data poll thread to poll back again and test the
3211 * consumer_quit state that we just set so to quit gracefully.
3212 */
3213 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3214
3215 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3216
3217 notify_health_quit_pipe(health_quit_pipe);
3218
3219 /* Cleaning up possibly open sockets. */
3220 if (sock >= 0) {
3221 ret = close(sock);
3222 if (ret < 0) {
3223 PERROR("close sock sessiond poll");
3224 }
3225 }
3226 if (client_socket >= 0) {
3227 ret = close(client_socket);
3228 if (ret < 0) {
3229 PERROR("close client_socket sessiond poll");
3230 }
3231 }
3232
3233 error_testpoint:
3234 if (err) {
3235 health_error();
3236 ERR("Health error occurred in %s", __func__);
3237 }
3238 health_unregister(health_consumerd);
3239
3240 rcu_unregister_thread();
3241 return NULL;
3242 }
3243
3244 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3245 struct lttng_consumer_local_data *ctx)
3246 {
3247 ssize_t ret;
3248
3249 pthread_mutex_lock(&stream->lock);
3250 if (stream->metadata_flag) {
3251 pthread_mutex_lock(&stream->metadata_rdv_lock);
3252 }
3253
3254 switch (consumer_data.type) {
3255 case LTTNG_CONSUMER_KERNEL:
3256 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3257 break;
3258 case LTTNG_CONSUMER32_UST:
3259 case LTTNG_CONSUMER64_UST:
3260 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3261 break;
3262 default:
3263 ERR("Unknown consumer_data type");
3264 assert(0);
3265 ret = -ENOSYS;
3266 break;
3267 }
3268
3269 if (stream->metadata_flag) {
3270 pthread_cond_broadcast(&stream->metadata_rdv);
3271 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3272 }
3273 pthread_mutex_unlock(&stream->lock);
3274 return ret;
3275 }
3276
3277 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3278 {
3279 switch (consumer_data.type) {
3280 case LTTNG_CONSUMER_KERNEL:
3281 return lttng_kconsumer_on_recv_stream(stream);
3282 case LTTNG_CONSUMER32_UST:
3283 case LTTNG_CONSUMER64_UST:
3284 return lttng_ustconsumer_on_recv_stream(stream);
3285 default:
3286 ERR("Unknown consumer_data type");
3287 assert(0);
3288 return -ENOSYS;
3289 }
3290 }
3291
3292 /*
3293 * Allocate and set consumer data hash tables.
3294 */
3295 int lttng_consumer_init(void)
3296 {
3297 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3298 if (!consumer_data.channel_ht) {
3299 goto error;
3300 }
3301
3302 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3303 if (!consumer_data.relayd_ht) {
3304 goto error;
3305 }
3306
3307 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3308 if (!consumer_data.stream_list_ht) {
3309 goto error;
3310 }
3311
3312 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3313 if (!consumer_data.stream_per_chan_id_ht) {
3314 goto error;
3315 }
3316
3317 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3318 if (!data_ht) {
3319 goto error;
3320 }
3321
3322 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3323 if (!metadata_ht) {
3324 goto error;
3325 }
3326
3327 return 0;
3328
3329 error:
3330 return -1;
3331 }
3332
3333 /*
3334 * Process the ADD_RELAYD command receive by a consumer.
3335 *
3336 * This will create a relayd socket pair and add it to the relayd hash table.
3337 * The caller MUST acquire a RCU read side lock before calling it.
3338 */
3339 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3340 struct lttng_consumer_local_data *ctx, int sock,
3341 struct pollfd *consumer_sockpoll,
3342 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3343 uint64_t relayd_session_id)
3344 {
3345 int fd = -1, ret = -1, relayd_created = 0;
3346 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3347 struct consumer_relayd_sock_pair *relayd = NULL;
3348
3349 assert(ctx);
3350 assert(relayd_sock);
3351
3352 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3353
3354 /* Get relayd reference if exists. */
3355 relayd = consumer_find_relayd(net_seq_idx);
3356 if (relayd == NULL) {
3357 assert(sock_type == LTTNG_STREAM_CONTROL);
3358 /* Not found. Allocate one. */
3359 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3360 if (relayd == NULL) {
3361 ret = -ENOMEM;
3362 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3363 goto error;
3364 } else {
3365 relayd->sessiond_session_id = sessiond_id;
3366 relayd_created = 1;
3367 }
3368
3369 /*
3370 * This code path MUST continue to the consumer send status message to
3371 * we can notify the session daemon and continue our work without
3372 * killing everything.
3373 */
3374 } else {
3375 /*
3376 * relayd key should never be found for control socket.
3377 */
3378 assert(sock_type != LTTNG_STREAM_CONTROL);
3379 }
3380
3381 /* First send a status message before receiving the fds. */
3382 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3383 if (ret < 0) {
3384 /* Somehow, the session daemon is not responding anymore. */
3385 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3386 goto error_nosignal;
3387 }
3388
3389 /* Poll on consumer socket. */
3390 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3391 if (ret) {
3392 /* Needing to exit in the middle of a command: error. */
3393 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3394 ret = -EINTR;
3395 goto error_nosignal;
3396 }
3397
3398 /* Get relayd socket from session daemon */
3399 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3400 if (ret != sizeof(fd)) {
3401 ret = -1;
3402 fd = -1; /* Just in case it gets set with an invalid value. */
3403
3404 /*
3405 * Failing to receive FDs might indicate a major problem such as
3406 * reaching a fd limit during the receive where the kernel returns a
3407 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3408 * don't take any chances and stop everything.
3409 *
3410 * XXX: Feature request #558 will fix that and avoid this possible
3411 * issue when reaching the fd limit.
3412 */
3413 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3414 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3415 goto error;
3416 }
3417
3418 /* Copy socket information and received FD */
3419 switch (sock_type) {
3420 case LTTNG_STREAM_CONTROL:
3421 /* Copy received lttcomm socket */
3422 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3423 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3424 /* Handle create_sock error. */
3425 if (ret < 0) {
3426 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3427 goto error;
3428 }
3429 /*
3430 * Close the socket created internally by
3431 * lttcomm_create_sock, so we can replace it by the one
3432 * received from sessiond.
3433 */
3434 if (close(relayd->control_sock.sock.fd)) {
3435 PERROR("close");
3436 }
3437
3438 /* Assign new file descriptor */
3439 relayd->control_sock.sock.fd = fd;
3440 fd = -1; /* For error path */
3441 /* Assign version values. */
3442 relayd->control_sock.major = relayd_sock->major;
3443 relayd->control_sock.minor = relayd_sock->minor;
3444
3445 relayd->relayd_session_id = relayd_session_id;
3446
3447 break;
3448 case LTTNG_STREAM_DATA:
3449 /* Copy received lttcomm socket */
3450 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3451 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3452 /* Handle create_sock error. */
3453 if (ret < 0) {
3454 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3455 goto error;
3456 }
3457 /*
3458 * Close the socket created internally by
3459 * lttcomm_create_sock, so we can replace it by the one
3460 * received from sessiond.
3461 */
3462 if (close(relayd->data_sock.sock.fd)) {
3463 PERROR("close");
3464 }
3465
3466 /* Assign new file descriptor */
3467 relayd->data_sock.sock.fd = fd;
3468 fd = -1; /* for eventual error paths */
3469 /* Assign version values. */
3470 relayd->data_sock.major = relayd_sock->major;
3471 relayd->data_sock.minor = relayd_sock->minor;
3472 break;
3473 default:
3474 ERR("Unknown relayd socket type (%d)", sock_type);
3475 ret = -1;
3476 ret_code = LTTCOMM_CONSUMERD_FATAL;
3477 goto error;
3478 }
3479
3480 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3481 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3482 relayd->net_seq_idx, fd);
3483
3484 /* We successfully added the socket. Send status back. */
3485 ret = consumer_send_status_msg(sock, ret_code);
3486 if (ret < 0) {
3487 /* Somehow, the session daemon is not responding anymore. */
3488 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3489 goto error_nosignal;
3490 }
3491
3492 /*
3493 * Add relayd socket pair to consumer data hashtable. If object already
3494 * exists or on error, the function gracefully returns.
3495 */
3496 add_relayd(relayd);
3497
3498 /* All good! */
3499 return 0;
3500
3501 error:
3502 if (consumer_send_status_msg(sock, ret_code) < 0) {
3503 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3504 }
3505
3506 error_nosignal:
3507 /* Close received socket if valid. */
3508 if (fd >= 0) {
3509 if (close(fd)) {
3510 PERROR("close received socket");
3511 }
3512 }
3513
3514 if (relayd_created) {
3515 free(relayd);
3516 }
3517
3518 return ret;
3519 }
3520
3521 /*
3522 * Try to lock the stream mutex.
3523 *
3524 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3525 */
3526 static int stream_try_lock(struct lttng_consumer_stream *stream)
3527 {
3528 int ret;
3529
3530 assert(stream);
3531
3532 /*
3533 * Try to lock the stream mutex. On failure, we know that the stream is
3534 * being used else where hence there is data still being extracted.
3535 */
3536 ret = pthread_mutex_trylock(&stream->lock);
3537 if (ret) {
3538 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3539 ret = 0;
3540 goto end;
3541 }
3542
3543 ret = 1;
3544
3545 end:
3546 return ret;
3547 }
3548
3549 /*
3550 * Search for a relayd associated to the session id and return the reference.
3551 *
3552 * A rcu read side lock MUST be acquire before calling this function and locked
3553 * until the relayd object is no longer necessary.
3554 */
3555 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3556 {
3557 struct lttng_ht_iter iter;
3558 struct consumer_relayd_sock_pair *relayd = NULL;
3559
3560 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3561 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3562 node.node) {
3563 /*
3564 * Check by sessiond id which is unique here where the relayd session
3565 * id might not be when having multiple relayd.
3566 */
3567 if (relayd->sessiond_session_id == id) {
3568 /* Found the relayd. There can be only one per id. */
3569 goto found;
3570 }
3571 }
3572
3573 return NULL;
3574
3575 found:
3576 return relayd;
3577 }
3578
3579 /*
3580 * Check if for a given session id there is still data needed to be extract
3581 * from the buffers.
3582 *
3583 * Return 1 if data is pending or else 0 meaning ready to be read.
3584 */
3585 int consumer_data_pending(uint64_t id)
3586 {
3587 int ret;
3588 struct lttng_ht_iter iter;
3589 struct lttng_ht *ht;
3590 struct lttng_consumer_stream *stream;
3591 struct consumer_relayd_sock_pair *relayd = NULL;
3592 int (*data_pending)(struct lttng_consumer_stream *);
3593
3594 DBG("Consumer data pending command on session id %" PRIu64, id);
3595
3596 rcu_read_lock();
3597 pthread_mutex_lock(&consumer_data.lock);
3598
3599 switch (consumer_data.type) {
3600 case LTTNG_CONSUMER_KERNEL:
3601 data_pending = lttng_kconsumer_data_pending;
3602 break;
3603 case LTTNG_CONSUMER32_UST:
3604 case LTTNG_CONSUMER64_UST:
3605 data_pending = lttng_ustconsumer_data_pending;
3606 break;
3607 default:
3608 ERR("Unknown consumer data type");
3609 assert(0);
3610 }
3611
3612 /* Ease our life a bit */
3613 ht = consumer_data.stream_list_ht;
3614
3615 relayd = find_relayd_by_session_id(id);
3616 if (relayd) {
3617 /* Send init command for data pending. */
3618 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3619 ret = relayd_begin_data_pending(&relayd->control_sock,
3620 relayd->relayd_session_id);
3621 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3622 if (ret < 0) {
3623 /* Communication error thus the relayd so no data pending. */
3624 goto data_not_pending;
3625 }
3626 }
3627
3628 cds_lfht_for_each_entry_duplicate(ht->ht,
3629 ht->hash_fct(&id, lttng_ht_seed),
3630 ht->match_fct, &id,
3631 &iter.iter, stream, node_session_id.node) {
3632 /* If this call fails, the stream is being used hence data pending. */
3633 ret = stream_try_lock(stream);
3634 if (!ret) {
3635 goto data_pending;
3636 }
3637
3638 /*
3639 * A removed node from the hash table indicates that the stream has
3640 * been deleted thus having a guarantee that the buffers are closed
3641 * on the consumer side. However, data can still be transmitted
3642 * over the network so don't skip the relayd check.
3643 */
3644 ret = cds_lfht_is_node_deleted(&stream->node.node);
3645 if (!ret) {
3646 /* Check the stream if there is data in the buffers. */
3647 ret = data_pending(stream);
3648 if (ret == 1) {
3649 pthread_mutex_unlock(&stream->lock);
3650 goto data_pending;
3651 }
3652 }
3653
3654 /* Relayd check */
3655 if (relayd) {
3656 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3657 if (stream->metadata_flag) {
3658 ret = relayd_quiescent_control(&relayd->control_sock,
3659 stream->relayd_stream_id);
3660 } else {
3661 ret = relayd_data_pending(&relayd->control_sock,
3662 stream->relayd_stream_id,
3663 stream->next_net_seq_num - 1);
3664 }
3665 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3666 if (ret == 1) {
3667 pthread_mutex_unlock(&stream->lock);
3668 goto data_pending;
3669 }
3670 }
3671 pthread_mutex_unlock(&stream->lock);
3672 }
3673
3674 if (relayd) {
3675 unsigned int is_data_inflight = 0;
3676
3677 /* Send init command for data pending. */
3678 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3679 ret = relayd_end_data_pending(&relayd->control_sock,
3680 relayd->relayd_session_id, &is_data_inflight);
3681 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3682 if (ret < 0) {
3683 goto data_not_pending;
3684 }
3685 if (is_data_inflight) {
3686 goto data_pending;
3687 }
3688 }
3689
3690 /*
3691 * Finding _no_ node in the hash table and no inflight data means that the
3692 * stream(s) have been removed thus data is guaranteed to be available for
3693 * analysis from the trace files.
3694 */
3695
3696 data_not_pending:
3697 /* Data is available to be read by a viewer. */
3698 pthread_mutex_unlock(&consumer_data.lock);
3699 rcu_read_unlock();
3700 return 0;
3701
3702 data_pending:
3703 /* Data is still being extracted from buffers. */
3704 pthread_mutex_unlock(&consumer_data.lock);
3705 rcu_read_unlock();
3706 return 1;
3707 }
3708
3709 /*
3710 * Send a ret code status message to the sessiond daemon.
3711 *
3712 * Return the sendmsg() return value.
3713 */
3714 int consumer_send_status_msg(int sock, int ret_code)
3715 {
3716 struct lttcomm_consumer_status_msg msg;
3717
3718 memset(&msg, 0, sizeof(msg));
3719 msg.ret_code = ret_code;
3720
3721 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3722 }
3723
3724 /*
3725 * Send a channel status message to the sessiond daemon.
3726 *
3727 * Return the sendmsg() return value.
3728 */
3729 int consumer_send_status_channel(int sock,
3730 struct lttng_consumer_channel *channel)
3731 {
3732 struct lttcomm_consumer_status_channel msg;
3733
3734 assert(sock >= 0);
3735
3736 memset(&msg, 0, sizeof(msg));
3737 if (!channel) {
3738 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3739 } else {
3740 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3741 msg.key = channel->key;
3742 msg.stream_count = channel->streams.count;
3743 }
3744
3745 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3746 }
3747
3748 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3749 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3750 uint64_t max_sb_size)
3751 {
3752 unsigned long start_pos;
3753
3754 if (!nb_packets_per_stream) {
3755 return consumed_pos; /* Grab everything */
3756 }
3757 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3758 start_pos -= max_sb_size * nb_packets_per_stream;
3759 if ((long) (start_pos - consumed_pos) < 0) {
3760 return consumed_pos; /* Grab everything */
3761 }
3762 return start_pos;
3763 }
This page took 0.122847 seconds and 4 git commands to generate.