rcuja 1d distribution: cleanup
[userspace-rcu.git] / rcuja / rcuja.c
1 /*
2 * rcuja/rcuja.c
3 *
4 * Userspace RCU library - RCU Judy Array
5 *
6 * Copyright 2012 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #define _LGPL_SOURCE
24 #include <stdint.h>
25 #include <errno.h>
26 #include <limits.h>
27 #include <string.h>
28 #include <urcu/rcuja.h>
29 #include <urcu/compiler.h>
30 #include <urcu/arch.h>
31 #include <assert.h>
32 #include <urcu-pointer.h>
33 #include <urcu/uatomic.h>
34 #include <stdint.h>
35
36 #include "rcuja-internal.h"
37 #include "bitfield.h"
38
39 #ifndef abs
40 #define abs_int(a) ((int) (a) > 0 ? (int) (a) : -((int) (a)))
41 #endif
42
43 enum cds_ja_type_class {
44 RCU_JA_LINEAR = 0, /* Type A */
45 /* 32-bit: 1 to 25 children, 8 to 128 bytes */
46 /* 64-bit: 1 to 28 children, 16 to 256 bytes */
47 RCU_JA_POOL = 1, /* Type B */
48 /* 32-bit: 26 to 100 children, 256 to 512 bytes */
49 /* 64-bit: 29 to 112 children, 512 to 1024 bytes */
50 RCU_JA_PIGEON = 2, /* Type C */
51 /* 32-bit: 101 to 256 children, 1024 bytes */
52 /* 64-bit: 113 to 256 children, 2048 bytes */
53 /* Leaf nodes are implicit from their height in the tree */
54 RCU_JA_NR_TYPES,
55
56 RCU_JA_NULL, /* not an encoded type, but keeps code regular */
57 };
58
59 struct cds_ja_type {
60 enum cds_ja_type_class type_class;
61 uint16_t min_child; /* minimum number of children: 1 to 256 */
62 uint16_t max_child; /* maximum number of children: 1 to 256 */
63 uint16_t max_linear_child; /* per-pool max nr. children: 1 to 256 */
64 uint16_t order; /* node size is (1 << order), in bytes */
65 uint16_t nr_pool_order; /* number of pools */
66 uint16_t pool_size_order; /* pool size */
67 };
68
69 /*
70 * Iteration on the array to find the right node size for the number of
71 * children stops when it reaches .max_child == 256 (this is the largest
72 * possible node size, which contains 256 children).
73 * The min_child overlaps with the previous max_child to provide an
74 * hysteresis loop to reallocation for patterns of cyclic add/removal
75 * within the same node.
76 * The node the index within the following arrays is represented on 3
77 * bits. It identifies the node type, min/max number of children, and
78 * the size order.
79 * The max_child values for the RCU_JA_POOL below result from
80 * statistical approximation: over million populations, the max_child
81 * covers between 97% and 99% of the populations generated. Therefore, a
82 * fallback should exist to cover the rare extreme population unbalance
83 * cases, but it will not have a major impact on speed nor space
84 * consumption, since those are rare cases.
85 */
86
87 #if (CAA_BITS_PER_LONG < 64)
88 /* 32-bit pointers */
89 enum {
90 ja_type_0_max_child = 1,
91 ja_type_1_max_child = 3,
92 ja_type_2_max_child = 6,
93 ja_type_3_max_child = 12,
94 ja_type_4_max_child = 25,
95 ja_type_5_max_child = 48,
96 ja_type_6_max_child = 92,
97 ja_type_7_max_child = 256,
98 ja_type_8_max_child = 0, /* NULL */
99 };
100
101 enum {
102 ja_type_0_max_linear_child = 1,
103 ja_type_1_max_linear_child = 3,
104 ja_type_2_max_linear_child = 6,
105 ja_type_3_max_linear_child = 12,
106 ja_type_4_max_linear_child = 25,
107 ja_type_5_max_linear_child = 24,
108 ja_type_6_max_linear_child = 23,
109 };
110
111 enum {
112 ja_type_5_nr_pool_order = 1,
113 ja_type_6_nr_pool_order = 2,
114 };
115
116 const struct cds_ja_type ja_types[] = {
117 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_0_max_child, .max_linear_child = ja_type_0_max_linear_child, .order = 3, },
118 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_1_max_child, .max_linear_child = ja_type_1_max_linear_child, .order = 4, },
119 { .type_class = RCU_JA_LINEAR, .min_child = 3, .max_child = ja_type_2_max_child, .max_linear_child = ja_type_2_max_linear_child, .order = 5, },
120 { .type_class = RCU_JA_LINEAR, .min_child = 4, .max_child = ja_type_3_max_child, .max_linear_child = ja_type_3_max_linear_child, .order = 6, },
121 { .type_class = RCU_JA_LINEAR, .min_child = 10, .max_child = ja_type_4_max_child, .max_linear_child = ja_type_4_max_linear_child, .order = 7, },
122
123 /* Pools may fill sooner than max_child */
124 { .type_class = RCU_JA_POOL, .min_child = 20, .max_child = ja_type_5_max_child, .max_linear_child = ja_type_5_max_linear_child, .order = 8, .nr_pool_order = ja_type_5_nr_pool_order, .pool_size_order = 7, },
125 { .type_class = RCU_JA_POOL, .min_child = 45, .max_child = ja_type_6_max_child, .max_linear_child = ja_type_6_max_linear_child, .order = 9, .nr_pool_order = ja_type_6_nr_pool_order, .pool_size_order = 7, },
126
127 /*
128 * Upon node removal below min_child, if child pool is filled
129 * beyond capacity, we roll back to pigeon.
130 */
131 { .type_class = RCU_JA_PIGEON, .min_child = 89, .max_child = ja_type_7_max_child, .order = 10, },
132
133 { .type_class = RCU_JA_NULL, .min_child = 0, .max_child = ja_type_8_max_child, },
134 };
135 #else /* !(CAA_BITS_PER_LONG < 64) */
136 /* 64-bit pointers */
137 enum {
138 ja_type_0_max_child = 1,
139 ja_type_1_max_child = 3,
140 ja_type_2_max_child = 7,
141 ja_type_3_max_child = 14,
142 ja_type_4_max_child = 28,
143 ja_type_5_max_child = 54,
144 ja_type_6_max_child = 104,
145 ja_type_7_max_child = 256,
146 ja_type_8_max_child = 256,
147 };
148
149 enum {
150 ja_type_0_max_linear_child = 1,
151 ja_type_1_max_linear_child = 3,
152 ja_type_2_max_linear_child = 7,
153 ja_type_3_max_linear_child = 14,
154 ja_type_4_max_linear_child = 28,
155 ja_type_5_max_linear_child = 27,
156 ja_type_6_max_linear_child = 26,
157 };
158
159 enum {
160 ja_type_5_nr_pool_order = 1,
161 ja_type_6_nr_pool_order = 2,
162 };
163
164 const struct cds_ja_type ja_types[] = {
165 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_0_max_child, .max_linear_child = ja_type_0_max_linear_child, .order = 4, },
166 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_1_max_child, .max_linear_child = ja_type_1_max_linear_child, .order = 5, },
167 { .type_class = RCU_JA_LINEAR, .min_child = 3, .max_child = ja_type_2_max_child, .max_linear_child = ja_type_2_max_linear_child, .order = 6, },
168 { .type_class = RCU_JA_LINEAR, .min_child = 5, .max_child = ja_type_3_max_child, .max_linear_child = ja_type_3_max_linear_child, .order = 7, },
169 { .type_class = RCU_JA_LINEAR, .min_child = 10, .max_child = ja_type_4_max_child, .max_linear_child = ja_type_4_max_linear_child, .order = 8, },
170
171 /* Pools may fill sooner than max_child. */
172 { .type_class = RCU_JA_POOL, .min_child = 22, .max_child = ja_type_5_max_child, .max_linear_child = ja_type_5_max_linear_child, .order = 9, .nr_pool_order = ja_type_5_nr_pool_order, .pool_size_order = 8, },
173 { .type_class = RCU_JA_POOL, .min_child = 51, .max_child = ja_type_6_max_child, .max_linear_child = ja_type_6_max_linear_child, .order = 10, .nr_pool_order = ja_type_6_nr_pool_order, .pool_size_order = 8, },
174
175 /*
176 * Upon node removal below min_child, if child pool is filled
177 * beyond capacity, we roll back to pigeon.
178 */
179 { .type_class = RCU_JA_PIGEON, .min_child = 101, .max_child = ja_type_7_max_child, .order = 11, },
180
181 { .type_class = RCU_JA_NULL, .min_child = 0, .max_child = ja_type_8_max_child, },
182 };
183 #endif /* !(BITS_PER_LONG < 64) */
184
185 static inline __attribute__((unused))
186 void static_array_size_check(void)
187 {
188 CAA_BUILD_BUG_ON(CAA_ARRAY_SIZE(ja_types) < JA_TYPE_MAX_NR);
189 }
190
191 /*
192 * The cds_ja_node contains the compressed node data needed for
193 * read-side. For linear and pool node configurations, it starts with a
194 * byte counting the number of children in the node. Then, the
195 * node-specific data is placed.
196 * The node mutex, if any is needed, protecting concurrent updated of
197 * each node is placed in a separate hash table indexed by node address.
198 * For the pigeon configuration, the number of children is also kept in
199 * a separate hash table, indexed by node address, because it is only
200 * required for updates.
201 */
202
203 #define DECLARE_LINEAR_NODE(index) \
204 struct { \
205 uint8_t nr_child; \
206 uint8_t child_value[ja_type_## index ##_max_linear_child]; \
207 struct cds_ja_inode_flag *child_ptr[ja_type_## index ##_max_linear_child]; \
208 }
209
210 #define DECLARE_POOL_NODE(index) \
211 struct { \
212 struct { \
213 uint8_t nr_child; \
214 uint8_t child_value[ja_type_## index ##_max_linear_child]; \
215 struct cds_ja_inode_flag *child_ptr[ja_type_## index ##_max_linear_child]; \
216 } linear[1U << ja_type_## index ##_nr_pool_order]; \
217 }
218
219 struct cds_ja_inode {
220 union {
221 /* Linear configuration */
222 DECLARE_LINEAR_NODE(0) conf_0;
223 DECLARE_LINEAR_NODE(1) conf_1;
224 DECLARE_LINEAR_NODE(2) conf_2;
225 DECLARE_LINEAR_NODE(3) conf_3;
226 DECLARE_LINEAR_NODE(4) conf_4;
227
228 /* Pool configuration */
229 DECLARE_POOL_NODE(5) conf_5;
230 DECLARE_POOL_NODE(6) conf_6;
231
232 /* Pigeon configuration */
233 struct {
234 struct cds_ja_inode_flag *child[ja_type_7_max_child];
235 } conf_7;
236 /* data aliasing nodes for computed accesses */
237 uint8_t data[sizeof(struct cds_ja_inode_flag *) * ja_type_7_max_child];
238 } u;
239 };
240
241 enum ja_recompact {
242 JA_RECOMPACT,
243 JA_RECOMPACT_ADD,
244 JA_RECOMPACT_DEL,
245 };
246
247 static
248 struct cds_ja_inode *_ja_node_mask_ptr(struct cds_ja_inode_flag *node)
249 {
250 return (struct cds_ja_inode *) (((unsigned long) node) & JA_PTR_MASK);
251 }
252
253 unsigned long ja_node_type(struct cds_ja_inode_flag *node)
254 {
255 unsigned long type;
256
257 if (_ja_node_mask_ptr(node) == NULL) {
258 return NODE_INDEX_NULL;
259 }
260 type = (unsigned int) ((unsigned long) node & JA_TYPE_MASK);
261 assert(type < (1UL << JA_TYPE_BITS));
262 return type;
263 }
264
265 struct cds_ja_inode *ja_node_ptr(struct cds_ja_inode_flag *node)
266 {
267 unsigned long type_index = ja_node_type(node);
268 const struct cds_ja_type *type;
269
270 type = &ja_types[type_index];
271 switch (type->type_class) {
272 case RCU_JA_LINEAR:
273 case RCU_JA_PIGEON: /* fall-through */
274 case RCU_JA_NULL: /* fall-through */
275 default: /* fall-through */
276 return _ja_node_mask_ptr(node);
277 case RCU_JA_POOL:
278 switch (type->nr_pool_order) {
279 case 1:
280 return (struct cds_ja_inode *) (((unsigned long) node) & ~(JA_POOL_1D_MASK | JA_TYPE_MASK));
281 case 2:
282 return (struct cds_ja_inode *) (((unsigned long) node) & ~(JA_POOL_2D_MASK | JA_POOL_1D_MASK | JA_TYPE_MASK));
283 default:
284 assert(0);
285 }
286 }
287 }
288
289 struct cds_ja_inode *alloc_cds_ja_node(const struct cds_ja_type *ja_type)
290 {
291 size_t len = 1U << ja_type->order;
292 void *p;
293 int ret;
294
295 ret = posix_memalign(&p, len, len);
296 if (ret || !p) {
297 return NULL;
298 }
299 memset(p, 0, len);
300 return p;
301 }
302
303 void free_cds_ja_node(struct cds_ja_inode *node)
304 {
305 free(node);
306 }
307
308 #define __JA_ALIGN_MASK(v, mask) (((v) + (mask)) & ~(mask))
309 #define JA_ALIGN(v, align) __JA_ALIGN_MASK(v, (typeof(v)) (align) - 1)
310 #define __JA_FLOOR_MASK(v, mask) ((v) & ~(mask))
311 #define JA_FLOOR(v, align) __JA_FLOOR_MASK(v, (typeof(v)) (align) - 1)
312
313 static
314 uint8_t *align_ptr_size(uint8_t *ptr)
315 {
316 return (uint8_t *) JA_ALIGN((unsigned long) ptr, sizeof(void *));
317 }
318
319 static
320 uint8_t ja_linear_node_get_nr_child(const struct cds_ja_type *type,
321 struct cds_ja_inode *node)
322 {
323 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
324 return rcu_dereference(node->u.data[0]);
325 }
326
327 /*
328 * The order in which values and pointers are does does not matter: if
329 * a value is missing, we return NULL. If a value is there, but its
330 * associated pointers is still NULL, we return NULL too.
331 */
332 static
333 struct cds_ja_inode_flag *ja_linear_node_get_nth(const struct cds_ja_type *type,
334 struct cds_ja_inode *node,
335 struct cds_ja_inode_flag ***child_node_flag_ptr,
336 struct cds_ja_inode_flag **child_node_flag_v,
337 struct cds_ja_inode_flag ***node_flag_ptr,
338 uint8_t n)
339 {
340 uint8_t nr_child;
341 uint8_t *values;
342 struct cds_ja_inode_flag **pointers;
343 struct cds_ja_inode_flag *ptr;
344 unsigned int i;
345
346 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
347
348 nr_child = ja_linear_node_get_nr_child(type, node);
349 cmm_smp_rmb(); /* read nr_child before values and pointers */
350 assert(nr_child <= type->max_linear_child);
351 assert(type->type_class != RCU_JA_LINEAR || nr_child >= type->min_child);
352
353 values = &node->u.data[1];
354 for (i = 0; i < nr_child; i++) {
355 if (CMM_LOAD_SHARED(values[i]) == n)
356 break;
357 }
358 if (i >= nr_child) {
359 if (caa_unlikely(node_flag_ptr))
360 *node_flag_ptr = NULL;
361 return NULL;
362 }
363 pointers = (struct cds_ja_inode_flag **) align_ptr_size(&values[type->max_linear_child]);
364 ptr = rcu_dereference(pointers[i]);
365 if (caa_unlikely(child_node_flag_ptr) && ptr)
366 *child_node_flag_ptr = &pointers[i];
367 if (caa_unlikely(child_node_flag_v) && ptr)
368 *child_node_flag_v = ptr;
369 if (caa_unlikely(node_flag_ptr))
370 *node_flag_ptr = &pointers[i];
371 return ptr;
372 }
373
374 static
375 void ja_linear_node_get_ith_pos(const struct cds_ja_type *type,
376 struct cds_ja_inode *node,
377 uint8_t i,
378 uint8_t *v,
379 struct cds_ja_inode_flag **iter)
380 {
381 uint8_t *values;
382 struct cds_ja_inode_flag **pointers;
383
384 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
385 assert(i < ja_linear_node_get_nr_child(type, node));
386
387 values = &node->u.data[1];
388 *v = values[i];
389 pointers = (struct cds_ja_inode_flag **) align_ptr_size(&values[type->max_linear_child]);
390 *iter = pointers[i];
391 }
392
393 static
394 struct cds_ja_inode_flag *ja_pool_node_get_nth(const struct cds_ja_type *type,
395 struct cds_ja_inode *node,
396 struct cds_ja_inode_flag *node_flag,
397 struct cds_ja_inode_flag ***child_node_flag_ptr,
398 struct cds_ja_inode_flag **child_node_flag_v,
399 struct cds_ja_inode_flag ***node_flag_ptr,
400 uint8_t n)
401 {
402 struct cds_ja_inode *linear;
403
404 assert(type->type_class == RCU_JA_POOL);
405
406 switch (type->nr_pool_order) {
407 case 1:
408 {
409 unsigned long bitsel, index;
410
411 bitsel = ja_node_pool_1d_bitsel(node_flag);
412 assert(bitsel < CHAR_BIT);
413 index = ((unsigned long) n >> bitsel) & type->nr_pool_order;
414 linear = (struct cds_ja_inode *) &node->u.data[index << type->pool_size_order];
415 break;
416 }
417 case 2:
418 {
419 /*
420 * TODO: currently, we select the pool by highest bits. We
421 * should support various encodings.
422 */
423 linear = (struct cds_ja_inode *)
424 &node->u.data[((unsigned long) n >> (CHAR_BIT - type->nr_pool_order)) << type->pool_size_order];
425 break;
426 }
427 default:
428 linear = NULL;
429 assert(0);
430 }
431 return ja_linear_node_get_nth(type, linear, child_node_flag_ptr,
432 child_node_flag_v, node_flag_ptr, n);
433 }
434
435 static
436 struct cds_ja_inode *ja_pool_node_get_ith_pool(const struct cds_ja_type *type,
437 struct cds_ja_inode *node,
438 uint8_t i)
439 {
440 assert(type->type_class == RCU_JA_POOL);
441 return (struct cds_ja_inode *)
442 &node->u.data[(unsigned int) i << type->pool_size_order];
443 }
444
445 static
446 struct cds_ja_inode_flag *ja_pigeon_node_get_nth(const struct cds_ja_type *type,
447 struct cds_ja_inode *node,
448 struct cds_ja_inode_flag ***child_node_flag_ptr,
449 struct cds_ja_inode_flag **child_node_flag_v,
450 struct cds_ja_inode_flag ***node_flag_ptr,
451 uint8_t n)
452 {
453 struct cds_ja_inode_flag **child_node_flag;
454 struct cds_ja_inode_flag *child_node_flag_read;
455
456 assert(type->type_class == RCU_JA_PIGEON);
457 child_node_flag = &((struct cds_ja_inode_flag **) node->u.data)[n];
458 child_node_flag_read = rcu_dereference(*child_node_flag);
459 dbg_printf("ja_pigeon_node_get_nth child_node_flag_ptr %p\n",
460 child_node_flag);
461 if (caa_unlikely(child_node_flag_ptr) && child_node_flag_read)
462 *child_node_flag_ptr = child_node_flag;
463 if (caa_unlikely(child_node_flag_v) && child_node_flag_read)
464 *child_node_flag_v = child_node_flag_read;
465 if (caa_unlikely(node_flag_ptr))
466 *node_flag_ptr = child_node_flag;
467 return child_node_flag_read;
468 }
469
470 static
471 struct cds_ja_inode_flag *ja_pigeon_node_get_ith_pos(const struct cds_ja_type *type,
472 struct cds_ja_inode *node,
473 uint8_t i)
474 {
475 return ja_pigeon_node_get_nth(type, node, NULL, NULL, NULL, i);
476 }
477
478 /*
479 * ja_node_get_nth: get nth item from a node.
480 * node_flag is already rcu_dereference'd.
481 */
482 static
483 struct cds_ja_inode_flag *ja_node_get_nth(struct cds_ja_inode_flag *node_flag,
484 struct cds_ja_inode_flag ***child_node_flag_ptr,
485 struct cds_ja_inode_flag **child_node_flag,
486 struct cds_ja_inode_flag ***node_flag_ptr,
487 uint8_t n)
488 {
489 unsigned int type_index;
490 struct cds_ja_inode *node;
491 const struct cds_ja_type *type;
492
493 node = ja_node_ptr(node_flag);
494 assert(node != NULL);
495 type_index = ja_node_type(node_flag);
496 type = &ja_types[type_index];
497
498 switch (type->type_class) {
499 case RCU_JA_LINEAR:
500 return ja_linear_node_get_nth(type, node,
501 child_node_flag_ptr, child_node_flag,
502 node_flag_ptr, n);
503 case RCU_JA_POOL:
504 return ja_pool_node_get_nth(type, node, node_flag,
505 child_node_flag_ptr, child_node_flag,
506 node_flag_ptr, n);
507 case RCU_JA_PIGEON:
508 return ja_pigeon_node_get_nth(type, node,
509 child_node_flag_ptr, child_node_flag,
510 node_flag_ptr, n);
511 default:
512 assert(0);
513 return (void *) -1UL;
514 }
515 }
516
517 static
518 int ja_linear_node_set_nth(const struct cds_ja_type *type,
519 struct cds_ja_inode *node,
520 struct cds_ja_shadow_node *shadow_node,
521 uint8_t n,
522 struct cds_ja_inode_flag *child_node_flag)
523 {
524 uint8_t nr_child;
525 uint8_t *values, *nr_child_ptr;
526 struct cds_ja_inode_flag **pointers;
527 unsigned int i, unused = 0;
528
529 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
530
531 nr_child_ptr = &node->u.data[0];
532 dbg_printf("linear set nth: nr_child_ptr %p\n", nr_child_ptr);
533 nr_child = *nr_child_ptr;
534 assert(nr_child <= type->max_linear_child);
535
536 values = &node->u.data[1];
537 pointers = (struct cds_ja_inode_flag **) align_ptr_size(&values[type->max_linear_child]);
538 /* Check if node value is already populated */
539 for (i = 0; i < nr_child; i++) {
540 if (values[i] == n) {
541 if (pointers[i])
542 return -EEXIST;
543 else
544 break;
545 } else {
546 if (!pointers[i])
547 unused++;
548 }
549 }
550 if (i == nr_child && nr_child >= type->max_linear_child) {
551 if (unused)
552 return -ERANGE; /* recompact node */
553 else
554 return -ENOSPC; /* No space left in this node type */
555 }
556
557 assert(pointers[i] == NULL);
558 rcu_assign_pointer(pointers[i], child_node_flag);
559 /* If we expanded the nr_child, increment it */
560 if (i == nr_child) {
561 CMM_STORE_SHARED(values[nr_child], n);
562 /* write pointer and value before nr_child */
563 cmm_smp_wmb();
564 CMM_STORE_SHARED(*nr_child_ptr, nr_child + 1);
565 }
566 shadow_node->nr_child++;
567 dbg_printf("linear set nth: %u child, shadow: %u child, for node %p shadow %p\n",
568 (unsigned int) CMM_LOAD_SHARED(*nr_child_ptr),
569 (unsigned int) shadow_node->nr_child,
570 node, shadow_node);
571
572 return 0;
573 }
574
575 static
576 int ja_pool_node_set_nth(const struct cds_ja_type *type,
577 struct cds_ja_inode *node,
578 struct cds_ja_inode_flag *node_flag,
579 struct cds_ja_shadow_node *shadow_node,
580 uint8_t n,
581 struct cds_ja_inode_flag *child_node_flag)
582 {
583 struct cds_ja_inode *linear;
584
585 assert(type->type_class == RCU_JA_POOL);
586
587 switch (type->nr_pool_order) {
588 case 1:
589 {
590 unsigned long bitsel, index;
591
592 bitsel = ja_node_pool_1d_bitsel(node_flag);
593 assert(bitsel < CHAR_BIT);
594 index = ((unsigned long) n >> bitsel) & type->nr_pool_order;
595 linear = (struct cds_ja_inode *) &node->u.data[index << type->pool_size_order];
596 break;
597 }
598 case 2:
599 {
600 /*
601 * TODO: currently, we select the pool by highest bits. We
602 * should support various encodings.
603 */
604 linear = (struct cds_ja_inode *)
605 &node->u.data[((unsigned long) n >> (CHAR_BIT - type->nr_pool_order)) << type->pool_size_order];
606 break;
607 }
608 default:
609 linear = NULL;
610 assert(0);
611 }
612
613 return ja_linear_node_set_nth(type, linear, shadow_node,
614 n, child_node_flag);
615 }
616
617 static
618 int ja_pigeon_node_set_nth(const struct cds_ja_type *type,
619 struct cds_ja_inode *node,
620 struct cds_ja_shadow_node *shadow_node,
621 uint8_t n,
622 struct cds_ja_inode_flag *child_node_flag)
623 {
624 struct cds_ja_inode_flag **ptr;
625
626 assert(type->type_class == RCU_JA_PIGEON);
627 ptr = &((struct cds_ja_inode_flag **) node->u.data)[n];
628 if (*ptr)
629 return -EEXIST;
630 rcu_assign_pointer(*ptr, child_node_flag);
631 shadow_node->nr_child++;
632 return 0;
633 }
634
635 /*
636 * _ja_node_set_nth: set nth item within a node. Return an error
637 * (negative error value) if it is already there.
638 */
639 static
640 int _ja_node_set_nth(const struct cds_ja_type *type,
641 struct cds_ja_inode *node,
642 struct cds_ja_inode_flag *node_flag,
643 struct cds_ja_shadow_node *shadow_node,
644 uint8_t n,
645 struct cds_ja_inode_flag *child_node_flag)
646 {
647 switch (type->type_class) {
648 case RCU_JA_LINEAR:
649 return ja_linear_node_set_nth(type, node, shadow_node, n,
650 child_node_flag);
651 case RCU_JA_POOL:
652 return ja_pool_node_set_nth(type, node, node_flag, shadow_node, n,
653 child_node_flag);
654 case RCU_JA_PIGEON:
655 return ja_pigeon_node_set_nth(type, node, shadow_node, n,
656 child_node_flag);
657 case RCU_JA_NULL:
658 return -ENOSPC;
659 default:
660 assert(0);
661 return -EINVAL;
662 }
663
664 return 0;
665 }
666
667 static
668 int ja_linear_node_clear_ptr(const struct cds_ja_type *type,
669 struct cds_ja_inode *node,
670 struct cds_ja_shadow_node *shadow_node,
671 struct cds_ja_inode_flag **node_flag_ptr)
672 {
673 uint8_t nr_child;
674 uint8_t *nr_child_ptr;
675
676 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
677
678 nr_child_ptr = &node->u.data[0];
679 dbg_printf("linear clear ptr: nr_child_ptr %p\n", nr_child_ptr);
680 nr_child = *nr_child_ptr;
681 assert(nr_child <= type->max_linear_child);
682
683 if (shadow_node->fallback_removal_count) {
684 shadow_node->fallback_removal_count--;
685 } else {
686 if (shadow_node->nr_child <= type->min_child) {
687 /* We need to try recompacting the node */
688 return -EFBIG;
689 }
690 }
691 assert(*node_flag_ptr != NULL);
692 rcu_assign_pointer(*node_flag_ptr, NULL);
693 /*
694 * Value and nr_child are never changed (would cause ABA issue).
695 * Instead, we leave the pointer to NULL and recompact the node
696 * once in a while. It is allowed to set a NULL pointer to a new
697 * value without recompaction though.
698 * Only update the shadow node accounting.
699 */
700 shadow_node->nr_child--;
701 dbg_printf("linear clear ptr: %u child, shadow: %u child, for node %p shadow %p\n",
702 (unsigned int) CMM_LOAD_SHARED(*nr_child_ptr),
703 (unsigned int) shadow_node->nr_child,
704 node, shadow_node);
705
706 return 0;
707 }
708
709 static
710 int ja_pool_node_clear_ptr(const struct cds_ja_type *type,
711 struct cds_ja_inode *node,
712 struct cds_ja_shadow_node *shadow_node,
713 struct cds_ja_inode_flag **node_flag_ptr,
714 uint8_t n)
715 {
716 struct cds_ja_inode *linear;
717
718 assert(type->type_class == RCU_JA_POOL);
719 linear = (struct cds_ja_inode *)
720 &node->u.data[((unsigned long) n >> (CHAR_BIT - type->nr_pool_order)) << type->pool_size_order];
721 return ja_linear_node_clear_ptr(type, linear, shadow_node, node_flag_ptr);
722 }
723
724 static
725 int ja_pigeon_node_clear_ptr(const struct cds_ja_type *type,
726 struct cds_ja_inode *node,
727 struct cds_ja_shadow_node *shadow_node,
728 struct cds_ja_inode_flag **node_flag_ptr)
729 {
730 assert(type->type_class == RCU_JA_PIGEON);
731 dbg_printf("ja_pigeon_node_clear_ptr: clearing ptr: %p\n", *node_flag_ptr);
732 rcu_assign_pointer(*node_flag_ptr, NULL);
733 shadow_node->nr_child--;
734 return 0;
735 }
736
737 /*
738 * _ja_node_clear_ptr: clear ptr item within a node. Return an error
739 * (negative error value) if it is not found (-ENOENT).
740 */
741 static
742 int _ja_node_clear_ptr(const struct cds_ja_type *type,
743 struct cds_ja_inode *node,
744 struct cds_ja_shadow_node *shadow_node,
745 struct cds_ja_inode_flag **node_flag_ptr,
746 uint8_t n)
747 {
748 switch (type->type_class) {
749 case RCU_JA_LINEAR:
750 return ja_linear_node_clear_ptr(type, node, shadow_node, node_flag_ptr);
751 case RCU_JA_POOL:
752 return ja_pool_node_clear_ptr(type, node, shadow_node, node_flag_ptr, n);
753 case RCU_JA_PIGEON:
754 return ja_pigeon_node_clear_ptr(type, node, shadow_node, node_flag_ptr);
755 case RCU_JA_NULL:
756 return -ENOENT;
757 default:
758 assert(0);
759 return -EINVAL;
760 }
761
762 return 0;
763 }
764
765 /*
766 * Calculate bit distribution. Returns the bit (0 to 7) that splits the
767 * distribution in two sub-distributions containing as much elements one
768 * compared to the other.
769 */
770 static
771 unsigned int ja_node_sum_distribution_1d(enum ja_recompact mode,
772 struct cds_ja *ja,
773 unsigned int type_index,
774 const struct cds_ja_type *type,
775 struct cds_ja_inode *node,
776 struct cds_ja_shadow_node *shadow_node,
777 uint8_t n,
778 struct cds_ja_inode_flag *child_node_flag,
779 struct cds_ja_inode_flag **nullify_node_flag_ptr)
780 {
781 uint8_t nr_one[JA_BITS_PER_BYTE];
782 unsigned int bitsel = 0, bit_i, overall_best_distance = UINT_MAX;
783 unsigned int distrib_nr_child = 0;
784
785 memset(nr_one, 0, sizeof(nr_one));
786
787 switch (type->type_class) {
788 case RCU_JA_LINEAR:
789 {
790 uint8_t nr_child =
791 ja_linear_node_get_nr_child(type, node);
792 unsigned int i;
793
794 for (i = 0; i < nr_child; i++) {
795 struct cds_ja_inode_flag *iter;
796 uint8_t v;
797
798 ja_linear_node_get_ith_pos(type, node, i, &v, &iter);
799 if (!iter)
800 continue;
801 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
802 continue;
803 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
804 if (v & (1U << bit_i))
805 nr_one[bit_i]++;
806 }
807 distrib_nr_child++;
808 }
809 break;
810 }
811 case RCU_JA_POOL:
812 {
813 unsigned int pool_nr;
814
815 for (pool_nr = 0; pool_nr < (1U << type->nr_pool_order); pool_nr++) {
816 struct cds_ja_inode *pool =
817 ja_pool_node_get_ith_pool(type,
818 node, pool_nr);
819 uint8_t nr_child =
820 ja_linear_node_get_nr_child(type, pool);
821 unsigned int j;
822
823 for (j = 0; j < nr_child; j++) {
824 struct cds_ja_inode_flag *iter;
825 uint8_t v;
826
827 ja_linear_node_get_ith_pos(type, pool,
828 j, &v, &iter);
829 if (!iter)
830 continue;
831 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
832 continue;
833 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
834 if (v & (1U << bit_i))
835 nr_one[bit_i]++;
836 }
837 distrib_nr_child++;
838 }
839 }
840 break;
841 }
842 case RCU_JA_PIGEON:
843 {
844 uint8_t nr_child;
845 unsigned int i;
846
847 assert(mode == JA_RECOMPACT_DEL);
848 nr_child = shadow_node->nr_child;
849 for (i = 0; i < nr_child; i++) {
850 struct cds_ja_inode_flag *iter;
851
852 iter = ja_pigeon_node_get_ith_pos(type, node, i);
853 if (!iter)
854 continue;
855 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
856 continue;
857 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
858 if (i & (1U << bit_i))
859 nr_one[bit_i]++;
860 }
861 distrib_nr_child++;
862 }
863 break;
864 }
865 case RCU_JA_NULL:
866 assert(mode == JA_RECOMPACT_ADD);
867 break;
868 default:
869 assert(0);
870 break;
871 }
872
873 if (mode == JA_RECOMPACT_ADD) {
874 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
875 if (n & (1U << bit_i))
876 nr_one[bit_i]++;
877 }
878 distrib_nr_child++;
879 }
880
881 /*
882 * The best bit selector is that for which the number of ones is
883 * closest to half of the number of children in the
884 * distribution. We calculate the distance using the double of
885 * the sub-distribution sizes to eliminate truncation error.
886 */
887 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
888 unsigned int distance_to_best;
889
890 distance_to_best = abs_int((nr_one[bit_i] << 1U) - distrib_nr_child);
891 if (distance_to_best < overall_best_distance) {
892 overall_best_distance = distance_to_best;
893 bitsel = bit_i;
894 }
895 }
896 dbg_printf("1 dimension pool bit selection: (%u)\n", bitsel);
897 return bitsel;
898 }
899
900 /*
901 * ja_node_recompact_add: recompact a node, adding a new child.
902 * Return 0 on success, -EAGAIN if need to retry, or other negative
903 * error value otherwise.
904 */
905 static
906 int ja_node_recompact(enum ja_recompact mode,
907 struct cds_ja *ja,
908 unsigned int old_type_index,
909 const struct cds_ja_type *old_type,
910 struct cds_ja_inode *old_node,
911 struct cds_ja_shadow_node *shadow_node,
912 struct cds_ja_inode_flag **old_node_flag_ptr, uint8_t n,
913 struct cds_ja_inode_flag *child_node_flag,
914 struct cds_ja_inode_flag **nullify_node_flag_ptr)
915 {
916 unsigned int new_type_index;
917 struct cds_ja_inode *new_node;
918 struct cds_ja_shadow_node *new_shadow_node = NULL;
919 const struct cds_ja_type *new_type;
920 struct cds_ja_inode_flag *new_node_flag, *old_node_flag;
921 int ret;
922 int fallback = 0;
923
924 old_node_flag = *old_node_flag_ptr;
925
926 switch (mode) {
927 case JA_RECOMPACT:
928 new_type_index = old_type_index;
929 break;
930 case JA_RECOMPACT_ADD:
931 if (!shadow_node || old_type_index == NODE_INDEX_NULL) {
932 new_type_index = 0;
933 } else {
934 new_type_index = old_type_index + 1;
935 }
936 break;
937 case JA_RECOMPACT_DEL:
938 if (old_type_index == 0) {
939 new_type_index = NODE_INDEX_NULL;
940 } else {
941 new_type_index = old_type_index - 1;
942 }
943 break;
944 default:
945 assert(0);
946 }
947
948 retry: /* for fallback */
949 dbg_printf("Recompact from type %d to type %d\n",
950 old_type_index, new_type_index);
951 new_type = &ja_types[new_type_index];
952 if (new_type_index != NODE_INDEX_NULL) {
953 new_node = alloc_cds_ja_node(new_type);
954 if (!new_node)
955 return -ENOMEM;
956
957 if (new_type->type_class == RCU_JA_POOL) {
958 switch (new_type->nr_pool_order) {
959 case 1:
960 {
961 unsigned int node_distrib_bitsel = 0;
962 node_distrib_bitsel =
963 ja_node_sum_distribution_1d(mode, ja,
964 old_type_index, old_type,
965 old_node, shadow_node,
966 n, child_node_flag,
967 nullify_node_flag_ptr);
968 assert(!((unsigned long) new_node & JA_POOL_1D_MASK));
969 new_node_flag = ja_node_flag_pool_1d(new_node,
970 new_type_index, node_distrib_bitsel);
971 break;
972 }
973 case 2:
974 {
975 /* TODO: pool order 2 in 2d */
976 assert(!((unsigned long) new_node & JA_POOL_1D_MASK));
977 assert(!((unsigned long) new_node & JA_POOL_2D_MASK));
978 new_node_flag = ja_node_flag(new_node, new_type_index);
979 break;
980 }
981 default:
982 assert(0);
983 }
984 } else {
985 new_node_flag = ja_node_flag(new_node, new_type_index);
986 }
987
988 dbg_printf("Recompact inherit lock from %p\n", shadow_node);
989 new_shadow_node = rcuja_shadow_set(ja->ht, new_node_flag, shadow_node, ja);
990 if (!new_shadow_node) {
991 free(new_node);
992 return -ENOMEM;
993 }
994 if (fallback)
995 new_shadow_node->fallback_removal_count =
996 JA_FALLBACK_REMOVAL_COUNT;
997 } else {
998 new_node = NULL;
999 new_node_flag = NULL;
1000 }
1001
1002 assert(mode != JA_RECOMPACT_ADD || old_type->type_class != RCU_JA_PIGEON);
1003
1004 if (new_type_index == NODE_INDEX_NULL)
1005 goto skip_copy;
1006
1007 switch (old_type->type_class) {
1008 case RCU_JA_LINEAR:
1009 {
1010 uint8_t nr_child =
1011 ja_linear_node_get_nr_child(old_type, old_node);
1012 unsigned int i;
1013
1014 for (i = 0; i < nr_child; i++) {
1015 struct cds_ja_inode_flag *iter;
1016 uint8_t v;
1017
1018 ja_linear_node_get_ith_pos(old_type, old_node, i, &v, &iter);
1019 if (!iter)
1020 continue;
1021 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1022 continue;
1023 ret = _ja_node_set_nth(new_type, new_node, new_node_flag,
1024 new_shadow_node,
1025 v, iter);
1026 if (new_type->type_class == RCU_JA_POOL && ret) {
1027 goto fallback_toosmall;
1028 }
1029 assert(!ret);
1030 }
1031 break;
1032 }
1033 case RCU_JA_POOL:
1034 {
1035 unsigned int pool_nr;
1036
1037 for (pool_nr = 0; pool_nr < (1U << old_type->nr_pool_order); pool_nr++) {
1038 struct cds_ja_inode *pool =
1039 ja_pool_node_get_ith_pool(old_type,
1040 old_node, pool_nr);
1041 uint8_t nr_child =
1042 ja_linear_node_get_nr_child(old_type, pool);
1043 unsigned int j;
1044
1045 for (j = 0; j < nr_child; j++) {
1046 struct cds_ja_inode_flag *iter;
1047 uint8_t v;
1048
1049 ja_linear_node_get_ith_pos(old_type, pool,
1050 j, &v, &iter);
1051 if (!iter)
1052 continue;
1053 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1054 continue;
1055 ret = _ja_node_set_nth(new_type, new_node, new_node_flag,
1056 new_shadow_node,
1057 v, iter);
1058 if (new_type->type_class == RCU_JA_POOL
1059 && ret) {
1060 goto fallback_toosmall;
1061 }
1062 assert(!ret);
1063 }
1064 }
1065 break;
1066 }
1067 case RCU_JA_NULL:
1068 assert(mode == JA_RECOMPACT_ADD);
1069 break;
1070 case RCU_JA_PIGEON:
1071 {
1072 uint8_t nr_child;
1073 unsigned int i;
1074
1075 assert(mode == JA_RECOMPACT_DEL);
1076 nr_child = shadow_node->nr_child;
1077 for (i = 0; i < nr_child; i++) {
1078 struct cds_ja_inode_flag *iter;
1079
1080 iter = ja_pigeon_node_get_ith_pos(old_type, old_node, i);
1081 if (!iter)
1082 continue;
1083 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1084 continue;
1085 ret = _ja_node_set_nth(new_type, new_node, new_node_flag,
1086 new_shadow_node,
1087 i, iter);
1088 if (new_type->type_class == RCU_JA_POOL && ret) {
1089 goto fallback_toosmall;
1090 }
1091 assert(!ret);
1092 }
1093 break;
1094 }
1095 default:
1096 assert(0);
1097 ret = -EINVAL;
1098 goto end;
1099 }
1100 skip_copy:
1101
1102 if (mode == JA_RECOMPACT_ADD) {
1103 /* add node */
1104 ret = _ja_node_set_nth(new_type, new_node, new_node_flag,
1105 new_shadow_node,
1106 n, child_node_flag);
1107 if (new_type->type_class == RCU_JA_POOL && ret) {
1108 goto fallback_toosmall;
1109 }
1110 assert(!ret);
1111 }
1112 /* Return pointer to new recompacted node through old_node_flag_ptr */
1113 *old_node_flag_ptr = new_node_flag;
1114 if (old_node) {
1115 int flags;
1116
1117 flags = RCUJA_SHADOW_CLEAR_FREE_NODE;
1118 /*
1119 * It is OK to free the lock associated with a node
1120 * going to NULL, since we are holding the parent lock.
1121 * This synchronizes removal with re-add of that node.
1122 */
1123 if (new_type_index == NODE_INDEX_NULL)
1124 flags = RCUJA_SHADOW_CLEAR_FREE_LOCK;
1125 ret = rcuja_shadow_clear(ja->ht, old_node_flag, shadow_node,
1126 flags);
1127 assert(!ret);
1128 }
1129
1130 ret = 0;
1131 end:
1132 return ret;
1133
1134 fallback_toosmall:
1135 /* fallback if next pool is too small */
1136 assert(new_shadow_node);
1137 ret = rcuja_shadow_clear(ja->ht, new_node_flag, new_shadow_node,
1138 RCUJA_SHADOW_CLEAR_FREE_NODE);
1139 assert(!ret);
1140
1141 /* Choose fallback type: pigeon */
1142 new_type_index = (1UL << JA_TYPE_BITS) - 1;
1143 dbg_printf("Fallback to type %d\n", new_type_index);
1144 uatomic_inc(&ja->nr_fallback);
1145 fallback = 1;
1146 goto retry;
1147 }
1148
1149 /*
1150 * Return 0 on success, -EAGAIN if need to retry, or other negative
1151 * error value otherwise.
1152 */
1153 static
1154 int ja_node_set_nth(struct cds_ja *ja,
1155 struct cds_ja_inode_flag **node_flag, uint8_t n,
1156 struct cds_ja_inode_flag *child_node_flag,
1157 struct cds_ja_shadow_node *shadow_node)
1158 {
1159 int ret;
1160 unsigned int type_index;
1161 const struct cds_ja_type *type;
1162 struct cds_ja_inode *node;
1163
1164 dbg_printf("ja_node_set_nth for n=%u, node %p, shadow %p\n",
1165 (unsigned int) n, ja_node_ptr(*node_flag), shadow_node);
1166
1167 node = ja_node_ptr(*node_flag);
1168 type_index = ja_node_type(*node_flag);
1169 type = &ja_types[type_index];
1170 ret = _ja_node_set_nth(type, node, *node_flag, shadow_node,
1171 n, child_node_flag);
1172 switch (ret) {
1173 case -ENOSPC:
1174 /* Not enough space in node, need to recompact. */
1175 ret = ja_node_recompact(JA_RECOMPACT_ADD, ja, type_index, type, node,
1176 shadow_node, node_flag, n, child_node_flag, NULL);
1177 break;
1178 case -ERANGE:
1179 /* Node needs to be recompacted. */
1180 ret = ja_node_recompact(JA_RECOMPACT, ja, type_index, type, node,
1181 shadow_node, node_flag, n, child_node_flag, NULL);
1182 break;
1183 }
1184 return ret;
1185 }
1186
1187 /*
1188 * Return 0 on success, -EAGAIN if need to retry, or other negative
1189 * error value otherwise.
1190 */
1191 static
1192 int ja_node_clear_ptr(struct cds_ja *ja,
1193 struct cds_ja_inode_flag **node_flag_ptr, /* Pointer to location to nullify */
1194 struct cds_ja_inode_flag **parent_node_flag_ptr, /* Address of parent ptr in its parent */
1195 struct cds_ja_shadow_node *shadow_node, /* of parent */
1196 uint8_t n)
1197 {
1198 int ret;
1199 unsigned int type_index;
1200 const struct cds_ja_type *type;
1201 struct cds_ja_inode *node;
1202
1203 dbg_printf("ja_node_clear_ptr for node %p, shadow %p, target ptr %p\n",
1204 ja_node_ptr(*parent_node_flag_ptr), shadow_node, node_flag_ptr);
1205
1206 node = ja_node_ptr(*parent_node_flag_ptr);
1207 type_index = ja_node_type(*parent_node_flag_ptr);
1208 type = &ja_types[type_index];
1209 ret = _ja_node_clear_ptr(type, node, shadow_node, node_flag_ptr, n);
1210 if (ret == -EFBIG) {
1211 /* Should to try recompaction. */
1212 ret = ja_node_recompact(JA_RECOMPACT_DEL, ja, type_index, type, node,
1213 shadow_node, parent_node_flag_ptr, n, NULL,
1214 node_flag_ptr);
1215 }
1216 return ret;
1217 }
1218
1219 struct cds_hlist_head cds_ja_lookup(struct cds_ja *ja, uint64_t key)
1220 {
1221 unsigned int tree_depth, i;
1222 struct cds_ja_inode_flag *node_flag;
1223 struct cds_hlist_head head = { NULL };
1224
1225 if (caa_unlikely(key > ja->key_max))
1226 return head;
1227 tree_depth = ja->tree_depth;
1228 node_flag = rcu_dereference(ja->root);
1229
1230 /* level 0: root node */
1231 if (!ja_node_ptr(node_flag))
1232 return head;
1233
1234 for (i = 1; i < tree_depth; i++) {
1235 uint8_t iter_key;
1236
1237 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (tree_depth - i - 1)));
1238 node_flag = ja_node_get_nth(node_flag, NULL, NULL, NULL,
1239 iter_key);
1240 dbg_printf("cds_ja_lookup iter key lookup %u finds node_flag %p\n",
1241 (unsigned int) iter_key, node_flag);
1242 if (!ja_node_ptr(node_flag))
1243 return head;
1244 }
1245
1246 /* Last level lookup succeded. We got an actual match. */
1247 head.next = (struct cds_hlist_node *) node_flag;
1248 return head;
1249 }
1250
1251 /*
1252 * We reached an unpopulated node. Create it and the children we need,
1253 * and then attach the entire branch to the current node. This may
1254 * trigger recompaction of the current node. Locks needed: node lock
1255 * (for add), and, possibly, parent node lock (to update pointer due to
1256 * node recompaction).
1257 *
1258 * First take node lock, check if recompaction is needed, then take
1259 * parent lock (if needed). Then we can proceed to create the new
1260 * branch. Publish the new branch, and release locks.
1261 * TODO: we currently always take the parent lock even when not needed.
1262 */
1263 static
1264 int ja_attach_node(struct cds_ja *ja,
1265 struct cds_ja_inode_flag **attach_node_flag_ptr,
1266 struct cds_ja_inode_flag *attach_node_flag,
1267 struct cds_ja_inode_flag **node_flag_ptr,
1268 struct cds_ja_inode_flag *node_flag,
1269 struct cds_ja_inode_flag *parent_node_flag,
1270 uint64_t key,
1271 unsigned int level,
1272 struct cds_ja_node *child_node)
1273 {
1274 struct cds_ja_shadow_node *shadow_node = NULL,
1275 *parent_shadow_node = NULL;
1276 struct cds_ja_inode *node = ja_node_ptr(node_flag);
1277 struct cds_ja_inode *parent_node = ja_node_ptr(parent_node_flag);
1278 struct cds_hlist_head head;
1279 struct cds_ja_inode_flag *iter_node_flag, *iter_dest_node_flag;
1280 int ret, i;
1281 struct cds_ja_inode_flag *created_nodes[JA_MAX_DEPTH];
1282 int nr_created_nodes = 0;
1283
1284 dbg_printf("Attach node at level %u (node %p, node_flag %p)\n",
1285 level, node, node_flag);
1286
1287 assert(node);
1288 shadow_node = rcuja_shadow_lookup_lock(ja->ht, node_flag);
1289 if (!shadow_node) {
1290 ret = -EAGAIN;
1291 goto end;
1292 }
1293 if (parent_node) {
1294 parent_shadow_node = rcuja_shadow_lookup_lock(ja->ht,
1295 parent_node_flag);
1296 if (!parent_shadow_node) {
1297 ret = -EAGAIN;
1298 goto unlock_shadow;
1299 }
1300 }
1301
1302 if (node_flag_ptr && ja_node_ptr(*node_flag_ptr)) {
1303 /*
1304 * Target node has been updated between RCU lookup and
1305 * lock acquisition. We need to re-try lookup and
1306 * attach.
1307 */
1308 ret = -EAGAIN;
1309 goto unlock_parent;
1310 }
1311
1312 if (attach_node_flag_ptr && ja_node_ptr(*attach_node_flag_ptr) !=
1313 ja_node_ptr(attach_node_flag)) {
1314 /*
1315 * Target node has been updated between RCU lookup and
1316 * lock acquisition. We need to re-try lookup and
1317 * attach.
1318 */
1319 ret = -EAGAIN;
1320 goto unlock_parent;
1321 }
1322
1323 /* Create new branch, starting from bottom */
1324 CDS_INIT_HLIST_HEAD(&head);
1325 cds_hlist_add_head_rcu(&child_node->list, &head);
1326 iter_node_flag = (struct cds_ja_inode_flag *) head.next;
1327
1328 for (i = ja->tree_depth; i > (int) level; i--) {
1329 uint8_t iter_key;
1330
1331 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (ja->tree_depth - i)));
1332 dbg_printf("branch creation level %d, key %u\n",
1333 i - 1, (unsigned int) iter_key);
1334 iter_dest_node_flag = NULL;
1335 ret = ja_node_set_nth(ja, &iter_dest_node_flag,
1336 iter_key,
1337 iter_node_flag,
1338 NULL);
1339 if (ret)
1340 goto check_error;
1341 created_nodes[nr_created_nodes++] = iter_dest_node_flag;
1342 iter_node_flag = iter_dest_node_flag;
1343 }
1344
1345 if (level > 1) {
1346 uint8_t iter_key;
1347
1348 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (ja->tree_depth - level)));
1349 /* We need to use set_nth on the previous level. */
1350 iter_dest_node_flag = node_flag;
1351 ret = ja_node_set_nth(ja, &iter_dest_node_flag,
1352 iter_key,
1353 iter_node_flag,
1354 shadow_node);
1355 if (ret)
1356 goto check_error;
1357 created_nodes[nr_created_nodes++] = iter_dest_node_flag;
1358 iter_node_flag = iter_dest_node_flag;
1359 }
1360
1361 /* Publish new branch */
1362 dbg_printf("Publish branch %p, replacing %p\n",
1363 iter_node_flag, *attach_node_flag_ptr);
1364 rcu_assign_pointer(*attach_node_flag_ptr, iter_node_flag);
1365
1366 /* Success */
1367 ret = 0;
1368
1369 check_error:
1370 if (ret) {
1371 for (i = 0; i < nr_created_nodes; i++) {
1372 int tmpret;
1373 int flags;
1374
1375 flags = RCUJA_SHADOW_CLEAR_FREE_LOCK;
1376 if (i)
1377 flags |= RCUJA_SHADOW_CLEAR_FREE_NODE;
1378 tmpret = rcuja_shadow_clear(ja->ht,
1379 created_nodes[i],
1380 NULL,
1381 flags);
1382 assert(!tmpret);
1383 }
1384 }
1385 unlock_parent:
1386 if (parent_shadow_node)
1387 rcuja_shadow_unlock(parent_shadow_node);
1388 unlock_shadow:
1389 if (shadow_node)
1390 rcuja_shadow_unlock(shadow_node);
1391 end:
1392 return ret;
1393 }
1394
1395 /*
1396 * Lock the parent containing the hlist head pointer, and add node to list of
1397 * duplicates. Failure can happen if concurrent update changes the
1398 * parent before we get the lock. We return -EAGAIN in that case.
1399 * Return 0 on success, negative error value on failure.
1400 */
1401 static
1402 int ja_chain_node(struct cds_ja *ja,
1403 struct cds_ja_inode_flag *parent_node_flag,
1404 struct cds_ja_inode_flag **node_flag_ptr,
1405 struct cds_ja_inode_flag *node_flag,
1406 struct cds_hlist_head *head,
1407 struct cds_ja_node *node)
1408 {
1409 struct cds_ja_shadow_node *shadow_node;
1410 int ret = 0;
1411
1412 shadow_node = rcuja_shadow_lookup_lock(ja->ht, parent_node_flag);
1413 if (!shadow_node) {
1414 return -EAGAIN;
1415 }
1416 if (ja_node_ptr(*node_flag_ptr) != ja_node_ptr(node_flag)) {
1417 ret = -EAGAIN;
1418 goto end;
1419 }
1420 cds_hlist_add_head_rcu(&node->list, head);
1421 end:
1422 rcuja_shadow_unlock(shadow_node);
1423 return ret;
1424 }
1425
1426 int cds_ja_add(struct cds_ja *ja, uint64_t key,
1427 struct cds_ja_node *new_node)
1428 {
1429 unsigned int tree_depth, i;
1430 struct cds_ja_inode_flag **attach_node_flag_ptr,
1431 **node_flag_ptr;
1432 struct cds_ja_inode_flag *node_flag,
1433 *parent_node_flag,
1434 *parent2_node_flag,
1435 *attach_node_flag;
1436 int ret;
1437
1438 if (caa_unlikely(key > ja->key_max)) {
1439 return -EINVAL;
1440 }
1441 tree_depth = ja->tree_depth;
1442
1443 retry:
1444 dbg_printf("cds_ja_add attempt: key %" PRIu64 ", node %p\n",
1445 key, new_node);
1446 parent2_node_flag = NULL;
1447 parent_node_flag =
1448 (struct cds_ja_inode_flag *) &ja->root; /* Use root ptr address as key for mutex */
1449 attach_node_flag_ptr = &ja->root;
1450 attach_node_flag = rcu_dereference(ja->root);
1451 node_flag_ptr = &ja->root;
1452 node_flag = rcu_dereference(ja->root);
1453
1454 /* Iterate on all internal levels */
1455 for (i = 1; i < tree_depth; i++) {
1456 uint8_t iter_key;
1457
1458 dbg_printf("cds_ja_add iter attach_node_flag_ptr %p node_flag_ptr %p node_flag %p\n",
1459 attach_node_flag_ptr, node_flag_ptr, node_flag);
1460 if (!ja_node_ptr(node_flag)) {
1461 ret = ja_attach_node(ja, attach_node_flag_ptr,
1462 attach_node_flag,
1463 node_flag_ptr,
1464 parent_node_flag,
1465 parent2_node_flag,
1466 key, i, new_node);
1467 if (ret == -EAGAIN || ret == -EEXIST)
1468 goto retry;
1469 else
1470 goto end;
1471 }
1472 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (tree_depth - i - 1)));
1473 parent2_node_flag = parent_node_flag;
1474 parent_node_flag = node_flag;
1475 node_flag = ja_node_get_nth(node_flag,
1476 &attach_node_flag_ptr,
1477 &attach_node_flag,
1478 &node_flag_ptr,
1479 iter_key);
1480 dbg_printf("cds_ja_add iter key lookup %u finds node_flag %p attach_node_flag_ptr %p node_flag_ptr %p\n",
1481 (unsigned int) iter_key, node_flag,
1482 attach_node_flag_ptr,
1483 node_flag_ptr);
1484 }
1485
1486 /*
1487 * We reached bottom of tree, simply add node to last internal
1488 * level, or chain it if key is already present.
1489 */
1490 if (!ja_node_ptr(node_flag)) {
1491 dbg_printf("cds_ja_add attach_node_flag_ptr %p node_flag_ptr %p node_flag %p\n",
1492 attach_node_flag_ptr, node_flag_ptr, node_flag);
1493 ret = ja_attach_node(ja, attach_node_flag_ptr,
1494 attach_node_flag,
1495 node_flag_ptr, parent_node_flag,
1496 parent2_node_flag, key, i, new_node);
1497 } else {
1498 ret = ja_chain_node(ja,
1499 parent_node_flag,
1500 node_flag_ptr,
1501 node_flag,
1502 (struct cds_hlist_head *) attach_node_flag_ptr,
1503 new_node);
1504 }
1505 if (ret == -EAGAIN || ret == -EEXIST)
1506 goto retry;
1507 end:
1508 return ret;
1509 }
1510
1511 /*
1512 * Note: there is no need to lookup the pointer address associated with
1513 * each node's nth item after taking the lock: it's already been done by
1514 * cds_ja_del while holding the rcu read-side lock, and our node rules
1515 * ensure that when a match value -> pointer is found in a node, it is
1516 * _NEVER_ changed for that node without recompaction, and recompaction
1517 * reallocates the node.
1518 * However, when a child is removed from "linear" nodes, its pointer
1519 * is set to NULL. We therefore check, while holding the locks, if this
1520 * pointer is NULL, and return -ENOENT to the caller if it is the case.
1521 */
1522 static
1523 int ja_detach_node(struct cds_ja *ja,
1524 struct cds_ja_inode_flag **snapshot,
1525 struct cds_ja_inode_flag ***snapshot_ptr,
1526 uint8_t *snapshot_n,
1527 int nr_snapshot,
1528 uint64_t key,
1529 struct cds_ja_node *node)
1530 {
1531 struct cds_ja_shadow_node *shadow_nodes[JA_MAX_DEPTH];
1532 struct cds_ja_inode_flag **node_flag_ptr = NULL,
1533 *parent_node_flag = NULL,
1534 **parent_node_flag_ptr = NULL;
1535 struct cds_ja_inode_flag *iter_node_flag;
1536 int ret, i, nr_shadow = 0, nr_clear = 0, nr_branch = 0;
1537 uint8_t n = 0;
1538
1539 assert(nr_snapshot == ja->tree_depth + 1);
1540
1541 /*
1542 * From the last internal level node going up, get the node
1543 * lock, check if the node has only one child left. If it is the
1544 * case, we continue iterating upward. When we reach a node
1545 * which has more that one child left, we lock the parent, and
1546 * proceed to the node deletion (removing its children too).
1547 */
1548 for (i = nr_snapshot - 2; i >= 1; i--) {
1549 struct cds_ja_shadow_node *shadow_node;
1550
1551 shadow_node = rcuja_shadow_lookup_lock(ja->ht,
1552 snapshot[i]);
1553 if (!shadow_node) {
1554 ret = -EAGAIN;
1555 goto end;
1556 }
1557 shadow_nodes[nr_shadow++] = shadow_node;
1558
1559 /*
1560 * Check if node has been removed between RCU
1561 * lookup and lock acquisition.
1562 */
1563 assert(snapshot_ptr[i + 1]);
1564 if (ja_node_ptr(*snapshot_ptr[i + 1])
1565 != ja_node_ptr(snapshot[i + 1])) {
1566 ret = -ENOENT;
1567 goto end;
1568 }
1569
1570 assert(shadow_node->nr_child > 0);
1571 if (shadow_node->nr_child == 1 && i > 1)
1572 nr_clear++;
1573 nr_branch++;
1574 if (shadow_node->nr_child > 1 || i == 1) {
1575 /* Lock parent and break */
1576 shadow_node = rcuja_shadow_lookup_lock(ja->ht,
1577 snapshot[i - 1]);
1578 if (!shadow_node) {
1579 ret = -EAGAIN;
1580 goto end;
1581 }
1582 shadow_nodes[nr_shadow++] = shadow_node;
1583
1584 /*
1585 * Check if node has been removed between RCU
1586 * lookup and lock acquisition.
1587 */
1588 assert(snapshot_ptr[i]);
1589 if (ja_node_ptr(*snapshot_ptr[i])
1590 != ja_node_ptr(snapshot[i])) {
1591 ret = -ENOENT;
1592 goto end;
1593 }
1594
1595 node_flag_ptr = snapshot_ptr[i + 1];
1596 n = snapshot_n[i + 1];
1597 parent_node_flag_ptr = snapshot_ptr[i];
1598 parent_node_flag = snapshot[i];
1599
1600 if (i > 1) {
1601 /*
1602 * Lock parent's parent, in case we need
1603 * to recompact parent.
1604 */
1605 shadow_node = rcuja_shadow_lookup_lock(ja->ht,
1606 snapshot[i - 2]);
1607 if (!shadow_node) {
1608 ret = -EAGAIN;
1609 goto end;
1610 }
1611 shadow_nodes[nr_shadow++] = shadow_node;
1612
1613 /*
1614 * Check if node has been removed between RCU
1615 * lookup and lock acquisition.
1616 */
1617 assert(snapshot_ptr[i - 1]);
1618 if (ja_node_ptr(*snapshot_ptr[i - 1])
1619 != ja_node_ptr(snapshot[i - 1])) {
1620 ret = -ENOENT;
1621 goto end;
1622 }
1623 }
1624
1625 break;
1626 }
1627 }
1628
1629 /*
1630 * At this point, we want to delete all nodes that are about to
1631 * be removed from shadow_nodes (except the last one, which is
1632 * either the root or the parent of the upmost node with 1
1633 * child). OK to free lock here, because RCU read lock is held,
1634 * and free only performed in call_rcu.
1635 */
1636
1637 for (i = 0; i < nr_clear; i++) {
1638 ret = rcuja_shadow_clear(ja->ht,
1639 shadow_nodes[i]->node_flag,
1640 shadow_nodes[i],
1641 RCUJA_SHADOW_CLEAR_FREE_NODE
1642 | RCUJA_SHADOW_CLEAR_FREE_LOCK);
1643 assert(!ret);
1644 }
1645
1646 iter_node_flag = parent_node_flag;
1647 /* Remove from parent */
1648 ret = ja_node_clear_ptr(ja,
1649 node_flag_ptr, /* Pointer to location to nullify */
1650 &iter_node_flag, /* Old new parent ptr in its parent */
1651 shadow_nodes[nr_branch - 1], /* of parent */
1652 n);
1653 if (ret)
1654 goto end;
1655
1656 dbg_printf("ja_detach_node: publish %p instead of %p\n",
1657 iter_node_flag, *parent_node_flag_ptr);
1658 /* Update address of parent ptr in its parent */
1659 rcu_assign_pointer(*parent_node_flag_ptr, iter_node_flag);
1660
1661 end:
1662 for (i = 0; i < nr_shadow; i++)
1663 rcuja_shadow_unlock(shadow_nodes[i]);
1664 return ret;
1665 }
1666
1667 static
1668 int ja_unchain_node(struct cds_ja *ja,
1669 struct cds_ja_inode_flag *parent_node_flag,
1670 struct cds_ja_inode_flag **node_flag_ptr,
1671 struct cds_ja_inode_flag *node_flag,
1672 struct cds_ja_node *node)
1673 {
1674 struct cds_ja_shadow_node *shadow_node;
1675 struct cds_hlist_node *hlist_node;
1676 struct cds_hlist_head hlist_head;
1677 int ret = 0, count = 0, found = 0;
1678
1679 shadow_node = rcuja_shadow_lookup_lock(ja->ht, parent_node_flag);
1680 if (!shadow_node)
1681 return -EAGAIN;
1682 if (ja_node_ptr(*node_flag_ptr) != ja_node_ptr(node_flag)) {
1683 ret = -EAGAIN;
1684 goto end;
1685 }
1686 hlist_head.next = (struct cds_hlist_node *) ja_node_ptr(node_flag);
1687 /*
1688 * Retry if another thread removed all but one of duplicates
1689 * since check (this check was performed without lock).
1690 * Ensure that the node we are about to remove is still in the
1691 * list (while holding lock).
1692 */
1693 cds_hlist_for_each_rcu(hlist_node, &hlist_head) {
1694 if (count == 0) {
1695 /* FIXME: currently a work-around */
1696 hlist_node->prev = (struct cds_hlist_node *) node_flag_ptr;
1697 }
1698 count++;
1699 if (hlist_node == &node->list)
1700 found++;
1701 }
1702 assert(found <= 1);
1703 if (!found || count == 1) {
1704 ret = -EAGAIN;
1705 goto end;
1706 }
1707 cds_hlist_del_rcu(&node->list);
1708 /*
1709 * Validate that we indeed removed the node from linked list.
1710 */
1711 assert(ja_node_ptr(*node_flag_ptr) != (struct cds_ja_inode *) node);
1712 end:
1713 rcuja_shadow_unlock(shadow_node);
1714 return ret;
1715 }
1716
1717 /*
1718 * Called with RCU read lock held.
1719 */
1720 int cds_ja_del(struct cds_ja *ja, uint64_t key,
1721 struct cds_ja_node *node)
1722 {
1723 unsigned int tree_depth, i;
1724 struct cds_ja_inode_flag *snapshot[JA_MAX_DEPTH];
1725 struct cds_ja_inode_flag **snapshot_ptr[JA_MAX_DEPTH];
1726 uint8_t snapshot_n[JA_MAX_DEPTH];
1727 struct cds_ja_inode_flag *node_flag;
1728 struct cds_ja_inode_flag **prev_node_flag_ptr,
1729 **node_flag_ptr;
1730 int nr_snapshot;
1731 int ret;
1732
1733 if (caa_unlikely(key > ja->key_max))
1734 return -EINVAL;
1735 tree_depth = ja->tree_depth;
1736
1737 retry:
1738 nr_snapshot = 0;
1739 dbg_printf("cds_ja_del attempt: key %" PRIu64 ", node %p\n",
1740 key, node);
1741
1742 /* snapshot for level 0 is only for shadow node lookup */
1743 snapshot_n[0] = 0;
1744 snapshot_n[1] = 0;
1745 snapshot_ptr[nr_snapshot] = NULL;
1746 snapshot[nr_snapshot++] = (struct cds_ja_inode_flag *) &ja->root;
1747 node_flag = rcu_dereference(ja->root);
1748 prev_node_flag_ptr = &ja->root;
1749 node_flag_ptr = &ja->root;
1750
1751 /* Iterate on all internal levels */
1752 for (i = 1; i < tree_depth; i++) {
1753 uint8_t iter_key;
1754
1755 dbg_printf("cds_ja_del iter node_flag %p\n",
1756 node_flag);
1757 if (!ja_node_ptr(node_flag)) {
1758 return -ENOENT;
1759 }
1760 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (tree_depth - i - 1)));
1761 snapshot_n[nr_snapshot + 1] = iter_key;
1762 snapshot_ptr[nr_snapshot] = prev_node_flag_ptr;
1763 snapshot[nr_snapshot++] = node_flag;
1764 node_flag = ja_node_get_nth(node_flag,
1765 &prev_node_flag_ptr,
1766 NULL,
1767 &node_flag_ptr,
1768 iter_key);
1769 dbg_printf("cds_ja_del iter key lookup %u finds node_flag %p, prev_node_flag_ptr %p\n",
1770 (unsigned int) iter_key, node_flag,
1771 prev_node_flag_ptr);
1772 }
1773 /*
1774 * We reached bottom of tree, try to find the node we are trying
1775 * to remove. Fail if we cannot find it.
1776 */
1777 if (!ja_node_ptr(node_flag)) {
1778 dbg_printf("cds_ja_del: no node found for key %" PRIu64 "\n",
1779 key);
1780 return -ENOENT;
1781 } else {
1782 struct cds_hlist_head hlist_head;
1783 struct cds_hlist_node *hlist_node;
1784 struct cds_ja_node *entry, *match = NULL;
1785 int count = 0;
1786
1787 hlist_head.next =
1788 (struct cds_hlist_node *) ja_node_ptr(node_flag);
1789 cds_hlist_for_each_entry_rcu(entry,
1790 hlist_node,
1791 &hlist_head,
1792 list) {
1793 dbg_printf("cds_ja_del: compare %p with entry %p\n", node, entry);
1794 if (entry == node)
1795 match = entry;
1796 count++;
1797 }
1798 if (!match) {
1799 dbg_printf("cds_ja_del: no node match for node %p key %" PRIu64 "\n", node, key);
1800 return -ENOENT;
1801 }
1802 assert(count > 0);
1803 if (count == 1) {
1804 /*
1805 * Removing last of duplicates. Last snapshot
1806 * does not have a shadow node (external leafs).
1807 */
1808 snapshot_ptr[nr_snapshot] = prev_node_flag_ptr;
1809 snapshot[nr_snapshot++] = node_flag;
1810 ret = ja_detach_node(ja, snapshot, snapshot_ptr,
1811 snapshot_n, nr_snapshot, key, node);
1812 } else {
1813 ret = ja_unchain_node(ja, snapshot[nr_snapshot - 1],
1814 node_flag_ptr, node_flag, match);
1815 }
1816 }
1817 /*
1818 * Explanation of -ENOENT handling: caused by concurrent delete
1819 * between RCU lookup and actual removal. Need to re-do the
1820 * lookup and removal attempt.
1821 */
1822 if (ret == -EAGAIN || ret == -ENOENT)
1823 goto retry;
1824 return ret;
1825 }
1826
1827 struct cds_ja *_cds_ja_new(unsigned int key_bits,
1828 const struct rcu_flavor_struct *flavor)
1829 {
1830 struct cds_ja *ja;
1831 int ret;
1832 struct cds_ja_shadow_node *root_shadow_node;
1833
1834 ja = calloc(sizeof(*ja), 1);
1835 if (!ja)
1836 goto ja_error;
1837
1838 switch (key_bits) {
1839 case 8:
1840 case 16:
1841 case 24:
1842 case 32:
1843 case 40:
1844 case 48:
1845 case 56:
1846 ja->key_max = (1ULL << key_bits) - 1;
1847 break;
1848 case 64:
1849 ja->key_max = UINT64_MAX;
1850 break;
1851 default:
1852 goto check_error;
1853 }
1854
1855 /* ja->root is NULL */
1856 /* tree_depth 0 is for pointer to root node */
1857 ja->tree_depth = (key_bits >> JA_LOG2_BITS_PER_BYTE) + 1;
1858 assert(ja->tree_depth <= JA_MAX_DEPTH);
1859 ja->ht = rcuja_create_ht(flavor);
1860 if (!ja->ht)
1861 goto ht_error;
1862
1863 /*
1864 * Note: we should not free this node until judy array destroy.
1865 */
1866 root_shadow_node = rcuja_shadow_set(ja->ht,
1867 (struct cds_ja_inode_flag *) &ja->root,
1868 NULL, ja);
1869 if (!root_shadow_node) {
1870 ret = -ENOMEM;
1871 goto ht_node_error;
1872 }
1873 root_shadow_node->level = 0;
1874
1875 return ja;
1876
1877 ht_node_error:
1878 ret = rcuja_delete_ht(ja->ht);
1879 assert(!ret);
1880 ht_error:
1881 check_error:
1882 free(ja);
1883 ja_error:
1884 return NULL;
1885 }
1886
1887 /*
1888 * Called from RCU read-side CS.
1889 */
1890 __attribute__((visibility("protected")))
1891 void rcuja_free_all_children(struct cds_ja_shadow_node *shadow_node,
1892 struct cds_ja_inode_flag *node_flag,
1893 void (*free_node_cb)(struct rcu_head *head))
1894 {
1895 const struct rcu_flavor_struct *flavor;
1896 unsigned int type_index;
1897 struct cds_ja_inode *node;
1898 const struct cds_ja_type *type;
1899
1900 flavor = cds_lfht_rcu_flavor(shadow_node->ja->ht);
1901 node = ja_node_ptr(node_flag);
1902 assert(node != NULL);
1903 type_index = ja_node_type(node_flag);
1904 type = &ja_types[type_index];
1905
1906 switch (type->type_class) {
1907 case RCU_JA_LINEAR:
1908 {
1909 uint8_t nr_child =
1910 ja_linear_node_get_nr_child(type, node);
1911 unsigned int i;
1912
1913 for (i = 0; i < nr_child; i++) {
1914 struct cds_ja_inode_flag *iter;
1915 struct cds_hlist_head head;
1916 struct cds_ja_node *entry;
1917 struct cds_hlist_node *pos;
1918 uint8_t v;
1919
1920 ja_linear_node_get_ith_pos(type, node, i, &v, &iter);
1921 if (!iter)
1922 continue;
1923 head.next = (struct cds_hlist_node *) iter;
1924 cds_hlist_for_each_entry_rcu(entry, pos, &head, list) {
1925 flavor->update_call_rcu(&entry->head, free_node_cb);
1926 }
1927 }
1928 break;
1929 }
1930 case RCU_JA_POOL:
1931 {
1932 unsigned int pool_nr;
1933
1934 for (pool_nr = 0; pool_nr < (1U << type->nr_pool_order); pool_nr++) {
1935 struct cds_ja_inode *pool =
1936 ja_pool_node_get_ith_pool(type, node, pool_nr);
1937 uint8_t nr_child =
1938 ja_linear_node_get_nr_child(type, pool);
1939 unsigned int j;
1940
1941 for (j = 0; j < nr_child; j++) {
1942 struct cds_ja_inode_flag *iter;
1943 struct cds_hlist_head head;
1944 struct cds_ja_node *entry;
1945 struct cds_hlist_node *pos;
1946 uint8_t v;
1947
1948 ja_linear_node_get_ith_pos(type, node, j, &v, &iter);
1949 if (!iter)
1950 continue;
1951 head.next = (struct cds_hlist_node *) iter;
1952 cds_hlist_for_each_entry_rcu(entry, pos, &head, list) {
1953 flavor->update_call_rcu(&entry->head, free_node_cb);
1954 }
1955 }
1956 }
1957 break;
1958 }
1959 case RCU_JA_NULL:
1960 break;
1961 case RCU_JA_PIGEON:
1962 {
1963 uint8_t nr_child;
1964 unsigned int i;
1965
1966 nr_child = shadow_node->nr_child;
1967 for (i = 0; i < nr_child; i++) {
1968 struct cds_ja_inode_flag *iter;
1969 struct cds_hlist_head head;
1970 struct cds_ja_node *entry;
1971 struct cds_hlist_node *pos;
1972
1973 iter = ja_pigeon_node_get_ith_pos(type, node, i);
1974 if (!iter)
1975 continue;
1976 head.next = (struct cds_hlist_node *) iter;
1977 cds_hlist_for_each_entry_rcu(entry, pos, &head, list) {
1978 flavor->update_call_rcu(&entry->head, free_node_cb);
1979 }
1980 }
1981 break;
1982 }
1983 default:
1984 assert(0);
1985 }
1986 }
1987
1988 /*
1989 * There should be no more concurrent add to the judy array while it is
1990 * being destroyed (ensured by the caller).
1991 */
1992 int cds_ja_destroy(struct cds_ja *ja,
1993 void (*free_node_cb)(struct rcu_head *head))
1994 {
1995 int ret;
1996
1997 rcuja_shadow_prune(ja->ht,
1998 RCUJA_SHADOW_CLEAR_FREE_NODE | RCUJA_SHADOW_CLEAR_FREE_LOCK,
1999 free_node_cb);
2000 ret = rcuja_delete_ht(ja->ht);
2001 if (ret)
2002 return ret;
2003 if (uatomic_read(&ja->nr_fallback))
2004 fprintf(stderr,
2005 "[warning] RCU Judy Array used %lu fallback node(s)\n",
2006 uatomic_read(&ja->nr_fallback));
2007 free(ja);
2008 return 0;
2009 }
This page took 0.075111 seconds and 5 git commands to generate.