workqueue: preserve FIFO work order
[userspace-rcu.git] / urcu / workqueue-fifo.h
1 #ifndef _URCU_WORKQUEUE_FIFO_H
2 #define _URCU_WORKQUEUE_FIFO_H
3
4 /*
5 * urcu/workqueue-fifo.h
6 *
7 * Userspace RCU library - work queue scheme with FIFO semantic
8 *
9 * Copyright (c) 2014 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25
26 #include <urcu/uatomic.h>
27 #include <urcu/wfstack.h>
28 #include <urcu/waitqueue-lifo.h>
29 #include <urcu/wfcqueue.h>
30 #include <urcu/rculist.h>
31 #include <pthread.h>
32 #include <assert.h>
33
34 /*
35 * We use RCU to steal work from siblings. Therefore, one of RCU flavors
36 * need to be included before this header. All worker that participate
37 * in stealing (initialized with the URCU_WORKER_STEAL flag) need to be
38 * registered RCU readers threads.
39 */
40
41 struct urcu_work {
42 struct cds_wfcq_node node;
43 };
44
45 struct urcu_workqueue {
46 /* FIFO work queue */
47 struct __cds_wfcq_head head;
48 struct cds_wfcq_tail tail;
49
50 /* Associated wait queue for LIFO wait/wakeup */
51 struct urcu_wait_queue waitqueue;
52
53 /* RCU linked list head of siblings for work stealing. */
54 struct cds_list_head sibling_head;
55 pthread_mutex_t sibling_lock; /* Protect sibling list updates */
56 };
57
58 struct urcu_worker {
59 struct cds_wfcq_head head;
60 struct cds_wfcq_tail tail;
61
62 struct urcu_wait_node wait_node;
63 /* RCU linked list node of siblings for work stealing. */
64 struct cds_list_head sibling_node;
65 int flags; /* enum urcu_worker_flags */
66 };
67
68 enum urcu_worker_flags {
69 URCU_WORKER_STEAL = (1 << 0),
70 };
71
72 static inline
73 void urcu_workqueue_init(struct urcu_workqueue *queue)
74 {
75 __cds_wfcq_init(&queue->head, &queue->tail);
76 urcu_wait_queue_init(&queue->waitqueue);
77 CDS_INIT_LIST_HEAD(&queue->sibling_head);
78 }
79
80 static inline
81 void urcu_queue_work(struct urcu_workqueue *queue, struct urcu_work *work)
82 {
83 bool was_empty;
84
85 cds_wfcq_node_init(&work->node);
86
87 /* Enqueue work. */
88 was_empty = !cds_wfcq_enqueue(&queue->head, &queue->tail,
89 &work->node);
90 /*
91 * If workqueue was previously empty, wakeup one worker thread.
92 * It will eventually grab the entire content of the work-queue
93 * (therefore grabbing a "work batch"). After having grabbed the
94 * work batch, while that thread is running and taking care of
95 * that work batch, when we enqueue more work, we will wake
96 * another thread (if there is one waiting), which will
97 * eventually grab the new batch, and so on. This scheme ensures
98 * that contiguous batch of work are handled by the same thread
99 * (for locality), and also ensures that we scale work to many
100 * worker threads when threads are busy enough to still be
101 * running when work is enqueued.
102 */
103 if (was_empty)
104 (void) urcu_dequeue_wake_single(&queue->waitqueue);
105 }
106
107 static inline
108 void urcu_workqueue_wakeup_all(struct urcu_workqueue *queue)
109 {
110 struct urcu_waiters waiters;
111
112 urcu_move_waiters(&waiters, &queue->waitqueue);
113 (void) urcu_wake_all_waiters(&waiters);
114 }
115
116 static inline
117 void urcu_worker_init(struct urcu_worker *worker, int flags)
118 {
119 cds_wfcq_init(&worker->head, &worker->tail);
120 worker->flags = flags;
121 urcu_wait_node_init(&worker->wait_node, URCU_WAIT_RUNNING);
122 }
123
124 static inline
125 void urcu_worker_register(struct urcu_workqueue *queue,
126 struct urcu_worker *worker)
127 {
128 if (worker->flags & URCU_WORKER_STEAL) {
129 pthread_mutex_lock(&queue->sibling_lock);
130 cds_list_add_rcu(&worker->sibling_node, &queue->sibling_head);
131 pthread_mutex_unlock(&queue->sibling_lock);
132 }
133 }
134
135 static inline
136 void urcu_worker_unregister(struct urcu_workqueue *queue,
137 struct urcu_worker *worker)
138 {
139 enum cds_wfcq_ret wfcq_ret;
140
141 if (worker->flags & URCU_WORKER_STEAL) {
142 pthread_mutex_lock(&queue->sibling_lock);
143 cds_list_del_rcu(&worker->sibling_node);
144 pthread_mutex_unlock(&queue->sibling_lock);
145
146 /*
147 * Wait for grace period before freeing or reusing
148 * "worker" because used by RCU linked list.
149 */
150 synchronize_rcu();
151 }
152
153 /*
154 * Put any local work we still have back into the workqueue.
155 */
156 wfcq_ret = __cds_wfcq_splice_blocking(&queue->head,
157 &queue->tail,
158 &worker->head,
159 &worker->tail);
160 if (wfcq_ret != CDS_WFCQ_RET_SRC_EMPTY
161 && wfcq_ret == CDS_WFCQ_RET_DEST_EMPTY) {
162 /*
163 * Wakeup worker thread if we have put work back into
164 * workqueue that was previously empty.
165 */
166 (void) urcu_dequeue_wake_single(&queue->waitqueue);
167 }
168 }
169
170 /*
171 * Try stealing work from siblings when we have nothing to do.
172 */
173 static inline
174 bool ___urcu_steal_work(struct urcu_worker *worker,
175 struct urcu_worker *sibling)
176 {
177 enum cds_wfcq_ret splice_ret;
178
179 /*
180 * Don't bother grabbing the sibling queue lock if it is empty.
181 */
182 if (cds_wfcq_empty(&sibling->head, &sibling->tail))
183 return false;
184 cds_wfcq_dequeue_lock(&sibling->head, &sibling->tail);
185 splice_ret = __cds_wfcq_splice_blocking(&worker->head,
186 &worker->tail,
187 &sibling->head,
188 &sibling->tail);
189 cds_wfcq_dequeue_unlock(&sibling->head, &sibling->tail);
190 /* Ensure that we preserve FIFO work order. */
191 assert(splice_ret != CDS_WFCQ_RET_DEST_NON_EMPTY);
192 return splice_ret != CDS_WFCQ_RET_SRC_EMPTY;
193 }
194
195 static inline
196 bool __urcu_steal_work(struct urcu_workqueue *queue,
197 struct urcu_worker *worker)
198 {
199 struct urcu_worker *sibling_prev, *sibling_next;
200 struct cds_list_head *sibling_node;
201 bool steal_performed = 0;
202
203 if (!(worker->flags & URCU_WORKER_STEAL))
204 return false;
205
206 rcu_read_lock();
207
208 sibling_node = rcu_dereference(worker->sibling_node.next);
209 if (sibling_node == &queue->sibling_head)
210 sibling_node = rcu_dereference(sibling_node->next);
211 sibling_next = caa_container_of(sibling_node, struct urcu_worker,
212 sibling_node);
213 if (sibling_next != worker)
214 steal_performed = ___urcu_steal_work(worker, sibling_next);
215 if (steal_performed)
216 goto end;
217
218 sibling_node = rcu_dereference(worker->sibling_node.prev);
219 if (sibling_node == &queue->sibling_head)
220 sibling_node = rcu_dereference(sibling_node->prev);
221 sibling_prev = caa_container_of(sibling_node, struct urcu_worker,
222 sibling_node);
223 if (sibling_prev != worker && sibling_prev != sibling_next)
224 steal_performed = ___urcu_steal_work(worker, sibling_prev);
225 end:
226 rcu_read_unlock();
227
228 return steal_performed;
229 }
230
231 static inline
232 bool ___urcu_wakeup_sibling(struct urcu_worker *sibling)
233 {
234 return urcu_adaptative_wake_up(&sibling->wait_node);
235 }
236
237 static inline
238 bool __urcu_wakeup_siblings(struct urcu_workqueue *queue,
239 struct urcu_worker *worker)
240 {
241 struct urcu_worker *sibling_prev, *sibling_next;
242 struct cds_list_head *sibling_node;
243 bool wakeup_performed = 0;
244
245 if (!(worker->flags & URCU_WORKER_STEAL))
246 return;
247
248 /* Only wakeup siblings if we have work in our own queue. */
249 if (cds_wfcq_empty(&worker->head, &worker->tail))
250 return;
251
252 rcu_read_lock();
253
254 sibling_node = rcu_dereference(worker->sibling_node.next);
255 if (sibling_node == &queue->sibling_head)
256 sibling_node = rcu_dereference(sibling_node->next);
257 sibling_next = caa_container_of(sibling_node, struct urcu_worker,
258 sibling_node);
259 if (sibling_next != worker)
260 wakeup_performed = ___urcu_wakeup_sibling(sibling_next);
261 if (wakeup_performed)
262 goto end;
263
264 sibling_node = rcu_dereference(worker->sibling_node.prev);
265 if (sibling_node == &queue->sibling_head)
266 sibling_node = rcu_dereference(sibling_node->prev);
267 sibling_prev = caa_container_of(sibling_node, struct urcu_worker,
268 sibling_node);
269 if (sibling_prev != worker && sibling_prev != sibling_next)
270 wakeup_performed = ___urcu_wakeup_sibling(sibling_prev);
271 end:
272 rcu_read_unlock();
273
274 return wakeup_performed;
275 }
276
277 static inline
278 void urcu_accept_work(struct urcu_workqueue *queue,
279 struct urcu_worker *worker,
280 int blocking)
281 {
282 enum cds_wfcq_ret wfcq_ret;
283
284 wfcq_ret = __cds_wfcq_splice_blocking(&worker->head,
285 &worker->tail,
286 &queue->head,
287 &queue->tail);
288 /* Don't wait if we have work to do. */
289 if (wfcq_ret != CDS_WFCQ_RET_SRC_EMPTY
290 || !cds_wfcq_empty(&worker->head,
291 &worker->tail))
292 goto do_work;
293 /* Try to steal work from sibling instead of blocking */
294 if (__urcu_steal_work(queue, worker))
295 goto do_work;
296 if (!blocking)
297 return;
298 urcu_wait_set_state(&worker->wait_node,
299 URCU_WAIT_WAITING);
300 if (!CMM_LOAD_SHARED(worker->wait_node.node.next)) {
301 int was_empty;
302
303 /*
304 * NULL next pointer. We are therefore not in
305 * the queue.
306 */
307 cds_wfs_node_init(&worker->wait_node.node);
308 was_empty = !urcu_wait_add(&queue->waitqueue,
309 &worker->wait_node);
310 /*
311 * If the wait queue was empty, it means we are the
312 * first thread to be put back into an otherwise empty
313 * wait queue. Re-check if work queue is empty after
314 * adding ourself to wait queue, so we can wakeup the
315 * top of wait queue since new work have appeared, and
316 * work enqueuer may not have seen that it needed to do
317 * a wake up.
318 */
319 if (was_empty && !cds_wfcq_empty(&queue->head,
320 &queue->tail))
321 (void) urcu_dequeue_wake_single(&queue->waitqueue);
322 } else {
323 /*
324 * Non-NULL next pointer. We are therefore in
325 * the queue, or the dispatcher just removed us
326 * from it (after we read the next pointer), and
327 * is therefore awakening us. The state will
328 * therefore have been changed from WAITING to
329 * some other state, which will let the busy
330 * wait pass through.
331 */
332 }
333 urcu_adaptative_busy_wait(&worker->wait_node);
334 return;
335
336 do_work:
337 /*
338 * We will be busy handling the work batch, awaken siblings so
339 * they can steal from us.
340 */
341 (void) __urcu_wakeup_siblings(queue, worker);
342 }
343
344 static inline
345 struct urcu_work *urcu_dequeue_work(struct urcu_worker *worker)
346 {
347 struct cds_wfcq_node *node;
348
349 /*
350 * If we are registered for work stealing, we need to dequeue
351 * safely against siblings.
352 */
353 if (worker->flags & URCU_WORKER_STEAL) {
354 /*
355 * Don't bother grabbing the worker queue lock if it is
356 * empty.
357 */
358 if (cds_wfcq_empty(&worker->head, &worker->tail))
359 return NULL;
360 node = cds_wfcq_dequeue_blocking(&worker->head,
361 &worker->tail);
362 } else {
363 node = ___cds_wfcq_dequeue_with_state(&worker->head,
364 &worker->tail, NULL, 1, 0);
365 }
366 if (!node)
367 return NULL;
368 return caa_container_of(node, struct urcu_work, node);
369 }
370
371 #endif /* _URCU_WORKQUEUE_FIFO_H */
This page took 0.035653 seconds and 4 git commands to generate.