enhance depanalysis
[lttv.git] / lttv / modules / text / depanalysis.c
CommitLineData
8c108c1c
PMF
1/* This file is part of the Linux Trace Toolkit viewer
2 * Copyright (C) 2008 Pierre-Marc Fournier
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License Version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
16 * MA 02111-1307, USA.
17 */
18
19#ifdef HAVE_CONFIG_H
20#include <config.h>
21#endif
22
23#include <lttv/lttv.h>
24#include <lttv/option.h>
25#include <lttv/module.h>
26#include <lttv/hook.h>
27#include <lttv/attribute.h>
28#include <lttv/iattribute.h>
29#include <lttv/stats.h>
30#include <lttv/filter.h>
31#include <lttv/print.h>
32#include <ltt/ltt.h>
33#include <ltt/event.h>
34#include <ltt/trace.h>
35#define _GNU_SOURCE
36#include <stdio.h>
37#include <glib.h>
38#include <stdlib.h>
39
40#include "sstack.h"
41
42static LttvHooks
43 *before_traceset,
44 *after_traceset,
45// *before_trace,
46 *event_hook;
47
48static int depanalysis_range_pid = -1;
49static int depanalysis_range_pid_searching = -1;
50static int depanalysis_use_time=0;
51static int depanalysis_event_limit = -1;
55cd92ee 52static int a_print_simple_summary = 0;
8c108c1c
PMF
53static LttTime depanalysis_time1, depanalysis_time2;
54static char *arg_t1_str,*arg_t2_str;
55static int statedump_finished = 0;
56
57
58struct llev_state_info_irq {
59 int irq;
60};
61
62struct llev_state_info_softirq {
63 int softirq;
64};
65
66struct llev_state_info_syscall {
67 int syscall_id;
68
69 int substate;
70
71 void *private;
72};
73
74struct llev_state_info_syscall__open {
75 GQuark filename;
76};
77
78struct llev_state_info_syscall__read {
79 GQuark filename;
80};
81
82struct llev_state_info_syscall__poll {
83 GQuark filename;
84};
85
86struct llev_state_info_preempted {
87 int prev_state;
88};
89
90struct hlev_state_info_blocked {
91 int syscall_id;
92 unsigned char trap; /* flag */
93 int substate;
94
95 /* Garray of pointers to struct process_state that reflect the
96 * low-level state stack when respectively entering and exiting the blocked
97 * state.
98 */
99 GArray *llev_state_entry;
100 GArray *llev_state_exit;
101
102 int pid_exit; /* FIXME: it's not pretty to have this here; find this info elsewhere */
103 LttTime time_woken;
104
105 void *private;
106};
107
108struct hlev_state_info_blocked__open {
109 GQuark filename;
110};
111
112struct hlev_state_info_blocked__read {
113 GQuark filename;
114};
115
116struct hlev_state_info_blocked__poll {
117 GQuark filename;
118};
119
120struct hlev_state_info_interrupted_irq {
121 int irq;
122};
123
124struct hlev_state_info_interrupted_softirq {
125 int softirq;
126};
127
128struct summary_tree_node {
129 char *name;
130 GHashTable *children;
131 LttTime duration;
132 GArray *episodes;
133 int id_for_episodes;
134};
135
136struct state_info {
137 char name[40];
138 int size_priv;
139 char *tree_path[6];
140};
141
142struct state_info llev_state_infos[] = {
143 { "UNKNOWN", 0, { NULL } },
144 { "RUNNING", 0, { NULL } },
145 { "SYSCALL", sizeof(struct llev_state_info_syscall), { NULL } },
146 { "IRQ", sizeof(struct llev_state_info_irq), { NULL } },
147 { "SOFTIRQ", sizeof(struct llev_state_info_softirq), { NULL } },
148 { "TRAP", 0, { NULL } },
149 { "PREEMPTED", sizeof(struct llev_state_info_preempted), { NULL } },
150};
151
152struct state_info hlev_state_infos[] = {
153 { "UNKNOWN", 0, { "Total", "Unknown", NULL } },
154 { "RUNNING", 0, { "Total", "Working", NULL } },
155 { "BLOCKED", sizeof(struct hlev_state_info_blocked), { "Total", "Blocked", NULL } },
156 { "INTERRUPTED_IRQ", sizeof(struct hlev_state_info_interrupted_irq), { "Total", "Interrupted", "IRQ", NULL } },
157 { "INTERRUPTED_SOFTIRQ", sizeof(struct hlev_state_info_interrupted_softirq), { "Total", "Interrupted", "SoftIRQ", NULL } },
158 { "INTERRUPTED_CPU", 0, { "Total", "Interrupted", "Preempted", NULL } },
159 { "INTERRUPTED_POST_BLOCK", 0, { "Total", "Interrupted", "Waiting schedule after blocking", NULL } },
160};
161
162enum llev_state {
163 LLEV_UNKNOWN=0,
164 LLEV_RUNNING,
165 LLEV_SYSCALL,
166 LLEV_IRQ,
167 LLEV_SOFTIRQ,
168 LLEV_TRAP,
169 LLEV_PREEMPTED,
170};
171
172enum llev_syscall_substate {
173 LLEV_SYSCALL__UNDEFINED,
174 LLEV_SYSCALL__OPEN,
175 LLEV_SYSCALL__READ,
176 LLEV_SYSCALL__POLL,
177};
178
179enum hlev_event {
180 HLEV_EVENT_TRY_WAKEUP=0,
181};
182
183enum hlev_state {
184 HLEV_UNKNOWN=0,
185 HLEV_RUNNING,
186 HLEV_BLOCKED,
187 HLEV_INTERRUPTED_IRQ,
188 HLEV_INTERRUPTED_SOFTIRQ,
189 HLEV_INTERRUPTED_CPU,
190 HLEV_INTERRUPTED_POST_BLOCK,
191};
192
193enum hlev_state_blocked {
194 HLEV_BLOCKED__UNDEFINED,
195 HLEV_BLOCKED__OPEN,
196 HLEV_BLOCKED__READ,
197 HLEV_BLOCKED__POLL,
198};
199
200struct sstack_event {
201 int event_type;
202 void *private;
203};
204
205struct try_wakeup_event {
206 int pid; /* this sould be more precise avec pid may be reused */
207 LttTime time;
208 struct process *waker;
209};
210
211struct process_state {
212 int bstate;
213 int cause_type;
214 void *private;
215
216 LttTime time_begin;
217 LttTime time_end;
218};
219
220struct process_with_state {
221 struct process *process;
222 struct process_state state;
223};
224
225#define PROCESS_STATE_STACK_SIZE 10
226struct process {
227 int pid;
228 GQuark name;
229 int parent;
230
231 struct sstack *stack;
232 struct process_state *llev_state_stack[PROCESS_STATE_STACK_SIZE];
233 int stack_current;
234 struct process_state *hlev_state;
235 GArray *hlev_history;
236};
237
238static inline void *old_process_state_private_data(struct process *p)
239{
240 return p->llev_state_stack[p->stack_current]->private;
241}
242
243static inline struct process_state *process_find_state(struct process *p, enum llev_state st)
244{
245 int i;
246
247 for(i=p->stack->array->len-1; i>=0; i--) {
248 struct sstack_item *item = g_array_index(p->stack->array, struct sstack_item *, i);
249
250 struct process_with_state *pwstate = item->data_val;
251 if(pwstate->state.bstate == st) {
252 return &pwstate->state;
253 }
254 }
255
256 return NULL;
257}
258
259static int find_pos_in_stack(enum llev_state lls, struct process *p)
260{
261 int i;
262 for(i=p->stack_current; i>=0; i--) {
263 if(p->llev_state_stack[i]->bstate == lls)
264 return i;
265 }
266
267 return -1;
268}
269
270static struct process_state *find_in_stack(enum llev_state lls, struct process *p)
271{
272 int result;
273
274 result = find_pos_in_stack(lls, p);
275
276 if(result >= 0)
277 return p->llev_state_stack[result];
278 else
279 return NULL;
280
281}
282
283/* called back from sstack on deletion of a data_val which is
284 * a struct process_with_state
285 */
286
287static void delete_data_val(struct process_with_state *pwstate)
288{
289 // FIXME: Free this also
290 //g_free(pwstate->state.private);
291
292 // FIXME: this is really ugly. Don't free the pwstate if the state is LLEV_RUNNING.
293 // LLEV_RUNNING is a special case that's being processed and deleted immediately after
294 // being inserted on the sstack, to prevent state begin accumulated because it couldn't
295 // be processed before the end of the trace. If we free the state, we get invalid memory
296 // reads when looking at it on the state_stack.
297 //if(pwstate->state.bstate != LLEV_RUNNING)
298 // g_free(pwstate);
299}
300
b1d18041
PMF
301inline void print_time(LttTime t)
302{
303 //printf("%lu.%lu", t.tv_sec, t.tv_nsec);
304 double f;
305 f = (double)t.tv_sec + ((double)t.tv_nsec)/1000000000.0;
306 printf("%.9f", f);
307}
308
8c108c1c
PMF
309static struct sstack_item *prepare_push_item(struct process *p, enum llev_state st, LttTime t)
310{
311 struct process_with_state *pwstate = g_malloc(sizeof(struct process_with_state));
312 struct sstack_item *item;
313
314 int wait_for_pop = 0;
315
316 if(st == LLEV_SYSCALL) {
317 /* We need to push LLEV_SYSCALL as wait_for_pop because it depends on some of
318 * its children. If we don't do this, it's going to get processed immediately
319 * by the sstack and we might miss some details about it that will come later.
320 */
321 wait_for_pop = 1;
322 }
323
324 item = sstack_item_new_push(wait_for_pop);
325
326 //printf("pushing in context of %d\n", p->pid);
327
328 pwstate->process = p;
329 pwstate->state.bstate = st;
330 pwstate->state.time_begin = t;
331 pwstate->state.private = g_malloc(llev_state_infos[st].size_priv);
332
333 item->data_val = pwstate;
b1d18041
PMF
334 item->delete_data_val = (void (*)(void*))delete_data_val;
335
336 return item;
8c108c1c
PMF
337}
338
339static void *item_private(struct sstack_item *item)
340{
341 struct process_with_state *pwstate = item->data_val;
342 return pwstate->state.private;
343}
344
345static void commit_item(struct process *p, struct sstack_item *item)
346{
347 sstack_add_item(p->stack, item);
348}
349
350static void old_process_push_llev_state(struct process *p, struct process_state *pstate)
351{
352 if(++p->stack_current >= PROCESS_STATE_STACK_SIZE) {
353 fprintf(stderr, "depanalysis: internal process stack overflow\n");
354 abort();
355 }
356
357 p->llev_state_stack[p->stack_current] = pstate;
358}
359
360static void live_complete_process_push_llev_state(struct process *p, enum llev_state st, LttTime t)
361{
362 struct process_state *pstate = g_malloc(sizeof(struct process_state));
363
364 pstate->bstate = st;
365 pstate->time_begin = t;
366 pstate->private = g_malloc(llev_state_infos[st].size_priv);
367
368 old_process_push_llev_state(p, pstate);
369}
370
371static void prepare_pop_item_commit_nocheck(struct process *p, enum llev_state st, LttTime t)
372{
373 struct process_with_state *pwstate;
374 struct sstack_item *item = sstack_item_new_pop();
375
376 int push_idx;
377
378 if(p->stack->pushes->len > 0)
379 push_idx = g_array_index(p->stack->pushes, int, p->stack->pushes->len-1);
380 else
381 push_idx = -1;
382
383 if(push_idx >= 0) {
384 pwstate = g_array_index(p->stack->array, struct sstack_item *, push_idx)->data_val;
385 pwstate->process = p;
386 pwstate->state.time_end = t;
387 item->data_val = pwstate;
388 /* don't set delete_data_val because we use the same pwstate as push, and we don't want to free it twice */
389 }
390 else {
391
392 pwstate = g_malloc(sizeof(struct process_with_state));
393 pwstate->process = p;
394 item->data_val = pwstate;
395 pwstate->state.time_end = t;
396 pwstate->state.bstate = st;
397 }
398
399 sstack_add_item(p->stack, item);
400
401}
402
403static void prepare_pop_item_commit(struct process *p, enum llev_state st, LttTime t)
404{
405 struct process_with_state *pwstate;
406 struct sstack_item *item = sstack_item_new_pop();
407
408 int push_idx;
409
410 if(p->stack->pushes->len > 0)
411 push_idx = g_array_index(p->stack->pushes, int, p->stack->pushes->len-1);
412 else
413 push_idx = -1;
414
415 if(push_idx >= 0) {
416 /* FIXME: ugly workaround for kernel bug that generates two kernel_arch_syscall_exit on fork.
417 * The bug only occurs upon creation of new processes. But these processes always have
418 * a LLEV_RUNNING at index 0. */
419 if(push_idx >= p->stack->array->len)
420 return;
421
422 pwstate = g_array_index(p->stack->array, struct sstack_item *, push_idx)->data_val;
423
424 if(pwstate->state.bstate != st) {
425 /* FIXME: ugly workaround for kernel bug that generates two kernel_arch_syscall_exit on fork */
426 if(st != LLEV_SYSCALL) {
427 printf("bad pop! at ");
428 print_time(t);
429 printf("\n");
430 print_stack(p->stack);
431 abort();
432 }
433 else {
434 /* case where we have a double syscall_exit */
435 return;
436 }
437 }
438 }
439
440 prepare_pop_item_commit_nocheck(p, st, t);
441}
442
443
444static int try_pop_blocked_llev_preempted(struct process *p, LttTime t)
445{
446 int push_idx;
447 struct process_with_state *pwstate;
448
449 if(p->stack->pushes->len > 0)
450 push_idx = g_array_index(p->stack->pushes, int, p->stack->pushes->len-1);
451 else
452 push_idx = -1;
453
454 if(push_idx >= 0) {
455 pwstate = g_array_index(p->stack->array, struct sstack_item *, push_idx)->data_val;
456
457 if(!(pwstate->state.bstate == LLEV_PREEMPTED && ((struct llev_state_info_preempted *)pwstate->state.private)->prev_state > 0)) {
55cd92ee 458 //printf("double try wake up\n");
8c108c1c
PMF
459 return 0;
460 }
461 }
462
463 prepare_pop_item_commit_nocheck(p, LLEV_PREEMPTED, t);
464 return 1;
465}
466
467static void old_process_pop_llev_state(struct process *p, struct process_state *pstate)
468{
469 /* Ensure we are really popping the current state */
470 /* FIXME: pstate->bstate is uninitialized? */
471 // Commenting because it does not work. The way things work now, this check cannot work.
472 //if(p->llev_state_stack[p->stack_current]->bstate != LLEV_UNKNOWN && p->llev_state_stack[p->stack_current]->bstate != pstate->bstate) {
473 // printf("ERROR! bad pop!\n");
474 // abort();
475 //}
476
477 /* Actually change the that position */
478 if(p->stack_current >= 0)
479 p->stack_current--;
480
481 /* If stack empty, we must put something in it */
482 if(p->stack_current == -1) {
483 if(pstate->bstate == LLEV_SYSCALL) {
484 //process_push_llev_state(p, LLEV_RUNNING, pstate->time_end);
485 live_complete_process_push_llev_state(p, LLEV_RUNNING, pstate->time_end);
486 }
487 else {
488 live_complete_process_push_llev_state(p, LLEV_UNKNOWN, pstate->time_end);
489 }
490 }
491}
492
493static GHashTable *process_hash_table;
494static GHashTable *syscall_table;
495static GHashTable *irq_table;
496static GHashTable *softirq_table;
497
498/* Insert the hooks before and after each trace and tracefile, and for each
499 event. Print a global header. */
500
501static FILE *a_file;
502
503static GString *a_string;
504
505static gboolean write_traceset_header(void *hook_data, void *call_data)
506{
507 LttvTracesetContext *tc = (LttvTracesetContext *)call_data;
508
509 g_info("Traceset header");
510
511 /* Print the trace set header */
55cd92ee 512 g_info(a_file,"Trace set contains %d traces\n\n",
8c108c1c
PMF
513 lttv_traceset_number(tc->ts));
514
515 return FALSE;
516}
517
b1d18041 518GArray *oldstyle_stack_to_garray(struct process_state **oldstyle_stack, int current)
8c108c1c
PMF
519{
520 GArray *retval;
521 int i;
522
b1d18041 523 retval = g_array_new(FALSE, FALSE, sizeof(struct process_state *));
8c108c1c
PMF
524
525 for(i=0; i<current; i++) {
526 g_array_append_val(retval, oldstyle_stack[i]);
527 }
528
529 return retval;
530}
531
532static void update_hlev_state(struct process *p, LttTime t)
533{
534 int i;
535
536 enum hlev_state new_hlev;
537
538 for(i=p->stack_current; i>=0; i--) {
539 enum llev_state st;
540 st = p->llev_state_stack[i]->bstate;
541
542 if(st == LLEV_RUNNING || st == LLEV_TRAP || st == LLEV_SYSCALL) {
543 new_hlev = HLEV_RUNNING;
544 break;
545 }
546 else if(st == LLEV_IRQ) {
547 new_hlev = HLEV_INTERRUPTED_IRQ;
548 break;
549 }
550 else if(st == LLEV_SOFTIRQ) {
551 new_hlev = HLEV_INTERRUPTED_SOFTIRQ;
552 break;
553 }
554 else if(st == LLEV_PREEMPTED) {
555 int prev_state = ((struct llev_state_info_preempted *) old_process_state_private_data(p))->prev_state;
556
557 if(prev_state == 0) {
558 new_hlev = HLEV_INTERRUPTED_CPU;
559 }
560 else if(prev_state == -1) {
561 new_hlev = HLEV_INTERRUPTED_POST_BLOCK;
562 }
563 else {
564 new_hlev = HLEV_BLOCKED;
565 }
566 break;
567 }
568 else if(st == LLEV_UNKNOWN) {
569 new_hlev = HLEV_UNKNOWN;
570 break;
571 }
572 else {
573 abort();
574 }
575 }
576
577 /* If no state change, do nothing */
578 if(p->hlev_state != NULL && new_hlev == p->hlev_state->bstate) {
579 return;
580 }
581
582 p->hlev_state->time_end = t;
583 /* This check is here because we initially put HLEV_UNKNOWN as hlev state, but in the case
584 * of processes newly created, it is immediately replaced by HLEV_BLOCKED. In order to avoid
585 * having a UNKNOWN state of duration 0 in the summary, we don't add it. This isn't as elegant
586 * as it ought to be.
587 */
588 if(ltt_time_compare(p->hlev_state->time_begin, p->hlev_state->time_end) != 0)
589 g_array_append_val(p->hlev_history, p->hlev_state);
590 p->hlev_state = g_malloc(sizeof(struct process_state));
591 p->hlev_state->bstate = new_hlev;
592 p->hlev_state->time_begin = t;
593 p->hlev_state->private = g_malloc(hlev_state_infos[new_hlev].size_priv);
594
595 //printf("depanalysis: now at hlev state %s\n", hlev_state_infos[new_hlev].name);
596
597 /* Set private data */
598 switch(p->hlev_state->bstate) {
599 case HLEV_UNKNOWN:
600 break;
601 case HLEV_RUNNING:
602 break;
603 case HLEV_BLOCKED: {
604 struct hlev_state_info_blocked *hlev_blocked_private = p->hlev_state->private;
605 //struct process_state *ps = find_in_stack(LLEV_SYSCALL, p);
606 int syscall_pos = find_pos_in_stack(LLEV_SYSCALL, p);
607 int trap_pos = find_pos_in_stack(LLEV_TRAP, p);
608
609 /* init vals */
610 hlev_blocked_private->syscall_id = 1;
611 hlev_blocked_private->trap = 0;
612 hlev_blocked_private->substate = HLEV_BLOCKED__UNDEFINED;
613 hlev_blocked_private->private = NULL;
614 hlev_blocked_private->llev_state_entry = oldstyle_stack_to_garray(p->llev_state_stack, p->stack_current);
615 hlev_blocked_private->llev_state_exit = NULL;
616
617 //g_assert(syscall_pos >= 0 || trap_pos >= 0);
618
619 if(trap_pos > syscall_pos) {
620 hlev_blocked_private->trap = 1;
621 }
622
623 /* initial value, may be changed below */
624 hlev_blocked_private->substate = HLEV_BLOCKED__UNDEFINED;
625
626 if(syscall_pos >= 0) {
627 struct process_state *ps = p->llev_state_stack[syscall_pos];
628 struct llev_state_info_syscall *llev_syscall_private = (struct llev_state_info_syscall *) ps->private;
629 hlev_blocked_private->syscall_id = llev_syscall_private->syscall_id;
630
631 if(llev_syscall_private->substate == LLEV_SYSCALL__OPEN) {
632 struct llev_state_info_syscall__open *llev_syscall_open_private;
633 struct hlev_state_info_blocked__open *hlev_blocked_open_private;
634 llev_syscall_open_private = llev_syscall_private->private;
635 hlev_blocked_private->substate = HLEV_BLOCKED__OPEN;
636 hlev_blocked_open_private = g_malloc(sizeof(struct hlev_state_info_blocked__open));
637 hlev_blocked_private->private = hlev_blocked_open_private;
638 hlev_blocked_open_private->filename = llev_syscall_open_private->filename;
639
640 //printf("depanalysis: blocked in an open!\n");
641 }
642 else if(llev_syscall_private->substate == LLEV_SYSCALL__READ) {
643 struct llev_state_info_syscall__read *llev_syscall_read_private;
644 struct hlev_state_info_blocked__read *hlev_blocked_read_private;
645 llev_syscall_read_private = llev_syscall_private->private;
646 hlev_blocked_private->substate = HLEV_BLOCKED__READ;
647 hlev_blocked_read_private = g_malloc(sizeof(struct hlev_state_info_blocked__read));
648 hlev_blocked_private->private = hlev_blocked_read_private;
649 hlev_blocked_read_private->filename = llev_syscall_read_private->filename;
650
651 //printf("depanalysis: blocked in a read!\n");
652 }
653 else if(llev_syscall_private->substate == LLEV_SYSCALL__POLL) {
654 struct llev_state_info_syscall__poll *llev_syscall_poll_private;
655 struct hlev_state_info_blocked__poll *hlev_blocked_poll_private;
656 llev_syscall_poll_private = llev_syscall_private->private;
657 hlev_blocked_private->substate = HLEV_BLOCKED__POLL;
658 hlev_blocked_poll_private = g_malloc(sizeof(struct hlev_state_info_blocked__poll));
659 hlev_blocked_private->private = hlev_blocked_poll_private;
660 hlev_blocked_poll_private->filename = llev_syscall_poll_private->filename;
661
662 //printf("depanalysis: blocked in a read!\n");
663 }
664 }
665 else {
666 hlev_blocked_private->syscall_id = -1;
667 }
668
669 break;
670 }
671 case HLEV_INTERRUPTED_IRQ: {
672 struct hlev_state_info_interrupted_irq *sinfo = p->hlev_state->private;
673 struct process_state *ps = find_in_stack(LLEV_IRQ, p);
674 if(ps == NULL)
675 abort();
676 else
677 sinfo->irq = ((struct llev_state_info_irq *) ps->private)->irq;
678 break;
679 }
680 case HLEV_INTERRUPTED_SOFTIRQ: {
681 struct hlev_state_info_interrupted_softirq *sinfo = p->hlev_state->private;
682 struct process_state *ps = find_in_stack(LLEV_SOFTIRQ, p);
683 if(ps == NULL)
684 abort();
685 else
686 sinfo->softirq = ((struct llev_state_info_softirq *) ps->private)->softirq;
687 break;
688 }
689 default:
690 break;
691 };
692}
693
694static gint compare_summary_tree_node_times(gconstpointer a, gconstpointer b)
695{
696 struct summary_tree_node *n1 = (struct summary_tree_node *) a;
697 struct summary_tree_node *n2 = (struct summary_tree_node *) b;
698
699 return ltt_time_compare(n2->duration, n1->duration);
700}
701
702/* Print an item of the simple summary tree, and recurse, printing its children.
703 *
704 * If depth == -1, this is the root: we don't print a label, we only recurse into
705 * the children.
706 */
707
708static void print_summary_item(struct summary_tree_node *node, int depth)
709{
710 GList *vals;
711
712 if(depth >= 0) {
713 printf("\t%*s (", strlen(node->name)+2*depth, node->name);
714 print_time(node->duration);
715 printf(") <%d>\n", node->id_for_episodes);
716 }
717
718 if(!node->children)
719 return;
720
721 vals = g_hash_table_get_values(node->children);
722
723 /* sort the values */
724 vals = g_list_sort(vals, compare_summary_tree_node_times);
725
726 while(vals) {
727 print_summary_item((struct summary_tree_node *)vals->data, depth+1);
728 vals = vals->next;
729 }
730
731 /* we must free the list returned by g_hash_table_get_values() */
732 g_list_free(vals);
733}
734
735static inline void print_irq(int irq)
736{
737 printf("IRQ %d [%s]", irq, g_quark_to_string(g_hash_table_lookup(irq_table, &irq)));
738}
739
740static inline void print_softirq(int softirq)
741{
742 printf("SoftIRQ %d [%s]", softirq, g_quark_to_string(g_hash_table_lookup(softirq_table, &softirq)));
743}
744
745static inline void print_pid(int pid)
746{
747 struct process *event_process_info = g_hash_table_lookup(process_hash_table, &pid);
748
749 char *pname;
750
751 if(event_process_info == NULL)
752 pname = "?";
753 else
754 pname = g_quark_to_string(event_process_info->name);
755 printf("%d [%s]", pid, pname);
756}
757
758static void modify_path_with_private(GArray *path, struct process_state *pstate)
759{
760 //GString tmps = g_string_new("");
761 char *tmps;
762
763 // FIXME: fix this leak
764 switch(pstate->bstate) {
765 case HLEV_INTERRUPTED_IRQ:
766 asprintf(&tmps, "IRQ %d [%s]", ((struct hlev_state_info_interrupted_irq *)pstate->private)->irq, g_quark_to_string(g_hash_table_lookup(irq_table, &((struct hlev_state_info_interrupted_irq *)pstate->private)->irq)));
767 g_array_append_val(path, tmps);
768 break;
769 case HLEV_INTERRUPTED_SOFTIRQ:
770 asprintf(&tmps, "SoftIRQ %d [%s]", ((struct hlev_state_info_interrupted_softirq *)pstate->private)->softirq, g_quark_to_string(g_hash_table_lookup(softirq_table, &((struct hlev_state_info_interrupted_softirq *)pstate->private)->softirq)));
771 g_array_append_val(path, tmps);
772 break;
773 case HLEV_BLOCKED: {
774 struct hlev_state_info_blocked *hlev_blocked_private = (struct hlev_state_info_blocked *)pstate->private;
775
776 if(hlev_blocked_private->trap) {
777 char *ptr = "Trap";
778 g_array_append_val(path, ptr);
779 }
780
781 if(hlev_blocked_private->syscall_id == -1) {
782 char *ptr = "Userspace";
783 g_array_append_val(path, ptr);
784 }
785 else {
786 asprintf(&tmps, "Syscall %d [%s]", hlev_blocked_private->syscall_id, g_quark_to_string(g_hash_table_lookup(syscall_table, &hlev_blocked_private->syscall_id)));
787 g_array_append_val(path, tmps);
788 }
789
790 if(((struct hlev_state_info_blocked *)pstate->private)->substate == HLEV_BLOCKED__OPEN) {
791 char *str = g_quark_to_string(((struct hlev_state_info_blocked__open *)((struct hlev_state_info_blocked *)pstate->private)->private)->filename);
792 g_array_append_val(path, str);
793 }
794 else if(((struct hlev_state_info_blocked *)pstate->private)->substate == HLEV_BLOCKED__READ) {
795 char *str;
796 asprintf(&str, "%s", g_quark_to_string(((struct hlev_state_info_blocked__read *)((struct hlev_state_info_blocked *)pstate->private)->private)->filename));
797 g_array_append_val(path, str);
798 /* FIXME: this must be freed at some point */
799 //free(str);
800 }
801 else if(((struct hlev_state_info_blocked *)pstate->private)->substate == HLEV_BLOCKED__POLL) {
802 char *str;
803 asprintf(&str, "%s", g_quark_to_string(((struct hlev_state_info_blocked__poll *)((struct hlev_state_info_blocked *)pstate->private)->private)->filename));
804 g_array_append_val(path, str);
805 /* FIXME: this must be freed at some point */
806 //free(str);
807 }
808 break;
809 }
810 };
811}
812
813void print_stack_garray_horizontal(GArray *stack)
814{
815 /* FIXME: this function doesn't work if we delete the states as we process them because we
816 * try to read those states here to print the low level stack.
817 */
818 int i;
819
820 for(i=0; i<stack->len; i++) {
821 struct process_state *pstate = g_array_index(stack, struct process_state *, i);
822 printf("%s", llev_state_infos[pstate->bstate].name);
823
824 if(pstate->bstate == LLEV_SYSCALL) {
825 struct llev_state_info_syscall *llev_syscall_private = pstate->private;
826 printf(" %d [%s]", llev_syscall_private->syscall_id, g_quark_to_string(g_hash_table_lookup(syscall_table, &llev_syscall_private->syscall_id)));
827 }
828
829 printf(", ");
830
831 }
832}
833
834static int dicho_search_state_ending_after(struct process *p, LttTime t)
835{
836 int under = 0;
837 int over = p->hlev_history->len-1;
838 struct process_state *pstate;
839 int result;
840
841 if(over < 1)
842 return -1;
843
844 /* If the last element is smaller or equal than the time we are searching for,
845 * no match
846 */
847 pstate = g_array_index(p->hlev_history, struct process_state *, over);
848 if(ltt_time_compare(pstate->time_end, t) <= 0) {
849 return -1;
850 }
851 /* no need to check for the equal case */
852
853 pstate = g_array_index(p->hlev_history, struct process_state *, under);
854 result = ltt_time_compare(pstate->time_end, t);
855 if(result >= 1) {
856 /* trivial match at the first element if it is greater or equal
857 * than the time we want
858 */
859 return under;
860 }
861
862 while(1) {
863 int dicho;
864
865 dicho = (under+over)/2;
866 pstate = g_array_index(p->hlev_history, struct process_state *, dicho);
867 result = ltt_time_compare(pstate->time_end, t);
868
869 if(result == -1) {
870 under = dicho;
871 }
872 else if(result == 1) {
873 over = dicho;
874 }
875 else {
876 /* exact match */
877 return dicho+1;
878 }
879
880 if(over-under == 1) {
881 /* we have converged */
882 return over;
883 }
884 }
885
886}
887
888/* FIXME: this shouldn't be based on pids in case of reuse
889 * FIXME: should add a list of processes used to avoid loops
890 */
891
892static struct process_state *find_state_ending_after(int pid, LttTime t)
893{
894 struct process *p;
895 int result;
896
897
898 p = g_hash_table_lookup(process_hash_table, &pid);
899 if(!p)
900 return NULL;
901
902 result = dicho_search_state_ending_after(p, t);
903
904 if(result == -1)
905 return NULL;
906 else
907 return g_array_index(p->hlev_history, struct process_state *, result);
908}
909
910static void print_delay_pid(int pid, LttTime t1, LttTime t2, int offset)
911{
912 struct process *p;
913 int i;
914
915 p = g_hash_table_lookup(process_hash_table, &pid);
916 if(!p)
917 return;
918
919 i = dicho_search_state_ending_after(p, t1);
920 for(; i<p->hlev_history->len; i++) {
921 struct process_state *pstate = g_array_index(p->hlev_history, struct process_state *, i);
922 if(ltt_time_compare(pstate->time_end, t2) > 0)
923 break;
924
925 if(pstate->bstate == HLEV_BLOCKED) {
926 struct hlev_state_info_blocked *state_private_blocked;
927 state_private_blocked = pstate->private;
928 struct process_state *state_unblocked;
929
930 printf("%*s", 8*offset, "");
931 printf("Blocked in ");
932 print_stack_garray_horizontal(state_private_blocked->llev_state_entry);
933
934 printf("(times: ");
935 print_time(pstate->time_begin);
936 printf("-");
937 print_time(pstate->time_end);
938
939 printf(", dur: %f)\n", 1e-9*ltt_time_to_double(ltt_time_sub(pstate->time_end, pstate->time_begin)));
940
941 state_unblocked = find_state_ending_after(state_private_blocked->pid_exit, state_private_blocked->time_woken);
942 if(state_unblocked) {
943 if(state_unblocked->bstate == HLEV_INTERRUPTED_IRQ) {
944 struct hlev_state_info_interrupted_irq *priv = state_unblocked->private;
945 /* if in irq or softirq, we don't care what the waking process was doing because they are asynchroneous events */
946 printf("%*s", 8*offset, "");
947 printf("Woken up by an IRQ: ");
948 print_irq(priv->irq);
949 printf("\n");
950 }
951 else if(state_unblocked->bstate == HLEV_INTERRUPTED_SOFTIRQ) {
952 struct hlev_state_info_interrupted_softirq *priv = state_unblocked->private;
953 printf("%*s", 8*offset, "");
954 printf("Woken up by a SoftIRQ: ");
955 print_softirq(priv->softirq);
956 printf("\n");
957 }
958 else {
959 LttTime t1prime=t1;
960 LttTime t2prime=t2;
961
962 if(ltt_time_compare(t1prime, pstate->time_begin) < 0)
963 t1prime = pstate->time_begin;
964 if(ltt_time_compare(t2prime, pstate->time_end) > 0)
965 t2prime = pstate->time_end;
966
967 print_delay_pid(state_private_blocked->pid_exit, t1prime, t2prime, offset+1);
968 printf("%*s", 8*offset, "");
969 printf("Woken up in context of ");
970 print_pid(state_private_blocked->pid_exit);
971 if(state_private_blocked->llev_state_exit) {
972 print_stack_garray_horizontal(state_private_blocked->llev_state_exit);
973 }
974 else {
975 }
976 printf(" in high-level state %s", hlev_state_infos[state_unblocked->bstate].name);
977 printf("\n");
978 }
979 }
980 else {
981 printf("%*s", 8*offset, "");
982 printf("Weird... cannot find in what state the waker (%d) was\n", state_private_blocked->pid_exit);
983 }
984
985
986 //print_delay_pid(state_private_blocked->pid_exit, pstate->time_start, pstate->time_end);
987 //printf("\t\t Woken up in context of %d: ", state_private_blocked->pid_exit);
988 //if(state_private_blocked->llev_state_exit) {
989 // print_stack_garray_horizontal(state_private_blocked->llev_state_exit);
990 // printf("here3 (%d)\n", state_private_blocked->llev_state_exit->len);
991 //}
992 //else
993 // printf("the private_blocked %p had a null exit stack\n", state_private_blocked);
994 //printf("\n");
995 }
996 }
997}
998
999static void print_range_critical_path(int process, LttTime t1, LttTime t2)
1000{
1001 printf("Critical path for requested range:\n");
1002 printf("Final process is %d\n", process);
1003 print_delay_pid(process, t1, t2, 2);
1004}
1005
1006static void print_process_critical_path_summary()
1007{
1008 struct process *pinfo;
1009 GList *pinfos;
1010 int i,j;
1011
1012 pinfos = g_hash_table_get_values(process_hash_table);
1013 if(pinfos == NULL) {
1014 fprintf(stderr, "error: no process found\n");
1015 return;
1016 }
1017
1018 printf("Process Critical Path Summary:\n");
1019
1020 for(;;) {
1021 struct summary_tree_node base_node = { children: NULL };
1022
1023 struct process_state *hlev_state_cur;
1024
1025 pinfo = (struct process *)pinfos->data;
55cd92ee
MD
1026 if (depanalysis_range_pid_searching != -1 && pinfo->pid != depanalysis_range_pid_searching)
1027 goto next_iter;
8c108c1c
PMF
1028 printf("\tProcess %d [%s]\n", pinfo->pid, g_quark_to_string(pinfo->name));
1029
1030 if(pinfo->hlev_history->len < 1)
1031 goto next_iter;
1032
1033 print_delay_pid(pinfo->pid, g_array_index(pinfo->hlev_history, struct process_state *, 0)->time_begin, g_array_index(pinfo->hlev_history, struct process_state *, pinfo->hlev_history->len - 1)->time_end, 2);
1034
1035 next_iter:
1036
1037 if(pinfos->next)
1038 pinfos = pinfos->next;
1039 else
1040 break;
1041 }
1042}
1043
1044gint compare_states_length(gconstpointer a, gconstpointer b)
1045{
1046 struct process_state **s1 = (struct process_state **)a;
1047 struct process_state **s2 = (struct process_state **)b;
1048 gint val;
1049
1050 val = ltt_time_compare(ltt_time_sub((*s2)->time_end, (*s2)->time_begin), ltt_time_sub((*s1)->time_end, (*s1)->time_begin));
1051 return val;
1052}
1053
55cd92ee 1054static void print_simple_summary(void)
8c108c1c
PMF
1055{
1056 struct process *pinfo;
1057 GList *pinfos;
1058 GList *pinfos_first;
1059 int i,j;
1060 int id_for_episodes = 0;
1061
55cd92ee
MD
1062 if (!a_print_simple_summary)
1063 return;
1064
8c108c1c
PMF
1065 /* we save all the nodes here to print the episodes table quickly */
1066 GArray *all_nodes = g_array_new(FALSE, FALSE, sizeof(struct summary_tree_node *));
1067
1068 pinfos_first = g_hash_table_get_values(process_hash_table);
1069 if(pinfos_first == NULL) {
1070 fprintf(stderr, "error: no processes found\n");
1071 return;
1072 }
1073 pinfos = pinfos_first;
1074
1075 printf("Simple summary:\n");
1076
1077 /* For each process */
1078 for(;;) {
1079 struct summary_tree_node base_node = { children: NULL, name: "Root" };
1080
1081 struct process_state *hlev_state_cur;
1082
1083 pinfo = (struct process *)pinfos->data;
1084 printf("\tProcess %d [%s]\n", pinfo->pid, g_quark_to_string(pinfo->name));
1085
1086 /* For each state in the process history */
1087 for(i=0; i<pinfo->hlev_history->len; i++) {
1088 struct process_state *pstate = g_array_index(pinfo->hlev_history, struct process_state *, i);
1089 struct summary_tree_node *node_cur = &base_node;
1090 GArray *tree_path_garray;
1091
1092 /* Modify the path based on private data */
1093 tree_path_garray = g_array_new(FALSE, FALSE, sizeof(char *));
1094 {
1095 int count=0;
1096 char **tree_path_cur2 = hlev_state_infos[pstate->bstate].tree_path;
1097 while(*tree_path_cur2) {
1098 count++;
1099 tree_path_cur2++;
1100 }
1101 g_array_append_vals(tree_path_garray, hlev_state_infos[pstate->bstate].tree_path, count);
1102 }
1103 modify_path_with_private(tree_path_garray, pstate);
1104
1105 /* Walk the path, adding the nodes to the summary */
1106 for(j=0; j<tree_path_garray->len; j++) {
1107 struct summary_tree_node *newnode;
1108 GQuark componentquark;
1109
1110 /* Have a path component we must follow */
1111 if(!node_cur->children) {
1112 /* must create the hash table for the children */
1113 node_cur->children = g_hash_table_new(g_int_hash, g_int_equal);
1114 }
1115
1116 /* try to get the node for the next component */
1117 componentquark = g_quark_from_string(g_array_index(tree_path_garray, char *, j));
1118 newnode = g_hash_table_lookup(node_cur->children, &componentquark);
1119 if(newnode == NULL) {
1120 newnode = g_malloc(sizeof(struct summary_tree_node));
1121 newnode->children = NULL;
1122 newnode->name = g_array_index(tree_path_garray, char *, j);
1123 newnode->duration = ltt_time_zero;
1124 newnode->id_for_episodes = id_for_episodes++;
1125 newnode->episodes = g_array_new(FALSE, FALSE, sizeof(struct process_state *));
1126 g_hash_table_insert(node_cur->children, &componentquark, newnode);
1127
1128 g_array_append_val(all_nodes, newnode);
1129 }
1130 node_cur = newnode;
1131
1132 node_cur->duration = ltt_time_add(node_cur->duration, ltt_time_sub(pstate->time_end, pstate->time_begin));
1133 g_array_append_val(node_cur->episodes, pstate);
1134 }
1135 }
1136
1137 /* print the summary */
1138 print_summary_item(&base_node, -1);
1139
1140 printf("\n");
1141
1142 if(pinfos->next)
1143 pinfos = pinfos->next;
1144 else
1145 break;
1146 }
1147
1148 printf("\n");
1149
1150 printf("Episode list\n");
1151 pinfos = pinfos_first;
1152
1153 /* For all the nodes of the Simple summary tree */
1154 for(i=0; i<all_nodes->len; i++) {
1155 struct summary_tree_node *node = (struct summary_tree_node *)g_array_index(all_nodes, struct summary_tree_node *, i);
1156
1157 /* Sort the episodes from longest to shortest */
1158 g_array_sort(node->episodes, compare_states_length);
1159
1160 printf("\tNode id: <%d>\n", node->id_for_episodes);
1161 /* For each episode of the node */
1162 for(j=0; j<node->episodes->len; j++) {
1163 struct process_state *st = g_array_index(node->episodes, struct process_state *, j);
1164
1165 printf("\t\t");
1166 print_time(st->time_begin);
1167 printf("-");
1168 print_time(st->time_end);
1169 printf(" (%f)\n", 1e-9*ltt_time_to_double(ltt_time_sub(st->time_end,st->time_begin)));
1170 }
1171 }
1172}
1173
1174static void print_simple_summary_pid_range(int pid, LttTime t1, LttTime t2)
1175{
1176 struct process *pinfo;
1177 int i,j;
1178 int id_for_episodes = 0;
1179
1180 /* we save all the nodes here to print the episodes table quickly */
1181 GArray *all_nodes = g_array_new(FALSE, FALSE, sizeof(struct summary_tree_node *));
1182
1183 pinfo = g_hash_table_lookup(process_hash_table, &pid);
1184
1185 {
1186 struct summary_tree_node base_node = { children: NULL, name: "Root" };
1187
1188 struct process_state *hlev_state_cur;
1189
1190 printf("\tProcess %d [%s]\n", pinfo->pid, g_quark_to_string(pinfo->name));
1191
1192 /* For each state in the process history */
1193 for(i=0; i<pinfo->hlev_history->len; i++) {
1194 struct process_state *pstate = g_array_index(pinfo->hlev_history, struct process_state *, i);
1195 struct summary_tree_node *node_cur = &base_node;
1196 GArray *tree_path_garray;
1197
1198 if(ltt_time_compare(pstate->time_end, t1) < 0)
1199 continue;
1200
1201 if(ltt_time_compare(pstate->time_end, t2) > 0)
1202 break;
1203
1204 /* Modify the path based on private data */
1205 tree_path_garray = g_array_new(FALSE, FALSE, sizeof(char *));
1206 {
1207 int count=0;
1208 char **tree_path_cur2 = hlev_state_infos[pstate->bstate].tree_path;
1209 while(*tree_path_cur2) {
1210 count++;
1211 tree_path_cur2++;
1212 }
1213 g_array_append_vals(tree_path_garray, hlev_state_infos[pstate->bstate].tree_path, count);
1214 }
1215 modify_path_with_private(tree_path_garray, pstate);
1216
1217 /* Walk the path, adding the nodes to the summary */
1218 for(j=0; j<tree_path_garray->len; j++) {
1219 struct summary_tree_node *newnode;
1220 GQuark componentquark;
1221
1222 /* Have a path component we must follow */
1223 if(!node_cur->children) {
1224 /* must create the hash table for the children */
1225 node_cur->children = g_hash_table_new(g_int_hash, g_int_equal);
1226 }
1227
1228 /* try to get the node for the next component */
1229 componentquark = g_quark_from_string(g_array_index(tree_path_garray, char *, j));
1230 newnode = g_hash_table_lookup(node_cur->children, &componentquark);
1231 if(newnode == NULL) {
1232 newnode = g_malloc(sizeof(struct summary_tree_node));
1233 newnode->children = NULL;
1234 newnode->name = g_array_index(tree_path_garray, char *, j);
1235 newnode->duration = ltt_time_zero;
1236 newnode->id_for_episodes = id_for_episodes++;
1237 newnode->episodes = g_array_new(FALSE, FALSE, sizeof(struct process_state *));
1238 g_hash_table_insert(node_cur->children, &componentquark, newnode);
1239
1240 g_array_append_val(all_nodes, newnode);
1241 }
1242 node_cur = newnode;
1243
1244 node_cur->duration = ltt_time_add(node_cur->duration, ltt_time_sub(pstate->time_end, pstate->time_begin));
1245 g_array_append_val(node_cur->episodes, pstate);
1246 }
1247 }
1248
1249 /* print the summary */
1250 print_summary_item(&base_node, -1);
1251
1252 printf("\n");
1253 }
1254
1255 printf("\n");
1256
1257 printf("Episode list\n");
1258
1259 /* For all the nodes of the Simple summary tree */
1260 for(i=0; i<all_nodes->len; i++) {
1261 struct summary_tree_node *node = (struct summary_tree_node *)g_array_index(all_nodes, struct summary_tree_node *, i);
1262
1263 /* Sort the episodes from longest to shortest */
1264 g_array_sort(node->episodes, compare_states_length);
1265
1266 printf("\tNode id: <%d>\n", node->id_for_episodes);
1267 /* For each episode of the node */
1268 for(j=0; j<node->episodes->len; j++) {
1269 struct process_state *st = g_array_index(node->episodes, struct process_state *, j);
1270
1271 printf("\t\t");
1272 print_time(st->time_begin);
1273 printf("-");
1274 print_time(st->time_end);
1275 printf(" (%f)\n", 1e-9*ltt_time_to_double(ltt_time_sub(st->time_end,st->time_begin)));
1276 }
1277 }
1278}
1279
1280static void flush_process_sstacks(void)
1281{
1282 GList *pinfos;
1283
1284 pinfos = g_hash_table_get_values(process_hash_table);
1285 while(pinfos) {
1286 struct process *pinfo = (struct process *)pinfos->data;
1287
1288 sstack_force_flush(pinfo->stack);
1289
1290 pinfos = pinfos->next;
1291 }
1292
1293 g_list_free(pinfos);
1294}
1295
1296struct family_item {
1297 int pid;
1298 LttTime creation;
1299};
1300
1301void print_range_reports(int pid, LttTime t1, LttTime t2)
1302{
1303 GArray *family = g_array_new(FALSE, FALSE, sizeof(struct family_item));
1304 int i;
1305
1306 /* reconstruct the parental sequence */
1307 for(;;) {
1308 struct process *pinfo;
1309 struct family_item fi;
1310 LttTime cur_beg;
1311
1312 pinfo = g_hash_table_lookup(process_hash_table, &pid);
1313 if(pinfo == NULL)
1314 abort();
1315
1316 fi.pid = pid;
1317 cur_beg = g_array_index(pinfo->hlev_history, struct process_state *, 0)->time_begin;
1318 fi.creation = cur_beg;
1319 g_array_append_val(family, fi);
1320
1321 if(ltt_time_compare(cur_beg, t1) == -1) {
1322 /* current pid starts before the interesting time */
1323 break;
1324 }
1325 if(pinfo->parent == -1) {
1326 printf("unable to go back, we don't know the parent of %d\n", fi.pid);
1327 abort();
1328 }
1329 /* else, we go on */
1330 pid = pinfo->parent;
1331
1332 }
1333
1334 printf("Simple summary for range:\n");
1335 for(i=family->len-1; i>=0; i--) {
1336 LttTime iter_t1, iter_t2;
1337 int iter_pid = g_array_index(family, struct family_item, i).pid;
1338
1339 if(i == family->len-1)
1340 iter_t1 = t1;
1341 else
1342 iter_t1 = g_array_index(family, struct family_item, i).creation;
1343
1344 if(i == 0)
1345 iter_t2 = t2;
1346 else
1347 iter_t2 = g_array_index(family, struct family_item, i-1).creation;
1348
1349 printf("This section of summary concerns pid %d between ");
1350 print_time(iter_t1);
1351 printf(" and ");
1352 print_time(iter_t2);
1353 printf(".\n");
1354 print_simple_summary_pid_range(iter_pid, iter_t1, iter_t2);
1355 }
1356 print_range_critical_path(depanalysis_range_pid, t1, t2);
1357}
1358
1359static gboolean write_traceset_footer(void *hook_data, void *call_data)
1360{
1361 LttvTracesetContext *tc = (LttvTracesetContext *)call_data;
1362
1363 g_info("TextDump traceset footer");
1364
55cd92ee 1365 g_info(a_file,"End trace set\n\n");
8c108c1c
PMF
1366
1367// if(LTTV_IS_TRACESET_STATS(tc)) {
1368// lttv_stats_sum_traceset((LttvTracesetStats *)tc, ltt_time_infinite);
1369// print_stats(a_file, (LttvTracesetStats *)tc);
1370// }
1371
1372 /* After processing all the events, we need to flush the sstacks
1373 * because some unfinished states may remain in them. We want them
1374 * event though there are incomplete.
1375 */
1376 flush_process_sstacks();
1377
1378 /* print the reports */
1379 print_simple_summary();
1380 print_process_critical_path_summary();
8c108c1c 1381 if(depanalysis_use_time == 3) {
55cd92ee 1382 printf("depanalysis_use_time = %d\n", depanalysis_use_time);
8c108c1c
PMF
1383 if(depanalysis_range_pid == -1 && depanalysis_range_pid_searching >= 0)
1384 depanalysis_range_pid = depanalysis_range_pid_searching;
1385
1386 if(depanalysis_range_pid >= 0) {
1387 print_range_reports(depanalysis_range_pid, depanalysis_time1, depanalysis_time2);
1388 }
1389 else
1390 printf("range critical path: could not find the end of the range\n");
1391 }
1392
1393 return FALSE;
1394}
1395
1396#if 0
1397static gboolean write_trace_header(void *hook_data, void *call_data)
1398{
1399 LttvTraceContext *tc = (LttvTraceContext *)call_data;
1400#if 0 //FIXME
1401 LttSystemDescription *system = ltt_trace_system_description(tc->t);
1402
1403 fprintf(a_file," Trace from %s in %s\n%s\n\n",
1404 ltt_trace_system_description_node_name(system),
1405 ltt_trace_system_description_domain_name(system),
1406 ltt_trace_system_description_description(system));
1407#endif //0
1408 return FALSE;
1409}
1410#endif
1411
1412
1413static int write_event_content(void *hook_data, void *call_data)
1414{
1415 gboolean result;
1416
1417// LttvIAttribute *attributes = LTTV_IATTRIBUTE(lttv_global_attributes());
1418
1419 LttvTracefileContext *tfc = (LttvTracefileContext *)call_data;
1420
1421 LttvTracefileState *tfs = (LttvTracefileState *)call_data;
1422
1423 LttEvent *e;
1424
1425 guint cpu = tfs->cpu;
1426 LttvTraceState *ts = (LttvTraceState*)tfc->t_context;
1427 LttvProcessState *process = ts->running_process[cpu];
1428
1429 e = ltt_tracefile_get_event(tfc->tf);
1430
1431 lttv_event_to_string(e, a_string, TRUE, 1, tfs);
1432
1433// if(a_state) {
1434 g_string_append_printf(a_string, " %s ",
1435 g_quark_to_string(process->state->s));
1436// }
1437
1438 g_string_append_printf(a_string,"\n");
1439
1440 fputs(a_string->str, a_file);
1441 return FALSE;
1442}
1443
1444static int field_get_value_int(struct LttEvent *e, struct marker_info *info, GQuark f)
1445{
1446 struct marker_field *marker_field;
1447 int found=0;
1448
1449 for_each_marker_field(marker_field, info) {
1450 if (marker_field->name == f) {
1451 found = 1;
1452 break;
1453 }
1454 }
1455 g_assert(found);
1456 return ltt_event_get_long_unsigned(e, marker_field);
1457}
1458
1459static char *field_get_value_string(struct LttEvent *e, struct marker_info *info, GQuark f)
1460{
1461 struct marker_field *marker_field;
1462 int found=0;
1463
1464 for_each_marker_field(marker_field, info) {
1465 if (marker_field->name == f) {
1466 found = 1;
1467 break;
1468 }
1469 }
1470 g_assert(found);
1471 return ltt_event_get_string(e, marker_field);
1472}
1473
1474void process_delayed_stack_action(struct process *pinfo, struct sstack_item *item)
1475{
1476 //printf("processing delayed stack action on pid %d at ", pinfo->pid);
1477 //if(((struct process_with_state *) item->data_val)->state.time_begin.tv_nsec == 987799696)
1478 // printf("HERE!!!\n");
1479 //print_time(((struct process_with_state *) item->data_val)->state.time_begin);
1480 //printf("\n");
1481 //printf("stack before:\n");
1482 //print_stack(pinfo->stack);
1483
1484 if(item->data_type == SSTACK_TYPE_PUSH) {
1485 struct process_with_state *pwstate = item->data_val;
1486 //printf("pushing\n");
1487 old_process_push_llev_state(pinfo, &pwstate->state);
1488 update_hlev_state(pinfo, pwstate->state.time_begin);
1489 }
1490 else if(item->data_type == SSTACK_TYPE_POP) {
1491 struct process_with_state *pwstate = item->data_val;
1492 //printf("popping\n");
1493 old_process_pop_llev_state(pinfo, &pwstate->state);
1494 update_hlev_state(pinfo, pwstate->state.time_end);
1495 }
1496 else if(item->data_type == SSTACK_TYPE_EVENT) {
1497 struct sstack_event *se = item->data_val;
1498 if(se->event_type == HLEV_EVENT_TRY_WAKEUP) {
1499 /* FIXME: should change hlev event from BLOCKED to INTERRUPTED CPU when receiving TRY_WAKEUP */
1500 struct try_wakeup_event *twe = se->private;
1501
1502 /* FIXME: maybe do some more rigorous checking here */
1503 if(pinfo->hlev_state->bstate == HLEV_BLOCKED) {
1504 struct hlev_state_info_blocked *hlev_blocked_private = pinfo->hlev_state->private;
1505
1506 hlev_blocked_private->pid_exit = twe->pid;
1507 hlev_blocked_private->time_woken = twe->time;
1508 hlev_blocked_private->llev_state_exit = oldstyle_stack_to_garray(twe->waker->llev_state_stack, twe->waker->stack_current);
1509 //printf("set a non null exit stack on %p, and stack size is %d\n", hlev_blocked_private, hlev_blocked_private->llev_state_exit->len);
1510
1511 /*
1512 if(p->stack_current >= 0 && p->llev_state_stack[p->stack_current]->bstate == LLEV_PREEMPTED) {
1513 old_process_pop_llev_state(pinfo, p->llev_state_stack[p->stack_current]);
1514 update_hlev_state(pinfo
1515 old_process_push_llev_state
1516 }*/
1517
1518 }
1519 }
1520 }
1521
1522 //printf("stack after:\n");
1523 //print_stack(pinfo->stack);
1524}
1525
1526static struct process *get_or_init_process_info(struct LttEvent *e, GQuark name, int pid, int *new)
1527{
1528 gconstpointer val;
1529
1530 val = g_hash_table_lookup(process_hash_table, &pid);
1531 if(val == NULL) {
1532 struct process *pinfo;
1533 int i;
1534
1535 /* Initialize new pinfo for newly discovered process */
1536 pinfo = g_malloc(sizeof(struct process));
1537 pinfo->pid = pid;
1538 pinfo->parent = -1; /* unknown parent */
1539 pinfo->hlev_history = g_array_new(FALSE, FALSE, sizeof(struct process_state *));
1540 pinfo->stack = sstack_new();
1541 pinfo->stack_current=-1;
1542 pinfo->stack->process_func = process_delayed_stack_action;
1543 pinfo->stack->process_func_arg = pinfo;
1544 for(i=0; i<PROCESS_STATE_STACK_SIZE; i++) {
1545 pinfo->llev_state_stack[i] = g_malloc(sizeof(struct process_state));
1546 }
1547
1548 pinfo->hlev_state = g_malloc(sizeof(struct process_state));
1549 pinfo->hlev_state->bstate = HLEV_UNKNOWN;
1550 pinfo->hlev_state->time_begin = e->event_time;
1551 pinfo->hlev_state->private = NULL;
1552
1553 /* set the name */
1554 pinfo->name = name;
1555
1556 g_hash_table_insert(process_hash_table, &pinfo->pid, pinfo);
1557 if(new)
1558 *new = 1;
1559 return pinfo;
1560 }
1561 else {
1562 if(new)
1563 *new = 0;
1564 return val;
1565
1566 }
1567}
1568
1569static int differentiate_swappers(int pid, LttEvent *e)
1570{
1571 if(pid == 0)
1572 return pid+e->tracefile->cpu_num+2000000;
1573 else
1574 return pid;
1575}
1576
1577static int process_event(void *hook_data, void *call_data)
1578{
1579 LttvTracefileContext *tfc = (LttvTracefileContext *)call_data;
1580 LttvTracefileState *tfs = (LttvTracefileState *)call_data;
1581 LttEvent *e;
1582 struct marker_info *info;
1583
1584 /* Extract data from event structures and state */
1585 guint cpu = tfs->cpu;
1586 LttvTraceState *ts = (LttvTraceState*)tfc->t_context;
1587 LttvProcessState *process = ts->running_process[cpu];
1588 LttTrace *trace = ts->parent.t;
1589 struct process *pinfo;
1590
1591 e = ltt_tracefile_get_event(tfs->parent.tf);
1592
1593 info = marker_get_info_from_id(tfc->tf->mdata, e->event_id);
1594
1595 //if(depanalysis_use_time && (ltt_time_compare(e->timestamp, arg_t1) == -1 || ltt_time_compare(e->timestamp, arg_t2) == 1)) {
1596 // return;
1597 //}
1598 /* Set the pid for the dependency analysis at each event, until we are passed the range. */
1599 if(depanalysis_use_time == 3) {
1600 if(ltt_time_compare(e->event_time, depanalysis_time2) <= 0) {
1601 depanalysis_range_pid = process->pid;
1602 }
1603 else {
1604 /* Should stop processing and print results */
1605 }
1606 }
1607
1608 /* Code to limit the event count */
1609 if(depanalysis_event_limit > 0) {
1610 depanalysis_event_limit--;
1611 }
1612 else if(depanalysis_event_limit == 0) {
1613 write_traceset_footer(hook_data, call_data);
1614 printf("exit due to event limit reached\n");
1615 exit(0);
1616 }
1617
1618 /* write event like textDump for now, for debugging purposes */
1619 //write_event_content(hook_data, call_data);
1620
1621 if(tfc->tf->name == LTT_CHANNEL_SYSCALL_STATE && info->name == LTT_EVENT_SYS_CALL_TABLE) {
1622 GQuark q;
1623 int *pint = g_malloc(sizeof(int));
1624
1625 *pint = field_get_value_int(e, info, LTT_FIELD_ID);
1626 q = g_quark_from_string(field_get_value_string(e, info, LTT_FIELD_SYMBOL));
1627 g_hash_table_insert(syscall_table, pint, q);
1628 }
1629 else if(tfc->tf->name == LTT_CHANNEL_IRQ_STATE && info->name == LTT_EVENT_LIST_INTERRUPT) {
1630 GQuark q;
1631 int *pint = g_malloc(sizeof(int));
1632
1633 *pint = field_get_value_int(e, info, LTT_FIELD_IRQ_ID);
1634 q = g_quark_from_string(field_get_value_string(e, info, LTT_FIELD_ACTION));
1635 g_hash_table_insert(irq_table, pint, q);
1636 }
1637 else if(tfc->tf->name == LTT_CHANNEL_SOFTIRQ_STATE && info->name == LTT_EVENT_SOFTIRQ_VEC) {
1638 GQuark q;
1639 int *pint = g_malloc(sizeof(int));
1640
1641 *pint = field_get_value_int(e, info, LTT_FIELD_ID);
1642 q = g_quark_from_string(field_get_value_string(e, info, LTT_FIELD_SYMBOL));
1643 g_hash_table_insert(softirq_table, pint, q);
1644 }
1645
1646
1647 /* Only look at events after the statedump is finished.
1648 * Before that, the pids in the LttvProcessState are not reliable
1649 */
1650 if(statedump_finished == 0) {
1651 if(tfc->tf->name == LTT_CHANNEL_GLOBAL_STATE && info->name == LTT_EVENT_STATEDUMP_END)
1652 statedump_finished = 1;
1653 else
1654 return FALSE;
1655
1656 }
1657
1658 pinfo = get_or_init_process_info(e, process->name, differentiate_swappers(process->pid, e), NULL);
1659
1660 /* the state machine
1661 * Process the event in the context of each process
1662 */
1663
1664 if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_IRQ_ENTRY) {
1665 struct process *event_process_info = pinfo;
1666 struct sstack_item *item;
1667
1668 item = prepare_push_item(event_process_info, LLEV_IRQ, e->event_time);
1669 ((struct llev_state_info_irq *) item_private(item))->irq = field_get_value_int(e, info, LTT_FIELD_IRQ_ID);
1670 commit_item(event_process_info, item);
1671 }
1672 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_IRQ_EXIT) {
1673 struct process *event_process_info = pinfo;
1674
1675 prepare_pop_item_commit(event_process_info, LLEV_IRQ, e->event_time);
1676 }
1677 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_SCHED_SCHEDULE) {
1678 int next_pid = field_get_value_int(e, info, LTT_FIELD_NEXT_PID);
1679 int prev_pid = field_get_value_int(e, info, LTT_FIELD_PREV_PID);
1680 if(next_pid != 0) {
1681 struct process *event_process_info = get_or_init_process_info(e, process->name, differentiate_swappers(next_pid, e), NULL);
1682 prepare_pop_item_commit(event_process_info, LLEV_PREEMPTED, e->event_time);
1683 }
1684 if(prev_pid != 0) {
1685 struct sstack_item *item;
1686 struct process *event_process_info = get_or_init_process_info(e, process->name, differentiate_swappers(prev_pid, e), NULL);
1687
1688 item = prepare_push_item(event_process_info, LLEV_PREEMPTED, e->event_time);
1689 ((struct llev_state_info_preempted *) item_private(item))->prev_state = field_get_value_int(e, info, LTT_FIELD_PREV_STATE);
1690 commit_item(event_process_info, item);
1691 }
1692 }
1693 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_TRAP_ENTRY) {
1694 struct process *event_process_info = pinfo;
1695 struct sstack_item *item;
1696
1697 item = prepare_push_item(event_process_info, LLEV_TRAP, e->event_time);
1698 commit_item(event_process_info, item);
1699 }
1700 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_TRAP_EXIT) {
1701 struct process *event_process_info = pinfo;
1702
1703 prepare_pop_item_commit(event_process_info, LLEV_TRAP, e->event_time);
1704 }
1705 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_SYSCALL_ENTRY) {
1706 struct process *event_process_info = pinfo;
1707 struct sstack_item *item;
1708
1709 item = prepare_push_item(event_process_info, LLEV_SYSCALL, e->event_time);
1710 ((struct llev_state_info_syscall *) item_private(item))->syscall_id = field_get_value_int(e, info, LTT_FIELD_SYSCALL_ID);
1711 ((struct llev_state_info_syscall *) item_private(item))->substate = LLEV_SYSCALL__UNDEFINED;
1712 commit_item(event_process_info, item);
1713 }
1714 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_SYSCALL_EXIT) {
1715 struct process *event_process_info = pinfo;
1716
1717 prepare_pop_item_commit(event_process_info, LLEV_SYSCALL, e->event_time);
1718 }
1719 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_SOFT_IRQ_ENTRY) {
1720 struct process *event_process_info = pinfo;
1721 struct sstack_item *item;
1722
1723 item = prepare_push_item(event_process_info, LLEV_SOFTIRQ, e->event_time);
1724 ((struct llev_state_info_softirq *) item_private(item))->softirq = field_get_value_int(e, info, LTT_FIELD_SOFT_IRQ_ID);
1725 commit_item(event_process_info, item);
1726 }
1727 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_SOFT_IRQ_EXIT) {
1728 struct process *event_process_info = pinfo;
1729
1730 prepare_pop_item_commit(event_process_info, LLEV_SOFTIRQ, e->event_time);
1731 }
1732 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_PROCESS_FORK) {
1733 int pid = differentiate_swappers(field_get_value_int(e, info, LTT_FIELD_CHILD_PID), e);
1734 struct process *event_process_info = get_or_init_process_info(e, process->name, differentiate_swappers(field_get_value_int(e, info, LTT_FIELD_CHILD_PID), e), NULL);
1735 struct sstack_item *item;
1736
1737 event_process_info->parent = process->pid;
1738 //printf("At ");
1739 //print_time(e->event_time);
1740 //printf(", fork in process %d (%s), creating child %d\n", differentiate_swappers(process->pid, e), g_quark_to_string(process->name), pid);
1741
1742 item = prepare_push_item(event_process_info, LLEV_RUNNING, e->event_time);
1743 commit_item(event_process_info, item);
1744 item = prepare_push_item(event_process_info, LLEV_SYSCALL, e->event_time);
1745 /* FIXME: this sets fork() as syscall, it's pretty inelegant */
1746 ((struct llev_state_info_syscall *) item_private(item))->syscall_id = 57;
1747 ((struct llev_state_info_syscall *) item_private(item))->substate = LLEV_SYSCALL__UNDEFINED;
1748 commit_item(event_process_info, item);
1749
1750 item = prepare_push_item(event_process_info, LLEV_PREEMPTED, e->event_time);
1751 /* Consider fork as BLOCKED */
1752 ((struct llev_state_info_preempted *) item_private(item))->prev_state = 1;
1753 commit_item(event_process_info, item);
1754
1755 //printf("process %d now has a stack of height %d\n", differentiate_swappers(process->pid, e), get_or_init_process_info(e, process->name, differentiate_swappers(process->pid, cpu), NULL)->stack_current-1);
1756
1757 }
1758 else if(tfc->tf->name == LTT_CHANNEL_FS && info->name == LTT_EVENT_EXEC) {
1759 struct process *event_process_info = pinfo;
1760
1761 guint cpu = tfs->cpu;
1762 LttvProcessState *process_state = ts->running_process[cpu];
1763 event_process_info->name = process_state->name;
1764 }
1765 else if(tfc->tf->name == LTT_CHANNEL_FS && info->name == LTT_EVENT_OPEN) {
1766 struct process_state *pstate = process_find_state(pinfo, LLEV_SYSCALL);
1767 struct llev_state_info_syscall *llev_syscall_private;
1768 struct llev_state_info_syscall__open *llev_syscall_open_private;
1769
1770 /* TODO: this is too easy */
1771 if(pstate == NULL)
1772 goto next_iter;
1773
1774 llev_syscall_private = (struct llev_state_info_syscall *)pstate->private;
1775
1776 //printf("depanalysis: found an open with state %d in pid %d\n", pstate->bstate, process->pid);
1777 if(pstate->bstate == LLEV_UNKNOWN)
1778 goto next_iter;
1779
1780 g_assert(pstate->bstate == LLEV_SYSCALL);
1781 g_assert(llev_syscall_private->substate == LLEV_SYSCALL__UNDEFINED);
1782
1783 llev_syscall_private->substate = LLEV_SYSCALL__OPEN;
1784 //printf("setting substate LLEV_SYSCALL__OPEN on syscall_private %p\n", llev_syscall_private);
1785 llev_syscall_private->private = g_malloc(sizeof(struct llev_state_info_syscall__open));
1786 llev_syscall_open_private = llev_syscall_private->private;
1787
1788 llev_syscall_open_private->filename = g_quark_from_string(field_get_value_string(e, info, LTT_FIELD_FILENAME));
1789
1790 }
1791 else if(tfc->tf->name == LTT_CHANNEL_FS && info->name == LTT_EVENT_READ) {
1792 struct process_state *pstate = process_find_state(pinfo, LLEV_SYSCALL);
1793 struct llev_state_info_syscall *llev_syscall_private;
1794 struct llev_state_info_syscall__read *llev_syscall_read_private;
1795 GQuark pfileq;
1796 int fd;
1797
1798 /* TODO: this is too easy */
1799 if(pstate == NULL)
1800 goto next_iter;
1801
1802 llev_syscall_private = (struct llev_state_info_syscall *)pstate->private;
1803
1804 //printf("depanalysis: found an read with state %d in pid %d\n", pstate->bstate, process->pid);
1805 if(pstate->bstate == LLEV_UNKNOWN)
1806 goto next_iter;
1807
1808 g_assert(pstate->bstate == LLEV_SYSCALL);
1809 g_assert(llev_syscall_private->substate == LLEV_SYSCALL__UNDEFINED);
1810
1811 llev_syscall_private->substate = LLEV_SYSCALL__READ;
1812 //printf("setting substate LLEV_SYSCALL__READ on syscall_private %p\n", llev_syscall_private);
1813 llev_syscall_private->private = g_malloc(sizeof(struct llev_state_info_syscall__read));
1814 llev_syscall_read_private = llev_syscall_private->private;
1815
1816 fd = field_get_value_int(e, info, LTT_FIELD_FD);
1817 pfileq = g_hash_table_lookup(process->fds, fd);
1818 if(pfileq) {
1819 llev_syscall_read_private->filename = pfileq;
1820 }
1821 else {
1822 char *tmp;
1823 asprintf(&tmp, "Unknown filename, fd %d", fd);
1824 llev_syscall_read_private->filename = g_quark_from_string(tmp);
1825 free(tmp);
1826 }
1827 }
1828 else if(tfc->tf->name == LTT_CHANNEL_FS && info->name == LTT_EVENT_POLL_EVENT) {
1829 struct process_state *pstate = process_find_state(pinfo, LLEV_SYSCALL);
1830 struct llev_state_info_syscall *llev_syscall_private;
1831 struct llev_state_info_syscall__poll *llev_syscall_poll_private;
1832 GQuark pfileq;
1833 int fd;
1834
1835 /* TODO: this is too easy */
1836 if(pstate == NULL)
1837 goto next_iter;
1838
1839 llev_syscall_private = (struct llev_state_info_syscall *)pstate->private;
1840
1841 //printf("depanalysis: found an poll with state %d in pid %d\n", pstate->bstate, process->pid);
1842 if(pstate->bstate == LLEV_UNKNOWN)
1843 goto next_iter;
1844
1845 /* poll doesn't have a single event that gives the syscall args. instead, there can be an arbitrary
1846 * number of fs_pollfd or fd_poll_event events
1847 * We use the fd_poll_event event, which occurs for each fd that had activity causing a return of the poll()
1848 * For now we only use the first.
1849 * We should do something about this. FIXME
1850 */
1851 if(llev_syscall_private->substate == LLEV_SYSCALL__POLL)
1852 goto next_iter;
1853
1854 g_assert(pstate->bstate == LLEV_SYSCALL);
1855 g_assert(llev_syscall_private->substate == LLEV_SYSCALL__UNDEFINED);
1856
1857 llev_syscall_private->substate = LLEV_SYSCALL__POLL;
1858 //printf("setting substate LLEV_SYSCALL__POLL on syscall_private %p\n", llev_syscall_private);
1859 llev_syscall_private->private = g_malloc(sizeof(struct llev_state_info_syscall__poll));
1860 llev_syscall_poll_private = llev_syscall_private->private;
1861
1862 fd = field_get_value_int(e, info, LTT_FIELD_FD);
1863 pfileq = g_hash_table_lookup(process->fds, fd);
1864 if(pfileq) {
1865 llev_syscall_poll_private->filename = pfileq;
1866 }
1867 else {
1868 char *tmp;
1869 asprintf(&tmp, "Unknown filename, fd %d", fd);
1870 llev_syscall_poll_private->filename = g_quark_from_string(tmp);
1871 free(tmp);
1872 }
1873 }
1874 else if(tfc->tf->name == LTT_CHANNEL_KERNEL && info->name == LTT_EVENT_SCHED_TRY_WAKEUP) {
1875 struct sstack_event *se = g_malloc(sizeof(struct sstack_event));
1876 struct try_wakeup_event *twe = g_malloc(sizeof(struct try_wakeup_event));
1877 struct sstack_item *item = sstack_item_new_event();
1878 int target = field_get_value_int(e, info, LTT_FIELD_PID);
1879 struct process *target_pinfo;
1880 int result;
1881
1882 se->event_type = HLEV_EVENT_TRY_WAKEUP;
1883 se->private = twe;
1884 //printf("pushing try wake up event in context of %d\n", pinfo->pid);
1885
1886 twe->pid = differentiate_swappers(process->pid, e);
1887 twe->time = e->event_time;
1888 twe->waker = pinfo;
1889
1890 /* FIXME: the target could not yet have an entry in the hash table, we would then lose data */
1891 target_pinfo = g_hash_table_lookup(process_hash_table, &target);
1892 if(!target_pinfo)
1893 goto next_iter;
1894
1895 item->data_val = se;
b1d18041 1896 item->delete_data_val = (void (*)(void *))delete_data_val;
8c108c1c
PMF
1897
1898 sstack_add_item(target_pinfo->stack, item);
1899
1900 /* Now pop the blocked schedule out of the target */
1901 result = try_pop_blocked_llev_preempted(target_pinfo, e->event_time);
1902
1903 if(result) {
1904 struct sstack_item *item;
1905 struct process *event_process_info = target_pinfo;
1906
1907 item = prepare_push_item(event_process_info, LLEV_PREEMPTED, e->event_time);
1908 ((struct llev_state_info_preempted *) item_private(item))->prev_state = -1; /* special value meaning post-block sched out */
1909 commit_item(event_process_info, item);
1910 }
1911
1912 }
1913
1914 next_iter:
1915 skip_state_machine:
1916 return FALSE;
1917}
1918
1919void print_sstack_private(struct sstack_item *item)
1920{
1921 struct process_with_state *pwstate = item->data_val;
1922
1923 if(pwstate && item->data_type == SSTACK_TYPE_PUSH)
1924 printf("\tstate: %s", llev_state_infos[pwstate->state.bstate].name);
1925
1926 printf(" (");
1927 print_time(pwstate->state.time_begin);
1928 printf("-");
1929 print_time(pwstate->state.time_end);
1930 printf("\n");
1931
1932}
1933
1934static LttTime ltt_time_from_string(const char *str)
1935{
1936 LttTime retval;
1937
1938 char *decdot = strchr(str, '.');
1939
1940 if(decdot) {
1941 *decdot = '\0';
1942 retval.tv_nsec = atol(decdot+1);
1943 }
1944 else {
1945 retval.tv_nsec = 0;
1946 }
1947
1948 retval.tv_sec = atol(str);
1949
1950 return retval;
1951}
1952
1953static void arg_t1(void *hook_data)
1954{
1955 printf("arg_t1\n");
1956 depanalysis_use_time |= 1;
1957 depanalysis_time1 = ltt_time_from_string(arg_t1_str);
1958}
1959
1960static void arg_t2(void *hook_data)
1961{
1962 depanalysis_use_time |= 2;
1963 depanalysis_time2 = ltt_time_from_string(arg_t2_str);
1964}
1965
1966static void arg_pid(void *hook_data)
1967{
1968}
1969
1970static void arg_limit(void *hook_data)
1971{
1972}
1973
55cd92ee
MD
1974static void arg_sum(void *hook_data)
1975{
1976}
1977
8c108c1c
PMF
1978static void init()
1979{
1980 gboolean result;
1981
1982 print_sstack_item_data = print_sstack_private;
1983
1984 LttvAttributeValue value;
1985
1986 LttvIAttribute *attributes = LTTV_IATTRIBUTE(lttv_global_attributes());
1987
1988 a_file = stdout;
1989
1990 lttv_option_add("dep-time-start", 0, "dependency analysis time of analysis start", "time",
1991 LTTV_OPT_STRING, &arg_t1_str, arg_t1, NULL);
1992 lttv_option_add("dep-time-end", 0, "dependency analysis time of analysis end", "time",
1993 LTTV_OPT_STRING, &arg_t2_str, arg_t2, NULL);
1994 lttv_option_add("dep-pid", 0, "dependency analysis pid", "pid",
1995 LTTV_OPT_INT, &depanalysis_range_pid_searching, arg_pid, NULL);
1996 lttv_option_add("limit-events", 0, "dependency limit event count", "count",
1997 LTTV_OPT_INT, &depanalysis_event_limit, arg_limit, NULL);
55cd92ee
MD
1998 lttv_option_add("print-summary", 0, "print simple summary", "sum",
1999 LTTV_OPT_INT, &a_print_simple_summary, arg_sum, NULL);
8c108c1c
PMF
2000
2001 process_hash_table = g_hash_table_new(g_int_hash, g_int_equal);
2002 syscall_table = g_hash_table_new(g_int_hash, g_int_equal);
2003 irq_table = g_hash_table_new(g_int_hash, g_int_equal);
2004 softirq_table = g_hash_table_new(g_int_hash, g_int_equal);
2005
2006 a_string = g_string_new("");
2007
2008 result = lttv_iattribute_find_by_path(attributes, "hooks/event",
2009 LTTV_POINTER, &value);
2010 g_assert(result);
2011 event_hook = *(value.v_pointer);
2012 g_assert(event_hook);
2013 lttv_hooks_add(event_hook, process_event, NULL, LTTV_PRIO_DEFAULT);
2014
2015// result = lttv_iattribute_find_by_path(attributes, "hooks/trace/before",
2016// LTTV_POINTER, &value);
2017// g_assert(result);
2018// before_trace = *(value.v_pointer);
2019// g_assert(before_trace);
2020// lttv_hooks_add(before_trace, write_trace_header, NULL, LTTV_PRIO_DEFAULT);
2021//
2022 result = lttv_iattribute_find_by_path(attributes, "hooks/traceset/before",
2023 LTTV_POINTER, &value);
2024 g_assert(result);
2025 before_traceset = *(value.v_pointer);
2026 g_assert(before_traceset);
2027 lttv_hooks_add(before_traceset, write_traceset_header, NULL,
2028 LTTV_PRIO_DEFAULT);
2029
2030 result = lttv_iattribute_find_by_path(attributes, "hooks/traceset/after",
2031 LTTV_POINTER, &value);
2032 g_assert(result);
2033 after_traceset = *(value.v_pointer);
2034 g_assert(after_traceset);
2035 lttv_hooks_add(after_traceset, write_traceset_footer, NULL,
2036 LTTV_PRIO_DEFAULT);
2037}
2038
2039static void destroy()
2040{
2041 lttv_option_remove("dep-time-start");
2042 lttv_option_remove("dep-time-end");
2043 lttv_option_remove("dep-pid");
2044 lttv_option_remove("limit-events");
55cd92ee 2045 lttv_option_remove("print-summary");
8c108c1c
PMF
2046
2047 g_hash_table_destroy(process_hash_table);
2048 g_hash_table_destroy(syscall_table);
2049 g_hash_table_destroy(irq_table);
2050 g_hash_table_destroy(softirq_table);
2051
2052 g_string_free(a_string, TRUE);
2053
2054 lttv_hooks_remove_data(event_hook, write_event_content, NULL);
2055// lttv_hooks_remove_data(before_trace, write_trace_header, NULL);
2056 lttv_hooks_remove_data(before_traceset, write_traceset_header, NULL);
2057 lttv_hooks_remove_data(after_traceset, write_traceset_footer, NULL);
2058}
2059
2060LTTV_MODULE("depanalysis", "Dependency analysis test", \
2061 "Produce a dependency analysis of a trace", \
2062 init, destroy, "stats", "batchAnalysis", "option", "print")
2063
This page took 0.126536 seconds and 4 git commands to generate.