4679bfc9a312ec8ddbef66d3fb69426ed3e6cfc8
[userspace-rcu.git] / rcuja / rcuja.c
1 /*
2 * rcuja/rcuja.c
3 *
4 * Userspace RCU library - RCU Judy Array
5 *
6 * Copyright 2012 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #define _LGPL_SOURCE
24 #include <stdint.h>
25 #include <errno.h>
26 #include <limits.h>
27 #include <string.h>
28 #include <urcu/rcuja.h>
29 #include <urcu/compiler.h>
30 #include <urcu/arch.h>
31 #include <assert.h>
32 #include <urcu-pointer.h>
33 #include <urcu/uatomic.h>
34 #include <stdint.h>
35
36 #include "rcuja-internal.h"
37 #include "bitfield.h"
38
39 #ifndef abs
40 #define abs_int(a) ((int) (a) > 0 ? (int) (a) : -((int) (a)))
41 #endif
42
43 enum cds_ja_type_class {
44 RCU_JA_LINEAR = 0, /* Type A */
45 /* 32-bit: 1 to 25 children, 8 to 128 bytes */
46 /* 64-bit: 1 to 28 children, 16 to 256 bytes */
47 RCU_JA_POOL = 1, /* Type B */
48 /* 32-bit: 26 to 100 children, 256 to 512 bytes */
49 /* 64-bit: 29 to 112 children, 512 to 1024 bytes */
50 RCU_JA_PIGEON = 2, /* Type C */
51 /* 32-bit: 101 to 256 children, 1024 bytes */
52 /* 64-bit: 113 to 256 children, 2048 bytes */
53 /* Leaf nodes are implicit from their height in the tree */
54 RCU_JA_NR_TYPES,
55
56 RCU_JA_NULL, /* not an encoded type, but keeps code regular */
57 };
58
59 struct cds_ja_type {
60 enum cds_ja_type_class type_class;
61 uint16_t min_child; /* minimum number of children: 1 to 256 */
62 uint16_t max_child; /* maximum number of children: 1 to 256 */
63 uint16_t max_linear_child; /* per-pool max nr. children: 1 to 256 */
64 uint16_t order; /* node size is (1 << order), in bytes */
65 uint16_t nr_pool_order; /* number of pools */
66 uint16_t pool_size_order; /* pool size */
67 };
68
69 /*
70 * Iteration on the array to find the right node size for the number of
71 * children stops when it reaches .max_child == 256 (this is the largest
72 * possible node size, which contains 256 children).
73 * The min_child overlaps with the previous max_child to provide an
74 * hysteresis loop to reallocation for patterns of cyclic add/removal
75 * within the same node.
76 * The node the index within the following arrays is represented on 3
77 * bits. It identifies the node type, min/max number of children, and
78 * the size order.
79 * The max_child values for the RCU_JA_POOL below result from
80 * statistical approximation: over million populations, the max_child
81 * covers between 97% and 99% of the populations generated. Therefore, a
82 * fallback should exist to cover the rare extreme population unbalance
83 * cases, but it will not have a major impact on speed nor space
84 * consumption, since those are rare cases.
85 */
86
87 #if (CAA_BITS_PER_LONG < 64)
88 /* 32-bit pointers */
89 enum {
90 ja_type_0_max_child = 1,
91 ja_type_1_max_child = 3,
92 ja_type_2_max_child = 6,
93 ja_type_3_max_child = 12,
94 ja_type_4_max_child = 25,
95 ja_type_5_max_child = 48,
96 ja_type_6_max_child = 92,
97 ja_type_7_max_child = 256,
98 ja_type_8_max_child = 0, /* NULL */
99 };
100
101 enum {
102 ja_type_0_max_linear_child = 1,
103 ja_type_1_max_linear_child = 3,
104 ja_type_2_max_linear_child = 6,
105 ja_type_3_max_linear_child = 12,
106 ja_type_4_max_linear_child = 25,
107 ja_type_5_max_linear_child = 24,
108 ja_type_6_max_linear_child = 23,
109 };
110
111 enum {
112 ja_type_5_nr_pool_order = 1,
113 ja_type_6_nr_pool_order = 2,
114 };
115
116 const struct cds_ja_type ja_types[] = {
117 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_0_max_child, .max_linear_child = ja_type_0_max_linear_child, .order = 3, },
118 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_1_max_child, .max_linear_child = ja_type_1_max_linear_child, .order = 4, },
119 { .type_class = RCU_JA_LINEAR, .min_child = 3, .max_child = ja_type_2_max_child, .max_linear_child = ja_type_2_max_linear_child, .order = 5, },
120 { .type_class = RCU_JA_LINEAR, .min_child = 4, .max_child = ja_type_3_max_child, .max_linear_child = ja_type_3_max_linear_child, .order = 6, },
121 { .type_class = RCU_JA_LINEAR, .min_child = 10, .max_child = ja_type_4_max_child, .max_linear_child = ja_type_4_max_linear_child, .order = 7, },
122
123 /* Pools may fill sooner than max_child */
124 { .type_class = RCU_JA_POOL, .min_child = 20, .max_child = ja_type_5_max_child, .max_linear_child = ja_type_5_max_linear_child, .order = 8, .nr_pool_order = ja_type_5_nr_pool_order, .pool_size_order = 7, },
125 { .type_class = RCU_JA_POOL, .min_child = 45, .max_child = ja_type_6_max_child, .max_linear_child = ja_type_6_max_linear_child, .order = 9, .nr_pool_order = ja_type_6_nr_pool_order, .pool_size_order = 7, },
126
127 /*
128 * Upon node removal below min_child, if child pool is filled
129 * beyond capacity, we roll back to pigeon.
130 */
131 { .type_class = RCU_JA_PIGEON, .min_child = 89, .max_child = ja_type_7_max_child, .order = 10, },
132
133 { .type_class = RCU_JA_NULL, .min_child = 0, .max_child = ja_type_8_max_child, },
134 };
135 #else /* !(CAA_BITS_PER_LONG < 64) */
136 /* 64-bit pointers */
137 enum {
138 ja_type_0_max_child = 1,
139 ja_type_1_max_child = 3,
140 ja_type_2_max_child = 7,
141 ja_type_3_max_child = 14,
142 ja_type_4_max_child = 28,
143 ja_type_5_max_child = 54,
144 ja_type_6_max_child = 104,
145 ja_type_7_max_child = 256,
146 ja_type_8_max_child = 256,
147 };
148
149 enum {
150 ja_type_0_max_linear_child = 1,
151 ja_type_1_max_linear_child = 3,
152 ja_type_2_max_linear_child = 7,
153 ja_type_3_max_linear_child = 14,
154 ja_type_4_max_linear_child = 28,
155 ja_type_5_max_linear_child = 27,
156 ja_type_6_max_linear_child = 26,
157 };
158
159 enum {
160 ja_type_5_nr_pool_order = 1,
161 ja_type_6_nr_pool_order = 2,
162 };
163
164 const struct cds_ja_type ja_types[] = {
165 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_0_max_child, .max_linear_child = ja_type_0_max_linear_child, .order = 4, },
166 { .type_class = RCU_JA_LINEAR, .min_child = 1, .max_child = ja_type_1_max_child, .max_linear_child = ja_type_1_max_linear_child, .order = 5, },
167 { .type_class = RCU_JA_LINEAR, .min_child = 3, .max_child = ja_type_2_max_child, .max_linear_child = ja_type_2_max_linear_child, .order = 6, },
168 { .type_class = RCU_JA_LINEAR, .min_child = 5, .max_child = ja_type_3_max_child, .max_linear_child = ja_type_3_max_linear_child, .order = 7, },
169 { .type_class = RCU_JA_LINEAR, .min_child = 10, .max_child = ja_type_4_max_child, .max_linear_child = ja_type_4_max_linear_child, .order = 8, },
170
171 /* Pools may fill sooner than max_child. */
172 { .type_class = RCU_JA_POOL, .min_child = 22, .max_child = ja_type_5_max_child, .max_linear_child = ja_type_5_max_linear_child, .order = 9, .nr_pool_order = ja_type_5_nr_pool_order, .pool_size_order = 8, },
173 { .type_class = RCU_JA_POOL, .min_child = 51, .max_child = ja_type_6_max_child, .max_linear_child = ja_type_6_max_linear_child, .order = 10, .nr_pool_order = ja_type_6_nr_pool_order, .pool_size_order = 8, },
174
175 /*
176 * Upon node removal below min_child, if child pool is filled
177 * beyond capacity, we roll back to pigeon.
178 */
179 { .type_class = RCU_JA_PIGEON, .min_child = 95, .max_child = ja_type_7_max_child, .order = 11, },
180
181 { .type_class = RCU_JA_NULL, .min_child = 0, .max_child = ja_type_8_max_child, },
182 };
183 #endif /* !(BITS_PER_LONG < 64) */
184
185 static inline __attribute__((unused))
186 void static_array_size_check(void)
187 {
188 CAA_BUILD_BUG_ON(CAA_ARRAY_SIZE(ja_types) < JA_TYPE_MAX_NR);
189 }
190
191 /*
192 * The cds_ja_node contains the compressed node data needed for
193 * read-side. For linear and pool node configurations, it starts with a
194 * byte counting the number of children in the node. Then, the
195 * node-specific data is placed.
196 * The node mutex, if any is needed, protecting concurrent updated of
197 * each node is placed in a separate hash table indexed by node address.
198 * For the pigeon configuration, the number of children is also kept in
199 * a separate hash table, indexed by node address, because it is only
200 * required for updates.
201 */
202
203 #define DECLARE_LINEAR_NODE(index) \
204 struct { \
205 uint8_t nr_child; \
206 uint8_t child_value[ja_type_## index ##_max_linear_child]; \
207 struct cds_ja_inode_flag *child_ptr[ja_type_## index ##_max_linear_child]; \
208 }
209
210 #define DECLARE_POOL_NODE(index) \
211 struct { \
212 struct { \
213 uint8_t nr_child; \
214 uint8_t child_value[ja_type_## index ##_max_linear_child]; \
215 struct cds_ja_inode_flag *child_ptr[ja_type_## index ##_max_linear_child]; \
216 } linear[1U << ja_type_## index ##_nr_pool_order]; \
217 }
218
219 struct cds_ja_inode {
220 union {
221 /* Linear configuration */
222 DECLARE_LINEAR_NODE(0) conf_0;
223 DECLARE_LINEAR_NODE(1) conf_1;
224 DECLARE_LINEAR_NODE(2) conf_2;
225 DECLARE_LINEAR_NODE(3) conf_3;
226 DECLARE_LINEAR_NODE(4) conf_4;
227
228 /* Pool configuration */
229 DECLARE_POOL_NODE(5) conf_5;
230 DECLARE_POOL_NODE(6) conf_6;
231
232 /* Pigeon configuration */
233 struct {
234 struct cds_ja_inode_flag *child[ja_type_7_max_child];
235 } conf_7;
236 /* data aliasing nodes for computed accesses */
237 uint8_t data[sizeof(struct cds_ja_inode_flag *) * ja_type_7_max_child];
238 } u;
239 };
240
241 enum ja_recompact {
242 JA_RECOMPACT_ADD_SAME,
243 JA_RECOMPACT_ADD_NEXT,
244 JA_RECOMPACT_DEL,
245 };
246
247 static
248 unsigned long node_fallback_count_distribution[JA_ENTRY_PER_NODE];
249 static
250 unsigned long nr_nodes_allocated, nr_nodes_freed;
251
252 static
253 struct cds_ja_inode *_ja_node_mask_ptr(struct cds_ja_inode_flag *node)
254 {
255 return (struct cds_ja_inode *) (((unsigned long) node) & JA_PTR_MASK);
256 }
257
258 unsigned long ja_node_type(struct cds_ja_inode_flag *node)
259 {
260 unsigned long type;
261
262 if (_ja_node_mask_ptr(node) == NULL) {
263 return NODE_INDEX_NULL;
264 }
265 type = (unsigned int) ((unsigned long) node & JA_TYPE_MASK);
266 assert(type < (1UL << JA_TYPE_BITS));
267 return type;
268 }
269
270 struct cds_ja_inode *ja_node_ptr(struct cds_ja_inode_flag *node)
271 {
272 unsigned long type_index = ja_node_type(node);
273 const struct cds_ja_type *type;
274
275 type = &ja_types[type_index];
276 switch (type->type_class) {
277 case RCU_JA_LINEAR:
278 case RCU_JA_PIGEON: /* fall-through */
279 case RCU_JA_NULL: /* fall-through */
280 default: /* fall-through */
281 return _ja_node_mask_ptr(node);
282 case RCU_JA_POOL:
283 switch (type->nr_pool_order) {
284 case 1:
285 return (struct cds_ja_inode *) (((unsigned long) node) & ~(JA_POOL_1D_MASK | JA_TYPE_MASK));
286 case 2:
287 return (struct cds_ja_inode *) (((unsigned long) node) & ~(JA_POOL_2D_MASK | JA_POOL_1D_MASK | JA_TYPE_MASK));
288 default:
289 assert(0);
290 }
291 }
292 }
293
294 struct cds_ja_inode *alloc_cds_ja_node(const struct cds_ja_type *ja_type)
295 {
296 size_t len = 1U << ja_type->order;
297 void *p;
298 int ret;
299
300 ret = posix_memalign(&p, len, len);
301 if (ret || !p) {
302 return NULL;
303 }
304 memset(p, 0, len);
305 uatomic_inc(&nr_nodes_allocated);
306 return p;
307 }
308
309 void free_cds_ja_node(struct cds_ja_inode *node)
310 {
311 free(node);
312 if (node)
313 uatomic_inc(&nr_nodes_freed);
314 }
315
316 #define __JA_ALIGN_MASK(v, mask) (((v) + (mask)) & ~(mask))
317 #define JA_ALIGN(v, align) __JA_ALIGN_MASK(v, (typeof(v)) (align) - 1)
318 #define __JA_FLOOR_MASK(v, mask) ((v) & ~(mask))
319 #define JA_FLOOR(v, align) __JA_FLOOR_MASK(v, (typeof(v)) (align) - 1)
320
321 static
322 uint8_t *align_ptr_size(uint8_t *ptr)
323 {
324 return (uint8_t *) JA_ALIGN((unsigned long) ptr, sizeof(void *));
325 }
326
327 static
328 uint8_t ja_linear_node_get_nr_child(const struct cds_ja_type *type,
329 struct cds_ja_inode *node)
330 {
331 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
332 return rcu_dereference(node->u.data[0]);
333 }
334
335 /*
336 * The order in which values and pointers are does does not matter: if
337 * a value is missing, we return NULL. If a value is there, but its
338 * associated pointers is still NULL, we return NULL too.
339 */
340 static
341 struct cds_ja_inode_flag *ja_linear_node_get_nth(const struct cds_ja_type *type,
342 struct cds_ja_inode *node,
343 struct cds_ja_inode_flag ***node_flag_ptr,
344 uint8_t n)
345 {
346 uint8_t nr_child;
347 uint8_t *values;
348 struct cds_ja_inode_flag **pointers;
349 struct cds_ja_inode_flag *ptr;
350 unsigned int i;
351
352 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
353
354 nr_child = ja_linear_node_get_nr_child(type, node);
355 cmm_smp_rmb(); /* read nr_child before values and pointers */
356 assert(nr_child <= type->max_linear_child);
357 assert(type->type_class != RCU_JA_LINEAR || nr_child >= type->min_child);
358
359 values = &node->u.data[1];
360 for (i = 0; i < nr_child; i++) {
361 if (CMM_LOAD_SHARED(values[i]) == n)
362 break;
363 }
364 if (i >= nr_child) {
365 if (caa_unlikely(node_flag_ptr))
366 *node_flag_ptr = NULL;
367 return NULL;
368 }
369 pointers = (struct cds_ja_inode_flag **) align_ptr_size(&values[type->max_linear_child]);
370 ptr = rcu_dereference(pointers[i]);
371 if (caa_unlikely(node_flag_ptr))
372 *node_flag_ptr = &pointers[i];
373 return ptr;
374 }
375
376 static
377 void ja_linear_node_get_ith_pos(const struct cds_ja_type *type,
378 struct cds_ja_inode *node,
379 uint8_t i,
380 uint8_t *v,
381 struct cds_ja_inode_flag **iter)
382 {
383 uint8_t *values;
384 struct cds_ja_inode_flag **pointers;
385
386 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
387 assert(i < ja_linear_node_get_nr_child(type, node));
388
389 values = &node->u.data[1];
390 *v = values[i];
391 pointers = (struct cds_ja_inode_flag **) align_ptr_size(&values[type->max_linear_child]);
392 *iter = pointers[i];
393 }
394
395 static
396 struct cds_ja_inode_flag *ja_pool_node_get_nth(const struct cds_ja_type *type,
397 struct cds_ja_inode *node,
398 struct cds_ja_inode_flag *node_flag,
399 struct cds_ja_inode_flag ***node_flag_ptr,
400 uint8_t n)
401 {
402 struct cds_ja_inode *linear;
403
404 assert(type->type_class == RCU_JA_POOL);
405
406 switch (type->nr_pool_order) {
407 case 1:
408 {
409 unsigned long bitsel, index;
410
411 bitsel = ja_node_pool_1d_bitsel(node_flag);
412 assert(bitsel < CHAR_BIT);
413 index = ((unsigned long) n >> bitsel) & 0x1;
414 linear = (struct cds_ja_inode *) &node->u.data[index << type->pool_size_order];
415 break;
416 }
417 case 2:
418 {
419 unsigned long bitsel[2], index[2], rindex;
420
421 ja_node_pool_2d_bitsel(node_flag, bitsel);
422 assert(bitsel[0] < CHAR_BIT);
423 assert(bitsel[1] < CHAR_BIT);
424 index[0] = ((unsigned long) n >> bitsel[0]) & 0x1;
425 index[0] <<= 1;
426 index[1] = ((unsigned long) n >> bitsel[1]) & 0x1;
427 rindex = index[0] | index[1];
428 linear = (struct cds_ja_inode *) &node->u.data[rindex << type->pool_size_order];
429 break;
430 }
431 default:
432 linear = NULL;
433 assert(0);
434 }
435 return ja_linear_node_get_nth(type, linear, node_flag_ptr, n);
436 }
437
438 static
439 struct cds_ja_inode *ja_pool_node_get_ith_pool(const struct cds_ja_type *type,
440 struct cds_ja_inode *node,
441 uint8_t i)
442 {
443 assert(type->type_class == RCU_JA_POOL);
444 return (struct cds_ja_inode *)
445 &node->u.data[(unsigned int) i << type->pool_size_order];
446 }
447
448 static
449 struct cds_ja_inode_flag *ja_pigeon_node_get_nth(const struct cds_ja_type *type,
450 struct cds_ja_inode *node,
451 struct cds_ja_inode_flag ***node_flag_ptr,
452 uint8_t n)
453 {
454 struct cds_ja_inode_flag **child_node_flag_ptr;
455 struct cds_ja_inode_flag *child_node_flag;
456
457 assert(type->type_class == RCU_JA_PIGEON);
458 child_node_flag_ptr = &((struct cds_ja_inode_flag **) node->u.data)[n];
459 child_node_flag = rcu_dereference(*child_node_flag_ptr);
460 dbg_printf("ja_pigeon_node_get_nth child_node_flag_ptr %p\n",
461 child_node_flag_ptr);
462 if (caa_unlikely(node_flag_ptr))
463 *node_flag_ptr = child_node_flag_ptr;
464 return child_node_flag;
465 }
466
467 static
468 struct cds_ja_inode_flag *ja_pigeon_node_get_ith_pos(const struct cds_ja_type *type,
469 struct cds_ja_inode *node,
470 uint8_t i)
471 {
472 return ja_pigeon_node_get_nth(type, node, NULL, i);
473 }
474
475 /*
476 * ja_node_get_nth: get nth item from a node.
477 * node_flag is already rcu_dereference'd.
478 */
479 static
480 struct cds_ja_inode_flag *ja_node_get_nth(struct cds_ja_inode_flag *node_flag,
481 struct cds_ja_inode_flag ***node_flag_ptr,
482 uint8_t n)
483 {
484 unsigned int type_index;
485 struct cds_ja_inode *node;
486 const struct cds_ja_type *type;
487
488 node = ja_node_ptr(node_flag);
489 assert(node != NULL);
490 type_index = ja_node_type(node_flag);
491 type = &ja_types[type_index];
492
493 switch (type->type_class) {
494 case RCU_JA_LINEAR:
495 return ja_linear_node_get_nth(type, node,
496 node_flag_ptr, n);
497 case RCU_JA_POOL:
498 return ja_pool_node_get_nth(type, node, node_flag,
499 node_flag_ptr, n);
500 case RCU_JA_PIGEON:
501 return ja_pigeon_node_get_nth(type, node,
502 node_flag_ptr, n);
503 default:
504 assert(0);
505 return (void *) -1UL;
506 }
507 }
508
509 static
510 int ja_linear_node_set_nth(const struct cds_ja_type *type,
511 struct cds_ja_inode *node,
512 struct cds_ja_shadow_node *shadow_node,
513 uint8_t n,
514 struct cds_ja_inode_flag *child_node_flag)
515 {
516 uint8_t nr_child;
517 uint8_t *values, *nr_child_ptr;
518 struct cds_ja_inode_flag **pointers;
519 unsigned int i, unused = 0;
520
521 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
522
523 nr_child_ptr = &node->u.data[0];
524 dbg_printf("linear set nth: n %u, nr_child_ptr %p\n",
525 (unsigned int) n, nr_child_ptr);
526 nr_child = *nr_child_ptr;
527 assert(nr_child <= type->max_linear_child);
528
529 values = &node->u.data[1];
530 pointers = (struct cds_ja_inode_flag **) align_ptr_size(&values[type->max_linear_child]);
531 /* Check if node value is already populated */
532 for (i = 0; i < nr_child; i++) {
533 if (values[i] == n) {
534 if (pointers[i])
535 return -EEXIST;
536 else
537 break;
538 } else {
539 if (!pointers[i])
540 unused++;
541 }
542 }
543 if (i == nr_child && nr_child >= type->max_linear_child) {
544 if (unused)
545 return -ERANGE; /* recompact node */
546 else
547 return -ENOSPC; /* No space left in this node type */
548 }
549
550 assert(pointers[i] == NULL);
551 rcu_assign_pointer(pointers[i], child_node_flag);
552 /* If we expanded the nr_child, increment it */
553 if (i == nr_child) {
554 CMM_STORE_SHARED(values[nr_child], n);
555 /* write pointer and value before nr_child */
556 cmm_smp_wmb();
557 CMM_STORE_SHARED(*nr_child_ptr, nr_child + 1);
558 }
559 shadow_node->nr_child++;
560 dbg_printf("linear set nth: %u child, shadow: %u child, for node %p shadow %p\n",
561 (unsigned int) CMM_LOAD_SHARED(*nr_child_ptr),
562 (unsigned int) shadow_node->nr_child,
563 node, shadow_node);
564
565 return 0;
566 }
567
568 static
569 int ja_pool_node_set_nth(const struct cds_ja_type *type,
570 struct cds_ja_inode *node,
571 struct cds_ja_inode_flag *node_flag,
572 struct cds_ja_shadow_node *shadow_node,
573 uint8_t n,
574 struct cds_ja_inode_flag *child_node_flag)
575 {
576 struct cds_ja_inode *linear;
577
578 assert(type->type_class == RCU_JA_POOL);
579
580 switch (type->nr_pool_order) {
581 case 1:
582 {
583 unsigned long bitsel, index;
584
585 bitsel = ja_node_pool_1d_bitsel(node_flag);
586 assert(bitsel < CHAR_BIT);
587 index = ((unsigned long) n >> bitsel) & 0x1;
588 linear = (struct cds_ja_inode *) &node->u.data[index << type->pool_size_order];
589 break;
590 }
591 case 2:
592 {
593 unsigned long bitsel[2], index[2], rindex;
594
595 ja_node_pool_2d_bitsel(node_flag, bitsel);
596 assert(bitsel[0] < CHAR_BIT);
597 assert(bitsel[1] < CHAR_BIT);
598 index[0] = ((unsigned long) n >> bitsel[0]) & 0x1;
599 index[0] <<= 1;
600 index[1] = ((unsigned long) n >> bitsel[1]) & 0x1;
601 rindex = index[0] | index[1];
602 linear = (struct cds_ja_inode *) &node->u.data[rindex << type->pool_size_order];
603 break;
604 }
605 default:
606 linear = NULL;
607 assert(0);
608 }
609
610 return ja_linear_node_set_nth(type, linear, shadow_node,
611 n, child_node_flag);
612 }
613
614 static
615 int ja_pigeon_node_set_nth(const struct cds_ja_type *type,
616 struct cds_ja_inode *node,
617 struct cds_ja_shadow_node *shadow_node,
618 uint8_t n,
619 struct cds_ja_inode_flag *child_node_flag)
620 {
621 struct cds_ja_inode_flag **ptr;
622
623 assert(type->type_class == RCU_JA_PIGEON);
624 ptr = &((struct cds_ja_inode_flag **) node->u.data)[n];
625 if (*ptr)
626 return -EEXIST;
627 rcu_assign_pointer(*ptr, child_node_flag);
628 shadow_node->nr_child++;
629 return 0;
630 }
631
632 /*
633 * _ja_node_set_nth: set nth item within a node. Return an error
634 * (negative error value) if it is already there.
635 */
636 static
637 int _ja_node_set_nth(const struct cds_ja_type *type,
638 struct cds_ja_inode *node,
639 struct cds_ja_inode_flag *node_flag,
640 struct cds_ja_shadow_node *shadow_node,
641 uint8_t n,
642 struct cds_ja_inode_flag *child_node_flag)
643 {
644 switch (type->type_class) {
645 case RCU_JA_LINEAR:
646 return ja_linear_node_set_nth(type, node, shadow_node, n,
647 child_node_flag);
648 case RCU_JA_POOL:
649 return ja_pool_node_set_nth(type, node, node_flag, shadow_node, n,
650 child_node_flag);
651 case RCU_JA_PIGEON:
652 return ja_pigeon_node_set_nth(type, node, shadow_node, n,
653 child_node_flag);
654 case RCU_JA_NULL:
655 return -ENOSPC;
656 default:
657 assert(0);
658 return -EINVAL;
659 }
660
661 return 0;
662 }
663
664 static
665 int ja_linear_node_clear_ptr(const struct cds_ja_type *type,
666 struct cds_ja_inode *node,
667 struct cds_ja_shadow_node *shadow_node,
668 struct cds_ja_inode_flag **node_flag_ptr)
669 {
670 uint8_t nr_child;
671 uint8_t *nr_child_ptr;
672
673 assert(type->type_class == RCU_JA_LINEAR || type->type_class == RCU_JA_POOL);
674
675 nr_child_ptr = &node->u.data[0];
676 nr_child = *nr_child_ptr;
677 assert(nr_child <= type->max_linear_child);
678
679 if (type->type_class == RCU_JA_LINEAR) {
680 assert(!shadow_node->fallback_removal_count);
681 if (shadow_node->nr_child <= type->min_child) {
682 /* We need to try recompacting the node */
683 return -EFBIG;
684 }
685 }
686 dbg_printf("linear clear ptr: nr_child_ptr %p\n", nr_child_ptr);
687 assert(*node_flag_ptr != NULL);
688 rcu_assign_pointer(*node_flag_ptr, NULL);
689 /*
690 * Value and nr_child are never changed (would cause ABA issue).
691 * Instead, we leave the pointer to NULL and recompact the node
692 * once in a while. It is allowed to set a NULL pointer to a new
693 * value without recompaction though.
694 * Only update the shadow node accounting.
695 */
696 shadow_node->nr_child--;
697 dbg_printf("linear clear ptr: %u child, shadow: %u child, for node %p shadow %p\n",
698 (unsigned int) CMM_LOAD_SHARED(*nr_child_ptr),
699 (unsigned int) shadow_node->nr_child,
700 node, shadow_node);
701 return 0;
702 }
703
704 static
705 int ja_pool_node_clear_ptr(const struct cds_ja_type *type,
706 struct cds_ja_inode *node,
707 struct cds_ja_inode_flag *node_flag,
708 struct cds_ja_shadow_node *shadow_node,
709 struct cds_ja_inode_flag **node_flag_ptr,
710 uint8_t n)
711 {
712 struct cds_ja_inode *linear;
713
714 assert(type->type_class == RCU_JA_POOL);
715
716 if (shadow_node->fallback_removal_count) {
717 shadow_node->fallback_removal_count--;
718 } else {
719 /* We should try recompacting the node */
720 if (shadow_node->nr_child <= type->min_child)
721 return -EFBIG;
722 }
723
724 switch (type->nr_pool_order) {
725 case 1:
726 {
727 unsigned long bitsel, index;
728
729 bitsel = ja_node_pool_1d_bitsel(node_flag);
730 assert(bitsel < CHAR_BIT);
731 index = ((unsigned long) n >> bitsel) & type->nr_pool_order;
732 linear = (struct cds_ja_inode *) &node->u.data[index << type->pool_size_order];
733 break;
734 }
735 case 2:
736 {
737 unsigned long bitsel[2], index[2], rindex;
738
739 ja_node_pool_2d_bitsel(node_flag, bitsel);
740 assert(bitsel[0] < CHAR_BIT);
741 assert(bitsel[1] < CHAR_BIT);
742 index[0] = ((unsigned long) n >> bitsel[0]) & 0x1;
743 index[0] <<= 1;
744 index[1] = ((unsigned long) n >> bitsel[1]) & 0x1;
745 rindex = index[0] | index[1];
746 linear = (struct cds_ja_inode *) &node->u.data[rindex << type->pool_size_order];
747 break;
748 }
749 default:
750 linear = NULL;
751 assert(0);
752 }
753
754 return ja_linear_node_clear_ptr(type, linear, shadow_node, node_flag_ptr);
755 }
756
757 static
758 int ja_pigeon_node_clear_ptr(const struct cds_ja_type *type,
759 struct cds_ja_inode *node,
760 struct cds_ja_shadow_node *shadow_node,
761 struct cds_ja_inode_flag **node_flag_ptr)
762 {
763 assert(type->type_class == RCU_JA_PIGEON);
764
765 if (shadow_node->fallback_removal_count) {
766 shadow_node->fallback_removal_count--;
767 } else {
768 /* We should try recompacting the node */
769 if (shadow_node->nr_child <= type->min_child)
770 return -EFBIG;
771 }
772 dbg_printf("ja_pigeon_node_clear_ptr: clearing ptr: %p\n", *node_flag_ptr);
773 rcu_assign_pointer(*node_flag_ptr, NULL);
774 shadow_node->nr_child--;
775 return 0;
776 }
777
778 /*
779 * _ja_node_clear_ptr: clear ptr item within a node. Return an error
780 * (negative error value) if it is not found (-ENOENT).
781 */
782 static
783 int _ja_node_clear_ptr(const struct cds_ja_type *type,
784 struct cds_ja_inode *node,
785 struct cds_ja_inode_flag *node_flag,
786 struct cds_ja_shadow_node *shadow_node,
787 struct cds_ja_inode_flag **node_flag_ptr,
788 uint8_t n)
789 {
790 switch (type->type_class) {
791 case RCU_JA_LINEAR:
792 return ja_linear_node_clear_ptr(type, node, shadow_node, node_flag_ptr);
793 case RCU_JA_POOL:
794 return ja_pool_node_clear_ptr(type, node, node_flag, shadow_node, node_flag_ptr, n);
795 case RCU_JA_PIGEON:
796 return ja_pigeon_node_clear_ptr(type, node, shadow_node, node_flag_ptr);
797 case RCU_JA_NULL:
798 return -ENOENT;
799 default:
800 assert(0);
801 return -EINVAL;
802 }
803
804 return 0;
805 }
806
807 /*
808 * Calculate bit distribution. Returns the bit (0 to 7) that splits the
809 * distribution in two sub-distributions containing as much elements one
810 * compared to the other.
811 */
812 static
813 unsigned int ja_node_sum_distribution_1d(enum ja_recompact mode,
814 struct cds_ja *ja,
815 unsigned int type_index,
816 const struct cds_ja_type *type,
817 struct cds_ja_inode *node,
818 struct cds_ja_shadow_node *shadow_node,
819 uint8_t n,
820 struct cds_ja_inode_flag *child_node_flag,
821 struct cds_ja_inode_flag **nullify_node_flag_ptr)
822 {
823 uint8_t nr_one[JA_BITS_PER_BYTE];
824 unsigned int bitsel = 0, bit_i, overall_best_distance = UINT_MAX;
825 unsigned int distrib_nr_child = 0;
826
827 memset(nr_one, 0, sizeof(nr_one));
828
829 switch (type->type_class) {
830 case RCU_JA_LINEAR:
831 {
832 uint8_t nr_child =
833 ja_linear_node_get_nr_child(type, node);
834 unsigned int i;
835
836 for (i = 0; i < nr_child; i++) {
837 struct cds_ja_inode_flag *iter;
838 uint8_t v;
839
840 ja_linear_node_get_ith_pos(type, node, i, &v, &iter);
841 if (!iter)
842 continue;
843 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
844 continue;
845 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
846 if (v & (1U << bit_i))
847 nr_one[bit_i]++;
848 }
849 distrib_nr_child++;
850 }
851 break;
852 }
853 case RCU_JA_POOL:
854 {
855 unsigned int pool_nr;
856
857 for (pool_nr = 0; pool_nr < (1U << type->nr_pool_order); pool_nr++) {
858 struct cds_ja_inode *pool =
859 ja_pool_node_get_ith_pool(type,
860 node, pool_nr);
861 uint8_t nr_child =
862 ja_linear_node_get_nr_child(type, pool);
863 unsigned int j;
864
865 for (j = 0; j < nr_child; j++) {
866 struct cds_ja_inode_flag *iter;
867 uint8_t v;
868
869 ja_linear_node_get_ith_pos(type, pool,
870 j, &v, &iter);
871 if (!iter)
872 continue;
873 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
874 continue;
875 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
876 if (v & (1U << bit_i))
877 nr_one[bit_i]++;
878 }
879 distrib_nr_child++;
880 }
881 }
882 break;
883 }
884 case RCU_JA_PIGEON:
885 {
886 unsigned int i;
887
888 assert(mode == JA_RECOMPACT_DEL);
889 for (i = 0; i < JA_ENTRY_PER_NODE; i++) {
890 struct cds_ja_inode_flag *iter;
891
892 iter = ja_pigeon_node_get_ith_pos(type, node, i);
893 if (!iter)
894 continue;
895 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
896 continue;
897 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
898 if (i & (1U << bit_i))
899 nr_one[bit_i]++;
900 }
901 distrib_nr_child++;
902 }
903 break;
904 }
905 case RCU_JA_NULL:
906 assert(mode == JA_RECOMPACT_ADD_NEXT);
907 break;
908 default:
909 assert(0);
910 break;
911 }
912
913 if (mode == JA_RECOMPACT_ADD_NEXT || mode == JA_RECOMPACT_ADD_SAME) {
914 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
915 if (n & (1U << bit_i))
916 nr_one[bit_i]++;
917 }
918 distrib_nr_child++;
919 }
920
921 /*
922 * The best bit selector is that for which the number of ones is
923 * closest to half of the number of children in the
924 * distribution. We calculate the distance using the double of
925 * the sub-distribution sizes to eliminate truncation error.
926 */
927 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
928 unsigned int distance_to_best;
929
930 distance_to_best = abs_int((nr_one[bit_i] << 1U) - distrib_nr_child);
931 if (distance_to_best < overall_best_distance) {
932 overall_best_distance = distance_to_best;
933 bitsel = bit_i;
934 }
935 }
936 dbg_printf("1 dimension pool bit selection: (%u)\n", bitsel);
937 return bitsel;
938 }
939
940 /*
941 * Calculate bit distribution in two dimensions. Returns the two bits
942 * (each 0 to 7) that splits the distribution in four sub-distributions
943 * containing as much elements one compared to the other.
944 */
945 static
946 void ja_node_sum_distribution_2d(enum ja_recompact mode,
947 struct cds_ja *ja,
948 unsigned int type_index,
949 const struct cds_ja_type *type,
950 struct cds_ja_inode *node,
951 struct cds_ja_shadow_node *shadow_node,
952 uint8_t n,
953 struct cds_ja_inode_flag *child_node_flag,
954 struct cds_ja_inode_flag **nullify_node_flag_ptr,
955 unsigned int *_bitsel)
956 {
957 uint8_t nr_2d_11[JA_BITS_PER_BYTE][JA_BITS_PER_BYTE],
958 nr_2d_10[JA_BITS_PER_BYTE][JA_BITS_PER_BYTE],
959 nr_2d_01[JA_BITS_PER_BYTE][JA_BITS_PER_BYTE],
960 nr_2d_00[JA_BITS_PER_BYTE][JA_BITS_PER_BYTE];
961 unsigned int bitsel[2] = { 0, 1 };
962 unsigned int bit_i, bit_j;
963 int overall_best_distance = INT_MAX;
964 unsigned int distrib_nr_child = 0;
965
966 memset(nr_2d_11, 0, sizeof(nr_2d_11));
967 memset(nr_2d_10, 0, sizeof(nr_2d_10));
968 memset(nr_2d_01, 0, sizeof(nr_2d_01));
969 memset(nr_2d_00, 0, sizeof(nr_2d_00));
970
971 switch (type->type_class) {
972 case RCU_JA_LINEAR:
973 {
974 uint8_t nr_child =
975 ja_linear_node_get_nr_child(type, node);
976 unsigned int i;
977
978 for (i = 0; i < nr_child; i++) {
979 struct cds_ja_inode_flag *iter;
980 uint8_t v;
981
982 ja_linear_node_get_ith_pos(type, node, i, &v, &iter);
983 if (!iter)
984 continue;
985 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
986 continue;
987 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
988 for (bit_j = 0; bit_j < bit_i; bit_j++) {
989 if ((v & (1U << bit_i)) && (v & (1U << bit_j))) {
990 nr_2d_11[bit_i][bit_j]++;
991 }
992 if ((v & (1U << bit_i)) && !(v & (1U << bit_j))) {
993 nr_2d_10[bit_i][bit_j]++;
994 }
995 if (!(v & (1U << bit_i)) && (v & (1U << bit_j))) {
996 nr_2d_01[bit_i][bit_j]++;
997 }
998 if (!(v & (1U << bit_i)) && !(v & (1U << bit_j))) {
999 nr_2d_00[bit_i][bit_j]++;
1000 }
1001 }
1002 }
1003 distrib_nr_child++;
1004 }
1005 break;
1006 }
1007 case RCU_JA_POOL:
1008 {
1009 unsigned int pool_nr;
1010
1011 for (pool_nr = 0; pool_nr < (1U << type->nr_pool_order); pool_nr++) {
1012 struct cds_ja_inode *pool =
1013 ja_pool_node_get_ith_pool(type,
1014 node, pool_nr);
1015 uint8_t nr_child =
1016 ja_linear_node_get_nr_child(type, pool);
1017 unsigned int j;
1018
1019 for (j = 0; j < nr_child; j++) {
1020 struct cds_ja_inode_flag *iter;
1021 uint8_t v;
1022
1023 ja_linear_node_get_ith_pos(type, pool,
1024 j, &v, &iter);
1025 if (!iter)
1026 continue;
1027 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1028 continue;
1029 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1030 for (bit_j = 0; bit_j < bit_i; bit_j++) {
1031 if ((v & (1U << bit_i)) && (v & (1U << bit_j))) {
1032 nr_2d_11[bit_i][bit_j]++;
1033 }
1034 if ((v & (1U << bit_i)) && !(v & (1U << bit_j))) {
1035 nr_2d_10[bit_i][bit_j]++;
1036 }
1037 if (!(v & (1U << bit_i)) && (v & (1U << bit_j))) {
1038 nr_2d_01[bit_i][bit_j]++;
1039 }
1040 if (!(v & (1U << bit_i)) && !(v & (1U << bit_j))) {
1041 nr_2d_00[bit_i][bit_j]++;
1042 }
1043 }
1044 }
1045 distrib_nr_child++;
1046 }
1047 }
1048 break;
1049 }
1050 case RCU_JA_PIGEON:
1051 {
1052 unsigned int i;
1053
1054 assert(mode == JA_RECOMPACT_DEL);
1055 for (i = 0; i < JA_ENTRY_PER_NODE; i++) {
1056 struct cds_ja_inode_flag *iter;
1057
1058 iter = ja_pigeon_node_get_ith_pos(type, node, i);
1059 if (!iter)
1060 continue;
1061 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1062 continue;
1063 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1064 for (bit_j = 0; bit_j < bit_i; bit_j++) {
1065 if ((i & (1U << bit_i)) && (i & (1U << bit_j))) {
1066 nr_2d_11[bit_i][bit_j]++;
1067 }
1068 if ((i & (1U << bit_i)) && !(i & (1U << bit_j))) {
1069 nr_2d_10[bit_i][bit_j]++;
1070 }
1071 if (!(i & (1U << bit_i)) && (i & (1U << bit_j))) {
1072 nr_2d_01[bit_i][bit_j]++;
1073 }
1074 if (!(i & (1U << bit_i)) && !(i & (1U << bit_j))) {
1075 nr_2d_00[bit_i][bit_j]++;
1076 }
1077 }
1078 }
1079 distrib_nr_child++;
1080 }
1081 break;
1082 }
1083 case RCU_JA_NULL:
1084 assert(mode == JA_RECOMPACT_ADD_NEXT);
1085 break;
1086 default:
1087 assert(0);
1088 break;
1089 }
1090
1091 if (mode == JA_RECOMPACT_ADD_NEXT || mode == JA_RECOMPACT_ADD_SAME) {
1092 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1093 for (bit_j = 0; bit_j < bit_i; bit_j++) {
1094 if ((n & (1U << bit_i)) && (n & (1U << bit_j))) {
1095 nr_2d_11[bit_i][bit_j]++;
1096 }
1097 if ((n & (1U << bit_i)) && !(n & (1U << bit_j))) {
1098 nr_2d_10[bit_i][bit_j]++;
1099 }
1100 if (!(n & (1U << bit_i)) && (n & (1U << bit_j))) {
1101 nr_2d_01[bit_i][bit_j]++;
1102 }
1103 if (!(n & (1U << bit_i)) && !(n & (1U << bit_j))) {
1104 nr_2d_00[bit_i][bit_j]++;
1105 }
1106 }
1107 }
1108 distrib_nr_child++;
1109 }
1110
1111 /*
1112 * The best bit selector is that for which the number of nodes
1113 * in each sub-class is closest to one-fourth of the number of
1114 * children in the distribution. We calculate the distance using
1115 * 4 times the size of the sub-distribution to eliminate
1116 * truncation error.
1117 */
1118 for (bit_i = 0; bit_i < JA_BITS_PER_BYTE; bit_i++) {
1119 for (bit_j = 0; bit_j < bit_i; bit_j++) {
1120 int distance_to_best[4];
1121
1122 distance_to_best[0] = (nr_2d_11[bit_i][bit_j] << 2U) - distrib_nr_child;
1123 distance_to_best[1] = (nr_2d_10[bit_i][bit_j] << 2U) - distrib_nr_child;
1124 distance_to_best[2] = (nr_2d_01[bit_i][bit_j] << 2U) - distrib_nr_child;
1125 distance_to_best[3] = (nr_2d_00[bit_i][bit_j] << 2U) - distrib_nr_child;
1126
1127 /* Consider worse distance above best */
1128 if (distance_to_best[1] > 0 && distance_to_best[1] > distance_to_best[0])
1129 distance_to_best[0] = distance_to_best[1];
1130 if (distance_to_best[2] > 0 && distance_to_best[2] > distance_to_best[0])
1131 distance_to_best[0] = distance_to_best[2];
1132 if (distance_to_best[3] > 0 && distance_to_best[3] > distance_to_best[0])
1133 distance_to_best[0] = distance_to_best[3];
1134
1135 /*
1136 * If our worse distance is better than overall,
1137 * we become new best candidate.
1138 */
1139 if (distance_to_best[0] < overall_best_distance) {
1140 overall_best_distance = distance_to_best[0];
1141 bitsel[0] = bit_i;
1142 bitsel[1] = bit_j;
1143 }
1144 }
1145 }
1146
1147 dbg_printf("2 dimensions pool bit selection: (%u,%u)\n", bitsel[0], bitsel[1]);
1148
1149 /* Return our bit selection */
1150 _bitsel[0] = bitsel[0];
1151 _bitsel[1] = bitsel[1];
1152 }
1153
1154 static
1155 unsigned int find_nearest_type_index(unsigned int type_index,
1156 unsigned int nr_nodes)
1157 {
1158 const struct cds_ja_type *type;
1159
1160 assert(type_index != NODE_INDEX_NULL);
1161 if (nr_nodes == 0)
1162 return NODE_INDEX_NULL;
1163 for (;;) {
1164 type = &ja_types[type_index];
1165 if (nr_nodes < type->min_child)
1166 type_index--;
1167 else if (nr_nodes > type->max_child)
1168 type_index++;
1169 else
1170 break;
1171 }
1172 return type_index;
1173 }
1174
1175 /*
1176 * ja_node_recompact_add: recompact a node, adding a new child.
1177 * Return 0 on success, -EAGAIN if need to retry, or other negative
1178 * error value otherwise.
1179 */
1180 static
1181 int ja_node_recompact(enum ja_recompact mode,
1182 struct cds_ja *ja,
1183 unsigned int old_type_index,
1184 const struct cds_ja_type *old_type,
1185 struct cds_ja_inode *old_node,
1186 struct cds_ja_shadow_node *shadow_node,
1187 struct cds_ja_inode_flag **old_node_flag_ptr, uint8_t n,
1188 struct cds_ja_inode_flag *child_node_flag,
1189 struct cds_ja_inode_flag **nullify_node_flag_ptr,
1190 int level)
1191 {
1192 unsigned int new_type_index;
1193 struct cds_ja_inode *new_node;
1194 struct cds_ja_shadow_node *new_shadow_node = NULL;
1195 const struct cds_ja_type *new_type;
1196 struct cds_ja_inode_flag *new_node_flag, *old_node_flag;
1197 int ret;
1198 int fallback = 0;
1199
1200 old_node_flag = *old_node_flag_ptr;
1201
1202 /*
1203 * Need to find nearest type index even for ADD_SAME, because
1204 * this recompaction, when applied to linear nodes, will garbage
1205 * collect dummy (NULL) entries, and can therefore cause a few
1206 * linear representations to be skipped.
1207 */
1208 switch (mode) {
1209 case JA_RECOMPACT_ADD_SAME:
1210 new_type_index = find_nearest_type_index(old_type_index,
1211 shadow_node->nr_child + 1);
1212 dbg_printf("Recompact for node with %u children\n",
1213 shadow_node->nr_child + 1);
1214 break;
1215 case JA_RECOMPACT_ADD_NEXT:
1216 if (!shadow_node || old_type_index == NODE_INDEX_NULL) {
1217 new_type_index = 0;
1218 dbg_printf("Recompact for NULL\n");
1219 } else {
1220 new_type_index = find_nearest_type_index(old_type_index,
1221 shadow_node->nr_child + 1);
1222 dbg_printf("Recompact for node with %u children\n",
1223 shadow_node->nr_child + 1);
1224 }
1225 break;
1226 case JA_RECOMPACT_DEL:
1227 new_type_index = find_nearest_type_index(old_type_index,
1228 shadow_node->nr_child - 1);
1229 dbg_printf("Recompact for node with %u children\n",
1230 shadow_node->nr_child - 1);
1231 break;
1232 default:
1233 assert(0);
1234 }
1235
1236 retry: /* for fallback */
1237 dbg_printf("Recompact from type %d to type %d\n",
1238 old_type_index, new_type_index);
1239 new_type = &ja_types[new_type_index];
1240 if (new_type_index != NODE_INDEX_NULL) {
1241 new_node = alloc_cds_ja_node(new_type);
1242 if (!new_node)
1243 return -ENOMEM;
1244
1245 if (new_type->type_class == RCU_JA_POOL) {
1246 switch (new_type->nr_pool_order) {
1247 case 1:
1248 {
1249 unsigned int node_distrib_bitsel;
1250
1251 node_distrib_bitsel =
1252 ja_node_sum_distribution_1d(mode, ja,
1253 old_type_index, old_type,
1254 old_node, shadow_node,
1255 n, child_node_flag,
1256 nullify_node_flag_ptr);
1257 assert(!((unsigned long) new_node & JA_POOL_1D_MASK));
1258 new_node_flag = ja_node_flag_pool_1d(new_node,
1259 new_type_index, node_distrib_bitsel);
1260 break;
1261 }
1262 case 2:
1263 {
1264 unsigned int node_distrib_bitsel[2];
1265
1266 ja_node_sum_distribution_2d(mode, ja,
1267 old_type_index, old_type,
1268 old_node, shadow_node,
1269 n, child_node_flag,
1270 nullify_node_flag_ptr,
1271 node_distrib_bitsel);
1272 assert(!((unsigned long) new_node & JA_POOL_1D_MASK));
1273 assert(!((unsigned long) new_node & JA_POOL_2D_MASK));
1274 new_node_flag = ja_node_flag_pool_2d(new_node,
1275 new_type_index, node_distrib_bitsel);
1276 break;
1277 }
1278 default:
1279 assert(0);
1280 }
1281 } else {
1282 new_node_flag = ja_node_flag(new_node, new_type_index);
1283 }
1284
1285 dbg_printf("Recompact inherit lock from %p\n", shadow_node);
1286 new_shadow_node = rcuja_shadow_set(ja->ht, new_node_flag, shadow_node, ja, level);
1287 if (!new_shadow_node) {
1288 free_cds_ja_node(new_node);
1289 return -ENOMEM;
1290 }
1291 if (fallback)
1292 new_shadow_node->fallback_removal_count =
1293 JA_FALLBACK_REMOVAL_COUNT;
1294 } else {
1295 new_node = NULL;
1296 new_node_flag = NULL;
1297 }
1298
1299 assert(mode != JA_RECOMPACT_ADD_NEXT || old_type->type_class != RCU_JA_PIGEON);
1300
1301 if (new_type_index == NODE_INDEX_NULL)
1302 goto skip_copy;
1303
1304 switch (old_type->type_class) {
1305 case RCU_JA_LINEAR:
1306 {
1307 uint8_t nr_child =
1308 ja_linear_node_get_nr_child(old_type, old_node);
1309 unsigned int i;
1310
1311 for (i = 0; i < nr_child; i++) {
1312 struct cds_ja_inode_flag *iter;
1313 uint8_t v;
1314
1315 ja_linear_node_get_ith_pos(old_type, old_node, i, &v, &iter);
1316 if (!iter)
1317 continue;
1318 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1319 continue;
1320 ret = _ja_node_set_nth(new_type, new_node, new_node_flag,
1321 new_shadow_node,
1322 v, iter);
1323 if (new_type->type_class == RCU_JA_POOL && ret) {
1324 goto fallback_toosmall;
1325 }
1326 assert(!ret);
1327 }
1328 break;
1329 }
1330 case RCU_JA_POOL:
1331 {
1332 unsigned int pool_nr;
1333
1334 for (pool_nr = 0; pool_nr < (1U << old_type->nr_pool_order); pool_nr++) {
1335 struct cds_ja_inode *pool =
1336 ja_pool_node_get_ith_pool(old_type,
1337 old_node, pool_nr);
1338 uint8_t nr_child =
1339 ja_linear_node_get_nr_child(old_type, pool);
1340 unsigned int j;
1341
1342 for (j = 0; j < nr_child; j++) {
1343 struct cds_ja_inode_flag *iter;
1344 uint8_t v;
1345
1346 ja_linear_node_get_ith_pos(old_type, pool,
1347 j, &v, &iter);
1348 if (!iter)
1349 continue;
1350 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1351 continue;
1352 ret = _ja_node_set_nth(new_type, new_node, new_node_flag,
1353 new_shadow_node,
1354 v, iter);
1355 if (new_type->type_class == RCU_JA_POOL
1356 && ret) {
1357 goto fallback_toosmall;
1358 }
1359 assert(!ret);
1360 }
1361 }
1362 break;
1363 }
1364 case RCU_JA_NULL:
1365 assert(mode == JA_RECOMPACT_ADD_NEXT);
1366 break;
1367 case RCU_JA_PIGEON:
1368 {
1369 unsigned int i;
1370
1371 assert(mode == JA_RECOMPACT_DEL);
1372 for (i = 0; i < JA_ENTRY_PER_NODE; i++) {
1373 struct cds_ja_inode_flag *iter;
1374
1375 iter = ja_pigeon_node_get_ith_pos(old_type, old_node, i);
1376 if (!iter)
1377 continue;
1378 if (mode == JA_RECOMPACT_DEL && *nullify_node_flag_ptr == iter)
1379 continue;
1380 ret = _ja_node_set_nth(new_type, new_node, new_node_flag,
1381 new_shadow_node,
1382 i, iter);
1383 if (new_type->type_class == RCU_JA_POOL && ret) {
1384 goto fallback_toosmall;
1385 }
1386 assert(!ret);
1387 }
1388 break;
1389 }
1390 default:
1391 assert(0);
1392 ret = -EINVAL;
1393 goto end;
1394 }
1395 skip_copy:
1396
1397 if (mode == JA_RECOMPACT_ADD_NEXT || mode == JA_RECOMPACT_ADD_SAME) {
1398 /* add node */
1399 ret = _ja_node_set_nth(new_type, new_node, new_node_flag,
1400 new_shadow_node,
1401 n, child_node_flag);
1402 if (new_type->type_class == RCU_JA_POOL && ret) {
1403 goto fallback_toosmall;
1404 }
1405 assert(!ret);
1406 }
1407
1408 if (fallback) {
1409 dbg_printf("Using fallback for %u children, node type index: %u, mode %s\n",
1410 new_shadow_node->nr_child, old_type_index, mode == JA_RECOMPACT_ADD_NEXT ? "add_next" :
1411 (mode == JA_RECOMPACT_DEL ? "del" : "add_same"));
1412 uatomic_inc(&node_fallback_count_distribution[new_shadow_node->nr_child]);
1413 }
1414
1415 /* Return pointer to new recompacted node through old_node_flag_ptr */
1416 *old_node_flag_ptr = new_node_flag;
1417 if (old_node) {
1418 int flags;
1419
1420 flags = RCUJA_SHADOW_CLEAR_FREE_NODE;
1421 /*
1422 * It is OK to free the lock associated with a node
1423 * going to NULL, since we are holding the parent lock.
1424 * This synchronizes removal with re-add of that node.
1425 */
1426 if (new_type_index == NODE_INDEX_NULL)
1427 flags |= RCUJA_SHADOW_CLEAR_FREE_LOCK;
1428 ret = rcuja_shadow_clear(ja->ht, old_node_flag, shadow_node,
1429 flags);
1430 assert(!ret);
1431 }
1432
1433 ret = 0;
1434 end:
1435 return ret;
1436
1437 fallback_toosmall:
1438 /* fallback if next pool is too small */
1439 assert(new_shadow_node);
1440 ret = rcuja_shadow_clear(ja->ht, new_node_flag, new_shadow_node,
1441 RCUJA_SHADOW_CLEAR_FREE_NODE);
1442 assert(!ret);
1443
1444 switch (mode) {
1445 case JA_RECOMPACT_ADD_SAME:
1446 /*
1447 * JA_RECOMPACT_ADD_SAME is only triggered if a linear
1448 * node within a pool has unused entries. It should
1449 * therefore _never_ be too small.
1450 */
1451 assert(0);
1452
1453 /* Fall-through */
1454 case JA_RECOMPACT_ADD_NEXT:
1455 {
1456 const struct cds_ja_type *next_type;
1457
1458 /*
1459 * Recompaction attempt on add failed. Should only
1460 * happen if target node type is pool. Caused by
1461 * hard-to-split distribution. Recompact using the next
1462 * distribution size.
1463 */
1464 assert(new_type->type_class == RCU_JA_POOL);
1465 next_type = &ja_types[new_type_index + 1];
1466 /*
1467 * Try going to the next pool size if our population
1468 * fits within its range. This is not flagged as a
1469 * fallback.
1470 */
1471 if (shadow_node->nr_child + 1 >= next_type->min_child
1472 && shadow_node->nr_child + 1 <= next_type->max_child) {
1473 new_type_index++;
1474 goto retry;
1475 } else {
1476 new_type_index++;
1477 dbg_printf("Add fallback to type %d\n", new_type_index);
1478 uatomic_inc(&ja->nr_fallback);
1479 fallback = 1;
1480 goto retry;
1481 }
1482 break;
1483 }
1484 case JA_RECOMPACT_DEL:
1485 /*
1486 * Recompaction attempt on delete failed. Should only
1487 * happen if target node type is pool. This is caused by
1488 * a hard-to-split distribution. Recompact on same node
1489 * size, but flag current node as "fallback" to ensure
1490 * we don't attempt recompaction before some activity
1491 * has reshuffled our node.
1492 */
1493 assert(new_type->type_class == RCU_JA_POOL);
1494 new_type_index = old_type_index;
1495 dbg_printf("Delete fallback keeping type %d\n", new_type_index);
1496 uatomic_inc(&ja->nr_fallback);
1497 fallback = 1;
1498 goto retry;
1499 default:
1500 assert(0);
1501 return -EINVAL;
1502 }
1503
1504 /*
1505 * Last resort fallback: pigeon.
1506 */
1507 new_type_index = (1UL << JA_TYPE_BITS) - 1;
1508 dbg_printf("Fallback to type %d\n", new_type_index);
1509 uatomic_inc(&ja->nr_fallback);
1510 fallback = 1;
1511 goto retry;
1512 }
1513
1514 /*
1515 * Return 0 on success, -EAGAIN if need to retry, or other negative
1516 * error value otherwise.
1517 */
1518 static
1519 int ja_node_set_nth(struct cds_ja *ja,
1520 struct cds_ja_inode_flag **node_flag, uint8_t n,
1521 struct cds_ja_inode_flag *child_node_flag,
1522 struct cds_ja_shadow_node *shadow_node,
1523 int level)
1524 {
1525 int ret;
1526 unsigned int type_index;
1527 const struct cds_ja_type *type;
1528 struct cds_ja_inode *node;
1529
1530 dbg_printf("ja_node_set_nth for n=%u, node %p, shadow %p\n",
1531 (unsigned int) n, ja_node_ptr(*node_flag), shadow_node);
1532
1533 node = ja_node_ptr(*node_flag);
1534 type_index = ja_node_type(*node_flag);
1535 type = &ja_types[type_index];
1536 ret = _ja_node_set_nth(type, node, *node_flag, shadow_node,
1537 n, child_node_flag);
1538 switch (ret) {
1539 case -ENOSPC:
1540 /* Not enough space in node, need to recompact to next type. */
1541 ret = ja_node_recompact(JA_RECOMPACT_ADD_NEXT, ja, type_index, type, node,
1542 shadow_node, node_flag, n, child_node_flag, NULL, level);
1543 break;
1544 case -ERANGE:
1545 /* Node needs to be recompacted. */
1546 ret = ja_node_recompact(JA_RECOMPACT_ADD_SAME, ja, type_index, type, node,
1547 shadow_node, node_flag, n, child_node_flag, NULL, level);
1548 break;
1549 }
1550 return ret;
1551 }
1552
1553 /*
1554 * Return 0 on success, -EAGAIN if need to retry, or other negative
1555 * error value otherwise.
1556 */
1557 static
1558 int ja_node_clear_ptr(struct cds_ja *ja,
1559 struct cds_ja_inode_flag **node_flag_ptr, /* Pointer to location to nullify */
1560 struct cds_ja_inode_flag **parent_node_flag_ptr, /* Address of parent ptr in its parent */
1561 struct cds_ja_shadow_node *shadow_node, /* of parent */
1562 uint8_t n, int level)
1563 {
1564 int ret;
1565 unsigned int type_index;
1566 const struct cds_ja_type *type;
1567 struct cds_ja_inode *node;
1568
1569 dbg_printf("ja_node_clear_ptr for node %p, shadow %p, target ptr %p\n",
1570 ja_node_ptr(*parent_node_flag_ptr), shadow_node, node_flag_ptr);
1571
1572 node = ja_node_ptr(*parent_node_flag_ptr);
1573 type_index = ja_node_type(*parent_node_flag_ptr);
1574 type = &ja_types[type_index];
1575 ret = _ja_node_clear_ptr(type, node, *parent_node_flag_ptr, shadow_node, node_flag_ptr, n);
1576 if (ret == -EFBIG) {
1577 /* Should try recompaction. */
1578 ret = ja_node_recompact(JA_RECOMPACT_DEL, ja, type_index, type, node,
1579 shadow_node, parent_node_flag_ptr, n, NULL,
1580 node_flag_ptr, level);
1581 }
1582 return ret;
1583 }
1584
1585 struct cds_hlist_head cds_ja_lookup(struct cds_ja *ja, uint64_t key)
1586 {
1587 unsigned int tree_depth, i;
1588 struct cds_ja_inode_flag *node_flag;
1589 struct cds_hlist_head head = { NULL };
1590
1591 if (caa_unlikely(key > ja->key_max))
1592 return head;
1593 tree_depth = ja->tree_depth;
1594 node_flag = rcu_dereference(ja->root);
1595
1596 /* level 0: root node */
1597 if (!ja_node_ptr(node_flag))
1598 return head;
1599
1600 for (i = 1; i < tree_depth; i++) {
1601 uint8_t iter_key;
1602
1603 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (tree_depth - i - 1)));
1604 node_flag = ja_node_get_nth(node_flag, NULL, iter_key);
1605 dbg_printf("cds_ja_lookup iter key lookup %u finds node_flag %p\n",
1606 (unsigned int) iter_key, node_flag);
1607 if (!ja_node_ptr(node_flag))
1608 return head;
1609 }
1610
1611 /* Last level lookup succeded. We got an actual match. */
1612 head.next = (struct cds_hlist_node *) node_flag;
1613 return head;
1614 }
1615
1616 /*
1617 * We reached an unpopulated node. Create it and the children we need,
1618 * and then attach the entire branch to the current node. This may
1619 * trigger recompaction of the current node. Locks needed: node lock
1620 * (for add), and, possibly, parent node lock (to update pointer due to
1621 * node recompaction).
1622 *
1623 * First take node lock, check if recompaction is needed, then take
1624 * parent lock (if needed). Then we can proceed to create the new
1625 * branch. Publish the new branch, and release locks.
1626 * TODO: we currently always take the parent lock even when not needed.
1627 */
1628 static
1629 int ja_attach_node(struct cds_ja *ja,
1630 struct cds_ja_inode_flag **attach_node_flag_ptr,
1631 struct cds_ja_inode_flag *attach_node_flag,
1632 struct cds_ja_inode_flag *parent_attach_node_flag,
1633 struct cds_ja_inode_flag **old_node_flag_ptr,
1634 struct cds_ja_inode_flag *old_node_flag,
1635 uint64_t key,
1636 unsigned int level,
1637 struct cds_ja_node *child_node)
1638 {
1639 struct cds_ja_shadow_node *shadow_node = NULL,
1640 *parent_shadow_node = NULL;
1641 struct cds_hlist_head head;
1642 struct cds_ja_inode_flag *iter_node_flag, *iter_dest_node_flag;
1643 int ret, i;
1644 struct cds_ja_inode_flag *created_nodes[JA_MAX_DEPTH];
1645 int nr_created_nodes = 0;
1646
1647 dbg_printf("Attach node at level %u (old_node_flag %p, attach_node_flag_ptr %p attach_node_flag %p, parent_attach_node_flag %p)\n",
1648 level, old_node_flag, attach_node_flag_ptr, attach_node_flag, parent_attach_node_flag);
1649
1650 assert(!old_node_flag);
1651 if (attach_node_flag) {
1652 shadow_node = rcuja_shadow_lookup_lock(ja->ht, attach_node_flag);
1653 if (!shadow_node) {
1654 ret = -EAGAIN;
1655 goto end;
1656 }
1657 }
1658 if (parent_attach_node_flag) {
1659 parent_shadow_node = rcuja_shadow_lookup_lock(ja->ht,
1660 parent_attach_node_flag);
1661 if (!parent_shadow_node) {
1662 ret = -EAGAIN;
1663 goto unlock_shadow;
1664 }
1665 }
1666
1667 if (old_node_flag_ptr && ja_node_ptr(*old_node_flag_ptr)) {
1668 /*
1669 * Target node has been updated between RCU lookup and
1670 * lock acquisition. We need to re-try lookup and
1671 * attach.
1672 */
1673 ret = -EAGAIN;
1674 goto unlock_parent;
1675 }
1676
1677 /*
1678 * Perform a lookup query to handle the case where
1679 * old_node_flag_ptr is NULL. We cannot use it to check if the
1680 * node has been populated between RCU lookup and mutex
1681 * acquisition.
1682 */
1683 if (!old_node_flag_ptr) {
1684 uint8_t iter_key;
1685 struct cds_ja_inode_flag *lookup_node_flag;
1686 struct cds_ja_inode_flag **lookup_node_flag_ptr;
1687
1688 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (ja->tree_depth - level)));
1689 lookup_node_flag = ja_node_get_nth(attach_node_flag,
1690 &lookup_node_flag_ptr,
1691 iter_key);
1692 if (lookup_node_flag) {
1693 ret = -EEXIST;
1694 goto unlock_parent;
1695 }
1696 }
1697
1698 if (attach_node_flag_ptr && ja_node_ptr(*attach_node_flag_ptr) !=
1699 ja_node_ptr(attach_node_flag)) {
1700 /*
1701 * Target node has been updated between RCU lookup and
1702 * lock acquisition. We need to re-try lookup and
1703 * attach.
1704 */
1705 ret = -EAGAIN;
1706 goto unlock_parent;
1707 }
1708
1709 /* Create new branch, starting from bottom */
1710 CDS_INIT_HLIST_HEAD(&head);
1711 cds_hlist_add_head_rcu(&child_node->list, &head);
1712 iter_node_flag = (struct cds_ja_inode_flag *) head.next;
1713
1714 for (i = ja->tree_depth - 1; i >= (int) level; i--) {
1715 uint8_t iter_key;
1716
1717 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (ja->tree_depth - i - 1)));
1718 dbg_printf("branch creation level %d, key %u\n",
1719 i, (unsigned int) iter_key);
1720 iter_dest_node_flag = NULL;
1721 ret = ja_node_set_nth(ja, &iter_dest_node_flag,
1722 iter_key,
1723 iter_node_flag,
1724 NULL, i);
1725 if (ret) {
1726 dbg_printf("branch creation error %d\n", ret);
1727 goto check_error;
1728 }
1729 created_nodes[nr_created_nodes++] = iter_dest_node_flag;
1730 iter_node_flag = iter_dest_node_flag;
1731 }
1732 assert(level > 0);
1733
1734 /* Publish branch */
1735 if (level == 1) {
1736 /*
1737 * Attaching to root node.
1738 */
1739 rcu_assign_pointer(ja->root, iter_node_flag);
1740 } else {
1741 uint8_t iter_key;
1742
1743 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (ja->tree_depth - level)));
1744 dbg_printf("publish branch at level %d, key %u\n",
1745 level - 1, (unsigned int) iter_key);
1746 /* We need to use set_nth on the previous level. */
1747 iter_dest_node_flag = attach_node_flag;
1748 ret = ja_node_set_nth(ja, &iter_dest_node_flag,
1749 iter_key,
1750 iter_node_flag,
1751 shadow_node, level - 1);
1752 if (ret) {
1753 dbg_printf("branch publish error %d\n", ret);
1754 goto check_error;
1755 }
1756 /*
1757 * Attach branch
1758 */
1759 rcu_assign_pointer(*attach_node_flag_ptr, iter_dest_node_flag);
1760 }
1761
1762 /* Success */
1763 ret = 0;
1764
1765 check_error:
1766 if (ret) {
1767 for (i = 0; i < nr_created_nodes; i++) {
1768 int tmpret;
1769 int flags;
1770
1771 flags = RCUJA_SHADOW_CLEAR_FREE_LOCK;
1772 if (i)
1773 flags |= RCUJA_SHADOW_CLEAR_FREE_NODE;
1774 tmpret = rcuja_shadow_clear(ja->ht,
1775 created_nodes[i],
1776 NULL,
1777 flags);
1778 assert(!tmpret);
1779 }
1780 }
1781 unlock_parent:
1782 if (parent_shadow_node)
1783 rcuja_shadow_unlock(parent_shadow_node);
1784 unlock_shadow:
1785 if (shadow_node)
1786 rcuja_shadow_unlock(shadow_node);
1787 end:
1788 return ret;
1789 }
1790
1791 /*
1792 * Lock the parent containing the hlist head pointer, and add node to list of
1793 * duplicates. Failure can happen if concurrent update changes the
1794 * parent before we get the lock. We return -EAGAIN in that case.
1795 * Return 0 on success, negative error value on failure.
1796 */
1797 static
1798 int ja_chain_node(struct cds_ja *ja,
1799 struct cds_ja_inode_flag *parent_node_flag,
1800 struct cds_ja_inode_flag **node_flag_ptr,
1801 struct cds_ja_inode_flag *node_flag,
1802 struct cds_ja_node *node)
1803 {
1804 struct cds_ja_shadow_node *shadow_node;
1805 int ret = 0;
1806
1807 shadow_node = rcuja_shadow_lookup_lock(ja->ht, parent_node_flag);
1808 if (!shadow_node) {
1809 return -EAGAIN;
1810 }
1811 if (ja_node_ptr(*node_flag_ptr) != ja_node_ptr(node_flag)) {
1812 ret = -EAGAIN;
1813 goto end;
1814 }
1815 cds_hlist_add_head_rcu(&node->list, (struct cds_hlist_head *) node_flag_ptr);
1816 end:
1817 rcuja_shadow_unlock(shadow_node);
1818 return ret;
1819 }
1820
1821 static
1822 int _cds_ja_add(struct cds_ja *ja, uint64_t key,
1823 struct cds_ja_node *new_node,
1824 struct cds_ja_node **unique_node_ret)
1825 {
1826 unsigned int tree_depth, i;
1827 struct cds_ja_inode_flag *attach_node_flag,
1828 *parent_node_flag,
1829 *parent2_node_flag,
1830 *node_flag,
1831 *parent_attach_node_flag;
1832 struct cds_ja_inode_flag **attach_node_flag_ptr,
1833 **parent_node_flag_ptr,
1834 **node_flag_ptr;
1835 int ret;
1836
1837 if (caa_unlikely(key > ja->key_max)) {
1838 return -EINVAL;
1839 }
1840 tree_depth = ja->tree_depth;
1841
1842 retry:
1843 dbg_printf("cds_ja_add attempt: key %" PRIu64 ", node %p\n",
1844 key, new_node);
1845 parent2_node_flag = NULL;
1846 parent_node_flag =
1847 (struct cds_ja_inode_flag *) &ja->root; /* Use root ptr address as key for mutex */
1848 parent_node_flag_ptr = NULL;
1849 node_flag = rcu_dereference(ja->root);
1850 node_flag_ptr = &ja->root;
1851
1852 /* Iterate on all internal levels */
1853 for (i = 1; i < tree_depth; i++) {
1854 uint8_t iter_key;
1855
1856 if (!ja_node_ptr(node_flag))
1857 break;
1858 dbg_printf("cds_ja_add iter parent2_node_flag %p parent_node_flag %p node_flag_ptr %p node_flag %p\n",
1859 parent2_node_flag, parent_node_flag, node_flag_ptr, node_flag);
1860 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (tree_depth - i - 1)));
1861 parent2_node_flag = parent_node_flag;
1862 parent_node_flag = node_flag;
1863 parent_node_flag_ptr = node_flag_ptr;
1864 node_flag = ja_node_get_nth(node_flag,
1865 &node_flag_ptr,
1866 iter_key);
1867 }
1868
1869 /*
1870 * We reached either bottom of tree or internal NULL node,
1871 * simply add node to last internal level, or chain it if key is
1872 * already present.
1873 */
1874 if (!ja_node_ptr(node_flag)) {
1875 dbg_printf("cds_ja_add NULL parent2_node_flag %p parent_node_flag %p node_flag_ptr %p node_flag %p\n",
1876 parent2_node_flag, parent_node_flag, node_flag_ptr, node_flag);
1877
1878 attach_node_flag = parent_node_flag;
1879 attach_node_flag_ptr = parent_node_flag_ptr;
1880 parent_attach_node_flag = parent2_node_flag;
1881
1882 ret = ja_attach_node(ja, attach_node_flag_ptr,
1883 attach_node_flag,
1884 parent_attach_node_flag,
1885 node_flag_ptr,
1886 node_flag,
1887 key, i, new_node);
1888 } else {
1889 if (unique_node_ret) {
1890 *unique_node_ret = (struct cds_ja_node *) ja_node_ptr(node_flag);
1891 return -EEXIST;
1892 }
1893
1894 dbg_printf("cds_ja_add duplicate parent2_node_flag %p parent_node_flag %p node_flag_ptr %p node_flag %p\n",
1895 parent2_node_flag, parent_node_flag, node_flag_ptr, node_flag);
1896
1897 attach_node_flag = node_flag;
1898 attach_node_flag_ptr = node_flag_ptr;
1899 parent_attach_node_flag = parent_node_flag;
1900
1901 ret = ja_chain_node(ja,
1902 parent_attach_node_flag,
1903 attach_node_flag_ptr,
1904 attach_node_flag,
1905 new_node);
1906 }
1907 if (ret == -EAGAIN || ret == -EEXIST)
1908 goto retry;
1909
1910 return ret;
1911 }
1912
1913 int cds_ja_add(struct cds_ja *ja, uint64_t key,
1914 struct cds_ja_node *new_node)
1915 {
1916 return _cds_ja_add(ja, key, new_node, NULL);
1917 }
1918
1919 struct cds_ja_node *cds_ja_add_unique(struct cds_ja *ja, uint64_t key,
1920 struct cds_ja_node *new_node)
1921 {
1922 int ret;
1923 struct cds_ja_node *ret_node;
1924
1925 ret = _cds_ja_add(ja, key, new_node, &ret_node);
1926 if (ret == -EEXIST)
1927 return ret_node;
1928 else
1929 return new_node;
1930 }
1931
1932 /*
1933 * Note: there is no need to lookup the pointer address associated with
1934 * each node's nth item after taking the lock: it's already been done by
1935 * cds_ja_del while holding the rcu read-side lock, and our node rules
1936 * ensure that when a match value -> pointer is found in a node, it is
1937 * _NEVER_ changed for that node without recompaction, and recompaction
1938 * reallocates the node.
1939 * However, when a child is removed from "linear" nodes, its pointer
1940 * is set to NULL. We therefore check, while holding the locks, if this
1941 * pointer is NULL, and return -ENOENT to the caller if it is the case.
1942 */
1943 static
1944 int ja_detach_node(struct cds_ja *ja,
1945 struct cds_ja_inode_flag **snapshot,
1946 struct cds_ja_inode_flag ***snapshot_ptr,
1947 uint8_t *snapshot_n,
1948 int nr_snapshot,
1949 uint64_t key,
1950 struct cds_ja_node *node)
1951 {
1952 struct cds_ja_shadow_node *shadow_nodes[JA_MAX_DEPTH];
1953 struct cds_ja_inode_flag **node_flag_ptr = NULL,
1954 *parent_node_flag = NULL,
1955 **parent_node_flag_ptr = NULL;
1956 struct cds_ja_inode_flag *iter_node_flag;
1957 int ret, i, nr_shadow = 0, nr_clear = 0, nr_branch = 0;
1958 uint8_t n = 0;
1959
1960 assert(nr_snapshot == ja->tree_depth + 1);
1961
1962 /*
1963 * From the last internal level node going up, get the node
1964 * lock, check if the node has only one child left. If it is the
1965 * case, we continue iterating upward. When we reach a node
1966 * which has more that one child left, we lock the parent, and
1967 * proceed to the node deletion (removing its children too).
1968 */
1969 for (i = nr_snapshot - 2; i >= 1; i--) {
1970 struct cds_ja_shadow_node *shadow_node;
1971
1972 shadow_node = rcuja_shadow_lookup_lock(ja->ht,
1973 snapshot[i]);
1974 if (!shadow_node) {
1975 ret = -EAGAIN;
1976 goto end;
1977 }
1978 shadow_nodes[nr_shadow++] = shadow_node;
1979
1980 /*
1981 * Check if node has been removed between RCU
1982 * lookup and lock acquisition.
1983 */
1984 assert(snapshot_ptr[i + 1]);
1985 if (ja_node_ptr(*snapshot_ptr[i + 1])
1986 != ja_node_ptr(snapshot[i + 1])) {
1987 ret = -ENOENT;
1988 goto end;
1989 }
1990
1991 assert(shadow_node->nr_child > 0);
1992 if (shadow_node->nr_child == 1 && i > 1)
1993 nr_clear++;
1994 nr_branch++;
1995 if (shadow_node->nr_child > 1 || i == 1) {
1996 /* Lock parent and break */
1997 shadow_node = rcuja_shadow_lookup_lock(ja->ht,
1998 snapshot[i - 1]);
1999 if (!shadow_node) {
2000 ret = -EAGAIN;
2001 goto end;
2002 }
2003 shadow_nodes[nr_shadow++] = shadow_node;
2004
2005 /*
2006 * Check if node has been removed between RCU
2007 * lookup and lock acquisition.
2008 */
2009 assert(snapshot_ptr[i]);
2010 if (ja_node_ptr(*snapshot_ptr[i])
2011 != ja_node_ptr(snapshot[i])) {
2012 ret = -ENOENT;
2013 goto end;
2014 }
2015
2016 node_flag_ptr = snapshot_ptr[i + 1];
2017 n = snapshot_n[i + 1];
2018 parent_node_flag_ptr = snapshot_ptr[i];
2019 parent_node_flag = snapshot[i];
2020
2021 if (i > 1) {
2022 /*
2023 * Lock parent's parent, in case we need
2024 * to recompact parent.
2025 */
2026 shadow_node = rcuja_shadow_lookup_lock(ja->ht,
2027 snapshot[i - 2]);
2028 if (!shadow_node) {
2029 ret = -EAGAIN;
2030 goto end;
2031 }
2032 shadow_nodes[nr_shadow++] = shadow_node;
2033
2034 /*
2035 * Check if node has been removed between RCU
2036 * lookup and lock acquisition.
2037 */
2038 assert(snapshot_ptr[i - 1]);
2039 if (ja_node_ptr(*snapshot_ptr[i - 1])
2040 != ja_node_ptr(snapshot[i - 1])) {
2041 ret = -ENOENT;
2042 goto end;
2043 }
2044 }
2045
2046 break;
2047 }
2048 }
2049
2050 /*
2051 * At this point, we want to delete all nodes that are about to
2052 * be removed from shadow_nodes (except the last one, which is
2053 * either the root or the parent of the upmost node with 1
2054 * child). OK to free lock here, because RCU read lock is held,
2055 * and free only performed in call_rcu.
2056 */
2057
2058 for (i = 0; i < nr_clear; i++) {
2059 ret = rcuja_shadow_clear(ja->ht,
2060 shadow_nodes[i]->node_flag,
2061 shadow_nodes[i],
2062 RCUJA_SHADOW_CLEAR_FREE_NODE
2063 | RCUJA_SHADOW_CLEAR_FREE_LOCK);
2064 assert(!ret);
2065 }
2066
2067 iter_node_flag = parent_node_flag;
2068 /* Remove from parent */
2069 ret = ja_node_clear_ptr(ja,
2070 node_flag_ptr, /* Pointer to location to nullify */
2071 &iter_node_flag, /* Old new parent ptr in its parent */
2072 shadow_nodes[nr_branch - 1], /* of parent */
2073 n, nr_branch - 1);
2074 if (ret)
2075 goto end;
2076
2077 dbg_printf("ja_detach_node: publish %p instead of %p\n",
2078 iter_node_flag, *parent_node_flag_ptr);
2079 /* Update address of parent ptr in its parent */
2080 rcu_assign_pointer(*parent_node_flag_ptr, iter_node_flag);
2081
2082 end:
2083 for (i = 0; i < nr_shadow; i++)
2084 rcuja_shadow_unlock(shadow_nodes[i]);
2085 return ret;
2086 }
2087
2088 static
2089 int ja_unchain_node(struct cds_ja *ja,
2090 struct cds_ja_inode_flag *parent_node_flag,
2091 struct cds_ja_inode_flag **node_flag_ptr,
2092 struct cds_ja_inode_flag *node_flag,
2093 struct cds_ja_node *node)
2094 {
2095 struct cds_ja_shadow_node *shadow_node;
2096 struct cds_hlist_node *hlist_node;
2097 struct cds_hlist_head hlist_head;
2098 int ret = 0, count = 0, found = 0;
2099
2100 shadow_node = rcuja_shadow_lookup_lock(ja->ht, parent_node_flag);
2101 if (!shadow_node)
2102 return -EAGAIN;
2103 if (ja_node_ptr(*node_flag_ptr) != ja_node_ptr(node_flag)) {
2104 ret = -EAGAIN;
2105 goto end;
2106 }
2107 hlist_head.next = (struct cds_hlist_node *) ja_node_ptr(node_flag);
2108 /*
2109 * Retry if another thread removed all but one of duplicates
2110 * since check (this check was performed without lock).
2111 * Ensure that the node we are about to remove is still in the
2112 * list (while holding lock).
2113 */
2114 cds_hlist_for_each_rcu(hlist_node, &hlist_head) {
2115 if (count == 0) {
2116 /* FIXME: currently a work-around */
2117 hlist_node->prev = (struct cds_hlist_node *) node_flag_ptr;
2118 }
2119 count++;
2120 if (hlist_node == &node->list)
2121 found++;
2122 }
2123 assert(found <= 1);
2124 if (!found || count == 1) {
2125 ret = -EAGAIN;
2126 goto end;
2127 }
2128 cds_hlist_del_rcu(&node->list);
2129 /*
2130 * Validate that we indeed removed the node from linked list.
2131 */
2132 assert(ja_node_ptr(*node_flag_ptr) != (struct cds_ja_inode *) node);
2133 end:
2134 rcuja_shadow_unlock(shadow_node);
2135 return ret;
2136 }
2137
2138 /*
2139 * Called with RCU read lock held.
2140 */
2141 int cds_ja_del(struct cds_ja *ja, uint64_t key,
2142 struct cds_ja_node *node)
2143 {
2144 unsigned int tree_depth, i;
2145 struct cds_ja_inode_flag *snapshot[JA_MAX_DEPTH];
2146 struct cds_ja_inode_flag **snapshot_ptr[JA_MAX_DEPTH];
2147 uint8_t snapshot_n[JA_MAX_DEPTH];
2148 struct cds_ja_inode_flag *node_flag;
2149 struct cds_ja_inode_flag **prev_node_flag_ptr,
2150 **node_flag_ptr;
2151 int nr_snapshot;
2152 int ret;
2153
2154 if (caa_unlikely(key > ja->key_max))
2155 return -EINVAL;
2156 tree_depth = ja->tree_depth;
2157
2158 retry:
2159 nr_snapshot = 0;
2160 dbg_printf("cds_ja_del attempt: key %" PRIu64 ", node %p\n",
2161 key, node);
2162
2163 /* snapshot for level 0 is only for shadow node lookup */
2164 snapshot_n[0] = 0;
2165 snapshot_n[1] = 0;
2166 snapshot_ptr[nr_snapshot] = NULL;
2167 snapshot[nr_snapshot++] = (struct cds_ja_inode_flag *) &ja->root;
2168 node_flag = rcu_dereference(ja->root);
2169 prev_node_flag_ptr = &ja->root;
2170 node_flag_ptr = &ja->root;
2171
2172 /* Iterate on all internal levels */
2173 for (i = 1; i < tree_depth; i++) {
2174 uint8_t iter_key;
2175
2176 dbg_printf("cds_ja_del iter node_flag %p\n",
2177 node_flag);
2178 if (!ja_node_ptr(node_flag)) {
2179 return -ENOENT;
2180 }
2181 iter_key = (uint8_t) (key >> (JA_BITS_PER_BYTE * (tree_depth - i - 1)));
2182 snapshot_n[nr_snapshot + 1] = iter_key;
2183 snapshot_ptr[nr_snapshot] = prev_node_flag_ptr;
2184 snapshot[nr_snapshot++] = node_flag;
2185 node_flag = ja_node_get_nth(node_flag,
2186 &node_flag_ptr,
2187 iter_key);
2188 if (node_flag)
2189 prev_node_flag_ptr = node_flag_ptr;
2190 dbg_printf("cds_ja_del iter key lookup %u finds node_flag %p, prev_node_flag_ptr %p\n",
2191 (unsigned int) iter_key, node_flag,
2192 prev_node_flag_ptr);
2193 }
2194 /*
2195 * We reached bottom of tree, try to find the node we are trying
2196 * to remove. Fail if we cannot find it.
2197 */
2198 if (!ja_node_ptr(node_flag)) {
2199 dbg_printf("cds_ja_del: no node found for key %" PRIu64 "\n",
2200 key);
2201 return -ENOENT;
2202 } else {
2203 struct cds_hlist_head hlist_head;
2204 struct cds_hlist_node *hlist_node;
2205 struct cds_ja_node *entry, *match = NULL;
2206 int count = 0;
2207
2208 hlist_head.next =
2209 (struct cds_hlist_node *) ja_node_ptr(node_flag);
2210 cds_hlist_for_each_entry_rcu(entry,
2211 hlist_node,
2212 &hlist_head,
2213 list) {
2214 dbg_printf("cds_ja_del: compare %p with entry %p\n", node, entry);
2215 if (entry == node)
2216 match = entry;
2217 count++;
2218 }
2219 if (!match) {
2220 dbg_printf("cds_ja_del: no node match for node %p key %" PRIu64 "\n", node, key);
2221 return -ENOENT;
2222 }
2223 assert(count > 0);
2224 if (count == 1) {
2225 /*
2226 * Removing last of duplicates. Last snapshot
2227 * does not have a shadow node (external leafs).
2228 */
2229 snapshot_ptr[nr_snapshot] = prev_node_flag_ptr;
2230 snapshot[nr_snapshot++] = node_flag;
2231 ret = ja_detach_node(ja, snapshot, snapshot_ptr,
2232 snapshot_n, nr_snapshot, key, node);
2233 } else {
2234 ret = ja_unchain_node(ja, snapshot[nr_snapshot - 1],
2235 node_flag_ptr, node_flag, match);
2236 }
2237 }
2238 /*
2239 * Explanation of -ENOENT handling: caused by concurrent delete
2240 * between RCU lookup and actual removal. Need to re-do the
2241 * lookup and removal attempt.
2242 */
2243 if (ret == -EAGAIN || ret == -ENOENT)
2244 goto retry;
2245 return ret;
2246 }
2247
2248 struct cds_ja *_cds_ja_new(unsigned int key_bits,
2249 const struct rcu_flavor_struct *flavor)
2250 {
2251 struct cds_ja *ja;
2252 int ret;
2253 struct cds_ja_shadow_node *root_shadow_node;
2254
2255 ja = calloc(sizeof(*ja), 1);
2256 if (!ja)
2257 goto ja_error;
2258
2259 switch (key_bits) {
2260 case 8:
2261 case 16:
2262 case 24:
2263 case 32:
2264 case 40:
2265 case 48:
2266 case 56:
2267 ja->key_max = (1ULL << key_bits) - 1;
2268 break;
2269 case 64:
2270 ja->key_max = UINT64_MAX;
2271 break;
2272 default:
2273 goto check_error;
2274 }
2275
2276 /* ja->root is NULL */
2277 /* tree_depth 0 is for pointer to root node */
2278 ja->tree_depth = (key_bits >> JA_LOG2_BITS_PER_BYTE) + 1;
2279 assert(ja->tree_depth <= JA_MAX_DEPTH);
2280 ja->ht = rcuja_create_ht(flavor);
2281 if (!ja->ht)
2282 goto ht_error;
2283
2284 /*
2285 * Note: we should not free this node until judy array destroy.
2286 */
2287 root_shadow_node = rcuja_shadow_set(ja->ht,
2288 (struct cds_ja_inode_flag *) &ja->root,
2289 NULL, ja, 0);
2290 if (!root_shadow_node) {
2291 ret = -ENOMEM;
2292 goto ht_node_error;
2293 }
2294
2295 return ja;
2296
2297 ht_node_error:
2298 ret = rcuja_delete_ht(ja->ht);
2299 assert(!ret);
2300 ht_error:
2301 check_error:
2302 free(ja);
2303 ja_error:
2304 return NULL;
2305 }
2306
2307 /*
2308 * Called from RCU read-side CS.
2309 */
2310 __attribute__((visibility("protected")))
2311 void rcuja_free_all_children(struct cds_ja_shadow_node *shadow_node,
2312 struct cds_ja_inode_flag *node_flag,
2313 void (*free_node_cb)(struct rcu_head *head))
2314 {
2315 const struct rcu_flavor_struct *flavor;
2316 unsigned int type_index;
2317 struct cds_ja_inode *node;
2318 const struct cds_ja_type *type;
2319
2320 flavor = cds_lfht_rcu_flavor(shadow_node->ja->ht);
2321 node = ja_node_ptr(node_flag);
2322 assert(node != NULL);
2323 type_index = ja_node_type(node_flag);
2324 type = &ja_types[type_index];
2325
2326 switch (type->type_class) {
2327 case RCU_JA_LINEAR:
2328 {
2329 uint8_t nr_child =
2330 ja_linear_node_get_nr_child(type, node);
2331 unsigned int i;
2332
2333 for (i = 0; i < nr_child; i++) {
2334 struct cds_ja_inode_flag *iter;
2335 struct cds_hlist_head head;
2336 struct cds_ja_node *entry;
2337 struct cds_hlist_node *pos, *tmp;
2338 uint8_t v;
2339
2340 ja_linear_node_get_ith_pos(type, node, i, &v, &iter);
2341 if (!iter)
2342 continue;
2343 head.next = (struct cds_hlist_node *) iter;
2344 cds_hlist_for_each_entry_safe(entry, pos, tmp, &head, list) {
2345 flavor->update_call_rcu(&entry->head, free_node_cb);
2346 }
2347 }
2348 break;
2349 }
2350 case RCU_JA_POOL:
2351 {
2352 unsigned int pool_nr;
2353
2354 for (pool_nr = 0; pool_nr < (1U << type->nr_pool_order); pool_nr++) {
2355 struct cds_ja_inode *pool =
2356 ja_pool_node_get_ith_pool(type, node, pool_nr);
2357 uint8_t nr_child =
2358 ja_linear_node_get_nr_child(type, pool);
2359 unsigned int j;
2360
2361 for (j = 0; j < nr_child; j++) {
2362 struct cds_ja_inode_flag *iter;
2363 struct cds_hlist_head head;
2364 struct cds_ja_node *entry;
2365 struct cds_hlist_node *pos, *tmp;
2366 uint8_t v;
2367
2368 ja_linear_node_get_ith_pos(type, pool, j, &v, &iter);
2369 if (!iter)
2370 continue;
2371 head.next = (struct cds_hlist_node *) iter;
2372 cds_hlist_for_each_entry_safe(entry, pos, tmp, &head, list) {
2373 flavor->update_call_rcu(&entry->head, free_node_cb);
2374 }
2375 }
2376 }
2377 break;
2378 }
2379 case RCU_JA_NULL:
2380 break;
2381 case RCU_JA_PIGEON:
2382 {
2383 unsigned int i;
2384
2385 for (i = 0; i < JA_ENTRY_PER_NODE; i++) {
2386 struct cds_ja_inode_flag *iter;
2387 struct cds_hlist_head head;
2388 struct cds_ja_node *entry;
2389 struct cds_hlist_node *pos, *tmp;
2390
2391 iter = ja_pigeon_node_get_ith_pos(type, node, i);
2392 if (!iter)
2393 continue;
2394 head.next = (struct cds_hlist_node *) iter;
2395 cds_hlist_for_each_entry_safe(entry, pos, tmp, &head, list) {
2396 flavor->update_call_rcu(&entry->head, free_node_cb);
2397 }
2398 }
2399 break;
2400 }
2401 default:
2402 assert(0);
2403 }
2404 }
2405
2406 static
2407 void print_debug_fallback_distribution(void)
2408 {
2409 int i;
2410
2411 fprintf(stderr, "Fallback node distribution:\n");
2412 for (i = 0; i < JA_ENTRY_PER_NODE; i++) {
2413 if (!node_fallback_count_distribution[i])
2414 continue;
2415 fprintf(stderr, " %3u: %4lu\n",
2416 i, node_fallback_count_distribution[i]);
2417 }
2418 }
2419
2420 /*
2421 * There should be no more concurrent add to the judy array while it is
2422 * being destroyed (ensured by the caller).
2423 */
2424 int cds_ja_destroy(struct cds_ja *ja,
2425 void (*free_node_cb)(struct rcu_head *head))
2426 {
2427 const struct rcu_flavor_struct *flavor;
2428 int ret;
2429
2430 flavor = cds_lfht_rcu_flavor(ja->ht);
2431 rcuja_shadow_prune(ja->ht,
2432 RCUJA_SHADOW_CLEAR_FREE_NODE | RCUJA_SHADOW_CLEAR_FREE_LOCK,
2433 free_node_cb);
2434 flavor->thread_offline();
2435 ret = rcuja_delete_ht(ja->ht);
2436 if (ret)
2437 return ret;
2438 fprintf(stderr, "Waiting arbitrary time for node free accounting...\n");
2439 sleep(10); //wait for free TEST XXX
2440 flavor->thread_online();
2441 if (uatomic_read(&ja->nr_fallback))
2442 fprintf(stderr,
2443 "[warning] RCU Judy Array used %lu fallback node(s)\n",
2444 uatomic_read(&ja->nr_fallback));
2445 fprintf(stderr, "Nodes allocated: %lu, Nodes freed: %lu. Fallback ratio: %g\n",
2446 uatomic_read(&nr_nodes_allocated),
2447 uatomic_read(&nr_nodes_freed),
2448 (double) uatomic_read(&ja->nr_fallback) / (double) uatomic_read(&nr_nodes_allocated));
2449 print_debug_fallback_distribution();
2450 free(ja);
2451 return 0;
2452 }
This page took 0.074694 seconds and 3 git commands to generate.