Fix: remove bad check after epoll wait in consumer
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44
45 struct lttng_consumer_global_data consumer_data = {
46 .stream_count = 0,
47 .need_update = 1,
48 .type = LTTNG_CONSUMER_UNKNOWN,
49 };
50
51 enum consumer_channel_action {
52 CONSUMER_CHANNEL_ADD,
53 CONSUMER_CHANNEL_DEL,
54 CONSUMER_CHANNEL_QUIT,
55 };
56
57 struct consumer_channel_msg {
58 enum consumer_channel_action action;
59 struct lttng_consumer_channel *chan; /* add */
60 uint64_t key; /* del */
61 };
62
63 /*
64 * Flag to inform the polling thread to quit when all fd hung up. Updated by
65 * the consumer_thread_receive_fds when it notices that all fds has hung up.
66 * Also updated by the signal handler (consumer_should_exit()). Read by the
67 * polling threads.
68 */
69 volatile int consumer_quit;
70
71 /*
72 * Global hash table containing respectively metadata and data streams. The
73 * stream element in this ht should only be updated by the metadata poll thread
74 * for the metadata and the data poll thread for the data.
75 */
76 static struct lttng_ht *metadata_ht;
77 static struct lttng_ht *data_ht;
78
79 /*
80 * Notify a thread lttng pipe to poll back again. This usually means that some
81 * global state has changed so we just send back the thread in a poll wait
82 * call.
83 */
84 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
85 {
86 struct lttng_consumer_stream *null_stream = NULL;
87
88 assert(pipe);
89
90 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
91 }
92
93 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
94 struct lttng_consumer_channel *chan,
95 uint64_t key,
96 enum consumer_channel_action action)
97 {
98 struct consumer_channel_msg msg;
99 int ret;
100
101 memset(&msg, 0, sizeof(msg));
102
103 msg.action = action;
104 msg.chan = chan;
105 msg.key = key;
106 do {
107 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
108 } while (ret < 0 && errno == EINTR);
109 }
110
111 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
112 uint64_t key)
113 {
114 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
115 }
116
117 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
118 struct lttng_consumer_channel **chan,
119 uint64_t *key,
120 enum consumer_channel_action *action)
121 {
122 struct consumer_channel_msg msg;
123 int ret;
124
125 do {
126 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
127 } while (ret < 0 && errno == EINTR);
128 if (ret > 0) {
129 *action = msg.action;
130 *chan = msg.chan;
131 *key = msg.key;
132 }
133 return ret;
134 }
135
136 /*
137 * Find a stream. The consumer_data.lock must be locked during this
138 * call.
139 */
140 static struct lttng_consumer_stream *find_stream(uint64_t key,
141 struct lttng_ht *ht)
142 {
143 struct lttng_ht_iter iter;
144 struct lttng_ht_node_u64 *node;
145 struct lttng_consumer_stream *stream = NULL;
146
147 assert(ht);
148
149 /* -1ULL keys are lookup failures */
150 if (key == (uint64_t) -1ULL) {
151 return NULL;
152 }
153
154 rcu_read_lock();
155
156 lttng_ht_lookup(ht, &key, &iter);
157 node = lttng_ht_iter_get_node_u64(&iter);
158 if (node != NULL) {
159 stream = caa_container_of(node, struct lttng_consumer_stream, node);
160 }
161
162 rcu_read_unlock();
163
164 return stream;
165 }
166
167 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
168 {
169 struct lttng_consumer_stream *stream;
170
171 rcu_read_lock();
172 stream = find_stream(key, ht);
173 if (stream) {
174 stream->key = (uint64_t) -1ULL;
175 /*
176 * We don't want the lookup to match, but we still need
177 * to iterate on this stream when iterating over the hash table. Just
178 * change the node key.
179 */
180 stream->node.key = (uint64_t) -1ULL;
181 }
182 rcu_read_unlock();
183 }
184
185 /*
186 * Return a channel object for the given key.
187 *
188 * RCU read side lock MUST be acquired before calling this function and
189 * protects the channel ptr.
190 */
191 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
192 {
193 struct lttng_ht_iter iter;
194 struct lttng_ht_node_u64 *node;
195 struct lttng_consumer_channel *channel = NULL;
196
197 /* -1ULL keys are lookup failures */
198 if (key == (uint64_t) -1ULL) {
199 return NULL;
200 }
201
202 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
203 node = lttng_ht_iter_get_node_u64(&iter);
204 if (node != NULL) {
205 channel = caa_container_of(node, struct lttng_consumer_channel, node);
206 }
207
208 return channel;
209 }
210
211 static void free_stream_rcu(struct rcu_head *head)
212 {
213 struct lttng_ht_node_u64 *node =
214 caa_container_of(head, struct lttng_ht_node_u64, head);
215 struct lttng_consumer_stream *stream =
216 caa_container_of(node, struct lttng_consumer_stream, node);
217
218 free(stream);
219 }
220
221 static void free_channel_rcu(struct rcu_head *head)
222 {
223 struct lttng_ht_node_u64 *node =
224 caa_container_of(head, struct lttng_ht_node_u64, head);
225 struct lttng_consumer_channel *channel =
226 caa_container_of(node, struct lttng_consumer_channel, node);
227
228 free(channel);
229 }
230
231 /*
232 * RCU protected relayd socket pair free.
233 */
234 static void free_relayd_rcu(struct rcu_head *head)
235 {
236 struct lttng_ht_node_u64 *node =
237 caa_container_of(head, struct lttng_ht_node_u64, head);
238 struct consumer_relayd_sock_pair *relayd =
239 caa_container_of(node, struct consumer_relayd_sock_pair, node);
240
241 /*
242 * Close all sockets. This is done in the call RCU since we don't want the
243 * socket fds to be reassigned thus potentially creating bad state of the
244 * relayd object.
245 *
246 * We do not have to lock the control socket mutex here since at this stage
247 * there is no one referencing to this relayd object.
248 */
249 (void) relayd_close(&relayd->control_sock);
250 (void) relayd_close(&relayd->data_sock);
251
252 free(relayd);
253 }
254
255 /*
256 * Destroy and free relayd socket pair object.
257 *
258 * This function MUST be called with the consumer_data lock acquired.
259 */
260 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
261 {
262 int ret;
263 struct lttng_ht_iter iter;
264
265 if (relayd == NULL) {
266 return;
267 }
268
269 DBG("Consumer destroy and close relayd socket pair");
270
271 iter.iter.node = &relayd->node.node;
272 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
273 if (ret != 0) {
274 /* We assume the relayd is being or is destroyed */
275 return;
276 }
277
278 /* RCU free() call */
279 call_rcu(&relayd->node.head, free_relayd_rcu);
280 }
281
282 /*
283 * Remove a channel from the global list protected by a mutex. This function is
284 * also responsible for freeing its data structures.
285 */
286 void consumer_del_channel(struct lttng_consumer_channel *channel)
287 {
288 int ret;
289 struct lttng_ht_iter iter;
290 struct lttng_consumer_stream *stream, *stmp;
291
292 DBG("Consumer delete channel key %" PRIu64, channel->key);
293
294 pthread_mutex_lock(&consumer_data.lock);
295 pthread_mutex_lock(&channel->lock);
296
297 switch (consumer_data.type) {
298 case LTTNG_CONSUMER_KERNEL:
299 break;
300 case LTTNG_CONSUMER32_UST:
301 case LTTNG_CONSUMER64_UST:
302 /* Delete streams that might have been left in the stream list. */
303 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
304 send_node) {
305 cds_list_del(&stream->send_node);
306 lttng_ustconsumer_del_stream(stream);
307 free(stream);
308 }
309 lttng_ustconsumer_del_channel(channel);
310 break;
311 default:
312 ERR("Unknown consumer_data type");
313 assert(0);
314 goto end;
315 }
316
317 rcu_read_lock();
318 iter.iter.node = &channel->node.node;
319 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
320 assert(!ret);
321 rcu_read_unlock();
322
323 call_rcu(&channel->node.head, free_channel_rcu);
324 end:
325 pthread_mutex_unlock(&channel->lock);
326 pthread_mutex_unlock(&consumer_data.lock);
327 }
328
329 /*
330 * Iterate over the relayd hash table and destroy each element. Finally,
331 * destroy the whole hash table.
332 */
333 static void cleanup_relayd_ht(void)
334 {
335 struct lttng_ht_iter iter;
336 struct consumer_relayd_sock_pair *relayd;
337
338 rcu_read_lock();
339
340 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
341 node.node) {
342 destroy_relayd(relayd);
343 }
344
345 rcu_read_unlock();
346
347 lttng_ht_destroy(consumer_data.relayd_ht);
348 }
349
350 /*
351 * Update the end point status of all streams having the given network sequence
352 * index (relayd index).
353 *
354 * It's atomically set without having the stream mutex locked which is fine
355 * because we handle the write/read race with a pipe wakeup for each thread.
356 */
357 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
358 enum consumer_endpoint_status status)
359 {
360 struct lttng_ht_iter iter;
361 struct lttng_consumer_stream *stream;
362
363 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
364
365 rcu_read_lock();
366
367 /* Let's begin with metadata */
368 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
369 if (stream->net_seq_idx == net_seq_idx) {
370 uatomic_set(&stream->endpoint_status, status);
371 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
372 }
373 }
374
375 /* Follow up by the data streams */
376 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
377 if (stream->net_seq_idx == net_seq_idx) {
378 uatomic_set(&stream->endpoint_status, status);
379 DBG("Delete flag set to data stream %d", stream->wait_fd);
380 }
381 }
382 rcu_read_unlock();
383 }
384
385 /*
386 * Cleanup a relayd object by flagging every associated streams for deletion,
387 * destroying the object meaning removing it from the relayd hash table,
388 * closing the sockets and freeing the memory in a RCU call.
389 *
390 * If a local data context is available, notify the threads that the streams'
391 * state have changed.
392 */
393 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
394 struct lttng_consumer_local_data *ctx)
395 {
396 uint64_t netidx;
397
398 assert(relayd);
399
400 DBG("Cleaning up relayd sockets");
401
402 /* Save the net sequence index before destroying the object */
403 netidx = relayd->net_seq_idx;
404
405 /*
406 * Delete the relayd from the relayd hash table, close the sockets and free
407 * the object in a RCU call.
408 */
409 destroy_relayd(relayd);
410
411 /* Set inactive endpoint to all streams */
412 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
413
414 /*
415 * With a local data context, notify the threads that the streams' state
416 * have changed. The write() action on the pipe acts as an "implicit"
417 * memory barrier ordering the updates of the end point status from the
418 * read of this status which happens AFTER receiving this notify.
419 */
420 if (ctx) {
421 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
422 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
423 }
424 }
425
426 /*
427 * Flag a relayd socket pair for destruction. Destroy it if the refcount
428 * reaches zero.
429 *
430 * RCU read side lock MUST be aquired before calling this function.
431 */
432 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
433 {
434 assert(relayd);
435
436 /* Set destroy flag for this object */
437 uatomic_set(&relayd->destroy_flag, 1);
438
439 /* Destroy the relayd if refcount is 0 */
440 if (uatomic_read(&relayd->refcount) == 0) {
441 destroy_relayd(relayd);
442 }
443 }
444
445 /*
446 * Remove a stream from the global list protected by a mutex. This
447 * function is also responsible for freeing its data structures.
448 */
449 void consumer_del_stream(struct lttng_consumer_stream *stream,
450 struct lttng_ht *ht)
451 {
452 int ret;
453 struct lttng_ht_iter iter;
454 struct lttng_consumer_channel *free_chan = NULL;
455 struct consumer_relayd_sock_pair *relayd;
456
457 assert(stream);
458
459 DBG("Consumer del stream %d", stream->wait_fd);
460
461 if (ht == NULL) {
462 /* Means the stream was allocated but not successfully added */
463 goto free_stream_rcu;
464 }
465
466 pthread_mutex_lock(&consumer_data.lock);
467 pthread_mutex_lock(&stream->lock);
468
469 switch (consumer_data.type) {
470 case LTTNG_CONSUMER_KERNEL:
471 if (stream->mmap_base != NULL) {
472 ret = munmap(stream->mmap_base, stream->mmap_len);
473 if (ret != 0) {
474 PERROR("munmap");
475 }
476 }
477
478 if (stream->wait_fd >= 0) {
479 ret = close(stream->wait_fd);
480 if (ret) {
481 PERROR("close");
482 }
483 }
484 break;
485 case LTTNG_CONSUMER32_UST:
486 case LTTNG_CONSUMER64_UST:
487 lttng_ustconsumer_del_stream(stream);
488 break;
489 default:
490 ERR("Unknown consumer_data type");
491 assert(0);
492 goto end;
493 }
494
495 rcu_read_lock();
496 iter.iter.node = &stream->node.node;
497 ret = lttng_ht_del(ht, &iter);
498 assert(!ret);
499
500 iter.iter.node = &stream->node_channel_id.node;
501 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
502 assert(!ret);
503
504 iter.iter.node = &stream->node_session_id.node;
505 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
506 assert(!ret);
507 rcu_read_unlock();
508
509 assert(consumer_data.stream_count > 0);
510 consumer_data.stream_count--;
511
512 if (stream->out_fd >= 0) {
513 ret = close(stream->out_fd);
514 if (ret) {
515 PERROR("close");
516 }
517 }
518
519 /* Check and cleanup relayd */
520 rcu_read_lock();
521 relayd = consumer_find_relayd(stream->net_seq_idx);
522 if (relayd != NULL) {
523 uatomic_dec(&relayd->refcount);
524 assert(uatomic_read(&relayd->refcount) >= 0);
525
526 /* Closing streams requires to lock the control socket. */
527 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
528 ret = relayd_send_close_stream(&relayd->control_sock,
529 stream->relayd_stream_id,
530 stream->next_net_seq_num - 1);
531 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
532 if (ret < 0) {
533 DBG("Unable to close stream on the relayd. Continuing");
534 /*
535 * Continue here. There is nothing we can do for the relayd.
536 * Chances are that the relayd has closed the socket so we just
537 * continue cleaning up.
538 */
539 }
540
541 /* Both conditions are met, we destroy the relayd. */
542 if (uatomic_read(&relayd->refcount) == 0 &&
543 uatomic_read(&relayd->destroy_flag)) {
544 destroy_relayd(relayd);
545 }
546 }
547 rcu_read_unlock();
548
549 if (!uatomic_sub_return(&stream->chan->refcount, 1)
550 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
551 free_chan = stream->chan;
552 }
553
554 end:
555 consumer_data.need_update = 1;
556 pthread_mutex_unlock(&stream->lock);
557 pthread_mutex_unlock(&consumer_data.lock);
558
559 if (free_chan) {
560 consumer_del_channel(free_chan);
561 }
562
563 free_stream_rcu:
564 call_rcu(&stream->node.head, free_stream_rcu);
565 }
566
567 /*
568 * XXX naming of del vs destroy is all mixed up.
569 */
570 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
571 {
572 consumer_del_stream(stream, data_ht);
573 }
574
575 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
576 {
577 consumer_del_stream(stream, metadata_ht);
578 }
579
580 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
581 uint64_t stream_key,
582 enum lttng_consumer_stream_state state,
583 const char *channel_name,
584 uid_t uid,
585 gid_t gid,
586 uint64_t relayd_id,
587 uint64_t session_id,
588 int cpu,
589 int *alloc_ret,
590 enum consumer_channel_type type)
591 {
592 int ret;
593 struct lttng_consumer_stream *stream;
594
595 stream = zmalloc(sizeof(*stream));
596 if (stream == NULL) {
597 PERROR("malloc struct lttng_consumer_stream");
598 ret = -ENOMEM;
599 goto end;
600 }
601
602 rcu_read_lock();
603
604 stream->key = stream_key;
605 stream->out_fd = -1;
606 stream->out_fd_offset = 0;
607 stream->output_written = 0;
608 stream->state = state;
609 stream->uid = uid;
610 stream->gid = gid;
611 stream->net_seq_idx = relayd_id;
612 stream->session_id = session_id;
613 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
614 pthread_mutex_init(&stream->lock, NULL);
615
616 /* If channel is the metadata, flag this stream as metadata. */
617 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
618 stream->metadata_flag = 1;
619 /* Metadata is flat out. */
620 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
621 } else {
622 /* Format stream name to <channel_name>_<cpu_number> */
623 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
624 channel_name, cpu);
625 if (ret < 0) {
626 PERROR("snprintf stream name");
627 goto error;
628 }
629 }
630
631 /* Key is always the wait_fd for streams. */
632 lttng_ht_node_init_u64(&stream->node, stream->key);
633
634 /* Init node per channel id key */
635 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
636
637 /* Init session id node with the stream session id */
638 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
639
640 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64 " relayd_id %" PRIu64 ", session_id %" PRIu64,
641 stream->name, stream->key, channel_key, stream->net_seq_idx, stream->session_id);
642
643 rcu_read_unlock();
644 return stream;
645
646 error:
647 rcu_read_unlock();
648 free(stream);
649 end:
650 if (alloc_ret) {
651 *alloc_ret = ret;
652 }
653 return NULL;
654 }
655
656 /*
657 * Add a stream to the global list protected by a mutex.
658 */
659 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
660 {
661 struct lttng_ht *ht = data_ht;
662 int ret = 0;
663 struct consumer_relayd_sock_pair *relayd;
664
665 assert(stream);
666 assert(ht);
667
668 DBG3("Adding consumer stream %" PRIu64, stream->key);
669
670 pthread_mutex_lock(&consumer_data.lock);
671 pthread_mutex_lock(&stream->chan->lock);
672 pthread_mutex_lock(&stream->chan->timer_lock);
673 pthread_mutex_lock(&stream->lock);
674 rcu_read_lock();
675
676 /* Steal stream identifier to avoid having streams with the same key */
677 steal_stream_key(stream->key, ht);
678
679 lttng_ht_add_unique_u64(ht, &stream->node);
680
681 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
682 &stream->node_channel_id);
683
684 /*
685 * Add stream to the stream_list_ht of the consumer data. No need to steal
686 * the key since the HT does not use it and we allow to add redundant keys
687 * into this table.
688 */
689 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
690
691 /* Check and cleanup relayd */
692 relayd = consumer_find_relayd(stream->net_seq_idx);
693 if (relayd != NULL) {
694 uatomic_inc(&relayd->refcount);
695 }
696
697 /*
698 * When nb_init_stream_left reaches 0, we don't need to trigger any action
699 * in terms of destroying the associated channel, because the action that
700 * causes the count to become 0 also causes a stream to be added. The
701 * channel deletion will thus be triggered by the following removal of this
702 * stream.
703 */
704 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
705 /* Increment refcount before decrementing nb_init_stream_left */
706 cmm_smp_wmb();
707 uatomic_dec(&stream->chan->nb_init_stream_left);
708 }
709
710 /* Update consumer data once the node is inserted. */
711 consumer_data.stream_count++;
712 consumer_data.need_update = 1;
713
714 rcu_read_unlock();
715 pthread_mutex_unlock(&stream->lock);
716 pthread_mutex_unlock(&stream->chan->timer_lock);
717 pthread_mutex_unlock(&stream->chan->lock);
718 pthread_mutex_unlock(&consumer_data.lock);
719
720 return ret;
721 }
722
723 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
724 {
725 consumer_del_stream(stream, data_ht);
726 }
727
728 /*
729 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
730 * be acquired before calling this.
731 */
732 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
733 {
734 int ret = 0;
735 struct lttng_ht_node_u64 *node;
736 struct lttng_ht_iter iter;
737
738 assert(relayd);
739
740 lttng_ht_lookup(consumer_data.relayd_ht,
741 &relayd->net_seq_idx, &iter);
742 node = lttng_ht_iter_get_node_u64(&iter);
743 if (node != NULL) {
744 goto end;
745 }
746 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
747
748 end:
749 return ret;
750 }
751
752 /*
753 * Allocate and return a consumer relayd socket.
754 */
755 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
756 uint64_t net_seq_idx)
757 {
758 struct consumer_relayd_sock_pair *obj = NULL;
759
760 /* net sequence index of -1 is a failure */
761 if (net_seq_idx == (uint64_t) -1ULL) {
762 goto error;
763 }
764
765 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
766 if (obj == NULL) {
767 PERROR("zmalloc relayd sock");
768 goto error;
769 }
770
771 obj->net_seq_idx = net_seq_idx;
772 obj->refcount = 0;
773 obj->destroy_flag = 0;
774 obj->control_sock.sock.fd = -1;
775 obj->data_sock.sock.fd = -1;
776 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
777 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
778
779 error:
780 return obj;
781 }
782
783 /*
784 * Find a relayd socket pair in the global consumer data.
785 *
786 * Return the object if found else NULL.
787 * RCU read-side lock must be held across this call and while using the
788 * returned object.
789 */
790 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
791 {
792 struct lttng_ht_iter iter;
793 struct lttng_ht_node_u64 *node;
794 struct consumer_relayd_sock_pair *relayd = NULL;
795
796 /* Negative keys are lookup failures */
797 if (key == (uint64_t) -1ULL) {
798 goto error;
799 }
800
801 lttng_ht_lookup(consumer_data.relayd_ht, &key,
802 &iter);
803 node = lttng_ht_iter_get_node_u64(&iter);
804 if (node != NULL) {
805 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
806 }
807
808 error:
809 return relayd;
810 }
811
812 /*
813 * Handle stream for relayd transmission if the stream applies for network
814 * streaming where the net sequence index is set.
815 *
816 * Return destination file descriptor or negative value on error.
817 */
818 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
819 size_t data_size, unsigned long padding,
820 struct consumer_relayd_sock_pair *relayd)
821 {
822 int outfd = -1, ret;
823 struct lttcomm_relayd_data_hdr data_hdr;
824
825 /* Safety net */
826 assert(stream);
827 assert(relayd);
828
829 /* Reset data header */
830 memset(&data_hdr, 0, sizeof(data_hdr));
831
832 if (stream->metadata_flag) {
833 /* Caller MUST acquire the relayd control socket lock */
834 ret = relayd_send_metadata(&relayd->control_sock, data_size);
835 if (ret < 0) {
836 goto error;
837 }
838
839 /* Metadata are always sent on the control socket. */
840 outfd = relayd->control_sock.sock.fd;
841 } else {
842 /* Set header with stream information */
843 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
844 data_hdr.data_size = htobe32(data_size);
845 data_hdr.padding_size = htobe32(padding);
846 /*
847 * Note that net_seq_num below is assigned with the *current* value of
848 * next_net_seq_num and only after that the next_net_seq_num will be
849 * increment. This is why when issuing a command on the relayd using
850 * this next value, 1 should always be substracted in order to compare
851 * the last seen sequence number on the relayd side to the last sent.
852 */
853 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
854 /* Other fields are zeroed previously */
855
856 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
857 sizeof(data_hdr));
858 if (ret < 0) {
859 goto error;
860 }
861
862 ++stream->next_net_seq_num;
863
864 /* Set to go on data socket */
865 outfd = relayd->data_sock.sock.fd;
866 }
867
868 error:
869 return outfd;
870 }
871
872 /*
873 * Allocate and return a new lttng_consumer_channel object using the given key
874 * to initialize the hash table node.
875 *
876 * On error, return NULL.
877 */
878 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
879 uint64_t session_id,
880 const char *pathname,
881 const char *name,
882 uid_t uid,
883 gid_t gid,
884 uint64_t relayd_id,
885 enum lttng_event_output output,
886 uint64_t tracefile_size,
887 uint64_t tracefile_count,
888 uint64_t session_id_per_pid)
889 {
890 struct lttng_consumer_channel *channel;
891
892 channel = zmalloc(sizeof(*channel));
893 if (channel == NULL) {
894 PERROR("malloc struct lttng_consumer_channel");
895 goto end;
896 }
897
898 channel->key = key;
899 channel->refcount = 0;
900 channel->session_id = session_id;
901 channel->session_id_per_pid = session_id_per_pid;
902 channel->uid = uid;
903 channel->gid = gid;
904 channel->relayd_id = relayd_id;
905 channel->output = output;
906 channel->tracefile_size = tracefile_size;
907 channel->tracefile_count = tracefile_count;
908 pthread_mutex_init(&channel->lock, NULL);
909 pthread_mutex_init(&channel->timer_lock, NULL);
910
911 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
912 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
913
914 strncpy(channel->name, name, sizeof(channel->name));
915 channel->name[sizeof(channel->name) - 1] = '\0';
916
917 lttng_ht_node_init_u64(&channel->node, channel->key);
918
919 channel->wait_fd = -1;
920
921 CDS_INIT_LIST_HEAD(&channel->streams.head);
922
923 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
924
925 end:
926 return channel;
927 }
928
929 /*
930 * Add a channel to the global list protected by a mutex.
931 *
932 * On success 0 is returned else a negative value.
933 */
934 int consumer_add_channel(struct lttng_consumer_channel *channel,
935 struct lttng_consumer_local_data *ctx)
936 {
937 int ret = 0;
938 struct lttng_ht_node_u64 *node;
939 struct lttng_ht_iter iter;
940
941 pthread_mutex_lock(&consumer_data.lock);
942 pthread_mutex_lock(&channel->lock);
943 pthread_mutex_lock(&channel->timer_lock);
944 rcu_read_lock();
945
946 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
947 node = lttng_ht_iter_get_node_u64(&iter);
948 if (node != NULL) {
949 /* Channel already exist. Ignore the insertion */
950 ERR("Consumer add channel key %" PRIu64 " already exists!",
951 channel->key);
952 ret = -EEXIST;
953 goto end;
954 }
955
956 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
957
958 end:
959 rcu_read_unlock();
960 pthread_mutex_unlock(&channel->timer_lock);
961 pthread_mutex_unlock(&channel->lock);
962 pthread_mutex_unlock(&consumer_data.lock);
963
964 if (!ret && channel->wait_fd != -1 &&
965 channel->metadata_stream == NULL) {
966 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
967 }
968 return ret;
969 }
970
971 /*
972 * Allocate the pollfd structure and the local view of the out fds to avoid
973 * doing a lookup in the linked list and concurrency issues when writing is
974 * needed. Called with consumer_data.lock held.
975 *
976 * Returns the number of fds in the structures.
977 */
978 static int update_poll_array(struct lttng_consumer_local_data *ctx,
979 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
980 struct lttng_ht *ht)
981 {
982 int i = 0;
983 struct lttng_ht_iter iter;
984 struct lttng_consumer_stream *stream;
985
986 assert(ctx);
987 assert(ht);
988 assert(pollfd);
989 assert(local_stream);
990
991 DBG("Updating poll fd array");
992 rcu_read_lock();
993 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
994 /*
995 * Only active streams with an active end point can be added to the
996 * poll set and local stream storage of the thread.
997 *
998 * There is a potential race here for endpoint_status to be updated
999 * just after the check. However, this is OK since the stream(s) will
1000 * be deleted once the thread is notified that the end point state has
1001 * changed where this function will be called back again.
1002 */
1003 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1004 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1005 continue;
1006 }
1007 /*
1008 * This clobbers way too much the debug output. Uncomment that if you
1009 * need it for debugging purposes.
1010 *
1011 * DBG("Active FD %d", stream->wait_fd);
1012 */
1013 (*pollfd)[i].fd = stream->wait_fd;
1014 (*pollfd)[i].events = POLLIN | POLLPRI;
1015 local_stream[i] = stream;
1016 i++;
1017 }
1018 rcu_read_unlock();
1019
1020 /*
1021 * Insert the consumer_data_pipe at the end of the array and don't
1022 * increment i so nb_fd is the number of real FD.
1023 */
1024 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1025 (*pollfd)[i].events = POLLIN | POLLPRI;
1026 return i;
1027 }
1028
1029 /*
1030 * Poll on the should_quit pipe and the command socket return -1 on error and
1031 * should exit, 0 if data is available on the command socket
1032 */
1033 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1034 {
1035 int num_rdy;
1036
1037 restart:
1038 num_rdy = poll(consumer_sockpoll, 2, -1);
1039 if (num_rdy == -1) {
1040 /*
1041 * Restart interrupted system call.
1042 */
1043 if (errno == EINTR) {
1044 goto restart;
1045 }
1046 PERROR("Poll error");
1047 goto exit;
1048 }
1049 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1050 DBG("consumer_should_quit wake up");
1051 goto exit;
1052 }
1053 return 0;
1054
1055 exit:
1056 return -1;
1057 }
1058
1059 /*
1060 * Set the error socket.
1061 */
1062 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1063 int sock)
1064 {
1065 ctx->consumer_error_socket = sock;
1066 }
1067
1068 /*
1069 * Set the command socket path.
1070 */
1071 void lttng_consumer_set_command_sock_path(
1072 struct lttng_consumer_local_data *ctx, char *sock)
1073 {
1074 ctx->consumer_command_sock_path = sock;
1075 }
1076
1077 /*
1078 * Send return code to the session daemon.
1079 * If the socket is not defined, we return 0, it is not a fatal error
1080 */
1081 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1082 {
1083 if (ctx->consumer_error_socket > 0) {
1084 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1085 sizeof(enum lttcomm_sessiond_command));
1086 }
1087
1088 return 0;
1089 }
1090
1091 /*
1092 * Close all the tracefiles and stream fds and MUST be called when all
1093 * instances are destroyed i.e. when all threads were joined and are ended.
1094 */
1095 void lttng_consumer_cleanup(void)
1096 {
1097 struct lttng_ht_iter iter;
1098 struct lttng_consumer_channel *channel;
1099
1100 rcu_read_lock();
1101
1102 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1103 node.node) {
1104 consumer_del_channel(channel);
1105 }
1106
1107 rcu_read_unlock();
1108
1109 lttng_ht_destroy(consumer_data.channel_ht);
1110
1111 cleanup_relayd_ht();
1112
1113 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1114
1115 /*
1116 * This HT contains streams that are freed by either the metadata thread or
1117 * the data thread so we do *nothing* on the hash table and simply destroy
1118 * it.
1119 */
1120 lttng_ht_destroy(consumer_data.stream_list_ht);
1121 }
1122
1123 /*
1124 * Called from signal handler.
1125 */
1126 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1127 {
1128 int ret;
1129 consumer_quit = 1;
1130 do {
1131 ret = write(ctx->consumer_should_quit[1], "4", 1);
1132 } while (ret < 0 && errno == EINTR);
1133 if (ret < 0 || ret != 1) {
1134 PERROR("write consumer quit");
1135 }
1136
1137 DBG("Consumer flag that it should quit");
1138 }
1139
1140 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1141 off_t orig_offset)
1142 {
1143 int outfd = stream->out_fd;
1144
1145 /*
1146 * This does a blocking write-and-wait on any page that belongs to the
1147 * subbuffer prior to the one we just wrote.
1148 * Don't care about error values, as these are just hints and ways to
1149 * limit the amount of page cache used.
1150 */
1151 if (orig_offset < stream->max_sb_size) {
1152 return;
1153 }
1154 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1155 stream->max_sb_size,
1156 SYNC_FILE_RANGE_WAIT_BEFORE
1157 | SYNC_FILE_RANGE_WRITE
1158 | SYNC_FILE_RANGE_WAIT_AFTER);
1159 /*
1160 * Give hints to the kernel about how we access the file:
1161 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1162 * we write it.
1163 *
1164 * We need to call fadvise again after the file grows because the
1165 * kernel does not seem to apply fadvise to non-existing parts of the
1166 * file.
1167 *
1168 * Call fadvise _after_ having waited for the page writeback to
1169 * complete because the dirty page writeback semantic is not well
1170 * defined. So it can be expected to lead to lower throughput in
1171 * streaming.
1172 */
1173 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1174 stream->max_sb_size, POSIX_FADV_DONTNEED);
1175 }
1176
1177 /*
1178 * Initialise the necessary environnement :
1179 * - create a new context
1180 * - create the poll_pipe
1181 * - create the should_quit pipe (for signal handler)
1182 * - create the thread pipe (for splice)
1183 *
1184 * Takes a function pointer as argument, this function is called when data is
1185 * available on a buffer. This function is responsible to do the
1186 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1187 * buffer configuration and then kernctl_put_next_subbuf at the end.
1188 *
1189 * Returns a pointer to the new context or NULL on error.
1190 */
1191 struct lttng_consumer_local_data *lttng_consumer_create(
1192 enum lttng_consumer_type type,
1193 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1194 struct lttng_consumer_local_data *ctx),
1195 int (*recv_channel)(struct lttng_consumer_channel *channel),
1196 int (*recv_stream)(struct lttng_consumer_stream *stream),
1197 int (*update_stream)(uint64_t stream_key, uint32_t state))
1198 {
1199 int ret;
1200 struct lttng_consumer_local_data *ctx;
1201
1202 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1203 consumer_data.type == type);
1204 consumer_data.type = type;
1205
1206 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1207 if (ctx == NULL) {
1208 PERROR("allocating context");
1209 goto error;
1210 }
1211
1212 ctx->consumer_error_socket = -1;
1213 ctx->consumer_metadata_socket = -1;
1214 /* assign the callbacks */
1215 ctx->on_buffer_ready = buffer_ready;
1216 ctx->on_recv_channel = recv_channel;
1217 ctx->on_recv_stream = recv_stream;
1218 ctx->on_update_stream = update_stream;
1219
1220 ctx->consumer_data_pipe = lttng_pipe_open(0);
1221 if (!ctx->consumer_data_pipe) {
1222 goto error_poll_pipe;
1223 }
1224
1225 ret = pipe(ctx->consumer_should_quit);
1226 if (ret < 0) {
1227 PERROR("Error creating recv pipe");
1228 goto error_quit_pipe;
1229 }
1230
1231 ret = pipe(ctx->consumer_thread_pipe);
1232 if (ret < 0) {
1233 PERROR("Error creating thread pipe");
1234 goto error_thread_pipe;
1235 }
1236
1237 ret = pipe(ctx->consumer_channel_pipe);
1238 if (ret < 0) {
1239 PERROR("Error creating channel pipe");
1240 goto error_channel_pipe;
1241 }
1242
1243 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1244 if (!ctx->consumer_metadata_pipe) {
1245 goto error_metadata_pipe;
1246 }
1247
1248 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1249 if (ret < 0) {
1250 goto error_splice_pipe;
1251 }
1252
1253 return ctx;
1254
1255 error_splice_pipe:
1256 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1257 error_metadata_pipe:
1258 utils_close_pipe(ctx->consumer_channel_pipe);
1259 error_channel_pipe:
1260 utils_close_pipe(ctx->consumer_thread_pipe);
1261 error_thread_pipe:
1262 utils_close_pipe(ctx->consumer_should_quit);
1263 error_quit_pipe:
1264 lttng_pipe_destroy(ctx->consumer_data_pipe);
1265 error_poll_pipe:
1266 free(ctx);
1267 error:
1268 return NULL;
1269 }
1270
1271 /*
1272 * Close all fds associated with the instance and free the context.
1273 */
1274 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1275 {
1276 int ret;
1277
1278 DBG("Consumer destroying it. Closing everything.");
1279
1280 ret = close(ctx->consumer_error_socket);
1281 if (ret) {
1282 PERROR("close");
1283 }
1284 ret = close(ctx->consumer_metadata_socket);
1285 if (ret) {
1286 PERROR("close");
1287 }
1288 utils_close_pipe(ctx->consumer_thread_pipe);
1289 utils_close_pipe(ctx->consumer_channel_pipe);
1290 lttng_pipe_destroy(ctx->consumer_data_pipe);
1291 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1292 utils_close_pipe(ctx->consumer_should_quit);
1293 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1294
1295 unlink(ctx->consumer_command_sock_path);
1296 free(ctx);
1297 }
1298
1299 /*
1300 * Write the metadata stream id on the specified file descriptor.
1301 */
1302 static int write_relayd_metadata_id(int fd,
1303 struct lttng_consumer_stream *stream,
1304 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1305 {
1306 int ret;
1307 struct lttcomm_relayd_metadata_payload hdr;
1308
1309 hdr.stream_id = htobe64(stream->relayd_stream_id);
1310 hdr.padding_size = htobe32(padding);
1311 do {
1312 ret = write(fd, (void *) &hdr, sizeof(hdr));
1313 } while (ret < 0 && errno == EINTR);
1314 if (ret < 0 || ret != sizeof(hdr)) {
1315 /*
1316 * This error means that the fd's end is closed so ignore the perror
1317 * not to clubber the error output since this can happen in a normal
1318 * code path.
1319 */
1320 if (errno != EPIPE) {
1321 PERROR("write metadata stream id");
1322 }
1323 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1324 /*
1325 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1326 * handle writting the missing part so report that as an error and
1327 * don't lie to the caller.
1328 */
1329 ret = -1;
1330 goto end;
1331 }
1332 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1333 stream->relayd_stream_id, padding);
1334
1335 end:
1336 return ret;
1337 }
1338
1339 /*
1340 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1341 * core function for writing trace buffers to either the local filesystem or
1342 * the network.
1343 *
1344 * It must be called with the stream lock held.
1345 *
1346 * Careful review MUST be put if any changes occur!
1347 *
1348 * Returns the number of bytes written
1349 */
1350 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1351 struct lttng_consumer_local_data *ctx,
1352 struct lttng_consumer_stream *stream, unsigned long len,
1353 unsigned long padding)
1354 {
1355 unsigned long mmap_offset;
1356 void *mmap_base;
1357 ssize_t ret = 0, written = 0;
1358 off_t orig_offset = stream->out_fd_offset;
1359 /* Default is on the disk */
1360 int outfd = stream->out_fd;
1361 struct consumer_relayd_sock_pair *relayd = NULL;
1362 unsigned int relayd_hang_up = 0;
1363
1364 /* RCU lock for the relayd pointer */
1365 rcu_read_lock();
1366
1367 /* Flag that the current stream if set for network streaming. */
1368 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1369 relayd = consumer_find_relayd(stream->net_seq_idx);
1370 if (relayd == NULL) {
1371 ret = -EPIPE;
1372 goto end;
1373 }
1374 }
1375
1376 /* get the offset inside the fd to mmap */
1377 switch (consumer_data.type) {
1378 case LTTNG_CONSUMER_KERNEL:
1379 mmap_base = stream->mmap_base;
1380 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1381 if (ret != 0) {
1382 PERROR("tracer ctl get_mmap_read_offset");
1383 written = -errno;
1384 goto end;
1385 }
1386 break;
1387 case LTTNG_CONSUMER32_UST:
1388 case LTTNG_CONSUMER64_UST:
1389 mmap_base = lttng_ustctl_get_mmap_base(stream);
1390 if (!mmap_base) {
1391 ERR("read mmap get mmap base for stream %s", stream->name);
1392 written = -EPERM;
1393 goto end;
1394 }
1395 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1396 if (ret != 0) {
1397 PERROR("tracer ctl get_mmap_read_offset");
1398 written = ret;
1399 goto end;
1400 }
1401 break;
1402 default:
1403 ERR("Unknown consumer_data type");
1404 assert(0);
1405 }
1406
1407 /* Handle stream on the relayd if the output is on the network */
1408 if (relayd) {
1409 unsigned long netlen = len;
1410
1411 /*
1412 * Lock the control socket for the complete duration of the function
1413 * since from this point on we will use the socket.
1414 */
1415 if (stream->metadata_flag) {
1416 /* Metadata requires the control socket. */
1417 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1418 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1419 }
1420
1421 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1422 if (ret >= 0) {
1423 /* Use the returned socket. */
1424 outfd = ret;
1425
1426 /* Write metadata stream id before payload */
1427 if (stream->metadata_flag) {
1428 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1429 if (ret < 0) {
1430 written = ret;
1431 /* Socket operation failed. We consider the relayd dead */
1432 if (ret == -EPIPE || ret == -EINVAL) {
1433 relayd_hang_up = 1;
1434 goto write_error;
1435 }
1436 goto end;
1437 }
1438 }
1439 } else {
1440 /* Socket operation failed. We consider the relayd dead */
1441 if (ret == -EPIPE || ret == -EINVAL) {
1442 relayd_hang_up = 1;
1443 goto write_error;
1444 }
1445 /* Else, use the default set before which is the filesystem. */
1446 }
1447 } else {
1448 /* No streaming, we have to set the len with the full padding */
1449 len += padding;
1450
1451 /*
1452 * Check if we need to change the tracefile before writing the packet.
1453 */
1454 if (stream->chan->tracefile_size > 0 &&
1455 (stream->tracefile_size_current + len) >
1456 stream->chan->tracefile_size) {
1457 ret = utils_rotate_stream_file(stream->chan->pathname,
1458 stream->name, stream->chan->tracefile_size,
1459 stream->chan->tracefile_count, stream->uid, stream->gid,
1460 stream->out_fd, &(stream->tracefile_count_current));
1461 if (ret < 0) {
1462 ERR("Rotating output file");
1463 goto end;
1464 }
1465 outfd = stream->out_fd = ret;
1466 /* Reset current size because we just perform a rotation. */
1467 stream->tracefile_size_current = 0;
1468 stream->out_fd_offset = 0;
1469 orig_offset = 0;
1470 }
1471 stream->tracefile_size_current += len;
1472 }
1473
1474 while (len > 0) {
1475 do {
1476 ret = write(outfd, mmap_base + mmap_offset, len);
1477 } while (ret < 0 && errno == EINTR);
1478 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1479 if (ret < 0) {
1480 /*
1481 * This is possible if the fd is closed on the other side (outfd)
1482 * or any write problem. It can be verbose a bit for a normal
1483 * execution if for instance the relayd is stopped abruptly. This
1484 * can happen so set this to a DBG statement.
1485 */
1486 DBG("Error in file write mmap");
1487 if (written == 0) {
1488 written = -errno;
1489 }
1490 /* Socket operation failed. We consider the relayd dead */
1491 if (errno == EPIPE || errno == EINVAL) {
1492 relayd_hang_up = 1;
1493 goto write_error;
1494 }
1495 goto end;
1496 } else if (ret > len) {
1497 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1498 written += ret;
1499 goto end;
1500 } else {
1501 len -= ret;
1502 mmap_offset += ret;
1503 }
1504
1505 /* This call is useless on a socket so better save a syscall. */
1506 if (!relayd) {
1507 /* This won't block, but will start writeout asynchronously */
1508 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1509 SYNC_FILE_RANGE_WRITE);
1510 stream->out_fd_offset += ret;
1511 }
1512 stream->output_written += ret;
1513 written += ret;
1514 }
1515 lttng_consumer_sync_trace_file(stream, orig_offset);
1516
1517 write_error:
1518 /*
1519 * This is a special case that the relayd has closed its socket. Let's
1520 * cleanup the relayd object and all associated streams.
1521 */
1522 if (relayd && relayd_hang_up) {
1523 cleanup_relayd(relayd, ctx);
1524 }
1525
1526 end:
1527 /* Unlock only if ctrl socket used */
1528 if (relayd && stream->metadata_flag) {
1529 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1530 }
1531
1532 rcu_read_unlock();
1533 return written;
1534 }
1535
1536 /*
1537 * Splice the data from the ring buffer to the tracefile.
1538 *
1539 * It must be called with the stream lock held.
1540 *
1541 * Returns the number of bytes spliced.
1542 */
1543 ssize_t lttng_consumer_on_read_subbuffer_splice(
1544 struct lttng_consumer_local_data *ctx,
1545 struct lttng_consumer_stream *stream, unsigned long len,
1546 unsigned long padding)
1547 {
1548 ssize_t ret = 0, written = 0, ret_splice = 0;
1549 loff_t offset = 0;
1550 off_t orig_offset = stream->out_fd_offset;
1551 int fd = stream->wait_fd;
1552 /* Default is on the disk */
1553 int outfd = stream->out_fd;
1554 struct consumer_relayd_sock_pair *relayd = NULL;
1555 int *splice_pipe;
1556 unsigned int relayd_hang_up = 0;
1557
1558 switch (consumer_data.type) {
1559 case LTTNG_CONSUMER_KERNEL:
1560 break;
1561 case LTTNG_CONSUMER32_UST:
1562 case LTTNG_CONSUMER64_UST:
1563 /* Not supported for user space tracing */
1564 return -ENOSYS;
1565 default:
1566 ERR("Unknown consumer_data type");
1567 assert(0);
1568 }
1569
1570 /* RCU lock for the relayd pointer */
1571 rcu_read_lock();
1572
1573 /* Flag that the current stream if set for network streaming. */
1574 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1575 relayd = consumer_find_relayd(stream->net_seq_idx);
1576 if (relayd == NULL) {
1577 ret = -EPIPE;
1578 goto end;
1579 }
1580 }
1581
1582 /*
1583 * Choose right pipe for splice. Metadata and trace data are handled by
1584 * different threads hence the use of two pipes in order not to race or
1585 * corrupt the written data.
1586 */
1587 if (stream->metadata_flag) {
1588 splice_pipe = ctx->consumer_splice_metadata_pipe;
1589 } else {
1590 splice_pipe = ctx->consumer_thread_pipe;
1591 }
1592
1593 /* Write metadata stream id before payload */
1594 if (relayd) {
1595 int total_len = len;
1596
1597 if (stream->metadata_flag) {
1598 /*
1599 * Lock the control socket for the complete duration of the function
1600 * since from this point on we will use the socket.
1601 */
1602 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1603
1604 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1605 padding);
1606 if (ret < 0) {
1607 written = ret;
1608 /* Socket operation failed. We consider the relayd dead */
1609 if (ret == -EBADF) {
1610 WARN("Remote relayd disconnected. Stopping");
1611 relayd_hang_up = 1;
1612 goto write_error;
1613 }
1614 goto end;
1615 }
1616
1617 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1618 }
1619
1620 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1621 if (ret >= 0) {
1622 /* Use the returned socket. */
1623 outfd = ret;
1624 } else {
1625 /* Socket operation failed. We consider the relayd dead */
1626 if (ret == -EBADF) {
1627 WARN("Remote relayd disconnected. Stopping");
1628 relayd_hang_up = 1;
1629 goto write_error;
1630 }
1631 goto end;
1632 }
1633 } else {
1634 /* No streaming, we have to set the len with the full padding */
1635 len += padding;
1636
1637 /*
1638 * Check if we need to change the tracefile before writing the packet.
1639 */
1640 if (stream->chan->tracefile_size > 0 &&
1641 (stream->tracefile_size_current + len) >
1642 stream->chan->tracefile_size) {
1643 ret = utils_rotate_stream_file(stream->chan->pathname,
1644 stream->name, stream->chan->tracefile_size,
1645 stream->chan->tracefile_count, stream->uid, stream->gid,
1646 stream->out_fd, &(stream->tracefile_count_current));
1647 if (ret < 0) {
1648 ERR("Rotating output file");
1649 goto end;
1650 }
1651 outfd = stream->out_fd = ret;
1652 /* Reset current size because we just perform a rotation. */
1653 stream->tracefile_size_current = 0;
1654 stream->out_fd_offset = 0;
1655 orig_offset = 0;
1656 }
1657 stream->tracefile_size_current += len;
1658 }
1659
1660 while (len > 0) {
1661 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1662 (unsigned long)offset, len, fd, splice_pipe[1]);
1663 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1664 SPLICE_F_MOVE | SPLICE_F_MORE);
1665 DBG("splice chan to pipe, ret %zd", ret_splice);
1666 if (ret_splice < 0) {
1667 PERROR("Error in relay splice");
1668 if (written == 0) {
1669 written = ret_splice;
1670 }
1671 ret = errno;
1672 goto splice_error;
1673 }
1674
1675 /* Handle stream on the relayd if the output is on the network */
1676 if (relayd) {
1677 if (stream->metadata_flag) {
1678 size_t metadata_payload_size =
1679 sizeof(struct lttcomm_relayd_metadata_payload);
1680
1681 /* Update counter to fit the spliced data */
1682 ret_splice += metadata_payload_size;
1683 len += metadata_payload_size;
1684 /*
1685 * We do this so the return value can match the len passed as
1686 * argument to this function.
1687 */
1688 written -= metadata_payload_size;
1689 }
1690 }
1691
1692 /* Splice data out */
1693 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1694 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1695 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1696 if (ret_splice < 0) {
1697 PERROR("Error in file splice");
1698 if (written == 0) {
1699 written = ret_splice;
1700 }
1701 /* Socket operation failed. We consider the relayd dead */
1702 if (errno == EBADF || errno == EPIPE) {
1703 WARN("Remote relayd disconnected. Stopping");
1704 relayd_hang_up = 1;
1705 goto write_error;
1706 }
1707 ret = errno;
1708 goto splice_error;
1709 } else if (ret_splice > len) {
1710 errno = EINVAL;
1711 PERROR("Wrote more data than requested %zd (len: %lu)",
1712 ret_splice, len);
1713 written += ret_splice;
1714 ret = errno;
1715 goto splice_error;
1716 }
1717 len -= ret_splice;
1718
1719 /* This call is useless on a socket so better save a syscall. */
1720 if (!relayd) {
1721 /* This won't block, but will start writeout asynchronously */
1722 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1723 SYNC_FILE_RANGE_WRITE);
1724 stream->out_fd_offset += ret_splice;
1725 }
1726 stream->output_written += ret_splice;
1727 written += ret_splice;
1728 }
1729 lttng_consumer_sync_trace_file(stream, orig_offset);
1730
1731 ret = ret_splice;
1732
1733 goto end;
1734
1735 write_error:
1736 /*
1737 * This is a special case that the relayd has closed its socket. Let's
1738 * cleanup the relayd object and all associated streams.
1739 */
1740 if (relayd && relayd_hang_up) {
1741 cleanup_relayd(relayd, ctx);
1742 /* Skip splice error so the consumer does not fail */
1743 goto end;
1744 }
1745
1746 splice_error:
1747 /* send the appropriate error description to sessiond */
1748 switch (ret) {
1749 case EINVAL:
1750 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1751 break;
1752 case ENOMEM:
1753 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1754 break;
1755 case ESPIPE:
1756 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1757 break;
1758 }
1759
1760 end:
1761 if (relayd && stream->metadata_flag) {
1762 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1763 }
1764
1765 rcu_read_unlock();
1766 return written;
1767 }
1768
1769 /*
1770 * Take a snapshot for a specific fd
1771 *
1772 * Returns 0 on success, < 0 on error
1773 */
1774 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1775 {
1776 switch (consumer_data.type) {
1777 case LTTNG_CONSUMER_KERNEL:
1778 return lttng_kconsumer_take_snapshot(stream);
1779 case LTTNG_CONSUMER32_UST:
1780 case LTTNG_CONSUMER64_UST:
1781 return lttng_ustconsumer_take_snapshot(stream);
1782 default:
1783 ERR("Unknown consumer_data type");
1784 assert(0);
1785 return -ENOSYS;
1786 }
1787 }
1788
1789 /*
1790 * Get the produced position
1791 *
1792 * Returns 0 on success, < 0 on error
1793 */
1794 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1795 unsigned long *pos)
1796 {
1797 switch (consumer_data.type) {
1798 case LTTNG_CONSUMER_KERNEL:
1799 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1800 case LTTNG_CONSUMER32_UST:
1801 case LTTNG_CONSUMER64_UST:
1802 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1803 default:
1804 ERR("Unknown consumer_data type");
1805 assert(0);
1806 return -ENOSYS;
1807 }
1808 }
1809
1810 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1811 int sock, struct pollfd *consumer_sockpoll)
1812 {
1813 switch (consumer_data.type) {
1814 case LTTNG_CONSUMER_KERNEL:
1815 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1816 case LTTNG_CONSUMER32_UST:
1817 case LTTNG_CONSUMER64_UST:
1818 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1819 default:
1820 ERR("Unknown consumer_data type");
1821 assert(0);
1822 return -ENOSYS;
1823 }
1824 }
1825
1826 /*
1827 * Iterate over all streams of the hashtable and free them properly.
1828 *
1829 * WARNING: *MUST* be used with data stream only.
1830 */
1831 static void destroy_data_stream_ht(struct lttng_ht *ht)
1832 {
1833 struct lttng_ht_iter iter;
1834 struct lttng_consumer_stream *stream;
1835
1836 if (ht == NULL) {
1837 return;
1838 }
1839
1840 rcu_read_lock();
1841 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1842 /*
1843 * Ignore return value since we are currently cleaning up so any error
1844 * can't be handled.
1845 */
1846 (void) consumer_del_stream(stream, ht);
1847 }
1848 rcu_read_unlock();
1849
1850 lttng_ht_destroy(ht);
1851 }
1852
1853 /*
1854 * Iterate over all streams of the hashtable and free them properly.
1855 *
1856 * XXX: Should not be only for metadata stream or else use an other name.
1857 */
1858 static void destroy_stream_ht(struct lttng_ht *ht)
1859 {
1860 struct lttng_ht_iter iter;
1861 struct lttng_consumer_stream *stream;
1862
1863 if (ht == NULL) {
1864 return;
1865 }
1866
1867 rcu_read_lock();
1868 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1869 /*
1870 * Ignore return value since we are currently cleaning up so any error
1871 * can't be handled.
1872 */
1873 (void) consumer_del_metadata_stream(stream, ht);
1874 }
1875 rcu_read_unlock();
1876
1877 lttng_ht_destroy(ht);
1878 }
1879
1880 void lttng_consumer_close_metadata(void)
1881 {
1882 switch (consumer_data.type) {
1883 case LTTNG_CONSUMER_KERNEL:
1884 /*
1885 * The Kernel consumer has a different metadata scheme so we don't
1886 * close anything because the stream will be closed by the session
1887 * daemon.
1888 */
1889 break;
1890 case LTTNG_CONSUMER32_UST:
1891 case LTTNG_CONSUMER64_UST:
1892 /*
1893 * Close all metadata streams. The metadata hash table is passed and
1894 * this call iterates over it by closing all wakeup fd. This is safe
1895 * because at this point we are sure that the metadata producer is
1896 * either dead or blocked.
1897 */
1898 lttng_ustconsumer_close_metadata(metadata_ht);
1899 break;
1900 default:
1901 ERR("Unknown consumer_data type");
1902 assert(0);
1903 }
1904 }
1905
1906 /*
1907 * Clean up a metadata stream and free its memory.
1908 */
1909 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1910 struct lttng_ht *ht)
1911 {
1912 int ret;
1913 struct lttng_ht_iter iter;
1914 struct lttng_consumer_channel *free_chan = NULL;
1915 struct consumer_relayd_sock_pair *relayd;
1916
1917 assert(stream);
1918 /*
1919 * This call should NEVER receive regular stream. It must always be
1920 * metadata stream and this is crucial for data structure synchronization.
1921 */
1922 assert(stream->metadata_flag);
1923
1924 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1925
1926 if (ht == NULL) {
1927 /* Means the stream was allocated but not successfully added */
1928 goto free_stream_rcu;
1929 }
1930
1931 pthread_mutex_lock(&consumer_data.lock);
1932 pthread_mutex_lock(&stream->chan->lock);
1933 pthread_mutex_lock(&stream->lock);
1934
1935 switch (consumer_data.type) {
1936 case LTTNG_CONSUMER_KERNEL:
1937 if (stream->mmap_base != NULL) {
1938 ret = munmap(stream->mmap_base, stream->mmap_len);
1939 if (ret != 0) {
1940 PERROR("munmap metadata stream");
1941 }
1942 }
1943
1944 if (stream->wait_fd >= 0) {
1945 ret = close(stream->wait_fd);
1946 if (ret < 0) {
1947 PERROR("close kernel metadata wait_fd");
1948 }
1949 }
1950 break;
1951 case LTTNG_CONSUMER32_UST:
1952 case LTTNG_CONSUMER64_UST:
1953 lttng_ustconsumer_del_stream(stream);
1954 break;
1955 default:
1956 ERR("Unknown consumer_data type");
1957 assert(0);
1958 goto end;
1959 }
1960
1961 rcu_read_lock();
1962 iter.iter.node = &stream->node.node;
1963 ret = lttng_ht_del(ht, &iter);
1964 assert(!ret);
1965
1966 iter.iter.node = &stream->node_channel_id.node;
1967 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1968 assert(!ret);
1969
1970 iter.iter.node = &stream->node_session_id.node;
1971 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1972 assert(!ret);
1973 rcu_read_unlock();
1974
1975 if (stream->out_fd >= 0) {
1976 ret = close(stream->out_fd);
1977 if (ret) {
1978 PERROR("close");
1979 }
1980 }
1981
1982 /* Check and cleanup relayd */
1983 rcu_read_lock();
1984 relayd = consumer_find_relayd(stream->net_seq_idx);
1985 if (relayd != NULL) {
1986 uatomic_dec(&relayd->refcount);
1987 assert(uatomic_read(&relayd->refcount) >= 0);
1988
1989 /* Closing streams requires to lock the control socket. */
1990 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1991 ret = relayd_send_close_stream(&relayd->control_sock,
1992 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1993 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1994 if (ret < 0) {
1995 DBG("Unable to close stream on the relayd. Continuing");
1996 /*
1997 * Continue here. There is nothing we can do for the relayd.
1998 * Chances are that the relayd has closed the socket so we just
1999 * continue cleaning up.
2000 */
2001 }
2002
2003 /* Both conditions are met, we destroy the relayd. */
2004 if (uatomic_read(&relayd->refcount) == 0 &&
2005 uatomic_read(&relayd->destroy_flag)) {
2006 destroy_relayd(relayd);
2007 }
2008 }
2009 rcu_read_unlock();
2010
2011 /* Atomically decrement channel refcount since other threads can use it. */
2012 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2013 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2014 /* Go for channel deletion! */
2015 free_chan = stream->chan;
2016 }
2017
2018 end:
2019 /*
2020 * Nullify the stream reference so it is not used after deletion. The
2021 * channel lock MUST be acquired before being able to check for
2022 * a NULL pointer value.
2023 */
2024 stream->chan->metadata_stream = NULL;
2025
2026 pthread_mutex_unlock(&stream->lock);
2027 pthread_mutex_unlock(&stream->chan->lock);
2028 pthread_mutex_unlock(&consumer_data.lock);
2029
2030 if (free_chan) {
2031 consumer_del_channel(free_chan);
2032 }
2033
2034 free_stream_rcu:
2035 call_rcu(&stream->node.head, free_stream_rcu);
2036 }
2037
2038 /*
2039 * Action done with the metadata stream when adding it to the consumer internal
2040 * data structures to handle it.
2041 */
2042 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2043 {
2044 struct lttng_ht *ht = metadata_ht;
2045 int ret = 0;
2046 struct consumer_relayd_sock_pair *relayd;
2047 struct lttng_ht_iter iter;
2048 struct lttng_ht_node_u64 *node;
2049
2050 assert(stream);
2051 assert(ht);
2052
2053 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2054
2055 pthread_mutex_lock(&consumer_data.lock);
2056 pthread_mutex_lock(&stream->chan->lock);
2057 pthread_mutex_lock(&stream->chan->timer_lock);
2058 pthread_mutex_lock(&stream->lock);
2059
2060 /*
2061 * From here, refcounts are updated so be _careful_ when returning an error
2062 * after this point.
2063 */
2064
2065 rcu_read_lock();
2066
2067 /*
2068 * Lookup the stream just to make sure it does not exist in our internal
2069 * state. This should NEVER happen.
2070 */
2071 lttng_ht_lookup(ht, &stream->key, &iter);
2072 node = lttng_ht_iter_get_node_u64(&iter);
2073 assert(!node);
2074
2075 /* Find relayd and, if one is found, increment refcount. */
2076 relayd = consumer_find_relayd(stream->net_seq_idx);
2077 if (relayd != NULL) {
2078 uatomic_inc(&relayd->refcount);
2079 }
2080
2081 /*
2082 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2083 * in terms of destroying the associated channel, because the action that
2084 * causes the count to become 0 also causes a stream to be added. The
2085 * channel deletion will thus be triggered by the following removal of this
2086 * stream.
2087 */
2088 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2089 /* Increment refcount before decrementing nb_init_stream_left */
2090 cmm_smp_wmb();
2091 uatomic_dec(&stream->chan->nb_init_stream_left);
2092 }
2093
2094 lttng_ht_add_unique_u64(ht, &stream->node);
2095
2096 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2097 &stream->node_channel_id);
2098
2099 /*
2100 * Add stream to the stream_list_ht of the consumer data. No need to steal
2101 * the key since the HT does not use it and we allow to add redundant keys
2102 * into this table.
2103 */
2104 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2105
2106 rcu_read_unlock();
2107
2108 pthread_mutex_unlock(&stream->lock);
2109 pthread_mutex_unlock(&stream->chan->lock);
2110 pthread_mutex_unlock(&stream->chan->timer_lock);
2111 pthread_mutex_unlock(&consumer_data.lock);
2112 return ret;
2113 }
2114
2115 /*
2116 * Delete data stream that are flagged for deletion (endpoint_status).
2117 */
2118 static void validate_endpoint_status_data_stream(void)
2119 {
2120 struct lttng_ht_iter iter;
2121 struct lttng_consumer_stream *stream;
2122
2123 DBG("Consumer delete flagged data stream");
2124
2125 rcu_read_lock();
2126 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2127 /* Validate delete flag of the stream */
2128 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2129 continue;
2130 }
2131 /* Delete it right now */
2132 consumer_del_stream(stream, data_ht);
2133 }
2134 rcu_read_unlock();
2135 }
2136
2137 /*
2138 * Delete metadata stream that are flagged for deletion (endpoint_status).
2139 */
2140 static void validate_endpoint_status_metadata_stream(
2141 struct lttng_poll_event *pollset)
2142 {
2143 struct lttng_ht_iter iter;
2144 struct lttng_consumer_stream *stream;
2145
2146 DBG("Consumer delete flagged metadata stream");
2147
2148 assert(pollset);
2149
2150 rcu_read_lock();
2151 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2152 /* Validate delete flag of the stream */
2153 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2154 continue;
2155 }
2156 /*
2157 * Remove from pollset so the metadata thread can continue without
2158 * blocking on a deleted stream.
2159 */
2160 lttng_poll_del(pollset, stream->wait_fd);
2161
2162 /* Delete it right now */
2163 consumer_del_metadata_stream(stream, metadata_ht);
2164 }
2165 rcu_read_unlock();
2166 }
2167
2168 /*
2169 * Thread polls on metadata file descriptor and write them on disk or on the
2170 * network.
2171 */
2172 void *consumer_thread_metadata_poll(void *data)
2173 {
2174 int ret, i, pollfd;
2175 uint32_t revents, nb_fd;
2176 struct lttng_consumer_stream *stream = NULL;
2177 struct lttng_ht_iter iter;
2178 struct lttng_ht_node_u64 *node;
2179 struct lttng_poll_event events;
2180 struct lttng_consumer_local_data *ctx = data;
2181 ssize_t len;
2182
2183 rcu_register_thread();
2184
2185 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2186 if (!metadata_ht) {
2187 /* ENOMEM at this point. Better to bail out. */
2188 goto end_ht;
2189 }
2190
2191 DBG("Thread metadata poll started");
2192
2193 /* Size is set to 1 for the consumer_metadata pipe */
2194 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2195 if (ret < 0) {
2196 ERR("Poll set creation failed");
2197 goto end_poll;
2198 }
2199
2200 ret = lttng_poll_add(&events,
2201 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2202 if (ret < 0) {
2203 goto end;
2204 }
2205
2206 /* Main loop */
2207 DBG("Metadata main loop started");
2208
2209 while (1) {
2210 /* Only the metadata pipe is set */
2211 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2212 goto end;
2213 }
2214
2215 restart:
2216 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2217 ret = lttng_poll_wait(&events, -1);
2218 DBG("Metadata event catched in thread");
2219 if (ret < 0) {
2220 if (errno == EINTR) {
2221 ERR("Poll EINTR catched");
2222 goto restart;
2223 }
2224 goto error;
2225 }
2226
2227 nb_fd = ret;
2228
2229 /* From here, the event is a metadata wait fd */
2230 for (i = 0; i < nb_fd; i++) {
2231 revents = LTTNG_POLL_GETEV(&events, i);
2232 pollfd = LTTNG_POLL_GETFD(&events, i);
2233
2234 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2235 if (revents & (LPOLLERR | LPOLLHUP )) {
2236 DBG("Metadata thread pipe hung up");
2237 /*
2238 * Remove the pipe from the poll set and continue the loop
2239 * since their might be data to consume.
2240 */
2241 lttng_poll_del(&events,
2242 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2243 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2244 continue;
2245 } else if (revents & LPOLLIN) {
2246 ssize_t pipe_len;
2247
2248 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2249 &stream, sizeof(stream));
2250 if (pipe_len < 0) {
2251 ERR("read metadata stream, ret: %zd", pipe_len);
2252 /*
2253 * Continue here to handle the rest of the streams.
2254 */
2255 continue;
2256 }
2257
2258 /* A NULL stream means that the state has changed. */
2259 if (stream == NULL) {
2260 /* Check for deleted streams. */
2261 validate_endpoint_status_metadata_stream(&events);
2262 goto restart;
2263 }
2264
2265 DBG("Adding metadata stream %d to poll set",
2266 stream->wait_fd);
2267
2268 /* Add metadata stream to the global poll events list */
2269 lttng_poll_add(&events, stream->wait_fd,
2270 LPOLLIN | LPOLLPRI);
2271 }
2272
2273 /* Handle other stream */
2274 continue;
2275 }
2276
2277 rcu_read_lock();
2278 {
2279 uint64_t tmp_id = (uint64_t) pollfd;
2280
2281 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2282 }
2283 node = lttng_ht_iter_get_node_u64(&iter);
2284 assert(node);
2285
2286 stream = caa_container_of(node, struct lttng_consumer_stream,
2287 node);
2288
2289 /* Check for error event */
2290 if (revents & (LPOLLERR | LPOLLHUP)) {
2291 DBG("Metadata fd %d is hup|err.", pollfd);
2292 if (!stream->hangup_flush_done
2293 && (consumer_data.type == LTTNG_CONSUMER32_UST
2294 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2295 DBG("Attempting to flush and consume the UST buffers");
2296 lttng_ustconsumer_on_stream_hangup(stream);
2297
2298 /* We just flushed the stream now read it. */
2299 do {
2300 len = ctx->on_buffer_ready(stream, ctx);
2301 /*
2302 * We don't check the return value here since if we get
2303 * a negative len, it means an error occured thus we
2304 * simply remove it from the poll set and free the
2305 * stream.
2306 */
2307 } while (len > 0);
2308 }
2309
2310 lttng_poll_del(&events, stream->wait_fd);
2311 /*
2312 * This call update the channel states, closes file descriptors
2313 * and securely free the stream.
2314 */
2315 consumer_del_metadata_stream(stream, metadata_ht);
2316 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2317 /* Get the data out of the metadata file descriptor */
2318 DBG("Metadata available on fd %d", pollfd);
2319 assert(stream->wait_fd == pollfd);
2320
2321 len = ctx->on_buffer_ready(stream, ctx);
2322 /* It's ok to have an unavailable sub-buffer */
2323 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2324 /* Clean up stream from consumer and free it. */
2325 lttng_poll_del(&events, stream->wait_fd);
2326 consumer_del_metadata_stream(stream, metadata_ht);
2327 } else if (len > 0) {
2328 stream->data_read = 1;
2329 }
2330 }
2331
2332 /* Release RCU lock for the stream looked up */
2333 rcu_read_unlock();
2334 }
2335 }
2336
2337 error:
2338 end:
2339 DBG("Metadata poll thread exiting");
2340
2341 lttng_poll_clean(&events);
2342 end_poll:
2343 destroy_stream_ht(metadata_ht);
2344 end_ht:
2345 rcu_unregister_thread();
2346 return NULL;
2347 }
2348
2349 /*
2350 * This thread polls the fds in the set to consume the data and write
2351 * it to tracefile if necessary.
2352 */
2353 void *consumer_thread_data_poll(void *data)
2354 {
2355 int num_rdy, num_hup, high_prio, ret, i;
2356 struct pollfd *pollfd = NULL;
2357 /* local view of the streams */
2358 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2359 /* local view of consumer_data.fds_count */
2360 int nb_fd = 0;
2361 struct lttng_consumer_local_data *ctx = data;
2362 ssize_t len;
2363
2364 rcu_register_thread();
2365
2366 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2367 if (data_ht == NULL) {
2368 /* ENOMEM at this point. Better to bail out. */
2369 goto end;
2370 }
2371
2372 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2373 if (local_stream == NULL) {
2374 PERROR("local_stream malloc");
2375 goto end;
2376 }
2377
2378 while (1) {
2379 high_prio = 0;
2380 num_hup = 0;
2381
2382 /*
2383 * the fds set has been updated, we need to update our
2384 * local array as well
2385 */
2386 pthread_mutex_lock(&consumer_data.lock);
2387 if (consumer_data.need_update) {
2388 free(pollfd);
2389 pollfd = NULL;
2390
2391 free(local_stream);
2392 local_stream = NULL;
2393
2394 /* allocate for all fds + 1 for the consumer_data_pipe */
2395 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2396 if (pollfd == NULL) {
2397 PERROR("pollfd malloc");
2398 pthread_mutex_unlock(&consumer_data.lock);
2399 goto end;
2400 }
2401
2402 /* allocate for all fds + 1 for the consumer_data_pipe */
2403 local_stream = zmalloc((consumer_data.stream_count + 1) *
2404 sizeof(struct lttng_consumer_stream *));
2405 if (local_stream == NULL) {
2406 PERROR("local_stream malloc");
2407 pthread_mutex_unlock(&consumer_data.lock);
2408 goto end;
2409 }
2410 ret = update_poll_array(ctx, &pollfd, local_stream,
2411 data_ht);
2412 if (ret < 0) {
2413 ERR("Error in allocating pollfd or local_outfds");
2414 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2415 pthread_mutex_unlock(&consumer_data.lock);
2416 goto end;
2417 }
2418 nb_fd = ret;
2419 consumer_data.need_update = 0;
2420 }
2421 pthread_mutex_unlock(&consumer_data.lock);
2422
2423 /* No FDs and consumer_quit, consumer_cleanup the thread */
2424 if (nb_fd == 0 && consumer_quit == 1) {
2425 goto end;
2426 }
2427 /* poll on the array of fds */
2428 restart:
2429 DBG("polling on %d fd", nb_fd + 1);
2430 num_rdy = poll(pollfd, nb_fd + 1, -1);
2431 DBG("poll num_rdy : %d", num_rdy);
2432 if (num_rdy == -1) {
2433 /*
2434 * Restart interrupted system call.
2435 */
2436 if (errno == EINTR) {
2437 goto restart;
2438 }
2439 PERROR("Poll error");
2440 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2441 goto end;
2442 } else if (num_rdy == 0) {
2443 DBG("Polling thread timed out");
2444 goto end;
2445 }
2446
2447 /*
2448 * If the consumer_data_pipe triggered poll go directly to the
2449 * beginning of the loop to update the array. We want to prioritize
2450 * array update over low-priority reads.
2451 */
2452 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2453 ssize_t pipe_readlen;
2454
2455 DBG("consumer_data_pipe wake up");
2456 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2457 &new_stream, sizeof(new_stream));
2458 if (pipe_readlen < 0) {
2459 ERR("Consumer data pipe ret %zd", pipe_readlen);
2460 /* Continue so we can at least handle the current stream(s). */
2461 continue;
2462 }
2463
2464 /*
2465 * If the stream is NULL, just ignore it. It's also possible that
2466 * the sessiond poll thread changed the consumer_quit state and is
2467 * waking us up to test it.
2468 */
2469 if (new_stream == NULL) {
2470 validate_endpoint_status_data_stream();
2471 continue;
2472 }
2473
2474 /* Continue to update the local streams and handle prio ones */
2475 continue;
2476 }
2477
2478 /* Take care of high priority channels first. */
2479 for (i = 0; i < nb_fd; i++) {
2480 if (local_stream[i] == NULL) {
2481 continue;
2482 }
2483 if (pollfd[i].revents & POLLPRI) {
2484 DBG("Urgent read on fd %d", pollfd[i].fd);
2485 high_prio = 1;
2486 len = ctx->on_buffer_ready(local_stream[i], ctx);
2487 /* it's ok to have an unavailable sub-buffer */
2488 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2489 /* Clean the stream and free it. */
2490 consumer_del_stream(local_stream[i], data_ht);
2491 local_stream[i] = NULL;
2492 } else if (len > 0) {
2493 local_stream[i]->data_read = 1;
2494 }
2495 }
2496 }
2497
2498 /*
2499 * If we read high prio channel in this loop, try again
2500 * for more high prio data.
2501 */
2502 if (high_prio) {
2503 continue;
2504 }
2505
2506 /* Take care of low priority channels. */
2507 for (i = 0; i < nb_fd; i++) {
2508 if (local_stream[i] == NULL) {
2509 continue;
2510 }
2511 if ((pollfd[i].revents & POLLIN) ||
2512 local_stream[i]->hangup_flush_done) {
2513 DBG("Normal read on fd %d", pollfd[i].fd);
2514 len = ctx->on_buffer_ready(local_stream[i], ctx);
2515 /* it's ok to have an unavailable sub-buffer */
2516 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2517 /* Clean the stream and free it. */
2518 consumer_del_stream(local_stream[i], data_ht);
2519 local_stream[i] = NULL;
2520 } else if (len > 0) {
2521 local_stream[i]->data_read = 1;
2522 }
2523 }
2524 }
2525
2526 /* Handle hangup and errors */
2527 for (i = 0; i < nb_fd; i++) {
2528 if (local_stream[i] == NULL) {
2529 continue;
2530 }
2531 if (!local_stream[i]->hangup_flush_done
2532 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2533 && (consumer_data.type == LTTNG_CONSUMER32_UST
2534 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2535 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2536 pollfd[i].fd);
2537 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2538 /* Attempt read again, for the data we just flushed. */
2539 local_stream[i]->data_read = 1;
2540 }
2541 /*
2542 * If the poll flag is HUP/ERR/NVAL and we have
2543 * read no data in this pass, we can remove the
2544 * stream from its hash table.
2545 */
2546 if ((pollfd[i].revents & POLLHUP)) {
2547 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2548 if (!local_stream[i]->data_read) {
2549 consumer_del_stream(local_stream[i], data_ht);
2550 local_stream[i] = NULL;
2551 num_hup++;
2552 }
2553 } else if (pollfd[i].revents & POLLERR) {
2554 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2555 if (!local_stream[i]->data_read) {
2556 consumer_del_stream(local_stream[i], data_ht);
2557 local_stream[i] = NULL;
2558 num_hup++;
2559 }
2560 } else if (pollfd[i].revents & POLLNVAL) {
2561 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2562 if (!local_stream[i]->data_read) {
2563 consumer_del_stream(local_stream[i], data_ht);
2564 local_stream[i] = NULL;
2565 num_hup++;
2566 }
2567 }
2568 if (local_stream[i] != NULL) {
2569 local_stream[i]->data_read = 0;
2570 }
2571 }
2572 }
2573 end:
2574 DBG("polling thread exiting");
2575 free(pollfd);
2576 free(local_stream);
2577
2578 /*
2579 * Close the write side of the pipe so epoll_wait() in
2580 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2581 * read side of the pipe. If we close them both, epoll_wait strangely does
2582 * not return and could create a endless wait period if the pipe is the
2583 * only tracked fd in the poll set. The thread will take care of closing
2584 * the read side.
2585 */
2586 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2587
2588 destroy_data_stream_ht(data_ht);
2589
2590 rcu_unregister_thread();
2591 return NULL;
2592 }
2593
2594 /*
2595 * Close wake-up end of each stream belonging to the channel. This will
2596 * allow the poll() on the stream read-side to detect when the
2597 * write-side (application) finally closes them.
2598 */
2599 static
2600 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2601 {
2602 struct lttng_ht *ht;
2603 struct lttng_consumer_stream *stream;
2604 struct lttng_ht_iter iter;
2605
2606 ht = consumer_data.stream_per_chan_id_ht;
2607
2608 rcu_read_lock();
2609 cds_lfht_for_each_entry_duplicate(ht->ht,
2610 ht->hash_fct(&channel->key, lttng_ht_seed),
2611 ht->match_fct, &channel->key,
2612 &iter.iter, stream, node_channel_id.node) {
2613 /*
2614 * Protect against teardown with mutex.
2615 */
2616 pthread_mutex_lock(&stream->lock);
2617 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2618 goto next;
2619 }
2620 switch (consumer_data.type) {
2621 case LTTNG_CONSUMER_KERNEL:
2622 break;
2623 case LTTNG_CONSUMER32_UST:
2624 case LTTNG_CONSUMER64_UST:
2625 /*
2626 * Note: a mutex is taken internally within
2627 * liblttng-ust-ctl to protect timer wakeup_fd
2628 * use from concurrent close.
2629 */
2630 lttng_ustconsumer_close_stream_wakeup(stream);
2631 break;
2632 default:
2633 ERR("Unknown consumer_data type");
2634 assert(0);
2635 }
2636 next:
2637 pthread_mutex_unlock(&stream->lock);
2638 }
2639 rcu_read_unlock();
2640 }
2641
2642 static void destroy_channel_ht(struct lttng_ht *ht)
2643 {
2644 struct lttng_ht_iter iter;
2645 struct lttng_consumer_channel *channel;
2646 int ret;
2647
2648 if (ht == NULL) {
2649 return;
2650 }
2651
2652 rcu_read_lock();
2653 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2654 ret = lttng_ht_del(ht, &iter);
2655 assert(ret != 0);
2656 }
2657 rcu_read_unlock();
2658
2659 lttng_ht_destroy(ht);
2660 }
2661
2662 /*
2663 * This thread polls the channel fds to detect when they are being
2664 * closed. It closes all related streams if the channel is detected as
2665 * closed. It is currently only used as a shim layer for UST because the
2666 * consumerd needs to keep the per-stream wakeup end of pipes open for
2667 * periodical flush.
2668 */
2669 void *consumer_thread_channel_poll(void *data)
2670 {
2671 int ret, i, pollfd;
2672 uint32_t revents, nb_fd;
2673 struct lttng_consumer_channel *chan = NULL;
2674 struct lttng_ht_iter iter;
2675 struct lttng_ht_node_u64 *node;
2676 struct lttng_poll_event events;
2677 struct lttng_consumer_local_data *ctx = data;
2678 struct lttng_ht *channel_ht;
2679
2680 rcu_register_thread();
2681
2682 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2683 if (!channel_ht) {
2684 /* ENOMEM at this point. Better to bail out. */
2685 goto end_ht;
2686 }
2687
2688 DBG("Thread channel poll started");
2689
2690 /* Size is set to 1 for the consumer_channel pipe */
2691 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2692 if (ret < 0) {
2693 ERR("Poll set creation failed");
2694 goto end_poll;
2695 }
2696
2697 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2698 if (ret < 0) {
2699 goto end;
2700 }
2701
2702 /* Main loop */
2703 DBG("Channel main loop started");
2704
2705 while (1) {
2706 /* Only the channel pipe is set */
2707 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2708 goto end;
2709 }
2710
2711 restart:
2712 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2713 ret = lttng_poll_wait(&events, -1);
2714 DBG("Channel event catched in thread");
2715 if (ret < 0) {
2716 if (errno == EINTR) {
2717 ERR("Poll EINTR catched");
2718 goto restart;
2719 }
2720 goto end;
2721 }
2722
2723 nb_fd = ret;
2724
2725 /* From here, the event is a channel wait fd */
2726 for (i = 0; i < nb_fd; i++) {
2727 revents = LTTNG_POLL_GETEV(&events, i);
2728 pollfd = LTTNG_POLL_GETFD(&events, i);
2729
2730 /* Just don't waste time if no returned events for the fd */
2731 if (!revents) {
2732 continue;
2733 }
2734 if (pollfd == ctx->consumer_channel_pipe[0]) {
2735 if (revents & (LPOLLERR | LPOLLHUP)) {
2736 DBG("Channel thread pipe hung up");
2737 /*
2738 * Remove the pipe from the poll set and continue the loop
2739 * since their might be data to consume.
2740 */
2741 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2742 continue;
2743 } else if (revents & LPOLLIN) {
2744 enum consumer_channel_action action;
2745 uint64_t key;
2746
2747 ret = read_channel_pipe(ctx, &chan, &key, &action);
2748 if (ret <= 0) {
2749 ERR("Error reading channel pipe");
2750 continue;
2751 }
2752
2753 switch (action) {
2754 case CONSUMER_CHANNEL_ADD:
2755 DBG("Adding channel %d to poll set",
2756 chan->wait_fd);
2757
2758 lttng_ht_node_init_u64(&chan->wait_fd_node,
2759 chan->wait_fd);
2760 rcu_read_lock();
2761 lttng_ht_add_unique_u64(channel_ht,
2762 &chan->wait_fd_node);
2763 rcu_read_unlock();
2764 /* Add channel to the global poll events list */
2765 lttng_poll_add(&events, chan->wait_fd,
2766 LPOLLIN | LPOLLPRI);
2767 break;
2768 case CONSUMER_CHANNEL_DEL:
2769 {
2770 struct lttng_consumer_stream *stream, *stmp;
2771
2772 rcu_read_lock();
2773 chan = consumer_find_channel(key);
2774 if (!chan) {
2775 rcu_read_unlock();
2776 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2777 break;
2778 }
2779 lttng_poll_del(&events, chan->wait_fd);
2780 iter.iter.node = &chan->wait_fd_node.node;
2781 ret = lttng_ht_del(channel_ht, &iter);
2782 assert(ret == 0);
2783 consumer_close_channel_streams(chan);
2784
2785 switch (consumer_data.type) {
2786 case LTTNG_CONSUMER_KERNEL:
2787 break;
2788 case LTTNG_CONSUMER32_UST:
2789 case LTTNG_CONSUMER64_UST:
2790 /* Delete streams that might have been left in the stream list. */
2791 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2792 send_node) {
2793 cds_list_del(&stream->send_node);
2794 lttng_ustconsumer_del_stream(stream);
2795 uatomic_sub(&stream->chan->refcount, 1);
2796 assert(&chan->refcount);
2797 free(stream);
2798 }
2799 break;
2800 default:
2801 ERR("Unknown consumer_data type");
2802 assert(0);
2803 }
2804
2805 /*
2806 * Release our own refcount. Force channel deletion even if
2807 * streams were not initialized.
2808 */
2809 if (!uatomic_sub_return(&chan->refcount, 1)) {
2810 consumer_del_channel(chan);
2811 }
2812 rcu_read_unlock();
2813 goto restart;
2814 }
2815 case CONSUMER_CHANNEL_QUIT:
2816 /*
2817 * Remove the pipe from the poll set and continue the loop
2818 * since their might be data to consume.
2819 */
2820 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2821 continue;
2822 default:
2823 ERR("Unknown action");
2824 break;
2825 }
2826 }
2827
2828 /* Handle other stream */
2829 continue;
2830 }
2831
2832 rcu_read_lock();
2833 {
2834 uint64_t tmp_id = (uint64_t) pollfd;
2835
2836 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2837 }
2838 node = lttng_ht_iter_get_node_u64(&iter);
2839 assert(node);
2840
2841 chan = caa_container_of(node, struct lttng_consumer_channel,
2842 wait_fd_node);
2843
2844 /* Check for error event */
2845 if (revents & (LPOLLERR | LPOLLHUP)) {
2846 DBG("Channel fd %d is hup|err.", pollfd);
2847
2848 lttng_poll_del(&events, chan->wait_fd);
2849 ret = lttng_ht_del(channel_ht, &iter);
2850 assert(ret == 0);
2851 assert(cds_list_empty(&chan->streams.head));
2852 consumer_close_channel_streams(chan);
2853
2854 /* Release our own refcount */
2855 if (!uatomic_sub_return(&chan->refcount, 1)
2856 && !uatomic_read(&chan->nb_init_stream_left)) {
2857 consumer_del_channel(chan);
2858 }
2859 }
2860
2861 /* Release RCU lock for the channel looked up */
2862 rcu_read_unlock();
2863 }
2864 }
2865
2866 end:
2867 lttng_poll_clean(&events);
2868 end_poll:
2869 destroy_channel_ht(channel_ht);
2870 end_ht:
2871 DBG("Channel poll thread exiting");
2872 rcu_unregister_thread();
2873 return NULL;
2874 }
2875
2876 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2877 struct pollfd *sockpoll, int client_socket)
2878 {
2879 int ret;
2880
2881 assert(ctx);
2882 assert(sockpoll);
2883
2884 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2885 ret = -1;
2886 goto error;
2887 }
2888 DBG("Metadata connection on client_socket");
2889
2890 /* Blocking call, waiting for transmission */
2891 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2892 if (ctx->consumer_metadata_socket < 0) {
2893 WARN("On accept metadata");
2894 ret = -1;
2895 goto error;
2896 }
2897 ret = 0;
2898
2899 error:
2900 return ret;
2901 }
2902
2903 /*
2904 * This thread listens on the consumerd socket and receives the file
2905 * descriptors from the session daemon.
2906 */
2907 void *consumer_thread_sessiond_poll(void *data)
2908 {
2909 int sock = -1, client_socket, ret;
2910 /*
2911 * structure to poll for incoming data on communication socket avoids
2912 * making blocking sockets.
2913 */
2914 struct pollfd consumer_sockpoll[2];
2915 struct lttng_consumer_local_data *ctx = data;
2916
2917 rcu_register_thread();
2918
2919 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2920 unlink(ctx->consumer_command_sock_path);
2921 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2922 if (client_socket < 0) {
2923 ERR("Cannot create command socket");
2924 goto end;
2925 }
2926
2927 ret = lttcomm_listen_unix_sock(client_socket);
2928 if (ret < 0) {
2929 goto end;
2930 }
2931
2932 DBG("Sending ready command to lttng-sessiond");
2933 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2934 /* return < 0 on error, but == 0 is not fatal */
2935 if (ret < 0) {
2936 ERR("Error sending ready command to lttng-sessiond");
2937 goto end;
2938 }
2939
2940 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2941 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2942 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2943 consumer_sockpoll[1].fd = client_socket;
2944 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2945
2946 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2947 goto end;
2948 }
2949 DBG("Connection on client_socket");
2950
2951 /* Blocking call, waiting for transmission */
2952 sock = lttcomm_accept_unix_sock(client_socket);
2953 if (sock < 0) {
2954 WARN("On accept");
2955 goto end;
2956 }
2957
2958 /*
2959 * Setup metadata socket which is the second socket connection on the
2960 * command unix socket.
2961 */
2962 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2963 if (ret < 0) {
2964 goto end;
2965 }
2966
2967 /* This socket is not useful anymore. */
2968 ret = close(client_socket);
2969 if (ret < 0) {
2970 PERROR("close client_socket");
2971 }
2972 client_socket = -1;
2973
2974 /* update the polling structure to poll on the established socket */
2975 consumer_sockpoll[1].fd = sock;
2976 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2977
2978 while (1) {
2979 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2980 goto end;
2981 }
2982 DBG("Incoming command on sock");
2983 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2984 if (ret == -ENOENT) {
2985 DBG("Received STOP command");
2986 goto end;
2987 }
2988 if (ret <= 0) {
2989 /*
2990 * This could simply be a session daemon quitting. Don't output
2991 * ERR() here.
2992 */
2993 DBG("Communication interrupted on command socket");
2994 goto end;
2995 }
2996 if (consumer_quit) {
2997 DBG("consumer_thread_receive_fds received quit from signal");
2998 goto end;
2999 }
3000 DBG("received command on sock");
3001 }
3002 end:
3003 DBG("Consumer thread sessiond poll exiting");
3004
3005 /*
3006 * Close metadata streams since the producer is the session daemon which
3007 * just died.
3008 *
3009 * NOTE: for now, this only applies to the UST tracer.
3010 */
3011 lttng_consumer_close_metadata();
3012
3013 /*
3014 * when all fds have hung up, the polling thread
3015 * can exit cleanly
3016 */
3017 consumer_quit = 1;
3018
3019 /*
3020 * Notify the data poll thread to poll back again and test the
3021 * consumer_quit state that we just set so to quit gracefully.
3022 */
3023 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3024
3025 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3026
3027 /* Cleaning up possibly open sockets. */
3028 if (sock >= 0) {
3029 ret = close(sock);
3030 if (ret < 0) {
3031 PERROR("close sock sessiond poll");
3032 }
3033 }
3034 if (client_socket >= 0) {
3035 ret = close(client_socket);
3036 if (ret < 0) {
3037 PERROR("close client_socket sessiond poll");
3038 }
3039 }
3040
3041 rcu_unregister_thread();
3042 return NULL;
3043 }
3044
3045 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3046 struct lttng_consumer_local_data *ctx)
3047 {
3048 ssize_t ret;
3049
3050 pthread_mutex_lock(&stream->lock);
3051
3052 switch (consumer_data.type) {
3053 case LTTNG_CONSUMER_KERNEL:
3054 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3055 break;
3056 case LTTNG_CONSUMER32_UST:
3057 case LTTNG_CONSUMER64_UST:
3058 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3059 break;
3060 default:
3061 ERR("Unknown consumer_data type");
3062 assert(0);
3063 ret = -ENOSYS;
3064 break;
3065 }
3066
3067 pthread_mutex_unlock(&stream->lock);
3068 return ret;
3069 }
3070
3071 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3072 {
3073 switch (consumer_data.type) {
3074 case LTTNG_CONSUMER_KERNEL:
3075 return lttng_kconsumer_on_recv_stream(stream);
3076 case LTTNG_CONSUMER32_UST:
3077 case LTTNG_CONSUMER64_UST:
3078 return lttng_ustconsumer_on_recv_stream(stream);
3079 default:
3080 ERR("Unknown consumer_data type");
3081 assert(0);
3082 return -ENOSYS;
3083 }
3084 }
3085
3086 /*
3087 * Allocate and set consumer data hash tables.
3088 */
3089 void lttng_consumer_init(void)
3090 {
3091 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3092 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3093 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3094 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3095 }
3096
3097 /*
3098 * Process the ADD_RELAYD command receive by a consumer.
3099 *
3100 * This will create a relayd socket pair and add it to the relayd hash table.
3101 * The caller MUST acquire a RCU read side lock before calling it.
3102 */
3103 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3104 struct lttng_consumer_local_data *ctx, int sock,
3105 struct pollfd *consumer_sockpoll,
3106 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id)
3107 {
3108 int fd = -1, ret = -1, relayd_created = 0;
3109 enum lttng_error_code ret_code = LTTNG_OK;
3110 struct consumer_relayd_sock_pair *relayd = NULL;
3111
3112 assert(ctx);
3113 assert(relayd_sock);
3114
3115 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3116
3117 /* Get relayd reference if exists. */
3118 relayd = consumer_find_relayd(net_seq_idx);
3119 if (relayd == NULL) {
3120 assert(sock_type == LTTNG_STREAM_CONTROL);
3121 /* Not found. Allocate one. */
3122 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3123 if (relayd == NULL) {
3124 ret = -ENOMEM;
3125 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3126 goto error;
3127 } else {
3128 relayd->sessiond_session_id = sessiond_id;
3129 relayd_created = 1;
3130 }
3131
3132 /*
3133 * This code path MUST continue to the consumer send status message to
3134 * we can notify the session daemon and continue our work without
3135 * killing everything.
3136 */
3137 } else {
3138 /*
3139 * relayd key should never be found for control socket.
3140 */
3141 assert(sock_type != LTTNG_STREAM_CONTROL);
3142 }
3143
3144 /* First send a status message before receiving the fds. */
3145 ret = consumer_send_status_msg(sock, LTTNG_OK);
3146 if (ret < 0) {
3147 /* Somehow, the session daemon is not responding anymore. */
3148 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3149 goto error_nosignal;
3150 }
3151
3152 /* Poll on consumer socket. */
3153 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3154 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3155 ret = -EINTR;
3156 goto error_nosignal;
3157 }
3158
3159 /* Get relayd socket from session daemon */
3160 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3161 if (ret != sizeof(fd)) {
3162 ret = -1;
3163 fd = -1; /* Just in case it gets set with an invalid value. */
3164
3165 /*
3166 * Failing to receive FDs might indicate a major problem such as
3167 * reaching a fd limit during the receive where the kernel returns a
3168 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3169 * don't take any chances and stop everything.
3170 *
3171 * XXX: Feature request #558 will fix that and avoid this possible
3172 * issue when reaching the fd limit.
3173 */
3174 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3175 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3176 goto error;
3177 }
3178
3179 /* Copy socket information and received FD */
3180 switch (sock_type) {
3181 case LTTNG_STREAM_CONTROL:
3182 /* Copy received lttcomm socket */
3183 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3184 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3185 /* Handle create_sock error. */
3186 if (ret < 0) {
3187 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3188 goto error;
3189 }
3190 /*
3191 * Close the socket created internally by
3192 * lttcomm_create_sock, so we can replace it by the one
3193 * received from sessiond.
3194 */
3195 if (close(relayd->control_sock.sock.fd)) {
3196 PERROR("close");
3197 }
3198
3199 /* Assign new file descriptor */
3200 relayd->control_sock.sock.fd = fd;
3201 fd = -1; /* For error path */
3202 /* Assign version values. */
3203 relayd->control_sock.major = relayd_sock->major;
3204 relayd->control_sock.minor = relayd_sock->minor;
3205
3206 /*
3207 * Create a session on the relayd and store the returned id. Lock the
3208 * control socket mutex if the relayd was NOT created before.
3209 */
3210 if (!relayd_created) {
3211 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3212 }
3213 ret = relayd_create_session(&relayd->control_sock,
3214 &relayd->relayd_session_id);
3215 if (!relayd_created) {
3216 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3217 }
3218 if (ret < 0) {
3219 /*
3220 * Close all sockets of a relayd object. It will be freed if it was
3221 * created at the error code path or else it will be garbage
3222 * collect.
3223 */
3224 (void) relayd_close(&relayd->control_sock);
3225 (void) relayd_close(&relayd->data_sock);
3226 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
3227 goto error;
3228 }
3229
3230 break;
3231 case LTTNG_STREAM_DATA:
3232 /* Copy received lttcomm socket */
3233 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3234 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3235 /* Handle create_sock error. */
3236 if (ret < 0) {
3237 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3238 goto error;
3239 }
3240 /*
3241 * Close the socket created internally by
3242 * lttcomm_create_sock, so we can replace it by the one
3243 * received from sessiond.
3244 */
3245 if (close(relayd->data_sock.sock.fd)) {
3246 PERROR("close");
3247 }
3248
3249 /* Assign new file descriptor */
3250 relayd->data_sock.sock.fd = fd;
3251 fd = -1; /* for eventual error paths */
3252 /* Assign version values. */
3253 relayd->data_sock.major = relayd_sock->major;
3254 relayd->data_sock.minor = relayd_sock->minor;
3255 break;
3256 default:
3257 ERR("Unknown relayd socket type (%d)", sock_type);
3258 ret = -1;
3259 ret_code = LTTCOMM_CONSUMERD_FATAL;
3260 goto error;
3261 }
3262
3263 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3264 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3265 relayd->net_seq_idx, fd);
3266
3267 /* We successfully added the socket. Send status back. */
3268 ret = consumer_send_status_msg(sock, ret_code);
3269 if (ret < 0) {
3270 /* Somehow, the session daemon is not responding anymore. */
3271 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3272 goto error_nosignal;
3273 }
3274
3275 /*
3276 * Add relayd socket pair to consumer data hashtable. If object already
3277 * exists or on error, the function gracefully returns.
3278 */
3279 add_relayd(relayd);
3280
3281 /* All good! */
3282 return 0;
3283
3284 error:
3285 if (consumer_send_status_msg(sock, ret_code) < 0) {
3286 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3287 }
3288
3289 error_nosignal:
3290 /* Close received socket if valid. */
3291 if (fd >= 0) {
3292 if (close(fd)) {
3293 PERROR("close received socket");
3294 }
3295 }
3296
3297 if (relayd_created) {
3298 free(relayd);
3299 }
3300
3301 return ret;
3302 }
3303
3304 /*
3305 * Try to lock the stream mutex.
3306 *
3307 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3308 */
3309 static int stream_try_lock(struct lttng_consumer_stream *stream)
3310 {
3311 int ret;
3312
3313 assert(stream);
3314
3315 /*
3316 * Try to lock the stream mutex. On failure, we know that the stream is
3317 * being used else where hence there is data still being extracted.
3318 */
3319 ret = pthread_mutex_trylock(&stream->lock);
3320 if (ret) {
3321 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3322 ret = 0;
3323 goto end;
3324 }
3325
3326 ret = 1;
3327
3328 end:
3329 return ret;
3330 }
3331
3332 /*
3333 * Search for a relayd associated to the session id and return the reference.
3334 *
3335 * A rcu read side lock MUST be acquire before calling this function and locked
3336 * until the relayd object is no longer necessary.
3337 */
3338 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3339 {
3340 struct lttng_ht_iter iter;
3341 struct consumer_relayd_sock_pair *relayd = NULL;
3342
3343 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3344 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3345 node.node) {
3346 /*
3347 * Check by sessiond id which is unique here where the relayd session
3348 * id might not be when having multiple relayd.
3349 */
3350 if (relayd->sessiond_session_id == id) {
3351 /* Found the relayd. There can be only one per id. */
3352 goto found;
3353 }
3354 }
3355
3356 return NULL;
3357
3358 found:
3359 return relayd;
3360 }
3361
3362 /*
3363 * Check if for a given session id there is still data needed to be extract
3364 * from the buffers.
3365 *
3366 * Return 1 if data is pending or else 0 meaning ready to be read.
3367 */
3368 int consumer_data_pending(uint64_t id)
3369 {
3370 int ret;
3371 struct lttng_ht_iter iter;
3372 struct lttng_ht *ht;
3373 struct lttng_consumer_stream *stream;
3374 struct consumer_relayd_sock_pair *relayd = NULL;
3375 int (*data_pending)(struct lttng_consumer_stream *);
3376
3377 DBG("Consumer data pending command on session id %" PRIu64, id);
3378
3379 rcu_read_lock();
3380 pthread_mutex_lock(&consumer_data.lock);
3381
3382 switch (consumer_data.type) {
3383 case LTTNG_CONSUMER_KERNEL:
3384 data_pending = lttng_kconsumer_data_pending;
3385 break;
3386 case LTTNG_CONSUMER32_UST:
3387 case LTTNG_CONSUMER64_UST:
3388 data_pending = lttng_ustconsumer_data_pending;
3389 break;
3390 default:
3391 ERR("Unknown consumer data type");
3392 assert(0);
3393 }
3394
3395 /* Ease our life a bit */
3396 ht = consumer_data.stream_list_ht;
3397
3398 relayd = find_relayd_by_session_id(id);
3399 if (relayd) {
3400 /* Send init command for data pending. */
3401 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3402 ret = relayd_begin_data_pending(&relayd->control_sock,
3403 relayd->relayd_session_id);
3404 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3405 if (ret < 0) {
3406 /* Communication error thus the relayd so no data pending. */
3407 goto data_not_pending;
3408 }
3409 }
3410
3411 cds_lfht_for_each_entry_duplicate(ht->ht,
3412 ht->hash_fct(&id, lttng_ht_seed),
3413 ht->match_fct, &id,
3414 &iter.iter, stream, node_session_id.node) {
3415 /* If this call fails, the stream is being used hence data pending. */
3416 ret = stream_try_lock(stream);
3417 if (!ret) {
3418 goto data_pending;
3419 }
3420
3421 /*
3422 * A removed node from the hash table indicates that the stream has
3423 * been deleted thus having a guarantee that the buffers are closed
3424 * on the consumer side. However, data can still be transmitted
3425 * over the network so don't skip the relayd check.
3426 */
3427 ret = cds_lfht_is_node_deleted(&stream->node.node);
3428 if (!ret) {
3429 /*
3430 * An empty output file is not valid. We need at least one packet
3431 * generated per stream, even if it contains no event, so it
3432 * contains at least one packet header.
3433 */
3434 if (stream->output_written == 0) {
3435 pthread_mutex_unlock(&stream->lock);
3436 goto data_pending;
3437 }
3438 /* Check the stream if there is data in the buffers. */
3439 ret = data_pending(stream);
3440 if (ret == 1) {
3441 pthread_mutex_unlock(&stream->lock);
3442 goto data_pending;
3443 }
3444 }
3445
3446 /* Relayd check */
3447 if (relayd) {
3448 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3449 if (stream->metadata_flag) {
3450 ret = relayd_quiescent_control(&relayd->control_sock,
3451 stream->relayd_stream_id);
3452 } else {
3453 ret = relayd_data_pending(&relayd->control_sock,
3454 stream->relayd_stream_id,
3455 stream->next_net_seq_num - 1);
3456 }
3457 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3458 if (ret == 1) {
3459 pthread_mutex_unlock(&stream->lock);
3460 goto data_pending;
3461 }
3462 }
3463 pthread_mutex_unlock(&stream->lock);
3464 }
3465
3466 if (relayd) {
3467 unsigned int is_data_inflight = 0;
3468
3469 /* Send init command for data pending. */
3470 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3471 ret = relayd_end_data_pending(&relayd->control_sock,
3472 relayd->relayd_session_id, &is_data_inflight);
3473 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3474 if (ret < 0) {
3475 goto data_not_pending;
3476 }
3477 if (is_data_inflight) {
3478 goto data_pending;
3479 }
3480 }
3481
3482 /*
3483 * Finding _no_ node in the hash table and no inflight data means that the
3484 * stream(s) have been removed thus data is guaranteed to be available for
3485 * analysis from the trace files.
3486 */
3487
3488 data_not_pending:
3489 /* Data is available to be read by a viewer. */
3490 pthread_mutex_unlock(&consumer_data.lock);
3491 rcu_read_unlock();
3492 return 0;
3493
3494 data_pending:
3495 /* Data is still being extracted from buffers. */
3496 pthread_mutex_unlock(&consumer_data.lock);
3497 rcu_read_unlock();
3498 return 1;
3499 }
3500
3501 /*
3502 * Send a ret code status message to the sessiond daemon.
3503 *
3504 * Return the sendmsg() return value.
3505 */
3506 int consumer_send_status_msg(int sock, int ret_code)
3507 {
3508 struct lttcomm_consumer_status_msg msg;
3509
3510 msg.ret_code = ret_code;
3511
3512 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3513 }
3514
3515 /*
3516 * Send a channel status message to the sessiond daemon.
3517 *
3518 * Return the sendmsg() return value.
3519 */
3520 int consumer_send_status_channel(int sock,
3521 struct lttng_consumer_channel *channel)
3522 {
3523 struct lttcomm_consumer_status_channel msg;
3524
3525 assert(sock >= 0);
3526
3527 if (!channel) {
3528 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3529 } else {
3530 msg.ret_code = LTTNG_OK;
3531 msg.key = channel->key;
3532 msg.stream_count = channel->streams.count;
3533 }
3534
3535 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3536 }
This page took 0.102189 seconds and 4 git commands to generate.