rcuja: new and destroy
[userspace-rcu.git] / rcuja / rcuja.c
1 /*
2 * rcuja/rcuja.c
3 *
4 * Userspace RCU library - RCU Judy Array
5 *
6 * Copyright 2012 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #define _LGPL_SOURCE
24 #include <stdint.h>
25 #include <errno.h>
26 #include <limits.h>
27 #include <urcu/rcuja.h>
28 #include <urcu/compiler.h>
29 #include <urcu/arch.h>
30 #include <assert.h>
31 #include <urcu-pointer.h>
32
33 #include "rcuja-internal.h"
34 #include "bitfield.h"
35
36 enum cds_ja_type_class {
37 RCU_JA_LINEAR = 0, /* Type A */
38 /* 32-bit: 1 to 25 children, 8 to 128 bytes */
39 /* 64-bit: 1 to 28 children, 16 to 256 bytes */
40 RCU_JA_POOL = 1, /* Type B */
41 /* 32-bit: 26 to 100 children, 256 to 512 bytes */
42 /* 64-bit: 29 to 112 children, 512 to 1024 bytes */
43 RCU_JA_PIGEON = 2, /* Type C */
44 /* 32-bit: 101 to 256 children, 1024 bytes */
45 /* 64-bit: 113 to 256 children, 2048 bytes */
46 /* Leaf nodes are implicit from their height in the tree */
47 RCU_JA_NR_TYPES,
48
49 RCU_JA_NULL, /* not an encoded type, but keeps code regular */
50 };
51
52 struct cds_ja_type {
53 enum cds_ja_type_class type_class;
54 uint16_t min_child; /* minimum number of children: 1 to 256 */
55 uint16_t max_child; /* maximum number of children: 1 to 256 */
56 uint16_t max_linear_child; /* per-pool max nr. children: 1 to 256 */
57 uint16_t order; /* node size is (1 << order), in bytes */
58 uint16_t nr_pool_order; /* number of pools */
59 uint16_t pool_size_order; /* pool size */
60 };
61
62 /*
63 * Number of least significant pointer bits reserved to represent the
64 * child type.
65 */
66 #define JA_TYPE_BITS 3
67 #define JA_TYPE_MAX_NR (1U << JA_TYPE_BITS)
68 #define JA_TYPE_MASK (JA_TYPE_MAX_NR - 1)
69 #define JA_PTR_MASK (~JA_TYPE_MASK)
70
71 #define JA_ENTRY_PER_NODE 256UL
72
73 /*
74 * Entry for NULL node is at index 8 of the table. It is never encoded
75 * in flags.
76 */
77 #define NODE_INDEX_NULL 8
78
79 /*
80 * Iteration on the array to find the right node size for the number of
81 * children stops when it reaches .max_child == 256 (this is the largest
82 * possible node size, which contains 256 children).
83 * The min_child overlaps with the previous max_child to provide an
84 * hysteresis loop to reallocation for patterns of cyclic add/removal
85 * within the same node.
86 * The node the index within the following arrays is represented on 3
87 * bits. It identifies the node type, min/max number of children, and
88 * the size order.
89 * The max_child values for the RCU_JA_POOL below result from
90 * statistical approximation: over million populations, the max_child
91 * covers between 97% and 99% of the populations generated. Therefore, a
92 * fallback should exist to cover the rare extreme population unbalance
93 * cases, but it will not have a major impact on speed nor space
94 * consumption, since those are rare cases.
95 */
96
97 #if (CAA_BITS_PER_LONG < 64)
98 /* 32-bit pointers */
99 enum {
100 ja_type_0_max_child = 1,
101 ja_type_1_max_child = 3,
102 ja_type_2_max_child = 6,
103 ja_type_3_max_child = 12,
104 ja_type_4_max_child = 25,
105 ja_type_5_max_child = 48,
106 ja_type_6_max_child = 92,
107 ja_type_7_max_child = 256,
108 ja_type_8_max_child = 0, /* NULL */
109 };
110
111 enum {
112 ja_type_0_max_linear_child = 1,
113 ja_type_1_max_linear_child = 3,
114 ja_type_2_max_linear_child = 6,
115 ja_type_3_max_linear_child = 12,
116 ja_type_4_max_linear_child = 25,
117 ja_type_5_max_linear_child = 24,
118 ja_type_6_max_linear_child = 23,
119 };
120
121 enum {
122 ja_type_5_nr_pool_order = 1,
123 ja_type_6_nr_pool_order = 2,
124 };
125
126 const struct cds_ja_type ja_types[] = {
127 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_0_max_child, .max_linear_child = ja_type_0_max_linear_child, .order = 3, },
128 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_1_max_child, .max_linear_child = ja_type_1_max_linear_child, .order = 4, },
129 { .type_class = RCU_JA_LINEAR, .min_child = 3, .max_child = ja_type_2_max_child, .max_linear_child = ja_type_2_max_linear_child, .order = 5, },
130 { .type_class = RCU_JA_LINEAR, .min_child = 4, .max_child = ja_type_3_max_child, .max_linear_child = ja_type_3_max_linear_child, .order = 6, },
131 { .type_class = RCU_JA_LINEAR, .min_child = 10, .max_child = ja_type_4_max_child, .max_linear_child = ja_type_4_max_linear_child, .order = 7, },
132
133 /* Pools may fill sooner than max_child */
134 { .type_class = RCU_JA_POOL, .min_child = 20, .max_child = ja_type_5_max_child, .max_linear_child = ja_type_5_max_linear_child, .order = 8, .nr_pool_order = ja_type_5_nr_pool_order, .pool_size_order = 7, },
135 { .type_class = RCU_JA_POOL, .min_child = 45, .max_child = ja_type_6_max_child, .max_linear_child = ja_type_6_max_linear_child, .order = 9, .nr_pool_order = ja_type_6_nr_pool_order, .pool_size_order = 7, },
136
137 /*
138 * TODO: Upon node removal below min_child, if child pool is
139 * filled beyond capacity, we need to roll back to pigeon.
140 */
141 { .type_class = RCU_JA_PIGEON, .min_child = 89, .max_child = ja_type_7_max_child, .order = 10, },
142
143 { .type_class = RCU_JA_NULL, .min_child = 0, .max_child = ja_type_8_max_child, },
144 };
145 #else /* !(CAA_BITS_PER_LONG < 64) */
146 /* 64-bit pointers */
147 enum {
148 ja_type_0_max_child = 1,
149 ja_type_1_max_child = 3,
150 ja_type_2_max_child = 7,
151 ja_type_3_max_child = 14,
152 ja_type_4_max_child = 28,
153 ja_type_5_max_child = 54,
154 ja_type_6_max_child = 104,
155 ja_type_7_max_child = 256,
156 ja_type_8_max_child = 256,
157 };
158
159 enum {
160 ja_type_0_max_linear_child = 1,
161 ja_type_1_max_linear_child = 3,
162 ja_type_2_max_linear_child = 7,
163 ja_type_3_max_linear_child = 14,
164 ja_type_4_max_linear_child = 28,
165 ja_type_5_max_linear_child = 27,
166 ja_type_6_max_linear_child = 26,
167 };
168
169 enum {
170 ja_type_5_nr_pool_order = 1,
171 ja_type_6_nr_pool_order = 2,
172 };
173
174 const struct cds_ja_type ja_types[] = {
175 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_0_max_child, .max_linear_child = ja_type_0_max_linear_child, .order = 4, },
176 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_1_max_child, .max_linear_child = ja_type_1_max_linear_child, .order = 5, },
177 { .type_class = RCU_JA_LINEAR, .min_child = 3, .max_child = ja_type_2_max_child, .max_linear_child = ja_type_2_max_linear_child, .order = 6, },
178 { .type_class = RCU_JA_LINEAR, .min_child = 5, .max_child = ja_type_3_max_child, .max_linear_child = ja_type_3_max_linear_child, .order = 7, },
179 { .type_class = RCU_JA_LINEAR, .min_child = 10, .max_child = ja_type_4_max_child, .max_linear_child = ja_type_4_max_linear_child, .order = 8, },
180
181 /* Pools may fill sooner than max_child. */
182 { .type_class = RCU_JA_POOL, .min_child = 22, .max_child = ja_type_5_max_child, .max_linear_child = ja_type_5_max_linear_child, .order = 9, .nr_pool_order = ja_type_5_nr_pool_order, .pool_size_order = 8, },
183 { .type_class = RCU_JA_POOL, .min_child = 51, .max_child = ja_type_6_max_child, .max_linear_child = ja_type_6_max_linear_child, .order = 10, .nr_pool_order = ja_type_6_nr_pool_order, .pool_size_order = 8, },
184
185 /*
186 * TODO: Upon node removal below min_child, if child pool is
187 * filled beyond capacity, we need to roll back to pigeon.
188 */
189 { .type_class = RCU_JA_PIGEON, .min_child = 101, .max_child = ja_type_7_max_child, .order = 11, },
190
191 { .type_class = RCU_JA_NULL, .min_child = 0, .max_child = ja_type_8_max_child, },
192 };
193 #endif /* !(BITS_PER_LONG < 64) */
194
195 static inline __attribute__((unused))
196 void static_array_size_check(void)
197 {
198 CAA_BUILD_BUG_ON(CAA_ARRAY_SIZE(ja_types) < JA_TYPE_MAX_NR);
199 }
200
201 /*
202 * The cds_ja_node contains the compressed node data needed for
203 * read-side. For linear and pool node configurations, it starts with a
204 * byte counting the number of children in the node. Then, the
205 * node-specific data is placed.
206 * The node mutex, if any is needed, protecting concurrent updated of
207 * each node is placed in a separate hash table indexed by node address.
208 * For the pigeon configuration, the number of children is also kept in
209 * a separate hash table, indexed by node address, because it is only
210 * required for updates.
211 */
212
213 #define DECLARE_LINEAR_NODE(index) \
214 struct { \
215 uint8_t nr_child; \
216 uint8_t child_value[ja_type_## index ##_max_linear_child]; \
217 struct cds_ja_node_flag *child_ptr[ja_type_## index ##_max_linear_child]; \
218 }
219
220 #define DECLARE_POOL_NODE(index) \
221 struct { \
222 struct { \
223 uint8_t nr_child; \
224 uint8_t child_value[ja_type_## index ##_max_linear_child]; \
225 struct cds_ja_node_flag *child_ptr[ja_type_## index ##_max_linear_child]; \
226 } linear[1U << ja_type_## index ##_nr_pool_order]; \
227 }
228
229 struct cds_ja_node {
230 union {
231 /* Linear configuration */
232 DECLARE_LINEAR_NODE(0) conf_0;
233 DECLARE_LINEAR_NODE(1) conf_1;
234 DECLARE_LINEAR_NODE(2) conf_2;
235 DECLARE_LINEAR_NODE(3) conf_3;
236 DECLARE_LINEAR_NODE(4) conf_4;
237
238 /* Pool configuration */
239 DECLARE_POOL_NODE(5) conf_5;
240 DECLARE_POOL_NODE(6) conf_6;
241
242 /* Pigeon configuration */
243 struct {
244 struct cds_ja_node_flag *child[ja_type_7_max_child];
245 } conf_7;
246 /* data aliasing nodes for computed accesses */
247 uint8_t data[sizeof(struct cds_ja_node_flag *) * ja_type_7_max_child];
248 } u;
249 };
250
251 static
252 struct cds_ja_node_flag *ja_node_flag(struct cds_ja_node *node,
253 unsigned int type)
254 {
255 assert(type < RCU_JA_NR_TYPES);
256 return (struct cds_ja_node_flag *) (((unsigned long) node) | type);
257 }
258
259 static
260 struct cds_ja_node *ja_node_ptr(struct cds_ja_node_flag *node)
261 {
262 return (struct cds_ja_node *) (((unsigned long) node) | JA_PTR_MASK);
263 }
264
265 static
266 unsigned int ja_node_type(struct cds_ja_node_flag *node)
267 {
268 unsigned int type;
269
270 if (ja_node_ptr(node) == NULL) {
271 return NODE_INDEX_NULL;
272 }
273 type = (unsigned int) ((unsigned long) node & JA_TYPE_MASK);
274 assert(type < RCU_JA_NR_TYPES);
275 return type;
276 }
277
278 struct cds_ja_node *alloc_cds_ja_node(const struct cds_ja_type *ja_type)
279 {
280 return calloc(1U << ja_type->order, sizeof(char));
281 }
282
283 void free_cds_ja_node(struct cds_ja_node *node)
284 {
285 free(node);
286 }
287
288 #define __JA_ALIGN_MASK(v, mask) (((v) + (mask)) & ~(mask))
289 #define JA_ALIGN(v, align) __JA_ALIGN_MASK(v, (typeof(v)) (align) - 1)
290 #define __JA_FLOOR_MASK(v, mask) ((v) & ~(mask))
291 #define JA_FLOOR(v, align) __JA_FLOOR_MASK(v, (typeof(v)) (align) - 1)
292
293 static
294 uint8_t *align_ptr_size(uint8_t *ptr)
295 {
296 return (uint8_t *) JA_ALIGN((unsigned long) ptr, sizeof(void *));
297 }
298
299 static
300 uint8_t ja_linear_node_get_nr_child(const struct cds_ja_type *type,
301 struct cds_ja_node *node)
302 {
303 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
304 return CMM_LOAD_SHARED(node->u.data[0]);
305 }
306
307 /*
308 * The order in which values and pointers are does does not matter: if
309 * a value is missing, we return NULL. If a value is there, but its
310 * associated pointers is still NULL, we return NULL too.
311 */
312 static
313 struct cds_ja_node_flag *ja_linear_node_get_nth(const struct cds_ja_type *type,
314 struct cds_ja_node *node,
315 uint8_t n)
316 {
317 uint8_t nr_child;
318 uint8_t *values;
319 struct cds_ja_node_flag **pointers;
320 struct cds_ja_node_flag *ptr;
321 unsigned int i;
322
323 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
324
325 nr_child = ja_linear_node_get_nr_child(type, node);
326 cmm_smp_rmb(); /* read nr_child before values and pointers */
327 assert(nr_child <= type->max_linear_child);
328 assert(type->type_class != RCU_JA_LINEAR || nr_child >= type->min_child);
329
330 values = &node->u.data[1];
331 for (i = 0; i < nr_child; i++) {
332 if (CMM_LOAD_SHARED(values[i]) == n)
333 break;
334 }
335 if (i >= nr_child)
336 return NULL;
337 pointers = (struct cds_ja_node_flag **) align_ptr_size(&values[type->max_linear_child]);
338 ptr = rcu_dereference(pointers[i]);
339 assert(ja_node_ptr(ptr) != NULL);
340 return ptr;
341 }
342
343 static
344 struct cds_ja_node_flag *ja_linear_node_get_ith_pos(const struct cds_ja_type *type,
345 struct cds_ja_node *node,
346 uint8_t i,
347 uint8_t *v,
348 struct cds_ja_node_flag **iter)
349 {
350 uint8_t *values;
351 struct cds_ja_node_flag **pointers;
352
353 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
354 assert(i < ja_linear_node_get_nr_child(type, node));
355
356 values = &node->u.data[1];
357 *v = values[i];
358 pointers = (struct cds_ja_node_flag **) align_ptr_size(&values[type->max_linear_child]);
359 *iter = pointers[i];
360 }
361
362 static
363 struct cds_ja_node_flag *ja_pool_node_get_nth(const struct cds_ja_type *type,
364 struct cds_ja_node *node,
365 uint8_t n)
366 {
367 struct cds_ja_node *linear;
368
369 assert(type->type_class == RCU_JA_POOL);
370 /*
371 * TODO: currently, we select the pool by highest bits. We
372 * should support various encodings.
373 */
374 linear = (struct cds_ja_node *)
375 &node->u.data[((unsigned long) n >> (CHAR_BIT - type->nr_pool_order)) << type->pool_size_order];
376 return ja_linear_node_get_nth(type, linear, n);
377 }
378
379 static
380 struct cds_ja_node *ja_pool_node_get_ith_pool(const struct cds_ja_type *type,
381 struct cds_ja_node *node,
382 uint8_t i)
383 {
384 assert(type->type_class == RCU_JA_POOL);
385 return (struct cds_ja_node *)
386 &node->u.data[(unsigned int) i << type->pool_size_order];
387 }
388
389 static
390 struct cds_ja_node_flag *ja_pigeon_node_get_nth(const struct cds_ja_type *type,
391 struct cds_ja_node *node,
392 uint8_t n)
393 {
394 assert(type->type_class == RCU_JA_PIGEON);
395 return rcu_dereference(((struct cds_ja_node_flag **) node->u.data)[n]);
396 }
397
398 /*
399 * ja_node_get_nth: get nth item from a node.
400 * node_flag is already rcu_dereference'd.
401 */
402 static
403 struct cds_ja_node_flag *ja_node_get_nth(struct cds_ja_node_flag *node_flag,
404 uint8_t n)
405 {
406 unsigned int type_index;
407 struct cds_ja_node *node;
408 const struct cds_ja_type *type;
409
410 node = ja_node_ptr(node_flag);
411 assert(node != NULL);
412 type_index = ja_node_type(node_flag);
413 type = &ja_types[type_index];
414
415 switch (type->type_class) {
416 case RCU_JA_LINEAR:
417 return ja_linear_node_get_nth(type, node, n);
418 case RCU_JA_POOL:
419 return ja_pool_node_get_nth(type, node, n);
420 case RCU_JA_PIGEON:
421 return ja_pigeon_node_get_nth(type, node, n);
422 default:
423 assert(0);
424 return (void *) -1UL;
425 }
426 }
427
428 /*
429 * TODO: use ja_get_nr_child to monitor limits triggering shrink
430 * recompaction.
431 * Also use ja_get_nr_child to make the difference between resize and
432 * pool change of compaction bit(s).
433 */
434 static
435 unsigned int ja_get_nr_child(struct cds_ja_shadow_node *shadow_node)
436 {
437 return shadow_node->nr_child;
438 }
439
440 static
441 int ja_linear_node_set_nth(const struct cds_ja_type *type,
442 struct cds_ja_node *node,
443 struct cds_ja_shadow_node *shadow_node,
444 uint8_t n,
445 struct cds_ja_node_flag *child_node_flag)
446 {
447 uint8_t nr_child;
448 uint8_t *values, *nr_child_ptr;
449 struct cds_ja_node_flag **pointers;
450 unsigned int i;
451
452 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
453
454 nr_child_ptr = &node->u.data[0];
455 nr_child = *nr_child_ptr;
456 assert(nr_child <= type->max_linear_child);
457 assert(type->type_class != RCU_JA_LINEAR || nr_child >= type->min_child);
458
459 values = &node->u.data[1];
460 for (i = 0; i < nr_child; i++) {
461 if (values[i] == n)
462 return -EEXIST;
463 }
464 if (nr_child >= type->max_linear_child) {
465 /* No space left in this node type */
466 return -ENOSPC;
467 }
468 pointers = (struct cds_ja_node_flag **) align_ptr_size(&values[type->max_linear_child]);
469 assert(pointers[nr_child] == NULL);
470 rcu_assign_pointer(pointers[nr_child], child_node_flag);
471 CMM_STORE_SHARED(values[nr_child], n);
472 cmm_smp_wmb(); /* write value and pointer before nr_child */
473 CMM_STORE_SHARED(*nr_child_ptr, nr_child + 1);
474 shadow_node->nr_child++;
475 return 0;
476 }
477
478 static
479 int ja_pool_node_set_nth(const struct cds_ja_type *type,
480 struct cds_ja_node *node,
481 struct cds_ja_shadow_node *shadow_node,
482 uint8_t n,
483 struct cds_ja_node_flag *child_node_flag)
484 {
485 struct cds_ja_node *linear;
486
487 assert(type->type_class == RCU_JA_POOL);
488 linear = (struct cds_ja_node *)
489 &node->u.data[((unsigned long) n >> (CHAR_BIT - type->nr_pool_order)) << type->pool_size_order];
490 return ja_linear_node_set_nth(type, linear, shadow_node,
491 n, child_node_flag);
492 }
493
494 static
495 int ja_pigeon_node_set_nth(const struct cds_ja_type *type,
496 struct cds_ja_node *node,
497 struct cds_ja_shadow_node *shadow_node,
498 uint8_t n,
499 struct cds_ja_node_flag *child_node_flag)
500 {
501 struct cds_ja_node_flag **ptr;
502
503 assert(type->type_class == RCU_JA_PIGEON);
504 ptr = &((struct cds_ja_node_flag **) node->u.data)[n];
505 if (*ptr != NULL)
506 return -EEXIST;
507 rcu_assign_pointer(*ptr, child_node_flag);
508 shadow_node->nr_child++;
509 return 0;
510 }
511
512 /*
513 * _ja_node_set_nth: set nth item within a node. Return an error
514 * (negative error value) if it is already there.
515 * TODO: exclusive access on node.
516 */
517 static
518 int _ja_node_set_nth(const struct cds_ja_type *type,
519 struct cds_ja_node *node,
520 struct cds_ja_shadow_node *shadow_node,
521 uint8_t n,
522 struct cds_ja_node_flag *child_node_flag)
523 {
524 switch (type->type_class) {
525 case RCU_JA_LINEAR:
526 return ja_linear_node_set_nth(type, node, shadow_node, n,
527 child_node_flag);
528 case RCU_JA_POOL:
529 return ja_pool_node_set_nth(type, node, shadow_node, n,
530 child_node_flag);
531 case RCU_JA_PIGEON:
532 return ja_pigeon_node_set_nth(type, node, shadow_node, n,
533 child_node_flag);
534 case RCU_JA_NULL:
535 return -ENOSPC;
536 default:
537 assert(0);
538 return -EINVAL;
539 }
540
541 return 0;
542 }
543
544 /*
545 * ja_node_recompact_add: recompact a node, adding a new child.
546 * TODO: for pool type, take selection bit(s) into account.
547 */
548 static
549 int ja_node_recompact_add(struct cds_ja *ja,
550 unsigned int old_type_index,
551 const struct cds_ja_type *old_type,
552 struct cds_ja_node *old_node,
553 struct cds_ja_shadow_node **shadow_node,
554 struct cds_ja_node_flag **old_node_flag, uint8_t n,
555 struct cds_ja_node_flag *child_node_flag)
556 {
557 unsigned int new_type_index;
558 struct cds_ja_node *new_node;
559 const struct cds_ja_type *new_type;
560 struct cds_ja_node_flag *new_node_flag;
561 int ret;
562
563 if (*shadow_node == NULL) {
564 new_type_index = 0;
565 } else {
566 new_type_index = old_type_index + 1;
567 }
568 new_type = &ja_types[new_type_index];
569 new_node = alloc_cds_ja_node(new_type);
570 if (!new_node)
571 return -ENOMEM;
572 new_node_flag = ja_node_flag(new_node, new_type_index);
573
574 ret = rcuja_shadow_set(ja->ht, new_node, *shadow_node);
575 if (ret)
576 return ret;
577
578 if (*shadow_node == NULL) {
579 *shadow_node = rcuja_shadow_lookup_lock(ja->ht, new_node);
580 assert(*shadow_node);
581 }
582
583 /*
584 * We need to clear nr_child, because it will be re-incremented
585 * by _ja_node_set_nth().
586 */
587 (*shadow_node)->nr_child = 0;
588
589 assert(old_type->type_class != RCU_JA_PIGEON);
590 switch (old_type->type_class) {
591 case RCU_JA_LINEAR:
592 {
593 uint8_t nr_child =
594 ja_linear_node_get_nr_child(old_type, old_node);
595 unsigned int i;
596
597 for (i = 0; i < nr_child; i++) {
598 struct cds_ja_node_flag *iter;
599 uint8_t v;
600
601 ja_linear_node_get_ith_pos(old_type, old_node, i, &v, &iter);
602 if (!iter)
603 continue;
604 ret = _ja_node_set_nth(new_type, new_node, *shadow_node,
605 v, iter);
606 assert(!ret);
607 }
608 break;
609 }
610 case RCU_JA_POOL:
611 {
612 unsigned int pool_nr;
613
614 for (pool_nr = 0; pool_nr < (1U << old_type->nr_pool_order); pool_nr++) {
615 struct cds_ja_node *pool =
616 ja_pool_node_get_ith_pool(old_type,
617 old_node, pool_nr);
618 uint8_t nr_child =
619 ja_linear_node_get_nr_child(old_type, pool);
620 unsigned int j;
621
622 for (j = 0; j < nr_child; j++) {
623 struct cds_ja_node_flag *iter;
624 uint8_t v;
625
626 ja_linear_node_get_ith_pos(old_type, pool,
627 j, &v, &iter);
628 if (!iter)
629 continue;
630 ret = _ja_node_set_nth(new_type, new_node, *shadow_node,
631 v, iter);
632 assert(!ret);
633 }
634 }
635 break;
636 }
637 case RCU_JA_PIGEON:
638 default:
639 assert(0);
640 return -EINVAL;
641 }
642
643 /* add node */
644 ret = _ja_node_set_nth(new_type, new_node, *shadow_node,
645 n, child_node_flag);
646 assert(!ret);
647 /* Replace the old node with the new recompacted one */
648 rcu_assign_pointer(*old_node_flag, new_node_flag);
649 ret = rcuja_shadow_clear(ja->ht, old_node,
650 RCUJA_SHADOW_CLEAR_FREE_NODE);
651 assert(!ret);
652 return 0;
653 }
654
655 static
656 int ja_node_set_nth(struct cds_ja *ja,
657 struct cds_ja_node_flag **node_flag, uint8_t n,
658 struct cds_ja_node_flag *child_node_flag)
659 {
660 int ret;
661 unsigned int type_index;
662 const struct cds_ja_type *type;
663 struct cds_ja_node *node;
664 struct cds_ja_shadow_node *shadow_node = NULL;
665
666 node = ja_node_ptr(*node_flag);
667 type_index = ja_node_type(*node_flag);
668 type = &ja_types[type_index];
669 if (node != NULL) {
670 shadow_node = rcuja_shadow_lookup_lock(ja->ht, node);
671 assert(shadow_node);
672 }
673 ret = _ja_node_set_nth(type, node, shadow_node,
674 n, child_node_flag);
675 if (ret == -ENOSPC) {
676 /* Not enough space in node, need to recompact. */
677 ret = ja_node_recompact_add(ja, type_index, type, node,
678 &shadow_node, node_flag, n, child_node_flag);
679 /* recompact always leave shadow_node locked */
680 }
681 rcuja_shadow_unlock(shadow_node);
682 return ret;
683 }
684
685 struct cds_ja *_cds_ja_new(const struct rcu_flavor_struct *flavor)
686 {
687 struct cds_ja *ja;
688
689 ja = calloc(sizeof(*ja), 1);
690 if (!ja)
691 goto ja_error;
692 /* ja->root is NULL */
693 ja->ht = rcuja_create_ht(flavor);
694 if (!ja->ht)
695 goto ht_error;
696 return ja;
697
698 ht_error:
699 free(ja);
700 ja_error:
701 return NULL;
702 }
703
704 /*
705 * There should be no more concurrent add to the judy array while it is
706 * being destroyed (ensured by the caller).
707 */
708 int cds_ja_destroy(struct cds_ja *ja)
709 {
710 rcuja_shadow_prune(ja->ht,
711 RCUJA_SHADOW_CLEAR_FREE_NODE | RCUJA_SHADOW_CLEAR_FREE_LOCK);
712 return rcuja_delete_ht(ja->ht);
713 }
This page took 0.043788 seconds and 5 git commands to generate.