Add reader nesting test
[urcu.git] / formal-model / urcu / urcu.spin
1 /*
2 * mem.spin: Promela code to validate memory barriers with OOO memory.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (c) 2009 Mathieu Desnoyers
19 */
20
21 /* Promela validation variables. */
22
23 #define NR_READERS 1
24 #define NR_WRITERS 1
25
26 #define NR_PROCS 2
27
28 #define get_pid() (_pid)
29
30 /*
31 * Each process have its own data in cache. Caches are randomly updated.
32 * smp_wmb and smp_rmb forces cache updates (write and read), wmb_mb forces
33 * both.
34 */
35
36 #define DECLARE_CACHED_VAR(type, x, v) \
37 type mem_##x = v; \
38 type cached_##x[NR_PROCS] = v; \
39 bit cache_dirty_##x[NR_PROCS] = 0
40
41 #define IS_CACHE_DIRTY(x, id) (cache_dirty_##x[id])
42
43 #define READ_CACHED_VAR(x) (cached_##x[get_pid()])
44
45 #define WRITE_CACHED_VAR(x, v) \
46 atomic { \
47 cached_##x[get_pid()] = v; \
48 cache_dirty_##x[get_pid()] = 1; \
49 }
50
51 #define CACHE_WRITE_TO_MEM(x, id) \
52 if \
53 :: IS_CACHE_DIRTY(x, id) -> \
54 mem_##x = cached_##x[id]; \
55 cache_dirty_##x[id] = 0; \
56 :: else -> \
57 skip \
58 fi;
59
60 #define CACHE_READ_FROM_MEM(x, id) \
61 if \
62 :: !IS_CACHE_DIRTY(x, id) -> \
63 cached_##x[id] = mem_##x;\
64 :: else -> \
65 skip \
66 fi;
67
68 /*
69 * May update other caches if cache is dirty, or not.
70 */
71 #define RANDOM_CACHE_WRITE_TO_MEM(x, id)\
72 if \
73 :: 1 -> CACHE_WRITE_TO_MEM(x, id); \
74 :: 1 -> skip \
75 fi;
76
77 #define RANDOM_CACHE_READ_FROM_MEM(x, id)\
78 if \
79 :: 1 -> CACHE_READ_FROM_MEM(x, id); \
80 :: 1 -> skip \
81 fi;
82
83 inline smp_rmb(i)
84 {
85 atomic {
86 CACHE_READ_FROM_MEM(urcu_gp_ctr, get_pid());
87 CACHE_READ_FROM_MEM(urcu_active_readers_one, get_pid());
88 CACHE_READ_FROM_MEM(generation_ptr, get_pid());
89 }
90 }
91
92 inline smp_wmb(i)
93 {
94 atomic {
95 CACHE_WRITE_TO_MEM(urcu_gp_ctr, get_pid());
96 CACHE_WRITE_TO_MEM(urcu_active_readers_one, get_pid());
97 CACHE_WRITE_TO_MEM(generation_ptr, get_pid());
98 }
99 }
100
101 inline smp_mb(i)
102 {
103 atomic {
104 #ifndef NO_WMB
105 smp_wmb(i);
106 #endif
107 #ifndef NO_RMB
108 smp_rmb(i);
109 #endif
110 skip;
111 }
112 }
113
114 /* Keep in sync manually with smp_rmb, wmp_wmb and ooo_mem */
115 DECLARE_CACHED_VAR(byte, urcu_gp_ctr, 1);
116 /* Note ! currently only one reader */
117 DECLARE_CACHED_VAR(byte, urcu_active_readers_one, 0);
118 /* pointer generation */
119 DECLARE_CACHED_VAR(byte, generation_ptr, 0);
120
121 byte last_free_gen = 0;
122 bit free_done = 0;
123 byte read_generation = 1;
124 bit data_access = 0;
125
126 bit write_lock = 0;
127
128 inline ooo_mem(i)
129 {
130 atomic {
131 RANDOM_CACHE_WRITE_TO_MEM(urcu_gp_ctr, get_pid());
132 RANDOM_CACHE_WRITE_TO_MEM(urcu_active_readers_one,
133 get_pid());
134 RANDOM_CACHE_WRITE_TO_MEM(generation_ptr, get_pid());
135 RANDOM_CACHE_READ_FROM_MEM(urcu_gp_ctr, get_pid());
136 RANDOM_CACHE_READ_FROM_MEM(urcu_active_readers_one,
137 get_pid());
138 RANDOM_CACHE_READ_FROM_MEM(generation_ptr, get_pid());
139 }
140 }
141
142 #define get_readerid() (get_pid())
143 #define get_writerid() (get_readerid() + NR_READERS)
144
145 inline wait_for_reader(tmp, id, i)
146 {
147 do
148 :: 1 ->
149 ooo_mem(i);
150 tmp = READ_CACHED_VAR(urcu_active_readers_one);
151 if
152 :: (tmp & RCU_GP_CTR_NEST_MASK)
153 && ((tmp ^ READ_CACHED_VAR(urcu_gp_ctr))
154 & RCU_GP_CTR_BIT) ->
155 #ifndef GEN_ERROR_WRITER_PROGRESS
156 smp_mb(i);
157 #else
158 skip;
159 #endif
160 :: else ->
161 break;
162 fi;
163 od;
164 }
165
166 inline wait_for_quiescent_state(tmp, i, j)
167 {
168 i = 0;
169 do
170 :: i < NR_READERS ->
171 wait_for_reader(tmp, i, j);
172 i++
173 :: i >= NR_READERS -> break
174 od;
175 }
176
177 /* Model the RCU read-side critical section. */
178
179 active [NR_READERS] proctype urcu_reader()
180 {
181 byte i, nest_i;
182 byte tmp, tmp2;
183
184 assert(get_pid() < NR_PROCS);
185
186 end_reader:
187 do
188 :: 1 ->
189 /*
190 * We do not test reader's progress here, because we are mainly
191 * interested in writer's progress. The reader never blocks
192 * anyway. We have to test for reader/writer's progress
193 * separately, otherwise we could think the writer is doing
194 * progress when it's blocked by an always progressing reader.
195 */
196 #ifdef READER_PROGRESS
197 progress_reader:
198 #endif
199 nest_i = 0;
200 do
201 :: nest_i < READER_NEST_LEVEL ->
202 ooo_mem(i);
203 tmp = READ_CACHED_VAR(urcu_active_readers_one);
204 ooo_mem(i);
205 if
206 :: (!(tmp & RCU_GP_CTR_NEST_MASK))
207 ->
208 tmp2 = READ_CACHED_VAR(urcu_gp_ctr);
209 ooo_mem(i);
210 WRITE_CACHED_VAR(urcu_active_readers_one, tmp2);
211 :: else ->
212 WRITE_CACHED_VAR(urcu_active_readers_one, tmp + 1);
213 fi;
214 ooo_mem(i);
215 smp_mb(i);
216 nest_i++;
217 :: nest_i >= READER_NEST_LEVEL -> break;
218 od;
219
220 ooo_mem(i);
221 read_generation = READ_CACHED_VAR(generation_ptr);
222 ooo_mem(i);
223 data_access = 1;
224 ooo_mem(i);
225 data_access = 0;
226
227 nest_i = 0;
228 do
229 :: nest_i < READER_NEST_LEVEL ->
230 ooo_mem(i);
231 smp_mb(i);
232 ooo_mem(i);
233 tmp2 = READ_CACHED_VAR(urcu_active_readers_one);
234 ooo_mem(i);
235 WRITE_CACHED_VAR(urcu_active_readers_one, tmp2 - 1);
236 nest_i++;
237 :: nest_i >= READER_NEST_LEVEL -> break;
238 od;
239 ooo_mem(i);
240 //smp_mc(i); /* added */
241 od;
242 }
243
244
245 /* Model the RCU update process. */
246
247 active [NR_WRITERS] proctype urcu_writer()
248 {
249 byte i, j;
250 byte tmp;
251 byte old_gen;
252
253 assert(get_pid() < NR_PROCS);
254
255 do
256 :: (READ_CACHED_VAR(generation_ptr) < 5) ->
257 #ifdef WRITER_PROGRESS
258 progress_writer1:
259 #endif
260 ooo_mem(i);
261 atomic {
262 old_gen = READ_CACHED_VAR(generation_ptr);
263 WRITE_CACHED_VAR(generation_ptr, old_gen + 1);
264 }
265 ooo_mem(i);
266
267 do
268 :: 1 ->
269 atomic {
270 if
271 :: write_lock == 0 ->
272 write_lock = 1;
273 break;
274 :: else ->
275 skip;
276 fi;
277 }
278 od;
279 smp_mb(i);
280 ooo_mem(i);
281 tmp = READ_CACHED_VAR(urcu_gp_ctr);
282 ooo_mem(i);
283 WRITE_CACHED_VAR(urcu_gp_ctr, tmp ^ RCU_GP_CTR_BIT);
284 ooo_mem(i);
285 //smp_mc(i);
286 wait_for_quiescent_state(tmp, i, j);
287 //smp_mc(i);
288 #ifndef SINGLE_FLIP
289 ooo_mem(i);
290 tmp = READ_CACHED_VAR(urcu_gp_ctr);
291 ooo_mem(i);
292 WRITE_CACHED_VAR(urcu_gp_ctr, tmp ^ RCU_GP_CTR_BIT);
293 //smp_mc(i);
294 ooo_mem(i);
295 wait_for_quiescent_state(tmp, i, j);
296 #endif
297 ooo_mem(i);
298 smp_mb(i);
299 ooo_mem(i);
300 write_lock = 0;
301 /* free-up step, e.g., kfree(). */
302 atomic {
303 last_free_gen = old_gen;
304 free_done = 1;
305 }
306 :: else -> break;
307 od;
308 /*
309 * Given the reader loops infinitely, let the writer also busy-loop
310 * with progress here so, with weak fairness, we can test the
311 * writer's progress.
312 */
313 end_writer:
314 do
315 :: 1 ->
316 #ifdef WRITER_PROGRESS
317 progress_writer2:
318 #endif
319 skip;
320 od;
321 }
This page took 0.035633 seconds and 4 git commands to generate.