1d7528db7e1327b6507141f8f6fbfd992fca7571
[userspace-rcu.git] / urcu / workqueue-fifo.h
1 #ifndef _URCU_WORKQUEUE_FIFO_H
2 #define _URCU_WORKQUEUE_FIFO_H
3
4 /*
5 * urcu/workqueue-fifo.h
6 *
7 * Userspace RCU library - work queue scheme with FIFO semantic
8 *
9 * Copyright (c) 2014 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25
26 #include <urcu/uatomic.h>
27 #include <urcu/wfstack.h>
28 #include <urcu/waitqueue-lifo.h>
29 #include <urcu/wfcqueue.h>
30 #include <urcu/rculist.h>
31 #include <pthread.h>
32
33 /*
34 * We use RCU to steal work from siblings. Therefore, one of RCU flavors
35 * need to be included before this header. All worker that participate
36 * in stealing (initialized with the URCU_WORKER_STEAL flag) need to be
37 * registered RCU readers threads.
38 */
39
40 struct urcu_work {
41 struct cds_wfcq_node node;
42 };
43
44 struct urcu_workqueue {
45 /* FIFO work queue */
46 struct __cds_wfcq_head head;
47 struct cds_wfcq_tail tail;
48
49 /* Associated wait queue for LIFO wait/wakeup */
50 struct urcu_wait_queue waitqueue;
51
52 /* RCU linked list head of siblings for work stealing. */
53 struct cds_list_head sibling_head;
54 pthread_mutex_t sibling_lock; /* Protect sibling list updates */
55 };
56
57 struct urcu_worker {
58 struct cds_wfcq_head head;
59 struct cds_wfcq_tail tail;
60
61 struct urcu_wait_node wait_node;
62 /* RCU linked list node of siblings for work stealing. */
63 struct cds_list_head sibling_node;
64 int flags; /* enum urcu_worker_flags */
65 };
66
67 enum urcu_worker_flags {
68 URCU_WORKER_STEAL = (1 << 0),
69 };
70
71 static inline
72 void urcu_workqueue_init(struct urcu_workqueue *queue)
73 {
74 __cds_wfcq_init(&queue->head, &queue->tail);
75 urcu_wait_queue_init(&queue->waitqueue);
76 CDS_INIT_LIST_HEAD(&queue->sibling_head);
77 }
78
79 static inline
80 void urcu_queue_work(struct urcu_workqueue *queue, struct urcu_work *work)
81 {
82 bool was_empty;
83
84 cds_wfcq_node_init(&work->node);
85
86 /* Enqueue work. */
87 was_empty = !cds_wfcq_enqueue(&queue->head, &queue->tail,
88 &work->node);
89 /*
90 * If workqueue was previously empty, wakeup one worker thread.
91 * It will eventually grab the entire content of the work-queue
92 * (therefore grabbing a "work batch"). After having grabbed the
93 * work batch, while that thread is running and taking care of
94 * that work batch, when we enqueue more work, we will wake
95 * another thread (if there is one waiting), which will
96 * eventually grab the new batch, and so on. This scheme ensures
97 * that contiguous batch of work are handled by the same thread
98 * (for locality), and also ensures that we scale work to many
99 * worker threads when threads are busy enough to still be
100 * running when work is enqueued.
101 */
102 if (was_empty)
103 (void) urcu_dequeue_wake_single(&queue->waitqueue);
104 }
105
106 static inline
107 void urcu_workqueue_wakeup_all(struct urcu_workqueue *queue)
108 {
109 struct urcu_waiters waiters;
110
111 urcu_move_waiters(&waiters, &queue->waitqueue);
112 (void) urcu_wake_all_waiters(&waiters);
113 }
114
115 static inline
116 void urcu_worker_init(struct urcu_worker *worker, int flags)
117 {
118 cds_wfcq_init(&worker->head, &worker->tail);
119 worker->flags = flags;
120 urcu_wait_node_init(&worker->wait_node, URCU_WAIT_RUNNING);
121 }
122
123 static inline
124 void urcu_worker_register(struct urcu_workqueue *queue,
125 struct urcu_worker *worker)
126 {
127 if (worker->flags & URCU_WORKER_STEAL) {
128 pthread_mutex_lock(&queue->sibling_lock);
129 cds_list_add_rcu(&worker->sibling_node, &queue->sibling_head);
130 pthread_mutex_unlock(&queue->sibling_lock);
131 }
132 }
133
134 static inline
135 void urcu_worker_unregister(struct urcu_workqueue *queue,
136 struct urcu_worker *worker)
137 {
138 enum cds_wfcq_ret wfcq_ret;
139
140 if (worker->flags & URCU_WORKER_STEAL) {
141 pthread_mutex_lock(&queue->sibling_lock);
142 cds_list_del_rcu(&worker->sibling_node);
143 pthread_mutex_unlock(&queue->sibling_lock);
144
145 /*
146 * Wait for grace period before freeing or reusing
147 * "worker" because used by RCU linked list.
148 */
149 synchronize_rcu();
150 }
151
152 /*
153 * Put any local work we still have back into the workqueue.
154 */
155 wfcq_ret = __cds_wfcq_splice_blocking(&queue->head,
156 &queue->tail,
157 &worker->head,
158 &worker->tail);
159 if (wfcq_ret != CDS_WFCQ_RET_SRC_EMPTY
160 && wfcq_ret == CDS_WFCQ_RET_DEST_EMPTY) {
161 /*
162 * Wakeup worker thread if we have put work back into
163 * workqueue that was previously empty.
164 */
165 (void) urcu_dequeue_wake_single(&queue->waitqueue);
166 }
167 }
168
169 /*
170 * Try stealing work from siblings when we have nothing to do.
171 */
172 static inline
173 void ___urcu_steal_work(struct urcu_worker *worker,
174 struct urcu_worker *sibling)
175 {
176 /*
177 * Don't bother grabbing the sibling queue lock if it is empty.
178 */
179 if (cds_wfcq_empty(&sibling->head, &sibling->tail))
180 return;
181 cds_wfcq_dequeue_lock(&sibling->head, &sibling->tail);
182 (void) __cds_wfcq_splice_blocking(&worker->head,
183 &worker->tail,
184 &sibling->head,
185 &sibling->tail);
186 cds_wfcq_dequeue_unlock(&sibling->head, &sibling->tail);
187 }
188
189 static inline
190 int __urcu_steal_work(struct urcu_workqueue *queue,
191 struct urcu_worker *worker)
192 {
193 struct urcu_worker *sibling_prev, *sibling_next;
194 struct cds_list_head *sibling_node;
195
196 if (!(worker->flags & URCU_WORKER_STEAL))
197 return 0;
198
199 rcu_read_lock();
200
201 sibling_node = rcu_dereference(worker->sibling_node.next);
202 if (sibling_node == &queue->sibling_head)
203 sibling_node = rcu_dereference(sibling_node->next);
204 sibling_next = caa_container_of(sibling_node, struct urcu_worker,
205 sibling_node);
206 if (sibling_next != worker)
207 ___urcu_steal_work(worker, sibling_next);
208
209 sibling_node = rcu_dereference(worker->sibling_node.prev);
210 if (sibling_node == &queue->sibling_head)
211 sibling_node = rcu_dereference(sibling_node->prev);
212 sibling_prev = caa_container_of(sibling_node, struct urcu_worker,
213 sibling_node);
214 if (sibling_prev != worker && sibling_prev != sibling_next)
215 ___urcu_steal_work(worker, sibling_prev);
216
217 rcu_read_unlock();
218
219 return !cds_wfcq_empty(&worker->head, &worker->tail);
220 }
221
222 static inline
223 bool ___urcu_wakeup_sibling(struct urcu_worker *sibling)
224 {
225 return urcu_adaptative_wake_up(&sibling->wait_node);
226 }
227
228 static inline
229 bool __urcu_wakeup_siblings(struct urcu_workqueue *queue,
230 struct urcu_worker *worker)
231 {
232 struct urcu_worker *sibling_prev, *sibling_next;
233 struct cds_list_head *sibling_node;
234 bool wakeup_performed = 0;
235
236 if (!(worker->flags & URCU_WORKER_STEAL))
237 return;
238
239 /* Only wakeup siblings if we have work in our own queue. */
240 if (cds_wfcq_empty(&worker->head, &worker->tail))
241 return;
242
243 rcu_read_lock();
244
245 sibling_node = rcu_dereference(worker->sibling_node.next);
246 if (sibling_node == &queue->sibling_head)
247 sibling_node = rcu_dereference(sibling_node->next);
248 sibling_next = caa_container_of(sibling_node, struct urcu_worker,
249 sibling_node);
250 if (sibling_next != worker)
251 wakeup_performed = ___urcu_wakeup_sibling(sibling_next);
252 if (wakeup_performed)
253 goto end;
254
255 sibling_node = rcu_dereference(worker->sibling_node.prev);
256 if (sibling_node == &queue->sibling_head)
257 sibling_node = rcu_dereference(sibling_node->prev);
258 sibling_prev = caa_container_of(sibling_node, struct urcu_worker,
259 sibling_node);
260 if (sibling_prev != worker && sibling_prev != sibling_next)
261 wakeup_performed = ___urcu_wakeup_sibling(sibling_prev);
262 end:
263 rcu_read_unlock();
264
265 return wakeup_performed;
266 }
267
268 static inline
269 void urcu_accept_work(struct urcu_workqueue *queue,
270 struct urcu_worker *worker,
271 int blocking)
272 {
273 enum cds_wfcq_ret wfcq_ret;
274
275 wfcq_ret = __cds_wfcq_splice_blocking(&worker->head,
276 &worker->tail,
277 &queue->head,
278 &queue->tail);
279 /* Don't wait if we have work to do. */
280 if (wfcq_ret != CDS_WFCQ_RET_SRC_EMPTY
281 || !cds_wfcq_empty(&worker->head,
282 &worker->tail))
283 goto do_work;
284 /* Try to steal work from sibling instead of blocking */
285 if (__urcu_steal_work(queue, worker))
286 goto do_work;
287 if (!blocking)
288 return;
289 urcu_wait_set_state(&worker->wait_node,
290 URCU_WAIT_WAITING);
291 if (!CMM_LOAD_SHARED(worker->wait_node.node.next)) {
292 int was_empty;
293
294 /*
295 * NULL next pointer. We are therefore not in
296 * the queue.
297 */
298 cds_wfs_node_init(&worker->wait_node.node);
299 was_empty = !urcu_wait_add(&queue->waitqueue,
300 &worker->wait_node);
301 /*
302 * If the wait queue was empty, it means we are the
303 * first thread to be put back into an otherwise empty
304 * wait queue. Re-check if work queue is empty after
305 * adding ourself to wait queue, so we can wakeup the
306 * top of wait queue since new work have appeared, and
307 * work enqueuer may not have seen that it needed to do
308 * a wake up.
309 */
310 if (was_empty && !cds_wfcq_empty(&queue->head,
311 &queue->tail))
312 (void) urcu_dequeue_wake_single(&queue->waitqueue);
313 } else {
314 /*
315 * Non-NULL next pointer. We are therefore in
316 * the queue, or the dispatcher just removed us
317 * from it (after we read the next pointer), and
318 * is therefore awakening us. The state will
319 * therefore have been changed from WAITING to
320 * some other state, which will let the busy
321 * wait pass through.
322 */
323 }
324 urcu_adaptative_busy_wait(&worker->wait_node);
325 return;
326
327 do_work:
328 /*
329 * We will be busy handling the work batch, awaken siblings so
330 * they can steal from us.
331 */
332 (void) __urcu_wakeup_siblings(queue, worker);
333 }
334
335 static inline
336 struct urcu_work *urcu_dequeue_work(struct urcu_worker *worker)
337 {
338 struct cds_wfcq_node *node;
339
340 /*
341 * If we are registered for work stealing, we need to dequeue
342 * safely against siblings.
343 */
344 if (worker->flags & URCU_WORKER_STEAL) {
345 /*
346 * Don't bother grabbing the worker queue lock if it is
347 * empty.
348 */
349 if (cds_wfcq_empty(&worker->head, &worker->tail))
350 return NULL;
351 node = cds_wfcq_dequeue_blocking(&worker->head,
352 &worker->tail);
353 } else {
354 node = ___cds_wfcq_dequeue_with_state(&worker->head,
355 &worker->tail, NULL, 1, 0);
356 }
357 if (!node)
358 return NULL;
359 return caa_container_of(node, struct urcu_work, node);
360 }
361
362 #endif /* _URCU_WORKQUEUE_FIFO_H */
This page took 0.040113 seconds and 3 git commands to generate.