ce13a9835a0fa554facc474efd76a1dbff96313a
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44
45 struct lttng_consumer_global_data consumer_data = {
46 .stream_count = 0,
47 .need_update = 1,
48 .type = LTTNG_CONSUMER_UNKNOWN,
49 };
50
51 enum consumer_channel_action {
52 CONSUMER_CHANNEL_ADD,
53 CONSUMER_CHANNEL_DEL,
54 CONSUMER_CHANNEL_QUIT,
55 };
56
57 struct consumer_channel_msg {
58 enum consumer_channel_action action;
59 struct lttng_consumer_channel *chan; /* add */
60 uint64_t key; /* del */
61 };
62
63 /*
64 * Flag to inform the polling thread to quit when all fd hung up. Updated by
65 * the consumer_thread_receive_fds when it notices that all fds has hung up.
66 * Also updated by the signal handler (consumer_should_exit()). Read by the
67 * polling threads.
68 */
69 volatile int consumer_quit;
70
71 /*
72 * Global hash table containing respectively metadata and data streams. The
73 * stream element in this ht should only be updated by the metadata poll thread
74 * for the metadata and the data poll thread for the data.
75 */
76 static struct lttng_ht *metadata_ht;
77 static struct lttng_ht *data_ht;
78
79 /*
80 * Notify a thread lttng pipe to poll back again. This usually means that some
81 * global state has changed so we just send back the thread in a poll wait
82 * call.
83 */
84 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
85 {
86 struct lttng_consumer_stream *null_stream = NULL;
87
88 assert(pipe);
89
90 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
91 }
92
93 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
94 struct lttng_consumer_channel *chan,
95 uint64_t key,
96 enum consumer_channel_action action)
97 {
98 struct consumer_channel_msg msg;
99 int ret;
100
101 memset(&msg, 0, sizeof(msg));
102
103 msg.action = action;
104 msg.chan = chan;
105 msg.key = key;
106 do {
107 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
108 } while (ret < 0 && errno == EINTR);
109 }
110
111 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
112 uint64_t key)
113 {
114 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
115 }
116
117 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
118 struct lttng_consumer_channel **chan,
119 uint64_t *key,
120 enum consumer_channel_action *action)
121 {
122 struct consumer_channel_msg msg;
123 int ret;
124
125 do {
126 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
127 } while (ret < 0 && errno == EINTR);
128 if (ret > 0) {
129 *action = msg.action;
130 *chan = msg.chan;
131 *key = msg.key;
132 }
133 return ret;
134 }
135
136 /*
137 * Find a stream. The consumer_data.lock must be locked during this
138 * call.
139 */
140 static struct lttng_consumer_stream *find_stream(uint64_t key,
141 struct lttng_ht *ht)
142 {
143 struct lttng_ht_iter iter;
144 struct lttng_ht_node_u64 *node;
145 struct lttng_consumer_stream *stream = NULL;
146
147 assert(ht);
148
149 /* -1ULL keys are lookup failures */
150 if (key == (uint64_t) -1ULL) {
151 return NULL;
152 }
153
154 rcu_read_lock();
155
156 lttng_ht_lookup(ht, &key, &iter);
157 node = lttng_ht_iter_get_node_u64(&iter);
158 if (node != NULL) {
159 stream = caa_container_of(node, struct lttng_consumer_stream, node);
160 }
161
162 rcu_read_unlock();
163
164 return stream;
165 }
166
167 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
168 {
169 struct lttng_consumer_stream *stream;
170
171 rcu_read_lock();
172 stream = find_stream(key, ht);
173 if (stream) {
174 stream->key = (uint64_t) -1ULL;
175 /*
176 * We don't want the lookup to match, but we still need
177 * to iterate on this stream when iterating over the hash table. Just
178 * change the node key.
179 */
180 stream->node.key = (uint64_t) -1ULL;
181 }
182 rcu_read_unlock();
183 }
184
185 /*
186 * Return a channel object for the given key.
187 *
188 * RCU read side lock MUST be acquired before calling this function and
189 * protects the channel ptr.
190 */
191 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
192 {
193 struct lttng_ht_iter iter;
194 struct lttng_ht_node_u64 *node;
195 struct lttng_consumer_channel *channel = NULL;
196
197 /* -1ULL keys are lookup failures */
198 if (key == (uint64_t) -1ULL) {
199 return NULL;
200 }
201
202 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
203 node = lttng_ht_iter_get_node_u64(&iter);
204 if (node != NULL) {
205 channel = caa_container_of(node, struct lttng_consumer_channel, node);
206 }
207
208 return channel;
209 }
210
211 static void free_stream_rcu(struct rcu_head *head)
212 {
213 struct lttng_ht_node_u64 *node =
214 caa_container_of(head, struct lttng_ht_node_u64, head);
215 struct lttng_consumer_stream *stream =
216 caa_container_of(node, struct lttng_consumer_stream, node);
217
218 free(stream);
219 }
220
221 static void free_channel_rcu(struct rcu_head *head)
222 {
223 struct lttng_ht_node_u64 *node =
224 caa_container_of(head, struct lttng_ht_node_u64, head);
225 struct lttng_consumer_channel *channel =
226 caa_container_of(node, struct lttng_consumer_channel, node);
227
228 free(channel);
229 }
230
231 /*
232 * RCU protected relayd socket pair free.
233 */
234 static void free_relayd_rcu(struct rcu_head *head)
235 {
236 struct lttng_ht_node_u64 *node =
237 caa_container_of(head, struct lttng_ht_node_u64, head);
238 struct consumer_relayd_sock_pair *relayd =
239 caa_container_of(node, struct consumer_relayd_sock_pair, node);
240
241 /*
242 * Close all sockets. This is done in the call RCU since we don't want the
243 * socket fds to be reassigned thus potentially creating bad state of the
244 * relayd object.
245 *
246 * We do not have to lock the control socket mutex here since at this stage
247 * there is no one referencing to this relayd object.
248 */
249 (void) relayd_close(&relayd->control_sock);
250 (void) relayd_close(&relayd->data_sock);
251
252 free(relayd);
253 }
254
255 /*
256 * Destroy and free relayd socket pair object.
257 *
258 * This function MUST be called with the consumer_data lock acquired.
259 */
260 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
261 {
262 int ret;
263 struct lttng_ht_iter iter;
264
265 if (relayd == NULL) {
266 return;
267 }
268
269 DBG("Consumer destroy and close relayd socket pair");
270
271 iter.iter.node = &relayd->node.node;
272 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
273 if (ret != 0) {
274 /* We assume the relayd is being or is destroyed */
275 return;
276 }
277
278 /* RCU free() call */
279 call_rcu(&relayd->node.head, free_relayd_rcu);
280 }
281
282 /*
283 * Remove a channel from the global list protected by a mutex. This function is
284 * also responsible for freeing its data structures.
285 */
286 void consumer_del_channel(struct lttng_consumer_channel *channel)
287 {
288 int ret;
289 struct lttng_ht_iter iter;
290 struct lttng_consumer_stream *stream, *stmp;
291
292 DBG("Consumer delete channel key %" PRIu64, channel->key);
293
294 pthread_mutex_lock(&consumer_data.lock);
295 pthread_mutex_lock(&channel->lock);
296 pthread_mutex_lock(&channel->timer_lock);
297
298 switch (consumer_data.type) {
299 case LTTNG_CONSUMER_KERNEL:
300 break;
301 case LTTNG_CONSUMER32_UST:
302 case LTTNG_CONSUMER64_UST:
303 /* Delete streams that might have been left in the stream list. */
304 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
305 send_node) {
306 cds_list_del(&stream->send_node);
307 lttng_ustconsumer_del_stream(stream);
308 free(stream);
309 }
310 lttng_ustconsumer_del_channel(channel);
311 break;
312 default:
313 ERR("Unknown consumer_data type");
314 assert(0);
315 goto end;
316 }
317
318 rcu_read_lock();
319 iter.iter.node = &channel->node.node;
320 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
321 assert(!ret);
322 rcu_read_unlock();
323
324 call_rcu(&channel->node.head, free_channel_rcu);
325 end:
326 pthread_mutex_unlock(&channel->timer_lock);
327 pthread_mutex_unlock(&channel->lock);
328 pthread_mutex_unlock(&consumer_data.lock);
329 }
330
331 /*
332 * Iterate over the relayd hash table and destroy each element. Finally,
333 * destroy the whole hash table.
334 */
335 static void cleanup_relayd_ht(void)
336 {
337 struct lttng_ht_iter iter;
338 struct consumer_relayd_sock_pair *relayd;
339
340 rcu_read_lock();
341
342 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
343 node.node) {
344 destroy_relayd(relayd);
345 }
346
347 rcu_read_unlock();
348
349 lttng_ht_destroy(consumer_data.relayd_ht);
350 }
351
352 /*
353 * Update the end point status of all streams having the given network sequence
354 * index (relayd index).
355 *
356 * It's atomically set without having the stream mutex locked which is fine
357 * because we handle the write/read race with a pipe wakeup for each thread.
358 */
359 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
360 enum consumer_endpoint_status status)
361 {
362 struct lttng_ht_iter iter;
363 struct lttng_consumer_stream *stream;
364
365 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
366
367 rcu_read_lock();
368
369 /* Let's begin with metadata */
370 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
371 if (stream->net_seq_idx == net_seq_idx) {
372 uatomic_set(&stream->endpoint_status, status);
373 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
374 }
375 }
376
377 /* Follow up by the data streams */
378 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
379 if (stream->net_seq_idx == net_seq_idx) {
380 uatomic_set(&stream->endpoint_status, status);
381 DBG("Delete flag set to data stream %d", stream->wait_fd);
382 }
383 }
384 rcu_read_unlock();
385 }
386
387 /*
388 * Cleanup a relayd object by flagging every associated streams for deletion,
389 * destroying the object meaning removing it from the relayd hash table,
390 * closing the sockets and freeing the memory in a RCU call.
391 *
392 * If a local data context is available, notify the threads that the streams'
393 * state have changed.
394 */
395 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
396 struct lttng_consumer_local_data *ctx)
397 {
398 uint64_t netidx;
399
400 assert(relayd);
401
402 DBG("Cleaning up relayd sockets");
403
404 /* Save the net sequence index before destroying the object */
405 netidx = relayd->net_seq_idx;
406
407 /*
408 * Delete the relayd from the relayd hash table, close the sockets and free
409 * the object in a RCU call.
410 */
411 destroy_relayd(relayd);
412
413 /* Set inactive endpoint to all streams */
414 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
415
416 /*
417 * With a local data context, notify the threads that the streams' state
418 * have changed. The write() action on the pipe acts as an "implicit"
419 * memory barrier ordering the updates of the end point status from the
420 * read of this status which happens AFTER receiving this notify.
421 */
422 if (ctx) {
423 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
424 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
425 }
426 }
427
428 /*
429 * Flag a relayd socket pair for destruction. Destroy it if the refcount
430 * reaches zero.
431 *
432 * RCU read side lock MUST be aquired before calling this function.
433 */
434 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
435 {
436 assert(relayd);
437
438 /* Set destroy flag for this object */
439 uatomic_set(&relayd->destroy_flag, 1);
440
441 /* Destroy the relayd if refcount is 0 */
442 if (uatomic_read(&relayd->refcount) == 0) {
443 destroy_relayd(relayd);
444 }
445 }
446
447 /*
448 * Remove a stream from the global list protected by a mutex. This
449 * function is also responsible for freeing its data structures.
450 */
451 void consumer_del_stream(struct lttng_consumer_stream *stream,
452 struct lttng_ht *ht)
453 {
454 int ret;
455 struct lttng_ht_iter iter;
456 struct lttng_consumer_channel *free_chan = NULL;
457 struct consumer_relayd_sock_pair *relayd;
458
459 assert(stream);
460
461 DBG("Consumer del stream %d", stream->wait_fd);
462
463 if (ht == NULL) {
464 /* Means the stream was allocated but not successfully added */
465 goto free_stream_rcu;
466 }
467
468 pthread_mutex_lock(&consumer_data.lock);
469 pthread_mutex_lock(&stream->lock);
470
471 switch (consumer_data.type) {
472 case LTTNG_CONSUMER_KERNEL:
473 if (stream->mmap_base != NULL) {
474 ret = munmap(stream->mmap_base, stream->mmap_len);
475 if (ret != 0) {
476 PERROR("munmap");
477 }
478 }
479
480 if (stream->wait_fd >= 0) {
481 ret = close(stream->wait_fd);
482 if (ret) {
483 PERROR("close");
484 }
485 }
486 break;
487 case LTTNG_CONSUMER32_UST:
488 case LTTNG_CONSUMER64_UST:
489 lttng_ustconsumer_del_stream(stream);
490 break;
491 default:
492 ERR("Unknown consumer_data type");
493 assert(0);
494 goto end;
495 }
496
497 rcu_read_lock();
498 iter.iter.node = &stream->node.node;
499 ret = lttng_ht_del(ht, &iter);
500 assert(!ret);
501
502 iter.iter.node = &stream->node_channel_id.node;
503 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
504 assert(!ret);
505
506 iter.iter.node = &stream->node_session_id.node;
507 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
508 assert(!ret);
509 rcu_read_unlock();
510
511 assert(consumer_data.stream_count > 0);
512 consumer_data.stream_count--;
513
514 if (stream->out_fd >= 0) {
515 ret = close(stream->out_fd);
516 if (ret) {
517 PERROR("close");
518 }
519 }
520
521 /* Check and cleanup relayd */
522 rcu_read_lock();
523 relayd = consumer_find_relayd(stream->net_seq_idx);
524 if (relayd != NULL) {
525 uatomic_dec(&relayd->refcount);
526 assert(uatomic_read(&relayd->refcount) >= 0);
527
528 /* Closing streams requires to lock the control socket. */
529 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
530 ret = relayd_send_close_stream(&relayd->control_sock,
531 stream->relayd_stream_id,
532 stream->next_net_seq_num - 1);
533 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
534 if (ret < 0) {
535 DBG("Unable to close stream on the relayd. Continuing");
536 /*
537 * Continue here. There is nothing we can do for the relayd.
538 * Chances are that the relayd has closed the socket so we just
539 * continue cleaning up.
540 */
541 }
542
543 /* Both conditions are met, we destroy the relayd. */
544 if (uatomic_read(&relayd->refcount) == 0 &&
545 uatomic_read(&relayd->destroy_flag)) {
546 destroy_relayd(relayd);
547 }
548 }
549 rcu_read_unlock();
550
551 if (!uatomic_sub_return(&stream->chan->refcount, 1)
552 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
553 free_chan = stream->chan;
554 }
555
556 end:
557 consumer_data.need_update = 1;
558 pthread_mutex_unlock(&stream->lock);
559 pthread_mutex_unlock(&consumer_data.lock);
560
561 if (free_chan) {
562 consumer_del_channel(free_chan);
563 }
564
565 free_stream_rcu:
566 call_rcu(&stream->node.head, free_stream_rcu);
567 }
568
569 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
570 uint64_t stream_key,
571 enum lttng_consumer_stream_state state,
572 const char *channel_name,
573 uid_t uid,
574 gid_t gid,
575 uint64_t relayd_id,
576 uint64_t session_id,
577 int cpu,
578 int *alloc_ret,
579 enum consumer_channel_type type)
580 {
581 int ret;
582 struct lttng_consumer_stream *stream;
583
584 stream = zmalloc(sizeof(*stream));
585 if (stream == NULL) {
586 PERROR("malloc struct lttng_consumer_stream");
587 ret = -ENOMEM;
588 goto end;
589 }
590
591 rcu_read_lock();
592
593 stream->key = stream_key;
594 stream->out_fd = -1;
595 stream->out_fd_offset = 0;
596 stream->state = state;
597 stream->uid = uid;
598 stream->gid = gid;
599 stream->net_seq_idx = relayd_id;
600 stream->session_id = session_id;
601 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
602 pthread_mutex_init(&stream->lock, NULL);
603
604 /* If channel is the metadata, flag this stream as metadata. */
605 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
606 stream->metadata_flag = 1;
607 /* Metadata is flat out. */
608 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
609 } else {
610 /* Format stream name to <channel_name>_<cpu_number> */
611 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
612 channel_name, cpu);
613 if (ret < 0) {
614 PERROR("snprintf stream name");
615 goto error;
616 }
617 }
618
619 /* Key is always the wait_fd for streams. */
620 lttng_ht_node_init_u64(&stream->node, stream->key);
621
622 /* Init node per channel id key */
623 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
624
625 /* Init session id node with the stream session id */
626 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
627
628 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64 " relayd_id %" PRIu64 ", session_id %" PRIu64,
629 stream->name, stream->key, channel_key, stream->net_seq_idx, stream->session_id);
630
631 rcu_read_unlock();
632 return stream;
633
634 error:
635 rcu_read_unlock();
636 free(stream);
637 end:
638 if (alloc_ret) {
639 *alloc_ret = ret;
640 }
641 return NULL;
642 }
643
644 /*
645 * Add a stream to the global list protected by a mutex.
646 */
647 static int add_stream(struct lttng_consumer_stream *stream,
648 struct lttng_ht *ht)
649 {
650 int ret = 0;
651 struct consumer_relayd_sock_pair *relayd;
652
653 assert(stream);
654 assert(ht);
655
656 DBG3("Adding consumer stream %" PRIu64, stream->key);
657
658 pthread_mutex_lock(&consumer_data.lock);
659 pthread_mutex_lock(&stream->chan->lock);
660 pthread_mutex_lock(&stream->chan->timer_lock);
661 pthread_mutex_lock(&stream->lock);
662 rcu_read_lock();
663
664 /* Steal stream identifier to avoid having streams with the same key */
665 steal_stream_key(stream->key, ht);
666
667 lttng_ht_add_unique_u64(ht, &stream->node);
668
669 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
670 &stream->node_channel_id);
671
672 /*
673 * Add stream to the stream_list_ht of the consumer data. No need to steal
674 * the key since the HT does not use it and we allow to add redundant keys
675 * into this table.
676 */
677 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
678
679 /* Check and cleanup relayd */
680 relayd = consumer_find_relayd(stream->net_seq_idx);
681 if (relayd != NULL) {
682 uatomic_inc(&relayd->refcount);
683 }
684
685 /*
686 * When nb_init_stream_left reaches 0, we don't need to trigger any action
687 * in terms of destroying the associated channel, because the action that
688 * causes the count to become 0 also causes a stream to be added. The
689 * channel deletion will thus be triggered by the following removal of this
690 * stream.
691 */
692 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
693 /* Increment refcount before decrementing nb_init_stream_left */
694 cmm_smp_wmb();
695 uatomic_dec(&stream->chan->nb_init_stream_left);
696 }
697
698 /* Update consumer data once the node is inserted. */
699 consumer_data.stream_count++;
700 consumer_data.need_update = 1;
701
702 rcu_read_unlock();
703 pthread_mutex_unlock(&stream->lock);
704 pthread_mutex_unlock(&stream->chan->timer_lock);
705 pthread_mutex_unlock(&stream->chan->lock);
706 pthread_mutex_unlock(&consumer_data.lock);
707
708 return ret;
709 }
710
711 /*
712 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
713 * be acquired before calling this.
714 */
715 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
716 {
717 int ret = 0;
718 struct lttng_ht_node_u64 *node;
719 struct lttng_ht_iter iter;
720
721 assert(relayd);
722
723 lttng_ht_lookup(consumer_data.relayd_ht,
724 &relayd->net_seq_idx, &iter);
725 node = lttng_ht_iter_get_node_u64(&iter);
726 if (node != NULL) {
727 goto end;
728 }
729 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
730
731 end:
732 return ret;
733 }
734
735 /*
736 * Allocate and return a consumer relayd socket.
737 */
738 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
739 uint64_t net_seq_idx)
740 {
741 struct consumer_relayd_sock_pair *obj = NULL;
742
743 /* net sequence index of -1 is a failure */
744 if (net_seq_idx == (uint64_t) -1ULL) {
745 goto error;
746 }
747
748 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
749 if (obj == NULL) {
750 PERROR("zmalloc relayd sock");
751 goto error;
752 }
753
754 obj->net_seq_idx = net_seq_idx;
755 obj->refcount = 0;
756 obj->destroy_flag = 0;
757 obj->control_sock.sock.fd = -1;
758 obj->data_sock.sock.fd = -1;
759 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
760 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
761
762 error:
763 return obj;
764 }
765
766 /*
767 * Find a relayd socket pair in the global consumer data.
768 *
769 * Return the object if found else NULL.
770 * RCU read-side lock must be held across this call and while using the
771 * returned object.
772 */
773 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
774 {
775 struct lttng_ht_iter iter;
776 struct lttng_ht_node_u64 *node;
777 struct consumer_relayd_sock_pair *relayd = NULL;
778
779 /* Negative keys are lookup failures */
780 if (key == (uint64_t) -1ULL) {
781 goto error;
782 }
783
784 lttng_ht_lookup(consumer_data.relayd_ht, &key,
785 &iter);
786 node = lttng_ht_iter_get_node_u64(&iter);
787 if (node != NULL) {
788 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
789 }
790
791 error:
792 return relayd;
793 }
794
795 /*
796 * Handle stream for relayd transmission if the stream applies for network
797 * streaming where the net sequence index is set.
798 *
799 * Return destination file descriptor or negative value on error.
800 */
801 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
802 size_t data_size, unsigned long padding,
803 struct consumer_relayd_sock_pair *relayd)
804 {
805 int outfd = -1, ret;
806 struct lttcomm_relayd_data_hdr data_hdr;
807
808 /* Safety net */
809 assert(stream);
810 assert(relayd);
811
812 /* Reset data header */
813 memset(&data_hdr, 0, sizeof(data_hdr));
814
815 if (stream->metadata_flag) {
816 /* Caller MUST acquire the relayd control socket lock */
817 ret = relayd_send_metadata(&relayd->control_sock, data_size);
818 if (ret < 0) {
819 goto error;
820 }
821
822 /* Metadata are always sent on the control socket. */
823 outfd = relayd->control_sock.sock.fd;
824 } else {
825 /* Set header with stream information */
826 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
827 data_hdr.data_size = htobe32(data_size);
828 data_hdr.padding_size = htobe32(padding);
829 /*
830 * Note that net_seq_num below is assigned with the *current* value of
831 * next_net_seq_num and only after that the next_net_seq_num will be
832 * increment. This is why when issuing a command on the relayd using
833 * this next value, 1 should always be substracted in order to compare
834 * the last seen sequence number on the relayd side to the last sent.
835 */
836 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
837 /* Other fields are zeroed previously */
838
839 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
840 sizeof(data_hdr));
841 if (ret < 0) {
842 goto error;
843 }
844
845 ++stream->next_net_seq_num;
846
847 /* Set to go on data socket */
848 outfd = relayd->data_sock.sock.fd;
849 }
850
851 error:
852 return outfd;
853 }
854
855 /*
856 * Allocate and return a new lttng_consumer_channel object using the given key
857 * to initialize the hash table node.
858 *
859 * On error, return NULL.
860 */
861 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
862 uint64_t session_id,
863 const char *pathname,
864 const char *name,
865 uid_t uid,
866 gid_t gid,
867 uint64_t relayd_id,
868 enum lttng_event_output output,
869 uint64_t tracefile_size,
870 uint64_t tracefile_count,
871 uint64_t session_id_per_pid)
872 {
873 struct lttng_consumer_channel *channel;
874
875 channel = zmalloc(sizeof(*channel));
876 if (channel == NULL) {
877 PERROR("malloc struct lttng_consumer_channel");
878 goto end;
879 }
880
881 channel->key = key;
882 channel->refcount = 0;
883 channel->session_id = session_id;
884 channel->session_id_per_pid = session_id_per_pid;
885 channel->uid = uid;
886 channel->gid = gid;
887 channel->relayd_id = relayd_id;
888 channel->output = output;
889 channel->tracefile_size = tracefile_size;
890 channel->tracefile_count = tracefile_count;
891 pthread_mutex_init(&channel->lock, NULL);
892 pthread_mutex_init(&channel->timer_lock, NULL);
893
894 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
895 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
896
897 strncpy(channel->name, name, sizeof(channel->name));
898 channel->name[sizeof(channel->name) - 1] = '\0';
899
900 lttng_ht_node_init_u64(&channel->node, channel->key);
901
902 channel->wait_fd = -1;
903
904 CDS_INIT_LIST_HEAD(&channel->streams.head);
905
906 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
907
908 end:
909 return channel;
910 }
911
912 /*
913 * Add a channel to the global list protected by a mutex.
914 *
915 * On success 0 is returned else a negative value.
916 */
917 int consumer_add_channel(struct lttng_consumer_channel *channel,
918 struct lttng_consumer_local_data *ctx)
919 {
920 int ret = 0;
921 struct lttng_ht_node_u64 *node;
922 struct lttng_ht_iter iter;
923
924 pthread_mutex_lock(&consumer_data.lock);
925 pthread_mutex_lock(&channel->lock);
926 pthread_mutex_lock(&channel->timer_lock);
927 rcu_read_lock();
928
929 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
930 node = lttng_ht_iter_get_node_u64(&iter);
931 if (node != NULL) {
932 /* Channel already exist. Ignore the insertion */
933 ERR("Consumer add channel key %" PRIu64 " already exists!",
934 channel->key);
935 ret = -EEXIST;
936 goto end;
937 }
938
939 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
940
941 end:
942 rcu_read_unlock();
943 pthread_mutex_unlock(&channel->timer_lock);
944 pthread_mutex_unlock(&channel->lock);
945 pthread_mutex_unlock(&consumer_data.lock);
946
947 if (!ret && channel->wait_fd != -1 &&
948 channel->metadata_stream == NULL) {
949 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
950 }
951 return ret;
952 }
953
954 /*
955 * Allocate the pollfd structure and the local view of the out fds to avoid
956 * doing a lookup in the linked list and concurrency issues when writing is
957 * needed. Called with consumer_data.lock held.
958 *
959 * Returns the number of fds in the structures.
960 */
961 static int update_poll_array(struct lttng_consumer_local_data *ctx,
962 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
963 struct lttng_ht *ht)
964 {
965 int i = 0;
966 struct lttng_ht_iter iter;
967 struct lttng_consumer_stream *stream;
968
969 assert(ctx);
970 assert(ht);
971 assert(pollfd);
972 assert(local_stream);
973
974 DBG("Updating poll fd array");
975 rcu_read_lock();
976 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
977 /*
978 * Only active streams with an active end point can be added to the
979 * poll set and local stream storage of the thread.
980 *
981 * There is a potential race here for endpoint_status to be updated
982 * just after the check. However, this is OK since the stream(s) will
983 * be deleted once the thread is notified that the end point state has
984 * changed where this function will be called back again.
985 */
986 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
987 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
988 continue;
989 }
990 /*
991 * This clobbers way too much the debug output. Uncomment that if you
992 * need it for debugging purposes.
993 *
994 * DBG("Active FD %d", stream->wait_fd);
995 */
996 (*pollfd)[i].fd = stream->wait_fd;
997 (*pollfd)[i].events = POLLIN | POLLPRI;
998 local_stream[i] = stream;
999 i++;
1000 }
1001 rcu_read_unlock();
1002
1003 /*
1004 * Insert the consumer_data_pipe at the end of the array and don't
1005 * increment i so nb_fd is the number of real FD.
1006 */
1007 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1008 (*pollfd)[i].events = POLLIN | POLLPRI;
1009 return i;
1010 }
1011
1012 /*
1013 * Poll on the should_quit pipe and the command socket return -1 on error and
1014 * should exit, 0 if data is available on the command socket
1015 */
1016 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1017 {
1018 int num_rdy;
1019
1020 restart:
1021 num_rdy = poll(consumer_sockpoll, 2, -1);
1022 if (num_rdy == -1) {
1023 /*
1024 * Restart interrupted system call.
1025 */
1026 if (errno == EINTR) {
1027 goto restart;
1028 }
1029 PERROR("Poll error");
1030 goto exit;
1031 }
1032 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1033 DBG("consumer_should_quit wake up");
1034 goto exit;
1035 }
1036 return 0;
1037
1038 exit:
1039 return -1;
1040 }
1041
1042 /*
1043 * Set the error socket.
1044 */
1045 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1046 int sock)
1047 {
1048 ctx->consumer_error_socket = sock;
1049 }
1050
1051 /*
1052 * Set the command socket path.
1053 */
1054 void lttng_consumer_set_command_sock_path(
1055 struct lttng_consumer_local_data *ctx, char *sock)
1056 {
1057 ctx->consumer_command_sock_path = sock;
1058 }
1059
1060 /*
1061 * Send return code to the session daemon.
1062 * If the socket is not defined, we return 0, it is not a fatal error
1063 */
1064 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1065 {
1066 if (ctx->consumer_error_socket > 0) {
1067 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1068 sizeof(enum lttcomm_sessiond_command));
1069 }
1070
1071 return 0;
1072 }
1073
1074 /*
1075 * Close all the tracefiles and stream fds and MUST be called when all
1076 * instances are destroyed i.e. when all threads were joined and are ended.
1077 */
1078 void lttng_consumer_cleanup(void)
1079 {
1080 struct lttng_ht_iter iter;
1081 struct lttng_consumer_channel *channel;
1082
1083 rcu_read_lock();
1084
1085 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1086 node.node) {
1087 consumer_del_channel(channel);
1088 }
1089
1090 rcu_read_unlock();
1091
1092 lttng_ht_destroy(consumer_data.channel_ht);
1093
1094 cleanup_relayd_ht();
1095
1096 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1097
1098 /*
1099 * This HT contains streams that are freed by either the metadata thread or
1100 * the data thread so we do *nothing* on the hash table and simply destroy
1101 * it.
1102 */
1103 lttng_ht_destroy(consumer_data.stream_list_ht);
1104 }
1105
1106 /*
1107 * Called from signal handler.
1108 */
1109 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1110 {
1111 int ret;
1112 consumer_quit = 1;
1113 do {
1114 ret = write(ctx->consumer_should_quit[1], "4", 1);
1115 } while (ret < 0 && errno == EINTR);
1116 if (ret < 0 || ret != 1) {
1117 PERROR("write consumer quit");
1118 }
1119
1120 DBG("Consumer flag that it should quit");
1121 }
1122
1123 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1124 off_t orig_offset)
1125 {
1126 int outfd = stream->out_fd;
1127
1128 /*
1129 * This does a blocking write-and-wait on any page that belongs to the
1130 * subbuffer prior to the one we just wrote.
1131 * Don't care about error values, as these are just hints and ways to
1132 * limit the amount of page cache used.
1133 */
1134 if (orig_offset < stream->max_sb_size) {
1135 return;
1136 }
1137 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1138 stream->max_sb_size,
1139 SYNC_FILE_RANGE_WAIT_BEFORE
1140 | SYNC_FILE_RANGE_WRITE
1141 | SYNC_FILE_RANGE_WAIT_AFTER);
1142 /*
1143 * Give hints to the kernel about how we access the file:
1144 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1145 * we write it.
1146 *
1147 * We need to call fadvise again after the file grows because the
1148 * kernel does not seem to apply fadvise to non-existing parts of the
1149 * file.
1150 *
1151 * Call fadvise _after_ having waited for the page writeback to
1152 * complete because the dirty page writeback semantic is not well
1153 * defined. So it can be expected to lead to lower throughput in
1154 * streaming.
1155 */
1156 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1157 stream->max_sb_size, POSIX_FADV_DONTNEED);
1158 }
1159
1160 /*
1161 * Initialise the necessary environnement :
1162 * - create a new context
1163 * - create the poll_pipe
1164 * - create the should_quit pipe (for signal handler)
1165 * - create the thread pipe (for splice)
1166 *
1167 * Takes a function pointer as argument, this function is called when data is
1168 * available on a buffer. This function is responsible to do the
1169 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1170 * buffer configuration and then kernctl_put_next_subbuf at the end.
1171 *
1172 * Returns a pointer to the new context or NULL on error.
1173 */
1174 struct lttng_consumer_local_data *lttng_consumer_create(
1175 enum lttng_consumer_type type,
1176 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1177 struct lttng_consumer_local_data *ctx),
1178 int (*recv_channel)(struct lttng_consumer_channel *channel),
1179 int (*recv_stream)(struct lttng_consumer_stream *stream),
1180 int (*update_stream)(uint64_t stream_key, uint32_t state))
1181 {
1182 int ret;
1183 struct lttng_consumer_local_data *ctx;
1184
1185 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1186 consumer_data.type == type);
1187 consumer_data.type = type;
1188
1189 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1190 if (ctx == NULL) {
1191 PERROR("allocating context");
1192 goto error;
1193 }
1194
1195 ctx->consumer_error_socket = -1;
1196 ctx->consumer_metadata_socket = -1;
1197 /* assign the callbacks */
1198 ctx->on_buffer_ready = buffer_ready;
1199 ctx->on_recv_channel = recv_channel;
1200 ctx->on_recv_stream = recv_stream;
1201 ctx->on_update_stream = update_stream;
1202
1203 ctx->consumer_data_pipe = lttng_pipe_open(0);
1204 if (!ctx->consumer_data_pipe) {
1205 goto error_poll_pipe;
1206 }
1207
1208 ret = pipe(ctx->consumer_should_quit);
1209 if (ret < 0) {
1210 PERROR("Error creating recv pipe");
1211 goto error_quit_pipe;
1212 }
1213
1214 ret = pipe(ctx->consumer_thread_pipe);
1215 if (ret < 0) {
1216 PERROR("Error creating thread pipe");
1217 goto error_thread_pipe;
1218 }
1219
1220 ret = pipe(ctx->consumer_channel_pipe);
1221 if (ret < 0) {
1222 PERROR("Error creating channel pipe");
1223 goto error_channel_pipe;
1224 }
1225
1226 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1227 if (!ctx->consumer_metadata_pipe) {
1228 goto error_metadata_pipe;
1229 }
1230
1231 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1232 if (ret < 0) {
1233 goto error_splice_pipe;
1234 }
1235
1236 return ctx;
1237
1238 error_splice_pipe:
1239 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1240 error_metadata_pipe:
1241 utils_close_pipe(ctx->consumer_channel_pipe);
1242 error_channel_pipe:
1243 utils_close_pipe(ctx->consumer_thread_pipe);
1244 error_thread_pipe:
1245 utils_close_pipe(ctx->consumer_should_quit);
1246 error_quit_pipe:
1247 lttng_pipe_destroy(ctx->consumer_data_pipe);
1248 error_poll_pipe:
1249 free(ctx);
1250 error:
1251 return NULL;
1252 }
1253
1254 /*
1255 * Close all fds associated with the instance and free the context.
1256 */
1257 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1258 {
1259 int ret;
1260
1261 DBG("Consumer destroying it. Closing everything.");
1262
1263 ret = close(ctx->consumer_error_socket);
1264 if (ret) {
1265 PERROR("close");
1266 }
1267 ret = close(ctx->consumer_metadata_socket);
1268 if (ret) {
1269 PERROR("close");
1270 }
1271 utils_close_pipe(ctx->consumer_thread_pipe);
1272 utils_close_pipe(ctx->consumer_channel_pipe);
1273 lttng_pipe_destroy(ctx->consumer_data_pipe);
1274 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1275 utils_close_pipe(ctx->consumer_should_quit);
1276 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1277
1278 unlink(ctx->consumer_command_sock_path);
1279 free(ctx);
1280 }
1281
1282 /*
1283 * Write the metadata stream id on the specified file descriptor.
1284 */
1285 static int write_relayd_metadata_id(int fd,
1286 struct lttng_consumer_stream *stream,
1287 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1288 {
1289 int ret;
1290 struct lttcomm_relayd_metadata_payload hdr;
1291
1292 hdr.stream_id = htobe64(stream->relayd_stream_id);
1293 hdr.padding_size = htobe32(padding);
1294 do {
1295 ret = write(fd, (void *) &hdr, sizeof(hdr));
1296 } while (ret < 0 && errno == EINTR);
1297 if (ret < 0 || ret != sizeof(hdr)) {
1298 /*
1299 * This error means that the fd's end is closed so ignore the perror
1300 * not to clubber the error output since this can happen in a normal
1301 * code path.
1302 */
1303 if (errno != EPIPE) {
1304 PERROR("write metadata stream id");
1305 }
1306 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1307 /*
1308 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1309 * handle writting the missing part so report that as an error and
1310 * don't lie to the caller.
1311 */
1312 ret = -1;
1313 goto end;
1314 }
1315 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1316 stream->relayd_stream_id, padding);
1317
1318 end:
1319 return ret;
1320 }
1321
1322 /*
1323 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1324 * core function for writing trace buffers to either the local filesystem or
1325 * the network.
1326 *
1327 * It must be called with the stream lock held.
1328 *
1329 * Careful review MUST be put if any changes occur!
1330 *
1331 * Returns the number of bytes written
1332 */
1333 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1334 struct lttng_consumer_local_data *ctx,
1335 struct lttng_consumer_stream *stream, unsigned long len,
1336 unsigned long padding)
1337 {
1338 unsigned long mmap_offset;
1339 void *mmap_base;
1340 ssize_t ret = 0, written = 0;
1341 off_t orig_offset = stream->out_fd_offset;
1342 /* Default is on the disk */
1343 int outfd = stream->out_fd;
1344 struct consumer_relayd_sock_pair *relayd = NULL;
1345 unsigned int relayd_hang_up = 0;
1346
1347 /* RCU lock for the relayd pointer */
1348 rcu_read_lock();
1349
1350 /* Flag that the current stream if set for network streaming. */
1351 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1352 relayd = consumer_find_relayd(stream->net_seq_idx);
1353 if (relayd == NULL) {
1354 goto end;
1355 }
1356 }
1357
1358 /* get the offset inside the fd to mmap */
1359 switch (consumer_data.type) {
1360 case LTTNG_CONSUMER_KERNEL:
1361 mmap_base = stream->mmap_base;
1362 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1363 break;
1364 case LTTNG_CONSUMER32_UST:
1365 case LTTNG_CONSUMER64_UST:
1366 mmap_base = lttng_ustctl_get_mmap_base(stream);
1367 if (!mmap_base) {
1368 ERR("read mmap get mmap base for stream %s", stream->name);
1369 written = -1;
1370 goto end;
1371 }
1372 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1373
1374 break;
1375 default:
1376 ERR("Unknown consumer_data type");
1377 assert(0);
1378 }
1379 if (ret != 0) {
1380 errno = -ret;
1381 PERROR("tracer ctl get_mmap_read_offset");
1382 written = ret;
1383 goto end;
1384 }
1385
1386 /* Handle stream on the relayd if the output is on the network */
1387 if (relayd) {
1388 unsigned long netlen = len;
1389
1390 /*
1391 * Lock the control socket for the complete duration of the function
1392 * since from this point on we will use the socket.
1393 */
1394 if (stream->metadata_flag) {
1395 /* Metadata requires the control socket. */
1396 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1397 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1398 }
1399
1400 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1401 if (ret >= 0) {
1402 /* Use the returned socket. */
1403 outfd = ret;
1404
1405 /* Write metadata stream id before payload */
1406 if (stream->metadata_flag) {
1407 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1408 if (ret < 0) {
1409 written = ret;
1410 /* Socket operation failed. We consider the relayd dead */
1411 if (ret == -EPIPE || ret == -EINVAL) {
1412 relayd_hang_up = 1;
1413 goto write_error;
1414 }
1415 goto end;
1416 }
1417 }
1418 } else {
1419 /* Socket operation failed. We consider the relayd dead */
1420 if (ret == -EPIPE || ret == -EINVAL) {
1421 relayd_hang_up = 1;
1422 goto write_error;
1423 }
1424 /* Else, use the default set before which is the filesystem. */
1425 }
1426 } else {
1427 /* No streaming, we have to set the len with the full padding */
1428 len += padding;
1429
1430 /*
1431 * Check if we need to change the tracefile before writing the packet.
1432 */
1433 if (stream->chan->tracefile_size > 0 &&
1434 (stream->tracefile_size_current + len) >
1435 stream->chan->tracefile_size) {
1436 ret = utils_rotate_stream_file(stream->chan->pathname,
1437 stream->name, stream->chan->tracefile_size,
1438 stream->chan->tracefile_count, stream->uid, stream->gid,
1439 stream->out_fd, &(stream->tracefile_count_current));
1440 if (ret < 0) {
1441 ERR("Rotating output file");
1442 goto end;
1443 }
1444 outfd = stream->out_fd = ret;
1445 /* Reset current size because we just perform a rotation. */
1446 stream->tracefile_size_current = 0;
1447 }
1448 stream->tracefile_size_current += len;
1449 }
1450
1451 while (len > 0) {
1452 do {
1453 ret = write(outfd, mmap_base + mmap_offset, len);
1454 } while (ret < 0 && errno == EINTR);
1455 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1456 if (ret < 0) {
1457 /*
1458 * This is possible if the fd is closed on the other side (outfd)
1459 * or any write problem. It can be verbose a bit for a normal
1460 * execution if for instance the relayd is stopped abruptly. This
1461 * can happen so set this to a DBG statement.
1462 */
1463 DBG("Error in file write mmap");
1464 if (written == 0) {
1465 written = ret;
1466 }
1467 /* Socket operation failed. We consider the relayd dead */
1468 if (errno == EPIPE || errno == EINVAL) {
1469 relayd_hang_up = 1;
1470 goto write_error;
1471 }
1472 goto end;
1473 } else if (ret > len) {
1474 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1475 written += ret;
1476 goto end;
1477 } else {
1478 len -= ret;
1479 mmap_offset += ret;
1480 }
1481
1482 /* This call is useless on a socket so better save a syscall. */
1483 if (!relayd) {
1484 /* This won't block, but will start writeout asynchronously */
1485 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1486 SYNC_FILE_RANGE_WRITE);
1487 stream->out_fd_offset += ret;
1488 }
1489 written += ret;
1490 }
1491 lttng_consumer_sync_trace_file(stream, orig_offset);
1492
1493 write_error:
1494 /*
1495 * This is a special case that the relayd has closed its socket. Let's
1496 * cleanup the relayd object and all associated streams.
1497 */
1498 if (relayd && relayd_hang_up) {
1499 cleanup_relayd(relayd, ctx);
1500 }
1501
1502 end:
1503 /* Unlock only if ctrl socket used */
1504 if (relayd && stream->metadata_flag) {
1505 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1506 }
1507
1508 rcu_read_unlock();
1509 return written;
1510 }
1511
1512 /*
1513 * Splice the data from the ring buffer to the tracefile.
1514 *
1515 * It must be called with the stream lock held.
1516 *
1517 * Returns the number of bytes spliced.
1518 */
1519 ssize_t lttng_consumer_on_read_subbuffer_splice(
1520 struct lttng_consumer_local_data *ctx,
1521 struct lttng_consumer_stream *stream, unsigned long len,
1522 unsigned long padding)
1523 {
1524 ssize_t ret = 0, written = 0, ret_splice = 0;
1525 loff_t offset = 0;
1526 off_t orig_offset = stream->out_fd_offset;
1527 int fd = stream->wait_fd;
1528 /* Default is on the disk */
1529 int outfd = stream->out_fd;
1530 struct consumer_relayd_sock_pair *relayd = NULL;
1531 int *splice_pipe;
1532 unsigned int relayd_hang_up = 0;
1533
1534 switch (consumer_data.type) {
1535 case LTTNG_CONSUMER_KERNEL:
1536 break;
1537 case LTTNG_CONSUMER32_UST:
1538 case LTTNG_CONSUMER64_UST:
1539 /* Not supported for user space tracing */
1540 return -ENOSYS;
1541 default:
1542 ERR("Unknown consumer_data type");
1543 assert(0);
1544 }
1545
1546 /* RCU lock for the relayd pointer */
1547 rcu_read_lock();
1548
1549 /* Flag that the current stream if set for network streaming. */
1550 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1551 relayd = consumer_find_relayd(stream->net_seq_idx);
1552 if (relayd == NULL) {
1553 goto end;
1554 }
1555 }
1556
1557 /*
1558 * Choose right pipe for splice. Metadata and trace data are handled by
1559 * different threads hence the use of two pipes in order not to race or
1560 * corrupt the written data.
1561 */
1562 if (stream->metadata_flag) {
1563 splice_pipe = ctx->consumer_splice_metadata_pipe;
1564 } else {
1565 splice_pipe = ctx->consumer_thread_pipe;
1566 }
1567
1568 /* Write metadata stream id before payload */
1569 if (relayd) {
1570 int total_len = len;
1571
1572 if (stream->metadata_flag) {
1573 /*
1574 * Lock the control socket for the complete duration of the function
1575 * since from this point on we will use the socket.
1576 */
1577 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1578
1579 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1580 padding);
1581 if (ret < 0) {
1582 written = ret;
1583 /* Socket operation failed. We consider the relayd dead */
1584 if (ret == -EBADF) {
1585 WARN("Remote relayd disconnected. Stopping");
1586 relayd_hang_up = 1;
1587 goto write_error;
1588 }
1589 goto end;
1590 }
1591
1592 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1593 }
1594
1595 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1596 if (ret >= 0) {
1597 /* Use the returned socket. */
1598 outfd = ret;
1599 } else {
1600 /* Socket operation failed. We consider the relayd dead */
1601 if (ret == -EBADF) {
1602 WARN("Remote relayd disconnected. Stopping");
1603 relayd_hang_up = 1;
1604 goto write_error;
1605 }
1606 goto end;
1607 }
1608 } else {
1609 /* No streaming, we have to set the len with the full padding */
1610 len += padding;
1611
1612 /*
1613 * Check if we need to change the tracefile before writing the packet.
1614 */
1615 if (stream->chan->tracefile_size > 0 &&
1616 (stream->tracefile_size_current + len) >
1617 stream->chan->tracefile_size) {
1618 ret = utils_rotate_stream_file(stream->chan->pathname,
1619 stream->name, stream->chan->tracefile_size,
1620 stream->chan->tracefile_count, stream->uid, stream->gid,
1621 stream->out_fd, &(stream->tracefile_count_current));
1622 if (ret < 0) {
1623 ERR("Rotating output file");
1624 goto end;
1625 }
1626 outfd = stream->out_fd = ret;
1627 /* Reset current size because we just perform a rotation. */
1628 stream->tracefile_size_current = 0;
1629 }
1630 stream->tracefile_size_current += len;
1631 }
1632
1633 while (len > 0) {
1634 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1635 (unsigned long)offset, len, fd, splice_pipe[1]);
1636 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1637 SPLICE_F_MOVE | SPLICE_F_MORE);
1638 DBG("splice chan to pipe, ret %zd", ret_splice);
1639 if (ret_splice < 0) {
1640 PERROR("Error in relay splice");
1641 if (written == 0) {
1642 written = ret_splice;
1643 }
1644 ret = errno;
1645 goto splice_error;
1646 }
1647
1648 /* Handle stream on the relayd if the output is on the network */
1649 if (relayd) {
1650 if (stream->metadata_flag) {
1651 size_t metadata_payload_size =
1652 sizeof(struct lttcomm_relayd_metadata_payload);
1653
1654 /* Update counter to fit the spliced data */
1655 ret_splice += metadata_payload_size;
1656 len += metadata_payload_size;
1657 /*
1658 * We do this so the return value can match the len passed as
1659 * argument to this function.
1660 */
1661 written -= metadata_payload_size;
1662 }
1663 }
1664
1665 /* Splice data out */
1666 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1667 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1668 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1669 if (ret_splice < 0) {
1670 PERROR("Error in file splice");
1671 if (written == 0) {
1672 written = ret_splice;
1673 }
1674 /* Socket operation failed. We consider the relayd dead */
1675 if (errno == EBADF || errno == EPIPE) {
1676 WARN("Remote relayd disconnected. Stopping");
1677 relayd_hang_up = 1;
1678 goto write_error;
1679 }
1680 ret = errno;
1681 goto splice_error;
1682 } else if (ret_splice > len) {
1683 errno = EINVAL;
1684 PERROR("Wrote more data than requested %zd (len: %lu)",
1685 ret_splice, len);
1686 written += ret_splice;
1687 ret = errno;
1688 goto splice_error;
1689 }
1690 len -= ret_splice;
1691
1692 /* This call is useless on a socket so better save a syscall. */
1693 if (!relayd) {
1694 /* This won't block, but will start writeout asynchronously */
1695 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1696 SYNC_FILE_RANGE_WRITE);
1697 stream->out_fd_offset += ret_splice;
1698 }
1699 written += ret_splice;
1700 }
1701 lttng_consumer_sync_trace_file(stream, orig_offset);
1702
1703 ret = ret_splice;
1704
1705 goto end;
1706
1707 write_error:
1708 /*
1709 * This is a special case that the relayd has closed its socket. Let's
1710 * cleanup the relayd object and all associated streams.
1711 */
1712 if (relayd && relayd_hang_up) {
1713 cleanup_relayd(relayd, ctx);
1714 /* Skip splice error so the consumer does not fail */
1715 goto end;
1716 }
1717
1718 splice_error:
1719 /* send the appropriate error description to sessiond */
1720 switch (ret) {
1721 case EINVAL:
1722 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1723 break;
1724 case ENOMEM:
1725 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1726 break;
1727 case ESPIPE:
1728 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1729 break;
1730 }
1731
1732 end:
1733 if (relayd && stream->metadata_flag) {
1734 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1735 }
1736
1737 rcu_read_unlock();
1738 return written;
1739 }
1740
1741 /*
1742 * Take a snapshot for a specific fd
1743 *
1744 * Returns 0 on success, < 0 on error
1745 */
1746 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1747 {
1748 switch (consumer_data.type) {
1749 case LTTNG_CONSUMER_KERNEL:
1750 return lttng_kconsumer_take_snapshot(stream);
1751 case LTTNG_CONSUMER32_UST:
1752 case LTTNG_CONSUMER64_UST:
1753 return lttng_ustconsumer_take_snapshot(stream);
1754 default:
1755 ERR("Unknown consumer_data type");
1756 assert(0);
1757 return -ENOSYS;
1758 }
1759 }
1760
1761 /*
1762 * Get the produced position
1763 *
1764 * Returns 0 on success, < 0 on error
1765 */
1766 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1767 unsigned long *pos)
1768 {
1769 switch (consumer_data.type) {
1770 case LTTNG_CONSUMER_KERNEL:
1771 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1772 case LTTNG_CONSUMER32_UST:
1773 case LTTNG_CONSUMER64_UST:
1774 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1775 default:
1776 ERR("Unknown consumer_data type");
1777 assert(0);
1778 return -ENOSYS;
1779 }
1780 }
1781
1782 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1783 int sock, struct pollfd *consumer_sockpoll)
1784 {
1785 switch (consumer_data.type) {
1786 case LTTNG_CONSUMER_KERNEL:
1787 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1788 case LTTNG_CONSUMER32_UST:
1789 case LTTNG_CONSUMER64_UST:
1790 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1791 default:
1792 ERR("Unknown consumer_data type");
1793 assert(0);
1794 return -ENOSYS;
1795 }
1796 }
1797
1798 /*
1799 * Iterate over all streams of the hashtable and free them properly.
1800 *
1801 * WARNING: *MUST* be used with data stream only.
1802 */
1803 static void destroy_data_stream_ht(struct lttng_ht *ht)
1804 {
1805 struct lttng_ht_iter iter;
1806 struct lttng_consumer_stream *stream;
1807
1808 if (ht == NULL) {
1809 return;
1810 }
1811
1812 rcu_read_lock();
1813 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1814 /*
1815 * Ignore return value since we are currently cleaning up so any error
1816 * can't be handled.
1817 */
1818 (void) consumer_del_stream(stream, ht);
1819 }
1820 rcu_read_unlock();
1821
1822 lttng_ht_destroy(ht);
1823 }
1824
1825 /*
1826 * Iterate over all streams of the hashtable and free them properly.
1827 *
1828 * XXX: Should not be only for metadata stream or else use an other name.
1829 */
1830 static void destroy_stream_ht(struct lttng_ht *ht)
1831 {
1832 struct lttng_ht_iter iter;
1833 struct lttng_consumer_stream *stream;
1834
1835 if (ht == NULL) {
1836 return;
1837 }
1838
1839 rcu_read_lock();
1840 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1841 /*
1842 * Ignore return value since we are currently cleaning up so any error
1843 * can't be handled.
1844 */
1845 (void) consumer_del_metadata_stream(stream, ht);
1846 }
1847 rcu_read_unlock();
1848
1849 lttng_ht_destroy(ht);
1850 }
1851
1852 void lttng_consumer_close_metadata(void)
1853 {
1854 switch (consumer_data.type) {
1855 case LTTNG_CONSUMER_KERNEL:
1856 /*
1857 * The Kernel consumer has a different metadata scheme so we don't
1858 * close anything because the stream will be closed by the session
1859 * daemon.
1860 */
1861 break;
1862 case LTTNG_CONSUMER32_UST:
1863 case LTTNG_CONSUMER64_UST:
1864 /*
1865 * Close all metadata streams. The metadata hash table is passed and
1866 * this call iterates over it by closing all wakeup fd. This is safe
1867 * because at this point we are sure that the metadata producer is
1868 * either dead or blocked.
1869 */
1870 lttng_ustconsumer_close_metadata(metadata_ht);
1871 break;
1872 default:
1873 ERR("Unknown consumer_data type");
1874 assert(0);
1875 }
1876 }
1877
1878 /*
1879 * Clean up a metadata stream and free its memory.
1880 */
1881 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1882 struct lttng_ht *ht)
1883 {
1884 int ret;
1885 struct lttng_ht_iter iter;
1886 struct lttng_consumer_channel *free_chan = NULL;
1887 struct consumer_relayd_sock_pair *relayd;
1888
1889 assert(stream);
1890 /*
1891 * This call should NEVER receive regular stream. It must always be
1892 * metadata stream and this is crucial for data structure synchronization.
1893 */
1894 assert(stream->metadata_flag);
1895
1896 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1897
1898 if (ht == NULL) {
1899 /* Means the stream was allocated but not successfully added */
1900 goto free_stream_rcu;
1901 }
1902
1903 pthread_mutex_lock(&consumer_data.lock);
1904 pthread_mutex_lock(&stream->chan->lock);
1905 pthread_mutex_lock(&stream->chan->timer_lock);
1906 pthread_mutex_lock(&stream->lock);
1907
1908 switch (consumer_data.type) {
1909 case LTTNG_CONSUMER_KERNEL:
1910 if (stream->mmap_base != NULL) {
1911 ret = munmap(stream->mmap_base, stream->mmap_len);
1912 if (ret != 0) {
1913 PERROR("munmap metadata stream");
1914 }
1915 }
1916
1917 if (stream->wait_fd >= 0) {
1918 ret = close(stream->wait_fd);
1919 if (ret < 0) {
1920 PERROR("close kernel metadata wait_fd");
1921 }
1922 }
1923 break;
1924 case LTTNG_CONSUMER32_UST:
1925 case LTTNG_CONSUMER64_UST:
1926 lttng_ustconsumer_del_stream(stream);
1927 break;
1928 default:
1929 ERR("Unknown consumer_data type");
1930 assert(0);
1931 goto end;
1932 }
1933
1934 rcu_read_lock();
1935 iter.iter.node = &stream->node.node;
1936 ret = lttng_ht_del(ht, &iter);
1937 assert(!ret);
1938
1939 iter.iter.node = &stream->node_channel_id.node;
1940 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1941 assert(!ret);
1942
1943 iter.iter.node = &stream->node_session_id.node;
1944 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1945 assert(!ret);
1946 rcu_read_unlock();
1947
1948 if (stream->out_fd >= 0) {
1949 ret = close(stream->out_fd);
1950 if (ret) {
1951 PERROR("close");
1952 }
1953 }
1954
1955 /* Check and cleanup relayd */
1956 rcu_read_lock();
1957 relayd = consumer_find_relayd(stream->net_seq_idx);
1958 if (relayd != NULL) {
1959 uatomic_dec(&relayd->refcount);
1960 assert(uatomic_read(&relayd->refcount) >= 0);
1961
1962 /* Closing streams requires to lock the control socket. */
1963 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1964 ret = relayd_send_close_stream(&relayd->control_sock,
1965 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1966 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1967 if (ret < 0) {
1968 DBG("Unable to close stream on the relayd. Continuing");
1969 /*
1970 * Continue here. There is nothing we can do for the relayd.
1971 * Chances are that the relayd has closed the socket so we just
1972 * continue cleaning up.
1973 */
1974 }
1975
1976 /* Both conditions are met, we destroy the relayd. */
1977 if (uatomic_read(&relayd->refcount) == 0 &&
1978 uatomic_read(&relayd->destroy_flag)) {
1979 destroy_relayd(relayd);
1980 }
1981 }
1982 rcu_read_unlock();
1983
1984 /* Atomically decrement channel refcount since other threads can use it. */
1985 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1986 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1987 /* Go for channel deletion! */
1988 free_chan = stream->chan;
1989 }
1990
1991 end:
1992 /*
1993 * Nullify the stream reference so it is not used after deletion. The
1994 * consumer data lock MUST be acquired before being able to check for a
1995 * NULL pointer value.
1996 */
1997 stream->chan->metadata_stream = NULL;
1998
1999 pthread_mutex_unlock(&stream->lock);
2000 pthread_mutex_unlock(&stream->chan->timer_lock);
2001 pthread_mutex_unlock(&stream->chan->lock);
2002 pthread_mutex_unlock(&consumer_data.lock);
2003
2004 if (free_chan) {
2005 consumer_del_channel(free_chan);
2006 }
2007
2008 free_stream_rcu:
2009 call_rcu(&stream->node.head, free_stream_rcu);
2010 }
2011
2012 /*
2013 * Action done with the metadata stream when adding it to the consumer internal
2014 * data structures to handle it.
2015 */
2016 static int add_metadata_stream(struct lttng_consumer_stream *stream,
2017 struct lttng_ht *ht)
2018 {
2019 int ret = 0;
2020 struct consumer_relayd_sock_pair *relayd;
2021 struct lttng_ht_iter iter;
2022 struct lttng_ht_node_u64 *node;
2023
2024 assert(stream);
2025 assert(ht);
2026
2027 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2028
2029 pthread_mutex_lock(&consumer_data.lock);
2030 pthread_mutex_lock(&stream->chan->lock);
2031 pthread_mutex_lock(&stream->chan->timer_lock);
2032 pthread_mutex_lock(&stream->lock);
2033
2034 /*
2035 * From here, refcounts are updated so be _careful_ when returning an error
2036 * after this point.
2037 */
2038
2039 rcu_read_lock();
2040
2041 /*
2042 * Lookup the stream just to make sure it does not exist in our internal
2043 * state. This should NEVER happen.
2044 */
2045 lttng_ht_lookup(ht, &stream->key, &iter);
2046 node = lttng_ht_iter_get_node_u64(&iter);
2047 assert(!node);
2048
2049 /* Find relayd and, if one is found, increment refcount. */
2050 relayd = consumer_find_relayd(stream->net_seq_idx);
2051 if (relayd != NULL) {
2052 uatomic_inc(&relayd->refcount);
2053 }
2054
2055 /*
2056 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2057 * in terms of destroying the associated channel, because the action that
2058 * causes the count to become 0 also causes a stream to be added. The
2059 * channel deletion will thus be triggered by the following removal of this
2060 * stream.
2061 */
2062 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2063 /* Increment refcount before decrementing nb_init_stream_left */
2064 cmm_smp_wmb();
2065 uatomic_dec(&stream->chan->nb_init_stream_left);
2066 }
2067
2068 lttng_ht_add_unique_u64(ht, &stream->node);
2069
2070 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2071 &stream->node_channel_id);
2072
2073 /*
2074 * Add stream to the stream_list_ht of the consumer data. No need to steal
2075 * the key since the HT does not use it and we allow to add redundant keys
2076 * into this table.
2077 */
2078 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2079
2080 rcu_read_unlock();
2081
2082 pthread_mutex_unlock(&stream->lock);
2083 pthread_mutex_unlock(&stream->chan->lock);
2084 pthread_mutex_unlock(&stream->chan->timer_lock);
2085 pthread_mutex_unlock(&consumer_data.lock);
2086 return ret;
2087 }
2088
2089 /*
2090 * Delete data stream that are flagged for deletion (endpoint_status).
2091 */
2092 static void validate_endpoint_status_data_stream(void)
2093 {
2094 struct lttng_ht_iter iter;
2095 struct lttng_consumer_stream *stream;
2096
2097 DBG("Consumer delete flagged data stream");
2098
2099 rcu_read_lock();
2100 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2101 /* Validate delete flag of the stream */
2102 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2103 continue;
2104 }
2105 /* Delete it right now */
2106 consumer_del_stream(stream, data_ht);
2107 }
2108 rcu_read_unlock();
2109 }
2110
2111 /*
2112 * Delete metadata stream that are flagged for deletion (endpoint_status).
2113 */
2114 static void validate_endpoint_status_metadata_stream(
2115 struct lttng_poll_event *pollset)
2116 {
2117 struct lttng_ht_iter iter;
2118 struct lttng_consumer_stream *stream;
2119
2120 DBG("Consumer delete flagged metadata stream");
2121
2122 assert(pollset);
2123
2124 rcu_read_lock();
2125 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2126 /* Validate delete flag of the stream */
2127 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2128 continue;
2129 }
2130 /*
2131 * Remove from pollset so the metadata thread can continue without
2132 * blocking on a deleted stream.
2133 */
2134 lttng_poll_del(pollset, stream->wait_fd);
2135
2136 /* Delete it right now */
2137 consumer_del_metadata_stream(stream, metadata_ht);
2138 }
2139 rcu_read_unlock();
2140 }
2141
2142 /*
2143 * Thread polls on metadata file descriptor and write them on disk or on the
2144 * network.
2145 */
2146 void *consumer_thread_metadata_poll(void *data)
2147 {
2148 int ret, i, pollfd;
2149 uint32_t revents, nb_fd;
2150 struct lttng_consumer_stream *stream = NULL;
2151 struct lttng_ht_iter iter;
2152 struct lttng_ht_node_u64 *node;
2153 struct lttng_poll_event events;
2154 struct lttng_consumer_local_data *ctx = data;
2155 ssize_t len;
2156
2157 rcu_register_thread();
2158
2159 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2160 if (!metadata_ht) {
2161 /* ENOMEM at this point. Better to bail out. */
2162 goto end_ht;
2163 }
2164
2165 DBG("Thread metadata poll started");
2166
2167 /* Size is set to 1 for the consumer_metadata pipe */
2168 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2169 if (ret < 0) {
2170 ERR("Poll set creation failed");
2171 goto end_poll;
2172 }
2173
2174 ret = lttng_poll_add(&events,
2175 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2176 if (ret < 0) {
2177 goto end;
2178 }
2179
2180 /* Main loop */
2181 DBG("Metadata main loop started");
2182
2183 while (1) {
2184 /* Only the metadata pipe is set */
2185 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2186 goto end;
2187 }
2188
2189 restart:
2190 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2191 ret = lttng_poll_wait(&events, -1);
2192 DBG("Metadata event catched in thread");
2193 if (ret < 0) {
2194 if (errno == EINTR) {
2195 ERR("Poll EINTR catched");
2196 goto restart;
2197 }
2198 goto error;
2199 }
2200
2201 nb_fd = ret;
2202
2203 /* From here, the event is a metadata wait fd */
2204 for (i = 0; i < nb_fd; i++) {
2205 revents = LTTNG_POLL_GETEV(&events, i);
2206 pollfd = LTTNG_POLL_GETFD(&events, i);
2207
2208 /* Just don't waste time if no returned events for the fd */
2209 if (!revents) {
2210 continue;
2211 }
2212
2213 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2214 if (revents & (LPOLLERR | LPOLLHUP )) {
2215 DBG("Metadata thread pipe hung up");
2216 /*
2217 * Remove the pipe from the poll set and continue the loop
2218 * since their might be data to consume.
2219 */
2220 lttng_poll_del(&events,
2221 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2222 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2223 continue;
2224 } else if (revents & LPOLLIN) {
2225 ssize_t pipe_len;
2226
2227 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2228 &stream, sizeof(stream));
2229 if (pipe_len < 0) {
2230 ERR("read metadata stream, ret: %ld", pipe_len);
2231 /*
2232 * Continue here to handle the rest of the streams.
2233 */
2234 continue;
2235 }
2236
2237 /* A NULL stream means that the state has changed. */
2238 if (stream == NULL) {
2239 /* Check for deleted streams. */
2240 validate_endpoint_status_metadata_stream(&events);
2241 goto restart;
2242 }
2243
2244 DBG("Adding metadata stream %d to poll set",
2245 stream->wait_fd);
2246
2247 ret = add_metadata_stream(stream, metadata_ht);
2248 if (ret) {
2249 ERR("Unable to add metadata stream");
2250 /* Stream was not setup properly. Continuing. */
2251 consumer_del_metadata_stream(stream, NULL);
2252 continue;
2253 }
2254
2255 /* Add metadata stream to the global poll events list */
2256 lttng_poll_add(&events, stream->wait_fd,
2257 LPOLLIN | LPOLLPRI);
2258 }
2259
2260 /* Handle other stream */
2261 continue;
2262 }
2263
2264 rcu_read_lock();
2265 {
2266 uint64_t tmp_id = (uint64_t) pollfd;
2267
2268 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2269 }
2270 node = lttng_ht_iter_get_node_u64(&iter);
2271 assert(node);
2272
2273 stream = caa_container_of(node, struct lttng_consumer_stream,
2274 node);
2275
2276 /* Check for error event */
2277 if (revents & (LPOLLERR | LPOLLHUP)) {
2278 DBG("Metadata fd %d is hup|err.", pollfd);
2279 if (!stream->hangup_flush_done
2280 && (consumer_data.type == LTTNG_CONSUMER32_UST
2281 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2282 DBG("Attempting to flush and consume the UST buffers");
2283 lttng_ustconsumer_on_stream_hangup(stream);
2284
2285 /* We just flushed the stream now read it. */
2286 do {
2287 len = ctx->on_buffer_ready(stream, ctx);
2288 /*
2289 * We don't check the return value here since if we get
2290 * a negative len, it means an error occured thus we
2291 * simply remove it from the poll set and free the
2292 * stream.
2293 */
2294 } while (len > 0);
2295 }
2296
2297 lttng_poll_del(&events, stream->wait_fd);
2298 /*
2299 * This call update the channel states, closes file descriptors
2300 * and securely free the stream.
2301 */
2302 consumer_del_metadata_stream(stream, metadata_ht);
2303 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2304 /* Get the data out of the metadata file descriptor */
2305 DBG("Metadata available on fd %d", pollfd);
2306 assert(stream->wait_fd == pollfd);
2307
2308 len = ctx->on_buffer_ready(stream, ctx);
2309 /* It's ok to have an unavailable sub-buffer */
2310 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2311 /* Clean up stream from consumer and free it. */
2312 lttng_poll_del(&events, stream->wait_fd);
2313 consumer_del_metadata_stream(stream, metadata_ht);
2314 } else if (len > 0) {
2315 stream->data_read = 1;
2316 }
2317 }
2318
2319 /* Release RCU lock for the stream looked up */
2320 rcu_read_unlock();
2321 }
2322 }
2323
2324 error:
2325 end:
2326 DBG("Metadata poll thread exiting");
2327
2328 lttng_poll_clean(&events);
2329 end_poll:
2330 destroy_stream_ht(metadata_ht);
2331 end_ht:
2332 rcu_unregister_thread();
2333 return NULL;
2334 }
2335
2336 /*
2337 * This thread polls the fds in the set to consume the data and write
2338 * it to tracefile if necessary.
2339 */
2340 void *consumer_thread_data_poll(void *data)
2341 {
2342 int num_rdy, num_hup, high_prio, ret, i;
2343 struct pollfd *pollfd = NULL;
2344 /* local view of the streams */
2345 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2346 /* local view of consumer_data.fds_count */
2347 int nb_fd = 0;
2348 struct lttng_consumer_local_data *ctx = data;
2349 ssize_t len;
2350
2351 rcu_register_thread();
2352
2353 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2354 if (data_ht == NULL) {
2355 /* ENOMEM at this point. Better to bail out. */
2356 goto end;
2357 }
2358
2359 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2360
2361 while (1) {
2362 high_prio = 0;
2363 num_hup = 0;
2364
2365 /*
2366 * the fds set has been updated, we need to update our
2367 * local array as well
2368 */
2369 pthread_mutex_lock(&consumer_data.lock);
2370 if (consumer_data.need_update) {
2371 free(pollfd);
2372 pollfd = NULL;
2373
2374 free(local_stream);
2375 local_stream = NULL;
2376
2377 /* allocate for all fds + 1 for the consumer_data_pipe */
2378 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2379 if (pollfd == NULL) {
2380 PERROR("pollfd malloc");
2381 pthread_mutex_unlock(&consumer_data.lock);
2382 goto end;
2383 }
2384
2385 /* allocate for all fds + 1 for the consumer_data_pipe */
2386 local_stream = zmalloc((consumer_data.stream_count + 1) *
2387 sizeof(struct lttng_consumer_stream *));
2388 if (local_stream == NULL) {
2389 PERROR("local_stream malloc");
2390 pthread_mutex_unlock(&consumer_data.lock);
2391 goto end;
2392 }
2393 ret = update_poll_array(ctx, &pollfd, local_stream,
2394 data_ht);
2395 if (ret < 0) {
2396 ERR("Error in allocating pollfd or local_outfds");
2397 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2398 pthread_mutex_unlock(&consumer_data.lock);
2399 goto end;
2400 }
2401 nb_fd = ret;
2402 consumer_data.need_update = 0;
2403 }
2404 pthread_mutex_unlock(&consumer_data.lock);
2405
2406 /* No FDs and consumer_quit, consumer_cleanup the thread */
2407 if (nb_fd == 0 && consumer_quit == 1) {
2408 goto end;
2409 }
2410 /* poll on the array of fds */
2411 restart:
2412 DBG("polling on %d fd", nb_fd + 1);
2413 num_rdy = poll(pollfd, nb_fd + 1, -1);
2414 DBG("poll num_rdy : %d", num_rdy);
2415 if (num_rdy == -1) {
2416 /*
2417 * Restart interrupted system call.
2418 */
2419 if (errno == EINTR) {
2420 goto restart;
2421 }
2422 PERROR("Poll error");
2423 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2424 goto end;
2425 } else if (num_rdy == 0) {
2426 DBG("Polling thread timed out");
2427 goto end;
2428 }
2429
2430 /*
2431 * If the consumer_data_pipe triggered poll go directly to the
2432 * beginning of the loop to update the array. We want to prioritize
2433 * array update over low-priority reads.
2434 */
2435 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2436 ssize_t pipe_readlen;
2437
2438 DBG("consumer_data_pipe wake up");
2439 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2440 &new_stream, sizeof(new_stream));
2441 if (pipe_readlen < 0) {
2442 ERR("Consumer data pipe ret %ld", pipe_readlen);
2443 /* Continue so we can at least handle the current stream(s). */
2444 continue;
2445 }
2446
2447 /*
2448 * If the stream is NULL, just ignore it. It's also possible that
2449 * the sessiond poll thread changed the consumer_quit state and is
2450 * waking us up to test it.
2451 */
2452 if (new_stream == NULL) {
2453 validate_endpoint_status_data_stream();
2454 continue;
2455 }
2456
2457 ret = add_stream(new_stream, data_ht);
2458 if (ret) {
2459 ERR("Consumer add stream %" PRIu64 " failed. Continuing",
2460 new_stream->key);
2461 /*
2462 * At this point, if the add_stream fails, it is not in the
2463 * hash table thus passing the NULL value here.
2464 */
2465 consumer_del_stream(new_stream, NULL);
2466 }
2467
2468 /* Continue to update the local streams and handle prio ones */
2469 continue;
2470 }
2471
2472 /* Take care of high priority channels first. */
2473 for (i = 0; i < nb_fd; i++) {
2474 if (local_stream[i] == NULL) {
2475 continue;
2476 }
2477 if (pollfd[i].revents & POLLPRI) {
2478 DBG("Urgent read on fd %d", pollfd[i].fd);
2479 high_prio = 1;
2480 len = ctx->on_buffer_ready(local_stream[i], ctx);
2481 /* it's ok to have an unavailable sub-buffer */
2482 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2483 /* Clean the stream and free it. */
2484 consumer_del_stream(local_stream[i], data_ht);
2485 local_stream[i] = NULL;
2486 } else if (len > 0) {
2487 local_stream[i]->data_read = 1;
2488 }
2489 }
2490 }
2491
2492 /*
2493 * If we read high prio channel in this loop, try again
2494 * for more high prio data.
2495 */
2496 if (high_prio) {
2497 continue;
2498 }
2499
2500 /* Take care of low priority channels. */
2501 for (i = 0; i < nb_fd; i++) {
2502 if (local_stream[i] == NULL) {
2503 continue;
2504 }
2505 if ((pollfd[i].revents & POLLIN) ||
2506 local_stream[i]->hangup_flush_done) {
2507 DBG("Normal read on fd %d", pollfd[i].fd);
2508 len = ctx->on_buffer_ready(local_stream[i], ctx);
2509 /* it's ok to have an unavailable sub-buffer */
2510 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2511 /* Clean the stream and free it. */
2512 consumer_del_stream(local_stream[i], data_ht);
2513 local_stream[i] = NULL;
2514 } else if (len > 0) {
2515 local_stream[i]->data_read = 1;
2516 }
2517 }
2518 }
2519
2520 /* Handle hangup and errors */
2521 for (i = 0; i < nb_fd; i++) {
2522 if (local_stream[i] == NULL) {
2523 continue;
2524 }
2525 if (!local_stream[i]->hangup_flush_done
2526 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2527 && (consumer_data.type == LTTNG_CONSUMER32_UST
2528 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2529 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2530 pollfd[i].fd);
2531 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2532 /* Attempt read again, for the data we just flushed. */
2533 local_stream[i]->data_read = 1;
2534 }
2535 /*
2536 * If the poll flag is HUP/ERR/NVAL and we have
2537 * read no data in this pass, we can remove the
2538 * stream from its hash table.
2539 */
2540 if ((pollfd[i].revents & POLLHUP)) {
2541 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2542 if (!local_stream[i]->data_read) {
2543 consumer_del_stream(local_stream[i], data_ht);
2544 local_stream[i] = NULL;
2545 num_hup++;
2546 }
2547 } else if (pollfd[i].revents & POLLERR) {
2548 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2549 if (!local_stream[i]->data_read) {
2550 consumer_del_stream(local_stream[i], data_ht);
2551 local_stream[i] = NULL;
2552 num_hup++;
2553 }
2554 } else if (pollfd[i].revents & POLLNVAL) {
2555 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2556 if (!local_stream[i]->data_read) {
2557 consumer_del_stream(local_stream[i], data_ht);
2558 local_stream[i] = NULL;
2559 num_hup++;
2560 }
2561 }
2562 if (local_stream[i] != NULL) {
2563 local_stream[i]->data_read = 0;
2564 }
2565 }
2566 }
2567 end:
2568 DBG("polling thread exiting");
2569 free(pollfd);
2570 free(local_stream);
2571
2572 /*
2573 * Close the write side of the pipe so epoll_wait() in
2574 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2575 * read side of the pipe. If we close them both, epoll_wait strangely does
2576 * not return and could create a endless wait period if the pipe is the
2577 * only tracked fd in the poll set. The thread will take care of closing
2578 * the read side.
2579 */
2580 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2581
2582 destroy_data_stream_ht(data_ht);
2583
2584 rcu_unregister_thread();
2585 return NULL;
2586 }
2587
2588 /*
2589 * Close wake-up end of each stream belonging to the channel. This will
2590 * allow the poll() on the stream read-side to detect when the
2591 * write-side (application) finally closes them.
2592 */
2593 static
2594 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2595 {
2596 struct lttng_ht *ht;
2597 struct lttng_consumer_stream *stream;
2598 struct lttng_ht_iter iter;
2599
2600 ht = consumer_data.stream_per_chan_id_ht;
2601
2602 rcu_read_lock();
2603 cds_lfht_for_each_entry_duplicate(ht->ht,
2604 ht->hash_fct(&channel->key, lttng_ht_seed),
2605 ht->match_fct, &channel->key,
2606 &iter.iter, stream, node_channel_id.node) {
2607 /*
2608 * Protect against teardown with mutex.
2609 */
2610 pthread_mutex_lock(&stream->lock);
2611 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2612 goto next;
2613 }
2614 switch (consumer_data.type) {
2615 case LTTNG_CONSUMER_KERNEL:
2616 break;
2617 case LTTNG_CONSUMER32_UST:
2618 case LTTNG_CONSUMER64_UST:
2619 /*
2620 * Note: a mutex is taken internally within
2621 * liblttng-ust-ctl to protect timer wakeup_fd
2622 * use from concurrent close.
2623 */
2624 lttng_ustconsumer_close_stream_wakeup(stream);
2625 break;
2626 default:
2627 ERR("Unknown consumer_data type");
2628 assert(0);
2629 }
2630 next:
2631 pthread_mutex_unlock(&stream->lock);
2632 }
2633 rcu_read_unlock();
2634 }
2635
2636 static void destroy_channel_ht(struct lttng_ht *ht)
2637 {
2638 struct lttng_ht_iter iter;
2639 struct lttng_consumer_channel *channel;
2640 int ret;
2641
2642 if (ht == NULL) {
2643 return;
2644 }
2645
2646 rcu_read_lock();
2647 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2648 ret = lttng_ht_del(ht, &iter);
2649 assert(ret != 0);
2650 }
2651 rcu_read_unlock();
2652
2653 lttng_ht_destroy(ht);
2654 }
2655
2656 /*
2657 * This thread polls the channel fds to detect when they are being
2658 * closed. It closes all related streams if the channel is detected as
2659 * closed. It is currently only used as a shim layer for UST because the
2660 * consumerd needs to keep the per-stream wakeup end of pipes open for
2661 * periodical flush.
2662 */
2663 void *consumer_thread_channel_poll(void *data)
2664 {
2665 int ret, i, pollfd;
2666 uint32_t revents, nb_fd;
2667 struct lttng_consumer_channel *chan = NULL;
2668 struct lttng_ht_iter iter;
2669 struct lttng_ht_node_u64 *node;
2670 struct lttng_poll_event events;
2671 struct lttng_consumer_local_data *ctx = data;
2672 struct lttng_ht *channel_ht;
2673
2674 rcu_register_thread();
2675
2676 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2677 if (!channel_ht) {
2678 /* ENOMEM at this point. Better to bail out. */
2679 goto end_ht;
2680 }
2681
2682 DBG("Thread channel poll started");
2683
2684 /* Size is set to 1 for the consumer_channel pipe */
2685 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2686 if (ret < 0) {
2687 ERR("Poll set creation failed");
2688 goto end_poll;
2689 }
2690
2691 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2692 if (ret < 0) {
2693 goto end;
2694 }
2695
2696 /* Main loop */
2697 DBG("Channel main loop started");
2698
2699 while (1) {
2700 /* Only the channel pipe is set */
2701 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2702 goto end;
2703 }
2704
2705 restart:
2706 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2707 ret = lttng_poll_wait(&events, -1);
2708 DBG("Channel event catched in thread");
2709 if (ret < 0) {
2710 if (errno == EINTR) {
2711 ERR("Poll EINTR catched");
2712 goto restart;
2713 }
2714 goto end;
2715 }
2716
2717 nb_fd = ret;
2718
2719 /* From here, the event is a channel wait fd */
2720 for (i = 0; i < nb_fd; i++) {
2721 revents = LTTNG_POLL_GETEV(&events, i);
2722 pollfd = LTTNG_POLL_GETFD(&events, i);
2723
2724 /* Just don't waste time if no returned events for the fd */
2725 if (!revents) {
2726 continue;
2727 }
2728 if (pollfd == ctx->consumer_channel_pipe[0]) {
2729 if (revents & (LPOLLERR | LPOLLHUP)) {
2730 DBG("Channel thread pipe hung up");
2731 /*
2732 * Remove the pipe from the poll set and continue the loop
2733 * since their might be data to consume.
2734 */
2735 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2736 continue;
2737 } else if (revents & LPOLLIN) {
2738 enum consumer_channel_action action;
2739 uint64_t key;
2740
2741 ret = read_channel_pipe(ctx, &chan, &key, &action);
2742 if (ret <= 0) {
2743 ERR("Error reading channel pipe");
2744 continue;
2745 }
2746
2747 switch (action) {
2748 case CONSUMER_CHANNEL_ADD:
2749 DBG("Adding channel %d to poll set",
2750 chan->wait_fd);
2751
2752 lttng_ht_node_init_u64(&chan->wait_fd_node,
2753 chan->wait_fd);
2754 rcu_read_lock();
2755 lttng_ht_add_unique_u64(channel_ht,
2756 &chan->wait_fd_node);
2757 rcu_read_unlock();
2758 /* Add channel to the global poll events list */
2759 lttng_poll_add(&events, chan->wait_fd,
2760 LPOLLIN | LPOLLPRI);
2761 break;
2762 case CONSUMER_CHANNEL_DEL:
2763 {
2764 struct lttng_consumer_stream *stream, *stmp;
2765
2766 rcu_read_lock();
2767 chan = consumer_find_channel(key);
2768 if (!chan) {
2769 rcu_read_unlock();
2770 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2771 break;
2772 }
2773 lttng_poll_del(&events, chan->wait_fd);
2774 iter.iter.node = &chan->wait_fd_node.node;
2775 ret = lttng_ht_del(channel_ht, &iter);
2776 assert(ret == 0);
2777 consumer_close_channel_streams(chan);
2778
2779 switch (consumer_data.type) {
2780 case LTTNG_CONSUMER_KERNEL:
2781 break;
2782 case LTTNG_CONSUMER32_UST:
2783 case LTTNG_CONSUMER64_UST:
2784 /* Delete streams that might have been left in the stream list. */
2785 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2786 send_node) {
2787 cds_list_del(&stream->send_node);
2788 lttng_ustconsumer_del_stream(stream);
2789 uatomic_sub(&stream->chan->refcount, 1);
2790 assert(&chan->refcount);
2791 free(stream);
2792 }
2793 break;
2794 default:
2795 ERR("Unknown consumer_data type");
2796 assert(0);
2797 }
2798
2799 /*
2800 * Release our own refcount. Force channel deletion even if
2801 * streams were not initialized.
2802 */
2803 if (!uatomic_sub_return(&chan->refcount, 1)) {
2804 consumer_del_channel(chan);
2805 }
2806 rcu_read_unlock();
2807 goto restart;
2808 }
2809 case CONSUMER_CHANNEL_QUIT:
2810 /*
2811 * Remove the pipe from the poll set and continue the loop
2812 * since their might be data to consume.
2813 */
2814 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2815 continue;
2816 default:
2817 ERR("Unknown action");
2818 break;
2819 }
2820 }
2821
2822 /* Handle other stream */
2823 continue;
2824 }
2825
2826 rcu_read_lock();
2827 {
2828 uint64_t tmp_id = (uint64_t) pollfd;
2829
2830 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2831 }
2832 node = lttng_ht_iter_get_node_u64(&iter);
2833 assert(node);
2834
2835 chan = caa_container_of(node, struct lttng_consumer_channel,
2836 wait_fd_node);
2837
2838 /* Check for error event */
2839 if (revents & (LPOLLERR | LPOLLHUP)) {
2840 DBG("Channel fd %d is hup|err.", pollfd);
2841
2842 lttng_poll_del(&events, chan->wait_fd);
2843 ret = lttng_ht_del(channel_ht, &iter);
2844 assert(ret == 0);
2845 assert(cds_list_empty(&chan->streams.head));
2846 consumer_close_channel_streams(chan);
2847
2848 /* Release our own refcount */
2849 if (!uatomic_sub_return(&chan->refcount, 1)
2850 && !uatomic_read(&chan->nb_init_stream_left)) {
2851 consumer_del_channel(chan);
2852 }
2853 }
2854
2855 /* Release RCU lock for the channel looked up */
2856 rcu_read_unlock();
2857 }
2858 }
2859
2860 end:
2861 lttng_poll_clean(&events);
2862 end_poll:
2863 destroy_channel_ht(channel_ht);
2864 end_ht:
2865 DBG("Channel poll thread exiting");
2866 rcu_unregister_thread();
2867 return NULL;
2868 }
2869
2870 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2871 struct pollfd *sockpoll, int client_socket)
2872 {
2873 int ret;
2874
2875 assert(ctx);
2876 assert(sockpoll);
2877
2878 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2879 ret = -1;
2880 goto error;
2881 }
2882 DBG("Metadata connection on client_socket");
2883
2884 /* Blocking call, waiting for transmission */
2885 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2886 if (ctx->consumer_metadata_socket < 0) {
2887 WARN("On accept metadata");
2888 ret = -1;
2889 goto error;
2890 }
2891 ret = 0;
2892
2893 error:
2894 return ret;
2895 }
2896
2897 /*
2898 * This thread listens on the consumerd socket and receives the file
2899 * descriptors from the session daemon.
2900 */
2901 void *consumer_thread_sessiond_poll(void *data)
2902 {
2903 int sock = -1, client_socket, ret;
2904 /*
2905 * structure to poll for incoming data on communication socket avoids
2906 * making blocking sockets.
2907 */
2908 struct pollfd consumer_sockpoll[2];
2909 struct lttng_consumer_local_data *ctx = data;
2910
2911 rcu_register_thread();
2912
2913 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2914 unlink(ctx->consumer_command_sock_path);
2915 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2916 if (client_socket < 0) {
2917 ERR("Cannot create command socket");
2918 goto end;
2919 }
2920
2921 ret = lttcomm_listen_unix_sock(client_socket);
2922 if (ret < 0) {
2923 goto end;
2924 }
2925
2926 DBG("Sending ready command to lttng-sessiond");
2927 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2928 /* return < 0 on error, but == 0 is not fatal */
2929 if (ret < 0) {
2930 ERR("Error sending ready command to lttng-sessiond");
2931 goto end;
2932 }
2933
2934 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2935 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2936 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2937 consumer_sockpoll[1].fd = client_socket;
2938 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2939
2940 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2941 goto end;
2942 }
2943 DBG("Connection on client_socket");
2944
2945 /* Blocking call, waiting for transmission */
2946 sock = lttcomm_accept_unix_sock(client_socket);
2947 if (sock < 0) {
2948 WARN("On accept");
2949 goto end;
2950 }
2951
2952 /*
2953 * Setup metadata socket which is the second socket connection on the
2954 * command unix socket.
2955 */
2956 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2957 if (ret < 0) {
2958 goto end;
2959 }
2960
2961 /* This socket is not useful anymore. */
2962 ret = close(client_socket);
2963 if (ret < 0) {
2964 PERROR("close client_socket");
2965 }
2966 client_socket = -1;
2967
2968 /* update the polling structure to poll on the established socket */
2969 consumer_sockpoll[1].fd = sock;
2970 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2971
2972 while (1) {
2973 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2974 goto end;
2975 }
2976 DBG("Incoming command on sock");
2977 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2978 if (ret == -ENOENT) {
2979 DBG("Received STOP command");
2980 goto end;
2981 }
2982 if (ret <= 0) {
2983 /*
2984 * This could simply be a session daemon quitting. Don't output
2985 * ERR() here.
2986 */
2987 DBG("Communication interrupted on command socket");
2988 goto end;
2989 }
2990 if (consumer_quit) {
2991 DBG("consumer_thread_receive_fds received quit from signal");
2992 goto end;
2993 }
2994 DBG("received command on sock");
2995 }
2996 end:
2997 DBG("Consumer thread sessiond poll exiting");
2998
2999 /*
3000 * Close metadata streams since the producer is the session daemon which
3001 * just died.
3002 *
3003 * NOTE: for now, this only applies to the UST tracer.
3004 */
3005 lttng_consumer_close_metadata();
3006
3007 /*
3008 * when all fds have hung up, the polling thread
3009 * can exit cleanly
3010 */
3011 consumer_quit = 1;
3012
3013 /*
3014 * Notify the data poll thread to poll back again and test the
3015 * consumer_quit state that we just set so to quit gracefully.
3016 */
3017 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3018
3019 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3020
3021 /* Cleaning up possibly open sockets. */
3022 if (sock >= 0) {
3023 ret = close(sock);
3024 if (ret < 0) {
3025 PERROR("close sock sessiond poll");
3026 }
3027 }
3028 if (client_socket >= 0) {
3029 ret = close(client_socket);
3030 if (ret < 0) {
3031 PERROR("close client_socket sessiond poll");
3032 }
3033 }
3034
3035 rcu_unregister_thread();
3036 return NULL;
3037 }
3038
3039 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3040 struct lttng_consumer_local_data *ctx)
3041 {
3042 ssize_t ret;
3043
3044 pthread_mutex_lock(&stream->lock);
3045
3046 switch (consumer_data.type) {
3047 case LTTNG_CONSUMER_KERNEL:
3048 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3049 break;
3050 case LTTNG_CONSUMER32_UST:
3051 case LTTNG_CONSUMER64_UST:
3052 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3053 break;
3054 default:
3055 ERR("Unknown consumer_data type");
3056 assert(0);
3057 ret = -ENOSYS;
3058 break;
3059 }
3060
3061 pthread_mutex_unlock(&stream->lock);
3062 return ret;
3063 }
3064
3065 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3066 {
3067 switch (consumer_data.type) {
3068 case LTTNG_CONSUMER_KERNEL:
3069 return lttng_kconsumer_on_recv_stream(stream);
3070 case LTTNG_CONSUMER32_UST:
3071 case LTTNG_CONSUMER64_UST:
3072 return lttng_ustconsumer_on_recv_stream(stream);
3073 default:
3074 ERR("Unknown consumer_data type");
3075 assert(0);
3076 return -ENOSYS;
3077 }
3078 }
3079
3080 /*
3081 * Allocate and set consumer data hash tables.
3082 */
3083 void lttng_consumer_init(void)
3084 {
3085 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3086 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3087 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3088 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3089 }
3090
3091 /*
3092 * Process the ADD_RELAYD command receive by a consumer.
3093 *
3094 * This will create a relayd socket pair and add it to the relayd hash table.
3095 * The caller MUST acquire a RCU read side lock before calling it.
3096 */
3097 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3098 struct lttng_consumer_local_data *ctx, int sock,
3099 struct pollfd *consumer_sockpoll,
3100 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id)
3101 {
3102 int fd = -1, ret = -1, relayd_created = 0;
3103 enum lttng_error_code ret_code = LTTNG_OK;
3104 struct consumer_relayd_sock_pair *relayd = NULL;
3105
3106 assert(ctx);
3107 assert(relayd_sock);
3108
3109 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3110
3111 /* Get relayd reference if exists. */
3112 relayd = consumer_find_relayd(net_seq_idx);
3113 if (relayd == NULL) {
3114 assert(sock_type == LTTNG_STREAM_CONTROL);
3115 /* Not found. Allocate one. */
3116 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3117 if (relayd == NULL) {
3118 ret = -ENOMEM;
3119 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3120 goto error;
3121 } else {
3122 relayd->sessiond_session_id = sessiond_id;
3123 relayd_created = 1;
3124 }
3125
3126 /*
3127 * This code path MUST continue to the consumer send status message to
3128 * we can notify the session daemon and continue our work without
3129 * killing everything.
3130 */
3131 } else {
3132 /*
3133 * relayd key should never be found for control socket.
3134 */
3135 assert(sock_type != LTTNG_STREAM_CONTROL);
3136 }
3137
3138 /* First send a status message before receiving the fds. */
3139 ret = consumer_send_status_msg(sock, LTTNG_OK);
3140 if (ret < 0) {
3141 /* Somehow, the session daemon is not responding anymore. */
3142 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3143 goto error_nosignal;
3144 }
3145
3146 /* Poll on consumer socket. */
3147 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3148 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3149 ret = -EINTR;
3150 goto error_nosignal;
3151 }
3152
3153 /* Get relayd socket from session daemon */
3154 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3155 if (ret != sizeof(fd)) {
3156 ret = -1;
3157 fd = -1; /* Just in case it gets set with an invalid value. */
3158
3159 /*
3160 * Failing to receive FDs might indicate a major problem such as
3161 * reaching a fd limit during the receive where the kernel returns a
3162 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3163 * don't take any chances and stop everything.
3164 *
3165 * XXX: Feature request #558 will fix that and avoid this possible
3166 * issue when reaching the fd limit.
3167 */
3168 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3169 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3170 goto error;
3171 }
3172
3173 /* Copy socket information and received FD */
3174 switch (sock_type) {
3175 case LTTNG_STREAM_CONTROL:
3176 /* Copy received lttcomm socket */
3177 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3178 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3179 /* Handle create_sock error. */
3180 if (ret < 0) {
3181 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3182 goto error;
3183 }
3184 /*
3185 * Close the socket created internally by
3186 * lttcomm_create_sock, so we can replace it by the one
3187 * received from sessiond.
3188 */
3189 if (close(relayd->control_sock.sock.fd)) {
3190 PERROR("close");
3191 }
3192
3193 /* Assign new file descriptor */
3194 relayd->control_sock.sock.fd = fd;
3195 fd = -1; /* For error path */
3196 /* Assign version values. */
3197 relayd->control_sock.major = relayd_sock->major;
3198 relayd->control_sock.minor = relayd_sock->minor;
3199
3200 /*
3201 * Create a session on the relayd and store the returned id. Lock the
3202 * control socket mutex if the relayd was NOT created before.
3203 */
3204 if (!relayd_created) {
3205 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3206 }
3207 ret = relayd_create_session(&relayd->control_sock,
3208 &relayd->relayd_session_id);
3209 if (!relayd_created) {
3210 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3211 }
3212 if (ret < 0) {
3213 /*
3214 * Close all sockets of a relayd object. It will be freed if it was
3215 * created at the error code path or else it will be garbage
3216 * collect.
3217 */
3218 (void) relayd_close(&relayd->control_sock);
3219 (void) relayd_close(&relayd->data_sock);
3220 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
3221 goto error;
3222 }
3223
3224 break;
3225 case LTTNG_STREAM_DATA:
3226 /* Copy received lttcomm socket */
3227 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3228 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3229 /* Handle create_sock error. */
3230 if (ret < 0) {
3231 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3232 goto error;
3233 }
3234 /*
3235 * Close the socket created internally by
3236 * lttcomm_create_sock, so we can replace it by the one
3237 * received from sessiond.
3238 */
3239 if (close(relayd->data_sock.sock.fd)) {
3240 PERROR("close");
3241 }
3242
3243 /* Assign new file descriptor */
3244 relayd->data_sock.sock.fd = fd;
3245 fd = -1; /* for eventual error paths */
3246 /* Assign version values. */
3247 relayd->data_sock.major = relayd_sock->major;
3248 relayd->data_sock.minor = relayd_sock->minor;
3249 break;
3250 default:
3251 ERR("Unknown relayd socket type (%d)", sock_type);
3252 ret = -1;
3253 ret_code = LTTCOMM_CONSUMERD_FATAL;
3254 goto error;
3255 }
3256
3257 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3258 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3259 relayd->net_seq_idx, fd);
3260
3261 /* We successfully added the socket. Send status back. */
3262 ret = consumer_send_status_msg(sock, ret_code);
3263 if (ret < 0) {
3264 /* Somehow, the session daemon is not responding anymore. */
3265 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3266 goto error_nosignal;
3267 }
3268
3269 /*
3270 * Add relayd socket pair to consumer data hashtable. If object already
3271 * exists or on error, the function gracefully returns.
3272 */
3273 add_relayd(relayd);
3274
3275 /* All good! */
3276 return 0;
3277
3278 error:
3279 if (consumer_send_status_msg(sock, ret_code) < 0) {
3280 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3281 }
3282
3283 error_nosignal:
3284 /* Close received socket if valid. */
3285 if (fd >= 0) {
3286 if (close(fd)) {
3287 PERROR("close received socket");
3288 }
3289 }
3290
3291 if (relayd_created) {
3292 free(relayd);
3293 }
3294
3295 return ret;
3296 }
3297
3298 /*
3299 * Try to lock the stream mutex.
3300 *
3301 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3302 */
3303 static int stream_try_lock(struct lttng_consumer_stream *stream)
3304 {
3305 int ret;
3306
3307 assert(stream);
3308
3309 /*
3310 * Try to lock the stream mutex. On failure, we know that the stream is
3311 * being used else where hence there is data still being extracted.
3312 */
3313 ret = pthread_mutex_trylock(&stream->lock);
3314 if (ret) {
3315 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3316 ret = 0;
3317 goto end;
3318 }
3319
3320 ret = 1;
3321
3322 end:
3323 return ret;
3324 }
3325
3326 /*
3327 * Search for a relayd associated to the session id and return the reference.
3328 *
3329 * A rcu read side lock MUST be acquire before calling this function and locked
3330 * until the relayd object is no longer necessary.
3331 */
3332 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3333 {
3334 struct lttng_ht_iter iter;
3335 struct consumer_relayd_sock_pair *relayd = NULL;
3336
3337 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3338 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3339 node.node) {
3340 /*
3341 * Check by sessiond id which is unique here where the relayd session
3342 * id might not be when having multiple relayd.
3343 */
3344 if (relayd->sessiond_session_id == id) {
3345 /* Found the relayd. There can be only one per id. */
3346 goto found;
3347 }
3348 }
3349
3350 return NULL;
3351
3352 found:
3353 return relayd;
3354 }
3355
3356 /*
3357 * Check if for a given session id there is still data needed to be extract
3358 * from the buffers.
3359 *
3360 * Return 1 if data is pending or else 0 meaning ready to be read.
3361 */
3362 int consumer_data_pending(uint64_t id)
3363 {
3364 int ret;
3365 struct lttng_ht_iter iter;
3366 struct lttng_ht *ht;
3367 struct lttng_consumer_stream *stream;
3368 struct consumer_relayd_sock_pair *relayd = NULL;
3369 int (*data_pending)(struct lttng_consumer_stream *);
3370
3371 DBG("Consumer data pending command on session id %" PRIu64, id);
3372
3373 rcu_read_lock();
3374 pthread_mutex_lock(&consumer_data.lock);
3375
3376 switch (consumer_data.type) {
3377 case LTTNG_CONSUMER_KERNEL:
3378 data_pending = lttng_kconsumer_data_pending;
3379 break;
3380 case LTTNG_CONSUMER32_UST:
3381 case LTTNG_CONSUMER64_UST:
3382 data_pending = lttng_ustconsumer_data_pending;
3383 break;
3384 default:
3385 ERR("Unknown consumer data type");
3386 assert(0);
3387 }
3388
3389 /* Ease our life a bit */
3390 ht = consumer_data.stream_list_ht;
3391
3392 relayd = find_relayd_by_session_id(id);
3393 if (relayd) {
3394 /* Send init command for data pending. */
3395 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3396 ret = relayd_begin_data_pending(&relayd->control_sock,
3397 relayd->relayd_session_id);
3398 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3399 if (ret < 0) {
3400 /* Communication error thus the relayd so no data pending. */
3401 goto data_not_pending;
3402 }
3403 }
3404
3405 cds_lfht_for_each_entry_duplicate(ht->ht,
3406 ht->hash_fct(&id, lttng_ht_seed),
3407 ht->match_fct, &id,
3408 &iter.iter, stream, node_session_id.node) {
3409 /* If this call fails, the stream is being used hence data pending. */
3410 ret = stream_try_lock(stream);
3411 if (!ret) {
3412 goto data_pending;
3413 }
3414
3415 /*
3416 * A removed node from the hash table indicates that the stream has
3417 * been deleted thus having a guarantee that the buffers are closed
3418 * on the consumer side. However, data can still be transmitted
3419 * over the network so don't skip the relayd check.
3420 */
3421 ret = cds_lfht_is_node_deleted(&stream->node.node);
3422 if (!ret) {
3423 /* Check the stream if there is data in the buffers. */
3424 ret = data_pending(stream);
3425 if (ret == 1) {
3426 pthread_mutex_unlock(&stream->lock);
3427 goto data_pending;
3428 }
3429 }
3430
3431 /* Relayd check */
3432 if (relayd) {
3433 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3434 if (stream->metadata_flag) {
3435 ret = relayd_quiescent_control(&relayd->control_sock,
3436 stream->relayd_stream_id);
3437 } else {
3438 ret = relayd_data_pending(&relayd->control_sock,
3439 stream->relayd_stream_id,
3440 stream->next_net_seq_num - 1);
3441 }
3442 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3443 if (ret == 1) {
3444 pthread_mutex_unlock(&stream->lock);
3445 goto data_pending;
3446 }
3447 }
3448 pthread_mutex_unlock(&stream->lock);
3449 }
3450
3451 if (relayd) {
3452 unsigned int is_data_inflight = 0;
3453
3454 /* Send init command for data pending. */
3455 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3456 ret = relayd_end_data_pending(&relayd->control_sock,
3457 relayd->relayd_session_id, &is_data_inflight);
3458 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3459 if (ret < 0) {
3460 goto data_not_pending;
3461 }
3462 if (is_data_inflight) {
3463 goto data_pending;
3464 }
3465 }
3466
3467 /*
3468 * Finding _no_ node in the hash table and no inflight data means that the
3469 * stream(s) have been removed thus data is guaranteed to be available for
3470 * analysis from the trace files.
3471 */
3472
3473 data_not_pending:
3474 /* Data is available to be read by a viewer. */
3475 pthread_mutex_unlock(&consumer_data.lock);
3476 rcu_read_unlock();
3477 return 0;
3478
3479 data_pending:
3480 /* Data is still being extracted from buffers. */
3481 pthread_mutex_unlock(&consumer_data.lock);
3482 rcu_read_unlock();
3483 return 1;
3484 }
3485
3486 /*
3487 * Send a ret code status message to the sessiond daemon.
3488 *
3489 * Return the sendmsg() return value.
3490 */
3491 int consumer_send_status_msg(int sock, int ret_code)
3492 {
3493 struct lttcomm_consumer_status_msg msg;
3494
3495 msg.ret_code = ret_code;
3496
3497 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3498 }
3499
3500 /*
3501 * Send a channel status message to the sessiond daemon.
3502 *
3503 * Return the sendmsg() return value.
3504 */
3505 int consumer_send_status_channel(int sock,
3506 struct lttng_consumer_channel *channel)
3507 {
3508 struct lttcomm_consumer_status_channel msg;
3509
3510 assert(sock >= 0);
3511
3512 if (!channel) {
3513 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3514 } else {
3515 msg.ret_code = LTTNG_OK;
3516 msg.key = channel->key;
3517 msg.stream_count = channel->streams.count;
3518 }
3519
3520 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3521 }
This page took 0.094342 seconds and 3 git commands to generate.