Fix: lock nesting order reversed
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /*
71 * Flag to inform the polling thread to quit when all fd hung up. Updated by
72 * the consumer_thread_receive_fds when it notices that all fds has hung up.
73 * Also updated by the signal handler (consumer_should_exit()). Read by the
74 * polling threads.
75 */
76 volatile int consumer_quit;
77
78 /*
79 * Global hash table containing respectively metadata and data streams. The
80 * stream element in this ht should only be updated by the metadata poll thread
81 * for the metadata and the data poll thread for the data.
82 */
83 static struct lttng_ht *metadata_ht;
84 static struct lttng_ht *data_ht;
85
86 /*
87 * Notify a thread lttng pipe to poll back again. This usually means that some
88 * global state has changed so we just send back the thread in a poll wait
89 * call.
90 */
91 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
92 {
93 struct lttng_consumer_stream *null_stream = NULL;
94
95 assert(pipe);
96
97 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
98 }
99
100 static void notify_health_quit_pipe(int *pipe)
101 {
102 ssize_t ret;
103
104 ret = lttng_write(pipe[1], "4", 1);
105 if (ret < 1) {
106 PERROR("write consumer health quit");
107 }
108 }
109
110 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
111 struct lttng_consumer_channel *chan,
112 uint64_t key,
113 enum consumer_channel_action action)
114 {
115 struct consumer_channel_msg msg;
116 ssize_t ret;
117
118 memset(&msg, 0, sizeof(msg));
119
120 msg.action = action;
121 msg.chan = chan;
122 msg.key = key;
123 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
124 if (ret < sizeof(msg)) {
125 PERROR("notify_channel_pipe write error");
126 }
127 }
128
129 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
130 uint64_t key)
131 {
132 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
133 }
134
135 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
136 struct lttng_consumer_channel **chan,
137 uint64_t *key,
138 enum consumer_channel_action *action)
139 {
140 struct consumer_channel_msg msg;
141 ssize_t ret;
142
143 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
144 if (ret < sizeof(msg)) {
145 ret = -1;
146 goto error;
147 }
148 *action = msg.action;
149 *chan = msg.chan;
150 *key = msg.key;
151 error:
152 return (int) ret;
153 }
154
155 /*
156 * Cleanup the stream list of a channel. Those streams are not yet globally
157 * visible
158 */
159 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
160 {
161 struct lttng_consumer_stream *stream, *stmp;
162
163 assert(channel);
164
165 /* Delete streams that might have been left in the stream list. */
166 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
167 send_node) {
168 cds_list_del(&stream->send_node);
169 /*
170 * Once a stream is added to this list, the buffers were created so we
171 * have a guarantee that this call will succeed. Setting the monitor
172 * mode to 0 so we don't lock nor try to delete the stream from the
173 * global hash table.
174 */
175 stream->monitor = 0;
176 consumer_stream_destroy(stream, NULL);
177 }
178 }
179
180 /*
181 * Find a stream. The consumer_data.lock must be locked during this
182 * call.
183 */
184 static struct lttng_consumer_stream *find_stream(uint64_t key,
185 struct lttng_ht *ht)
186 {
187 struct lttng_ht_iter iter;
188 struct lttng_ht_node_u64 *node;
189 struct lttng_consumer_stream *stream = NULL;
190
191 assert(ht);
192
193 /* -1ULL keys are lookup failures */
194 if (key == (uint64_t) -1ULL) {
195 return NULL;
196 }
197
198 rcu_read_lock();
199
200 lttng_ht_lookup(ht, &key, &iter);
201 node = lttng_ht_iter_get_node_u64(&iter);
202 if (node != NULL) {
203 stream = caa_container_of(node, struct lttng_consumer_stream, node);
204 }
205
206 rcu_read_unlock();
207
208 return stream;
209 }
210
211 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
212 {
213 struct lttng_consumer_stream *stream;
214
215 rcu_read_lock();
216 stream = find_stream(key, ht);
217 if (stream) {
218 stream->key = (uint64_t) -1ULL;
219 /*
220 * We don't want the lookup to match, but we still need
221 * to iterate on this stream when iterating over the hash table. Just
222 * change the node key.
223 */
224 stream->node.key = (uint64_t) -1ULL;
225 }
226 rcu_read_unlock();
227 }
228
229 /*
230 * Return a channel object for the given key.
231 *
232 * RCU read side lock MUST be acquired before calling this function and
233 * protects the channel ptr.
234 */
235 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
236 {
237 struct lttng_ht_iter iter;
238 struct lttng_ht_node_u64 *node;
239 struct lttng_consumer_channel *channel = NULL;
240
241 /* -1ULL keys are lookup failures */
242 if (key == (uint64_t) -1ULL) {
243 return NULL;
244 }
245
246 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
247 node = lttng_ht_iter_get_node_u64(&iter);
248 if (node != NULL) {
249 channel = caa_container_of(node, struct lttng_consumer_channel, node);
250 }
251
252 return channel;
253 }
254
255 /*
256 * There is a possibility that the consumer does not have enough time between
257 * the close of the channel on the session daemon and the cleanup in here thus
258 * once we have a channel add with an existing key, we know for sure that this
259 * channel will eventually get cleaned up by all streams being closed.
260 *
261 * This function just nullifies the already existing channel key.
262 */
263 static void steal_channel_key(uint64_t key)
264 {
265 struct lttng_consumer_channel *channel;
266
267 rcu_read_lock();
268 channel = consumer_find_channel(key);
269 if (channel) {
270 channel->key = (uint64_t) -1ULL;
271 /*
272 * We don't want the lookup to match, but we still need to iterate on
273 * this channel when iterating over the hash table. Just change the
274 * node key.
275 */
276 channel->node.key = (uint64_t) -1ULL;
277 }
278 rcu_read_unlock();
279 }
280
281 static void free_channel_rcu(struct rcu_head *head)
282 {
283 struct lttng_ht_node_u64 *node =
284 caa_container_of(head, struct lttng_ht_node_u64, head);
285 struct lttng_consumer_channel *channel =
286 caa_container_of(node, struct lttng_consumer_channel, node);
287
288 switch (consumer_data.type) {
289 case LTTNG_CONSUMER_KERNEL:
290 break;
291 case LTTNG_CONSUMER32_UST:
292 case LTTNG_CONSUMER64_UST:
293 lttng_ustconsumer_free_channel(channel);
294 break;
295 default:
296 ERR("Unknown consumer_data type");
297 abort();
298 }
299 free(channel);
300 }
301
302 /*
303 * RCU protected relayd socket pair free.
304 */
305 static void free_relayd_rcu(struct rcu_head *head)
306 {
307 struct lttng_ht_node_u64 *node =
308 caa_container_of(head, struct lttng_ht_node_u64, head);
309 struct consumer_relayd_sock_pair *relayd =
310 caa_container_of(node, struct consumer_relayd_sock_pair, node);
311
312 /*
313 * Close all sockets. This is done in the call RCU since we don't want the
314 * socket fds to be reassigned thus potentially creating bad state of the
315 * relayd object.
316 *
317 * We do not have to lock the control socket mutex here since at this stage
318 * there is no one referencing to this relayd object.
319 */
320 (void) relayd_close(&relayd->control_sock);
321 (void) relayd_close(&relayd->data_sock);
322
323 free(relayd);
324 }
325
326 /*
327 * Destroy and free relayd socket pair object.
328 */
329 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
330 {
331 int ret;
332 struct lttng_ht_iter iter;
333
334 if (relayd == NULL) {
335 return;
336 }
337
338 DBG("Consumer destroy and close relayd socket pair");
339
340 iter.iter.node = &relayd->node.node;
341 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
342 if (ret != 0) {
343 /* We assume the relayd is being or is destroyed */
344 return;
345 }
346
347 /* RCU free() call */
348 call_rcu(&relayd->node.head, free_relayd_rcu);
349 }
350
351 /*
352 * Remove a channel from the global list protected by a mutex. This function is
353 * also responsible for freeing its data structures.
354 */
355 void consumer_del_channel(struct lttng_consumer_channel *channel)
356 {
357 int ret;
358 struct lttng_ht_iter iter;
359
360 DBG("Consumer delete channel key %" PRIu64, channel->key);
361
362 pthread_mutex_lock(&consumer_data.lock);
363 pthread_mutex_lock(&channel->lock);
364
365 /* Destroy streams that might have been left in the stream list. */
366 clean_channel_stream_list(channel);
367
368 if (channel->live_timer_enabled == 1) {
369 consumer_timer_live_stop(channel);
370 }
371
372 switch (consumer_data.type) {
373 case LTTNG_CONSUMER_KERNEL:
374 break;
375 case LTTNG_CONSUMER32_UST:
376 case LTTNG_CONSUMER64_UST:
377 lttng_ustconsumer_del_channel(channel);
378 break;
379 default:
380 ERR("Unknown consumer_data type");
381 assert(0);
382 goto end;
383 }
384
385 rcu_read_lock();
386 iter.iter.node = &channel->node.node;
387 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
388 assert(!ret);
389 rcu_read_unlock();
390
391 call_rcu(&channel->node.head, free_channel_rcu);
392 end:
393 pthread_mutex_unlock(&channel->lock);
394 pthread_mutex_unlock(&consumer_data.lock);
395 }
396
397 /*
398 * Iterate over the relayd hash table and destroy each element. Finally,
399 * destroy the whole hash table.
400 */
401 static void cleanup_relayd_ht(void)
402 {
403 struct lttng_ht_iter iter;
404 struct consumer_relayd_sock_pair *relayd;
405
406 rcu_read_lock();
407
408 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
409 node.node) {
410 consumer_destroy_relayd(relayd);
411 }
412
413 rcu_read_unlock();
414
415 lttng_ht_destroy(consumer_data.relayd_ht);
416 }
417
418 /*
419 * Update the end point status of all streams having the given network sequence
420 * index (relayd index).
421 *
422 * It's atomically set without having the stream mutex locked which is fine
423 * because we handle the write/read race with a pipe wakeup for each thread.
424 */
425 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
426 enum consumer_endpoint_status status)
427 {
428 struct lttng_ht_iter iter;
429 struct lttng_consumer_stream *stream;
430
431 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
432
433 rcu_read_lock();
434
435 /* Let's begin with metadata */
436 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
437 if (stream->net_seq_idx == net_seq_idx) {
438 uatomic_set(&stream->endpoint_status, status);
439 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
440 }
441 }
442
443 /* Follow up by the data streams */
444 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
445 if (stream->net_seq_idx == net_seq_idx) {
446 uatomic_set(&stream->endpoint_status, status);
447 DBG("Delete flag set to data stream %d", stream->wait_fd);
448 }
449 }
450 rcu_read_unlock();
451 }
452
453 /*
454 * Cleanup a relayd object by flagging every associated streams for deletion,
455 * destroying the object meaning removing it from the relayd hash table,
456 * closing the sockets and freeing the memory in a RCU call.
457 *
458 * If a local data context is available, notify the threads that the streams'
459 * state have changed.
460 */
461 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
462 struct lttng_consumer_local_data *ctx)
463 {
464 uint64_t netidx;
465
466 assert(relayd);
467
468 DBG("Cleaning up relayd sockets");
469
470 /* Save the net sequence index before destroying the object */
471 netidx = relayd->net_seq_idx;
472
473 /*
474 * Delete the relayd from the relayd hash table, close the sockets and free
475 * the object in a RCU call.
476 */
477 consumer_destroy_relayd(relayd);
478
479 /* Set inactive endpoint to all streams */
480 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
481
482 /*
483 * With a local data context, notify the threads that the streams' state
484 * have changed. The write() action on the pipe acts as an "implicit"
485 * memory barrier ordering the updates of the end point status from the
486 * read of this status which happens AFTER receiving this notify.
487 */
488 if (ctx) {
489 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
490 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
491 }
492 }
493
494 /*
495 * Flag a relayd socket pair for destruction. Destroy it if the refcount
496 * reaches zero.
497 *
498 * RCU read side lock MUST be aquired before calling this function.
499 */
500 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
501 {
502 assert(relayd);
503
504 /* Set destroy flag for this object */
505 uatomic_set(&relayd->destroy_flag, 1);
506
507 /* Destroy the relayd if refcount is 0 */
508 if (uatomic_read(&relayd->refcount) == 0) {
509 consumer_destroy_relayd(relayd);
510 }
511 }
512
513 /*
514 * Completly destroy stream from every visiable data structure and the given
515 * hash table if one.
516 *
517 * One this call returns, the stream object is not longer usable nor visible.
518 */
519 void consumer_del_stream(struct lttng_consumer_stream *stream,
520 struct lttng_ht *ht)
521 {
522 consumer_stream_destroy(stream, ht);
523 }
524
525 /*
526 * XXX naming of del vs destroy is all mixed up.
527 */
528 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
529 {
530 consumer_stream_destroy(stream, data_ht);
531 }
532
533 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
534 {
535 consumer_stream_destroy(stream, metadata_ht);
536 }
537
538 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
539 uint64_t stream_key,
540 enum lttng_consumer_stream_state state,
541 const char *channel_name,
542 uid_t uid,
543 gid_t gid,
544 uint64_t relayd_id,
545 uint64_t session_id,
546 int cpu,
547 int *alloc_ret,
548 enum consumer_channel_type type,
549 unsigned int monitor)
550 {
551 int ret;
552 struct lttng_consumer_stream *stream;
553
554 stream = zmalloc(sizeof(*stream));
555 if (stream == NULL) {
556 PERROR("malloc struct lttng_consumer_stream");
557 ret = -ENOMEM;
558 goto end;
559 }
560
561 rcu_read_lock();
562
563 stream->key = stream_key;
564 stream->out_fd = -1;
565 stream->out_fd_offset = 0;
566 stream->output_written = 0;
567 stream->state = state;
568 stream->uid = uid;
569 stream->gid = gid;
570 stream->net_seq_idx = relayd_id;
571 stream->session_id = session_id;
572 stream->monitor = monitor;
573 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
574 stream->index_file = NULL;
575 stream->last_sequence_number = -1ULL;
576 pthread_mutex_init(&stream->lock, NULL);
577 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
578
579 /* If channel is the metadata, flag this stream as metadata. */
580 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
581 stream->metadata_flag = 1;
582 /* Metadata is flat out. */
583 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
584 /* Live rendez-vous point. */
585 pthread_cond_init(&stream->metadata_rdv, NULL);
586 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
587 } else {
588 /* Format stream name to <channel_name>_<cpu_number> */
589 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
590 channel_name, cpu);
591 if (ret < 0) {
592 PERROR("snprintf stream name");
593 goto error;
594 }
595 }
596
597 /* Key is always the wait_fd for streams. */
598 lttng_ht_node_init_u64(&stream->node, stream->key);
599
600 /* Init node per channel id key */
601 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
602
603 /* Init session id node with the stream session id */
604 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
605
606 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
607 " relayd_id %" PRIu64 ", session_id %" PRIu64,
608 stream->name, stream->key, channel_key,
609 stream->net_seq_idx, stream->session_id);
610
611 rcu_read_unlock();
612 return stream;
613
614 error:
615 rcu_read_unlock();
616 free(stream);
617 end:
618 if (alloc_ret) {
619 *alloc_ret = ret;
620 }
621 return NULL;
622 }
623
624 /*
625 * Add a stream to the global list protected by a mutex.
626 */
627 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
628 {
629 struct lttng_ht *ht = data_ht;
630 int ret = 0;
631
632 assert(stream);
633 assert(ht);
634
635 DBG3("Adding consumer stream %" PRIu64, stream->key);
636
637 pthread_mutex_lock(&consumer_data.lock);
638 pthread_mutex_lock(&stream->chan->lock);
639 pthread_mutex_lock(&stream->chan->timer_lock);
640 pthread_mutex_lock(&stream->lock);
641 rcu_read_lock();
642
643 /* Steal stream identifier to avoid having streams with the same key */
644 steal_stream_key(stream->key, ht);
645
646 lttng_ht_add_unique_u64(ht, &stream->node);
647
648 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
649 &stream->node_channel_id);
650
651 /*
652 * Add stream to the stream_list_ht of the consumer data. No need to steal
653 * the key since the HT does not use it and we allow to add redundant keys
654 * into this table.
655 */
656 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
657
658 /*
659 * When nb_init_stream_left reaches 0, we don't need to trigger any action
660 * in terms of destroying the associated channel, because the action that
661 * causes the count to become 0 also causes a stream to be added. The
662 * channel deletion will thus be triggered by the following removal of this
663 * stream.
664 */
665 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
666 /* Increment refcount before decrementing nb_init_stream_left */
667 cmm_smp_wmb();
668 uatomic_dec(&stream->chan->nb_init_stream_left);
669 }
670
671 /* Update consumer data once the node is inserted. */
672 consumer_data.stream_count++;
673 consumer_data.need_update = 1;
674
675 rcu_read_unlock();
676 pthread_mutex_unlock(&stream->lock);
677 pthread_mutex_unlock(&stream->chan->timer_lock);
678 pthread_mutex_unlock(&stream->chan->lock);
679 pthread_mutex_unlock(&consumer_data.lock);
680
681 return ret;
682 }
683
684 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
685 {
686 consumer_del_stream(stream, data_ht);
687 }
688
689 /*
690 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
691 * be acquired before calling this.
692 */
693 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
694 {
695 int ret = 0;
696 struct lttng_ht_node_u64 *node;
697 struct lttng_ht_iter iter;
698
699 assert(relayd);
700
701 lttng_ht_lookup(consumer_data.relayd_ht,
702 &relayd->net_seq_idx, &iter);
703 node = lttng_ht_iter_get_node_u64(&iter);
704 if (node != NULL) {
705 goto end;
706 }
707 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
708
709 end:
710 return ret;
711 }
712
713 /*
714 * Allocate and return a consumer relayd socket.
715 */
716 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
717 uint64_t net_seq_idx)
718 {
719 struct consumer_relayd_sock_pair *obj = NULL;
720
721 /* net sequence index of -1 is a failure */
722 if (net_seq_idx == (uint64_t) -1ULL) {
723 goto error;
724 }
725
726 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
727 if (obj == NULL) {
728 PERROR("zmalloc relayd sock");
729 goto error;
730 }
731
732 obj->net_seq_idx = net_seq_idx;
733 obj->refcount = 0;
734 obj->destroy_flag = 0;
735 obj->control_sock.sock.fd = -1;
736 obj->data_sock.sock.fd = -1;
737 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
738 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
739
740 error:
741 return obj;
742 }
743
744 /*
745 * Find a relayd socket pair in the global consumer data.
746 *
747 * Return the object if found else NULL.
748 * RCU read-side lock must be held across this call and while using the
749 * returned object.
750 */
751 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
752 {
753 struct lttng_ht_iter iter;
754 struct lttng_ht_node_u64 *node;
755 struct consumer_relayd_sock_pair *relayd = NULL;
756
757 /* Negative keys are lookup failures */
758 if (key == (uint64_t) -1ULL) {
759 goto error;
760 }
761
762 lttng_ht_lookup(consumer_data.relayd_ht, &key,
763 &iter);
764 node = lttng_ht_iter_get_node_u64(&iter);
765 if (node != NULL) {
766 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
767 }
768
769 error:
770 return relayd;
771 }
772
773 /*
774 * Find a relayd and send the stream
775 *
776 * Returns 0 on success, < 0 on error
777 */
778 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
779 char *path)
780 {
781 int ret = 0;
782 struct consumer_relayd_sock_pair *relayd;
783
784 assert(stream);
785 assert(stream->net_seq_idx != -1ULL);
786 assert(path);
787
788 /* The stream is not metadata. Get relayd reference if exists. */
789 rcu_read_lock();
790 relayd = consumer_find_relayd(stream->net_seq_idx);
791 if (relayd != NULL) {
792 /* Add stream on the relayd */
793 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
794 ret = relayd_add_stream(&relayd->control_sock, stream->name,
795 path, &stream->relayd_stream_id,
796 stream->chan->tracefile_size, stream->chan->tracefile_count);
797 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
798 if (ret < 0) {
799 goto end;
800 }
801
802 uatomic_inc(&relayd->refcount);
803 stream->sent_to_relayd = 1;
804 } else {
805 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
806 stream->key, stream->net_seq_idx);
807 ret = -1;
808 goto end;
809 }
810
811 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
812 stream->name, stream->key, stream->net_seq_idx);
813
814 end:
815 rcu_read_unlock();
816 return ret;
817 }
818
819 /*
820 * Find a relayd and send the streams sent message
821 *
822 * Returns 0 on success, < 0 on error
823 */
824 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
825 {
826 int ret = 0;
827 struct consumer_relayd_sock_pair *relayd;
828
829 assert(net_seq_idx != -1ULL);
830
831 /* The stream is not metadata. Get relayd reference if exists. */
832 rcu_read_lock();
833 relayd = consumer_find_relayd(net_seq_idx);
834 if (relayd != NULL) {
835 /* Add stream on the relayd */
836 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
837 ret = relayd_streams_sent(&relayd->control_sock);
838 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
839 if (ret < 0) {
840 goto end;
841 }
842 } else {
843 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
844 net_seq_idx);
845 ret = -1;
846 goto end;
847 }
848
849 ret = 0;
850 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
851
852 end:
853 rcu_read_unlock();
854 return ret;
855 }
856
857 /*
858 * Find a relayd and close the stream
859 */
860 void close_relayd_stream(struct lttng_consumer_stream *stream)
861 {
862 struct consumer_relayd_sock_pair *relayd;
863
864 /* The stream is not metadata. Get relayd reference if exists. */
865 rcu_read_lock();
866 relayd = consumer_find_relayd(stream->net_seq_idx);
867 if (relayd) {
868 consumer_stream_relayd_close(stream, relayd);
869 }
870 rcu_read_unlock();
871 }
872
873 /*
874 * Handle stream for relayd transmission if the stream applies for network
875 * streaming where the net sequence index is set.
876 *
877 * Return destination file descriptor or negative value on error.
878 */
879 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
880 size_t data_size, unsigned long padding,
881 struct consumer_relayd_sock_pair *relayd)
882 {
883 int outfd = -1, ret;
884 struct lttcomm_relayd_data_hdr data_hdr;
885
886 /* Safety net */
887 assert(stream);
888 assert(relayd);
889
890 /* Reset data header */
891 memset(&data_hdr, 0, sizeof(data_hdr));
892
893 if (stream->metadata_flag) {
894 /* Caller MUST acquire the relayd control socket lock */
895 ret = relayd_send_metadata(&relayd->control_sock, data_size);
896 if (ret < 0) {
897 goto error;
898 }
899
900 /* Metadata are always sent on the control socket. */
901 outfd = relayd->control_sock.sock.fd;
902 } else {
903 /* Set header with stream information */
904 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
905 data_hdr.data_size = htobe32(data_size);
906 data_hdr.padding_size = htobe32(padding);
907 /*
908 * Note that net_seq_num below is assigned with the *current* value of
909 * next_net_seq_num and only after that the next_net_seq_num will be
910 * increment. This is why when issuing a command on the relayd using
911 * this next value, 1 should always be substracted in order to compare
912 * the last seen sequence number on the relayd side to the last sent.
913 */
914 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
915 /* Other fields are zeroed previously */
916
917 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
918 sizeof(data_hdr));
919 if (ret < 0) {
920 goto error;
921 }
922
923 ++stream->next_net_seq_num;
924
925 /* Set to go on data socket */
926 outfd = relayd->data_sock.sock.fd;
927 }
928
929 error:
930 return outfd;
931 }
932
933 /*
934 * Allocate and return a new lttng_consumer_channel object using the given key
935 * to initialize the hash table node.
936 *
937 * On error, return NULL.
938 */
939 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
940 uint64_t session_id,
941 const char *pathname,
942 const char *name,
943 uid_t uid,
944 gid_t gid,
945 uint64_t relayd_id,
946 enum lttng_event_output output,
947 uint64_t tracefile_size,
948 uint64_t tracefile_count,
949 uint64_t session_id_per_pid,
950 unsigned int monitor,
951 unsigned int live_timer_interval,
952 const char *root_shm_path,
953 const char *shm_path)
954 {
955 struct lttng_consumer_channel *channel;
956
957 channel = zmalloc(sizeof(*channel));
958 if (channel == NULL) {
959 PERROR("malloc struct lttng_consumer_channel");
960 goto end;
961 }
962
963 channel->key = key;
964 channel->refcount = 0;
965 channel->session_id = session_id;
966 channel->session_id_per_pid = session_id_per_pid;
967 channel->uid = uid;
968 channel->gid = gid;
969 channel->relayd_id = relayd_id;
970 channel->tracefile_size = tracefile_size;
971 channel->tracefile_count = tracefile_count;
972 channel->monitor = monitor;
973 channel->live_timer_interval = live_timer_interval;
974 pthread_mutex_init(&channel->lock, NULL);
975 pthread_mutex_init(&channel->timer_lock, NULL);
976
977 switch (output) {
978 case LTTNG_EVENT_SPLICE:
979 channel->output = CONSUMER_CHANNEL_SPLICE;
980 break;
981 case LTTNG_EVENT_MMAP:
982 channel->output = CONSUMER_CHANNEL_MMAP;
983 break;
984 default:
985 assert(0);
986 free(channel);
987 channel = NULL;
988 goto end;
989 }
990
991 /*
992 * In monitor mode, the streams associated with the channel will be put in
993 * a special list ONLY owned by this channel. So, the refcount is set to 1
994 * here meaning that the channel itself has streams that are referenced.
995 *
996 * On a channel deletion, once the channel is no longer visible, the
997 * refcount is decremented and checked for a zero value to delete it. With
998 * streams in no monitor mode, it will now be safe to destroy the channel.
999 */
1000 if (!channel->monitor) {
1001 channel->refcount = 1;
1002 }
1003
1004 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1005 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1006
1007 strncpy(channel->name, name, sizeof(channel->name));
1008 channel->name[sizeof(channel->name) - 1] = '\0';
1009
1010 if (root_shm_path) {
1011 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1012 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1013 }
1014 if (shm_path) {
1015 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1016 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1017 }
1018
1019 lttng_ht_node_init_u64(&channel->node, channel->key);
1020
1021 channel->wait_fd = -1;
1022
1023 CDS_INIT_LIST_HEAD(&channel->streams.head);
1024
1025 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1026
1027 end:
1028 return channel;
1029 }
1030
1031 /*
1032 * Add a channel to the global list protected by a mutex.
1033 *
1034 * Always return 0 indicating success.
1035 */
1036 int consumer_add_channel(struct lttng_consumer_channel *channel,
1037 struct lttng_consumer_local_data *ctx)
1038 {
1039 pthread_mutex_lock(&consumer_data.lock);
1040 pthread_mutex_lock(&channel->lock);
1041 pthread_mutex_lock(&channel->timer_lock);
1042
1043 /*
1044 * This gives us a guarantee that the channel we are about to add to the
1045 * channel hash table will be unique. See this function comment on the why
1046 * we need to steel the channel key at this stage.
1047 */
1048 steal_channel_key(channel->key);
1049
1050 rcu_read_lock();
1051 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1052 rcu_read_unlock();
1053
1054 pthread_mutex_unlock(&channel->timer_lock);
1055 pthread_mutex_unlock(&channel->lock);
1056 pthread_mutex_unlock(&consumer_data.lock);
1057
1058 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1059 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1060 }
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * Allocate the pollfd structure and the local view of the out fds to avoid
1067 * doing a lookup in the linked list and concurrency issues when writing is
1068 * needed. Called with consumer_data.lock held.
1069 *
1070 * Returns the number of fds in the structures.
1071 */
1072 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1073 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1074 struct lttng_ht *ht)
1075 {
1076 int i = 0;
1077 struct lttng_ht_iter iter;
1078 struct lttng_consumer_stream *stream;
1079
1080 assert(ctx);
1081 assert(ht);
1082 assert(pollfd);
1083 assert(local_stream);
1084
1085 DBG("Updating poll fd array");
1086 rcu_read_lock();
1087 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1088 /*
1089 * Only active streams with an active end point can be added to the
1090 * poll set and local stream storage of the thread.
1091 *
1092 * There is a potential race here for endpoint_status to be updated
1093 * just after the check. However, this is OK since the stream(s) will
1094 * be deleted once the thread is notified that the end point state has
1095 * changed where this function will be called back again.
1096 */
1097 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1098 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1099 continue;
1100 }
1101 /*
1102 * This clobbers way too much the debug output. Uncomment that if you
1103 * need it for debugging purposes.
1104 *
1105 * DBG("Active FD %d", stream->wait_fd);
1106 */
1107 (*pollfd)[i].fd = stream->wait_fd;
1108 (*pollfd)[i].events = POLLIN | POLLPRI;
1109 local_stream[i] = stream;
1110 i++;
1111 }
1112 rcu_read_unlock();
1113
1114 /*
1115 * Insert the consumer_data_pipe at the end of the array and don't
1116 * increment i so nb_fd is the number of real FD.
1117 */
1118 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1119 (*pollfd)[i].events = POLLIN | POLLPRI;
1120
1121 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1122 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1123 return i;
1124 }
1125
1126 /*
1127 * Poll on the should_quit pipe and the command socket return -1 on
1128 * error, 1 if should exit, 0 if data is available on the command socket
1129 */
1130 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1131 {
1132 int num_rdy;
1133
1134 restart:
1135 num_rdy = poll(consumer_sockpoll, 2, -1);
1136 if (num_rdy == -1) {
1137 /*
1138 * Restart interrupted system call.
1139 */
1140 if (errno == EINTR) {
1141 goto restart;
1142 }
1143 PERROR("Poll error");
1144 return -1;
1145 }
1146 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1147 DBG("consumer_should_quit wake up");
1148 return 1;
1149 }
1150 return 0;
1151 }
1152
1153 /*
1154 * Set the error socket.
1155 */
1156 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1157 int sock)
1158 {
1159 ctx->consumer_error_socket = sock;
1160 }
1161
1162 /*
1163 * Set the command socket path.
1164 */
1165 void lttng_consumer_set_command_sock_path(
1166 struct lttng_consumer_local_data *ctx, char *sock)
1167 {
1168 ctx->consumer_command_sock_path = sock;
1169 }
1170
1171 /*
1172 * Send return code to the session daemon.
1173 * If the socket is not defined, we return 0, it is not a fatal error
1174 */
1175 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1176 {
1177 if (ctx->consumer_error_socket > 0) {
1178 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1179 sizeof(enum lttcomm_sessiond_command));
1180 }
1181
1182 return 0;
1183 }
1184
1185 /*
1186 * Close all the tracefiles and stream fds and MUST be called when all
1187 * instances are destroyed i.e. when all threads were joined and are ended.
1188 */
1189 void lttng_consumer_cleanup(void)
1190 {
1191 struct lttng_ht_iter iter;
1192 struct lttng_consumer_channel *channel;
1193
1194 rcu_read_lock();
1195
1196 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1197 node.node) {
1198 consumer_del_channel(channel);
1199 }
1200
1201 rcu_read_unlock();
1202
1203 lttng_ht_destroy(consumer_data.channel_ht);
1204
1205 cleanup_relayd_ht();
1206
1207 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1208
1209 /*
1210 * This HT contains streams that are freed by either the metadata thread or
1211 * the data thread so we do *nothing* on the hash table and simply destroy
1212 * it.
1213 */
1214 lttng_ht_destroy(consumer_data.stream_list_ht);
1215 }
1216
1217 /*
1218 * Called from signal handler.
1219 */
1220 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1221 {
1222 ssize_t ret;
1223
1224 consumer_quit = 1;
1225 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1226 if (ret < 1) {
1227 PERROR("write consumer quit");
1228 }
1229
1230 DBG("Consumer flag that it should quit");
1231 }
1232
1233
1234 /*
1235 * Flush pending writes to trace output disk file.
1236 */
1237 static
1238 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1239 off_t orig_offset)
1240 {
1241 int ret;
1242 int outfd = stream->out_fd;
1243
1244 /*
1245 * This does a blocking write-and-wait on any page that belongs to the
1246 * subbuffer prior to the one we just wrote.
1247 * Don't care about error values, as these are just hints and ways to
1248 * limit the amount of page cache used.
1249 */
1250 if (orig_offset < stream->max_sb_size) {
1251 return;
1252 }
1253 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1254 stream->max_sb_size,
1255 SYNC_FILE_RANGE_WAIT_BEFORE
1256 | SYNC_FILE_RANGE_WRITE
1257 | SYNC_FILE_RANGE_WAIT_AFTER);
1258 /*
1259 * Give hints to the kernel about how we access the file:
1260 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1261 * we write it.
1262 *
1263 * We need to call fadvise again after the file grows because the
1264 * kernel does not seem to apply fadvise to non-existing parts of the
1265 * file.
1266 *
1267 * Call fadvise _after_ having waited for the page writeback to
1268 * complete because the dirty page writeback semantic is not well
1269 * defined. So it can be expected to lead to lower throughput in
1270 * streaming.
1271 */
1272 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1273 stream->max_sb_size, POSIX_FADV_DONTNEED);
1274 if (ret && ret != -ENOSYS) {
1275 errno = ret;
1276 PERROR("posix_fadvise on fd %i", outfd);
1277 }
1278 }
1279
1280 /*
1281 * Initialise the necessary environnement :
1282 * - create a new context
1283 * - create the poll_pipe
1284 * - create the should_quit pipe (for signal handler)
1285 * - create the thread pipe (for splice)
1286 *
1287 * Takes a function pointer as argument, this function is called when data is
1288 * available on a buffer. This function is responsible to do the
1289 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1290 * buffer configuration and then kernctl_put_next_subbuf at the end.
1291 *
1292 * Returns a pointer to the new context or NULL on error.
1293 */
1294 struct lttng_consumer_local_data *lttng_consumer_create(
1295 enum lttng_consumer_type type,
1296 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1297 struct lttng_consumer_local_data *ctx),
1298 int (*recv_channel)(struct lttng_consumer_channel *channel),
1299 int (*recv_stream)(struct lttng_consumer_stream *stream),
1300 int (*update_stream)(uint64_t stream_key, uint32_t state))
1301 {
1302 int ret;
1303 struct lttng_consumer_local_data *ctx;
1304
1305 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1306 consumer_data.type == type);
1307 consumer_data.type = type;
1308
1309 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1310 if (ctx == NULL) {
1311 PERROR("allocating context");
1312 goto error;
1313 }
1314
1315 ctx->consumer_error_socket = -1;
1316 ctx->consumer_metadata_socket = -1;
1317 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1318 /* assign the callbacks */
1319 ctx->on_buffer_ready = buffer_ready;
1320 ctx->on_recv_channel = recv_channel;
1321 ctx->on_recv_stream = recv_stream;
1322 ctx->on_update_stream = update_stream;
1323
1324 ctx->consumer_data_pipe = lttng_pipe_open(0);
1325 if (!ctx->consumer_data_pipe) {
1326 goto error_poll_pipe;
1327 }
1328
1329 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1330 if (!ctx->consumer_wakeup_pipe) {
1331 goto error_wakeup_pipe;
1332 }
1333
1334 ret = pipe(ctx->consumer_should_quit);
1335 if (ret < 0) {
1336 PERROR("Error creating recv pipe");
1337 goto error_quit_pipe;
1338 }
1339
1340 ret = pipe(ctx->consumer_channel_pipe);
1341 if (ret < 0) {
1342 PERROR("Error creating channel pipe");
1343 goto error_channel_pipe;
1344 }
1345
1346 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1347 if (!ctx->consumer_metadata_pipe) {
1348 goto error_metadata_pipe;
1349 }
1350
1351 return ctx;
1352
1353 error_metadata_pipe:
1354 utils_close_pipe(ctx->consumer_channel_pipe);
1355 error_channel_pipe:
1356 utils_close_pipe(ctx->consumer_should_quit);
1357 error_quit_pipe:
1358 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1359 error_wakeup_pipe:
1360 lttng_pipe_destroy(ctx->consumer_data_pipe);
1361 error_poll_pipe:
1362 free(ctx);
1363 error:
1364 return NULL;
1365 }
1366
1367 /*
1368 * Iterate over all streams of the hashtable and free them properly.
1369 */
1370 static void destroy_data_stream_ht(struct lttng_ht *ht)
1371 {
1372 struct lttng_ht_iter iter;
1373 struct lttng_consumer_stream *stream;
1374
1375 if (ht == NULL) {
1376 return;
1377 }
1378
1379 rcu_read_lock();
1380 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1381 /*
1382 * Ignore return value since we are currently cleaning up so any error
1383 * can't be handled.
1384 */
1385 (void) consumer_del_stream(stream, ht);
1386 }
1387 rcu_read_unlock();
1388
1389 lttng_ht_destroy(ht);
1390 }
1391
1392 /*
1393 * Iterate over all streams of the metadata hashtable and free them
1394 * properly.
1395 */
1396 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1397 {
1398 struct lttng_ht_iter iter;
1399 struct lttng_consumer_stream *stream;
1400
1401 if (ht == NULL) {
1402 return;
1403 }
1404
1405 rcu_read_lock();
1406 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1407 /*
1408 * Ignore return value since we are currently cleaning up so any error
1409 * can't be handled.
1410 */
1411 (void) consumer_del_metadata_stream(stream, ht);
1412 }
1413 rcu_read_unlock();
1414
1415 lttng_ht_destroy(ht);
1416 }
1417
1418 /*
1419 * Close all fds associated with the instance and free the context.
1420 */
1421 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1422 {
1423 int ret;
1424
1425 DBG("Consumer destroying it. Closing everything.");
1426
1427 if (!ctx) {
1428 return;
1429 }
1430
1431 destroy_data_stream_ht(data_ht);
1432 destroy_metadata_stream_ht(metadata_ht);
1433
1434 ret = close(ctx->consumer_error_socket);
1435 if (ret) {
1436 PERROR("close");
1437 }
1438 ret = close(ctx->consumer_metadata_socket);
1439 if (ret) {
1440 PERROR("close");
1441 }
1442 utils_close_pipe(ctx->consumer_channel_pipe);
1443 lttng_pipe_destroy(ctx->consumer_data_pipe);
1444 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1445 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1446 utils_close_pipe(ctx->consumer_should_quit);
1447
1448 unlink(ctx->consumer_command_sock_path);
1449 free(ctx);
1450 }
1451
1452 /*
1453 * Write the metadata stream id on the specified file descriptor.
1454 */
1455 static int write_relayd_metadata_id(int fd,
1456 struct lttng_consumer_stream *stream,
1457 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1458 {
1459 ssize_t ret;
1460 struct lttcomm_relayd_metadata_payload hdr;
1461
1462 hdr.stream_id = htobe64(stream->relayd_stream_id);
1463 hdr.padding_size = htobe32(padding);
1464 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1465 if (ret < sizeof(hdr)) {
1466 /*
1467 * This error means that the fd's end is closed so ignore the PERROR
1468 * not to clubber the error output since this can happen in a normal
1469 * code path.
1470 */
1471 if (errno != EPIPE) {
1472 PERROR("write metadata stream id");
1473 }
1474 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1475 /*
1476 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1477 * handle writting the missing part so report that as an error and
1478 * don't lie to the caller.
1479 */
1480 ret = -1;
1481 goto end;
1482 }
1483 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1484 stream->relayd_stream_id, padding);
1485
1486 end:
1487 return (int) ret;
1488 }
1489
1490 /*
1491 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1492 * core function for writing trace buffers to either the local filesystem or
1493 * the network.
1494 *
1495 * It must be called with the stream lock held.
1496 *
1497 * Careful review MUST be put if any changes occur!
1498 *
1499 * Returns the number of bytes written
1500 */
1501 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1502 struct lttng_consumer_local_data *ctx,
1503 struct lttng_consumer_stream *stream, unsigned long len,
1504 unsigned long padding,
1505 struct ctf_packet_index *index)
1506 {
1507 unsigned long mmap_offset;
1508 void *mmap_base;
1509 ssize_t ret = 0;
1510 off_t orig_offset = stream->out_fd_offset;
1511 /* Default is on the disk */
1512 int outfd = stream->out_fd;
1513 struct consumer_relayd_sock_pair *relayd = NULL;
1514 unsigned int relayd_hang_up = 0;
1515
1516 /* RCU lock for the relayd pointer */
1517 rcu_read_lock();
1518
1519 /* Flag that the current stream if set for network streaming. */
1520 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1521 relayd = consumer_find_relayd(stream->net_seq_idx);
1522 if (relayd == NULL) {
1523 ret = -EPIPE;
1524 goto end;
1525 }
1526 }
1527
1528 /* get the offset inside the fd to mmap */
1529 switch (consumer_data.type) {
1530 case LTTNG_CONSUMER_KERNEL:
1531 mmap_base = stream->mmap_base;
1532 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1533 if (ret < 0) {
1534 ret = -errno;
1535 PERROR("tracer ctl get_mmap_read_offset");
1536 goto end;
1537 }
1538 break;
1539 case LTTNG_CONSUMER32_UST:
1540 case LTTNG_CONSUMER64_UST:
1541 mmap_base = lttng_ustctl_get_mmap_base(stream);
1542 if (!mmap_base) {
1543 ERR("read mmap get mmap base for stream %s", stream->name);
1544 ret = -EPERM;
1545 goto end;
1546 }
1547 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1548 if (ret != 0) {
1549 PERROR("tracer ctl get_mmap_read_offset");
1550 ret = -EINVAL;
1551 goto end;
1552 }
1553 break;
1554 default:
1555 ERR("Unknown consumer_data type");
1556 assert(0);
1557 }
1558
1559 /* Handle stream on the relayd if the output is on the network */
1560 if (relayd) {
1561 unsigned long netlen = len;
1562
1563 /*
1564 * Lock the control socket for the complete duration of the function
1565 * since from this point on we will use the socket.
1566 */
1567 if (stream->metadata_flag) {
1568 /* Metadata requires the control socket. */
1569 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1570 if (stream->reset_metadata_flag) {
1571 ret = relayd_reset_metadata(&relayd->control_sock,
1572 stream->relayd_stream_id,
1573 stream->metadata_version);
1574 if (ret < 0) {
1575 relayd_hang_up = 1;
1576 goto write_error;
1577 }
1578 stream->reset_metadata_flag = 0;
1579 }
1580 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1581 }
1582
1583 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1584 if (ret < 0) {
1585 relayd_hang_up = 1;
1586 goto write_error;
1587 }
1588 /* Use the returned socket. */
1589 outfd = ret;
1590
1591 /* Write metadata stream id before payload */
1592 if (stream->metadata_flag) {
1593 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1594 if (ret < 0) {
1595 relayd_hang_up = 1;
1596 goto write_error;
1597 }
1598 }
1599 } else {
1600 /* No streaming, we have to set the len with the full padding */
1601 len += padding;
1602
1603 if (stream->metadata_flag && stream->reset_metadata_flag) {
1604 ret = utils_truncate_stream_file(stream->out_fd, 0);
1605 if (ret < 0) {
1606 ERR("Reset metadata file");
1607 goto end;
1608 }
1609 stream->reset_metadata_flag = 0;
1610 }
1611
1612 /*
1613 * Check if we need to change the tracefile before writing the packet.
1614 */
1615 if (stream->chan->tracefile_size > 0 &&
1616 (stream->tracefile_size_current + len) >
1617 stream->chan->tracefile_size) {
1618 ret = utils_rotate_stream_file(stream->chan->pathname,
1619 stream->name, stream->chan->tracefile_size,
1620 stream->chan->tracefile_count, stream->uid, stream->gid,
1621 stream->out_fd, &(stream->tracefile_count_current),
1622 &stream->out_fd);
1623 if (ret < 0) {
1624 ERR("Rotating output file");
1625 goto end;
1626 }
1627 outfd = stream->out_fd;
1628
1629 if (stream->index_file) {
1630 lttng_index_file_put(stream->index_file);
1631 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1632 stream->name, stream->uid, stream->gid,
1633 stream->chan->tracefile_size,
1634 stream->tracefile_count_current,
1635 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1636 if (!stream->index_file) {
1637 goto end;
1638 }
1639 }
1640
1641 /* Reset current size because we just perform a rotation. */
1642 stream->tracefile_size_current = 0;
1643 stream->out_fd_offset = 0;
1644 orig_offset = 0;
1645 }
1646 stream->tracefile_size_current += len;
1647 if (index) {
1648 index->offset = htobe64(stream->out_fd_offset);
1649 }
1650 }
1651
1652 /*
1653 * This call guarantee that len or less is returned. It's impossible to
1654 * receive a ret value that is bigger than len.
1655 */
1656 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1657 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1658 if (ret < 0 || ((size_t) ret != len)) {
1659 /*
1660 * Report error to caller if nothing was written else at least send the
1661 * amount written.
1662 */
1663 if (ret < 0) {
1664 ret = -errno;
1665 }
1666 relayd_hang_up = 1;
1667
1668 /* Socket operation failed. We consider the relayd dead */
1669 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1670 /*
1671 * This is possible if the fd is closed on the other side
1672 * (outfd) or any write problem. It can be verbose a bit for a
1673 * normal execution if for instance the relayd is stopped
1674 * abruptly. This can happen so set this to a DBG statement.
1675 */
1676 DBG("Consumer mmap write detected relayd hang up");
1677 } else {
1678 /* Unhandled error, print it and stop function right now. */
1679 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1680 }
1681 goto write_error;
1682 }
1683 stream->output_written += ret;
1684
1685 /* This call is useless on a socket so better save a syscall. */
1686 if (!relayd) {
1687 /* This won't block, but will start writeout asynchronously */
1688 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1689 SYNC_FILE_RANGE_WRITE);
1690 stream->out_fd_offset += len;
1691 lttng_consumer_sync_trace_file(stream, orig_offset);
1692 }
1693
1694 write_error:
1695 /*
1696 * This is a special case that the relayd has closed its socket. Let's
1697 * cleanup the relayd object and all associated streams.
1698 */
1699 if (relayd && relayd_hang_up) {
1700 cleanup_relayd(relayd, ctx);
1701 }
1702
1703 end:
1704 /* Unlock only if ctrl socket used */
1705 if (relayd && stream->metadata_flag) {
1706 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1707 }
1708
1709 rcu_read_unlock();
1710 return ret;
1711 }
1712
1713 /*
1714 * Splice the data from the ring buffer to the tracefile.
1715 *
1716 * It must be called with the stream lock held.
1717 *
1718 * Returns the number of bytes spliced.
1719 */
1720 ssize_t lttng_consumer_on_read_subbuffer_splice(
1721 struct lttng_consumer_local_data *ctx,
1722 struct lttng_consumer_stream *stream, unsigned long len,
1723 unsigned long padding,
1724 struct ctf_packet_index *index)
1725 {
1726 ssize_t ret = 0, written = 0, ret_splice = 0;
1727 loff_t offset = 0;
1728 off_t orig_offset = stream->out_fd_offset;
1729 int fd = stream->wait_fd;
1730 /* Default is on the disk */
1731 int outfd = stream->out_fd;
1732 struct consumer_relayd_sock_pair *relayd = NULL;
1733 int *splice_pipe;
1734 unsigned int relayd_hang_up = 0;
1735
1736 switch (consumer_data.type) {
1737 case LTTNG_CONSUMER_KERNEL:
1738 break;
1739 case LTTNG_CONSUMER32_UST:
1740 case LTTNG_CONSUMER64_UST:
1741 /* Not supported for user space tracing */
1742 return -ENOSYS;
1743 default:
1744 ERR("Unknown consumer_data type");
1745 assert(0);
1746 }
1747
1748 /* RCU lock for the relayd pointer */
1749 rcu_read_lock();
1750
1751 /* Flag that the current stream if set for network streaming. */
1752 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1753 relayd = consumer_find_relayd(stream->net_seq_idx);
1754 if (relayd == NULL) {
1755 written = -ret;
1756 goto end;
1757 }
1758 }
1759 splice_pipe = stream->splice_pipe;
1760
1761 /* Write metadata stream id before payload */
1762 if (relayd) {
1763 unsigned long total_len = len;
1764
1765 if (stream->metadata_flag) {
1766 /*
1767 * Lock the control socket for the complete duration of the function
1768 * since from this point on we will use the socket.
1769 */
1770 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1771
1772 if (stream->reset_metadata_flag) {
1773 ret = relayd_reset_metadata(&relayd->control_sock,
1774 stream->relayd_stream_id,
1775 stream->metadata_version);
1776 if (ret < 0) {
1777 relayd_hang_up = 1;
1778 goto write_error;
1779 }
1780 stream->reset_metadata_flag = 0;
1781 }
1782 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1783 padding);
1784 if (ret < 0) {
1785 written = ret;
1786 relayd_hang_up = 1;
1787 goto write_error;
1788 }
1789
1790 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1791 }
1792
1793 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1794 if (ret < 0) {
1795 written = ret;
1796 relayd_hang_up = 1;
1797 goto write_error;
1798 }
1799 /* Use the returned socket. */
1800 outfd = ret;
1801 } else {
1802 /* No streaming, we have to set the len with the full padding */
1803 len += padding;
1804
1805 if (stream->metadata_flag && stream->reset_metadata_flag) {
1806 ret = utils_truncate_stream_file(stream->out_fd, 0);
1807 if (ret < 0) {
1808 ERR("Reset metadata file");
1809 goto end;
1810 }
1811 stream->reset_metadata_flag = 0;
1812 }
1813 /*
1814 * Check if we need to change the tracefile before writing the packet.
1815 */
1816 if (stream->chan->tracefile_size > 0 &&
1817 (stream->tracefile_size_current + len) >
1818 stream->chan->tracefile_size) {
1819 ret = utils_rotate_stream_file(stream->chan->pathname,
1820 stream->name, stream->chan->tracefile_size,
1821 stream->chan->tracefile_count, stream->uid, stream->gid,
1822 stream->out_fd, &(stream->tracefile_count_current),
1823 &stream->out_fd);
1824 if (ret < 0) {
1825 written = ret;
1826 ERR("Rotating output file");
1827 goto end;
1828 }
1829 outfd = stream->out_fd;
1830
1831 if (stream->index_file) {
1832 lttng_index_file_put(stream->index_file);
1833 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1834 stream->name, stream->uid, stream->gid,
1835 stream->chan->tracefile_size,
1836 stream->tracefile_count_current,
1837 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1838 if (!stream->index_file) {
1839 goto end;
1840 }
1841 }
1842
1843 /* Reset current size because we just perform a rotation. */
1844 stream->tracefile_size_current = 0;
1845 stream->out_fd_offset = 0;
1846 orig_offset = 0;
1847 }
1848 stream->tracefile_size_current += len;
1849 index->offset = htobe64(stream->out_fd_offset);
1850 }
1851
1852 while (len > 0) {
1853 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1854 (unsigned long)offset, len, fd, splice_pipe[1]);
1855 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1856 SPLICE_F_MOVE | SPLICE_F_MORE);
1857 DBG("splice chan to pipe, ret %zd", ret_splice);
1858 if (ret_splice < 0) {
1859 ret = errno;
1860 written = -ret;
1861 PERROR("Error in relay splice");
1862 goto splice_error;
1863 }
1864
1865 /* Handle stream on the relayd if the output is on the network */
1866 if (relayd && stream->metadata_flag) {
1867 size_t metadata_payload_size =
1868 sizeof(struct lttcomm_relayd_metadata_payload);
1869
1870 /* Update counter to fit the spliced data */
1871 ret_splice += metadata_payload_size;
1872 len += metadata_payload_size;
1873 /*
1874 * We do this so the return value can match the len passed as
1875 * argument to this function.
1876 */
1877 written -= metadata_payload_size;
1878 }
1879
1880 /* Splice data out */
1881 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1882 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1883 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1884 outfd, ret_splice);
1885 if (ret_splice < 0) {
1886 ret = errno;
1887 written = -ret;
1888 relayd_hang_up = 1;
1889 goto write_error;
1890 } else if (ret_splice > len) {
1891 /*
1892 * We don't expect this code path to be executed but you never know
1893 * so this is an extra protection agains a buggy splice().
1894 */
1895 ret = errno;
1896 written += ret_splice;
1897 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1898 len);
1899 goto splice_error;
1900 } else {
1901 /* All good, update current len and continue. */
1902 len -= ret_splice;
1903 }
1904
1905 /* This call is useless on a socket so better save a syscall. */
1906 if (!relayd) {
1907 /* This won't block, but will start writeout asynchronously */
1908 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1909 SYNC_FILE_RANGE_WRITE);
1910 stream->out_fd_offset += ret_splice;
1911 }
1912 stream->output_written += ret_splice;
1913 written += ret_splice;
1914 }
1915 if (!relayd) {
1916 lttng_consumer_sync_trace_file(stream, orig_offset);
1917 }
1918 goto end;
1919
1920 write_error:
1921 /*
1922 * This is a special case that the relayd has closed its socket. Let's
1923 * cleanup the relayd object and all associated streams.
1924 */
1925 if (relayd && relayd_hang_up) {
1926 cleanup_relayd(relayd, ctx);
1927 /* Skip splice error so the consumer does not fail */
1928 goto end;
1929 }
1930
1931 splice_error:
1932 /* send the appropriate error description to sessiond */
1933 switch (ret) {
1934 case EINVAL:
1935 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1936 break;
1937 case ENOMEM:
1938 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1939 break;
1940 case ESPIPE:
1941 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1942 break;
1943 }
1944
1945 end:
1946 if (relayd && stream->metadata_flag) {
1947 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1948 }
1949
1950 rcu_read_unlock();
1951 return written;
1952 }
1953
1954 /*
1955 * Take a snapshot for a specific fd
1956 *
1957 * Returns 0 on success, < 0 on error
1958 */
1959 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1960 {
1961 switch (consumer_data.type) {
1962 case LTTNG_CONSUMER_KERNEL:
1963 return lttng_kconsumer_take_snapshot(stream);
1964 case LTTNG_CONSUMER32_UST:
1965 case LTTNG_CONSUMER64_UST:
1966 return lttng_ustconsumer_take_snapshot(stream);
1967 default:
1968 ERR("Unknown consumer_data type");
1969 assert(0);
1970 return -ENOSYS;
1971 }
1972 }
1973
1974 /*
1975 * Get the produced position
1976 *
1977 * Returns 0 on success, < 0 on error
1978 */
1979 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1980 unsigned long *pos)
1981 {
1982 switch (consumer_data.type) {
1983 case LTTNG_CONSUMER_KERNEL:
1984 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1985 case LTTNG_CONSUMER32_UST:
1986 case LTTNG_CONSUMER64_UST:
1987 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1988 default:
1989 ERR("Unknown consumer_data type");
1990 assert(0);
1991 return -ENOSYS;
1992 }
1993 }
1994
1995 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1996 int sock, struct pollfd *consumer_sockpoll)
1997 {
1998 switch (consumer_data.type) {
1999 case LTTNG_CONSUMER_KERNEL:
2000 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2001 case LTTNG_CONSUMER32_UST:
2002 case LTTNG_CONSUMER64_UST:
2003 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2004 default:
2005 ERR("Unknown consumer_data type");
2006 assert(0);
2007 return -ENOSYS;
2008 }
2009 }
2010
2011 void lttng_consumer_close_all_metadata(void)
2012 {
2013 switch (consumer_data.type) {
2014 case LTTNG_CONSUMER_KERNEL:
2015 /*
2016 * The Kernel consumer has a different metadata scheme so we don't
2017 * close anything because the stream will be closed by the session
2018 * daemon.
2019 */
2020 break;
2021 case LTTNG_CONSUMER32_UST:
2022 case LTTNG_CONSUMER64_UST:
2023 /*
2024 * Close all metadata streams. The metadata hash table is passed and
2025 * this call iterates over it by closing all wakeup fd. This is safe
2026 * because at this point we are sure that the metadata producer is
2027 * either dead or blocked.
2028 */
2029 lttng_ustconsumer_close_all_metadata(metadata_ht);
2030 break;
2031 default:
2032 ERR("Unknown consumer_data type");
2033 assert(0);
2034 }
2035 }
2036
2037 /*
2038 * Clean up a metadata stream and free its memory.
2039 */
2040 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2041 struct lttng_ht *ht)
2042 {
2043 struct lttng_consumer_channel *free_chan = NULL;
2044
2045 assert(stream);
2046 /*
2047 * This call should NEVER receive regular stream. It must always be
2048 * metadata stream and this is crucial for data structure synchronization.
2049 */
2050 assert(stream->metadata_flag);
2051
2052 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2053
2054 pthread_mutex_lock(&consumer_data.lock);
2055 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2056 pthread_mutex_lock(&stream->chan->lock);
2057 pthread_mutex_lock(&stream->lock);
2058
2059 /* Remove any reference to that stream. */
2060 consumer_stream_delete(stream, ht);
2061
2062 /* Close down everything including the relayd if one. */
2063 consumer_stream_close(stream);
2064 /* Destroy tracer buffers of the stream. */
2065 consumer_stream_destroy_buffers(stream);
2066
2067 /* Atomically decrement channel refcount since other threads can use it. */
2068 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2069 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2070 /* Go for channel deletion! */
2071 free_chan = stream->chan;
2072 }
2073
2074 /*
2075 * Nullify the stream reference so it is not used after deletion. The
2076 * channel lock MUST be acquired before being able to check for a NULL
2077 * pointer value.
2078 */
2079 stream->chan->metadata_stream = NULL;
2080
2081 pthread_mutex_unlock(&stream->lock);
2082 pthread_mutex_unlock(&stream->chan->lock);
2083 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2084 pthread_mutex_unlock(&consumer_data.lock);
2085
2086 if (free_chan) {
2087 consumer_del_channel(free_chan);
2088 }
2089
2090 consumer_stream_free(stream);
2091 }
2092
2093 /*
2094 * Action done with the metadata stream when adding it to the consumer internal
2095 * data structures to handle it.
2096 */
2097 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2098 {
2099 struct lttng_ht *ht = metadata_ht;
2100 int ret = 0;
2101 struct lttng_ht_iter iter;
2102 struct lttng_ht_node_u64 *node;
2103
2104 assert(stream);
2105 assert(ht);
2106
2107 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2108
2109 pthread_mutex_lock(&consumer_data.lock);
2110 pthread_mutex_lock(&stream->chan->lock);
2111 pthread_mutex_lock(&stream->chan->timer_lock);
2112 pthread_mutex_lock(&stream->lock);
2113
2114 /*
2115 * From here, refcounts are updated so be _careful_ when returning an error
2116 * after this point.
2117 */
2118
2119 rcu_read_lock();
2120
2121 /*
2122 * Lookup the stream just to make sure it does not exist in our internal
2123 * state. This should NEVER happen.
2124 */
2125 lttng_ht_lookup(ht, &stream->key, &iter);
2126 node = lttng_ht_iter_get_node_u64(&iter);
2127 assert(!node);
2128
2129 /*
2130 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2131 * in terms of destroying the associated channel, because the action that
2132 * causes the count to become 0 also causes a stream to be added. The
2133 * channel deletion will thus be triggered by the following removal of this
2134 * stream.
2135 */
2136 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2137 /* Increment refcount before decrementing nb_init_stream_left */
2138 cmm_smp_wmb();
2139 uatomic_dec(&stream->chan->nb_init_stream_left);
2140 }
2141
2142 lttng_ht_add_unique_u64(ht, &stream->node);
2143
2144 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2145 &stream->node_channel_id);
2146
2147 /*
2148 * Add stream to the stream_list_ht of the consumer data. No need to steal
2149 * the key since the HT does not use it and we allow to add redundant keys
2150 * into this table.
2151 */
2152 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2153
2154 rcu_read_unlock();
2155
2156 pthread_mutex_unlock(&stream->lock);
2157 pthread_mutex_unlock(&stream->chan->lock);
2158 pthread_mutex_unlock(&stream->chan->timer_lock);
2159 pthread_mutex_unlock(&consumer_data.lock);
2160 return ret;
2161 }
2162
2163 /*
2164 * Delete data stream that are flagged for deletion (endpoint_status).
2165 */
2166 static void validate_endpoint_status_data_stream(void)
2167 {
2168 struct lttng_ht_iter iter;
2169 struct lttng_consumer_stream *stream;
2170
2171 DBG("Consumer delete flagged data stream");
2172
2173 rcu_read_lock();
2174 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2175 /* Validate delete flag of the stream */
2176 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2177 continue;
2178 }
2179 /* Delete it right now */
2180 consumer_del_stream(stream, data_ht);
2181 }
2182 rcu_read_unlock();
2183 }
2184
2185 /*
2186 * Delete metadata stream that are flagged for deletion (endpoint_status).
2187 */
2188 static void validate_endpoint_status_metadata_stream(
2189 struct lttng_poll_event *pollset)
2190 {
2191 struct lttng_ht_iter iter;
2192 struct lttng_consumer_stream *stream;
2193
2194 DBG("Consumer delete flagged metadata stream");
2195
2196 assert(pollset);
2197
2198 rcu_read_lock();
2199 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2200 /* Validate delete flag of the stream */
2201 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2202 continue;
2203 }
2204 /*
2205 * Remove from pollset so the metadata thread can continue without
2206 * blocking on a deleted stream.
2207 */
2208 lttng_poll_del(pollset, stream->wait_fd);
2209
2210 /* Delete it right now */
2211 consumer_del_metadata_stream(stream, metadata_ht);
2212 }
2213 rcu_read_unlock();
2214 }
2215
2216 /*
2217 * Thread polls on metadata file descriptor and write them on disk or on the
2218 * network.
2219 */
2220 void *consumer_thread_metadata_poll(void *data)
2221 {
2222 int ret, i, pollfd, err = -1;
2223 uint32_t revents, nb_fd;
2224 struct lttng_consumer_stream *stream = NULL;
2225 struct lttng_ht_iter iter;
2226 struct lttng_ht_node_u64 *node;
2227 struct lttng_poll_event events;
2228 struct lttng_consumer_local_data *ctx = data;
2229 ssize_t len;
2230
2231 rcu_register_thread();
2232
2233 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2234
2235 if (testpoint(consumerd_thread_metadata)) {
2236 goto error_testpoint;
2237 }
2238
2239 health_code_update();
2240
2241 DBG("Thread metadata poll started");
2242
2243 /* Size is set to 1 for the consumer_metadata pipe */
2244 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2245 if (ret < 0) {
2246 ERR("Poll set creation failed");
2247 goto end_poll;
2248 }
2249
2250 ret = lttng_poll_add(&events,
2251 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2252 if (ret < 0) {
2253 goto end;
2254 }
2255
2256 /* Main loop */
2257 DBG("Metadata main loop started");
2258
2259 while (1) {
2260 restart:
2261 health_code_update();
2262 health_poll_entry();
2263 DBG("Metadata poll wait");
2264 ret = lttng_poll_wait(&events, -1);
2265 DBG("Metadata poll return from wait with %d fd(s)",
2266 LTTNG_POLL_GETNB(&events));
2267 health_poll_exit();
2268 DBG("Metadata event caught in thread");
2269 if (ret < 0) {
2270 if (errno == EINTR) {
2271 ERR("Poll EINTR caught");
2272 goto restart;
2273 }
2274 if (LTTNG_POLL_GETNB(&events) == 0) {
2275 err = 0; /* All is OK */
2276 }
2277 goto end;
2278 }
2279
2280 nb_fd = ret;
2281
2282 /* From here, the event is a metadata wait fd */
2283 for (i = 0; i < nb_fd; i++) {
2284 health_code_update();
2285
2286 revents = LTTNG_POLL_GETEV(&events, i);
2287 pollfd = LTTNG_POLL_GETFD(&events, i);
2288
2289 if (!revents) {
2290 /* No activity for this FD (poll implementation). */
2291 continue;
2292 }
2293
2294 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2295 if (revents & LPOLLIN) {
2296 ssize_t pipe_len;
2297
2298 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2299 &stream, sizeof(stream));
2300 if (pipe_len < sizeof(stream)) {
2301 if (pipe_len < 0) {
2302 PERROR("read metadata stream");
2303 }
2304 /*
2305 * Remove the pipe from the poll set and continue the loop
2306 * since their might be data to consume.
2307 */
2308 lttng_poll_del(&events,
2309 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2310 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2311 continue;
2312 }
2313
2314 /* A NULL stream means that the state has changed. */
2315 if (stream == NULL) {
2316 /* Check for deleted streams. */
2317 validate_endpoint_status_metadata_stream(&events);
2318 goto restart;
2319 }
2320
2321 DBG("Adding metadata stream %d to poll set",
2322 stream->wait_fd);
2323
2324 /* Add metadata stream to the global poll events list */
2325 lttng_poll_add(&events, stream->wait_fd,
2326 LPOLLIN | LPOLLPRI | LPOLLHUP);
2327 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2328 DBG("Metadata thread pipe hung up");
2329 /*
2330 * Remove the pipe from the poll set and continue the loop
2331 * since their might be data to consume.
2332 */
2333 lttng_poll_del(&events,
2334 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2335 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2336 continue;
2337 } else {
2338 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2339 goto end;
2340 }
2341
2342 /* Handle other stream */
2343 continue;
2344 }
2345
2346 rcu_read_lock();
2347 {
2348 uint64_t tmp_id = (uint64_t) pollfd;
2349
2350 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2351 }
2352 node = lttng_ht_iter_get_node_u64(&iter);
2353 assert(node);
2354
2355 stream = caa_container_of(node, struct lttng_consumer_stream,
2356 node);
2357
2358 if (revents & (LPOLLIN | LPOLLPRI)) {
2359 /* Get the data out of the metadata file descriptor */
2360 DBG("Metadata available on fd %d", pollfd);
2361 assert(stream->wait_fd == pollfd);
2362
2363 do {
2364 health_code_update();
2365
2366 len = ctx->on_buffer_ready(stream, ctx);
2367 /*
2368 * We don't check the return value here since if we get
2369 * a negative len, it means an error occurred thus we
2370 * simply remove it from the poll set and free the
2371 * stream.
2372 */
2373 } while (len > 0);
2374
2375 /* It's ok to have an unavailable sub-buffer */
2376 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2377 /* Clean up stream from consumer and free it. */
2378 lttng_poll_del(&events, stream->wait_fd);
2379 consumer_del_metadata_stream(stream, metadata_ht);
2380 }
2381 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2382 DBG("Metadata fd %d is hup|err.", pollfd);
2383 if (!stream->hangup_flush_done
2384 && (consumer_data.type == LTTNG_CONSUMER32_UST
2385 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2386 DBG("Attempting to flush and consume the UST buffers");
2387 lttng_ustconsumer_on_stream_hangup(stream);
2388
2389 /* We just flushed the stream now read it. */
2390 do {
2391 health_code_update();
2392
2393 len = ctx->on_buffer_ready(stream, ctx);
2394 /*
2395 * We don't check the return value here since if we get
2396 * a negative len, it means an error occurred thus we
2397 * simply remove it from the poll set and free the
2398 * stream.
2399 */
2400 } while (len > 0);
2401 }
2402
2403 lttng_poll_del(&events, stream->wait_fd);
2404 /*
2405 * This call update the channel states, closes file descriptors
2406 * and securely free the stream.
2407 */
2408 consumer_del_metadata_stream(stream, metadata_ht);
2409 } else {
2410 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2411 rcu_read_unlock();
2412 goto end;
2413 }
2414 /* Release RCU lock for the stream looked up */
2415 rcu_read_unlock();
2416 }
2417 }
2418
2419 /* All is OK */
2420 err = 0;
2421 end:
2422 DBG("Metadata poll thread exiting");
2423
2424 lttng_poll_clean(&events);
2425 end_poll:
2426 error_testpoint:
2427 if (err) {
2428 health_error();
2429 ERR("Health error occurred in %s", __func__);
2430 }
2431 health_unregister(health_consumerd);
2432 rcu_unregister_thread();
2433 return NULL;
2434 }
2435
2436 /*
2437 * This thread polls the fds in the set to consume the data and write
2438 * it to tracefile if necessary.
2439 */
2440 void *consumer_thread_data_poll(void *data)
2441 {
2442 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2443 struct pollfd *pollfd = NULL;
2444 /* local view of the streams */
2445 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2446 /* local view of consumer_data.fds_count */
2447 int nb_fd = 0;
2448 struct lttng_consumer_local_data *ctx = data;
2449 ssize_t len;
2450
2451 rcu_register_thread();
2452
2453 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2454
2455 if (testpoint(consumerd_thread_data)) {
2456 goto error_testpoint;
2457 }
2458
2459 health_code_update();
2460
2461 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2462 if (local_stream == NULL) {
2463 PERROR("local_stream malloc");
2464 goto end;
2465 }
2466
2467 while (1) {
2468 health_code_update();
2469
2470 high_prio = 0;
2471 num_hup = 0;
2472
2473 /*
2474 * the fds set has been updated, we need to update our
2475 * local array as well
2476 */
2477 pthread_mutex_lock(&consumer_data.lock);
2478 if (consumer_data.need_update) {
2479 free(pollfd);
2480 pollfd = NULL;
2481
2482 free(local_stream);
2483 local_stream = NULL;
2484
2485 /*
2486 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2487 * wake up pipe.
2488 */
2489 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2490 if (pollfd == NULL) {
2491 PERROR("pollfd malloc");
2492 pthread_mutex_unlock(&consumer_data.lock);
2493 goto end;
2494 }
2495
2496 local_stream = zmalloc((consumer_data.stream_count + 2) *
2497 sizeof(struct lttng_consumer_stream *));
2498 if (local_stream == NULL) {
2499 PERROR("local_stream malloc");
2500 pthread_mutex_unlock(&consumer_data.lock);
2501 goto end;
2502 }
2503 ret = update_poll_array(ctx, &pollfd, local_stream,
2504 data_ht);
2505 if (ret < 0) {
2506 ERR("Error in allocating pollfd or local_outfds");
2507 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2508 pthread_mutex_unlock(&consumer_data.lock);
2509 goto end;
2510 }
2511 nb_fd = ret;
2512 consumer_data.need_update = 0;
2513 }
2514 pthread_mutex_unlock(&consumer_data.lock);
2515
2516 /* No FDs and consumer_quit, consumer_cleanup the thread */
2517 if (nb_fd == 0 && consumer_quit == 1) {
2518 err = 0; /* All is OK */
2519 goto end;
2520 }
2521 /* poll on the array of fds */
2522 restart:
2523 DBG("polling on %d fd", nb_fd + 2);
2524 health_poll_entry();
2525 num_rdy = poll(pollfd, nb_fd + 2, -1);
2526 health_poll_exit();
2527 DBG("poll num_rdy : %d", num_rdy);
2528 if (num_rdy == -1) {
2529 /*
2530 * Restart interrupted system call.
2531 */
2532 if (errno == EINTR) {
2533 goto restart;
2534 }
2535 PERROR("Poll error");
2536 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2537 goto end;
2538 } else if (num_rdy == 0) {
2539 DBG("Polling thread timed out");
2540 goto end;
2541 }
2542
2543 /*
2544 * If the consumer_data_pipe triggered poll go directly to the
2545 * beginning of the loop to update the array. We want to prioritize
2546 * array update over low-priority reads.
2547 */
2548 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2549 ssize_t pipe_readlen;
2550
2551 DBG("consumer_data_pipe wake up");
2552 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2553 &new_stream, sizeof(new_stream));
2554 if (pipe_readlen < sizeof(new_stream)) {
2555 PERROR("Consumer data pipe");
2556 /* Continue so we can at least handle the current stream(s). */
2557 continue;
2558 }
2559
2560 /*
2561 * If the stream is NULL, just ignore it. It's also possible that
2562 * the sessiond poll thread changed the consumer_quit state and is
2563 * waking us up to test it.
2564 */
2565 if (new_stream == NULL) {
2566 validate_endpoint_status_data_stream();
2567 continue;
2568 }
2569
2570 /* Continue to update the local streams and handle prio ones */
2571 continue;
2572 }
2573
2574 /* Handle wakeup pipe. */
2575 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2576 char dummy;
2577 ssize_t pipe_readlen;
2578
2579 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2580 sizeof(dummy));
2581 if (pipe_readlen < 0) {
2582 PERROR("Consumer data wakeup pipe");
2583 }
2584 /* We've been awakened to handle stream(s). */
2585 ctx->has_wakeup = 0;
2586 }
2587
2588 /* Take care of high priority channels first. */
2589 for (i = 0; i < nb_fd; i++) {
2590 health_code_update();
2591
2592 if (local_stream[i] == NULL) {
2593 continue;
2594 }
2595 if (pollfd[i].revents & POLLPRI) {
2596 DBG("Urgent read on fd %d", pollfd[i].fd);
2597 high_prio = 1;
2598 len = ctx->on_buffer_ready(local_stream[i], ctx);
2599 /* it's ok to have an unavailable sub-buffer */
2600 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2601 /* Clean the stream and free it. */
2602 consumer_del_stream(local_stream[i], data_ht);
2603 local_stream[i] = NULL;
2604 } else if (len > 0) {
2605 local_stream[i]->data_read = 1;
2606 }
2607 }
2608 }
2609
2610 /*
2611 * If we read high prio channel in this loop, try again
2612 * for more high prio data.
2613 */
2614 if (high_prio) {
2615 continue;
2616 }
2617
2618 /* Take care of low priority channels. */
2619 for (i = 0; i < nb_fd; i++) {
2620 health_code_update();
2621
2622 if (local_stream[i] == NULL) {
2623 continue;
2624 }
2625 if ((pollfd[i].revents & POLLIN) ||
2626 local_stream[i]->hangup_flush_done ||
2627 local_stream[i]->has_data) {
2628 DBG("Normal read on fd %d", pollfd[i].fd);
2629 len = ctx->on_buffer_ready(local_stream[i], ctx);
2630 /* it's ok to have an unavailable sub-buffer */
2631 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2632 /* Clean the stream and free it. */
2633 consumer_del_stream(local_stream[i], data_ht);
2634 local_stream[i] = NULL;
2635 } else if (len > 0) {
2636 local_stream[i]->data_read = 1;
2637 }
2638 }
2639 }
2640
2641 /* Handle hangup and errors */
2642 for (i = 0; i < nb_fd; i++) {
2643 health_code_update();
2644
2645 if (local_stream[i] == NULL) {
2646 continue;
2647 }
2648 if (!local_stream[i]->hangup_flush_done
2649 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2650 && (consumer_data.type == LTTNG_CONSUMER32_UST
2651 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2652 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2653 pollfd[i].fd);
2654 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2655 /* Attempt read again, for the data we just flushed. */
2656 local_stream[i]->data_read = 1;
2657 }
2658 /*
2659 * If the poll flag is HUP/ERR/NVAL and we have
2660 * read no data in this pass, we can remove the
2661 * stream from its hash table.
2662 */
2663 if ((pollfd[i].revents & POLLHUP)) {
2664 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2665 if (!local_stream[i]->data_read) {
2666 consumer_del_stream(local_stream[i], data_ht);
2667 local_stream[i] = NULL;
2668 num_hup++;
2669 }
2670 } else if (pollfd[i].revents & POLLERR) {
2671 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2672 if (!local_stream[i]->data_read) {
2673 consumer_del_stream(local_stream[i], data_ht);
2674 local_stream[i] = NULL;
2675 num_hup++;
2676 }
2677 } else if (pollfd[i].revents & POLLNVAL) {
2678 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2679 if (!local_stream[i]->data_read) {
2680 consumer_del_stream(local_stream[i], data_ht);
2681 local_stream[i] = NULL;
2682 num_hup++;
2683 }
2684 }
2685 if (local_stream[i] != NULL) {
2686 local_stream[i]->data_read = 0;
2687 }
2688 }
2689 }
2690 /* All is OK */
2691 err = 0;
2692 end:
2693 DBG("polling thread exiting");
2694 free(pollfd);
2695 free(local_stream);
2696
2697 /*
2698 * Close the write side of the pipe so epoll_wait() in
2699 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2700 * read side of the pipe. If we close them both, epoll_wait strangely does
2701 * not return and could create a endless wait period if the pipe is the
2702 * only tracked fd in the poll set. The thread will take care of closing
2703 * the read side.
2704 */
2705 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2706
2707 error_testpoint:
2708 if (err) {
2709 health_error();
2710 ERR("Health error occurred in %s", __func__);
2711 }
2712 health_unregister(health_consumerd);
2713
2714 rcu_unregister_thread();
2715 return NULL;
2716 }
2717
2718 /*
2719 * Close wake-up end of each stream belonging to the channel. This will
2720 * allow the poll() on the stream read-side to detect when the
2721 * write-side (application) finally closes them.
2722 */
2723 static
2724 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2725 {
2726 struct lttng_ht *ht;
2727 struct lttng_consumer_stream *stream;
2728 struct lttng_ht_iter iter;
2729
2730 ht = consumer_data.stream_per_chan_id_ht;
2731
2732 rcu_read_lock();
2733 cds_lfht_for_each_entry_duplicate(ht->ht,
2734 ht->hash_fct(&channel->key, lttng_ht_seed),
2735 ht->match_fct, &channel->key,
2736 &iter.iter, stream, node_channel_id.node) {
2737 /*
2738 * Protect against teardown with mutex.
2739 */
2740 pthread_mutex_lock(&stream->lock);
2741 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2742 goto next;
2743 }
2744 switch (consumer_data.type) {
2745 case LTTNG_CONSUMER_KERNEL:
2746 break;
2747 case LTTNG_CONSUMER32_UST:
2748 case LTTNG_CONSUMER64_UST:
2749 if (stream->metadata_flag) {
2750 /* Safe and protected by the stream lock. */
2751 lttng_ustconsumer_close_metadata(stream->chan);
2752 } else {
2753 /*
2754 * Note: a mutex is taken internally within
2755 * liblttng-ust-ctl to protect timer wakeup_fd
2756 * use from concurrent close.
2757 */
2758 lttng_ustconsumer_close_stream_wakeup(stream);
2759 }
2760 break;
2761 default:
2762 ERR("Unknown consumer_data type");
2763 assert(0);
2764 }
2765 next:
2766 pthread_mutex_unlock(&stream->lock);
2767 }
2768 rcu_read_unlock();
2769 }
2770
2771 static void destroy_channel_ht(struct lttng_ht *ht)
2772 {
2773 struct lttng_ht_iter iter;
2774 struct lttng_consumer_channel *channel;
2775 int ret;
2776
2777 if (ht == NULL) {
2778 return;
2779 }
2780
2781 rcu_read_lock();
2782 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2783 ret = lttng_ht_del(ht, &iter);
2784 assert(ret != 0);
2785 }
2786 rcu_read_unlock();
2787
2788 lttng_ht_destroy(ht);
2789 }
2790
2791 /*
2792 * This thread polls the channel fds to detect when they are being
2793 * closed. It closes all related streams if the channel is detected as
2794 * closed. It is currently only used as a shim layer for UST because the
2795 * consumerd needs to keep the per-stream wakeup end of pipes open for
2796 * periodical flush.
2797 */
2798 void *consumer_thread_channel_poll(void *data)
2799 {
2800 int ret, i, pollfd, err = -1;
2801 uint32_t revents, nb_fd;
2802 struct lttng_consumer_channel *chan = NULL;
2803 struct lttng_ht_iter iter;
2804 struct lttng_ht_node_u64 *node;
2805 struct lttng_poll_event events;
2806 struct lttng_consumer_local_data *ctx = data;
2807 struct lttng_ht *channel_ht;
2808
2809 rcu_register_thread();
2810
2811 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2812
2813 if (testpoint(consumerd_thread_channel)) {
2814 goto error_testpoint;
2815 }
2816
2817 health_code_update();
2818
2819 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2820 if (!channel_ht) {
2821 /* ENOMEM at this point. Better to bail out. */
2822 goto end_ht;
2823 }
2824
2825 DBG("Thread channel poll started");
2826
2827 /* Size is set to 1 for the consumer_channel pipe */
2828 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2829 if (ret < 0) {
2830 ERR("Poll set creation failed");
2831 goto end_poll;
2832 }
2833
2834 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2835 if (ret < 0) {
2836 goto end;
2837 }
2838
2839 /* Main loop */
2840 DBG("Channel main loop started");
2841
2842 while (1) {
2843 restart:
2844 health_code_update();
2845 DBG("Channel poll wait");
2846 health_poll_entry();
2847 ret = lttng_poll_wait(&events, -1);
2848 DBG("Channel poll return from wait with %d fd(s)",
2849 LTTNG_POLL_GETNB(&events));
2850 health_poll_exit();
2851 DBG("Channel event caught in thread");
2852 if (ret < 0) {
2853 if (errno == EINTR) {
2854 ERR("Poll EINTR caught");
2855 goto restart;
2856 }
2857 if (LTTNG_POLL_GETNB(&events) == 0) {
2858 err = 0; /* All is OK */
2859 }
2860 goto end;
2861 }
2862
2863 nb_fd = ret;
2864
2865 /* From here, the event is a channel wait fd */
2866 for (i = 0; i < nb_fd; i++) {
2867 health_code_update();
2868
2869 revents = LTTNG_POLL_GETEV(&events, i);
2870 pollfd = LTTNG_POLL_GETFD(&events, i);
2871
2872 if (!revents) {
2873 /* No activity for this FD (poll implementation). */
2874 continue;
2875 }
2876
2877 if (pollfd == ctx->consumer_channel_pipe[0]) {
2878 if (revents & LPOLLIN) {
2879 enum consumer_channel_action action;
2880 uint64_t key;
2881
2882 ret = read_channel_pipe(ctx, &chan, &key, &action);
2883 if (ret <= 0) {
2884 if (ret < 0) {
2885 ERR("Error reading channel pipe");
2886 }
2887 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2888 continue;
2889 }
2890
2891 switch (action) {
2892 case CONSUMER_CHANNEL_ADD:
2893 DBG("Adding channel %d to poll set",
2894 chan->wait_fd);
2895
2896 lttng_ht_node_init_u64(&chan->wait_fd_node,
2897 chan->wait_fd);
2898 rcu_read_lock();
2899 lttng_ht_add_unique_u64(channel_ht,
2900 &chan->wait_fd_node);
2901 rcu_read_unlock();
2902 /* Add channel to the global poll events list */
2903 lttng_poll_add(&events, chan->wait_fd,
2904 LPOLLERR | LPOLLHUP);
2905 break;
2906 case CONSUMER_CHANNEL_DEL:
2907 {
2908 /*
2909 * This command should never be called if the channel
2910 * has streams monitored by either the data or metadata
2911 * thread. The consumer only notify this thread with a
2912 * channel del. command if it receives a destroy
2913 * channel command from the session daemon that send it
2914 * if a command prior to the GET_CHANNEL failed.
2915 */
2916
2917 rcu_read_lock();
2918 chan = consumer_find_channel(key);
2919 if (!chan) {
2920 rcu_read_unlock();
2921 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2922 break;
2923 }
2924 lttng_poll_del(&events, chan->wait_fd);
2925 iter.iter.node = &chan->wait_fd_node.node;
2926 ret = lttng_ht_del(channel_ht, &iter);
2927 assert(ret == 0);
2928
2929 switch (consumer_data.type) {
2930 case LTTNG_CONSUMER_KERNEL:
2931 break;
2932 case LTTNG_CONSUMER32_UST:
2933 case LTTNG_CONSUMER64_UST:
2934 health_code_update();
2935 /* Destroy streams that might have been left in the stream list. */
2936 clean_channel_stream_list(chan);
2937 break;
2938 default:
2939 ERR("Unknown consumer_data type");
2940 assert(0);
2941 }
2942
2943 /*
2944 * Release our own refcount. Force channel deletion even if
2945 * streams were not initialized.
2946 */
2947 if (!uatomic_sub_return(&chan->refcount, 1)) {
2948 consumer_del_channel(chan);
2949 }
2950 rcu_read_unlock();
2951 goto restart;
2952 }
2953 case CONSUMER_CHANNEL_QUIT:
2954 /*
2955 * Remove the pipe from the poll set and continue the loop
2956 * since their might be data to consume.
2957 */
2958 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2959 continue;
2960 default:
2961 ERR("Unknown action");
2962 break;
2963 }
2964 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2965 DBG("Channel thread pipe hung up");
2966 /*
2967 * Remove the pipe from the poll set and continue the loop
2968 * since their might be data to consume.
2969 */
2970 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2971 continue;
2972 } else {
2973 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2974 goto end;
2975 }
2976
2977 /* Handle other stream */
2978 continue;
2979 }
2980
2981 rcu_read_lock();
2982 {
2983 uint64_t tmp_id = (uint64_t) pollfd;
2984
2985 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2986 }
2987 node = lttng_ht_iter_get_node_u64(&iter);
2988 assert(node);
2989
2990 chan = caa_container_of(node, struct lttng_consumer_channel,
2991 wait_fd_node);
2992
2993 /* Check for error event */
2994 if (revents & (LPOLLERR | LPOLLHUP)) {
2995 DBG("Channel fd %d is hup|err.", pollfd);
2996
2997 lttng_poll_del(&events, chan->wait_fd);
2998 ret = lttng_ht_del(channel_ht, &iter);
2999 assert(ret == 0);
3000
3001 /*
3002 * This will close the wait fd for each stream associated to
3003 * this channel AND monitored by the data/metadata thread thus
3004 * will be clean by the right thread.
3005 */
3006 consumer_close_channel_streams(chan);
3007
3008 /* Release our own refcount */
3009 if (!uatomic_sub_return(&chan->refcount, 1)
3010 && !uatomic_read(&chan->nb_init_stream_left)) {
3011 consumer_del_channel(chan);
3012 }
3013 } else {
3014 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3015 rcu_read_unlock();
3016 goto end;
3017 }
3018
3019 /* Release RCU lock for the channel looked up */
3020 rcu_read_unlock();
3021 }
3022 }
3023
3024 /* All is OK */
3025 err = 0;
3026 end:
3027 lttng_poll_clean(&events);
3028 end_poll:
3029 destroy_channel_ht(channel_ht);
3030 end_ht:
3031 error_testpoint:
3032 DBG("Channel poll thread exiting");
3033 if (err) {
3034 health_error();
3035 ERR("Health error occurred in %s", __func__);
3036 }
3037 health_unregister(health_consumerd);
3038 rcu_unregister_thread();
3039 return NULL;
3040 }
3041
3042 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3043 struct pollfd *sockpoll, int client_socket)
3044 {
3045 int ret;
3046
3047 assert(ctx);
3048 assert(sockpoll);
3049
3050 ret = lttng_consumer_poll_socket(sockpoll);
3051 if (ret) {
3052 goto error;
3053 }
3054 DBG("Metadata connection on client_socket");
3055
3056 /* Blocking call, waiting for transmission */
3057 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3058 if (ctx->consumer_metadata_socket < 0) {
3059 WARN("On accept metadata");
3060 ret = -1;
3061 goto error;
3062 }
3063 ret = 0;
3064
3065 error:
3066 return ret;
3067 }
3068
3069 /*
3070 * This thread listens on the consumerd socket and receives the file
3071 * descriptors from the session daemon.
3072 */
3073 void *consumer_thread_sessiond_poll(void *data)
3074 {
3075 int sock = -1, client_socket, ret, err = -1;
3076 /*
3077 * structure to poll for incoming data on communication socket avoids
3078 * making blocking sockets.
3079 */
3080 struct pollfd consumer_sockpoll[2];
3081 struct lttng_consumer_local_data *ctx = data;
3082
3083 rcu_register_thread();
3084
3085 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3086
3087 if (testpoint(consumerd_thread_sessiond)) {
3088 goto error_testpoint;
3089 }
3090
3091 health_code_update();
3092
3093 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3094 unlink(ctx->consumer_command_sock_path);
3095 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3096 if (client_socket < 0) {
3097 ERR("Cannot create command socket");
3098 goto end;
3099 }
3100
3101 ret = lttcomm_listen_unix_sock(client_socket);
3102 if (ret < 0) {
3103 goto end;
3104 }
3105
3106 DBG("Sending ready command to lttng-sessiond");
3107 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3108 /* return < 0 on error, but == 0 is not fatal */
3109 if (ret < 0) {
3110 ERR("Error sending ready command to lttng-sessiond");
3111 goto end;
3112 }
3113
3114 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3115 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3116 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3117 consumer_sockpoll[1].fd = client_socket;
3118 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3119
3120 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3121 if (ret) {
3122 if (ret > 0) {
3123 /* should exit */
3124 err = 0;
3125 }
3126 goto end;
3127 }
3128 DBG("Connection on client_socket");
3129
3130 /* Blocking call, waiting for transmission */
3131 sock = lttcomm_accept_unix_sock(client_socket);
3132 if (sock < 0) {
3133 WARN("On accept");
3134 goto end;
3135 }
3136
3137 /*
3138 * Setup metadata socket which is the second socket connection on the
3139 * command unix socket.
3140 */
3141 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3142 if (ret) {
3143 if (ret > 0) {
3144 /* should exit */
3145 err = 0;
3146 }
3147 goto end;
3148 }
3149
3150 /* This socket is not useful anymore. */
3151 ret = close(client_socket);
3152 if (ret < 0) {
3153 PERROR("close client_socket");
3154 }
3155 client_socket = -1;
3156
3157 /* update the polling structure to poll on the established socket */
3158 consumer_sockpoll[1].fd = sock;
3159 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3160
3161 while (1) {
3162 health_code_update();
3163
3164 health_poll_entry();
3165 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3166 health_poll_exit();
3167 if (ret) {
3168 if (ret > 0) {
3169 /* should exit */
3170 err = 0;
3171 }
3172 goto end;
3173 }
3174 DBG("Incoming command on sock");
3175 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3176 if (ret <= 0) {
3177 /*
3178 * This could simply be a session daemon quitting. Don't output
3179 * ERR() here.
3180 */
3181 DBG("Communication interrupted on command socket");
3182 err = 0;
3183 goto end;
3184 }
3185 if (consumer_quit) {
3186 DBG("consumer_thread_receive_fds received quit from signal");
3187 err = 0; /* All is OK */
3188 goto end;
3189 }
3190 DBG("received command on sock");
3191 }
3192 /* All is OK */
3193 err = 0;
3194
3195 end:
3196 DBG("Consumer thread sessiond poll exiting");
3197
3198 /*
3199 * Close metadata streams since the producer is the session daemon which
3200 * just died.
3201 *
3202 * NOTE: for now, this only applies to the UST tracer.
3203 */
3204 lttng_consumer_close_all_metadata();
3205
3206 /*
3207 * when all fds have hung up, the polling thread
3208 * can exit cleanly
3209 */
3210 consumer_quit = 1;
3211
3212 /*
3213 * Notify the data poll thread to poll back again and test the
3214 * consumer_quit state that we just set so to quit gracefully.
3215 */
3216 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3217
3218 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3219
3220 notify_health_quit_pipe(health_quit_pipe);
3221
3222 /* Cleaning up possibly open sockets. */
3223 if (sock >= 0) {
3224 ret = close(sock);
3225 if (ret < 0) {
3226 PERROR("close sock sessiond poll");
3227 }
3228 }
3229 if (client_socket >= 0) {
3230 ret = close(client_socket);
3231 if (ret < 0) {
3232 PERROR("close client_socket sessiond poll");
3233 }
3234 }
3235
3236 error_testpoint:
3237 if (err) {
3238 health_error();
3239 ERR("Health error occurred in %s", __func__);
3240 }
3241 health_unregister(health_consumerd);
3242
3243 rcu_unregister_thread();
3244 return NULL;
3245 }
3246
3247 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3248 struct lttng_consumer_local_data *ctx)
3249 {
3250 ssize_t ret;
3251
3252 pthread_mutex_lock(&stream->lock);
3253 if (stream->metadata_flag) {
3254 pthread_mutex_lock(&stream->metadata_rdv_lock);
3255 }
3256
3257 switch (consumer_data.type) {
3258 case LTTNG_CONSUMER_KERNEL:
3259 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3260 break;
3261 case LTTNG_CONSUMER32_UST:
3262 case LTTNG_CONSUMER64_UST:
3263 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3264 break;
3265 default:
3266 ERR("Unknown consumer_data type");
3267 assert(0);
3268 ret = -ENOSYS;
3269 break;
3270 }
3271
3272 if (stream->metadata_flag) {
3273 pthread_cond_broadcast(&stream->metadata_rdv);
3274 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3275 }
3276 pthread_mutex_unlock(&stream->lock);
3277 return ret;
3278 }
3279
3280 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3281 {
3282 switch (consumer_data.type) {
3283 case LTTNG_CONSUMER_KERNEL:
3284 return lttng_kconsumer_on_recv_stream(stream);
3285 case LTTNG_CONSUMER32_UST:
3286 case LTTNG_CONSUMER64_UST:
3287 return lttng_ustconsumer_on_recv_stream(stream);
3288 default:
3289 ERR("Unknown consumer_data type");
3290 assert(0);
3291 return -ENOSYS;
3292 }
3293 }
3294
3295 /*
3296 * Allocate and set consumer data hash tables.
3297 */
3298 int lttng_consumer_init(void)
3299 {
3300 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3301 if (!consumer_data.channel_ht) {
3302 goto error;
3303 }
3304
3305 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3306 if (!consumer_data.relayd_ht) {
3307 goto error;
3308 }
3309
3310 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3311 if (!consumer_data.stream_list_ht) {
3312 goto error;
3313 }
3314
3315 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3316 if (!consumer_data.stream_per_chan_id_ht) {
3317 goto error;
3318 }
3319
3320 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3321 if (!data_ht) {
3322 goto error;
3323 }
3324
3325 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3326 if (!metadata_ht) {
3327 goto error;
3328 }
3329
3330 return 0;
3331
3332 error:
3333 return -1;
3334 }
3335
3336 /*
3337 * Process the ADD_RELAYD command receive by a consumer.
3338 *
3339 * This will create a relayd socket pair and add it to the relayd hash table.
3340 * The caller MUST acquire a RCU read side lock before calling it.
3341 */
3342 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3343 struct lttng_consumer_local_data *ctx, int sock,
3344 struct pollfd *consumer_sockpoll,
3345 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3346 uint64_t relayd_session_id)
3347 {
3348 int fd = -1, ret = -1, relayd_created = 0;
3349 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3350 struct consumer_relayd_sock_pair *relayd = NULL;
3351
3352 assert(ctx);
3353 assert(relayd_sock);
3354
3355 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3356
3357 /* Get relayd reference if exists. */
3358 relayd = consumer_find_relayd(net_seq_idx);
3359 if (relayd == NULL) {
3360 assert(sock_type == LTTNG_STREAM_CONTROL);
3361 /* Not found. Allocate one. */
3362 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3363 if (relayd == NULL) {
3364 ret = -ENOMEM;
3365 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3366 goto error;
3367 } else {
3368 relayd->sessiond_session_id = sessiond_id;
3369 relayd_created = 1;
3370 }
3371
3372 /*
3373 * This code path MUST continue to the consumer send status message to
3374 * we can notify the session daemon and continue our work without
3375 * killing everything.
3376 */
3377 } else {
3378 /*
3379 * relayd key should never be found for control socket.
3380 */
3381 assert(sock_type != LTTNG_STREAM_CONTROL);
3382 }
3383
3384 /* First send a status message before receiving the fds. */
3385 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3386 if (ret < 0) {
3387 /* Somehow, the session daemon is not responding anymore. */
3388 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3389 goto error_nosignal;
3390 }
3391
3392 /* Poll on consumer socket. */
3393 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3394 if (ret) {
3395 /* Needing to exit in the middle of a command: error. */
3396 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3397 ret = -EINTR;
3398 goto error_nosignal;
3399 }
3400
3401 /* Get relayd socket from session daemon */
3402 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3403 if (ret != sizeof(fd)) {
3404 ret = -1;
3405 fd = -1; /* Just in case it gets set with an invalid value. */
3406
3407 /*
3408 * Failing to receive FDs might indicate a major problem such as
3409 * reaching a fd limit during the receive where the kernel returns a
3410 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3411 * don't take any chances and stop everything.
3412 *
3413 * XXX: Feature request #558 will fix that and avoid this possible
3414 * issue when reaching the fd limit.
3415 */
3416 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3417 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3418 goto error;
3419 }
3420
3421 /* Copy socket information and received FD */
3422 switch (sock_type) {
3423 case LTTNG_STREAM_CONTROL:
3424 /* Copy received lttcomm socket */
3425 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3426 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3427 /* Handle create_sock error. */
3428 if (ret < 0) {
3429 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3430 goto error;
3431 }
3432 /*
3433 * Close the socket created internally by
3434 * lttcomm_create_sock, so we can replace it by the one
3435 * received from sessiond.
3436 */
3437 if (close(relayd->control_sock.sock.fd)) {
3438 PERROR("close");
3439 }
3440
3441 /* Assign new file descriptor */
3442 relayd->control_sock.sock.fd = fd;
3443 fd = -1; /* For error path */
3444 /* Assign version values. */
3445 relayd->control_sock.major = relayd_sock->major;
3446 relayd->control_sock.minor = relayd_sock->minor;
3447
3448 relayd->relayd_session_id = relayd_session_id;
3449
3450 break;
3451 case LTTNG_STREAM_DATA:
3452 /* Copy received lttcomm socket */
3453 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3454 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3455 /* Handle create_sock error. */
3456 if (ret < 0) {
3457 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3458 goto error;
3459 }
3460 /*
3461 * Close the socket created internally by
3462 * lttcomm_create_sock, so we can replace it by the one
3463 * received from sessiond.
3464 */
3465 if (close(relayd->data_sock.sock.fd)) {
3466 PERROR("close");
3467 }
3468
3469 /* Assign new file descriptor */
3470 relayd->data_sock.sock.fd = fd;
3471 fd = -1; /* for eventual error paths */
3472 /* Assign version values. */
3473 relayd->data_sock.major = relayd_sock->major;
3474 relayd->data_sock.minor = relayd_sock->minor;
3475 break;
3476 default:
3477 ERR("Unknown relayd socket type (%d)", sock_type);
3478 ret = -1;
3479 ret_code = LTTCOMM_CONSUMERD_FATAL;
3480 goto error;
3481 }
3482
3483 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3484 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3485 relayd->net_seq_idx, fd);
3486
3487 /* We successfully added the socket. Send status back. */
3488 ret = consumer_send_status_msg(sock, ret_code);
3489 if (ret < 0) {
3490 /* Somehow, the session daemon is not responding anymore. */
3491 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3492 goto error_nosignal;
3493 }
3494
3495 /*
3496 * Add relayd socket pair to consumer data hashtable. If object already
3497 * exists or on error, the function gracefully returns.
3498 */
3499 add_relayd(relayd);
3500
3501 /* All good! */
3502 return 0;
3503
3504 error:
3505 if (consumer_send_status_msg(sock, ret_code) < 0) {
3506 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3507 }
3508
3509 error_nosignal:
3510 /* Close received socket if valid. */
3511 if (fd >= 0) {
3512 if (close(fd)) {
3513 PERROR("close received socket");
3514 }
3515 }
3516
3517 if (relayd_created) {
3518 free(relayd);
3519 }
3520
3521 return ret;
3522 }
3523
3524 /*
3525 * Try to lock the stream mutex.
3526 *
3527 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3528 */
3529 static int stream_try_lock(struct lttng_consumer_stream *stream)
3530 {
3531 int ret;
3532
3533 assert(stream);
3534
3535 /*
3536 * Try to lock the stream mutex. On failure, we know that the stream is
3537 * being used else where hence there is data still being extracted.
3538 */
3539 ret = pthread_mutex_trylock(&stream->lock);
3540 if (ret) {
3541 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3542 ret = 0;
3543 goto end;
3544 }
3545
3546 ret = 1;
3547
3548 end:
3549 return ret;
3550 }
3551
3552 /*
3553 * Search for a relayd associated to the session id and return the reference.
3554 *
3555 * A rcu read side lock MUST be acquire before calling this function and locked
3556 * until the relayd object is no longer necessary.
3557 */
3558 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3559 {
3560 struct lttng_ht_iter iter;
3561 struct consumer_relayd_sock_pair *relayd = NULL;
3562
3563 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3564 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3565 node.node) {
3566 /*
3567 * Check by sessiond id which is unique here where the relayd session
3568 * id might not be when having multiple relayd.
3569 */
3570 if (relayd->sessiond_session_id == id) {
3571 /* Found the relayd. There can be only one per id. */
3572 goto found;
3573 }
3574 }
3575
3576 return NULL;
3577
3578 found:
3579 return relayd;
3580 }
3581
3582 /*
3583 * Check if for a given session id there is still data needed to be extract
3584 * from the buffers.
3585 *
3586 * Return 1 if data is pending or else 0 meaning ready to be read.
3587 */
3588 int consumer_data_pending(uint64_t id)
3589 {
3590 int ret;
3591 struct lttng_ht_iter iter;
3592 struct lttng_ht *ht;
3593 struct lttng_consumer_stream *stream;
3594 struct consumer_relayd_sock_pair *relayd = NULL;
3595 int (*data_pending)(struct lttng_consumer_stream *);
3596
3597 DBG("Consumer data pending command on session id %" PRIu64, id);
3598
3599 rcu_read_lock();
3600 pthread_mutex_lock(&consumer_data.lock);
3601
3602 switch (consumer_data.type) {
3603 case LTTNG_CONSUMER_KERNEL:
3604 data_pending = lttng_kconsumer_data_pending;
3605 break;
3606 case LTTNG_CONSUMER32_UST:
3607 case LTTNG_CONSUMER64_UST:
3608 data_pending = lttng_ustconsumer_data_pending;
3609 break;
3610 default:
3611 ERR("Unknown consumer data type");
3612 assert(0);
3613 }
3614
3615 /* Ease our life a bit */
3616 ht = consumer_data.stream_list_ht;
3617
3618 relayd = find_relayd_by_session_id(id);
3619 if (relayd) {
3620 /* Send init command for data pending. */
3621 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3622 ret = relayd_begin_data_pending(&relayd->control_sock,
3623 relayd->relayd_session_id);
3624 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3625 if (ret < 0) {
3626 /* Communication error thus the relayd so no data pending. */
3627 goto data_not_pending;
3628 }
3629 }
3630
3631 cds_lfht_for_each_entry_duplicate(ht->ht,
3632 ht->hash_fct(&id, lttng_ht_seed),
3633 ht->match_fct, &id,
3634 &iter.iter, stream, node_session_id.node) {
3635 /* If this call fails, the stream is being used hence data pending. */
3636 ret = stream_try_lock(stream);
3637 if (!ret) {
3638 goto data_pending;
3639 }
3640
3641 /*
3642 * A removed node from the hash table indicates that the stream has
3643 * been deleted thus having a guarantee that the buffers are closed
3644 * on the consumer side. However, data can still be transmitted
3645 * over the network so don't skip the relayd check.
3646 */
3647 ret = cds_lfht_is_node_deleted(&stream->node.node);
3648 if (!ret) {
3649 /* Check the stream if there is data in the buffers. */
3650 ret = data_pending(stream);
3651 if (ret == 1) {
3652 pthread_mutex_unlock(&stream->lock);
3653 goto data_pending;
3654 }
3655 }
3656
3657 /* Relayd check */
3658 if (relayd) {
3659 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3660 if (stream->metadata_flag) {
3661 ret = relayd_quiescent_control(&relayd->control_sock,
3662 stream->relayd_stream_id);
3663 } else {
3664 ret = relayd_data_pending(&relayd->control_sock,
3665 stream->relayd_stream_id,
3666 stream->next_net_seq_num - 1);
3667 }
3668 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3669 if (ret == 1) {
3670 pthread_mutex_unlock(&stream->lock);
3671 goto data_pending;
3672 }
3673 }
3674 pthread_mutex_unlock(&stream->lock);
3675 }
3676
3677 if (relayd) {
3678 unsigned int is_data_inflight = 0;
3679
3680 /* Send init command for data pending. */
3681 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3682 ret = relayd_end_data_pending(&relayd->control_sock,
3683 relayd->relayd_session_id, &is_data_inflight);
3684 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3685 if (ret < 0) {
3686 goto data_not_pending;
3687 }
3688 if (is_data_inflight) {
3689 goto data_pending;
3690 }
3691 }
3692
3693 /*
3694 * Finding _no_ node in the hash table and no inflight data means that the
3695 * stream(s) have been removed thus data is guaranteed to be available for
3696 * analysis from the trace files.
3697 */
3698
3699 data_not_pending:
3700 /* Data is available to be read by a viewer. */
3701 pthread_mutex_unlock(&consumer_data.lock);
3702 rcu_read_unlock();
3703 return 0;
3704
3705 data_pending:
3706 /* Data is still being extracted from buffers. */
3707 pthread_mutex_unlock(&consumer_data.lock);
3708 rcu_read_unlock();
3709 return 1;
3710 }
3711
3712 /*
3713 * Send a ret code status message to the sessiond daemon.
3714 *
3715 * Return the sendmsg() return value.
3716 */
3717 int consumer_send_status_msg(int sock, int ret_code)
3718 {
3719 struct lttcomm_consumer_status_msg msg;
3720
3721 memset(&msg, 0, sizeof(msg));
3722 msg.ret_code = ret_code;
3723
3724 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3725 }
3726
3727 /*
3728 * Send a channel status message to the sessiond daemon.
3729 *
3730 * Return the sendmsg() return value.
3731 */
3732 int consumer_send_status_channel(int sock,
3733 struct lttng_consumer_channel *channel)
3734 {
3735 struct lttcomm_consumer_status_channel msg;
3736
3737 assert(sock >= 0);
3738
3739 memset(&msg, 0, sizeof(msg));
3740 if (!channel) {
3741 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3742 } else {
3743 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3744 msg.key = channel->key;
3745 msg.stream_count = channel->streams.count;
3746 }
3747
3748 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3749 }
3750
3751 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3752 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3753 uint64_t max_sb_size)
3754 {
3755 unsigned long start_pos;
3756
3757 if (!nb_packets_per_stream) {
3758 return consumed_pos; /* Grab everything */
3759 }
3760 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3761 start_pos -= max_sb_size * nb_packets_per_stream;
3762 if ((long) (start_pos - consumed_pos) < 0) {
3763 return consumed_pos; /* Grab everything */
3764 }
3765 return start_pos;
3766 }
This page took 0.147324 seconds and 4 git commands to generate.