732e03dce7263b33e19958d763607b8ff09f306f
[ust.git] / libust / buffers.c
1 /*
2 * buffers.c
3 * LTTng userspace tracer buffering system
4 *
5 * Copyright (C) 2009 - Pierre-Marc Fournier (pierre-marc dot fournier at polymtl dot ca)
6 * Copyright (C) 2008 - Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #include <unistd.h>
24 #include <sys/mman.h>
25 #include <sys/ipc.h>
26 #include <sys/shm.h>
27 #include <fcntl.h>
28 #include <stdlib.h>
29
30 #include <ust/clock.h>
31
32 #include "buffers.h"
33 #include "channels.h"
34 #include "tracer.h"
35 #include "tracercore.h"
36 #include "usterr.h"
37
38 struct ltt_reserve_switch_offsets {
39 long begin, end, old;
40 long begin_switch, end_switch_current, end_switch_old;
41 size_t before_hdr_pad, size;
42 };
43
44
45 static DEFINE_MUTEX(ust_buffers_channels_mutex);
46 static CDS_LIST_HEAD(ust_buffers_channels);
47
48 static int get_n_cpus(void)
49 {
50 int result;
51 static int n_cpus = 0;
52
53 if(!n_cpus) {
54 /* On Linux, when some processors are offline
55 * _SC_NPROCESSORS_CONF counts the offline
56 * processors, whereas _SC_NPROCESSORS_ONLN
57 * does not. If we used _SC_NPROCESSORS_ONLN,
58 * getcpu() could return a value greater than
59 * this sysconf, in which case the arrays
60 * indexed by processor would overflow.
61 */
62 result = sysconf(_SC_NPROCESSORS_CONF);
63 if(result == -1) {
64 return -1;
65 }
66
67 n_cpus = result;
68 }
69
70 return n_cpus;
71 }
72
73 /**
74 * _ust_buffers_strncpy_fixup - Fix an incomplete string in a ltt_relay buffer.
75 * @buf : buffer
76 * @offset : offset within the buffer
77 * @len : length to write
78 * @copied: string actually copied
79 * @terminated: does string end with \0
80 *
81 * Fills string with "X" if incomplete.
82 */
83 void _ust_buffers_strncpy_fixup(struct ust_buffer *buf, size_t offset,
84 size_t len, size_t copied, int terminated)
85 {
86 size_t buf_offset, cpy;
87
88 if (copied == len) {
89 /*
90 * Deal with non-terminated string.
91 */
92 assert(!terminated);
93 offset += copied - 1;
94 buf_offset = BUFFER_OFFSET(offset, buf->chan);
95 /*
96 * Underlying layer should never ask for writes across
97 * subbuffers.
98 */
99 assert(buf_offset
100 < buf->chan->subbuf_size*buf->chan->subbuf_cnt);
101 ust_buffers_do_memset(buf->buf_data + buf_offset, '\0', 1);
102 return;
103 }
104
105 /*
106 * Deal with incomplete string.
107 * Overwrite string's \0 with X too.
108 */
109 cpy = copied - 1;
110 assert(terminated);
111 len -= cpy;
112 offset += cpy;
113 buf_offset = BUFFER_OFFSET(offset, buf->chan);
114
115 /*
116 * Underlying layer should never ask for writes across subbuffers.
117 */
118 assert(buf_offset
119 < buf->chan->subbuf_size*buf->chan->subbuf_cnt);
120
121 ust_buffers_do_memset(buf->buf_data + buf_offset,
122 'X', len);
123
124 /*
125 * Overwrite last 'X' with '\0'.
126 */
127 offset += len - 1;
128 buf_offset = BUFFER_OFFSET(offset, buf->chan);
129 /*
130 * Underlying layer should never ask for writes across subbuffers.
131 */
132 assert(buf_offset
133 < buf->chan->subbuf_size*buf->chan->subbuf_cnt);
134 ust_buffers_do_memset(buf->buf_data + buf_offset, '\0', 1);
135 }
136
137 static void ltt_buffer_begin(struct ust_buffer *buf,
138 u64 tsc, unsigned int subbuf_idx)
139 {
140 struct ust_channel *channel = buf->chan;
141 struct ltt_subbuffer_header *header =
142 (struct ltt_subbuffer_header *)
143 ust_buffers_offset_address(buf,
144 subbuf_idx * buf->chan->subbuf_size);
145
146 header->cycle_count_begin = tsc;
147 header->data_size = 0xFFFFFFFF; /* for recognizing crashed buffers */
148 header->sb_size = 0xFFFFFFFF; /* for recognizing crashed buffers */
149 /* FIXME: add memory barrier? */
150 ltt_write_trace_header(channel->trace, header);
151 }
152
153 static int map_buf_data(struct ust_buffer *buf, size_t *size)
154 {
155 void *ptr;
156 int result;
157
158 *size = PAGE_ALIGN(*size);
159
160 result = buf->shmid = shmget(getpid(), *size, IPC_CREAT | IPC_EXCL | 0700);
161 if (result < 0 && errno == EINVAL) {
162 ERR("shmget() returned EINVAL; maybe /proc/sys/kernel/shmmax should be increased.");
163 return -1;
164 } else if (result < 0) {
165 PERROR("shmget");
166 return -1;
167 }
168
169 ptr = shmat(buf->shmid, NULL, 0);
170 if (ptr == (void *) -1) {
171 perror("shmat");
172 goto destroy_shmem;
173 }
174
175 /* Already mark the shared memory for destruction. This will occur only
176 * when all users have detached.
177 */
178 result = shmctl(buf->shmid, IPC_RMID, NULL);
179 if(result == -1) {
180 perror("shmctl");
181 return -1;
182 }
183
184 buf->buf_data = ptr;
185 buf->buf_size = *size;
186
187 return 0;
188
189 destroy_shmem:
190 result = shmctl(buf->shmid, IPC_RMID, NULL);
191 if(result == -1) {
192 perror("shmctl");
193 }
194
195 return -1;
196 }
197
198 static int open_buf(struct ust_channel *chan, int cpu)
199 {
200 int result, fds[2];
201 unsigned int j;
202 struct ust_trace *trace = chan->trace;
203 struct ust_buffer *buf = chan->buf[cpu];
204 unsigned int n_subbufs = chan->subbuf_cnt;
205
206
207 result = map_buf_data(buf, &chan->alloc_size);
208 if (result < 0)
209 return -1;
210
211 buf->commit_count =
212 zmalloc(sizeof(*buf->commit_count) * n_subbufs);
213 if (!buf->commit_count)
214 goto unmap_buf;
215
216 result = pipe(fds);
217 if (result < 0) {
218 PERROR("pipe");
219 goto free_commit_count;
220 }
221 buf->data_ready_fd_read = fds[0];
222 buf->data_ready_fd_write = fds[1];
223
224 buf->cpu = cpu;
225 buf->chan = chan;
226
227 uatomic_set(&buf->offset, ltt_subbuffer_header_size());
228 uatomic_set(&buf->consumed, 0);
229 uatomic_set(&buf->active_readers, 0);
230 for (j = 0; j < n_subbufs; j++) {
231 uatomic_set(&buf->commit_count[j].cc, 0);
232 uatomic_set(&buf->commit_count[j].cc_sb, 0);
233 }
234
235 ltt_buffer_begin(buf, trace->start_tsc, 0);
236
237 uatomic_add(&buf->commit_count[0].cc, ltt_subbuffer_header_size());
238
239 uatomic_set(&buf->events_lost, 0);
240 uatomic_set(&buf->corrupted_subbuffers, 0);
241
242 memset(buf->commit_seq, 0, sizeof(buf->commit_seq[0]) * n_subbufs);
243
244 return 0;
245
246 free_commit_count:
247 free(buf->commit_count);
248
249 unmap_buf:
250 if (shmdt(buf->buf_data) < 0) {
251 PERROR("shmdt failed");
252 }
253
254 return -1;
255 }
256
257 static void close_buf(struct ust_buffer *buf)
258 {
259 int result;
260
261 result = shmdt(buf->buf_data);
262 if (result < 0) {
263 PERROR("shmdt");
264 }
265
266 result = close(buf->data_ready_fd_read);
267 if (result < 0) {
268 PERROR("close");
269 }
270
271 result = close(buf->data_ready_fd_write);
272 if (result < 0 && errno != EBADF) {
273 PERROR("close");
274 }
275 }
276
277
278 static int open_channel(struct ust_channel *chan, size_t subbuf_size,
279 size_t subbuf_cnt)
280 {
281 int i;
282 int result;
283
284 if(subbuf_size == 0 || subbuf_cnt == 0)
285 return -1;
286
287 /* Check that the subbuffer size is larger than a page. */
288 WARN_ON_ONCE(subbuf_size < PAGE_SIZE);
289
290 /*
291 * Make sure the number of subbuffers and subbuffer size are power of 2.
292 */
293 WARN_ON_ONCE(hweight32(subbuf_size) != 1);
294 WARN_ON(hweight32(subbuf_cnt) != 1);
295
296 chan->version = UST_CHANNEL_VERSION;
297 chan->subbuf_cnt = subbuf_cnt;
298 chan->subbuf_size = subbuf_size;
299 chan->subbuf_size_order = get_count_order(subbuf_size);
300 chan->alloc_size = subbuf_size * subbuf_cnt;
301
302 pthread_mutex_lock(&ust_buffers_channels_mutex);
303 for (i=0; i < chan->n_cpus; i++) {
304 result = open_buf(chan, i);
305 if (result == -1)
306 goto error;
307 }
308 cds_list_add(&chan->list, &ust_buffers_channels);
309 pthread_mutex_unlock(&ust_buffers_channels_mutex);
310
311 return 0;
312
313 /* Error handling */
314 error:
315 for(i--; i >= 0; i--)
316 close_buf(chan->buf[i]);
317
318 pthread_mutex_unlock(&ust_buffers_channels_mutex);
319 return -1;
320 }
321
322 static void close_channel(struct ust_channel *chan)
323 {
324 int i;
325 if(!chan)
326 return;
327
328 pthread_mutex_lock(&ust_buffers_channels_mutex);
329 for(i=0; i<chan->n_cpus; i++) {
330 /* FIXME: if we make it here, then all buffers were necessarily allocated. Moreover, we don't
331 * initialize to NULL so we cannot use this check. Should we? */
332 //ust// if (chan->buf[i])
333 close_buf(chan->buf[i]);
334 }
335
336 cds_list_del(&chan->list);
337
338 pthread_mutex_unlock(&ust_buffers_channels_mutex);
339 }
340
341 static void ltt_force_switch(struct ust_buffer *buf,
342 enum force_switch_mode mode);
343
344
345
346 /*
347 * offset is assumed to never be 0 here : never deliver a completely empty
348 * subbuffer. The lost size is between 0 and subbuf_size-1.
349 */
350 static notrace void ltt_buffer_end(struct ust_buffer *buf,
351 u64 tsc, unsigned int offset, unsigned int subbuf_idx)
352 {
353 struct ltt_subbuffer_header *header =
354 (struct ltt_subbuffer_header *)
355 ust_buffers_offset_address(buf,
356 subbuf_idx * buf->chan->subbuf_size);
357 u32 data_size = SUBBUF_OFFSET(offset - 1, buf->chan) + 1;
358
359 header->data_size = data_size;
360 header->sb_size = PAGE_ALIGN(data_size);
361 header->cycle_count_end = tsc;
362 header->events_lost = uatomic_read(&buf->events_lost);
363 header->subbuf_corrupt = uatomic_read(&buf->corrupted_subbuffers);
364 if(unlikely(header->events_lost > 0)) {
365 DBG("Some events (%d) were lost in %s_%d", header->events_lost, buf->chan->channel_name, buf->cpu);
366 }
367 }
368
369 /*
370 * This function should not be called from NMI interrupt context
371 */
372 static notrace void ltt_buf_unfull(struct ust_buffer *buf,
373 unsigned int subbuf_idx,
374 long offset)
375 {
376 }
377
378 /*
379 * Promote compiler cmm_barrier to a smp_mb().
380 * For the specific LTTng case, this IPI call should be removed if the
381 * architecture does not reorder writes. This should eventually be provided by
382 * a separate architecture-specific infrastructure.
383 */
384 //ust// static void remote_mb(void *info)
385 //ust// {
386 //ust// smp_mb();
387 //ust// }
388
389 int ust_buffers_get_subbuf(struct ust_buffer *buf, long *consumed)
390 {
391 struct ust_channel *channel = buf->chan;
392 long consumed_old, consumed_idx, commit_count, write_offset;
393 //ust// int retval;
394
395 consumed_old = uatomic_read(&buf->consumed);
396 consumed_idx = SUBBUF_INDEX(consumed_old, buf->chan);
397 commit_count = uatomic_read(&buf->commit_count[consumed_idx].cc_sb);
398 /*
399 * Make sure we read the commit count before reading the buffer
400 * data and the write offset. Correct consumed offset ordering
401 * wrt commit count is insured by the use of cmpxchg to update
402 * the consumed offset.
403 * smp_call_function_single can fail if the remote CPU is offline,
404 * this is OK because then there is no wmb to execute there.
405 * If our thread is executing on the same CPU as the on the buffers
406 * belongs to, we don't have to synchronize it at all. If we are
407 * migrated, the scheduler will take care of the memory cmm_barriers.
408 * Normally, smp_call_function_single() should ensure program order when
409 * executing the remote function, which implies that it surrounds the
410 * function execution with :
411 * smp_mb()
412 * send IPI
413 * csd_lock_wait
414 * recv IPI
415 * smp_mb()
416 * exec. function
417 * smp_mb()
418 * csd unlock
419 * smp_mb()
420 *
421 * However, smp_call_function_single() does not seem to clearly execute
422 * such barriers. It depends on spinlock semantic to provide the barrier
423 * before executing the IPI and, when busy-looping, csd_lock_wait only
424 * executes smp_mb() when it has to wait for the other CPU.
425 *
426 * I don't trust this code. Therefore, let's add the smp_mb() sequence
427 * required ourself, even if duplicated. It has no performance impact
428 * anyway.
429 *
430 * smp_mb() is needed because cmm_smp_rmb() and cmm_smp_wmb() only order read vs
431 * read and write vs write. They do not ensure core synchronization. We
432 * really have to ensure total order between the 3 cmm_barriers running on
433 * the 2 CPUs.
434 */
435 //ust// #ifdef LTT_NO_IPI_BARRIER
436 /*
437 * Local rmb to match the remote wmb to read the commit count before the
438 * buffer data and the write offset.
439 */
440 cmm_smp_rmb();
441 //ust// #else
442 //ust// if (raw_smp_processor_id() != buf->cpu) {
443 //ust// smp_mb(); /* Total order with IPI handler smp_mb() */
444 //ust// smp_call_function_single(buf->cpu, remote_mb, NULL, 1);
445 //ust// smp_mb(); /* Total order with IPI handler smp_mb() */
446 //ust// }
447 //ust// #endif
448
449 write_offset = uatomic_read(&buf->offset);
450 /*
451 * Check that the subbuffer we are trying to consume has been
452 * already fully committed.
453 */
454 if (((commit_count - buf->chan->subbuf_size)
455 & channel->commit_count_mask)
456 - (BUFFER_TRUNC(consumed_old, buf->chan)
457 >> channel->n_subbufs_order)
458 != 0) {
459 return -EAGAIN;
460 }
461 /*
462 * Check that we are not about to read the same subbuffer in
463 * which the writer head is.
464 */
465 if ((SUBBUF_TRUNC(write_offset, buf->chan)
466 - SUBBUF_TRUNC(consumed_old, buf->chan))
467 == 0) {
468 return -EAGAIN;
469 }
470
471 /* FIXME: is this ok to disable the reading feature? */
472 //ust// retval = update_read_sb_index(buf, consumed_idx);
473 //ust// if (retval)
474 //ust// return retval;
475
476 *consumed = consumed_old;
477
478 return 0;
479 }
480
481 int ust_buffers_put_subbuf(struct ust_buffer *buf, unsigned long uconsumed_old)
482 {
483 long consumed_new, consumed_old;
484
485 consumed_old = uatomic_read(&buf->consumed);
486 consumed_old = consumed_old & (~0xFFFFFFFFL);
487 consumed_old = consumed_old | uconsumed_old;
488 consumed_new = SUBBUF_ALIGN(consumed_old, buf->chan);
489
490 //ust// spin_lock(&ltt_buf->full_lock);
491 if (uatomic_cmpxchg(&buf->consumed, consumed_old,
492 consumed_new)
493 != consumed_old) {
494 /* We have been pushed by the writer : the last
495 * buffer read _is_ corrupted! It can also
496 * happen if this is a buffer we never got. */
497 //ust// spin_unlock(&ltt_buf->full_lock);
498 return -EIO;
499 } else {
500 /* tell the client that buffer is now unfull */
501 int index;
502 long data;
503 index = SUBBUF_INDEX(consumed_old, buf->chan);
504 data = BUFFER_OFFSET(consumed_old, buf->chan);
505 ltt_buf_unfull(buf, index, data);
506 //ust// spin_unlock(&ltt_buf->full_lock);
507 }
508 return 0;
509 }
510
511 static int map_buf_structs(struct ust_channel *chan)
512 {
513 void *ptr;
514 int result;
515 size_t size;
516 int i;
517
518 size = PAGE_ALIGN(1);
519
520 for(i=0; i<chan->n_cpus; i++) {
521
522 result = chan->buf_struct_shmids[i] = shmget(getpid(), size, IPC_CREAT | IPC_EXCL | 0700);
523 if(result == -1) {
524 PERROR("shmget");
525 goto destroy_previous;
526 }
527
528 ptr = shmat(chan->buf_struct_shmids[i], NULL, 0);
529 if(ptr == (void *) -1) {
530 perror("shmat");
531 goto destroy_shm;
532 }
533
534 /* Already mark the shared memory for destruction. This will occur only
535 * when all users have detached.
536 */
537 result = shmctl(chan->buf_struct_shmids[i], IPC_RMID, NULL);
538 if(result == -1) {
539 perror("shmctl");
540 goto destroy_previous;
541 }
542
543 chan->buf[i] = ptr;
544 }
545
546 return 0;
547
548 /* Jumping inside this loop occurs from within the other loop above with i as
549 * counter, so it unallocates the structures for the cpu = current_i down to
550 * zero. */
551 for(; i>=0; i--) {
552 destroy_shm:
553 result = shmctl(chan->buf_struct_shmids[i], IPC_RMID, NULL);
554 if(result == -1) {
555 perror("shmctl");
556 }
557
558 destroy_previous:
559 continue;
560 }
561
562 return -1;
563 }
564
565 static int unmap_buf_structs(struct ust_channel *chan)
566 {
567 int i;
568
569 for (i=0; i < chan->n_cpus; i++) {
570 if (shmdt(chan->buf[i]) < 0) {
571 PERROR("shmdt");
572 }
573 }
574 return 0;
575 }
576
577 /*
578 * Create channel.
579 */
580 static int create_channel(const char *trace_name, struct ust_trace *trace,
581 const char *channel_name, struct ust_channel *chan,
582 unsigned int subbuf_size, unsigned int n_subbufs, int overwrite)
583 {
584 int i, result;
585
586 chan->trace = trace;
587 chan->overwrite = overwrite;
588 chan->n_subbufs_order = get_count_order(n_subbufs);
589 chan->commit_count_mask = (~0UL >> chan->n_subbufs_order);
590 chan->n_cpus = get_n_cpus();
591
592 /* These mappings should ideall be per-cpu, if somebody can do that
593 * from userspace, that would be cool!
594 */
595 chan->buf = (void *) zmalloc(chan->n_cpus * sizeof(void *));
596 if(chan->buf == NULL) {
597 goto error;
598 }
599 chan->buf_struct_shmids = (int *) zmalloc(chan->n_cpus * sizeof(int));
600 if(chan->buf_struct_shmids == NULL)
601 goto free_buf;
602
603 result = map_buf_structs(chan);
604 if(result != 0) {
605 goto free_buf_struct_shmids;
606 }
607
608 result = open_channel(chan, subbuf_size, n_subbufs);
609 if (result != 0) {
610 ERR("Cannot open channel for trace %s", trace_name);
611 goto unmap_buf_structs;
612 }
613
614 return 0;
615
616 unmap_buf_structs:
617 for (i=0; i < chan->n_cpus; i++) {
618 if (shmdt(chan->buf[i]) < 0) {
619 PERROR("shmdt bufstruct");
620 }
621 }
622
623 free_buf_struct_shmids:
624 free(chan->buf_struct_shmids);
625
626 free_buf:
627 free(chan->buf);
628
629 error:
630 return -1;
631 }
632
633
634 static void remove_channel(struct ust_channel *chan)
635 {
636 close_channel(chan);
637
638 unmap_buf_structs(chan);
639
640 free(chan->buf_struct_shmids);
641
642 free(chan->buf);
643 }
644
645 static void ltt_relay_async_wakeup_chan(struct ust_channel *ltt_channel)
646 {
647 //ust// unsigned int i;
648 //ust// struct rchan *rchan = ltt_channel->trans_channel_data;
649 //ust//
650 //ust// for_each_possible_cpu(i) {
651 //ust// struct ltt_channel_buf_struct *ltt_buf =
652 //ust// percpu_ptr(ltt_channel->buf, i);
653 //ust//
654 //ust// if (uatomic_read(&ltt_buf->wakeup_readers) == 1) {
655 //ust// uatomic_set(&ltt_buf->wakeup_readers, 0);
656 //ust// wake_up_interruptible(&rchan->buf[i]->read_wait);
657 //ust// }
658 //ust// }
659 }
660
661 static void ltt_relay_finish_buffer(struct ust_channel *channel, unsigned int cpu)
662 {
663 // int result;
664
665 if (channel->buf[cpu]) {
666 struct ust_buffer *buf = channel->buf[cpu];
667 ltt_force_switch(buf, FORCE_FLUSH);
668
669 /* closing the pipe tells the consumer the buffer is finished */
670 close(buf->data_ready_fd_write);
671 }
672 }
673
674
675 static void finish_channel(struct ust_channel *channel)
676 {
677 unsigned int i;
678
679 for(i=0; i<channel->n_cpus; i++) {
680 ltt_relay_finish_buffer(channel, i);
681 }
682 }
683
684
685 /*
686 * ltt_reserve_switch_old_subbuf: switch old subbuffer
687 *
688 * Concurrency safe because we are the last and only thread to alter this
689 * sub-buffer. As long as it is not delivered and read, no other thread can
690 * alter the offset, alter the reserve_count or call the
691 * client_buffer_end_callback on this sub-buffer.
692 *
693 * The only remaining threads could be the ones with pending commits. They will
694 * have to do the deliver themselves. Not concurrency safe in overwrite mode.
695 * We detect corrupted subbuffers with commit and reserve counts. We keep a
696 * corrupted sub-buffers count and push the readers across these sub-buffers.
697 *
698 * Not concurrency safe if a writer is stalled in a subbuffer and another writer
699 * switches in, finding out it's corrupted. The result will be than the old
700 * (uncommited) subbuffer will be declared corrupted, and that the new subbuffer
701 * will be declared corrupted too because of the commit count adjustment.
702 *
703 * Note : offset_old should never be 0 here.
704 */
705 static void ltt_reserve_switch_old_subbuf(
706 struct ust_channel *chan, struct ust_buffer *buf,
707 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
708 {
709 long oldidx = SUBBUF_INDEX(offsets->old - 1, chan);
710 long commit_count, padding_size;
711
712 padding_size = chan->subbuf_size
713 - (SUBBUF_OFFSET(offsets->old - 1, chan) + 1);
714 ltt_buffer_end(buf, *tsc, offsets->old, oldidx);
715
716 /*
717 * Must write slot data before incrementing commit count.
718 * This compiler barrier is upgraded into a cmm_smp_wmb() by the IPI
719 * sent by get_subbuf() when it does its cmm_smp_rmb().
720 */
721 cmm_smp_wmb();
722 uatomic_add(&buf->commit_count[oldidx].cc, padding_size);
723 commit_count = uatomic_read(&buf->commit_count[oldidx].cc);
724 ltt_check_deliver(chan, buf, offsets->old - 1, commit_count, oldidx);
725 ltt_write_commit_counter(chan, buf, oldidx,
726 offsets->old, commit_count, padding_size);
727 }
728
729 /*
730 * ltt_reserve_switch_new_subbuf: Populate new subbuffer.
731 *
732 * This code can be executed unordered : writers may already have written to the
733 * sub-buffer before this code gets executed, caution. The commit makes sure
734 * that this code is executed before the deliver of this sub-buffer.
735 */
736 static void ltt_reserve_switch_new_subbuf(
737 struct ust_channel *chan, struct ust_buffer *buf,
738 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
739 {
740 long beginidx = SUBBUF_INDEX(offsets->begin, chan);
741 long commit_count;
742
743 ltt_buffer_begin(buf, *tsc, beginidx);
744
745 /*
746 * Must write slot data before incrementing commit count.
747 * This compiler barrier is upgraded into a cmm_smp_wmb() by the IPI
748 * sent by get_subbuf() when it does its cmm_smp_rmb().
749 */
750 cmm_smp_wmb();
751 uatomic_add(&buf->commit_count[beginidx].cc, ltt_subbuffer_header_size());
752 commit_count = uatomic_read(&buf->commit_count[beginidx].cc);
753 /* Check if the written buffer has to be delivered */
754 ltt_check_deliver(chan, buf, offsets->begin, commit_count, beginidx);
755 ltt_write_commit_counter(chan, buf, beginidx,
756 offsets->begin, commit_count, ltt_subbuffer_header_size());
757 }
758
759 /*
760 * ltt_reserve_end_switch_current: finish switching current subbuffer
761 *
762 * Concurrency safe because we are the last and only thread to alter this
763 * sub-buffer. As long as it is not delivered and read, no other thread can
764 * alter the offset, alter the reserve_count or call the
765 * client_buffer_end_callback on this sub-buffer.
766 *
767 * The only remaining threads could be the ones with pending commits. They will
768 * have to do the deliver themselves. Not concurrency safe in overwrite mode.
769 * We detect corrupted subbuffers with commit and reserve counts. We keep a
770 * corrupted sub-buffers count and push the readers across these sub-buffers.
771 *
772 * Not concurrency safe if a writer is stalled in a subbuffer and another writer
773 * switches in, finding out it's corrupted. The result will be than the old
774 * (uncommited) subbuffer will be declared corrupted, and that the new subbuffer
775 * will be declared corrupted too because of the commit count adjustment.
776 */
777 static void ltt_reserve_end_switch_current(
778 struct ust_channel *chan,
779 struct ust_buffer *buf,
780 struct ltt_reserve_switch_offsets *offsets, u64 *tsc)
781 {
782 long endidx = SUBBUF_INDEX(offsets->end - 1, chan);
783 long commit_count, padding_size;
784
785 padding_size = chan->subbuf_size
786 - (SUBBUF_OFFSET(offsets->end - 1, chan) + 1);
787
788 ltt_buffer_end(buf, *tsc, offsets->end, endidx);
789
790 /*
791 * Must write slot data before incrementing commit count.
792 * This compiler barrier is upgraded into a cmm_smp_wmb() by the IPI
793 * sent by get_subbuf() when it does its cmm_smp_rmb().
794 */
795 cmm_smp_wmb();
796 uatomic_add(&buf->commit_count[endidx].cc, padding_size);
797 commit_count = uatomic_read(&buf->commit_count[endidx].cc);
798 ltt_check_deliver(chan, buf,
799 offsets->end - 1, commit_count, endidx);
800 ltt_write_commit_counter(chan, buf, endidx,
801 offsets->end, commit_count, padding_size);
802 }
803
804 /*
805 * Returns :
806 * 0 if ok
807 * !0 if execution must be aborted.
808 */
809 static int ltt_relay_try_switch_slow(
810 enum force_switch_mode mode,
811 struct ust_channel *chan,
812 struct ust_buffer *buf,
813 struct ltt_reserve_switch_offsets *offsets,
814 u64 *tsc)
815 {
816 long subbuf_index;
817 long reserve_commit_diff;
818
819 offsets->begin = uatomic_read(&buf->offset);
820 offsets->old = offsets->begin;
821 offsets->begin_switch = 0;
822 offsets->end_switch_old = 0;
823
824 *tsc = trace_clock_read64();
825
826 if (SUBBUF_OFFSET(offsets->begin, buf->chan) != 0) {
827 offsets->begin = SUBBUF_ALIGN(offsets->begin, buf->chan);
828 offsets->end_switch_old = 1;
829 } else {
830 /* we do not have to switch : buffer is empty */
831 return -1;
832 }
833 if (mode == FORCE_ACTIVE)
834 offsets->begin += ltt_subbuffer_header_size();
835 /*
836 * Always begin_switch in FORCE_ACTIVE mode.
837 * Test new buffer integrity
838 */
839 subbuf_index = SUBBUF_INDEX(offsets->begin, buf->chan);
840 reserve_commit_diff =
841 (BUFFER_TRUNC(offsets->begin, buf->chan)
842 >> chan->n_subbufs_order)
843 - (uatomic_read(&buf->commit_count[subbuf_index].cc_sb)
844 & chan->commit_count_mask);
845 if (reserve_commit_diff == 0) {
846 /* Next buffer not corrupted. */
847 if (mode == FORCE_ACTIVE
848 && !chan->overwrite
849 && offsets->begin - uatomic_read(&buf->consumed)
850 >= chan->alloc_size) {
851 /*
852 * We do not overwrite non consumed buffers and we are
853 * full : ignore switch while tracing is active.
854 */
855 return -1;
856 }
857 } else {
858 /*
859 * Next subbuffer corrupted. Force pushing reader even in normal
860 * mode
861 */
862 }
863 offsets->end = offsets->begin;
864 return 0;
865 }
866
867 /*
868 * Force a sub-buffer switch for a per-cpu buffer. This operation is
869 * completely reentrant : can be called while tracing is active with
870 * absolutely no lock held.
871 */
872 void ltt_force_switch_lockless_slow(struct ust_buffer *buf,
873 enum force_switch_mode mode)
874 {
875 struct ust_channel *chan = buf->chan;
876 struct ltt_reserve_switch_offsets offsets;
877 u64 tsc;
878
879 offsets.size = 0;
880
881 DBG("Switching (forced) %s_%d", chan->channel_name, buf->cpu);
882 /*
883 * Perform retryable operations.
884 */
885 do {
886 if (ltt_relay_try_switch_slow(mode, chan, buf,
887 &offsets, &tsc))
888 return;
889 } while (uatomic_cmpxchg(&buf->offset, offsets.old,
890 offsets.end) != offsets.old);
891
892 /*
893 * Atomically update last_tsc. This update races against concurrent
894 * atomic updates, but the race will always cause supplementary full TSC
895 * events, never the opposite (missing a full TSC event when it would be
896 * needed).
897 */
898 save_last_tsc(buf, tsc);
899
900 /*
901 * Push the reader if necessary
902 */
903 if (mode == FORCE_ACTIVE) {
904 ltt_reserve_push_reader(chan, buf, offsets.end - 1);
905 //ust// ltt_clear_noref_flag(chan, buf, SUBBUF_INDEX(offsets.end - 1, chan));
906 }
907
908 /*
909 * Switch old subbuffer if needed.
910 */
911 if (offsets.end_switch_old) {
912 //ust// ltt_clear_noref_flag(rchan, buf, SUBBUF_INDEX(offsets.old - 1, rchan));
913 ltt_reserve_switch_old_subbuf(chan, buf, &offsets, &tsc);
914 }
915
916 /*
917 * Populate new subbuffer.
918 */
919 if (mode == FORCE_ACTIVE)
920 ltt_reserve_switch_new_subbuf(chan, buf, &offsets, &tsc);
921 }
922
923 /*
924 * Returns :
925 * 0 if ok
926 * !0 if execution must be aborted.
927 */
928 static int ltt_relay_try_reserve_slow(struct ust_channel *chan, struct ust_buffer *buf,
929 struct ltt_reserve_switch_offsets *offsets, size_t data_size,
930 u64 *tsc, unsigned int *rflags, int largest_align)
931 {
932 long reserve_commit_diff;
933
934 offsets->begin = uatomic_read(&buf->offset);
935 offsets->old = offsets->begin;
936 offsets->begin_switch = 0;
937 offsets->end_switch_current = 0;
938 offsets->end_switch_old = 0;
939
940 *tsc = trace_clock_read64();
941 if (last_tsc_overflow(buf, *tsc))
942 *rflags = LTT_RFLAG_ID_SIZE_TSC;
943
944 if (unlikely(SUBBUF_OFFSET(offsets->begin, buf->chan) == 0)) {
945 offsets->begin_switch = 1; /* For offsets->begin */
946 } else {
947 offsets->size = ust_get_header_size(chan,
948 offsets->begin, data_size,
949 &offsets->before_hdr_pad, *rflags);
950 offsets->size += ltt_align(offsets->begin + offsets->size,
951 largest_align)
952 + data_size;
953 if (unlikely((SUBBUF_OFFSET(offsets->begin, buf->chan) +
954 offsets->size) > buf->chan->subbuf_size)) {
955 offsets->end_switch_old = 1; /* For offsets->old */
956 offsets->begin_switch = 1; /* For offsets->begin */
957 }
958 }
959 if (unlikely(offsets->begin_switch)) {
960 long subbuf_index;
961
962 /*
963 * We are typically not filling the previous buffer completely.
964 */
965 if (likely(offsets->end_switch_old))
966 offsets->begin = SUBBUF_ALIGN(offsets->begin,
967 buf->chan);
968 offsets->begin = offsets->begin + ltt_subbuffer_header_size();
969 /* Test new buffer integrity */
970 subbuf_index = SUBBUF_INDEX(offsets->begin, buf->chan);
971 reserve_commit_diff =
972 (BUFFER_TRUNC(offsets->begin, buf->chan)
973 >> chan->n_subbufs_order)
974 - (uatomic_read(&buf->commit_count[subbuf_index].cc_sb)
975 & chan->commit_count_mask);
976 if (likely(reserve_commit_diff == 0)) {
977 /* Next buffer not corrupted. */
978 if (unlikely(!chan->overwrite &&
979 (SUBBUF_TRUNC(offsets->begin, buf->chan)
980 - SUBBUF_TRUNC(uatomic_read(
981 &buf->consumed),
982 buf->chan))
983 >= chan->alloc_size)) {
984 /*
985 * We do not overwrite non consumed buffers
986 * and we are full : event is lost.
987 */
988 uatomic_inc(&buf->events_lost);
989 return -1;
990 } else {
991 /*
992 * next buffer not corrupted, we are either in
993 * overwrite mode or the buffer is not full.
994 * It's safe to write in this new subbuffer.
995 */
996 }
997 } else {
998 /*
999 * Next subbuffer corrupted. Drop event in normal and
1000 * overwrite mode. Caused by either a writer OOPS or
1001 * too many nested writes over a reserve/commit pair.
1002 */
1003 uatomic_inc(&buf->events_lost);
1004 return -1;
1005 }
1006 offsets->size = ust_get_header_size(chan,
1007 offsets->begin, data_size,
1008 &offsets->before_hdr_pad, *rflags);
1009 offsets->size += ltt_align(offsets->begin + offsets->size,
1010 largest_align)
1011 + data_size;
1012 if (unlikely((SUBBUF_OFFSET(offsets->begin, buf->chan)
1013 + offsets->size) > buf->chan->subbuf_size)) {
1014 /*
1015 * Event too big for subbuffers, report error, don't
1016 * complete the sub-buffer switch.
1017 */
1018 uatomic_inc(&buf->events_lost);
1019 return -1;
1020 } else {
1021 /*
1022 * We just made a successful buffer switch and the event
1023 * fits in the new subbuffer. Let's write.
1024 */
1025 }
1026 } else {
1027 /*
1028 * Event fits in the current buffer and we are not on a switch
1029 * boundary. It's safe to write.
1030 */
1031 }
1032 offsets->end = offsets->begin + offsets->size;
1033
1034 if (unlikely((SUBBUF_OFFSET(offsets->end, buf->chan)) == 0)) {
1035 /*
1036 * The offset_end will fall at the very beginning of the next
1037 * subbuffer.
1038 */
1039 offsets->end_switch_current = 1; /* For offsets->begin */
1040 }
1041 return 0;
1042 }
1043
1044 /**
1045 * ltt_relay_reserve_slot_lockless_slow - Atomic slot reservation in a buffer.
1046 * @trace: the trace structure to log to.
1047 * @ltt_channel: channel structure
1048 * @transport_data: data structure specific to ltt relay
1049 * @data_size: size of the variable length data to log.
1050 * @slot_size: pointer to total size of the slot (out)
1051 * @buf_offset : pointer to reserved buffer offset (out)
1052 * @tsc: pointer to the tsc at the slot reservation (out)
1053 * @cpu: cpuid
1054 *
1055 * Return : -ENOSPC if not enough space, else returns 0.
1056 * It will take care of sub-buffer switching.
1057 */
1058 int ltt_reserve_slot_lockless_slow(struct ust_channel *chan,
1059 struct ust_trace *trace, size_t data_size,
1060 int largest_align, int cpu,
1061 struct ust_buffer **ret_buf,
1062 size_t *slot_size, long *buf_offset,
1063 u64 *tsc, unsigned int *rflags)
1064 {
1065 struct ust_buffer *buf = *ret_buf = chan->buf[cpu];
1066 struct ltt_reserve_switch_offsets offsets;
1067
1068 offsets.size = 0;
1069
1070 do {
1071 if (unlikely(ltt_relay_try_reserve_slow(chan, buf, &offsets,
1072 data_size, tsc, rflags, largest_align)))
1073 return -ENOSPC;
1074 } while (unlikely(uatomic_cmpxchg(&buf->offset, offsets.old,
1075 offsets.end) != offsets.old));
1076
1077 /*
1078 * Atomically update last_tsc. This update races against concurrent
1079 * atomic updates, but the race will always cause supplementary full TSC
1080 * events, never the opposite (missing a full TSC event when it would be
1081 * needed).
1082 */
1083 save_last_tsc(buf, *tsc);
1084
1085 /*
1086 * Push the reader if necessary
1087 */
1088 ltt_reserve_push_reader(chan, buf, offsets.end - 1);
1089
1090 /*
1091 * Clear noref flag for this subbuffer.
1092 */
1093 //ust// ltt_clear_noref_flag(chan, buf, SUBBUF_INDEX(offsets.end - 1, chan));
1094
1095 /*
1096 * Switch old subbuffer if needed.
1097 */
1098 if (unlikely(offsets.end_switch_old)) {
1099 //ust// ltt_clear_noref_flag(chan, buf, SUBBUF_INDEX(offsets.old - 1, chan));
1100 ltt_reserve_switch_old_subbuf(chan, buf, &offsets, tsc);
1101 DBG("Switching %s_%d", chan->channel_name, cpu);
1102 }
1103
1104 /*
1105 * Populate new subbuffer.
1106 */
1107 if (unlikely(offsets.begin_switch))
1108 ltt_reserve_switch_new_subbuf(chan, buf, &offsets, tsc);
1109
1110 if (unlikely(offsets.end_switch_current))
1111 ltt_reserve_end_switch_current(chan, buf, &offsets, tsc);
1112
1113 *slot_size = offsets.size;
1114 *buf_offset = offsets.begin + offsets.before_hdr_pad;
1115 return 0;
1116 }
1117
1118 static struct ltt_transport ust_relay_transport = {
1119 .name = "ustrelay",
1120 .ops = {
1121 .create_channel = create_channel,
1122 .finish_channel = finish_channel,
1123 .remove_channel = remove_channel,
1124 .wakeup_channel = ltt_relay_async_wakeup_chan,
1125 },
1126 };
1127
1128 static char initialized = 0;
1129
1130 void __attribute__((constructor)) init_ustrelay_transport(void)
1131 {
1132 if(!initialized) {
1133 ltt_transport_register(&ust_relay_transport);
1134 initialized = 1;
1135 }
1136 }
1137
1138 static void __attribute__((destructor)) ust_buffers_exit(void)
1139 {
1140 ltt_transport_unregister(&ust_relay_transport);
1141 }
1142
1143 size_t ltt_write_event_header_slow(struct ust_channel *channel,
1144 struct ust_buffer *buf, long buf_offset,
1145 u16 eID, u32 event_size,
1146 u64 tsc, unsigned int rflags)
1147 {
1148 struct ltt_event_header header;
1149 u16 small_size;
1150
1151 switch (rflags) {
1152 case LTT_RFLAG_ID_SIZE_TSC:
1153 header.id_time = 29 << LTT_TSC_BITS;
1154 break;
1155 case LTT_RFLAG_ID_SIZE:
1156 header.id_time = 30 << LTT_TSC_BITS;
1157 break;
1158 case LTT_RFLAG_ID:
1159 header.id_time = 31 << LTT_TSC_BITS;
1160 break;
1161 default:
1162 WARN_ON_ONCE(1);
1163 header.id_time = 0;
1164 break;
1165 }
1166
1167 header.id_time |= (u32)tsc & LTT_TSC_MASK;
1168 ust_buffers_write(buf, buf_offset, &header, sizeof(header));
1169 buf_offset += sizeof(header);
1170
1171 switch (rflags) {
1172 case LTT_RFLAG_ID_SIZE_TSC:
1173 small_size = (u16)min_t(u32, event_size, LTT_MAX_SMALL_SIZE);
1174 ust_buffers_write(buf, buf_offset,
1175 &eID, sizeof(u16));
1176 buf_offset += sizeof(u16);
1177 ust_buffers_write(buf, buf_offset,
1178 &small_size, sizeof(u16));
1179 buf_offset += sizeof(u16);
1180 if (small_size == LTT_MAX_SMALL_SIZE) {
1181 ust_buffers_write(buf, buf_offset,
1182 &event_size, sizeof(u32));
1183 buf_offset += sizeof(u32);
1184 }
1185 buf_offset += ltt_align(buf_offset, sizeof(u64));
1186 ust_buffers_write(buf, buf_offset,
1187 &tsc, sizeof(u64));
1188 buf_offset += sizeof(u64);
1189 break;
1190 case LTT_RFLAG_ID_SIZE:
1191 small_size = (u16)min_t(u32, event_size, LTT_MAX_SMALL_SIZE);
1192 ust_buffers_write(buf, buf_offset,
1193 &eID, sizeof(u16));
1194 buf_offset += sizeof(u16);
1195 ust_buffers_write(buf, buf_offset,
1196 &small_size, sizeof(u16));
1197 buf_offset += sizeof(u16);
1198 if (small_size == LTT_MAX_SMALL_SIZE) {
1199 ust_buffers_write(buf, buf_offset,
1200 &event_size, sizeof(u32));
1201 buf_offset += sizeof(u32);
1202 }
1203 break;
1204 case LTT_RFLAG_ID:
1205 ust_buffers_write(buf, buf_offset,
1206 &eID, sizeof(u16));
1207 buf_offset += sizeof(u16);
1208 break;
1209 }
1210
1211 return buf_offset;
1212 }
This page took 0.060667 seconds and 3 git commands to generate.