ASCII art for dep analysis
[lttv.git] / lttv / modules / text / depanalysis.c
CommitLineData
8c108c1c
PMF
1/* This file is part of the Linux Trace Toolkit viewer
2 * Copyright (C) 2008 Pierre-Marc Fournier
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License Version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
16 * MA 02111-1307, USA.
17 */
18
19#ifdef HAVE_CONFIG_H
20#include <config.h>
21#endif
22
23#include <lttv/lttv.h>
24#include <lttv/option.h>
25#include <lttv/module.h>
26#include <lttv/hook.h>
27#include <lttv/attribute.h>
28#include <lttv/iattribute.h>
29#include <lttv/stats.h>
30#include <lttv/filter.h>
31#include <lttv/print.h>
32#include <ltt/ltt.h>
33#include <ltt/event.h>
34#include <ltt/trace.h>
35#define _GNU_SOURCE
36#include <stdio.h>
37#include <glib.h>
38#include <stdlib.h>
39
40#include "sstack.h"
41
42static LttvHooks
43 *before_traceset,
44 *after_traceset,
45// *before_trace,
46 *event_hook;
47
48static int depanalysis_range_pid = -1;
49static int depanalysis_range_pid_searching = -1;
50static int depanalysis_use_time=0;
51static int depanalysis_event_limit = -1;
55cd92ee 52static int a_print_simple_summary = 0;
8c108c1c
PMF
53static LttTime depanalysis_time1, depanalysis_time2;
54static char *arg_t1_str,*arg_t2_str;
55static int statedump_finished = 0;
56
57
58struct llev_state_info_irq {
59 int irq;
60};
61
62struct llev_state_info_softirq {
63 int softirq;
64};
65
66struct llev_state_info_syscall {
67 int syscall_id;
68
69 int substate;
70
71 void *private;
72};
73
74struct llev_state_info_syscall__open {
75 GQuark filename;
76};
77
78struct llev_state_info_syscall__read {
79 GQuark filename;
80};
81
82struct llev_state_info_syscall__poll {
83 GQuark filename;
84};
85
86struct llev_state_info_preempted {
87 int prev_state;
88};
89
90struct hlev_state_info_blocked {
91 int syscall_id;
92 unsigned char trap; /* flag */
93 int substate;
94
95 /* Garray of pointers to struct process_state that reflect the
96 * low-level state stack when respectively entering and exiting the blocked
97 * state.
98 */
99 GArray *llev_state_entry;
100 GArray *llev_state_exit;
101
102 int pid_exit; /* FIXME: it's not pretty to have this here; find this info elsewhere */
103 LttTime time_woken;
104
105 void *private;
106};
107
108struct hlev_state_info_blocked__open {
109 GQuark filename;
110};
111
112struct hlev_state_info_blocked__read {
113 GQuark filename;
114};
115
116struct hlev_state_info_blocked__poll {
117 GQuark filename;
118};
119
120struct hlev_state_info_interrupted_irq {
121 int irq;
122};
123
124struct hlev_state_info_interrupted_softirq {
125 int softirq;
126};
127
128struct summary_tree_node {
129 char *name;
130 GHashTable *children;
131 LttTime duration;
132 GArray *episodes;
133 int id_for_episodes;
134};
135
136struct state_info {
137 char name[40];
138 int size_priv;
139 char *tree_path[6];
140};
141
142struct state_info llev_state_infos[] = {
143 { "UNKNOWN", 0, { NULL } },
144 { "RUNNING", 0, { NULL } },
145 { "SYSCALL", sizeof(struct llev_state_info_syscall), { NULL } },
146 { "IRQ", sizeof(struct llev_state_info_irq), { NULL } },
147 { "SOFTIRQ", sizeof(struct llev_state_info_softirq), { NULL } },
148 { "TRAP", 0, { NULL } },
149 { "PREEMPTED", sizeof(struct llev_state_info_preempted), { NULL } },
150};
151
152struct state_info hlev_state_infos[] = {
153 { "UNKNOWN", 0, { "Total", "Unknown", NULL } },
154 { "RUNNING", 0, { "Total", "Working", NULL } },
155 { "BLOCKED", sizeof(struct hlev_state_info_blocked), { "Total", "Blocked", NULL } },
156 { "INTERRUPTED_IRQ", sizeof(struct hlev_state_info_interrupted_irq), { "Total", "Interrupted", "IRQ", NULL } },
157 { "INTERRUPTED_SOFTIRQ", sizeof(struct hlev_state_info_interrupted_softirq), { "Total", "Interrupted", "SoftIRQ", NULL } },
158 { "INTERRUPTED_CPU", 0, { "Total", "Interrupted", "Preempted", NULL } },
159 { "INTERRUPTED_POST_BLOCK", 0, { "Total", "Interrupted", "Waiting schedule after blocking", NULL } },
160};
161
162enum llev_state {
163 LLEV_UNKNOWN=0,
164 LLEV_RUNNING,
165 LLEV_SYSCALL,
166 LLEV_IRQ,
167 LLEV_SOFTIRQ,
168 LLEV_TRAP,
169 LLEV_PREEMPTED,
170};
171
172enum llev_syscall_substate {
173 LLEV_SYSCALL__UNDEFINED,
174 LLEV_SYSCALL__OPEN,
175 LLEV_SYSCALL__READ,
176 LLEV_SYSCALL__POLL,
177};
178
179enum hlev_event {
180 HLEV_EVENT_TRY_WAKEUP=0,
181};
182
183enum hlev_state {
184 HLEV_UNKNOWN=0,
185 HLEV_RUNNING,
186 HLEV_BLOCKED,
187 HLEV_INTERRUPTED_IRQ,
188 HLEV_INTERRUPTED_SOFTIRQ,
189 HLEV_INTERRUPTED_CPU,
190 HLEV_INTERRUPTED_POST_BLOCK,
191};
192
193enum hlev_state_blocked {
194 HLEV_BLOCKED__UNDEFINED,
195 HLEV_BLOCKED__OPEN,
196 HLEV_BLOCKED__READ,
197 HLEV_BLOCKED__POLL,
198};
199
200struct sstack_event {
201 int event_type;
202 void *private;
203};
204
205struct try_wakeup_event {
206 int pid; /* this sould be more precise avec pid may be reused */
207 LttTime time;
208 struct process *waker;
209};
210
211struct process_state {
212 int bstate;
213 int cause_type;
214 void *private;
215
216 LttTime time_begin;
217 LttTime time_end;
218};
219
220struct process_with_state {
221 struct process *process;
222 struct process_state state;
223};
224
225#define PROCESS_STATE_STACK_SIZE 10
226struct process {
227 int pid;
228 GQuark name;
229 int parent;
230
231 struct sstack *stack;
232 struct process_state *llev_state_stack[PROCESS_STATE_STACK_SIZE];
233 int stack_current;
234 struct process_state *hlev_state;
235 GArray *hlev_history;
236};
237
238static inline void *old_process_state_private_data(struct process *p)
239{
240 return p->llev_state_stack[p->stack_current]->private;
241}
242
243static inline struct process_state *process_find_state(struct process *p, enum llev_state st)
244{
245 int i;
246
247 for(i=p->stack->array->len-1; i>=0; i--) {
248 struct sstack_item *item = g_array_index(p->stack->array, struct sstack_item *, i);
249
250 struct process_with_state *pwstate = item->data_val;
251 if(pwstate->state.bstate == st) {
252 return &pwstate->state;
253 }
254 }
255
256 return NULL;
257}
258
259static int find_pos_in_stack(enum llev_state lls, struct process *p)
260{
261 int i;
262 for(i=p->stack_current; i>=0; i--) {
263 if(p->llev_state_stack[i]->bstate == lls)
264 return i;
265 }
266
267 return -1;
268}
269
270static struct process_state *find_in_stack(enum llev_state lls, struct process *p)
271{
272 int result;
273
274 result = find_pos_in_stack(lls, p);
275
276 if(result >= 0)
277 return p->llev_state_stack[result];
278 else
279 return NULL;
280
281}
282
283/* called back from sstack on deletion of a data_val which is
284 * a struct process_with_state
285 */
286
287static void delete_data_val(struct process_with_state *pwstate)
288{
289 // FIXME: Free this also
290 //g_free(pwstate->state.private);
291
292 // FIXME: this is really ugly. Don't free the pwstate if the state is LLEV_RUNNING.
293 // LLEV_RUNNING is a special case that's being processed and deleted immediately after
294 // being inserted on the sstack, to prevent state begin accumulated because it couldn't
295 // be processed before the end of the trace. If we free the state, we get invalid memory
296 // reads when looking at it on the state_stack.
297 //if(pwstate->state.bstate != LLEV_RUNNING)
298 // g_free(pwstate);
299}
300
b1d18041
PMF
301inline void print_time(LttTime t)
302{
303 //printf("%lu.%lu", t.tv_sec, t.tv_nsec);
304 double f;
305 f = (double)t.tv_sec + ((double)t.tv_nsec)/1000000000.0;
306 printf("%.9f", f);
307}
308
8c108c1c
PMF
309static struct sstack_item *prepare_push_item(struct process *p, enum llev_state st, LttTime t)
310{
311 struct process_with_state *pwstate = g_malloc(sizeof(struct process_with_state));
312 struct sstack_item *item;
313
314 int wait_for_pop = 0;
315
316 if(st == LLEV_SYSCALL) {
317 /* We need to push LLEV_SYSCALL as wait_for_pop because it depends on some of
318 * its children. If we don't do this, it's going to get processed immediately
319 * by the sstack and we might miss some details about it that will come later.
320 */
321 wait_for_pop = 1;
322 }
323
324 item = sstack_item_new_push(wait_for_pop);
325
326 //printf("pushing in context of %d\n", p->pid);
327
328 pwstate->process = p;
329 pwstate->state.bstate = st;
330 pwstate->state.time_begin = t;
331 pwstate->state.private = g_malloc(llev_state_infos[st].size_priv);
332
333 item->data_val = pwstate;
b1d18041
PMF
334 item->delete_data_val = (void (*)(void*))delete_data_val;
335
336 return item;
8c108c1c
PMF
337}
338
339static void *item_private(struct sstack_item *item)
340{
341 struct process_with_state *pwstate = item->data_val;
342 return pwstate->state.private;
343}
344
345static void commit_item(struct process *p, struct sstack_item *item)
346{
347 sstack_add_item(p->stack, item);
348}
349
350static void old_process_push_llev_state(struct process *p, struct process_state *pstate)
351{
352 if(++p->stack_current >= PROCESS_STATE_STACK_SIZE) {
353 fprintf(stderr, "depanalysis: internal process stack overflow\n");
354 abort();
355 }
356
357 p->llev_state_stack[p->stack_current] = pstate;
358}
359
360static void live_complete_process_push_llev_state(struct process *p, enum llev_state st, LttTime t)
361{
362 struct process_state *pstate = g_malloc(sizeof(struct process_state));
363
364 pstate->bstate = st;
365 pstate->time_begin = t;
366 pstate->private = g_malloc(llev_state_infos[st].size_priv);
367
368 old_process_push_llev_state(p, pstate);
369}
370
371static void prepare_pop_item_commit_nocheck(struct process *p, enum llev_state st, LttTime t)
372{
373 struct process_with_state *pwstate;
374 struct sstack_item *item = sstack_item_new_pop();
375
376 int push_idx;
377
378 if(p->stack->pushes->len > 0)
379 push_idx = g_array_index(p->stack->pushes, int, p->stack->pushes->len-1);
380 else
381 push_idx = -1;
382
383 if(push_idx >= 0) {
384 pwstate = g_array_index(p->stack->array, struct sstack_item *, push_idx)->data_val;
385 pwstate->process = p;
386 pwstate->state.time_end = t;
387 item->data_val = pwstate;
388 /* don't set delete_data_val because we use the same pwstate as push, and we don't want to free it twice */
389 }
390 else {
391
392 pwstate = g_malloc(sizeof(struct process_with_state));
393 pwstate->process = p;
394 item->data_val = pwstate;
395 pwstate->state.time_end = t;
396 pwstate->state.bstate = st;
397 }
398
399 sstack_add_item(p->stack, item);
400
401}
402
403static void prepare_pop_item_commit(struct process *p, enum llev_state st, LttTime t)
404{
405 struct process_with_state *pwstate;
406 struct sstack_item *item = sstack_item_new_pop();
407
408 int push_idx;
409
410 if(p->stack->pushes->len > 0)
411 push_idx = g_array_index(p->stack->pushes, int, p->stack->pushes->len-1);
412 else
413 push_idx = -1;
414
415 if(push_idx >= 0) {
416 /* FIXME: ugly workaround for kernel bug that generates two kernel_arch_syscall_exit on fork.
417 * The bug only occurs upon creation of new processes. But these processes always have
418 * a LLEV_RUNNING at index 0. */
419 if(push_idx >= p->stack->array->len)
420 return;
421
422 pwstate = g_array_index(p->stack->array, struct sstack_item *, push_idx)->data_val;
423
424 if(pwstate->state.bstate != st) {
425 /* FIXME: ugly workaround for kernel bug that generates two kernel_arch_syscall_exit on fork */
426 if(st != LLEV_SYSCALL) {
427 printf("bad pop! at ");
428 print_time(t);
429 printf("\n");
430 print_stack(p->stack);
431 abort();
432 }
433 else {
434 /* case where we have a double syscall_exit */
435 return;
436 }
437 }
438 }
439
440 prepare_pop_item_commit_nocheck(p, st, t);
441}
442
443
444static int try_pop_blocked_llev_preempted(struct process *p, LttTime t)
445{
446 int push_idx;
447 struct process_with_state *pwstate;
448
449 if(p->stack->pushes->len > 0)
450 push_idx = g_array_index(p->stack->pushes, int, p->stack->pushes->len-1);
451 else
452 push_idx = -1;
453
454 if(push_idx >= 0) {
455 pwstate = g_array_index(p->stack->array, struct sstack_item *, push_idx)->data_val;
456
457 if(!(pwstate->state.bstate == LLEV_PREEMPTED && ((struct llev_state_info_preempted *)pwstate->state.private)->prev_state > 0)) {
55cd92ee 458 //printf("double try wake up\n");
8c108c1c
PMF
459 return 0;
460 }
461 }
462
463 prepare_pop_item_commit_nocheck(p, LLEV_PREEMPTED, t);
464 return 1;
465}
466
467static void old_process_pop_llev_state(struct process *p, struct process_state *pstate)
468{
469 /* Ensure we are really popping the current state */
470 /* FIXME: pstate->bstate is uninitialized? */
471 // Commenting because it does not work. The way things work now, this check cannot work.
472 //if(p->llev_state_stack[p->stack_current]->bstate != LLEV_UNKNOWN && p->llev_state_stack[p->stack_current]->bstate != pstate->bstate) {
473 // printf("ERROR! bad pop!\n");
474 // abort();
475 //}
476
477 /* Actually change the that position */
478 if(p->stack_current >= 0)
479 p->stack_current--;
480
481 /* If stack empty, we must put something in it */
482 if(p->stack_current == -1) {
483 if(pstate->bstate == LLEV_SYSCALL) {
484 //process_push_llev_state(p, LLEV_RUNNING, pstate->time_end);
485 live_complete_process_push_llev_state(p, LLEV_RUNNING, pstate->time_end);
486 }
487 else {
488 live_complete_process_push_llev_state(p, LLEV_UNKNOWN, pstate->time_end);
489 }
490 }
491}
492
493static GHashTable *process_hash_table;
494static GHashTable *syscall_table;
495static GHashTable *irq_table;
496static GHashTable *softirq_table;
497
498/* Insert the hooks before and after each trace and tracefile, and for each
499 event. Print a global header. */
500
501static FILE *a_file;
502
503static GString *a_string;
504
505static gboolean write_traceset_header(void *hook_data, void *call_data)
506{
507 LttvTracesetContext *tc = (LttvTracesetContext *)call_data;
508
509 g_info("Traceset header");
510
511 /* Print the trace set header */
55cd92ee 512 g_info(a_file,"Trace set contains %d traces\n\n",
8c108c1c
PMF
513 lttv_traceset_number(tc->ts));
514
515 return FALSE;
516}
517
b1d18041 518GArray *oldstyle_stack_to_garray(struct process_state **oldstyle_stack, int current)
8c108c1c
PMF
519{
520 GArray *retval;
521 int i;
522
b1d18041 523 retval = g_array_new(FALSE, FALSE, sizeof(struct process_state *));
8c108c1c
PMF
524
525 for(i=0; i<current; i++) {
526 g_array_append_val(retval, oldstyle_stack[i]);
527 }
528
529 return retval;
530}
531
532static void update_hlev_state(struct process *p, LttTime t)
533{
534 int i;
535
536 enum hlev_state new_hlev;
537
538 for(i=p->stack_current; i>=0; i--) {
539 enum llev_state st;
540 st = p->llev_state_stack[i]->bstate;
541
542 if(st == LLEV_RUNNING || st == LLEV_TRAP || st == LLEV_SYSCALL) {
543 new_hlev = HLEV_RUNNING;
544 break;
545 }
546 else if(st == LLEV_IRQ) {
547 new_hlev = HLEV_INTERRUPTED_IRQ;
548 break;
549 }
550 else if(st == LLEV_SOFTIRQ) {
551 new_hlev = HLEV_INTERRUPTED_SOFTIRQ;
552 break;
553 }
554 else if(st == LLEV_PREEMPTED) {
555 int prev_state = ((struct llev_state_info_preempted *) old_process_state_private_data(p))->prev_state;
556
557 if(prev_state == 0) {
558 new_hlev = HLEV_INTERRUPTED_CPU;
559 }
560 else if(prev_state == -1) {
561 new_hlev = HLEV_INTERRUPTED_POST_BLOCK;
562 }
563 else {
564 new_hlev = HLEV_BLOCKED;
565 }
566 break;
567 }
568 else if(st == LLEV_UNKNOWN) {
569 new_hlev = HLEV_UNKNOWN;
570 break;
571 }
572 else {
573 abort();
574 }
575 }
576
577 /* If no state change, do nothing */
578 if(p->hlev_state != NULL && new_hlev == p->hlev_state->bstate) {
579 return;
580 }
581
582 p->hlev_state->time_end = t;
583 /* This check is here because we initially put HLEV_UNKNOWN as hlev state, but in the case
584 * of processes newly created, it is immediately replaced by HLEV_BLOCKED. In order to avoid
585 * having a UNKNOWN state of duration 0 in the summary, we don't add it. This isn't as elegant
586 * as it ought to be.
587 */
588 if(ltt_time_compare(p->hlev_state->time_begin, p->hlev_state->time_end) != 0)
589 g_array_append_val(p->hlev_history, p->hlev_state);
590 p->hlev_state = g_malloc(sizeof(struct process_state));
591 p->hlev_state->bstate = new_hlev;
592 p->hlev_state->time_begin = t;
593 p->hlev_state->private = g_malloc(hlev_state_infos[new_hlev].size_priv);
594
595 //printf("depanalysis: now at hlev state %s\n", hlev_state_infos[new_hlev].name);
596
597 /* Set private data */
598 switch(p->hlev_state->bstate) {
599 case HLEV_UNKNOWN:
600 break;
601 case HLEV_RUNNING:
602 break;
603 case HLEV_BLOCKED: {
604 struct hlev_state_info_blocked *hlev_blocked_private = p->hlev_state->private;
605 //struct process_state *ps = find_in_stack(LLEV_SYSCALL, p);
606 int syscall_pos = find_pos_in_stack(LLEV_SYSCALL, p);
607 int trap_pos = find_pos_in_stack(LLEV_TRAP, p);
608
609 /* init vals */
610 hlev_blocked_private->syscall_id = 1;
611 hlev_blocked_private->trap = 0;
612 hlev_blocked_private->substate = HLEV_BLOCKED__UNDEFINED;
613 hlev_blocked_private->private = NULL;
614 hlev_blocked_private->llev_state_entry = oldstyle_stack_to_garray(p->llev_state_stack, p->stack_current);
615 hlev_blocked_private->llev_state_exit = NULL;
616
617 //g_assert(syscall_pos >= 0 || trap_pos >= 0);
618
619 if(trap_pos > syscall_pos) {
620 hlev_blocked_private->trap = 1;
621 }
622
623 /* initial value, may be changed below */
624 hlev_blocked_private->substate = HLEV_BLOCKED__UNDEFINED;
625
626 if(syscall_pos >= 0) {
627 struct process_state *ps = p->llev_state_stack[syscall_pos];
628 struct llev_state_info_syscall *llev_syscall_private = (struct llev_state_info_syscall *) ps->private;
629 hlev_blocked_private->syscall_id = llev_syscall_private->syscall_id;
630
631 if(llev_syscall_private->substate == LLEV_SYSCALL__OPEN) {
632 struct llev_state_info_syscall__open *llev_syscall_open_private;
633 struct hlev_state_info_blocked__open *hlev_blocked_open_private;
634 llev_syscall_open_private = llev_syscall_private->private;
635 hlev_blocked_private->substate = HLEV_BLOCKED__OPEN;
636 hlev_blocked_open_private = g_malloc(sizeof(struct hlev_state_info_blocked__open));
637 hlev_blocked_private->private = hlev_blocked_open_private;
638 hlev_blocked_open_private->filename = llev_syscall_open_private->filename;
639
640 //printf("depanalysis: blocked in an open!\n");
641 }
642 else if(llev_syscall_private->substate == LLEV_SYSCALL__READ) {
643 struct llev_state_info_syscall__read *llev_syscall_read_private;
644 struct hlev_state_info_blocked__read *hlev_blocked_read_private;
645 llev_syscall_read_private = llev_syscall_private->private;
646 hlev_blocked_private->substate = HLEV_BLOCKED__READ;
647 hlev_blocked_read_private = g_malloc(sizeof(struct hlev_state_info_blocked__read));
648 hlev_blocked_private->private = hlev_blocked_read_private;
649 hlev_blocked_read_private->filename = llev_syscall_read_private->filename;
650
651 //printf("depanalysis: blocked in a read!\n");
652 }
653 else if(llev_syscall_private->substate == LLEV_SYSCALL__POLL) {
654 struct llev_state_info_syscall__poll *llev_syscall_poll_private;
655 struct hlev_state_info_blocked__poll *hlev_blocked_poll_private;
656 llev_syscall_poll_private = llev_syscall_private->private;
657 hlev_blocked_private->substate = HLEV_BLOCKED__POLL;
658 hlev_blocked_poll_private = g_malloc(sizeof(struct hlev_state_info_blocked__poll));
659 hlev_blocked_private->private = hlev_blocked_poll_private;
660 hlev_blocked_poll_private->filename = llev_syscall_poll_private->filename;
661
662 //printf("depanalysis: blocked in a read!\n");
663 }
664 }
665 else {
666 hlev_blocked_private->syscall_id = -1;
667 }
668
669 break;
670 }
671 case HLEV_INTERRUPTED_IRQ: {
672 struct hlev_state_info_interrupted_irq *sinfo = p->hlev_state->private;
673 struct process_state *ps = find_in_stack(LLEV_IRQ, p);
674 if(ps == NULL)
675 abort();
676 else
677 sinfo->irq = ((struct llev_state_info_irq *) ps->private)->irq;
678 break;
679 }
680 case HLEV_INTERRUPTED_SOFTIRQ: {
681 struct hlev_state_info_interrupted_softirq *sinfo = p->hlev_state->private;
682 struct process_state *ps = find_in_stack(LLEV_SOFTIRQ, p);
683 if(ps == NULL)
684 abort();
685 else
686 sinfo->softirq = ((struct llev_state_info_softirq *) ps->private)->softirq;
687 break;
688 }
689 default:
690 break;
691 };
692}
693
694static gint compare_summary_tree_node_times(gconstpointer a, gconstpointer b)
695{
696 struct summary_tree_node *n1 = (struct summary_tree_node *) a;
697 struct summary_tree_node *n2 = (struct summary_tree_node *) b;
698
699 return ltt_time_compare(n2->duration, n1->duration);
700}
701
702/* Print an item of the simple summary tree, and recurse, printing its children.
703 *
704 * If depth == -1, this is the root: we don't print a label, we only recurse into
705 * the children.
706 */
707
708static void print_summary_item(struct summary_tree_node *node, int depth)
709{
710 GList *vals;
711
712 if(depth >= 0) {
713 printf("\t%*s (", strlen(node->name)+2*depth, node->name);
714 print_time(node->duration);
715 printf(") <%d>\n", node->id_for_episodes);
716 }
717
718 if(!node->children)
719 return;
720
721 vals = g_hash_table_get_values(node->children);
722
723 /* sort the values */
724 vals = g_list_sort(vals, compare_summary_tree_node_times);
725
726 while(vals) {
727 print_summary_item((struct summary_tree_node *)vals->data, depth+1);
728 vals = vals->next;
729 }
730
731 /* we must free the list returned by g_hash_table_get_values() */
732 g_list_free(vals);
733}
734
735static inline void print_irq(int irq)
736{
737 printf("IRQ %d [%s]", irq, g_quark_to_string(g_hash_table_lookup(irq_table, &irq)));
738}
739
740static inline void print_softirq(int softirq)
741{
742 printf("SoftIRQ %d [%s]", softirq, g_quark_to_string(g_hash_table_lookup(softirq_table, &softirq)));
743}
744
745static inline void print_pid(int pid)
746{
747 struct process *event_process_info = g_hash_table_lookup(process_hash_table, &pid);
748
749 char *pname;
750
751 if(event_process_info == NULL)
752 pname = "?";
753 else
754 pname = g_quark_to_string(event_process_info->name);
755 printf("%d [%s]", pid, pname);
756}
757
758static void modify_path_with_private(GArray *path, struct process_state *pstate)
759{
760 //GString tmps = g_string_new("");
761 char *tmps;
762
763 // FIXME: fix this leak
764 switch(pstate->bstate) {
765 case HLEV_INTERRUPTED_IRQ:
766 asprintf(&tmps, "IRQ %d [%s]", ((struct hlev_state_info_interrupted_irq *)pstate->private)->irq, g_quark_to_string(g_hash_table_lookup(irq_table, &((struct hlev_state_info_interrupted_irq *)pstate->private)->irq)));
767 g_array_append_val(path, tmps);
768 break;
769 case HLEV_INTERRUPTED_SOFTIRQ:
770 asprintf(&tmps, "SoftIRQ %d [%s]", ((struct hlev_state_info_interrupted_softirq *)pstate->private)->softirq, g_quark_to_string(g_hash_table_lookup(softirq_table, &((struct hlev_state_info_interrupted_softirq *)pstate->private)->softirq)));
771 g_array_append_val(path, tmps);
772 break;
773 case HLEV_BLOCKED: {
774 struct hlev_state_info_blocked *hlev_blocked_private = (struct hlev_state_info_blocked *)pstate->private;
775
776 if(hlev_blocked_private->trap) {
777 char *ptr = "Trap";
778 g_array_append_val(path, ptr);
779 }
780
781 if(hlev_blocked_private->syscall_id == -1) {
782 char *ptr = "Userspace";
783 g_array_append_val(path, ptr);
784 }
785 else {
786 asprintf(&tmps, "Syscall %d [%s]", hlev_blocked_private->syscall_id, g_quark_to_string(g_hash_table_lookup(syscall_table, &hlev_blocked_private->syscall_id)));
787 g_array_append_val(path, tmps);
788 }
789
790 if(((struct hlev_state_info_blocked *)pstate->private)->substate == HLEV_BLOCKED__OPEN) {
791 char *str = g_quark_to_string(((struct hlev_state_info_blocked__open *)((struct hlev_state_info_blocked *)pstate->private)->private)->filename);
792 g_array_append_val(path, str);
793 }
794 else if(((struct hlev_state_info_blocked *)pstate->private)->substate == HLEV_BLOCKED__READ) {
795 char *str;
796 asprintf(&str, "%s", g_quark_to_string(((struct hlev_state_info_blocked__read *)((struct hlev_state_info_blocked *)pstate->private)->private)->filename));
797 g_array_append_val(path, str);
798 /* FIXME: this must be freed at some point */
799 //free(str);
800 }
801 else if(((struct hlev_state_info_blocked *)pstate->private)->substate == HLEV_BLOCKED__POLL) {
802 char *str;
803 asprintf(&str, "%s", g_quark_to_string(((struct hlev_state_info_blocked__poll *)((struct hlev_state_info_blocked *)pstate->private)->private)->filename));
804 g_array_append_val(path, str);
805 /* FIXME: this must be freed at some point */
806 //free(str);
807 }
808 break;
809 }
810 };
811}
812
813void print_stack_garray_horizontal(GArray *stack)
814{
815 /* FIXME: this function doesn't work if we delete the states as we process them because we
816 * try to read those states here to print the low level stack.
817 */
818 int i;
819
820 for(i=0; i<stack->len; i++) {
821 struct process_state *pstate = g_array_index(stack, struct process_state *, i);
822 printf("%s", llev_state_infos[pstate->bstate].name);
823
824 if(pstate->bstate == LLEV_SYSCALL) {
825 struct llev_state_info_syscall *llev_syscall_private = pstate->private;
826 printf(" %d [%s]", llev_syscall_private->syscall_id, g_quark_to_string(g_hash_table_lookup(syscall_table, &llev_syscall_private->syscall_id)));
827 }
828
829 printf(", ");
830
831 }
832}
833
834static int dicho_search_state_ending_after(struct process *p, LttTime t)
835{
836 int under = 0;
837 int over = p->hlev_history->len-1;
838 struct process_state *pstate;
839 int result;
840
841 if(over < 1)
842 return -1;
843
844 /* If the last element is smaller or equal than the time we are searching for,
845 * no match
846 */
847 pstate = g_array_index(p->hlev_history, struct process_state *, over);
848 if(ltt_time_compare(pstate->time_end, t) <= 0) {
849 return -1;
850 }
851 /* no need to check for the equal case */
852
853 pstate = g_array_index(p->hlev_history, struct process_state *, under);
854 result = ltt_time_compare(pstate->time_end, t);
855 if(result >= 1) {
856 /* trivial match at the first element if it is greater or equal
857 * than the time we want
858 */
859 return under;
860 }
861
862 while(1) {
863 int dicho;
864
865 dicho = (under+over)/2;
866 pstate = g_array_index(p->hlev_history, struct process_state *, dicho);
867 result = ltt_time_compare(pstate->time_end, t);
868
869 if(result == -1) {
870 under = dicho;
871 }
872 else if(result == 1) {
873 over = dicho;
874 }
875 else {
876 /* exact match */
877 return dicho+1;
878 }
879
880 if(over-under == 1) {
881 /* we have converged */
882 return over;
883 }
884 }
885
886}
887
888/* FIXME: this shouldn't be based on pids in case of reuse
889 * FIXME: should add a list of processes used to avoid loops
890 */
891
892static struct process_state *find_state_ending_after(int pid, LttTime t)
893{
894 struct process *p;
895 int result;
896
897
898 p = g_hash_table_lookup(process_hash_table, &pid);
899 if(!p)
900 return NULL;
901
902 result = dicho_search_state_ending_after(p, t);
903
904 if(result == -1)
905 return NULL;
906 else
907 return g_array_index(p->hlev_history, struct process_state *, result);
908}
909
8d308134
MD
910static void print_indent(int offset)
911{
912 if (offset > 2) {
913 int i;
914
915 printf("%*s", 8, "");
916 for (i = 3; i < offset; i++) {
917 printf("|");
918 printf("%*s", 4, "");
919 }
920 } else
921 printf("%*s", 4*offset, "");
922}
923
8c108c1c
PMF
924static void print_delay_pid(int pid, LttTime t1, LttTime t2, int offset)
925{
926 struct process *p;
927 int i;
928
929 p = g_hash_table_lookup(process_hash_table, &pid);
930 if(!p)
931 return;
932
933 i = dicho_search_state_ending_after(p, t1);
934 for(; i<p->hlev_history->len; i++) {
935 struct process_state *pstate = g_array_index(p->hlev_history, struct process_state *, i);
936 if(ltt_time_compare(pstate->time_end, t2) > 0)
937 break;
938
939 if(pstate->bstate == HLEV_BLOCKED) {
940 struct hlev_state_info_blocked *state_private_blocked;
941 state_private_blocked = pstate->private;
942 struct process_state *state_unblocked;
943
8d308134
MD
944 print_indent(offset);
945 printf("--> Blocked in ");
8c108c1c
PMF
946 print_stack_garray_horizontal(state_private_blocked->llev_state_entry);
947
948 printf("(times: ");
949 print_time(pstate->time_begin);
950 printf("-");
951 print_time(pstate->time_end);
952
953 printf(", dur: %f)\n", 1e-9*ltt_time_to_double(ltt_time_sub(pstate->time_end, pstate->time_begin)));
954
955 state_unblocked = find_state_ending_after(state_private_blocked->pid_exit, state_private_blocked->time_woken);
956 if(state_unblocked) {
957 if(state_unblocked->bstate == HLEV_INTERRUPTED_IRQ) {
958 struct hlev_state_info_interrupted_irq *priv = state_unblocked->private;
959 /* if in irq or softirq, we don't care what the waking process was doing because they are asynchroneous events */
8d308134
MD
960 print_indent(offset);
961 printf("--- Woken up by an IRQ: ");
8c108c1c
PMF
962 print_irq(priv->irq);
963 printf("\n");
964 }
965 else if(state_unblocked->bstate == HLEV_INTERRUPTED_SOFTIRQ) {
966 struct hlev_state_info_interrupted_softirq *priv = state_unblocked->private;
8d308134
MD
967 print_indent(offset);
968 printf("--- Woken up by a SoftIRQ: ");
8c108c1c
PMF
969 print_softirq(priv->softirq);
970 printf("\n");
971 }
972 else {
973 LttTime t1prime=t1;
974 LttTime t2prime=t2;
975
976 if(ltt_time_compare(t1prime, pstate->time_begin) < 0)
977 t1prime = pstate->time_begin;
978 if(ltt_time_compare(t2prime, pstate->time_end) > 0)
979 t2prime = pstate->time_end;
980
981 print_delay_pid(state_private_blocked->pid_exit, t1prime, t2prime, offset+1);
8d308134
MD
982 print_indent(offset);
983 printf("--- Woken up in context of ");
8c108c1c
PMF
984 print_pid(state_private_blocked->pid_exit);
985 if(state_private_blocked->llev_state_exit) {
986 print_stack_garray_horizontal(state_private_blocked->llev_state_exit);
987 }
988 else {
989 }
990 printf(" in high-level state %s", hlev_state_infos[state_unblocked->bstate].name);
991 printf("\n");
992 }
993 }
994 else {
8d308134 995 print_indent(offset);
8c108c1c
PMF
996 printf("Weird... cannot find in what state the waker (%d) was\n", state_private_blocked->pid_exit);
997 }
998
999
1000 //print_delay_pid(state_private_blocked->pid_exit, pstate->time_start, pstate->time_end);
1001 //printf("\t\t Woken up in context of %d: ", state_private_blocked->pid_exit);
1002 //if(state_private_blocked->llev_state_exit) {
1003 // print_stack_garray_horizontal(state_private_blocked->llev_state_exit);
1004 // printf("here3 (%d)\n", state_private_blocked->llev_state_exit->len);
1005 //}
1006 //else
1007 // printf("the private_blocked %p had a null exit stack\n", state_private_blocked);
1008 //printf("\n");
1009 }
1010 }
1011}
1012
1013static void print_range_critical_path(int process, LttTime t1, LttTime t2)
1014{
1015 printf("Critical path for requested range:\n");
1016 printf("Final process is %d\n", process);
1017 print_delay_pid(process, t1, t2, 2);
1018}
1019
8d308134
MD
1020/*
1021 * output legend example:
1022 *
1023 * --> Blocked in RUNNING, SYSCALL NNN [syscall_name]
1024 * | ---> Blocked in RUNNING, SYSCALL NNN [syscall_name]
1025 * | | --> Blocked in RUNNING, SYSCALL [syscall_name]
1026 * | | --- Woken up by an IRQ: IRQ 0 [timer]
1027 * | --- Woken up in context of PID [appname] in high-level state RUNNING
1028 * --- Woken up in context of PID [appname] in high-level state RUNNING
1029 */
1030
8c108c1c
PMF
1031static void print_process_critical_path_summary()
1032{
1033 struct process *pinfo;
1034 GList *pinfos;
1035 int i,j;
1036
1037 pinfos = g_hash_table_get_values(process_hash_table);
1038 if(pinfos == NULL) {
1039 fprintf(stderr, "error: no process found\n");
1040 return;
1041 }
1042
1043 printf("Process Critical Path Summary:\n");
1044
1045 for(;;) {
1046 struct summary_tree_node base_node = { children: NULL };
1047
1048 struct process_state *hlev_state_cur;
1049
1050 pinfo = (struct process *)pinfos->data;
55cd92ee
MD
1051 if (depanalysis_range_pid_searching != -1 && pinfo->pid != depanalysis_range_pid_searching)
1052 goto next_iter;
8c108c1c
PMF
1053 printf("\tProcess %d [%s]\n", pinfo->pid, g_quark_to_string(pinfo->name));
1054
1055 if(pinfo->hlev_history->len < 1)
1056 goto next_iter;
1057
1058 print_delay_pid(pinfo->pid, g_array_index(pinfo->hlev_history, struct process_state *, 0)->time_begin, g_array_index(pinfo->hlev_history, struct process_state *, pinfo->hlev_history->len - 1)->time_end, 2);
1059
1060 next_iter:
1061
1062 if(pinfos->next)
1063 pinfos = pinfos->next;
1064 else
1065 break;
1066 }
1067}
1068
1069gint compare_states_length(gconstpointer a, gconstpointer b)
1070{
1071 struct process_state **s1 = (struct process_state **)a;
1072 struct process_state **s2 = (struct process_state **)b;
1073 gint val;
1074
1075 val = ltt_time_compare(ltt_time_sub((*s2)->time_end, (*s2)->time_begin), ltt_time_sub((*s1)->time_end, (*s1)->time_begin));
1076 return val;
1077}
1078
55cd92ee 1079static void print_simple_summary(void)
8c108c1c
PMF
1080{
1081 struct process *pinfo;
1082 GList *pinfos;
1083 GList *pinfos_first;
1084 int i,j;
1085 int id_for_episodes = 0;
1086
55cd92ee
MD
1087 if (!a_print_simple_summary)
1088 return;
1089
8c108c1c
PMF
1090 /* we save all the nodes here to print the episodes table quickly */
1091 GArray *all_nodes = g_array_new(FALSE, FALSE, sizeof(struct summary_tree_node *));
1092
1093 pinfos_first = g_hash_table_get_values(process_hash_table);
1094 if(pinfos_first == NULL) {
1095 fprintf(stderr, "error: no processes found\n");
1096 return;
1097 }
1098 pinfos = pinfos_first;
1099
1100 printf("Simple summary:\n");
1101
1102 /* For each process */
1103 for(;;) {
1104 struct summary_tree_node base_node = { children: NULL, name: "Root" };
1105
1106 struct process_state *hlev_state_cur;
1107
1108 pinfo = (struct process *)pinfos->data;
1109 printf("\tProcess %d [%s]\n", pinfo->pid, g_quark_to_string(pinfo->name));
1110
1111 /* For each state in the process history */
1112 for(i=0; i<pinfo->hlev_history->len; i++) {
1113 struct process_state *pstate = g_array_index(pinfo->hlev_history, struct process_state *, i);
1114 struct summary_tree_node *node_cur = &base_node;
1115 GArray *tree_path_garray;
1116
1117 /* Modify the path based on private data */
1118 tree_path_garray = g_array_new(FALSE, FALSE, sizeof(char *));
1119 {
1120 int count=0;
1121 char **tree_path_cur2 = hlev_state_infos[pstate->bstate].tree_path;
1122 while(*tree_path_cur2) {
1123 count++;
1124 tree_path_cur2++;
1125 }
1126 g_array_append_vals(tree_path_garray, hlev_state_infos[pstate->bstate].tree_path, count);
1127 }
1128 modify_path_with_private(tree_path_garray, pstate);
1129
1130 /* Walk the path, adding the nodes to the summary */
1131 for(j=0; j<tree_path_garray->len; j++) {
1132 struct summary_tree_node *newnode;
1133 GQuark componentquark;
1134
1135 /* Have a path component we must follow */
1136 if(!node_cur->children) {
1137 /* must create the hash table for the children */
1138 node_cur->children = g_hash_table_new(g_int_hash, g_int_equal);
1139 }
1140
1141 /* try to get the node for the next component */
1142 componentquark = g_quark_from_string(g_array_index(tree_path_garray, char *, j));
1143 newnode = g_hash_table_lookup(node_cur->children, &componentquark);
1144 if(newnode == NULL) {
1145 newnode = g_malloc(sizeof(struct summary_tree_node));
1146 newnode->children = NULL;
1147 newnode->name = g_array_index(tree_path_garray, char *, j);
1148 newnode->duration = ltt_time_zero;
1149 newnode->id_for_episodes = id_for_episodes++;
1150 newnode->episodes = g_array_new(FALSE, FALSE, sizeof(struct process_state *));
1151 g_hash_table_insert(node_cur->children, &componentquark, newnode);
1152
1153 g_array_append_val(all_nodes, newnode);
1154 }
1155 node_cur = newnode;
1156
1157 node_cur->duration = ltt_time_add(node_cur->duration, ltt_time_sub(pstate->time_end, pstate->time_begin));
1158 g_array_append_val(node_cur->episodes, pstate);
1159 }
1160 }
1161
1162 /* print the summary */
1163 print_summary_item(&base_node, -1);
1164
1165 printf("\n");
1166
1167 if(pinfos->next)
1168 pinfos = pinfos->next;
1169 else
1170 break;
1171 }
1172
1173 printf("\n");
1174
1175 printf("Episode list\n");
1176 pinfos = pinfos_first;
1177
1178 /* For all the nodes of the Simple summary tree */
1179 for(i=0; i<all_nodes->len; i++) {
1180 struct summary_tree_node *node = (struct summary_tree_node *)g_array_index(all_nodes, struct summary_tree_node *, i);
1181
1182 /* Sort the episodes from longest to shortest */
1183 g_array_sort(node->episodes, compare_states_length);
1184
1185 printf("\tNode id: <%d>\n", node->id_for_episodes);
1186 /* For each episode of the node */
1187 for(j=0; j<node->episodes->len; j++) {
1188 struct process_state *st = g_array_index(node->episodes, struct process_state *, j);
1189
1190 printf("\t\t");
1191 print_time(st->time_begin);
1192 printf("-");
1193 print_time(st->time_end);
1194 printf(" (%f)\n", 1e-9*ltt_time_to_double(ltt_time_sub(st->time_end,st->time_begin)));
1195 }
1196 }
1197}
1198
1199static void print_simple_summary_pid_range(int pid, LttTime t1, LttTime t2)
1200{
1201 struct process *pinfo;
1202 int i,j;
1203 int id_for_episodes = 0;
1204
1205 /* we save all the nodes here to print the episodes table quickly */
1206 GArray *all_nodes = g_array_new(FALSE, FALSE, sizeof(struct summary_tree_node *));
1207
1208 pinfo = g_hash_table_lookup(process_hash_table, &pid);
1209
1210 {
1211 struct summary_tree_node base_node = { children: NULL, name: "Root" };
1212
1213 struct process_state *hlev_state_cur;
1214
1215 printf("\tProcess %d [%s]\n", pinfo->pid, g_quark_to_string(pinfo->name));
1216
1217 /* For each state in the process history */
1218 for(i=0; i<pinfo->hlev_history->len; i++) {
1219 struct process_state *pstate = g_array_index(pinfo->hlev_history, struct process_state *, i);
1220 struct summary_tree_node *node_cur = &base_node;
1221 GArray *tree_path_garray;
1222
1223 if(ltt_time_compare(pstate->time_end, t1) < 0)
1224 continue;
1225
1226 if(ltt_time_compare(pstate->time_end, t2) > 0)
1227 break;
1228
1229 /* Modify the path based on private data */
1230 tree_path_garray = g_array_new(FALSE, FALSE, sizeof(char *));
1231 {
1232 int count=0;
1233 char **tree_path_cur2 = hlev_state_infos[pstate->bstate].tree_path;
1234 while(*tree_path_cur2) {
1235 count++;
1236 tree_path_cur2++;
1237 }
1238 g_array_append_vals(tree_path_garray, hlev_state_infos[pstate->bstate].tree_path, count);
1239 }
1240 modify_path_with_private(tree_path_garray, pstate);
1241
1242 /* Walk the path, adding the nodes to the summary */
1243 for(j=0; j<tree_path_garray->len; j++) {
1244 struct summary_tree_node *newnode;
1245 GQuark componentquark;
1246
1247 /* Have a path component we must follow */
1248 if(!node_cur->children) {
1249 /* must create the hash table for the children */
1250 node_cur->children = g_hash_table_new(g_int_hash, g_int_equal);
1251 }
1252
1253 /* try to get the node for the next component */
1254 componentquark = g_quark_from_string(g_array_index(tree_path_garray, char *, j));
1255 newnode = g_hash_table_lookup(node_cur->children, &componentquark);
1256 if(newnode == NULL) {
1257 newnode = g_malloc(sizeof(struct summary_tree_node));
1258 newnode->children = NULL;
1259 newnode->name = g_array_index(tree_path_garray, char *, j);
1260 newnode->duration = ltt_time_zero;
1261 newnode->id_for_episodes = id_for_episodes++;
1262 newnode->episodes = g_array_new(FALSE, FALSE, sizeof(struct process_state *));
1263 g_hash_table_insert(node_cur->children, &componentquark, newnode);
1264
1265 g_array_append_val(all_nodes, newnode);
1266 }
1267 node_cur = newnode;
1268
1269 node_cur->duration = ltt_time_add(node_cur->duration, ltt_time_sub(pstate->time_end, pstate->time_begin));
1270 g_array_append_val(node_cur->episodes, pstate);
1271 }
1272 }
1273
1274 /* print the summary */
1275 print_summary_item(&base_node, -1);
1276
1277 printf("\n");
1278 }
1279
1280 printf("\n");
1281
1282 printf("Episode list\n");
1283
1284 /* For all the nodes of the Simple summary tree */
1285 for(i=0; i<all_nodes->len; i++) {
1286 struct summary_tree_node *node = (struct summary_tree_node *)g_array_index(all_nodes, struct summary_tree_node *, i);
1287
1288 /* Sort the episodes from longest to shortest */
1289 g_array_sort(node->episodes, compare_states_length);
1290
1291 printf("\tNode id: <%d>\n", node->id_for_episodes);
1292 /* For each episode of the node */
1293 for(j=0; j<node->episodes->len; j++) {
1294 struct process_state *st = g_array_index(node->episodes, struct process_state *, j);
1295
1296 printf("\t\t");
1297 print_time(st->time_begin);
1298 printf("-");
1299 print_time(st->time_end);
1300 printf(" (%f)\n", 1e-9*ltt_time_to_double(ltt_time_sub(st->time_end,st->time_begin)));
1301 }
1302 }
1303}
1304
1305static void flush_process_sstacks(void)
1306{
1307 GList *pinfos;
1308
1309 pinfos = g_hash_table_get_values(process_hash_table);
1310 while(pinfos) {
1311 struct process *pinfo = (struct process *)pinfos->data;
1312
1313 sstack_force_flush(pinfo->stack);
1314
1315 pinfos = pinfos->next;
1316 }
1317
1318 g_list_free(pinfos);
1319}
1320
1321struct family_item {
1322 int pid;
1323 LttTime creation;
1324};
1325
1326void print_range_reports(int pid, LttTime t1, LttTime t2)
1327{
1328 GArray *family = g_array_new(FALSE, FALSE, sizeof(struct family_item));
1329 int i;
1330
1331 /* reconstruct the parental sequence */
1332 for(;;) {
1333 struct process *pinfo;
1334 struct family_item fi;
1335 LttTime cur_beg;
1336
1337 pinfo = g_hash_table_lookup(process_hash_table, &pid);
1338 if(pinfo == NULL)
1339 abort();
1340
1341 fi.pid = pid;
1342 cur_beg = g_array_index(pinfo->hlev_history, struct process_state *, 0)->time_begin;
1343 fi.creation = cur_beg;
1344 g_array_append_val(family, fi);
1345
1346 if(ltt_time_compare(cur_beg, t1) == -1) {
1347 /* current pid starts before the interesting time */
1348 break;
1349 }
1350 if(pinfo->parent == -1) {
1351 printf("unable to go back, we don't know the parent of %d\n", fi.pid);
1352 abort();
1353 }
1354 /* else, we go on */
1355 pid = pinfo->parent;
1356
1357 }
1358
1359 printf("Simple summary for range:\n");
1360 for(i=family->len-1; i>=0; i--) {
1361 LttTime iter_t1, iter_t2;
1362 int iter_pid = g_array_index(family, struct family_item, i).pid;
1363
1364 if(i == family->len-1)
1365 iter_t1 = t1;
1366 else
1367 iter_t1 = g_array_index(family, struct family_item, i).creation;
1368
1369 if(i == 0)
1370 iter_t2 = t2;
1371 else
1372 iter_t2 = g_array_index(family, struct family_item, i-1).creation;
1373
1374 printf("This section of summary concerns pid %d between ");
1375 print_time(iter_t1);
1376 printf(" and ");
1377 print_time(iter_t2);
1378 printf(".\n");
1379 print_simple_summary_pid_range(iter_pid, iter_t1, iter_t2);
1380 }
1381 print_range_critical_path(depanalysis_range_pid, t1, t2);
1382}
1383
1384static gboolean write_traceset_footer(void *hook_data, void *call_data)
1385{
1386 LttvTracesetContext *tc = (LttvTracesetContext *)call_data;
1387
1388 g_info("TextDump traceset footer");
1389
55cd92ee 1390 g_info(a_file,"End trace set\n\n");
8c108c1c
PMF
1391
1392// if(LTTV_IS_TRACESET_STATS(tc)) {
1393// lttv_stats_sum_traceset((LttvTracesetStats *)tc, ltt_time_infinite);
1394// print_stats(a_file, (LttvTracesetStats *)tc);
1395// }
1396
1397 /* After processing all the events, we need to flush the sstacks
1398 * because some unfinished states may remain in them. We want them
1399 * event though there are incomplete.
1400 */
1401 flush_process_sstacks();
1402
1403 /* print the reports */
1404 print_simple_summary();
1405 print_process_critical_path_summary();
8c108c1c 1406 if(depanalysis_use_time == 3) {
55cd92ee 1407 printf("depanalysis_use_time = %d\n", depanalysis_use_time);
8c108c1c
PMF
1408 if(depanalysis_range_pid == -1 && depanalysis_range_pid_searching >= 0)
1409 depanalysis_range_pid = depanalysis_range_pid_searching;
1410
1411 if(depanalysis_range_pid >= 0) {
1412 print_range_reports(depanalysis_range_pid, depanalysis_time1, depanalysis_time2);
1413 }
1414 else
1415 printf("range critical path: could not find the end of the range\n");
1416 }
1417
1418 return FALSE;
1419}
1420
1421#if 0
1422static gboolean write_trace_header(void *hook_data, void *call_data)
1423{
1424 LttvTraceContext *tc = (LttvTraceContext *)call_data;
1425#if 0 //FIXME
1426 LttSystemDescription *system = ltt_trace_system_description(tc->t);
1427
1428 fprintf(a_file," Trace from %s in %s\n%s\n\n",
1429 ltt_trace_system_description_node_name(system),
1430 ltt_trace_system_description_domain_name(system),
1431 ltt_trace_system_description_description(system));
1432#endif //0
1433 return FALSE;
1434}
1435#endif
1436
1437
1438static int write_event_content(void *hook_data, void *call_data)
1439{
1440 gboolean result;
1441
1442// LttvIAttribute *attributes = LTTV_IATTRIBUTE(lttv_global_attributes());
1443
1444 LttvTracefileContext *tfc = (LttvTracefileContext *)call_data;
1445
1446 LttvTracefileState *tfs = (LttvTracefileState *)call_data;
1447
1448 LttEvent *e;
1449
1450 guint cpu = tfs->cpu;
1451 LttvTraceState *ts = (LttvTraceState*)tfc->t_context;
1452 LttvProcessState *process = ts->running_process[cpu];
1453
1454 e = ltt_tracefile_get_event(tfc->tf);
1455
1456 lttv_event_to_string(e, a_string, TRUE, 1, tfs);
1457
1458// if(a_state) {
1459 g_string_append_printf(a_string, " %s ",
1460 g_quark_to_string(process->state->s));
1461// }
1462
1463 g_string_append_printf(a_string,"\n");
1464
1465 fputs(a_string->str, a_file);
1466 return FALSE;
1467}
1468
1469static int field_get_value_int(struct LttEvent *e, struct marker_info *info, GQuark f)
1470{
1471 struct marker_field *marker_field;
1472 int found=0;
1473
1474 for_each_marker_field(marker_field, info) {
1475 if (marker_field->name == f) {
1476 found = 1;
1477 break;
1478 }
1479 }
1480 g_assert(found);
1481 return ltt_event_get_long_unsigned(e, marker_field);
1482}
1483
1484static char *field_get_value_string(struct LttEvent *e, struct marker_info *info, GQuark f)
1485{
1486 struct marker_field *marker_field;
1487 int found=0;
1488
1489 for_each_marker_field(marker_field, info) {
1490 if (marker_field->name == f) {
1491 found = 1;
1492 break;
1493 }
1494 }
1495 g_assert(found);
1496 return ltt_event_get_string(e, marker_field);
1497}
1498
1499void process_delayed_stack_action(struct process *pinfo, struct sstack_item *item)
1500{
1501 //printf("processing delayed stack action on pid %d at ", pinfo->pid);
1502 //if(((struct process_with_state *) item->data_val)->state.time_begin.tv_nsec == 987799696)
1503 // printf("HERE!!!\n");
1504 //print_time(((struct process_with_state *) item->data_val)->state.time_begin);
1505 //printf("\n");
1506 //printf("stack before:\n");
1507 //print_stack(pinfo->stack);
1508
1509 if(item->data_type == SSTACK_TYPE_PUSH) {
1510 struct process_with_state *pwstate = item->data_val;
1511 //printf("pushing\n");
1512 old_process_push_llev_state(pinfo, &pwstate->state);
1513 update_hlev_state(pinfo, pwstate->state.time_begin);
1514 }
1515 else if(item->data_type == SSTACK_TYPE_POP) {
1516 struct process_with_state *pwstate = item->data_val;
1517 //printf("popping\n");
1518 old_process_pop_llev_state(pinfo, &pwstate->state);
1519 update_hlev_state(pinfo, pwstate->state.time_end);
1520 }
1521 else if(item->data_type == SSTACK_TYPE_EVENT) {
1522 struct sstack_event *se = item->data_val;
1523 if(se->event_type == HLEV_EVENT_TRY_WAKEUP) {
1524 /* FIXME: should change hlev event from BLOCKED to INTERRUPTED CPU when receiving TRY_WAKEUP */
1525 struct try_wakeup_event *twe = se->private;
1526
1527 /* FIXME: maybe do some more rigorous checking here */
1528 if(pinfo->hlev_state->bstate == HLEV_BLOCKED) {
1529 struct hlev_state_info_blocked *hlev_blocked_private = pinfo->hlev_state->private;
1530
1531 hlev_blocked_private->pid_exit = twe->pid;
1532 hlev_blocked_private->time_woken = twe->time;
1533 hlev_blocked_private->llev_state_exit = oldstyle_stack_to_garray(twe->waker->llev_state_stack, twe->waker->stack_current);
1534 //printf("set a non null exit stack on %p, and stack size is %d\n", hlev_blocked_private, hlev_blocked_private->llev_state_exit->len);
1535
1536 /*
1537 if(p->stack_current >= 0 && p->llev_state_stack[p->stack_current]->bstate == LLEV_PREEMPTED) {
1538 old_process_pop_llev_state(pinfo, p->llev_state_stack[p->stack_current]);
1539 update_hlev_state(pinfo
1540 old_process_push_llev_state
1541 }*/
1542
1543 }
1544 }
1545 }
1546
1547 //printf("stack after:\n");
1548 //print_stack(pinfo->stack);
1549}
1550
1551static struct process *get_or_init_process_info(struct LttEvent *e, GQuark name, int pid, int *new)
1552{
1553 gconstpointer val;
1554
1555 val = g_hash_table_lookup(process_hash_table, &pid);
1556 if(val == NULL) {
1557 struct process *pinfo;
1558 int i;
1559
1560 /* Initialize new pinfo for newly discovered process */
1561 pinfo = g_malloc(sizeof(struct process));
1562 pinfo->pid = pid;
1563 pinfo->parent = -1; /* unknown parent */
1564 pinfo->hlev_history = g_array_new(FALSE, FALSE, sizeof(struct process_state *));
1565 pinfo->stack = sstack_new();
1566 pinfo->stack_current=-1;
1567 pinfo->stack->process_func = process_delayed_stack_action;
1568 pinfo->stack->process_func_arg = pinfo;
1569 for(i=0; i<PROCESS_STATE_STACK_SIZE; i++) {
1570 pinfo->llev_state_stack[i] = g_malloc(sizeof(struct process_state));
1571 }
1572
1573 pinfo->hlev_state = g_malloc(sizeof(struct process_state));
1574 pinfo->hlev_state->bstate = HLEV_UNKNOWN;
1575 pinfo->hlev_state->time_begin = e->event_time;
1576 pinfo->hlev_state->private = NULL;
1577
1578 /* set the name */
1579 pinfo->name = name;
1580
1581 g_hash_table_insert(process_hash_table, &pinfo->pid, pinfo);
1582 if(new)
1583 *new = 1;
1584 return pinfo;
1585 }
1586 else {
1587 if(new)
1588 *new = 0;
1589 return val;
1590
1591 }
1592}
1593
1594static int differentiate_swappers(int pid, LttEvent *e)
1595{
1596 if(pid == 0)
1597 return pid+e->tracefile->cpu_num+2000000;
1598 else
1599 return pid;
1600}
1601
1602static int process_event(void *hook_data, void *call_data)
1603{
1604 LttvTracefileContext *tfc = (LttvTracefileContext *)call_data;
1605 LttvTracefileState *tfs = (LttvTracefileState *)call_data;
1606 LttEvent *e;
1607 struct marker_info *info;
1608
1609 /* Extract data from event structures and state */
1610 guint cpu = tfs->cpu;
1611 LttvTraceState *ts = (LttvTraceState*)tfc->t_context;
1612 LttvProcessState *process = ts->running_process[cpu];
1613 LttTrace *trace = ts->parent.t;
1614 struct process *pinfo;
1615
1616 e = ltt_tracefile_get_event(tfs->parent.tf);
1617
1618 info = marker_get_info_from_id(tfc->tf->mdata, e->event_id);
1619
1620 //if(depanalysis_use_time && (ltt_time_compare(e->timestamp, arg_t1) == -1 || ltt_time_compare(e->timestamp, arg_t2) == 1)) {
1621 // return;
1622 //}
1623 /* Set the pid for the dependency analysis at each event, until we are passed the range. */
1624 if(depanalysis_use_time == 3) {
1625 if(ltt_time_compare(e->event_time, depanalysis_time2) <= 0) {
1626 depanalysis_range_pid = process->pid;
1627 }
1628 else {
1629 /* Should stop processing and print results */
1630 }
1631 }
1632
1633 /* Code to limit the event count */
1634 if(depanalysis_event_limit > 0) {
1635 depanalysis_event_limit--;
1636 }
1637 else if(depanalysis_event_limit == 0) {
1638 write_traceset_footer(hook_data, call_data);
1639 printf("exit due to event limit reached\n");
1640 exit(0);
1641 }
1642
1643 /* write event like textDump for now, for debugging purposes */
1644 //write_event_content(hook_data, call_data);
1645
1646 if(tfc->tf->name == LTT_CHANNEL_SYSCALL_STATE && info->name == LTT_EVENT_SYS_CALL_TABLE) {
1647 GQuark q;
1648 int *pint = g_malloc(sizeof(int));
1649
1650 *pint = field_get_value_int(e, info, LTT_FIELD_ID);
1651 q = g_quark_from_string(field_get_value_string(e, info, LTT_FIELD_SYMBOL));
1652 g_hash_table_insert(syscall_table, pint, q);
1653 }
1654 else if(tfc->tf->name == LTT_CHANNEL_IRQ_STATE && info->name == LTT_EVENT_LIST_INTERRUPT) {
1655 GQuark q;
1656 int *pint = g_malloc(sizeof(int));
1657
1658 *pint = field_get_value_int(e, info, LTT_FIELD_IRQ_ID);
1659 q = g_quark_from_string(field_get_value_string(e, info, LTT_FIELD_ACTION));
1660 g_hash_table_insert(irq_table, pint, q);
1661 }
1662 else if(tfc->tf->name == LTT_CHANNEL_SOFTIRQ_STATE && info->name == LTT_EVENT_SOFTIRQ_VEC) {
1663 GQuark q;
1664 int *pint = g_malloc(sizeof(int));
1665
1666 *pint = field_get_value_int(e, info, LTT_FIELD_ID);
1667 q = g_quark_from_string(field_get_value_string(e, info, LTT_FIELD_SYMBOL));
1668 g_hash_table_insert(softirq_table, pint, q);
1669 }
1670
1671
1672 /* Only look at events after the statedump is finished.
1673 * Before that, the pids in the LttvProcessState are not reliable
1674 */
1675 if(statedump_finished == 0) {
1676 if(tfc->tf->name == LTT_CHANNEL_GLOBAL_STATE && info->name == LTT_EVENT_STATEDUMP_END)
1677 statedump_finished = 1;
1678 else
1679 return FALSE;
1680
1681 }
1682
1683 pinfo = get_or_init_process_info(e, process->name, differentiate_swappers(process->pid, e), NULL);
1684
1685 /* the state machine
1686 * Process the event in the context of each process
1687 */
1688
1689 if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_IRQ_ENTRY) {
1690 struct process *event_process_info = pinfo;
1691 struct sstack_item *item;
1692
1693 item = prepare_push_item(event_process_info, LLEV_IRQ, e->event_time);
1694 ((struct llev_state_info_irq *) item_private(item))->irq = field_get_value_int(e, info, LTT_FIELD_IRQ_ID);
1695 commit_item(event_process_info, item);
1696 }
1697 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_IRQ_EXIT) {
1698 struct process *event_process_info = pinfo;
1699
1700 prepare_pop_item_commit(event_process_info, LLEV_IRQ, e->event_time);
1701 }
1702 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_SCHED_SCHEDULE) {
1703 int next_pid = field_get_value_int(e, info, LTT_FIELD_NEXT_PID);
1704 int prev_pid = field_get_value_int(e, info, LTT_FIELD_PREV_PID);
1705 if(next_pid != 0) {
1706 struct process *event_process_info = get_or_init_process_info(e, process->name, differentiate_swappers(next_pid, e), NULL);
1707 prepare_pop_item_commit(event_process_info, LLEV_PREEMPTED, e->event_time);
1708 }
1709 if(prev_pid != 0) {
1710 struct sstack_item *item;
1711 struct process *event_process_info = get_or_init_process_info(e, process->name, differentiate_swappers(prev_pid, e), NULL);
1712
1713 item = prepare_push_item(event_process_info, LLEV_PREEMPTED, e->event_time);
1714 ((struct llev_state_info_preempted *) item_private(item))->prev_state = field_get_value_int(e, info, LTT_FIELD_PREV_STATE);
1715 commit_item(event_process_info, item);
1716 }
1717 }
1718 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_TRAP_ENTRY) {
1719 struct process *event_process_info = pinfo;
1720 struct sstack_item *item;
1721
1722 item = prepare_push_item(event_process_info, LLEV_TRAP, e->event_time);
1723 commit_item(event_process_info, item);
1724 }
1725 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_TRAP_EXIT) {
1726 struct process *event_process_info = pinfo;
1727
1728 prepare_pop_item_commit(event_process_info, LLEV_TRAP, e->event_time);
1729 }
1730 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_SYSCALL_ENTRY) {
1731 struct process *event_process_info = pinfo;
1732 struct sstack_item *item;
1733
1734 item = prepare_push_item(event_process_info, LLEV_SYSCALL, e->event_time);
1735 ((struct llev_state_info_syscall *) item_private(item))->syscall_id = field_get_value_int(e, info, LTT_FIELD_SYSCALL_ID);
1736 ((struct llev_state_info_syscall *) item_private(item))->substate = LLEV_SYSCALL__UNDEFINED;
1737 commit_item(event_process_info, item);
1738 }
1739 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_SYSCALL_EXIT) {
1740 struct process *event_process_info = pinfo;
1741
1742 prepare_pop_item_commit(event_process_info, LLEV_SYSCALL, e->event_time);
1743 }
1744 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_SOFT_IRQ_ENTRY) {
1745 struct process *event_process_info = pinfo;
1746 struct sstack_item *item;
1747
1748 item = prepare_push_item(event_process_info, LLEV_SOFTIRQ, e->event_time);
1749 ((struct llev_state_info_softirq *) item_private(item))->softirq = field_get_value_int(e, info, LTT_FIELD_SOFT_IRQ_ID);
1750 commit_item(event_process_info, item);
1751 }
1752 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_SOFT_IRQ_EXIT) {
1753 struct process *event_process_info = pinfo;
1754
1755 prepare_pop_item_commit(event_process_info, LLEV_SOFTIRQ, e->event_time);
1756 }
1757 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_PROCESS_FORK) {
1758 int pid = differentiate_swappers(field_get_value_int(e, info, LTT_FIELD_CHILD_PID), e);
1759 struct process *event_process_info = get_or_init_process_info(e, process->name, differentiate_swappers(field_get_value_int(e, info, LTT_FIELD_CHILD_PID), e), NULL);
1760 struct sstack_item *item;
1761
1762 event_process_info->parent = process->pid;
1763 //printf("At ");
1764 //print_time(e->event_time);
1765 //printf(", fork in process %d (%s), creating child %d\n", differentiate_swappers(process->pid, e), g_quark_to_string(process->name), pid);
1766
1767 item = prepare_push_item(event_process_info, LLEV_RUNNING, e->event_time);
1768 commit_item(event_process_info, item);
1769 item = prepare_push_item(event_process_info, LLEV_SYSCALL, e->event_time);
1770 /* FIXME: this sets fork() as syscall, it's pretty inelegant */
1771 ((struct llev_state_info_syscall *) item_private(item))->syscall_id = 57;
1772 ((struct llev_state_info_syscall *) item_private(item))->substate = LLEV_SYSCALL__UNDEFINED;
1773 commit_item(event_process_info, item);
1774
1775 item = prepare_push_item(event_process_info, LLEV_PREEMPTED, e->event_time);
1776 /* Consider fork as BLOCKED */
1777 ((struct llev_state_info_preempted *) item_private(item))->prev_state = 1;
1778 commit_item(event_process_info, item);
1779
1780 //printf("process %d now has a stack of height %d\n", differentiate_swappers(process->pid, e), get_or_init_process_info(e, process->name, differentiate_swappers(process->pid, cpu), NULL)->stack_current-1);
1781
1782 }
1783 else if(tfc->tf->name == LTT_CHANNEL_FS && info->name == LTT_EVENT_EXEC) {
1784 struct process *event_process_info = pinfo;
1785
1786 guint cpu = tfs->cpu;
1787 LttvProcessState *process_state = ts->running_process[cpu];
1788 event_process_info->name = process_state->name;
1789 }
1790 else if(tfc->tf->name == LTT_CHANNEL_FS && info->name == LTT_EVENT_OPEN) {
1791 struct process_state *pstate = process_find_state(pinfo, LLEV_SYSCALL);
1792 struct llev_state_info_syscall *llev_syscall_private;
1793 struct llev_state_info_syscall__open *llev_syscall_open_private;
1794
1795 /* TODO: this is too easy */
1796 if(pstate == NULL)
1797 goto next_iter;
1798
1799 llev_syscall_private = (struct llev_state_info_syscall *)pstate->private;
1800
1801 //printf("depanalysis: found an open with state %d in pid %d\n", pstate->bstate, process->pid);
1802 if(pstate->bstate == LLEV_UNKNOWN)
1803 goto next_iter;
1804
1805 g_assert(pstate->bstate == LLEV_SYSCALL);
1806 g_assert(llev_syscall_private->substate == LLEV_SYSCALL__UNDEFINED);
1807
1808 llev_syscall_private->substate = LLEV_SYSCALL__OPEN;
1809 //printf("setting substate LLEV_SYSCALL__OPEN on syscall_private %p\n", llev_syscall_private);
1810 llev_syscall_private->private = g_malloc(sizeof(struct llev_state_info_syscall__open));
1811 llev_syscall_open_private = llev_syscall_private->private;
1812
1813 llev_syscall_open_private->filename = g_quark_from_string(field_get_value_string(e, info, LTT_FIELD_FILENAME));
1814
1815 }
1816 else if(tfc->tf->name == LTT_CHANNEL_FS && info->name == LTT_EVENT_READ) {
1817 struct process_state *pstate = process_find_state(pinfo, LLEV_SYSCALL);
1818 struct llev_state_info_syscall *llev_syscall_private;
1819 struct llev_state_info_syscall__read *llev_syscall_read_private;
1820 GQuark pfileq;
1821 int fd;
1822
1823 /* TODO: this is too easy */
1824 if(pstate == NULL)
1825 goto next_iter;
1826
1827 llev_syscall_private = (struct llev_state_info_syscall *)pstate->private;
1828
1829 //printf("depanalysis: found an read with state %d in pid %d\n", pstate->bstate, process->pid);
1830 if(pstate->bstate == LLEV_UNKNOWN)
1831 goto next_iter;
1832
1833 g_assert(pstate->bstate == LLEV_SYSCALL);
1834 g_assert(llev_syscall_private->substate == LLEV_SYSCALL__UNDEFINED);
1835
1836 llev_syscall_private->substate = LLEV_SYSCALL__READ;
1837 //printf("setting substate LLEV_SYSCALL__READ on syscall_private %p\n", llev_syscall_private);
1838 llev_syscall_private->private = g_malloc(sizeof(struct llev_state_info_syscall__read));
1839 llev_syscall_read_private = llev_syscall_private->private;
1840
1841 fd = field_get_value_int(e, info, LTT_FIELD_FD);
1842 pfileq = g_hash_table_lookup(process->fds, fd);
1843 if(pfileq) {
1844 llev_syscall_read_private->filename = pfileq;
1845 }
1846 else {
1847 char *tmp;
1848 asprintf(&tmp, "Unknown filename, fd %d", fd);
1849 llev_syscall_read_private->filename = g_quark_from_string(tmp);
1850 free(tmp);
1851 }
1852 }
1853 else if(tfc->tf->name == LTT_CHANNEL_FS && info->name == LTT_EVENT_POLL_EVENT) {
1854 struct process_state *pstate = process_find_state(pinfo, LLEV_SYSCALL);
1855 struct llev_state_info_syscall *llev_syscall_private;
1856 struct llev_state_info_syscall__poll *llev_syscall_poll_private;
1857 GQuark pfileq;
1858 int fd;
1859
1860 /* TODO: this is too easy */
1861 if(pstate == NULL)
1862 goto next_iter;
1863
1864 llev_syscall_private = (struct llev_state_info_syscall *)pstate->private;
1865
1866 //printf("depanalysis: found an poll with state %d in pid %d\n", pstate->bstate, process->pid);
1867 if(pstate->bstate == LLEV_UNKNOWN)
1868 goto next_iter;
1869
1870 /* poll doesn't have a single event that gives the syscall args. instead, there can be an arbitrary
1871 * number of fs_pollfd or fd_poll_event events
1872 * We use the fd_poll_event event, which occurs for each fd that had activity causing a return of the poll()
1873 * For now we only use the first.
1874 * We should do something about this. FIXME
1875 */
1876 if(llev_syscall_private->substate == LLEV_SYSCALL__POLL)
1877 goto next_iter;
1878
1879 g_assert(pstate->bstate == LLEV_SYSCALL);
1880 g_assert(llev_syscall_private->substate == LLEV_SYSCALL__UNDEFINED);
1881
1882 llev_syscall_private->substate = LLEV_SYSCALL__POLL;
1883 //printf("setting substate LLEV_SYSCALL__POLL on syscall_private %p\n", llev_syscall_private);
1884 llev_syscall_private->private = g_malloc(sizeof(struct llev_state_info_syscall__poll));
1885 llev_syscall_poll_private = llev_syscall_private->private;
1886
1887 fd = field_get_value_int(e, info, LTT_FIELD_FD);
1888 pfileq = g_hash_table_lookup(process->fds, fd);
1889 if(pfileq) {
1890 llev_syscall_poll_private->filename = pfileq;
1891 }
1892 else {
1893 char *tmp;
1894 asprintf(&tmp, "Unknown filename, fd %d", fd);
1895 llev_syscall_poll_private->filename = g_quark_from_string(tmp);
1896 free(tmp);
1897 }
1898 }
1899 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_SCHED_TRY_WAKEUP) {
1900 struct sstack_event *se = g_malloc(sizeof(struct sstack_event));
1901 struct try_wakeup_event *twe = g_malloc(sizeof(struct try_wakeup_event));
1902 struct sstack_item *item = sstack_item_new_event();
1903 int target = field_get_value_int(e, info, LTT_FIELD_PID);
1904 struct process *target_pinfo;
1905 int result;
1906
1907 se->event_type = HLEV_EVENT_TRY_WAKEUP;
1908 se->private = twe;
1909 //printf("pushing try wake up event in context of %d\n", pinfo->pid);
1910
1911 twe->pid = differentiate_swappers(process->pid, e);
1912 twe->time = e->event_time;
1913 twe->waker = pinfo;
1914
1915 /* FIXME: the target could not yet have an entry in the hash table, we would then lose data */
1916 target_pinfo = g_hash_table_lookup(process_hash_table, &target);
1917 if(!target_pinfo)
1918 goto next_iter;
1919
1920 item->data_val = se;
b1d18041 1921 item->delete_data_val = (void (*)(void *))delete_data_val;
8c108c1c
PMF
1922
1923 sstack_add_item(target_pinfo->stack, item);
1924
1925 /* Now pop the blocked schedule out of the target */
1926 result = try_pop_blocked_llev_preempted(target_pinfo, e->event_time);
1927
1928 if(result) {
1929 struct sstack_item *item;
1930 struct process *event_process_info = target_pinfo;
1931
1932 item = prepare_push_item(event_process_info, LLEV_PREEMPTED, e->event_time);
1933 ((struct llev_state_info_preempted *) item_private(item))->prev_state = -1; /* special value meaning post-block sched out */
1934 commit_item(event_process_info, item);
1935 }
1936
1937 }
1938
1939 next_iter:
1940 skip_state_machine:
1941 return FALSE;
1942}
1943
1944void print_sstack_private(struct sstack_item *item)
1945{
1946 struct process_with_state *pwstate = item->data_val;
1947
1948 if(pwstate && item->data_type == SSTACK_TYPE_PUSH)
1949 printf("\tstate: %s", llev_state_infos[pwstate->state.bstate].name);
1950
1951 printf(" (");
1952 print_time(pwstate->state.time_begin);
1953 printf("-");
1954 print_time(pwstate->state.time_end);
1955 printf("\n");
1956
1957}
1958
1959static LttTime ltt_time_from_string(const char *str)
1960{
1961 LttTime retval;
1962
1963 char *decdot = strchr(str, '.');
1964
1965 if(decdot) {
1966 *decdot = '\0';
1967 retval.tv_nsec = atol(decdot+1);
1968 }
1969 else {
1970 retval.tv_nsec = 0;
1971 }
1972
1973 retval.tv_sec = atol(str);
1974
1975 return retval;
1976}
1977
1978static void arg_t1(void *hook_data)
1979{
1980 printf("arg_t1\n");
1981 depanalysis_use_time |= 1;
1982 depanalysis_time1 = ltt_time_from_string(arg_t1_str);
1983}
1984
1985static void arg_t2(void *hook_data)
1986{
1987 depanalysis_use_time |= 2;
1988 depanalysis_time2 = ltt_time_from_string(arg_t2_str);
1989}
1990
1991static void arg_pid(void *hook_data)
1992{
1993}
1994
1995static void arg_limit(void *hook_data)
1996{
1997}
1998
55cd92ee
MD
1999static void arg_sum(void *hook_data)
2000{
2001}
2002
8c108c1c
PMF
2003static void init()
2004{
2005 gboolean result;
2006
2007 print_sstack_item_data = print_sstack_private;
2008
2009 LttvAttributeValue value;
2010
2011 LttvIAttribute *attributes = LTTV_IATTRIBUTE(lttv_global_attributes());
2012
2013 a_file = stdout;
2014
2015 lttv_option_add("dep-time-start", 0, "dependency analysis time of analysis start", "time",
2016 LTTV_OPT_STRING, &arg_t1_str, arg_t1, NULL);
2017 lttv_option_add("dep-time-end", 0, "dependency analysis time of analysis end", "time",
2018 LTTV_OPT_STRING, &arg_t2_str, arg_t2, NULL);
2019 lttv_option_add("dep-pid", 0, "dependency analysis pid", "pid",
2020 LTTV_OPT_INT, &depanalysis_range_pid_searching, arg_pid, NULL);
2021 lttv_option_add("limit-events", 0, "dependency limit event count", "count",
2022 LTTV_OPT_INT, &depanalysis_event_limit, arg_limit, NULL);
55cd92ee
MD
2023 lttv_option_add("print-summary", 0, "print simple summary", "sum",
2024 LTTV_OPT_INT, &a_print_simple_summary, arg_sum, NULL);
8c108c1c
PMF
2025
2026 process_hash_table = g_hash_table_new(g_int_hash, g_int_equal);
2027 syscall_table = g_hash_table_new(g_int_hash, g_int_equal);
2028 irq_table = g_hash_table_new(g_int_hash, g_int_equal);
2029 softirq_table = g_hash_table_new(g_int_hash, g_int_equal);
2030
2031 a_string = g_string_new("");
2032
2033 result = lttv_iattribute_find_by_path(attributes, "hooks/event",
2034 LTTV_POINTER, &value);
2035 g_assert(result);
2036 event_hook = *(value.v_pointer);
2037 g_assert(event_hook);
2038 lttv_hooks_add(event_hook, process_event, NULL, LTTV_PRIO_DEFAULT);
2039
2040// result = lttv_iattribute_find_by_path(attributes, "hooks/trace/before",
2041// LTTV_POINTER, &value);
2042// g_assert(result);
2043// before_trace = *(value.v_pointer);
2044// g_assert(before_trace);
2045// lttv_hooks_add(before_trace, write_trace_header, NULL, LTTV_PRIO_DEFAULT);
2046//
2047 result = lttv_iattribute_find_by_path(attributes, "hooks/traceset/before",
2048 LTTV_POINTER, &value);
2049 g_assert(result);
2050 before_traceset = *(value.v_pointer);
2051 g_assert(before_traceset);
2052 lttv_hooks_add(before_traceset, write_traceset_header, NULL,
2053 LTTV_PRIO_DEFAULT);
2054
2055 result = lttv_iattribute_find_by_path(attributes, "hooks/traceset/after",
2056 LTTV_POINTER, &value);
2057 g_assert(result);
2058 after_traceset = *(value.v_pointer);
2059 g_assert(after_traceset);
2060 lttv_hooks_add(after_traceset, write_traceset_footer, NULL,
2061 LTTV_PRIO_DEFAULT);
2062}
2063
2064static void destroy()
2065{
2066 lttv_option_remove("dep-time-start");
2067 lttv_option_remove("dep-time-end");
2068 lttv_option_remove("dep-pid");
2069 lttv_option_remove("limit-events");
55cd92ee 2070 lttv_option_remove("print-summary");
8c108c1c
PMF
2071
2072 g_hash_table_destroy(process_hash_table);
2073 g_hash_table_destroy(syscall_table);
2074 g_hash_table_destroy(irq_table);
2075 g_hash_table_destroy(softirq_table);
2076
2077 g_string_free(a_string, TRUE);
2078
2079 lttv_hooks_remove_data(event_hook, write_event_content, NULL);
2080// lttv_hooks_remove_data(before_trace, write_trace_header, NULL);
2081 lttv_hooks_remove_data(before_traceset, write_traceset_header, NULL);
2082 lttv_hooks_remove_data(after_traceset, write_traceset_footer, NULL);
2083}
2084
2085LTTV_MODULE("depanalysis", "Dependency analysis test", \
2086 "Produce a dependency analysis of a trace", \
2087 init, destroy, "stats", "batchAnalysis", "option", "print")
2088
This page took 0.11304 seconds and 4 git commands to generate.