4d1f2b435a1433c44cdc3a8ae0983178000e0160
[userspace-rcu.git] / rcuja / rcuja.c
1 /*
2 * rcuja/rcuja.c
3 *
4 * Userspace RCU library - RCU Judy Array
5 *
6 * Copyright 2012 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #define _LGPL_SOURCE
24 #include <stdint.h>
25 #include <errno.h>
26 #include <limits.h>
27 #include <string.h>
28 #include <urcu/rcuja.h>
29 #include <urcu/compiler.h>
30 #include <urcu/arch.h>
31 #include <assert.h>
32 #include <urcu-pointer.h>
33 #include <urcu/uatomic.h>
34 #include <stdint.h>
35
36 #include "rcuja-internal.h"
37
38 #ifndef abs
39 #define abs_int(a) ((int) (a) > 0 ? (int) (a) : -((int) (a)))
40 #endif
41
42 enum cds_ja_type_class {
43 RCU_JA_LINEAR = 0, /* Type A */
44 /* 32-bit: 1 to 25 children, 8 to 128 bytes */
45 /* 64-bit: 1 to 28 children, 16 to 256 bytes */
46 RCU_JA_POOL = 1, /* Type B */
47 /* 32-bit: 26 to 100 children, 256 to 512 bytes */
48 /* 64-bit: 29 to 112 children, 512 to 1024 bytes */
49 RCU_JA_PIGEON = 2, /* Type C */
50 /* 32-bit: 101 to 256 children, 1024 bytes */
51 /* 64-bit: 113 to 256 children, 2048 bytes */
52 /* Leaf nodes are implicit from their height in the tree */
53 RCU_JA_NR_TYPES,
54
55 RCU_JA_NULL, /* not an encoded type, but keeps code regular */
56 };
57
58 struct cds_ja_type {
59 enum cds_ja_type_class type_class;
60 uint16_t min_child; /* minimum number of children: 1 to 256 */
61 uint16_t max_child; /* maximum number of children: 1 to 256 */
62 uint16_t max_linear_child; /* per-pool max nr. children: 1 to 256 */
63 uint16_t order; /* node size is (1 << order), in bytes */
64 uint16_t nr_pool_order; /* number of pools */
65 uint16_t pool_size_order; /* pool size */
66 };
67
68 /*
69 * Iteration on the array to find the right node size for the number of
70 * children stops when it reaches .max_child == 256 (this is the largest
71 * possible node size, which contains 256 children).
72 * The min_child overlaps with the previous max_child to provide an
73 * hysteresis loop to reallocation for patterns of cyclic add/removal
74 * within the same node.
75 * The node the index within the following arrays is represented on 3
76 * bits. It identifies the node type, min/max number of children, and
77 * the size order.
78 * The max_child values for the RCU_JA_POOL below result from
79 * statistical approximation: over million populations, the max_child
80 * covers between 97% and 99% of the populations generated. Therefore, a
81 * fallback should exist to cover the rare extreme population unbalance
82 * cases, but it will not have a major impact on speed nor space
83 * consumption, since those are rare cases.
84 */
85
86 #if (CAA_BITS_PER_LONG < 64)
87 /* 32-bit pointers */
88 enum {
89 ja_type_0_max_child = 1,
90 ja_type_1_max_child = 3,
91 ja_type_2_max_child = 6,
92 ja_type_3_max_child = 12,
93 ja_type_4_max_child = 25,
94 ja_type_5_max_child = 48,
95 ja_type_6_max_child = 92,
96 ja_type_7_max_child = 256,
97 ja_type_8_max_child = 0, /* NULL */
98 };
99
100 enum {
101 ja_type_0_max_linear_child = 1,
102 ja_type_1_max_linear_child = 3,
103 ja_type_2_max_linear_child = 6,
104 ja_type_3_max_linear_child = 12,
105 ja_type_4_max_linear_child = 25,
106 ja_type_5_max_linear_child = 24,
107 ja_type_6_max_linear_child = 23,
108 };
109
110 enum {
111 ja_type_5_nr_pool_order = 1,
112 ja_type_6_nr_pool_order = 2,
113 };
114
115 const struct cds_ja_type ja_types[] = {
116 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_0_max_child, .max_linear_child = ja_type_0_max_linear_child, .order = 3, },
117 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_1_max_child, .max_linear_child = ja_type_1_max_linear_child, .order = 4, },
118 { .type_class = RCU_JA_LINEAR, .min_child = 3, .max_child = ja_type_2_max_child, .max_linear_child = ja_type_2_max_linear_child, .order = 5, },
119 { .type_class = RCU_JA_LINEAR, .min_child = 4, .max_child = ja_type_3_max_child, .max_linear_child = ja_type_3_max_linear_child, .order = 6, },
120 { .type_class = RCU_JA_LINEAR, .min_child = 10, .max_child = ja_type_4_max_child, .max_linear_child = ja_type_4_max_linear_child, .order = 7, },
121
122 /* Pools may fill sooner than max_child */
123 { .type_class = RCU_JA_POOL, .min_child = 20, .max_child = ja_type_5_max_child, .max_linear_child = ja_type_5_max_linear_child, .order = 8, .nr_pool_order = ja_type_5_nr_pool_order, .pool_size_order = 7, },
124 { .type_class = RCU_JA_POOL, .min_child = 45, .max_child = ja_type_6_max_child, .max_linear_child = ja_type_6_max_linear_child, .order = 9, .nr_pool_order = ja_type_6_nr_pool_order, .pool_size_order = 7, },
125
126 /*
127 * Upon node removal below min_child, if child pool is filled
128 * beyond capacity, we roll back to pigeon.
129 */
130 { .type_class = RCU_JA_PIGEON, .min_child = 83, .max_child = ja_type_7_max_child, .order = 10, },
131
132 { .type_class = RCU_JA_NULL, .min_child = 0, .max_child = ja_type_8_max_child, },
133 };
134 #else /* !(CAA_BITS_PER_LONG < 64) */
135 /* 64-bit pointers */
136 enum {
137 ja_type_0_max_child = 1,
138 ja_type_1_max_child = 3,
139 ja_type_2_max_child = 7,
140 ja_type_3_max_child = 14,
141 ja_type_4_max_child = 28,
142 ja_type_5_max_child = 54,
143 ja_type_6_max_child = 104,
144 ja_type_7_max_child = 256,
145 ja_type_8_max_child = 256,
146 };
147
148 enum {
149 ja_type_0_max_linear_child = 1,
150 ja_type_1_max_linear_child = 3,
151 ja_type_2_max_linear_child = 7,
152 ja_type_3_max_linear_child = 14,
153 ja_type_4_max_linear_child = 28,
154 ja_type_5_max_linear_child = 27,
155 ja_type_6_max_linear_child = 26,
156 };
157
158 enum {
159 ja_type_5_nr_pool_order = 1,
160 ja_type_6_nr_pool_order = 2,
161 };
162
163 const struct cds_ja_type ja_types[] = {
164 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_0_max_child, .max_linear_child = ja_type_0_max_linear_child, .order = 4, },
165 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_1_max_child, .max_linear_child = ja_type_1_max_linear_child, .order = 5, },
166 { .type_class = RCU_JA_LINEAR, .min_child = 3, .max_child = ja_type_2_max_child, .max_linear_child = ja_type_2_max_linear_child, .order = 6, },
167 { .type_class = RCU_JA_LINEAR, .min_child = 5, .max_child = ja_type_3_max_child, .max_linear_child = ja_type_3_max_linear_child, .order = 7, },
168 { .type_class = RCU_JA_LINEAR, .min_child = 10, .max_child = ja_type_4_max_child, .max_linear_child = ja_type_4_max_linear_child, .order = 8, },
169
170 /* Pools may fill sooner than max_child. */
171 { .type_class = RCU_JA_POOL, .min_child = 22, .max_child = ja_type_5_max_child, .max_linear_child = ja_type_5_max_linear_child, .order = 9, .nr_pool_order = ja_type_5_nr_pool_order, .pool_size_order = 8, },
172 { .type_class = RCU_JA_POOL, .min_child = 51, .max_child = ja_type_6_max_child, .max_linear_child = ja_type_6_max_linear_child, .order = 10, .nr_pool_order = ja_type_6_nr_pool_order, .pool_size_order = 8, },
173
174 /*
175 * Upon node removal below min_child, if child pool is filled
176 * beyond capacity, we roll back to pigeon.
177 */
178 { .type_class = RCU_JA_PIGEON, .min_child = 95, .max_child = ja_type_7_max_child, .order = 11, },
179
180 { .type_class = RCU_JA_NULL, .min_child = 0, .max_child = ja_type_8_max_child, },
181 };
182 #endif /* !(BITS_PER_LONG < 64) */
183
184 static inline __attribute__((unused))
185 void static_array_size_check(void)
186 {
187 CAA_BUILD_BUG_ON(CAA_ARRAY_SIZE(ja_types) < JA_TYPE_MAX_NR);
188 }
189
190 /*
191 * The cds_ja_node contains the compressed node data needed for
192 * read-side. For linear and pool node configurations, it starts with a
193 * byte counting the number of children in the node. Then, the
194 * node-specific data is placed.
195 * The node mutex, if any is needed, protecting concurrent updated of
196 * each node is placed in a separate hash table indexed by node address.
197 * For the pigeon configuration, the number of children is also kept in
198 * a separate hash table, indexed by node address, because it is only
199 * required for updates.
200 */
201
202 #define DECLARE_LINEAR_NODE(index) \
203 struct { \
204 uint8_t nr_child; \
205 uint8_t child_value[ja_type_## index ##_max_linear_child]; \
206 struct cds_ja_inode_flag *child_ptr[ja_type_## index ##_max_linear_child]; \
207 }
208
209 #define DECLARE_POOL_NODE(index) \
210 struct { \
211 struct { \
212 uint8_t nr_child; \
213 uint8_t child_value[ja_type_## index ##_max_linear_child]; \
214 struct cds_ja_inode_flag *child_ptr[ja_type_## index ##_max_linear_child]; \
215 } linear[1U << ja_type_## index ##_nr_pool_order]; \
216 }
217
218 struct cds_ja_inode {
219 union {
220 /* Linear configuration */
221 DECLARE_LINEAR_NODE(0) conf_0;
222 DECLARE_LINEAR_NODE(1) conf_1;
223 DECLARE_LINEAR_NODE(2) conf_2;
224 DECLARE_LINEAR_NODE(3) conf_3;
225 DECLARE_LINEAR_NODE(4) conf_4;
226
227 /* Pool configuration */
228 DECLARE_POOL_NODE(5) conf_5;
229 DECLARE_POOL_NODE(6) conf_6;
230
231 /* Pigeon configuration */
232 struct {
233 struct cds_ja_inode_flag *child[ja_type_7_max_child];
234 } conf_7;
235 /* data aliasing nodes for computed accesses */
236 uint8_t data[sizeof(struct cds_ja_inode_flag *) * ja_type_7_max_child];
237 } u;
238 };
239
240 enum ja_recompact {
241 JA_RECOMPACT_ADD_SAME,
242 JA_RECOMPACT_ADD_NEXT,
243 JA_RECOMPACT_DEL,
244 };
245
246 static
247 struct cds_ja_inode *_ja_node_mask_ptr(struct cds_ja_inode_flag *node)
248 {
249 return (struct cds_ja_inode *) (((unsigned long) node) & JA_PTR_MASK);
250 }
251
252 unsigned long ja_node_type(struct cds_ja_inode_flag *node)
253 {
254 unsigned long type;
255
256 if (_ja_node_mask_ptr(node) == NULL) {
257 return NODE_INDEX_NULL;
258 }
259 type = (unsigned int) ((unsigned long) node & JA_TYPE_MASK);
260 assert(type < (1UL << JA_TYPE_BITS));
261 return type;
262 }
263
264 struct cds_ja_inode *ja_node_ptr(struct cds_ja_inode_flag *node)
265 {
266 unsigned long type_index = ja_node_type(node);
267 const struct cds_ja_type *type;
268
269 type = &ja_types[type_index];
270 switch (type->type_class) {
271 case RCU_JA_LINEAR:
272 case RCU_JA_PIGEON: /* fall-through */
273 case RCU_JA_NULL: /* fall-through */
274 default: /* fall-through */
275 return _ja_node_mask_ptr(node);
276 case RCU_JA_POOL:
277 switch (type->nr_pool_order) {
278 case 1:
279 return (struct cds_ja_inode *) (((unsigned long) node) & ~(JA_POOL_1D_MASK | JA_TYPE_MASK));
280 case 2:
281 return (struct cds_ja_inode *) (((unsigned long) node) & ~(JA_POOL_2D_MASK | JA_POOL_1D_MASK | JA_TYPE_MASK));
282 default:
283 assert(0);
284 }
285 }
286 }
287
288 static
289 struct cds_ja_inode *alloc_cds_ja_node(struct cds_ja *ja,
290 const struct cds_ja_type *ja_type)
291 {
292 size_t len = 1U << ja_type->order;
293 void *p;
294 int ret;
295
296 ret = posix_memalign(&p, len, len);
297 if (ret || !p) {
298 return NULL;
299 }
300 memset(p, 0, len);
301 uatomic_inc(&ja->nr_nodes_allocated);
302 return p;
303 }
304
305 void free_cds_ja_node(struct cds_ja *ja, struct cds_ja_inode *node)
306 {
307 free(node);
308 if (node)
309 uatomic_inc(&ja->nr_nodes_freed);
310 }
311
312 #define __JA_ALIGN_MASK(v, mask) (((v) + (mask)) & ~(mask))
313 #define JA_ALIGN(v, align) __JA_ALIGN_MASK(v, (typeof(v)) (align) - 1)
314 #define __JA_FLOOR_MASK(v, mask) ((v) & ~(mask))
315 #define JA_FLOOR(v, align) __JA_FLOOR_MASK(v, (typeof(v)) (align) - 1)
316
317 static
318 uint8_t *align_ptr_size(uint8_t *ptr)
319 {
320 return (uint8_t *) JA_ALIGN((unsigned long) ptr, sizeof(void *));
321 }
322
323 static
324 uint8_t ja_linear_node_get_nr_child(const struct cds_ja_type *type,
325 struct cds_ja_inode *node)
326 {
327 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
328 return rcu_dereference(node->u.data[0]);
329 }
330
331 /*
332 * The order in which values and pointers are does does not matter: if
333 * a value is missing, we return NULL. If a value is there, but its
334 * associated pointers is still NULL, we return NULL too.
335 */
336 static
337 struct cds_ja_inode_flag *ja_linear_node_get_nth(const struct cds_ja_type *type,
338 struct cds_ja_inode *node,
339 struct cds_ja_inode_flag ***node_flag_ptr,
340 uint8_t n)
341 {
342 uint8_t nr_child;
343 uint8_t *values;
344 struct cds_ja_inode_flag **pointers;
345 struct cds_ja_inode_flag *ptr;
346 unsigned int i;
347
348 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
349
350 nr_child = ja_linear_node_get_nr_child(type, node);
351 cmm_smp_rmb(); /* read nr_child before values and pointers */
352 assert(nr_child <= type->max_linear_child);
353 assert(type->type_class != RCU_JA_LINEAR || nr_child >= type->min_child);
354
355 values = &node->u.data[1];
356 for (i = 0; i < nr_child; i++) {
357 if (CMM_LOAD_SHARED(values[i]) == n)
358 break;
359 }
360 if (i >= nr_child) {
361 if (caa_unlikely(node_flag_ptr))
362 *node_flag_ptr = NULL;
363 return NULL;
364 }
365 pointers = (struct cds_ja_inode_flag **) align_ptr_size(&values[type->max_linear_child]);
366 ptr = rcu_dereference(pointers[i]);
367 if (caa_unlikely(node_flag_ptr))
368 *node_flag_ptr = &pointers[i];
369 return ptr;
370 }
371
372 static
373 struct cds_ja_inode_flag *ja_linear_node_get_left(const struct cds_ja_type *type,
374 struct cds_ja_inode *node,
375 unsigned int n)
376 {
377 uint8_t nr_child;
378 uint8_t *values;
379 struct cds_ja_inode_flag **pointers;
380 struct cds_ja_inode_flag *ptr;
381 unsigned int i, match_idx;
382 int match_v = -1;
383
384 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
385
386 nr_child = ja_linear_node_get_nr_child(type, node);
387 cmm_smp_rmb(); /* read nr_child before values and pointers */
388 assert(nr_child <= type->max_linear_child);
389 assert(type->type_class != RCU_JA_LINEAR || nr_child >= type->min_child);
390
391 values = &node->u.data[1];
392 for (i = 0; i < nr_child; i++) {
393 unsigned int v;
394
395 v = CMM_LOAD_SHARED(values[i]);
396 if (v < n && (int) v > match_v) {
397 match_v = v;
398 match_idx = i;
399 }
400 }
401 if (match_v < 0) {
402 return NULL;
403 }
404 pointers = (struct cds_ja_inode_flag **) align_ptr_size(&values[type->max_linear_child]);
405 ptr = rcu_dereference(pointers[match_idx]);
406 return ptr;
407 }
408
409 static
410 void ja_linear_node_get_ith_pos(const struct cds_ja_type *type,
411 struct cds_ja_inode *node,
412 uint8_t i,
413 uint8_t *v,
414 struct cds_ja_inode_flag **iter)
415 {
416 uint8_t *values;
417 struct cds_ja_inode_flag **pointers;
418
419 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
420 assert(i < ja_linear_node_get_nr_child(type, node));
421
422 values = &node->u.data[1];
423 *v = values[i];
424 pointers = (struct cds_ja_inode_flag **) align_ptr_size(&values[type->max_linear_child]);
425 *iter = pointers[i];
426 }
427
428 static
429 struct cds_ja_inode_flag *ja_pool_node_get_nth(const struct cds_ja_type *type,
430 struct cds_ja_inode *node,
431 struct cds_ja_inode_flag *node_flag,
432 struct cds_ja_inode_flag ***node_flag_ptr,
433 uint8_t n)
434 {
435 struct cds_ja_inode *linear;
436
437 assert(type->type_class == RCU_JA_POOL);
438
439 switch (type->nr_pool_order) {
440 case 1:
441 {
442 unsigned long bitsel, index;
443
444 bitsel = ja_node_pool_1d_bitsel(node_flag);
445 assert(bitsel < CHAR_BIT);
446 index = ((unsigned long) n >> bitsel) & 0x1;
447 linear = (struct cds_ja_inode *) &node->u.data[index << type->pool_size_order];
448 break;
449 }
450 case 2:
451 {
452 unsigned long bitsel[2], index[2], rindex;
453
454 ja_node_pool_2d_bitsel(node_flag, bitsel);
455 assert(bitsel[0] < CHAR_BIT);
456 assert(bitsel[1] < CHAR_BIT);
457 index[0] = ((unsigned long) n >> bitsel[0]) & 0x1;
458 index[0] <<= 1;
459 index[1] = ((unsigned long) n >> bitsel[1]) & 0x1;
460 rindex = index[0] | index[1];
461 linear = (struct cds_ja_inode *) &node->u.data[rindex << type->pool_size_order];
462 break;
463 }
464 default:
465 linear = NULL;
466 assert(0);
467 }
468 return ja_linear_node_get_nth(type, linear, node_flag_ptr, n);
469 }
470
471 static
472 struct cds_ja_inode *ja_pool_node_get_ith_pool(const struct cds_ja_type *type,
473 struct cds_ja_inode *node,
474 uint8_t i)
475 {
476 assert(type->type_class == RCU_JA_POOL);
477 return (struct cds_ja_inode *)
478 &node->u.data[(unsigned int) i << type->pool_size_order];
479 }
480
481 static
482 struct cds_ja_inode_flag *ja_pool_node_get_left(const struct cds_ja_type *type,
483 struct cds_ja_inode *node,
484 unsigned int n)
485 {
486 unsigned int pool_nr;
487 int match_v = -1;
488 struct cds_ja_inode_flag *match_node_flag = NULL;
489
490 assert(type->type_class == RCU_JA_POOL);
491
492 for (pool_nr = 0; pool_nr < (1U << type->nr_pool_order); pool_nr++) {
493 struct cds_ja_inode *pool =
494 ja_pool_node_get_ith_pool(type,
495 node, pool_nr);
496 uint8_t nr_child =
497 ja_linear_node_get_nr_child(type, pool);
498 unsigned int j;
499
500 for (j = 0; j < nr_child; j++) {
501 struct cds_ja_inode_flag *iter;
502 uint8_t v;
503
504 ja_linear_node_get_ith_pos(type, pool,
505 j, &v, &iter);
506 if (!iter)
507 continue;
508 if (v < n && (int) v > match_v) {
509 match_v = v;
510 match_node_flag = iter;
511 }
512 }
513 }
514 return match_node_flag;
515 }
516
517 static
518 struct cds_ja_inode_flag *ja_pigeon_node_get_nth(const struct cds_ja_type *type,
519 struct cds_ja_inode *node,
520 struct cds_ja_inode_flag ***node_flag_ptr,
521 uint8_t n)
522 {
523 struct cds_ja_inode_flag **child_node_flag_ptr;
524 struct cds_ja_inode_flag *child_node_flag;
525
526 assert(type->type_class == RCU_JA_PIGEON);
527 child_node_flag_ptr = &((struct cds_ja_inode_flag **) node->u.data)[n];
528 child_node_flag = rcu_dereference(*child_node_flag_ptr);
529 dbg_printf("ja_pigeon_node_get_nth child_node_flag_ptr %p\n",
530 child_node_flag_ptr);
531 if (caa_unlikely(node_flag_ptr))
532 *node_flag_ptr = child_node_flag_ptr;
533 return child_node_flag;
534 }
535
536 static
537 struct cds_ja_inode_flag *ja_pigeon_node_get_left(const struct cds_ja_type *type,
538 struct cds_ja_inode *node,
539 unsigned int n)
540 {
541 struct cds_ja_inode_flag **child_node_flag_ptr;
542 struct cds_ja_inode_flag *child_node_flag;
543 int i;
544
545 assert(type->type_class == RCU_JA_PIGEON);
546
547 /* n - 1 is first value left of n */
548 for (i = n - 1; i >= 0; i--) {
549 child_node_flag_ptr = &((struct cds_ja_inode_flag **) node->u.data)[i];
550 child_node_flag = rcu_dereference(*child_node_flag_ptr);
551 if (child_node_flag) {
552 dbg_printf("ja_pigeon_node_get_left child_node_flag %p\n",
553 child_node_flag);
554 return child_node_flag;
555 }
556 }
557 return NULL;
558 }
559
560 static
561 struct cds_ja_inode_flag *ja_pigeon_node_get_ith_pos(const struct cds_ja_type *type,
562 struct cds_ja_inode *node,
563 uint8_t i)
564 {
565 return ja_pigeon_node_get_nth(type, node, NULL, i);
566 }
567
568 /*
569 * ja_node_get_nth: get nth item from a node.
570 * node_flag is already rcu_dereference'd.
571 */
572 static
573 struct cds_ja_inode_flag *ja_node_get_nth(struct cds_ja_inode_flag *node_flag,
574 struct cds_ja_inode_flag ***node_flag_ptr,
575 uint8_t n)
576 {
577 unsigned int type_index;
578 struct cds_ja_inode *node;
579 const struct cds_ja_type *type;
580
581 node = ja_node_ptr(node_flag);
582 assert(node != NULL);
583 type_index = ja_node_type(node_flag);
584 type = &ja_types[type_index];
585
586 switch (type->type_class) {
587 case RCU_JA_LINEAR:
588 return ja_linear_node_get_nth(type, node,
589 node_flag_ptr, n);
590 case RCU_JA_POOL:
591 return ja_pool_node_get_nth(type, node, node_flag,
592 node_flag_ptr, n);
593 case RCU_JA_PIGEON:
594 return ja_pigeon_node_get_nth(type, node,
595 node_flag_ptr, n);
596 default:
597 assert(0);
598 return (void *) -1UL;
599 }
600 }
601
602 static
603 struct cds_ja_inode_flag *ja_node_get_left(struct cds_ja_inode_flag *node_flag,
604 unsigned int n)
605 {
606 unsigned int type_index;
607 struct cds_ja_inode *node;
608 const struct cds_ja_type *type;
609
610 node = ja_node_ptr(node_flag);
611 assert(node != NULL);
612 type_index = ja_node_type(node_flag);
613 type = &ja_types[type_index];
614
615 switch (type->type_class) {
616 case RCU_JA_LINEAR:
617 return ja_linear_node_get_left(type, node, n);
618 case RCU_JA_POOL:
619 return ja_pool_node_get_left(type, node, n);
620 case RCU_JA_PIGEON:
621 return ja_pigeon_node_get_left(type, node, n);
622 default:
623 assert(0);
624 return (void *) -1UL;
625 }
626 }
627
628 static
629 struct cds_ja_inode_flag *ja_node_get_rightmost(struct cds_ja_inode_flag *node_flag)
630 {
631 return ja_node_get_left(node_flag, JA_ENTRY_PER_NODE);
632 }
633
634 static
635 int ja_linear_node_set_nth(const struct cds_ja_type *type,
636 struct cds_ja_inode *node,
637 struct cds_ja_shadow_node *shadow_node,
638 uint8_t n,
639 struct cds_ja_inode_flag *child_node_flag)
640 {
641 uint8_t nr_child;
642 uint8_t *values, *nr_child_ptr;
643 struct cds_ja_inode_flag **pointers;
644 unsigned int i, unused = 0;
645
646 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
647
648 nr_child_ptr = &node->u.data[0];
649 dbg_printf("linear set nth: n %u, nr_child_ptr %p\n",
650 (unsigned int) n, nr_child_ptr);
651 nr_child = *nr_child_ptr;
652 assert(nr_child <= type->max_linear_child);
653
654 values = &node->u.data[1];
655 pointers = (struct cds_ja_inode_flag **) align_ptr_size(&values[type->max_linear_child]);
656 /* Check if node value is already populated */
657 for (i = 0; i < nr_child; i++) {
658 if (values[i] == n) {
659 if (pointers[i])
660 return -EEXIST;
661 else
662 break;
663 } else {
664 if (!pointers[i])
665 unused++;
666 }
667 }
668 if (i == nr_child && nr_child >= type->max_linear_child) {
669 if (unused)
670 return -ERANGE; /* recompact node */
671 else
672 return -ENOSPC; /* No space left in this node type */
673 }
674
675 assert(pointers[i] == NULL);
676 rcu_assign_pointer(pointers[i], child_node_flag);
677 /* If we expanded the nr_child, increment it */
678 if (i == nr_child) {
679 CMM_STORE_SHARED(values[nr_child], n);
680 /* write pointer and value before nr_child */
681 cmm_smp_wmb();
682 CMM_STORE_SHARED(*nr_child_ptr, nr_child + 1);
683 }
684 shadow_node->nr_child++;
685 dbg_printf("linear set nth: %u child, shadow: %u child, for node %p shadow %p\n",
686 (unsigned int) CMM_LOAD_SHARED(*nr_child_ptr),
687 (unsigned int) shadow_node->nr_child,
688 node, shadow_node);
689
690 return 0;
691 }
692
693 static
694 int ja_pool_node_set_nth(const struct cds_ja_type *type,
695 struct cds_ja_inode *node,
696 struct cds_ja_inode_flag *node_flag,
697 struct cds_ja_shadow_node *shadow_node,
698 uint8_t n,
699 struct cds_ja_inode_flag *child_node_flag)
700 {
701 struct cds_ja_inode *linear;
702
703 assert(type->type_class == RCU_JA_POOL);
704
705 switch (type->nr_pool_order) {
706 case 1:
707 {
708 unsigned long bitsel, index;
709
710 bitsel = ja_node_pool_1d_bitsel(node_flag);
711 assert(bitsel < CHAR_BIT);
712 index = ((unsigned long) n >> bitsel) & 0x1;
713 linear = (struct cds_ja_inode *) &node->u.data[index << type->pool_size_order];
714 break;
715 }
716 case 2:
717 {
718 unsigned long bitsel[2], index[2], rindex;
719
720 ja_node_pool_2d_bitsel(node_flag, bitsel);
721 assert(bitsel[0] < CHAR_BIT);
722 assert(bitsel[1] < CHAR_BIT);
723 index[0] = ((unsigned long) n >> bitsel[0]) & 0x1;
724 index[0] <<= 1;
725 index[1] = ((unsigned long) n >> bitsel[1]) & 0x1;
726 rindex = index[0] | index[1];
727 linear = (struct cds_ja_inode *) &node->u.data[rindex << type->pool_size_order];
728 break;
729 }
730 default:
731 linear = NULL;
732 assert(0);
733 }
734
735 return ja_linear_node_set_nth(type, linear, shadow_node,
736 n, child_node_flag);
737 }
738
739 static
740 int ja_pigeon_node_set_nth(const struct cds_ja_type *type,
741 struct cds_ja_inode *node,
742 struct cds_ja_shadow_node *shadow_node,
743 uint8_t n,
744 struct cds_ja_inode_flag *child_node_flag)
745 {
746 struct cds_ja_inode_flag **ptr;
747
748 assert(type->type_class == RCU_JA_PIGEON);
749 ptr = &((struct cds_ja_inode_flag **) node->u.data)[n];
750 if (*ptr)
751 return -EEXIST;
752 rcu_assign_pointer(*ptr, child_node_flag);
753 shadow_node->nr_child++;
754 return 0;
755 }
756
757 /*
758 * _ja_node_set_nth: set nth item within a node. Return an error
759 * (negative error value) if it is already there.
760 */
761 static
762 int _ja_node_set_nth(const struct cds_ja_type *type,
763 struct cds_ja_inode *node,
764 struct cds_ja_inode_flag *node_flag,
765 struct cds_ja_shadow_node *shadow_node,
766 uint8_t n,
767 struct cds_ja_inode_flag *child_node_flag)
768 {
769 switch (type->type_class) {
770 case RCU_JA_LINEAR:
771 return ja_linear_node_set_nth(type, node, shadow_node, n,
772 child_node_flag);
773 case RCU_JA_POOL:
774 return ja_pool_node_set_nth(type, node, node_flag, shadow_node, n,
775 child_node_flag);
776 case RCU_JA_PIGEON:
777 return ja_pigeon_node_set_nth(type, node, shadow_node, n,
778 child_node_flag);
779 case RCU_JA_NULL:
780 return -ENOSPC;
781 default:
782 assert(0);
783 return -EINVAL;
784 }
785
786 return 0;
787 }
788
789 static
790 int ja_linear_node_clear_ptr(const struct cds_ja_type *type,
791 struct cds_ja_inode *node,
792 struct cds_ja_shadow_node *shadow_node,
793 struct cds_ja_inode_flag **node_flag_ptr)
794 {
795 uint8_t nr_child;
796 uint8_t *nr_child_ptr;
797
798 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
799
800 nr_child_ptr = &node->u.data[0];
801 nr_child = *nr_child_ptr;
802 assert(nr_child <= type->max_linear_child);
803
804 if (type->type_class == RCU_JA_LINEAR) {
805 assert(!shadow_node->fallback_removal_count);
806 if (shadow_node->nr_child <= type->min_child) {
807 /* We need to try recompacting the node */
808 return -EFBIG;
809 }
810 }
811 dbg_printf("linear clear ptr: nr_child_ptr %p\n", nr_child_ptr);
812 assert(*node_flag_ptr != NULL);
813 rcu_assign_pointer(*node_flag_ptr, NULL);
814 /*
815 * Value and nr_child are never changed (would cause ABA issue).
816 * Instead, we leave the pointer to NULL and recompact the node
817 * once in a while. It is allowed to set a NULL pointer to a new
818 * value without recompaction though.
819 * Only update the shadow node accounting.
820 */
821 shadow_node->nr_child--;
822 dbg_printf("linear clear ptr: %u child, shadow: %u child, for node %p shadow %p\n",
823 (unsigned int) CMM_LOAD_SHARED(*nr_child_ptr),
824 (unsigned int) shadow_node->nr_child,
825 node, shadow_node);
826 return 0;
827 }
828
829 static
830 int ja_pool_node_clear_ptr(const struct cds_ja_type *type,
831 struct cds_ja_inode *node,
832 struct cds_ja_inode_flag *node_flag,
833 struct cds_ja_shadow_node *shadow_node,
834 struct cds_ja_inode_flag **node_flag_ptr,
835 uint8_t n)
836 {
837 struct cds_ja_inode *linear;
838
839 assert(type->type_class == RCU_JA_POOL);
840
841 if (shadow_node->fallback_removal_count) {
842 shadow_node->fallback_removal_count--;
843 } else {
844 /* We should try recompacting the node */
845 if (shadow_node->nr_child <= type->min_child)
846 return -EFBIG;
847 }
848
849 switch (type->nr_pool_order) {
850 case 1:
851 {
852 unsigned long bitsel, index;
853
854 bitsel = ja_node_pool_1d_bitsel(node_flag);
855 assert(bitsel < CHAR_BIT);
856 index = ((unsigned long) n >> bitsel) & type->nr_pool_order;
857 linear = (struct cds_ja_inode *) &node->u.data[index << type->pool_size_order];
858 break;
859 }
860 case 2:
861 {
862 unsigned long bitsel[2], index[2], rindex;
863
864 ja_node_pool_2d_bitsel(node_flag, bitsel);
865 assert(bitsel[0] < CHAR_BIT);
866 assert(bitsel[1] < CHAR_BIT);
867 index[0] = ((unsigned long) n >> bitsel[0]) & 0x1;
868 index[0] <<= 1;
869 index[1] = ((unsigned long) n >> bitsel[1]) & 0x1;
870 rindex = index[0] | index[1];
871 linear = (struct cds_ja_inode *) &node->u.data[rindex << type->pool_size_order];
872 break;
873 }
874 default:
875 linear = NULL;
876 assert(0);
877 }
878
879 return ja_linear_node_clear_ptr(type, linear, shadow_node, node_flag_ptr);
880 }
881
882 static
883 int ja_pigeon_node_clear_ptr(const struct cds_ja_type *type,
884 struct cds_ja_inode *node,
885 struct cds_ja_shadow_node *shadow_node,
886 struct cds_ja_inode_flag **node_flag_ptr)
887 {
888 assert(type->type_class == RCU_JA_PIGEON);
889
890 if (shadow_node->fallback_removal_count) {
891 shadow_node->fallback_removal_count--;
892 } else {
893 /* We should try recompacting the node */
894 if (shadow_node->nr_child <= type->min_child)
895 return -EFBIG;
896 }
897 dbg_printf("ja_pigeon_node_clear_ptr: clearing ptr: %p\n", *node_flag_ptr);
898 rcu_assign_pointer(*node_flag_ptr, NULL);
899 shadow_node->nr_child--;
900 return 0;
901 }
902
903 /*
904 * _ja_node_clear_ptr: clear ptr item within a node. Return an error
905 * (negative error value) if it is not found (-ENOENT).
906 */
907 static
908 int _ja_node_clear_ptr(const struct cds_ja_type *type,
909 struct cds_ja_inode *node,
910 struct cds_ja_inode_flag *node_flag,
911 struct cds_ja_shadow_node *shadow_node,
912 struct cds_ja_inode_flag **node_flag_ptr,
913 uint8_t n)
914 {
915 switch (type->type_class) {
916 case RCU_JA_LINEAR:
917 return ja_linear_node_clear_ptr(type, node, shadow_node, node_flag_ptr);
918 case RCU_JA_POOL:
919 return ja_pool_node_clear_ptr(type, node, node_flag, shadow_node, node_flag_ptr, n);
920 case RCU_JA_PIGEON:
921 return ja_pigeon_node_clear_ptr(type, node, shadow_node, node_flag_ptr);
922 case RCU_JA_NULL:
923 return -ENOENT;
924 default:
925 assert(0);
926 return -EINVAL;
927 }
928
929 return 0;
930 }
931
932 /*
933 * Calculate bit distribution. Returns the bit (0 to 7) that splits the
934 * distribution in two sub-distributions containing as much elements one
935 * compared to the other.
936 */
937 static
938 unsigned int ja_node_sum_distribution_1d(enum ja_recompact mode,
939 struct cds_ja *ja,
940 unsigned int type_index,
941 const struct cds_ja_type *type,
942 struct cds_ja_inode *node,
943 struct cds_ja_shadow_node *shadow_node,
944 uint8_t n,
945 struct cds_ja_inode_flag *child_node_flag,
946 struct cds_ja_inode_flag **nullify_node_flag_ptr)
947 {
948 uint8_t nr_one[JA_BITS_PER_BYTE];
949 unsigned int bitsel = 0, bit_i, overall_best_distance = UINT_MAX;
950 unsigned int distrib_nr_child = 0;
951
952 memset(nr_one, 0, sizeof(nr_one));
953
954 switch (type->type_class) {
955 case RCU_JA_LINEAR:
956 {
957 uint8_t nr_child =
958 ja_linear_node_get_nr_child(type, node);
959 unsigned int i;
960
961 for (i = 0; i < nr_child; i++) {
962 struct cds_ja_inode_flag *iter;
963 uint8_t v;
964
965 ja_linear_node_get_ith_pos(type, node, i, &v, &iter);
966 if (!iter)
967 continue;
968 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
969 continue;
970 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
971 if (v & (1U << bit_i))
972 nr_one[bit_i]++;
973 }
974 distrib_nr_child++;
975 }
976 break;
977 }
978 case RCU_JA_POOL:
979 {
980 unsigned int pool_nr;
981
982 for (pool_nr = 0; pool_nr < (1U << type->nr_pool_order); pool_nr++) {
983 struct cds_ja_inode *pool =
984 ja_pool_node_get_ith_pool(type,
985 node, pool_nr);
986 uint8_t nr_child =
987 ja_linear_node_get_nr_child(type, pool);
988 unsigned int j;
989
990 for (j = 0; j < nr_child; j++) {
991 struct cds_ja_inode_flag *iter;
992 uint8_t v;
993
994 ja_linear_node_get_ith_pos(type, pool,
995 j, &v, &iter);
996 if (!iter)
997 continue;
998 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
999 continue;
1000 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1001 if (v & (1U << bit_i))
1002 nr_one[bit_i]++;
1003 }
1004 distrib_nr_child++;
1005 }
1006 }
1007 break;
1008 }
1009 case RCU_JA_PIGEON:
1010 {
1011 unsigned int i;
1012
1013 assert(mode == JA_RECOMPACT_DEL);
1014 for (i = 0; i < JA_ENTRY_PER_NODE; i++) {
1015 struct cds_ja_inode_flag *iter;
1016
1017 iter = ja_pigeon_node_get_ith_pos(type, node, i);
1018 if (!iter)
1019 continue;
1020 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1021 continue;
1022 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1023 if (i & (1U << bit_i))
1024 nr_one[bit_i]++;
1025 }
1026 distrib_nr_child++;
1027 }
1028 break;
1029 }
1030 case RCU_JA_NULL:
1031 assert(mode == JA_RECOMPACT_ADD_NEXT);
1032 break;
1033 default:
1034 assert(0);
1035 break;
1036 }
1037
1038 if (mode == JA_RECOMPACT_ADD_NEXT || mode == JA_RECOMPACT_ADD_SAME) {
1039 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1040 if (n & (1U << bit_i))
1041 nr_one[bit_i]++;
1042 }
1043 distrib_nr_child++;
1044 }
1045
1046 /*
1047 * The best bit selector is that for which the number of ones is
1048 * closest to half of the number of children in the
1049 * distribution. We calculate the distance using the double of
1050 * the sub-distribution sizes to eliminate truncation error.
1051 */
1052 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1053 unsigned int distance_to_best;
1054
1055 distance_to_best = abs_int((nr_one[bit_i] << 1U) - distrib_nr_child);
1056 if (distance_to_best < overall_best_distance) {
1057 overall_best_distance = distance_to_best;
1058 bitsel = bit_i;
1059 }
1060 }
1061 dbg_printf("1 dimension pool bit selection: (%u)\n", bitsel);
1062 return bitsel;
1063 }
1064
1065 /*
1066 * Calculate bit distribution in two dimensions. Returns the two bits
1067 * (each 0 to 7) that splits the distribution in four sub-distributions
1068 * containing as much elements one compared to the other.
1069 */
1070 static
1071 void ja_node_sum_distribution_2d(enum ja_recompact mode,
1072 struct cds_ja *ja,
1073 unsigned int type_index,
1074 const struct cds_ja_type *type,
1075 struct cds_ja_inode *node,
1076 struct cds_ja_shadow_node *shadow_node,
1077 uint8_t n,
1078 struct cds_ja_inode_flag *child_node_flag,
1079 struct cds_ja_inode_flag **nullify_node_flag_ptr,
1080 unsigned int *_bitsel)
1081 {
1082 uint8_t nr_2d_11[JA_BITS_PER_BYTE][JA_BITS_PER_BYTE],
1083 nr_2d_10[JA_BITS_PER_BYTE][JA_BITS_PER_BYTE],
1084 nr_2d_01[JA_BITS_PER_BYTE][JA_BITS_PER_BYTE],
1085 nr_2d_00[JA_BITS_PER_BYTE][JA_BITS_PER_BYTE];
1086 unsigned int bitsel[2] = { 0, 1 };
1087 unsigned int bit_i, bit_j;
1088 int overall_best_distance = INT_MAX;
1089 unsigned int distrib_nr_child = 0;
1090
1091 memset(nr_2d_11, 0, sizeof(nr_2d_11));
1092 memset(nr_2d_10, 0, sizeof(nr_2d_10));
1093 memset(nr_2d_01, 0, sizeof(nr_2d_01));
1094 memset(nr_2d_00, 0, sizeof(nr_2d_00));
1095
1096 switch (type->type_class) {
1097 case RCU_JA_LINEAR:
1098 {
1099 uint8_t nr_child =
1100 ja_linear_node_get_nr_child(type, node);
1101 unsigned int i;
1102
1103 for (i = 0; i < nr_child; i++) {
1104 struct cds_ja_inode_flag *iter;
1105 uint8_t v;
1106
1107 ja_linear_node_get_ith_pos(type, node, i, &v, &iter);
1108 if (!iter)
1109 continue;
1110 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1111 continue;
1112 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1113 for (bit_j = 0; bit_j < bit_i; bit_j++) {
1114 if ((v & (1U << bit_i)) && (v & (1U << bit_j))) {
1115 nr_2d_11[bit_i][bit_j]++;
1116 }
1117 if ((v & (1U << bit_i)) && !(v & (1U << bit_j))) {
1118 nr_2d_10[bit_i][bit_j]++;
1119 }
1120 if (!(v & (1U << bit_i)) && (v & (1U << bit_j))) {
1121 nr_2d_01[bit_i][bit_j]++;
1122 }
1123 if (!(v & (1U << bit_i)) && !(v & (1U << bit_j))) {
1124 nr_2d_00[bit_i][bit_j]++;
1125 }
1126 }
1127 }
1128 distrib_nr_child++;
1129 }
1130 break;
1131 }
1132 case RCU_JA_POOL:
1133 {
1134 unsigned int pool_nr;
1135
1136 for (pool_nr = 0; pool_nr < (1U << type->nr_pool_order); pool_nr++) {
1137 struct cds_ja_inode *pool =
1138 ja_pool_node_get_ith_pool(type,
1139 node, pool_nr);
1140 uint8_t nr_child =
1141 ja_linear_node_get_nr_child(type, pool);
1142 unsigned int j;
1143
1144 for (j = 0; j < nr_child; j++) {
1145 struct cds_ja_inode_flag *iter;
1146 uint8_t v;
1147
1148 ja_linear_node_get_ith_pos(type, pool,
1149 j, &v, &iter);
1150 if (!iter)
1151 continue;
1152 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1153 continue;
1154 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1155 for (bit_j = 0; bit_j < bit_i; bit_j++) {
1156 if ((v & (1U << bit_i)) && (v & (1U << bit_j))) {
1157 nr_2d_11[bit_i][bit_j]++;
1158 }
1159 if ((v & (1U << bit_i)) && !(v & (1U << bit_j))) {
1160 nr_2d_10[bit_i][bit_j]++;
1161 }
1162 if (!(v & (1U << bit_i)) && (v & (1U << bit_j))) {
1163 nr_2d_01[bit_i][bit_j]++;
1164 }
1165 if (!(v & (1U << bit_i)) && !(v & (1U << bit_j))) {
1166 nr_2d_00[bit_i][bit_j]++;
1167 }
1168 }
1169 }
1170 distrib_nr_child++;
1171 }
1172 }
1173 break;
1174 }
1175 case RCU_JA_PIGEON:
1176 {
1177 unsigned int i;
1178
1179 assert(mode == JA_RECOMPACT_DEL);
1180 for (i = 0; i < JA_ENTRY_PER_NODE; i++) {
1181 struct cds_ja_inode_flag *iter;
1182
1183 iter = ja_pigeon_node_get_ith_pos(type, node, i);
1184 if (!iter)
1185 continue;
1186 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1187 continue;
1188 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1189 for (bit_j = 0; bit_j < bit_i; bit_j++) {
1190 if ((i & (1U << bit_i)) && (i & (1U << bit_j))) {
1191 nr_2d_11[bit_i][bit_j]++;
1192 }
1193 if ((i & (1U << bit_i)) && !(i & (1U << bit_j))) {
1194 nr_2d_10[bit_i][bit_j]++;
1195 }
1196 if (!(i & (1U << bit_i)) && (i & (1U << bit_j))) {
1197 nr_2d_01[bit_i][bit_j]++;
1198 }
1199 if (!(i & (1U << bit_i)) && !(i & (1U << bit_j))) {
1200 nr_2d_00[bit_i][bit_j]++;
1201 }
1202 }
1203 }
1204 distrib_nr_child++;
1205 }
1206 break;
1207 }
1208 case RCU_JA_NULL:
1209 assert(mode == JA_RECOMPACT_ADD_NEXT);
1210 break;
1211 default:
1212 assert(0);
1213 break;
1214 }
1215
1216 if (mode == JA_RECOMPACT_ADD_NEXT || mode == JA_RECOMPACT_ADD_SAME) {
1217 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1218 for (bit_j = 0; bit_j < bit_i; bit_j++) {
1219 if ((n & (1U << bit_i)) && (n & (1U << bit_j))) {
1220 nr_2d_11[bit_i][bit_j]++;
1221 }
1222 if ((n & (1U << bit_i)) && !(n & (1U << bit_j))) {
1223 nr_2d_10[bit_i][bit_j]++;
1224 }
1225 if (!(n & (1U << bit_i)) && (n & (1U << bit_j))) {
1226 nr_2d_01[bit_i][bit_j]++;
1227 }
1228 if (!(n & (1U << bit_i)) && !(n & (1U << bit_j))) {
1229 nr_2d_00[bit_i][bit_j]++;
1230 }
1231 }
1232 }
1233 distrib_nr_child++;
1234 }
1235
1236 /*
1237 * The best bit selector is that for which the number of nodes
1238 * in each sub-class is closest to one-fourth of the number of
1239 * children in the distribution. We calculate the distance using
1240 * 4 times the size of the sub-distribution to eliminate
1241 * truncation error.
1242 */
1243 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1244 for (bit_j = 0; bit_j < bit_i; bit_j++) {
1245 int distance_to_best[4];
1246
1247 distance_to_best[0] = (nr_2d_11[bit_i][bit_j] << 2U) - distrib_nr_child;
1248 distance_to_best[1] = (nr_2d_10[bit_i][bit_j] << 2U) - distrib_nr_child;
1249 distance_to_best[2] = (nr_2d_01[bit_i][bit_j] << 2U) - distrib_nr_child;
1250 distance_to_best[3] = (nr_2d_00[bit_i][bit_j] << 2U) - distrib_nr_child;
1251
1252 /* Consider worse distance above best */
1253 if (distance_to_best[1] > 0 && distance_to_best[1] > distance_to_best[0])
1254 distance_to_best[0] = distance_to_best[1];
1255 if (distance_to_best[2] > 0 && distance_to_best[2] > distance_to_best[0])
1256 distance_to_best[0] = distance_to_best[2];
1257 if (distance_to_best[3] > 0 && distance_to_best[3] > distance_to_best[0])
1258 distance_to_best[0] = distance_to_best[3];
1259
1260 /*
1261 * If our worse distance is better than overall,
1262 * we become new best candidate.
1263 */
1264 if (distance_to_best[0] < overall_best_distance) {
1265 overall_best_distance = distance_to_best[0];
1266 bitsel[0] = bit_i;
1267 bitsel[1] = bit_j;
1268 }
1269 }
1270 }
1271
1272 dbg_printf("2 dimensions pool bit selection: (%u,%u)\n", bitsel[0], bitsel[1]);
1273
1274 /* Return our bit selection */
1275 _bitsel[0] = bitsel[0];
1276 _bitsel[1] = bitsel[1];
1277 }
1278
1279 static
1280 unsigned int find_nearest_type_index(unsigned int type_index,
1281 unsigned int nr_nodes)
1282 {
1283 const struct cds_ja_type *type;
1284
1285 assert(type_index != NODE_INDEX_NULL);
1286 if (nr_nodes == 0)
1287 return NODE_INDEX_NULL;
1288 for (;;) {
1289 type = &ja_types[type_index];
1290 if (nr_nodes < type->min_child)
1291 type_index--;
1292 else if (nr_nodes > type->max_child)
1293 type_index++;
1294 else
1295 break;
1296 }
1297 return type_index;
1298 }
1299
1300 /*
1301 * ja_node_recompact_add: recompact a node, adding a new child.
1302 * Return 0 on success, -EAGAIN if need to retry, or other negative
1303 * error value otherwise.
1304 */
1305 static
1306 int ja_node_recompact(enum ja_recompact mode,
1307 struct cds_ja *ja,
1308 unsigned int old_type_index,
1309 const struct cds_ja_type *old_type,
1310 struct cds_ja_inode *old_node,
1311 struct cds_ja_shadow_node *shadow_node,
1312 struct cds_ja_inode_flag **old_node_flag_ptr, uint8_t n,
1313 struct cds_ja_inode_flag *child_node_flag,
1314 struct cds_ja_inode_flag **nullify_node_flag_ptr,
1315 int level)
1316 {
1317 unsigned int new_type_index;
1318 struct cds_ja_inode *new_node;
1319 struct cds_ja_shadow_node *new_shadow_node = NULL;
1320 const struct cds_ja_type *new_type;
1321 struct cds_ja_inode_flag *new_node_flag, *old_node_flag;
1322 int ret;
1323 int fallback = 0;
1324
1325 old_node_flag = *old_node_flag_ptr;
1326
1327 /*
1328 * Need to find nearest type index even for ADD_SAME, because
1329 * this recompaction, when applied to linear nodes, will garbage
1330 * collect dummy (NULL) entries, and can therefore cause a few
1331 * linear representations to be skipped.
1332 */
1333 switch (mode) {
1334 case JA_RECOMPACT_ADD_SAME:
1335 new_type_index = find_nearest_type_index(old_type_index,
1336 shadow_node->nr_child + 1);
1337 dbg_printf("Recompact for node with %u children\n",
1338 shadow_node->nr_child + 1);
1339 break;
1340 case JA_RECOMPACT_ADD_NEXT:
1341 if (!shadow_node || old_type_index == NODE_INDEX_NULL) {
1342 new_type_index = 0;
1343 dbg_printf("Recompact for NULL\n");
1344 } else {
1345 new_type_index = find_nearest_type_index(old_type_index,
1346 shadow_node->nr_child + 1);
1347 dbg_printf("Recompact for node with %u children\n",
1348 shadow_node->nr_child + 1);
1349 }
1350 break;
1351 case JA_RECOMPACT_DEL:
1352 new_type_index = find_nearest_type_index(old_type_index,
1353 shadow_node->nr_child - 1);
1354 dbg_printf("Recompact for node with %u children\n",
1355 shadow_node->nr_child - 1);
1356 break;
1357 default:
1358 assert(0);
1359 }
1360
1361 retry: /* for fallback */
1362 dbg_printf("Recompact from type %d to type %d\n",
1363 old_type_index, new_type_index);
1364 new_type = &ja_types[new_type_index];
1365 if (new_type_index != NODE_INDEX_NULL) {
1366 new_node = alloc_cds_ja_node(ja, new_type);
1367 if (!new_node)
1368 return -ENOMEM;
1369
1370 if (new_type->type_class == RCU_JA_POOL) {
1371 switch (new_type->nr_pool_order) {
1372 case 1:
1373 {
1374 unsigned int node_distrib_bitsel;
1375
1376 node_distrib_bitsel =
1377 ja_node_sum_distribution_1d(mode, ja,
1378 old_type_index, old_type,
1379 old_node, shadow_node,
1380 n, child_node_flag,
1381 nullify_node_flag_ptr);
1382 assert(!((unsigned long) new_node & JA_POOL_1D_MASK));
1383 new_node_flag = ja_node_flag_pool_1d(new_node,
1384 new_type_index, node_distrib_bitsel);
1385 break;
1386 }
1387 case 2:
1388 {
1389 unsigned int node_distrib_bitsel[2];
1390
1391 ja_node_sum_distribution_2d(mode, ja,
1392 old_type_index, old_type,
1393 old_node, shadow_node,
1394 n, child_node_flag,
1395 nullify_node_flag_ptr,
1396 node_distrib_bitsel);
1397 assert(!((unsigned long) new_node & JA_POOL_1D_MASK));
1398 assert(!((unsigned long) new_node & JA_POOL_2D_MASK));
1399 new_node_flag = ja_node_flag_pool_2d(new_node,
1400 new_type_index, node_distrib_bitsel);
1401 break;
1402 }
1403 default:
1404 assert(0);
1405 }
1406 } else {
1407 new_node_flag = ja_node_flag(new_node, new_type_index);
1408 }
1409
1410 dbg_printf("Recompact inherit lock from %p\n", shadow_node);
1411 new_shadow_node = rcuja_shadow_set(ja->ht, new_node_flag, shadow_node, ja, level);
1412 if (!new_shadow_node) {
1413 free_cds_ja_node(ja, new_node);
1414 return -ENOMEM;
1415 }
1416 if (fallback)
1417 new_shadow_node->fallback_removal_count =
1418 JA_FALLBACK_REMOVAL_COUNT;
1419 } else {
1420 new_node = NULL;
1421 new_node_flag = NULL;
1422 }
1423
1424 assert(mode != JA_RECOMPACT_ADD_NEXT || old_type->type_class != RCU_JA_PIGEON);
1425
1426 if (new_type_index == NODE_INDEX_NULL)
1427 goto skip_copy;
1428
1429 switch (old_type->type_class) {
1430 case RCU_JA_LINEAR:
1431 {
1432 uint8_t nr_child =
1433 ja_linear_node_get_nr_child(old_type, old_node);
1434 unsigned int i;
1435
1436 for (i = 0; i < nr_child; i++) {
1437 struct cds_ja_inode_flag *iter;
1438 uint8_t v;
1439
1440 ja_linear_node_get_ith_pos(old_type, old_node, i, &v, &iter);
1441 if (!iter)
1442 continue;
1443 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1444 continue;
1445 ret = _ja_node_set_nth(new_type, new_node, new_node_flag,
1446 new_shadow_node,
1447 v, iter);
1448 if (new_type->type_class == RCU_JA_POOL && ret) {
1449 goto fallback_toosmall;
1450 }
1451 assert(!ret);
1452 }
1453 break;
1454 }
1455 case RCU_JA_POOL:
1456 {
1457 unsigned int pool_nr;
1458
1459 for (pool_nr = 0; pool_nr < (1U << old_type->nr_pool_order); pool_nr++) {
1460 struct cds_ja_inode *pool =
1461 ja_pool_node_get_ith_pool(old_type,
1462 old_node, pool_nr);
1463 uint8_t nr_child =
1464 ja_linear_node_get_nr_child(old_type, pool);
1465 unsigned int j;
1466
1467 for (j = 0; j < nr_child; j++) {
1468 struct cds_ja_inode_flag *iter;
1469 uint8_t v;
1470
1471 ja_linear_node_get_ith_pos(old_type, pool,
1472 j, &v, &iter);
1473 if (!iter)
1474 continue;
1475 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1476 continue;
1477 ret = _ja_node_set_nth(new_type, new_node, new_node_flag,
1478 new_shadow_node,
1479 v, iter);
1480 if (new_type->type_class == RCU_JA_POOL
1481 && ret) {
1482 goto fallback_toosmall;
1483 }
1484 assert(!ret);
1485 }
1486 }
1487 break;
1488 }
1489 case RCU_JA_NULL:
1490 assert(mode == JA_RECOMPACT_ADD_NEXT);
1491 break;
1492 case RCU_JA_PIGEON:
1493 {
1494 unsigned int i;
1495
1496 assert(mode == JA_RECOMPACT_DEL);
1497 for (i = 0; i < JA_ENTRY_PER_NODE; i++) {
1498 struct cds_ja_inode_flag *iter;
1499
1500 iter = ja_pigeon_node_get_ith_pos(old_type, old_node, i);
1501 if (!iter)
1502 continue;
1503 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1504 continue;
1505 ret = _ja_node_set_nth(new_type, new_node, new_node_flag,
1506 new_shadow_node,
1507 i, iter);
1508 if (new_type->type_class == RCU_JA_POOL && ret) {
1509 goto fallback_toosmall;
1510 }
1511 assert(!ret);
1512 }
1513 break;
1514 }
1515 default:
1516 assert(0);
1517 ret = -EINVAL;
1518 goto end;
1519 }
1520 skip_copy:
1521
1522 if (mode == JA_RECOMPACT_ADD_NEXT || mode == JA_RECOMPACT_ADD_SAME) {
1523 /* add node */
1524 ret = _ja_node_set_nth(new_type, new_node, new_node_flag,
1525 new_shadow_node,
1526 n, child_node_flag);
1527 if (new_type->type_class == RCU_JA_POOL && ret) {
1528 goto fallback_toosmall;
1529 }
1530 assert(!ret);
1531 }
1532
1533 if (fallback) {
1534 dbg_printf("Using fallback for %u children, node type index: %u, mode %s\n",
1535 new_shadow_node->nr_child, old_type_index, mode == JA_RECOMPACT_ADD_NEXT ? "add_next" :
1536 (mode == JA_RECOMPACT_DEL ? "del" : "add_same"));
1537 uatomic_inc(&ja->node_fallback_count_distribution[new_shadow_node->nr_child]);
1538 }
1539
1540 /* Return pointer to new recompacted node through old_node_flag_ptr */
1541 *old_node_flag_ptr = new_node_flag;
1542 if (old_node) {
1543 int flags;
1544
1545 flags = RCUJA_SHADOW_CLEAR_FREE_NODE;
1546 /*
1547 * It is OK to free the lock associated with a node
1548 * going to NULL, since we are holding the parent lock.
1549 * This synchronizes removal with re-add of that node.
1550 */
1551 if (new_type_index == NODE_INDEX_NULL)
1552 flags |= RCUJA_SHADOW_CLEAR_FREE_LOCK;
1553 ret = rcuja_shadow_clear(ja->ht, old_node_flag, shadow_node,
1554 flags);
1555 assert(!ret);
1556 }
1557
1558 ret = 0;
1559 end:
1560 return ret;
1561
1562 fallback_toosmall:
1563 /* fallback if next pool is too small */
1564 assert(new_shadow_node);
1565 ret = rcuja_shadow_clear(ja->ht, new_node_flag, new_shadow_node,
1566 RCUJA_SHADOW_CLEAR_FREE_NODE);
1567 assert(!ret);
1568
1569 switch (mode) {
1570 case JA_RECOMPACT_ADD_SAME:
1571 /*
1572 * JA_RECOMPACT_ADD_SAME is only triggered if a linear
1573 * node within a pool has unused entries. It should
1574 * therefore _never_ be too small.
1575 */
1576 assert(0);
1577
1578 /* Fall-through */
1579 case JA_RECOMPACT_ADD_NEXT:
1580 {
1581 const struct cds_ja_type *next_type;
1582
1583 /*
1584 * Recompaction attempt on add failed. Should only
1585 * happen if target node type is pool. Caused by
1586 * hard-to-split distribution. Recompact using the next
1587 * distribution size.
1588 */
1589 assert(new_type->type_class == RCU_JA_POOL);
1590 next_type = &ja_types[new_type_index + 1];
1591 /*
1592 * Try going to the next pool size if our population
1593 * fits within its range. This is not flagged as a
1594 * fallback.
1595 */
1596 if (shadow_node->nr_child + 1 >= next_type->min_child
1597 && shadow_node->nr_child + 1 <= next_type->max_child) {
1598 new_type_index++;
1599 goto retry;
1600 } else {
1601 new_type_index++;
1602 dbg_printf("Add fallback to type %d\n", new_type_index);
1603 uatomic_inc(&ja->nr_fallback);
1604 fallback = 1;
1605 goto retry;
1606 }
1607 break;
1608 }
1609 case JA_RECOMPACT_DEL:
1610 /*
1611 * Recompaction attempt on delete failed. Should only
1612 * happen if target node type is pool. This is caused by
1613 * a hard-to-split distribution. Recompact on same node
1614 * size, but flag current node as "fallback" to ensure
1615 * we don't attempt recompaction before some activity
1616 * has reshuffled our node.
1617 */
1618 assert(new_type->type_class == RCU_JA_POOL);
1619 new_type_index = old_type_index;
1620 dbg_printf("Delete fallback keeping type %d\n", new_type_index);
1621 uatomic_inc(&ja->nr_fallback);
1622 fallback = 1;
1623 goto retry;
1624 default:
1625 assert(0);
1626 return -EINVAL;
1627 }
1628
1629 /*
1630 * Last resort fallback: pigeon.
1631 */
1632 new_type_index = (1UL << JA_TYPE_BITS) - 1;
1633 dbg_printf("Fallback to type %d\n", new_type_index);
1634 uatomic_inc(&ja->nr_fallback);
1635 fallback = 1;
1636 goto retry;
1637 }
1638
1639 /*
1640 * Return 0 on success, -EAGAIN if need to retry, or other negative
1641 * error value otherwise.
1642 */
1643 static
1644 int ja_node_set_nth(struct cds_ja *ja,
1645 struct cds_ja_inode_flag **node_flag, uint8_t n,
1646 struct cds_ja_inode_flag *child_node_flag,
1647 struct cds_ja_shadow_node *shadow_node,
1648 int level)
1649 {
1650 int ret;
1651 unsigned int type_index;
1652 const struct cds_ja_type *type;
1653 struct cds_ja_inode *node;
1654
1655 dbg_printf("ja_node_set_nth for n=%u, node %p, shadow %p\n",
1656 (unsigned int) n, ja_node_ptr(*node_flag), shadow_node);
1657
1658 node = ja_node_ptr(*node_flag);
1659 type_index = ja_node_type(*node_flag);
1660 type = &ja_types[type_index];
1661 ret = _ja_node_set_nth(type, node, *node_flag, shadow_node,
1662 n, child_node_flag);
1663 switch (ret) {
1664 case -ENOSPC:
1665 /* Not enough space in node, need to recompact to next type. */
1666 ret = ja_node_recompact(JA_RECOMPACT_ADD_NEXT, ja, type_index, type, node,
1667 shadow_node, node_flag, n, child_node_flag, NULL, level);
1668 break;
1669 case -ERANGE:
1670 /* Node needs to be recompacted. */
1671 ret = ja_node_recompact(JA_RECOMPACT_ADD_SAME, ja, type_index, type, node,
1672 shadow_node, node_flag, n, child_node_flag, NULL, level);
1673 break;
1674 }
1675 return ret;
1676 }
1677
1678 /*
1679 * Return 0 on success, -EAGAIN if need to retry, or other negative
1680 * error value otherwise.
1681 */
1682 static
1683 int ja_node_clear_ptr(struct cds_ja *ja,
1684 struct cds_ja_inode_flag **node_flag_ptr, /* Pointer to location to nullify */
1685 struct cds_ja_inode_flag **parent_node_flag_ptr, /* Address of parent ptr in its parent */
1686 struct cds_ja_shadow_node *shadow_node, /* of parent */
1687 uint8_t n, int level)
1688 {
1689 int ret;
1690 unsigned int type_index;
1691 const struct cds_ja_type *type;
1692 struct cds_ja_inode *node;
1693
1694 dbg_printf("ja_node_clear_ptr for node %p, shadow %p, target ptr %p\n",
1695 ja_node_ptr(*parent_node_flag_ptr), shadow_node, node_flag_ptr);
1696
1697 node = ja_node_ptr(*parent_node_flag_ptr);
1698 type_index = ja_node_type(*parent_node_flag_ptr);
1699 type = &ja_types[type_index];
1700 ret = _ja_node_clear_ptr(type, node, *parent_node_flag_ptr, shadow_node, node_flag_ptr, n);
1701 if (ret == -EFBIG) {
1702 /* Should try recompaction. */
1703 ret = ja_node_recompact(JA_RECOMPACT_DEL, ja, type_index, type, node,
1704 shadow_node, parent_node_flag_ptr, n, NULL,
1705 node_flag_ptr, level);
1706 }
1707 return ret;
1708 }
1709
1710 struct cds_hlist_head cds_ja_lookup(struct cds_ja *ja, uint64_t key)
1711 {
1712 unsigned int tree_depth, i;
1713 struct cds_ja_inode_flag *node_flag;
1714 struct cds_hlist_head head = { NULL };
1715
1716 if (caa_unlikely(key > ja->key_max))
1717 return head;
1718 tree_depth = ja->tree_depth;
1719 node_flag = rcu_dereference(ja->root);
1720
1721 /* level 0: root node */
1722 if (!ja_node_ptr(node_flag))
1723 return head;
1724
1725 for (i = 1; i < tree_depth; i++) {
1726 uint8_t iter_key;
1727
1728 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (tree_depth - i - 1)));
1729 node_flag = ja_node_get_nth(node_flag, NULL, iter_key);
1730 dbg_printf("cds_ja_lookup iter key lookup %u finds node_flag %p\n",
1731 (unsigned int) iter_key, node_flag);
1732 if (!ja_node_ptr(node_flag))
1733 return head;
1734 }
1735
1736 /* Last level lookup succeded. We got an actual match. */
1737 head.next = (struct cds_hlist_node *) node_flag;
1738 return head;
1739 }
1740
1741 struct cds_hlist_head cds_ja_lookup_lower_equal(struct cds_ja *ja, uint64_t key)
1742 {
1743 int tree_depth, level;
1744 struct cds_ja_inode_flag *node_flag, *cur_node_depth[JA_MAX_DEPTH];
1745 struct cds_hlist_head head = { NULL };
1746
1747 if (caa_unlikely(key > ja->key_max || !key))
1748 return head;
1749
1750 memset(cur_node_depth, 0, sizeof(cur_node_depth));
1751 tree_depth = ja->tree_depth;
1752 node_flag = rcu_dereference(ja->root);
1753 cur_node_depth[0] = node_flag;
1754
1755 /* level 0: root node */
1756 if (!ja_node_ptr(node_flag))
1757 return head;
1758
1759 for (level = 1; level < tree_depth; level++) {
1760 uint8_t iter_key;
1761
1762 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (tree_depth - level - 1)));
1763 node_flag = ja_node_get_nth(node_flag, NULL, iter_key);
1764 if (!ja_node_ptr(node_flag))
1765 break;
1766 cur_node_depth[level] = node_flag;
1767 dbg_printf("cds_ja_lookup iter key lookup %u finds node_flag %p\n",
1768 (unsigned int) iter_key, node_flag);
1769 }
1770
1771 if (level == tree_depth) {
1772 /* Last level lookup succeded. We got an equal match. */
1773 head.next = (struct cds_hlist_node *) node_flag;
1774 return head;
1775 }
1776
1777 /*
1778 * Find highest value left of current node.
1779 * Current node is cur_node_depth[level].
1780 * Start at current level. If we cannot find any key left of
1781 * ours, go one level up, seek highest value left of current
1782 * (recursively), and when we find one, get the rightmost child
1783 * of its rightmost child (recursively).
1784 */
1785 for (; level > 0; level--) {
1786 uint8_t iter_key;
1787
1788 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (tree_depth - level - 1)));
1789 node_flag = ja_node_get_left(cur_node_depth[level - 1],
1790 iter_key);
1791 /* If found left sibling, find rightmost child. */
1792 if (ja_node_ptr(node_flag))
1793 break;
1794 }
1795
1796 if (!level) {
1797 /* Reached the root and could not find a left sibling. */
1798 return head;
1799 }
1800
1801 level++;
1802
1803 /*
1804 * From this point, we are guaranteed to be able to find a
1805 * "lower than" match. ja_attach_node() and ja_detach_node()
1806 * both guarantee that it is not possible for a lookup to reach
1807 * a dead-end.
1808 */
1809
1810 /* Find rightmost child of rightmost child (recursively). */
1811 for (; level < tree_depth; level++) {
1812 node_flag = ja_node_get_rightmost(node_flag);
1813 /* If found left sibling, find rightmost child. */
1814 if (!ja_node_ptr(node_flag))
1815 break;
1816 }
1817
1818 assert(level == tree_depth);
1819
1820 head.next = (struct cds_hlist_node *) node_flag;
1821 return head;
1822 }
1823
1824 /*
1825 * We reached an unpopulated node. Create it and the children we need,
1826 * and then attach the entire branch to the current node. This may
1827 * trigger recompaction of the current node. Locks needed: node lock
1828 * (for add), and, possibly, parent node lock (to update pointer due to
1829 * node recompaction).
1830 *
1831 * First take node lock, check if recompaction is needed, then take
1832 * parent lock (if needed). Then we can proceed to create the new
1833 * branch. Publish the new branch, and release locks.
1834 * TODO: we currently always take the parent lock even when not needed.
1835 *
1836 * ja_attach_node() ensures that a lookup will _never_ see a branch that
1837 * leads to a dead-end: before attaching a branch, the entire content of
1838 * the new branch is populated, thus creating a cluster, before
1839 * attaching the cluster to the rest of the tree, thus making it visible
1840 * to lookups.
1841 */
1842 static
1843 int ja_attach_node(struct cds_ja *ja,
1844 struct cds_ja_inode_flag **attach_node_flag_ptr,
1845 struct cds_ja_inode_flag *attach_node_flag,
1846 struct cds_ja_inode_flag *parent_attach_node_flag,
1847 struct cds_ja_inode_flag **old_node_flag_ptr,
1848 struct cds_ja_inode_flag *old_node_flag,
1849 uint64_t key,
1850 unsigned int level,
1851 struct cds_ja_node *child_node)
1852 {
1853 struct cds_ja_shadow_node *shadow_node = NULL,
1854 *parent_shadow_node = NULL;
1855 struct cds_hlist_head head;
1856 struct cds_ja_inode_flag *iter_node_flag, *iter_dest_node_flag;
1857 int ret, i;
1858 struct cds_ja_inode_flag *created_nodes[JA_MAX_DEPTH];
1859 int nr_created_nodes = 0;
1860
1861 dbg_printf("Attach node at level %u (old_node_flag %p, attach_node_flag_ptr %p attach_node_flag %p, parent_attach_node_flag %p)\n",
1862 level, old_node_flag, attach_node_flag_ptr, attach_node_flag, parent_attach_node_flag);
1863
1864 assert(!old_node_flag);
1865 if (attach_node_flag) {
1866 shadow_node = rcuja_shadow_lookup_lock(ja->ht, attach_node_flag);
1867 if (!shadow_node) {
1868 ret = -EAGAIN;
1869 goto end;
1870 }
1871 }
1872 if (parent_attach_node_flag) {
1873 parent_shadow_node = rcuja_shadow_lookup_lock(ja->ht,
1874 parent_attach_node_flag);
1875 if (!parent_shadow_node) {
1876 ret = -EAGAIN;
1877 goto unlock_shadow;
1878 }
1879 }
1880
1881 if (old_node_flag_ptr && ja_node_ptr(*old_node_flag_ptr)) {
1882 /*
1883 * Target node has been updated between RCU lookup and
1884 * lock acquisition. We need to re-try lookup and
1885 * attach.
1886 */
1887 ret = -EAGAIN;
1888 goto unlock_parent;
1889 }
1890
1891 /*
1892 * Perform a lookup query to handle the case where
1893 * old_node_flag_ptr is NULL. We cannot use it to check if the
1894 * node has been populated between RCU lookup and mutex
1895 * acquisition.
1896 */
1897 if (!old_node_flag_ptr) {
1898 uint8_t iter_key;
1899 struct cds_ja_inode_flag *lookup_node_flag;
1900 struct cds_ja_inode_flag **lookup_node_flag_ptr;
1901
1902 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (ja->tree_depth - level)));
1903 lookup_node_flag = ja_node_get_nth(attach_node_flag,
1904 &lookup_node_flag_ptr,
1905 iter_key);
1906 if (lookup_node_flag) {
1907 ret = -EEXIST;
1908 goto unlock_parent;
1909 }
1910 }
1911
1912 if (attach_node_flag_ptr && ja_node_ptr(*attach_node_flag_ptr) !=
1913 ja_node_ptr(attach_node_flag)) {
1914 /*
1915 * Target node has been updated between RCU lookup and
1916 * lock acquisition. We need to re-try lookup and
1917 * attach.
1918 */
1919 ret = -EAGAIN;
1920 goto unlock_parent;
1921 }
1922
1923 /* Create new branch, starting from bottom */
1924 CDS_INIT_HLIST_HEAD(&head);
1925 cds_hlist_add_head_rcu(&child_node->list, &head);
1926 iter_node_flag = (struct cds_ja_inode_flag *) head.next;
1927
1928 for (i = ja->tree_depth - 1; i >= (int) level; i--) {
1929 uint8_t iter_key;
1930
1931 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (ja->tree_depth - i - 1)));
1932 dbg_printf("branch creation level %d, key %u\n",
1933 i, (unsigned int) iter_key);
1934 iter_dest_node_flag = NULL;
1935 ret = ja_node_set_nth(ja, &iter_dest_node_flag,
1936 iter_key,
1937 iter_node_flag,
1938 NULL, i);
1939 if (ret) {
1940 dbg_printf("branch creation error %d\n", ret);
1941 goto check_error;
1942 }
1943 created_nodes[nr_created_nodes++] = iter_dest_node_flag;
1944 iter_node_flag = iter_dest_node_flag;
1945 }
1946 assert(level > 0);
1947
1948 /* Publish branch */
1949 if (level == 1) {
1950 /*
1951 * Attaching to root node.
1952 */
1953 rcu_assign_pointer(ja->root, iter_node_flag);
1954 } else {
1955 uint8_t iter_key;
1956
1957 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (ja->tree_depth - level)));
1958 dbg_printf("publish branch at level %d, key %u\n",
1959 level - 1, (unsigned int) iter_key);
1960 /* We need to use set_nth on the previous level. */
1961 iter_dest_node_flag = attach_node_flag;
1962 ret = ja_node_set_nth(ja, &iter_dest_node_flag,
1963 iter_key,
1964 iter_node_flag,
1965 shadow_node, level - 1);
1966 if (ret) {
1967 dbg_printf("branch publish error %d\n", ret);
1968 goto check_error;
1969 }
1970 /*
1971 * Attach branch
1972 */
1973 rcu_assign_pointer(*attach_node_flag_ptr, iter_dest_node_flag);
1974 }
1975
1976 /* Success */
1977 ret = 0;
1978
1979 check_error:
1980 if (ret) {
1981 for (i = 0; i < nr_created_nodes; i++) {
1982 int tmpret;
1983 int flags;
1984
1985 flags = RCUJA_SHADOW_CLEAR_FREE_LOCK;
1986 if (i)
1987 flags |= RCUJA_SHADOW_CLEAR_FREE_NODE;
1988 tmpret = rcuja_shadow_clear(ja->ht,
1989 created_nodes[i],
1990 NULL,
1991 flags);
1992 assert(!tmpret);
1993 }
1994 }
1995 unlock_parent:
1996 if (parent_shadow_node)
1997 rcuja_shadow_unlock(parent_shadow_node);
1998 unlock_shadow:
1999 if (shadow_node)
2000 rcuja_shadow_unlock(shadow_node);
2001 end:
2002 return ret;
2003 }
2004
2005 /*
2006 * Lock the parent containing the hlist head pointer, and add node to list of
2007 * duplicates. Failure can happen if concurrent update changes the
2008 * parent before we get the lock. We return -EAGAIN in that case.
2009 * Return 0 on success, negative error value on failure.
2010 */
2011 static
2012 int ja_chain_node(struct cds_ja *ja,
2013 struct cds_ja_inode_flag *parent_node_flag,
2014 struct cds_ja_inode_flag **node_flag_ptr,
2015 struct cds_ja_inode_flag *node_flag,
2016 struct cds_ja_node *node)
2017 {
2018 struct cds_ja_shadow_node *shadow_node;
2019 int ret = 0;
2020
2021 shadow_node = rcuja_shadow_lookup_lock(ja->ht, parent_node_flag);
2022 if (!shadow_node) {
2023 return -EAGAIN;
2024 }
2025 if (ja_node_ptr(*node_flag_ptr) != ja_node_ptr(node_flag)) {
2026 ret = -EAGAIN;
2027 goto end;
2028 }
2029 cds_hlist_add_head_rcu(&node->list, (struct cds_hlist_head *) node_flag_ptr);
2030 end:
2031 rcuja_shadow_unlock(shadow_node);
2032 return ret;
2033 }
2034
2035 static
2036 int _cds_ja_add(struct cds_ja *ja, uint64_t key,
2037 struct cds_ja_node *new_node,
2038 struct cds_ja_node **unique_node_ret)
2039 {
2040 unsigned int tree_depth, i;
2041 struct cds_ja_inode_flag *attach_node_flag,
2042 *parent_node_flag,
2043 *parent2_node_flag,
2044 *node_flag,
2045 *parent_attach_node_flag;
2046 struct cds_ja_inode_flag **attach_node_flag_ptr,
2047 **parent_node_flag_ptr,
2048 **node_flag_ptr;
2049 int ret;
2050
2051 if (caa_unlikely(key > ja->key_max)) {
2052 return -EINVAL;
2053 }
2054 tree_depth = ja->tree_depth;
2055
2056 retry:
2057 dbg_printf("cds_ja_add attempt: key %" PRIu64 ", node %p\n",
2058 key, new_node);
2059 parent2_node_flag = NULL;
2060 parent_node_flag =
2061 (struct cds_ja_inode_flag *) &ja->root; /* Use root ptr address as key for mutex */
2062 parent_node_flag_ptr = NULL;
2063 node_flag = rcu_dereference(ja->root);
2064 node_flag_ptr = &ja->root;
2065
2066 /* Iterate on all internal levels */
2067 for (i = 1; i < tree_depth; i++) {
2068 uint8_t iter_key;
2069
2070 if (!ja_node_ptr(node_flag))
2071 break;
2072 dbg_printf("cds_ja_add iter parent2_node_flag %p parent_node_flag %p node_flag_ptr %p node_flag %p\n",
2073 parent2_node_flag, parent_node_flag, node_flag_ptr, node_flag);
2074 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (tree_depth - i - 1)));
2075 parent2_node_flag = parent_node_flag;
2076 parent_node_flag = node_flag;
2077 parent_node_flag_ptr = node_flag_ptr;
2078 node_flag = ja_node_get_nth(node_flag,
2079 &node_flag_ptr,
2080 iter_key);
2081 }
2082
2083 /*
2084 * We reached either bottom of tree or internal NULL node,
2085 * simply add node to last internal level, or chain it if key is
2086 * already present.
2087 */
2088 if (!ja_node_ptr(node_flag)) {
2089 dbg_printf("cds_ja_add NULL parent2_node_flag %p parent_node_flag %p node_flag_ptr %p node_flag %p\n",
2090 parent2_node_flag, parent_node_flag, node_flag_ptr, node_flag);
2091
2092 attach_node_flag = parent_node_flag;
2093 attach_node_flag_ptr = parent_node_flag_ptr;
2094 parent_attach_node_flag = parent2_node_flag;
2095
2096 ret = ja_attach_node(ja, attach_node_flag_ptr,
2097 attach_node_flag,
2098 parent_attach_node_flag,
2099 node_flag_ptr,
2100 node_flag,
2101 key, i, new_node);
2102 } else {
2103 if (unique_node_ret) {
2104 *unique_node_ret = (struct cds_ja_node *) ja_node_ptr(node_flag);
2105 return -EEXIST;
2106 }
2107
2108 dbg_printf("cds_ja_add duplicate parent2_node_flag %p parent_node_flag %p node_flag_ptr %p node_flag %p\n",
2109 parent2_node_flag, parent_node_flag, node_flag_ptr, node_flag);
2110
2111 attach_node_flag = node_flag;
2112 attach_node_flag_ptr = node_flag_ptr;
2113 parent_attach_node_flag = parent_node_flag;
2114
2115 ret = ja_chain_node(ja,
2116 parent_attach_node_flag,
2117 attach_node_flag_ptr,
2118 attach_node_flag,
2119 new_node);
2120 }
2121 if (ret == -EAGAIN || ret == -EEXIST)
2122 goto retry;
2123
2124 return ret;
2125 }
2126
2127 int cds_ja_add(struct cds_ja *ja, uint64_t key,
2128 struct cds_ja_node *new_node)
2129 {
2130 return _cds_ja_add(ja, key, new_node, NULL);
2131 }
2132
2133 struct cds_ja_node *cds_ja_add_unique(struct cds_ja *ja, uint64_t key,
2134 struct cds_ja_node *new_node)
2135 {
2136 int ret;
2137 struct cds_ja_node *ret_node;
2138
2139 ret = _cds_ja_add(ja, key, new_node, &ret_node);
2140 if (ret == -EEXIST)
2141 return ret_node;
2142 else
2143 return new_node;
2144 }
2145
2146 /*
2147 * Note: there is no need to lookup the pointer address associated with
2148 * each node's nth item after taking the lock: it's already been done by
2149 * cds_ja_del while holding the rcu read-side lock, and our node rules
2150 * ensure that when a match value -> pointer is found in a node, it is
2151 * _NEVER_ changed for that node without recompaction, and recompaction
2152 * reallocates the node.
2153 * However, when a child is removed from "linear" nodes, its pointer
2154 * is set to NULL. We therefore check, while holding the locks, if this
2155 * pointer is NULL, and return -ENOENT to the caller if it is the case.
2156 *
2157 * ja_detach_node() ensures that a lookup will _never_ see a branch that
2158 * leads to a dead-end: when removing branch, it makes sure to perform
2159 * the "cut" at the highest node that has only one child, effectively
2160 * replacing it with a NULL pointer.
2161 */
2162 static
2163 int ja_detach_node(struct cds_ja *ja,
2164 struct cds_ja_inode_flag **snapshot,
2165 struct cds_ja_inode_flag ***snapshot_ptr,
2166 uint8_t *snapshot_n,
2167 int nr_snapshot,
2168 uint64_t key,
2169 struct cds_ja_node *node)
2170 {
2171 struct cds_ja_shadow_node *shadow_nodes[JA_MAX_DEPTH];
2172 struct cds_ja_inode_flag **node_flag_ptr = NULL,
2173 *parent_node_flag = NULL,
2174 **parent_node_flag_ptr = NULL;
2175 struct cds_ja_inode_flag *iter_node_flag;
2176 int ret, i, nr_shadow = 0, nr_clear = 0, nr_branch = 0;
2177 uint8_t n = 0;
2178
2179 assert(nr_snapshot == ja->tree_depth + 1);
2180
2181 /*
2182 * From the last internal level node going up, get the node
2183 * lock, check if the node has only one child left. If it is the
2184 * case, we continue iterating upward. When we reach a node
2185 * which has more that one child left, we lock the parent, and
2186 * proceed to the node deletion (removing its children too).
2187 */
2188 for (i = nr_snapshot - 2; i >= 1; i--) {
2189 struct cds_ja_shadow_node *shadow_node;
2190
2191 shadow_node = rcuja_shadow_lookup_lock(ja->ht,
2192 snapshot[i]);
2193 if (!shadow_node) {
2194 ret = -EAGAIN;
2195 goto end;
2196 }
2197 shadow_nodes[nr_shadow++] = shadow_node;
2198
2199 /*
2200 * Check if node has been removed between RCU
2201 * lookup and lock acquisition.
2202 */
2203 assert(snapshot_ptr[i + 1]);
2204 if (ja_node_ptr(*snapshot_ptr[i + 1])
2205 != ja_node_ptr(snapshot[i + 1])) {
2206 ret = -ENOENT;
2207 goto end;
2208 }
2209
2210 assert(shadow_node->nr_child > 0);
2211 if (shadow_node->nr_child == 1 && i > 1)
2212 nr_clear++;
2213 nr_branch++;
2214 if (shadow_node->nr_child > 1 || i == 1) {
2215 /* Lock parent and break */
2216 shadow_node = rcuja_shadow_lookup_lock(ja->ht,
2217 snapshot[i - 1]);
2218 if (!shadow_node) {
2219 ret = -EAGAIN;
2220 goto end;
2221 }
2222 shadow_nodes[nr_shadow++] = shadow_node;
2223
2224 /*
2225 * Check if node has been removed between RCU
2226 * lookup and lock acquisition.
2227 */
2228 assert(snapshot_ptr[i]);
2229 if (ja_node_ptr(*snapshot_ptr[i])
2230 != ja_node_ptr(snapshot[i])) {
2231 ret = -ENOENT;
2232 goto end;
2233 }
2234
2235 node_flag_ptr = snapshot_ptr[i + 1];
2236 n = snapshot_n[i + 1];
2237 parent_node_flag_ptr = snapshot_ptr[i];
2238 parent_node_flag = snapshot[i];
2239
2240 if (i > 1) {
2241 /*
2242 * Lock parent's parent, in case we need
2243 * to recompact parent.
2244 */
2245 shadow_node = rcuja_shadow_lookup_lock(ja->ht,
2246 snapshot[i - 2]);
2247 if (!shadow_node) {
2248 ret = -EAGAIN;
2249 goto end;
2250 }
2251 shadow_nodes[nr_shadow++] = shadow_node;
2252
2253 /*
2254 * Check if node has been removed between RCU
2255 * lookup and lock acquisition.
2256 */
2257 assert(snapshot_ptr[i - 1]);
2258 if (ja_node_ptr(*snapshot_ptr[i - 1])
2259 != ja_node_ptr(snapshot[i - 1])) {
2260 ret = -ENOENT;
2261 goto end;
2262 }
2263 }
2264
2265 break;
2266 }
2267 }
2268
2269 /*
2270 * At this point, we want to delete all nodes that are about to
2271 * be removed from shadow_nodes (except the last one, which is
2272 * either the root or the parent of the upmost node with 1
2273 * child). OK to free lock here, because RCU read lock is held,
2274 * and free only performed in call_rcu.
2275 */
2276
2277 for (i = 0; i < nr_clear; i++) {
2278 ret = rcuja_shadow_clear(ja->ht,
2279 shadow_nodes[i]->node_flag,
2280 shadow_nodes[i],
2281 RCUJA_SHADOW_CLEAR_FREE_NODE
2282 | RCUJA_SHADOW_CLEAR_FREE_LOCK);
2283 assert(!ret);
2284 }
2285
2286 iter_node_flag = parent_node_flag;
2287 /* Remove from parent */
2288 ret = ja_node_clear_ptr(ja,
2289 node_flag_ptr, /* Pointer to location to nullify */
2290 &iter_node_flag, /* Old new parent ptr in its parent */
2291 shadow_nodes[nr_branch - 1], /* of parent */
2292 n, nr_branch - 1);
2293 if (ret)
2294 goto end;
2295
2296 dbg_printf("ja_detach_node: publish %p instead of %p\n",
2297 iter_node_flag, *parent_node_flag_ptr);
2298 /* Update address of parent ptr in its parent */
2299 rcu_assign_pointer(*parent_node_flag_ptr, iter_node_flag);
2300
2301 end:
2302 for (i = 0; i < nr_shadow; i++)
2303 rcuja_shadow_unlock(shadow_nodes[i]);
2304 return ret;
2305 }
2306
2307 static
2308 int ja_unchain_node(struct cds_ja *ja,
2309 struct cds_ja_inode_flag *parent_node_flag,
2310 struct cds_ja_inode_flag **node_flag_ptr,
2311 struct cds_ja_inode_flag *node_flag,
2312 struct cds_ja_node *node)
2313 {
2314 struct cds_ja_shadow_node *shadow_node;
2315 struct cds_hlist_node *hlist_node;
2316 struct cds_hlist_head hlist_head;
2317 int ret = 0, count = 0, found = 0;
2318
2319 shadow_node = rcuja_shadow_lookup_lock(ja->ht, parent_node_flag);
2320 if (!shadow_node)
2321 return -EAGAIN;
2322 if (ja_node_ptr(*node_flag_ptr) != ja_node_ptr(node_flag)) {
2323 ret = -EAGAIN;
2324 goto end;
2325 }
2326 hlist_head.next = (struct cds_hlist_node *) ja_node_ptr(node_flag);
2327 /*
2328 * Retry if another thread removed all but one of duplicates
2329 * since check (this check was performed without lock).
2330 * Ensure that the node we are about to remove is still in the
2331 * list (while holding lock).
2332 */
2333 cds_hlist_for_each_rcu(hlist_node, &hlist_head) {
2334 if (count == 0) {
2335 /* FIXME: currently a work-around */
2336 hlist_node->prev = (struct cds_hlist_node *) node_flag_ptr;
2337 }
2338 count++;
2339 if (hlist_node == &node->list)
2340 found++;
2341 }
2342 assert(found <= 1);
2343 if (!found || count == 1) {
2344 ret = -EAGAIN;
2345 goto end;
2346 }
2347 cds_hlist_del_rcu(&node->list);
2348 /*
2349 * Validate that we indeed removed the node from linked list.
2350 */
2351 assert(ja_node_ptr(*node_flag_ptr) != (struct cds_ja_inode *) node);
2352 end:
2353 rcuja_shadow_unlock(shadow_node);
2354 return ret;
2355 }
2356
2357 /*
2358 * Called with RCU read lock held.
2359 */
2360 int cds_ja_del(struct cds_ja *ja, uint64_t key,
2361 struct cds_ja_node *node)
2362 {
2363 unsigned int tree_depth, i;
2364 struct cds_ja_inode_flag *snapshot[JA_MAX_DEPTH];
2365 struct cds_ja_inode_flag **snapshot_ptr[JA_MAX_DEPTH];
2366 uint8_t snapshot_n[JA_MAX_DEPTH];
2367 struct cds_ja_inode_flag *node_flag;
2368 struct cds_ja_inode_flag **prev_node_flag_ptr,
2369 **node_flag_ptr;
2370 int nr_snapshot;
2371 int ret;
2372
2373 if (caa_unlikely(key > ja->key_max))
2374 return -EINVAL;
2375 tree_depth = ja->tree_depth;
2376
2377 retry:
2378 nr_snapshot = 0;
2379 dbg_printf("cds_ja_del attempt: key %" PRIu64 ", node %p\n",
2380 key, node);
2381
2382 /* snapshot for level 0 is only for shadow node lookup */
2383 snapshot_n[0] = 0;
2384 snapshot_n[1] = 0;
2385 snapshot_ptr[nr_snapshot] = NULL;
2386 snapshot[nr_snapshot++] = (struct cds_ja_inode_flag *) &ja->root;
2387 node_flag = rcu_dereference(ja->root);
2388 prev_node_flag_ptr = &ja->root;
2389 node_flag_ptr = &ja->root;
2390
2391 /* Iterate on all internal levels */
2392 for (i = 1; i < tree_depth; i++) {
2393 uint8_t iter_key;
2394
2395 dbg_printf("cds_ja_del iter node_flag %p\n",
2396 node_flag);
2397 if (!ja_node_ptr(node_flag)) {
2398 return -ENOENT;
2399 }
2400 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (tree_depth - i - 1)));
2401 snapshot_n[nr_snapshot + 1] = iter_key;
2402 snapshot_ptr[nr_snapshot] = prev_node_flag_ptr;
2403 snapshot[nr_snapshot++] = node_flag;
2404 node_flag = ja_node_get_nth(node_flag,
2405 &node_flag_ptr,
2406 iter_key);
2407 if (node_flag)
2408 prev_node_flag_ptr = node_flag_ptr;
2409 dbg_printf("cds_ja_del iter key lookup %u finds node_flag %p, prev_node_flag_ptr %p\n",
2410 (unsigned int) iter_key, node_flag,
2411 prev_node_flag_ptr);
2412 }
2413 /*
2414 * We reached bottom of tree, try to find the node we are trying
2415 * to remove. Fail if we cannot find it.
2416 */
2417 if (!ja_node_ptr(node_flag)) {
2418 dbg_printf("cds_ja_del: no node found for key %" PRIu64 "\n",
2419 key);
2420 return -ENOENT;
2421 } else {
2422 struct cds_hlist_head hlist_head;
2423 struct cds_hlist_node *hlist_node;
2424 struct cds_ja_node *entry, *match = NULL;
2425 int count = 0;
2426
2427 hlist_head.next =
2428 (struct cds_hlist_node *) ja_node_ptr(node_flag);
2429 cds_hlist_for_each_entry_rcu(entry,
2430 hlist_node,
2431 &hlist_head,
2432 list) {
2433 dbg_printf("cds_ja_del: compare %p with entry %p\n", node, entry);
2434 if (entry == node)
2435 match = entry;
2436 count++;
2437 }
2438 if (!match) {
2439 dbg_printf("cds_ja_del: no node match for node %p key %" PRIu64 "\n", node, key);
2440 return -ENOENT;
2441 }
2442 assert(count > 0);
2443 if (count == 1) {
2444 /*
2445 * Removing last of duplicates. Last snapshot
2446 * does not have a shadow node (external leafs).
2447 */
2448 snapshot_ptr[nr_snapshot] = prev_node_flag_ptr;
2449 snapshot[nr_snapshot++] = node_flag;
2450 ret = ja_detach_node(ja, snapshot, snapshot_ptr,
2451 snapshot_n, nr_snapshot, key, node);
2452 } else {
2453 ret = ja_unchain_node(ja, snapshot[nr_snapshot - 1],
2454 node_flag_ptr, node_flag, match);
2455 }
2456 }
2457 /*
2458 * Explanation of -ENOENT handling: caused by concurrent delete
2459 * between RCU lookup and actual removal. Need to re-do the
2460 * lookup and removal attempt.
2461 */
2462 if (ret == -EAGAIN || ret == -ENOENT)
2463 goto retry;
2464 return ret;
2465 }
2466
2467 struct cds_ja *_cds_ja_new(unsigned int key_bits,
2468 const struct rcu_flavor_struct *flavor)
2469 {
2470 struct cds_ja *ja;
2471 int ret;
2472 struct cds_ja_shadow_node *root_shadow_node;
2473
2474 ja = calloc(sizeof(*ja), 1);
2475 if (!ja)
2476 goto ja_error;
2477
2478 switch (key_bits) {
2479 case 8:
2480 case 16:
2481 case 24:
2482 case 32:
2483 case 40:
2484 case 48:
2485 case 56:
2486 ja->key_max = (1ULL << key_bits) - 1;
2487 break;
2488 case 64:
2489 ja->key_max = UINT64_MAX;
2490 break;
2491 default:
2492 goto check_error;
2493 }
2494
2495 /* ja->root is NULL */
2496 /* tree_depth 0 is for pointer to root node */
2497 ja->tree_depth = (key_bits >> JA_LOG2_BITS_PER_BYTE) + 1;
2498 assert(ja->tree_depth <= JA_MAX_DEPTH);
2499 ja->ht = rcuja_create_ht(flavor);
2500 if (!ja->ht)
2501 goto ht_error;
2502
2503 /*
2504 * Note: we should not free this node until judy array destroy.
2505 */
2506 root_shadow_node = rcuja_shadow_set(ja->ht,
2507 (struct cds_ja_inode_flag *) &ja->root,
2508 NULL, ja, 0);
2509 if (!root_shadow_node) {
2510 ret = -ENOMEM;
2511 goto ht_node_error;
2512 }
2513
2514 return ja;
2515
2516 ht_node_error:
2517 ret = rcuja_delete_ht(ja->ht);
2518 assert(!ret);
2519 ht_error:
2520 check_error:
2521 free(ja);
2522 ja_error:
2523 return NULL;
2524 }
2525
2526 /*
2527 * Called from RCU read-side CS.
2528 */
2529 __attribute__((visibility("protected")))
2530 void rcuja_free_all_children(struct cds_ja_shadow_node *shadow_node,
2531 struct cds_ja_inode_flag *node_flag,
2532 void (*rcu_free_node)(struct cds_ja_node *node))
2533 {
2534 unsigned int type_index;
2535 struct cds_ja_inode *node;
2536 const struct cds_ja_type *type;
2537
2538 node = ja_node_ptr(node_flag);
2539 assert(node != NULL);
2540 type_index = ja_node_type(node_flag);
2541 type = &ja_types[type_index];
2542
2543 switch (type->type_class) {
2544 case RCU_JA_LINEAR:
2545 {
2546 uint8_t nr_child =
2547 ja_linear_node_get_nr_child(type, node);
2548 unsigned int i;
2549
2550 for (i = 0; i < nr_child; i++) {
2551 struct cds_ja_inode_flag *iter;
2552 struct cds_hlist_head head;
2553 struct cds_ja_node *entry;
2554 struct cds_hlist_node *pos, *tmp;
2555 uint8_t v;
2556
2557 ja_linear_node_get_ith_pos(type, node, i, &v, &iter);
2558 if (!iter)
2559 continue;
2560 head.next = (struct cds_hlist_node *) iter;
2561 cds_hlist_for_each_entry_safe(entry, pos, tmp, &head, list) {
2562 rcu_free_node(entry);
2563 }
2564 }
2565 break;
2566 }
2567 case RCU_JA_POOL:
2568 {
2569 unsigned int pool_nr;
2570
2571 for (pool_nr = 0; pool_nr < (1U << type->nr_pool_order); pool_nr++) {
2572 struct cds_ja_inode *pool =
2573 ja_pool_node_get_ith_pool(type, node, pool_nr);
2574 uint8_t nr_child =
2575 ja_linear_node_get_nr_child(type, pool);
2576 unsigned int j;
2577
2578 for (j = 0; j < nr_child; j++) {
2579 struct cds_ja_inode_flag *iter;
2580 struct cds_hlist_head head;
2581 struct cds_ja_node *entry;
2582 struct cds_hlist_node *pos, *tmp;
2583 uint8_t v;
2584
2585 ja_linear_node_get_ith_pos(type, pool, j, &v, &iter);
2586 if (!iter)
2587 continue;
2588 head.next = (struct cds_hlist_node *) iter;
2589 cds_hlist_for_each_entry_safe(entry, pos, tmp, &head, list) {
2590 rcu_free_node(entry);
2591 }
2592 }
2593 }
2594 break;
2595 }
2596 case RCU_JA_NULL:
2597 break;
2598 case RCU_JA_PIGEON:
2599 {
2600 unsigned int i;
2601
2602 for (i = 0; i < JA_ENTRY_PER_NODE; i++) {
2603 struct cds_ja_inode_flag *iter;
2604 struct cds_hlist_head head;
2605 struct cds_ja_node *entry;
2606 struct cds_hlist_node *pos, *tmp;
2607
2608 iter = ja_pigeon_node_get_ith_pos(type, node, i);
2609 if (!iter)
2610 continue;
2611 head.next = (struct cds_hlist_node *) iter;
2612 cds_hlist_for_each_entry_safe(entry, pos, tmp, &head, list) {
2613 rcu_free_node(entry);
2614 }
2615 }
2616 break;
2617 }
2618 default:
2619 assert(0);
2620 }
2621 }
2622
2623 static
2624 void print_debug_fallback_distribution(struct cds_ja *ja)
2625 {
2626 int i;
2627
2628 fprintf(stderr, "Fallback node distribution:\n");
2629 for (i = 0; i < JA_ENTRY_PER_NODE; i++) {
2630 if (!ja->node_fallback_count_distribution[i])
2631 continue;
2632 fprintf(stderr, " %3u: %4lu\n",
2633 i, ja->node_fallback_count_distribution[i]);
2634 }
2635 }
2636
2637 static
2638 int ja_final_checks(struct cds_ja *ja)
2639 {
2640 double fallback_ratio;
2641 unsigned long na, nf, nr_fallback;
2642 int ret = 0;
2643
2644 fallback_ratio = (double) uatomic_read(&ja->nr_fallback);
2645 fallback_ratio /= (double) uatomic_read(&ja->nr_nodes_allocated);
2646 nr_fallback = uatomic_read(&ja->nr_fallback);
2647 if (nr_fallback)
2648 fprintf(stderr,
2649 "[warning] RCU Judy Array used %lu fallback node(s) (ratio: %g)\n",
2650 uatomic_read(&ja->nr_fallback),
2651 fallback_ratio);
2652
2653 na = uatomic_read(&ja->nr_nodes_allocated);
2654 nf = uatomic_read(&ja->nr_nodes_freed);
2655 dbg_printf("Nodes allocated: %lu, Nodes freed: %lu.\n", na, nf);
2656 if (nr_fallback)
2657 print_debug_fallback_distribution(ja);
2658
2659 if (na != nf) {
2660 fprintf(stderr, "[error] Judy array leaked %ld nodes. Allocated: %lu, freed: %lu.\n",
2661 (long) na - nf, na, nf);
2662 ret = -1;
2663 }
2664 return ret;
2665 }
2666
2667 /*
2668 * There should be no more concurrent add to the judy array while it is
2669 * being destroyed (ensured by the caller).
2670 */
2671 int cds_ja_destroy(struct cds_ja *ja,
2672 void (*rcu_free_node)(struct cds_ja_node *node))
2673 {
2674 const struct rcu_flavor_struct *flavor;
2675 int ret;
2676
2677 flavor = cds_lfht_rcu_flavor(ja->ht);
2678 rcuja_shadow_prune(ja->ht,
2679 RCUJA_SHADOW_CLEAR_FREE_NODE | RCUJA_SHADOW_CLEAR_FREE_LOCK,
2680 rcu_free_node);
2681 flavor->thread_offline();
2682 ret = rcuja_delete_ht(ja->ht);
2683 if (ret)
2684 return ret;
2685
2686 /* Wait for in-flight call_rcu free to complete. */
2687 flavor->barrier();
2688
2689 flavor->thread_online();
2690 ret = ja_final_checks(ja);
2691 free(ja);
2692 return ret;
2693 }
This page took 0.078052 seconds and 3 git commands to generate.