8dfecf1d1fe98ffa98779de77198efc174405080
[lttng-ust.git] / libringbuffer / ring_buffer_frontend.c
1 /*
2 * SPDX-License-Identifier: LGPL-2.1-only
3 *
4 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 *
6 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
7 * recorder (overwrite) modes. See thesis:
8 *
9 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
10 * dissertation, Ecole Polytechnique de Montreal.
11 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
12 *
13 * - Algorithm presentation in Chapter 5:
14 * "Lockless Multi-Core High-Throughput Buffering".
15 * - Algorithm formal verification in Section 8.6:
16 * "Formal verification of LTTng"
17 *
18 * Author:
19 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
20 *
21 * Inspired from LTT and RelayFS:
22 * Karim Yaghmour <karim@opersys.com>
23 * Tom Zanussi <zanussi@us.ibm.com>
24 * Bob Wisniewski <bob@watson.ibm.com>
25 * And from K42 :
26 * Bob Wisniewski <bob@watson.ibm.com>
27 *
28 * Buffer reader semantic :
29 *
30 * - get_subbuf_size
31 * while buffer is not finalized and empty
32 * - get_subbuf
33 * - if return value != 0, continue
34 * - splice one subbuffer worth of data to a pipe
35 * - splice the data from pipe to disk/network
36 * - put_subbuf
37 */
38
39 #define _LGPL_SOURCE
40 #include <sys/types.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <unistd.h>
44 #include <fcntl.h>
45 #include <signal.h>
46 #include <time.h>
47 #include <stdbool.h>
48 #include <stdint.h>
49 #include <urcu/compiler.h>
50 #include <urcu/ref.h>
51 #include <urcu/tls-compat.h>
52 #include <poll.h>
53 #include <ust-helper.h>
54
55 #include <lttng/ust-utils.h>
56 #include <lttng/ringbuffer-context.h>
57
58 #include "smp.h"
59 #include "ringbuffer-config.h"
60 #include "vatomic.h"
61 #include "backend.h"
62 #include "frontend.h"
63 #include "shm.h"
64 #include "rb-init.h"
65 #include "../liblttng-ust/compat.h" /* For ENODATA */
66
67 /* Print DBG() messages about events lost only every 1048576 hits */
68 #define DBG_PRINT_NR_LOST (1UL << 20)
69
70 #define LTTNG_UST_RB_SIG_FLUSH SIGRTMIN
71 #define LTTNG_UST_RB_SIG_READ SIGRTMIN + 1
72 #define LTTNG_UST_RB_SIG_TEARDOWN SIGRTMIN + 2
73 #define CLOCKID CLOCK_MONOTONIC
74 #define LTTNG_UST_RING_BUFFER_GET_RETRY 10
75 #define LTTNG_UST_RING_BUFFER_RETRY_DELAY_MS 10
76 #define RETRY_DELAY_MS 100 /* 100 ms. */
77
78 /*
79 * Non-static to ensure the compiler does not optimize away the xor.
80 */
81 uint8_t lttng_crash_magic_xor[] = RB_CRASH_DUMP_ABI_MAGIC_XOR;
82
83 /*
84 * Use POSIX SHM: shm_open(3) and shm_unlink(3).
85 * close(2) to close the fd returned by shm_open.
86 * shm_unlink releases the shared memory object name.
87 * ftruncate(2) sets the size of the memory object.
88 * mmap/munmap maps the shared memory obj to a virtual address in the
89 * calling proceess (should be done both in libust and consumer).
90 * See shm_overview(7) for details.
91 * Pass file descriptor returned by shm_open(3) to ltt-sessiond through
92 * a UNIX socket.
93 *
94 * Since we don't need to access the object using its name, we can
95 * immediately shm_unlink(3) it, and only keep the handle with its file
96 * descriptor.
97 */
98
99 /*
100 * Internal structure representing offsets to use at a sub-buffer switch.
101 */
102 struct switch_offsets {
103 unsigned long begin, end, old;
104 size_t pre_header_padding, size;
105 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
106 switch_old_end:1;
107 };
108
109 DEFINE_URCU_TLS(unsigned int, lib_ring_buffer_nesting);
110
111 /*
112 * wakeup_fd_mutex protects wakeup fd use by timer from concurrent
113 * close.
114 */
115 static pthread_mutex_t wakeup_fd_mutex = PTHREAD_MUTEX_INITIALIZER;
116
117 static
118 void lib_ring_buffer_print_errors(struct lttng_ust_lib_ring_buffer_channel *chan,
119 struct lttng_ust_lib_ring_buffer *buf, int cpu,
120 struct lttng_ust_shm_handle *handle);
121
122 /*
123 * Handle timer teardown race wrt memory free of private data by
124 * ring buffer signals are handled by a single thread, which permits
125 * a synchronization point between handling of each signal.
126 * Protected by the lock within the structure.
127 */
128 struct timer_signal_data {
129 pthread_t tid; /* thread id managing signals */
130 int setup_done;
131 int qs_done;
132 pthread_mutex_t lock;
133 };
134
135 static struct timer_signal_data timer_signal = {
136 .tid = 0,
137 .setup_done = 0,
138 .qs_done = 0,
139 .lock = PTHREAD_MUTEX_INITIALIZER,
140 };
141
142 static bool lttng_ust_allow_blocking;
143
144 void lttng_ust_ringbuffer_set_allow_blocking(void)
145 {
146 lttng_ust_allow_blocking = true;
147 }
148
149 /* Get blocking timeout, in ms */
150 static int lttng_ust_ringbuffer_get_timeout(struct lttng_ust_lib_ring_buffer_channel *chan)
151 {
152 if (!lttng_ust_allow_blocking)
153 return 0;
154 return chan->u.s.blocking_timeout_ms;
155 }
156
157 /**
158 * lib_ring_buffer_reset - Reset ring buffer to initial values.
159 * @buf: Ring buffer.
160 *
161 * Effectively empty the ring buffer. Should be called when the buffer is not
162 * used for writing. The ring buffer can be opened for reading, but the reader
163 * should not be using the iterator concurrently with reset. The previous
164 * current iterator record is reset.
165 */
166 void lib_ring_buffer_reset(struct lttng_ust_lib_ring_buffer *buf,
167 struct lttng_ust_shm_handle *handle)
168 {
169 struct lttng_ust_lib_ring_buffer_channel *chan;
170 const struct lttng_ust_lib_ring_buffer_config *config;
171 unsigned int i;
172
173 chan = shmp(handle, buf->backend.chan);
174 if (!chan)
175 return;
176 config = &chan->backend.config;
177 /*
178 * Reset iterator first. It will put the subbuffer if it currently holds
179 * it.
180 */
181 v_set(config, &buf->offset, 0);
182 for (i = 0; i < chan->backend.num_subbuf; i++) {
183 struct commit_counters_hot *cc_hot;
184 struct commit_counters_cold *cc_cold;
185 uint64_t *ts_end;
186
187 cc_hot = shmp_index(handle, buf->commit_hot, i);
188 if (!cc_hot)
189 return;
190 cc_cold = shmp_index(handle, buf->commit_cold, i);
191 if (!cc_cold)
192 return;
193 ts_end = shmp_index(handle, buf->ts_end, i);
194 if (!ts_end)
195 return;
196 v_set(config, &cc_hot->cc, 0);
197 v_set(config, &cc_hot->seq, 0);
198 v_set(config, &cc_cold->cc_sb, 0);
199 *ts_end = 0;
200 }
201 uatomic_set(&buf->consumed, 0);
202 uatomic_set(&buf->record_disabled, 0);
203 v_set(config, &buf->last_tsc, 0);
204 lib_ring_buffer_backend_reset(&buf->backend, handle);
205 /* Don't reset number of active readers */
206 v_set(config, &buf->records_lost_full, 0);
207 v_set(config, &buf->records_lost_wrap, 0);
208 v_set(config, &buf->records_lost_big, 0);
209 v_set(config, &buf->records_count, 0);
210 v_set(config, &buf->records_overrun, 0);
211 buf->finalized = 0;
212 }
213
214 /**
215 * channel_reset - Reset channel to initial values.
216 * @chan: Channel.
217 *
218 * Effectively empty the channel. Should be called when the channel is not used
219 * for writing. The channel can be opened for reading, but the reader should not
220 * be using the iterator concurrently with reset. The previous current iterator
221 * record is reset.
222 */
223 void channel_reset(struct lttng_ust_lib_ring_buffer_channel *chan)
224 {
225 /*
226 * Reset iterators first. Will put the subbuffer if held for reading.
227 */
228 uatomic_set(&chan->record_disabled, 0);
229 /* Don't reset commit_count_mask, still valid */
230 channel_backend_reset(&chan->backend);
231 /* Don't reset switch/read timer interval */
232 /* Don't reset notifiers and notifier enable bits */
233 /* Don't reset reader reference count */
234 }
235
236 static
237 void init_crash_abi(const struct lttng_ust_lib_ring_buffer_config *config,
238 struct lttng_crash_abi *crash_abi,
239 struct lttng_ust_lib_ring_buffer *buf,
240 struct channel_backend *chanb,
241 struct shm_object *shmobj,
242 struct lttng_ust_shm_handle *handle)
243 {
244 int i;
245
246 for (i = 0; i < RB_CRASH_DUMP_ABI_MAGIC_LEN; i++)
247 crash_abi->magic[i] = lttng_crash_magic_xor[i] ^ 0xFF;
248 crash_abi->mmap_length = shmobj->memory_map_size;
249 crash_abi->endian = RB_CRASH_ENDIAN;
250 crash_abi->major = RB_CRASH_DUMP_ABI_MAJOR;
251 crash_abi->minor = RB_CRASH_DUMP_ABI_MINOR;
252 crash_abi->word_size = sizeof(unsigned long);
253 crash_abi->layout_type = LTTNG_CRASH_TYPE_UST;
254
255 /* Offset of fields */
256 crash_abi->offset.prod_offset =
257 (uint32_t) ((char *) &buf->offset - (char *) buf);
258 crash_abi->offset.consumed_offset =
259 (uint32_t) ((char *) &buf->consumed - (char *) buf);
260 crash_abi->offset.commit_hot_array =
261 (uint32_t) ((char *) shmp(handle, buf->commit_hot) - (char *) buf);
262 crash_abi->offset.commit_hot_seq =
263 offsetof(struct commit_counters_hot, seq);
264 crash_abi->offset.buf_wsb_array =
265 (uint32_t) ((char *) shmp(handle, buf->backend.buf_wsb) - (char *) buf);
266 crash_abi->offset.buf_wsb_id =
267 offsetof(struct lttng_ust_lib_ring_buffer_backend_subbuffer, id);
268 crash_abi->offset.sb_array =
269 (uint32_t) ((char *) shmp(handle, buf->backend.array) - (char *) buf);
270 crash_abi->offset.sb_array_shmp_offset =
271 offsetof(struct lttng_ust_lib_ring_buffer_backend_pages_shmp,
272 shmp._ref.offset);
273 crash_abi->offset.sb_backend_p_offset =
274 offsetof(struct lttng_ust_lib_ring_buffer_backend_pages,
275 p._ref.offset);
276
277 /* Field length */
278 crash_abi->length.prod_offset = sizeof(buf->offset);
279 crash_abi->length.consumed_offset = sizeof(buf->consumed);
280 crash_abi->length.commit_hot_seq =
281 sizeof(((struct commit_counters_hot *) NULL)->seq);
282 crash_abi->length.buf_wsb_id =
283 sizeof(((struct lttng_ust_lib_ring_buffer_backend_subbuffer *) NULL)->id);
284 crash_abi->length.sb_array_shmp_offset =
285 sizeof(((struct lttng_ust_lib_ring_buffer_backend_pages_shmp *) NULL)->shmp._ref.offset);
286 crash_abi->length.sb_backend_p_offset =
287 sizeof(((struct lttng_ust_lib_ring_buffer_backend_pages *) NULL)->p._ref.offset);
288
289 /* Array stride */
290 crash_abi->stride.commit_hot_array =
291 sizeof(struct commit_counters_hot);
292 crash_abi->stride.buf_wsb_array =
293 sizeof(struct lttng_ust_lib_ring_buffer_backend_subbuffer);
294 crash_abi->stride.sb_array =
295 sizeof(struct lttng_ust_lib_ring_buffer_backend_pages_shmp);
296
297 /* Buffer constants */
298 crash_abi->buf_size = chanb->buf_size;
299 crash_abi->subbuf_size = chanb->subbuf_size;
300 crash_abi->num_subbuf = chanb->num_subbuf;
301 crash_abi->mode = (uint32_t) chanb->config.mode;
302
303 if (config->cb.content_size_field) {
304 size_t offset, length;
305
306 config->cb.content_size_field(config, &offset, &length);
307 crash_abi->offset.content_size = offset;
308 crash_abi->length.content_size = length;
309 } else {
310 crash_abi->offset.content_size = 0;
311 crash_abi->length.content_size = 0;
312 }
313 if (config->cb.packet_size_field) {
314 size_t offset, length;
315
316 config->cb.packet_size_field(config, &offset, &length);
317 crash_abi->offset.packet_size = offset;
318 crash_abi->length.packet_size = length;
319 } else {
320 crash_abi->offset.packet_size = 0;
321 crash_abi->length.packet_size = 0;
322 }
323 }
324
325 /*
326 * Must be called under cpu hotplug protection.
327 */
328 int lib_ring_buffer_create(struct lttng_ust_lib_ring_buffer *buf,
329 struct channel_backend *chanb, int cpu,
330 struct lttng_ust_shm_handle *handle,
331 struct shm_object *shmobj)
332 {
333 const struct lttng_ust_lib_ring_buffer_config *config = &chanb->config;
334 struct lttng_ust_lib_ring_buffer_channel *chan = caa_container_of(chanb,
335 struct lttng_ust_lib_ring_buffer_channel, backend);
336 struct lttng_ust_lib_ring_buffer_backend_subbuffer *wsb;
337 struct lttng_ust_lib_ring_buffer_channel *shmp_chan;
338 struct commit_counters_hot *cc_hot;
339 void *priv = channel_get_private_config(chan);
340 size_t subbuf_header_size;
341 uint64_t tsc;
342 int ret;
343
344 /* Test for cpu hotplug */
345 if (buf->backend.allocated)
346 return 0;
347
348 align_shm(shmobj, __alignof__(struct commit_counters_hot));
349 set_shmp(buf->commit_hot,
350 zalloc_shm(shmobj,
351 sizeof(struct commit_counters_hot) * chan->backend.num_subbuf));
352 if (!shmp(handle, buf->commit_hot)) {
353 return -ENOMEM;
354 }
355
356 align_shm(shmobj, __alignof__(struct commit_counters_cold));
357 set_shmp(buf->commit_cold,
358 zalloc_shm(shmobj,
359 sizeof(struct commit_counters_cold) * chan->backend.num_subbuf));
360 if (!shmp(handle, buf->commit_cold)) {
361 ret = -ENOMEM;
362 goto free_commit;
363 }
364
365 align_shm(shmobj, __alignof__(uint64_t));
366 set_shmp(buf->ts_end,
367 zalloc_shm(shmobj,
368 sizeof(uint64_t) * chan->backend.num_subbuf));
369 if (!shmp(handle, buf->ts_end)) {
370 ret = -ENOMEM;
371 goto free_commit_cold;
372 }
373
374
375 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend,
376 cpu, handle, shmobj);
377 if (ret) {
378 goto free_init;
379 }
380
381 /*
382 * Write the subbuffer header for first subbuffer so we know the total
383 * duration of data gathering.
384 */
385 subbuf_header_size = config->cb.subbuffer_header_size();
386 v_set(config, &buf->offset, subbuf_header_size);
387 wsb = shmp_index(handle, buf->backend.buf_wsb, 0);
388 if (!wsb) {
389 ret = -EPERM;
390 goto free_chanbuf;
391 }
392 subbuffer_id_clear_noref(config, &wsb->id);
393 shmp_chan = shmp(handle, buf->backend.chan);
394 if (!shmp_chan) {
395 ret = -EPERM;
396 goto free_chanbuf;
397 }
398 tsc = config->cb.ring_buffer_clock_read(shmp_chan);
399 config->cb.buffer_begin(buf, tsc, 0, handle);
400 cc_hot = shmp_index(handle, buf->commit_hot, 0);
401 if (!cc_hot) {
402 ret = -EPERM;
403 goto free_chanbuf;
404 }
405 v_add(config, subbuf_header_size, &cc_hot->cc);
406 v_add(config, subbuf_header_size, &cc_hot->seq);
407
408 if (config->cb.buffer_create) {
409 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name, handle);
410 if (ret)
411 goto free_chanbuf;
412 }
413
414 init_crash_abi(config, &buf->crash_abi, buf, chanb, shmobj, handle);
415
416 buf->backend.allocated = 1;
417 return 0;
418
419 /* Error handling */
420 free_init:
421 /* ts_end will be freed by shm teardown */
422 free_commit_cold:
423 /* commit_cold will be freed by shm teardown */
424 free_commit:
425 /* commit_hot will be freed by shm teardown */
426 free_chanbuf:
427 return ret;
428 }
429
430 static
431 void lib_ring_buffer_channel_switch_timer(int sig, siginfo_t *si, void *uc)
432 {
433 const struct lttng_ust_lib_ring_buffer_config *config;
434 struct lttng_ust_shm_handle *handle;
435 struct lttng_ust_lib_ring_buffer_channel *chan;
436 int cpu;
437
438 assert(CMM_LOAD_SHARED(timer_signal.tid) == pthread_self());
439
440 chan = si->si_value.sival_ptr;
441 handle = chan->handle;
442 config = &chan->backend.config;
443
444 DBG("Switch timer for channel %p\n", chan);
445
446 /*
447 * Only flush buffers periodically if readers are active.
448 */
449 pthread_mutex_lock(&wakeup_fd_mutex);
450 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
451 for_each_possible_cpu(cpu) {
452 struct lttng_ust_lib_ring_buffer *buf =
453 shmp(handle, chan->backend.buf[cpu].shmp);
454
455 if (!buf)
456 goto end;
457 if (uatomic_read(&buf->active_readers))
458 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE,
459 chan->handle);
460 }
461 } else {
462 struct lttng_ust_lib_ring_buffer *buf =
463 shmp(handle, chan->backend.buf[0].shmp);
464
465 if (!buf)
466 goto end;
467 if (uatomic_read(&buf->active_readers))
468 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE,
469 chan->handle);
470 }
471 end:
472 pthread_mutex_unlock(&wakeup_fd_mutex);
473 return;
474 }
475
476 static
477 int lib_ring_buffer_poll_deliver(const struct lttng_ust_lib_ring_buffer_config *config,
478 struct lttng_ust_lib_ring_buffer *buf,
479 struct lttng_ust_lib_ring_buffer_channel *chan,
480 struct lttng_ust_shm_handle *handle)
481 {
482 unsigned long consumed_old, consumed_idx, commit_count, write_offset;
483 struct commit_counters_cold *cc_cold;
484
485 consumed_old = uatomic_read(&buf->consumed);
486 consumed_idx = subbuf_index(consumed_old, chan);
487 cc_cold = shmp_index(handle, buf->commit_cold, consumed_idx);
488 if (!cc_cold)
489 return 0;
490 commit_count = v_read(config, &cc_cold->cc_sb);
491 /*
492 * No memory barrier here, since we are only interested
493 * in a statistically correct polling result. The next poll will
494 * get the data is we are racing. The mb() that ensures correct
495 * memory order is in get_subbuf.
496 */
497 write_offset = v_read(config, &buf->offset);
498
499 /*
500 * Check that the subbuffer we are trying to consume has been
501 * already fully committed.
502 */
503
504 if (((commit_count - chan->backend.subbuf_size)
505 & chan->commit_count_mask)
506 - (buf_trunc(consumed_old, chan)
507 >> chan->backend.num_subbuf_order)
508 != 0)
509 return 0;
510
511 /*
512 * Check that we are not about to read the same subbuffer in
513 * which the writer head is.
514 */
515 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_old, chan)
516 == 0)
517 return 0;
518
519 return 1;
520 }
521
522 static
523 void lib_ring_buffer_wakeup(struct lttng_ust_lib_ring_buffer *buf,
524 struct lttng_ust_shm_handle *handle)
525 {
526 int wakeup_fd = shm_get_wakeup_fd(handle, &buf->self._ref);
527 sigset_t sigpipe_set, pending_set, old_set;
528 int ret, sigpipe_was_pending = 0;
529
530 if (wakeup_fd < 0)
531 return;
532
533 /*
534 * Wake-up the other end by writing a null byte in the pipe
535 * (non-blocking). Important note: Because writing into the
536 * pipe is non-blocking (and therefore we allow dropping wakeup
537 * data, as long as there is wakeup data present in the pipe
538 * buffer to wake up the consumer), the consumer should perform
539 * the following sequence for waiting:
540 * 1) empty the pipe (reads).
541 * 2) check if there is data in the buffer.
542 * 3) wait on the pipe (poll).
543 *
544 * Discard the SIGPIPE from write(), not disturbing any SIGPIPE
545 * that might be already pending. If a bogus SIGPIPE is sent to
546 * the entire process concurrently by a malicious user, it may
547 * be simply discarded.
548 */
549 ret = sigemptyset(&pending_set);
550 assert(!ret);
551 /*
552 * sigpending returns the mask of signals that are _both_
553 * blocked for the thread _and_ pending for either the thread or
554 * the entire process.
555 */
556 ret = sigpending(&pending_set);
557 assert(!ret);
558 sigpipe_was_pending = sigismember(&pending_set, SIGPIPE);
559 /*
560 * If sigpipe was pending, it means it was already blocked, so
561 * no need to block it.
562 */
563 if (!sigpipe_was_pending) {
564 ret = sigemptyset(&sigpipe_set);
565 assert(!ret);
566 ret = sigaddset(&sigpipe_set, SIGPIPE);
567 assert(!ret);
568 ret = pthread_sigmask(SIG_BLOCK, &sigpipe_set, &old_set);
569 assert(!ret);
570 }
571 do {
572 ret = write(wakeup_fd, "", 1);
573 } while (ret == -1L && errno == EINTR);
574 if (ret == -1L && errno == EPIPE && !sigpipe_was_pending) {
575 struct timespec timeout = { 0, 0 };
576 do {
577 ret = sigtimedwait(&sigpipe_set, NULL,
578 &timeout);
579 } while (ret == -1L && errno == EINTR);
580 }
581 if (!sigpipe_was_pending) {
582 ret = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
583 assert(!ret);
584 }
585 }
586
587 static
588 void lib_ring_buffer_channel_do_read(struct lttng_ust_lib_ring_buffer_channel *chan)
589 {
590 const struct lttng_ust_lib_ring_buffer_config *config;
591 struct lttng_ust_shm_handle *handle;
592 int cpu;
593
594 handle = chan->handle;
595 config = &chan->backend.config;
596
597 /*
598 * Only flush buffers periodically if readers are active.
599 */
600 pthread_mutex_lock(&wakeup_fd_mutex);
601 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
602 for_each_possible_cpu(cpu) {
603 struct lttng_ust_lib_ring_buffer *buf =
604 shmp(handle, chan->backend.buf[cpu].shmp);
605
606 if (!buf)
607 goto end;
608 if (uatomic_read(&buf->active_readers)
609 && lib_ring_buffer_poll_deliver(config, buf,
610 chan, handle)) {
611 lib_ring_buffer_wakeup(buf, handle);
612 }
613 }
614 } else {
615 struct lttng_ust_lib_ring_buffer *buf =
616 shmp(handle, chan->backend.buf[0].shmp);
617
618 if (!buf)
619 goto end;
620 if (uatomic_read(&buf->active_readers)
621 && lib_ring_buffer_poll_deliver(config, buf,
622 chan, handle)) {
623 lib_ring_buffer_wakeup(buf, handle);
624 }
625 }
626 end:
627 pthread_mutex_unlock(&wakeup_fd_mutex);
628 }
629
630 static
631 void lib_ring_buffer_channel_read_timer(int sig, siginfo_t *si, void *uc)
632 {
633 struct lttng_ust_lib_ring_buffer_channel *chan;
634
635 assert(CMM_LOAD_SHARED(timer_signal.tid) == pthread_self());
636 chan = si->si_value.sival_ptr;
637 DBG("Read timer for channel %p\n", chan);
638 lib_ring_buffer_channel_do_read(chan);
639 return;
640 }
641
642 static
643 void rb_setmask(sigset_t *mask)
644 {
645 int ret;
646
647 ret = sigemptyset(mask);
648 if (ret) {
649 PERROR("sigemptyset");
650 }
651 ret = sigaddset(mask, LTTNG_UST_RB_SIG_FLUSH);
652 if (ret) {
653 PERROR("sigaddset");
654 }
655 ret = sigaddset(mask, LTTNG_UST_RB_SIG_READ);
656 if (ret) {
657 PERROR("sigaddset");
658 }
659 ret = sigaddset(mask, LTTNG_UST_RB_SIG_TEARDOWN);
660 if (ret) {
661 PERROR("sigaddset");
662 }
663 }
664
665 static
666 void *sig_thread(void *arg)
667 {
668 sigset_t mask;
669 siginfo_t info;
670 int signr;
671
672 /* Only self thread will receive signal mask. */
673 rb_setmask(&mask);
674 CMM_STORE_SHARED(timer_signal.tid, pthread_self());
675
676 for (;;) {
677 signr = sigwaitinfo(&mask, &info);
678 if (signr == -1) {
679 if (errno != EINTR)
680 PERROR("sigwaitinfo");
681 continue;
682 }
683 if (signr == LTTNG_UST_RB_SIG_FLUSH) {
684 lib_ring_buffer_channel_switch_timer(info.si_signo,
685 &info, NULL);
686 } else if (signr == LTTNG_UST_RB_SIG_READ) {
687 lib_ring_buffer_channel_read_timer(info.si_signo,
688 &info, NULL);
689 } else if (signr == LTTNG_UST_RB_SIG_TEARDOWN) {
690 cmm_smp_mb();
691 CMM_STORE_SHARED(timer_signal.qs_done, 1);
692 cmm_smp_mb();
693 } else {
694 ERR("Unexptected signal %d\n", info.si_signo);
695 }
696 }
697 return NULL;
698 }
699
700 /*
701 * Ensure only a single thread listens on the timer signal.
702 */
703 static
704 void lib_ring_buffer_setup_timer_thread(void)
705 {
706 pthread_t thread;
707 int ret;
708
709 pthread_mutex_lock(&timer_signal.lock);
710 if (timer_signal.setup_done)
711 goto end;
712
713 ret = pthread_create(&thread, NULL, &sig_thread, NULL);
714 if (ret) {
715 errno = ret;
716 PERROR("pthread_create");
717 }
718 ret = pthread_detach(thread);
719 if (ret) {
720 errno = ret;
721 PERROR("pthread_detach");
722 }
723 timer_signal.setup_done = 1;
724 end:
725 pthread_mutex_unlock(&timer_signal.lock);
726 }
727
728 /*
729 * Wait for signal-handling thread quiescent state.
730 */
731 static
732 void lib_ring_buffer_wait_signal_thread_qs(unsigned int signr)
733 {
734 sigset_t pending_set;
735 int ret;
736
737 /*
738 * We need to be the only thread interacting with the thread
739 * that manages signals for teardown synchronization.
740 */
741 pthread_mutex_lock(&timer_signal.lock);
742
743 /*
744 * Ensure we don't have any signal queued for this channel.
745 */
746 for (;;) {
747 ret = sigemptyset(&pending_set);
748 if (ret == -1) {
749 PERROR("sigemptyset");
750 }
751 ret = sigpending(&pending_set);
752 if (ret == -1) {
753 PERROR("sigpending");
754 }
755 if (!sigismember(&pending_set, signr))
756 break;
757 caa_cpu_relax();
758 }
759
760 /*
761 * From this point, no new signal handler will be fired that
762 * would try to access "chan". However, we still need to wait
763 * for any currently executing handler to complete.
764 */
765 cmm_smp_mb();
766 CMM_STORE_SHARED(timer_signal.qs_done, 0);
767 cmm_smp_mb();
768
769 /*
770 * Kill with LTTNG_UST_RB_SIG_TEARDOWN, so signal management
771 * thread wakes up.
772 */
773 kill(getpid(), LTTNG_UST_RB_SIG_TEARDOWN);
774
775 while (!CMM_LOAD_SHARED(timer_signal.qs_done))
776 caa_cpu_relax();
777 cmm_smp_mb();
778
779 pthread_mutex_unlock(&timer_signal.lock);
780 }
781
782 static
783 void lib_ring_buffer_channel_switch_timer_start(struct lttng_ust_lib_ring_buffer_channel *chan)
784 {
785 struct sigevent sev;
786 struct itimerspec its;
787 int ret;
788
789 if (!chan->switch_timer_interval || chan->switch_timer_enabled)
790 return;
791
792 chan->switch_timer_enabled = 1;
793
794 lib_ring_buffer_setup_timer_thread();
795
796 memset(&sev, 0, sizeof(sev));
797 sev.sigev_notify = SIGEV_SIGNAL;
798 sev.sigev_signo = LTTNG_UST_RB_SIG_FLUSH;
799 sev.sigev_value.sival_ptr = chan;
800 ret = timer_create(CLOCKID, &sev, &chan->switch_timer);
801 if (ret == -1) {
802 PERROR("timer_create");
803 }
804
805 its.it_value.tv_sec = chan->switch_timer_interval / 1000000;
806 its.it_value.tv_nsec = (chan->switch_timer_interval % 1000000) * 1000;
807 its.it_interval.tv_sec = its.it_value.tv_sec;
808 its.it_interval.tv_nsec = its.it_value.tv_nsec;
809
810 ret = timer_settime(chan->switch_timer, 0, &its, NULL);
811 if (ret == -1) {
812 PERROR("timer_settime");
813 }
814 }
815
816 static
817 void lib_ring_buffer_channel_switch_timer_stop(struct lttng_ust_lib_ring_buffer_channel *chan)
818 {
819 int ret;
820
821 if (!chan->switch_timer_interval || !chan->switch_timer_enabled)
822 return;
823
824 ret = timer_delete(chan->switch_timer);
825 if (ret == -1) {
826 PERROR("timer_delete");
827 }
828
829 lib_ring_buffer_wait_signal_thread_qs(LTTNG_UST_RB_SIG_FLUSH);
830
831 chan->switch_timer = 0;
832 chan->switch_timer_enabled = 0;
833 }
834
835 static
836 void lib_ring_buffer_channel_read_timer_start(struct lttng_ust_lib_ring_buffer_channel *chan)
837 {
838 const struct lttng_ust_lib_ring_buffer_config *config = &chan->backend.config;
839 struct sigevent sev;
840 struct itimerspec its;
841 int ret;
842
843 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
844 || !chan->read_timer_interval || chan->read_timer_enabled)
845 return;
846
847 chan->read_timer_enabled = 1;
848
849 lib_ring_buffer_setup_timer_thread();
850
851 sev.sigev_notify = SIGEV_SIGNAL;
852 sev.sigev_signo = LTTNG_UST_RB_SIG_READ;
853 sev.sigev_value.sival_ptr = chan;
854 ret = timer_create(CLOCKID, &sev, &chan->read_timer);
855 if (ret == -1) {
856 PERROR("timer_create");
857 }
858
859 its.it_value.tv_sec = chan->read_timer_interval / 1000000;
860 its.it_value.tv_nsec = (chan->read_timer_interval % 1000000) * 1000;
861 its.it_interval.tv_sec = its.it_value.tv_sec;
862 its.it_interval.tv_nsec = its.it_value.tv_nsec;
863
864 ret = timer_settime(chan->read_timer, 0, &its, NULL);
865 if (ret == -1) {
866 PERROR("timer_settime");
867 }
868 }
869
870 static
871 void lib_ring_buffer_channel_read_timer_stop(struct lttng_ust_lib_ring_buffer_channel *chan)
872 {
873 const struct lttng_ust_lib_ring_buffer_config *config = &chan->backend.config;
874 int ret;
875
876 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
877 || !chan->read_timer_interval || !chan->read_timer_enabled)
878 return;
879
880 ret = timer_delete(chan->read_timer);
881 if (ret == -1) {
882 PERROR("timer_delete");
883 }
884
885 /*
886 * do one more check to catch data that has been written in the last
887 * timer period.
888 */
889 lib_ring_buffer_channel_do_read(chan);
890
891 lib_ring_buffer_wait_signal_thread_qs(LTTNG_UST_RB_SIG_READ);
892
893 chan->read_timer = 0;
894 chan->read_timer_enabled = 0;
895 }
896
897 static void channel_unregister_notifiers(struct lttng_ust_lib_ring_buffer_channel *chan,
898 struct lttng_ust_shm_handle *handle)
899 {
900 lib_ring_buffer_channel_switch_timer_stop(chan);
901 lib_ring_buffer_channel_read_timer_stop(chan);
902 }
903
904 static void channel_print_errors(struct lttng_ust_lib_ring_buffer_channel *chan,
905 struct lttng_ust_shm_handle *handle)
906 {
907 const struct lttng_ust_lib_ring_buffer_config *config =
908 &chan->backend.config;
909 int cpu;
910
911 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
912 for_each_possible_cpu(cpu) {
913 struct lttng_ust_lib_ring_buffer *buf =
914 shmp(handle, chan->backend.buf[cpu].shmp);
915 if (buf)
916 lib_ring_buffer_print_errors(chan, buf, cpu, handle);
917 }
918 } else {
919 struct lttng_ust_lib_ring_buffer *buf =
920 shmp(handle, chan->backend.buf[0].shmp);
921
922 if (buf)
923 lib_ring_buffer_print_errors(chan, buf, -1, handle);
924 }
925 }
926
927 static void channel_free(struct lttng_ust_lib_ring_buffer_channel *chan,
928 struct lttng_ust_shm_handle *handle,
929 int consumer)
930 {
931 channel_backend_free(&chan->backend, handle);
932 /* chan is freed by shm teardown */
933 shm_object_table_destroy(handle->table, consumer);
934 free(handle);
935 }
936
937 /**
938 * channel_create - Create channel.
939 * @config: ring buffer instance configuration
940 * @name: name of the channel
941 * @priv_data_align: alignment, in bytes, of the private data area. (config)
942 * @priv_data_size: length, in bytes, of the private data area. (config)
943 * @priv_data_init: initialization data for private data. (config)
944 * @priv: local private data (memory owner by caller)
945 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
946 * address mapping. It is used only by RING_BUFFER_STATIC
947 * configuration. It can be set to NULL for other backends.
948 * @subbuf_size: subbuffer size
949 * @num_subbuf: number of subbuffers
950 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
951 * padding to let readers get those sub-buffers.
952 * Used for live streaming.
953 * @read_timer_interval: Time interval (in us) to wake up pending readers.
954 * @stream_fds: array of stream file descriptors.
955 * @nr_stream_fds: number of file descriptors in array.
956 *
957 * Holds cpu hotplug.
958 * Returns NULL on failure.
959 */
960 struct lttng_ust_shm_handle *channel_create(const struct lttng_ust_lib_ring_buffer_config *config,
961 const char *name,
962 size_t priv_data_align,
963 size_t priv_data_size,
964 void *priv_data_init,
965 void *priv,
966 void *buf_addr, size_t subbuf_size,
967 size_t num_subbuf, unsigned int switch_timer_interval,
968 unsigned int read_timer_interval,
969 const int *stream_fds, int nr_stream_fds,
970 int64_t blocking_timeout)
971 {
972 int ret;
973 size_t shmsize, chansize;
974 struct lttng_ust_lib_ring_buffer_channel *chan;
975 struct lttng_ust_shm_handle *handle;
976 struct shm_object *shmobj;
977 unsigned int nr_streams;
978 int64_t blocking_timeout_ms;
979
980 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
981 nr_streams = num_possible_cpus();
982 else
983 nr_streams = 1;
984
985 if (nr_stream_fds != nr_streams)
986 return NULL;
987
988 if (blocking_timeout < -1) {
989 return NULL;
990 }
991 /* usec to msec */
992 if (blocking_timeout == -1) {
993 blocking_timeout_ms = -1;
994 } else {
995 blocking_timeout_ms = blocking_timeout / 1000;
996 if (blocking_timeout_ms != (int32_t) blocking_timeout_ms) {
997 return NULL;
998 }
999 }
1000
1001 if (lib_ring_buffer_check_config(config, switch_timer_interval,
1002 read_timer_interval))
1003 return NULL;
1004
1005 handle = zmalloc(sizeof(struct lttng_ust_shm_handle));
1006 if (!handle)
1007 return NULL;
1008
1009 /* Allocate table for channel + per-cpu buffers */
1010 handle->table = shm_object_table_create(1 + num_possible_cpus());
1011 if (!handle->table)
1012 goto error_table_alloc;
1013
1014 /* Calculate the shm allocation layout */
1015 shmsize = sizeof(struct lttng_ust_lib_ring_buffer_channel);
1016 shmsize += lttng_ust_offset_align(shmsize, __alignof__(struct lttng_ust_lib_ring_buffer_shmp));
1017 shmsize += sizeof(struct lttng_ust_lib_ring_buffer_shmp) * nr_streams;
1018 chansize = shmsize;
1019 if (priv_data_align)
1020 shmsize += lttng_ust_offset_align(shmsize, priv_data_align);
1021 shmsize += priv_data_size;
1022
1023 /* Allocate normal memory for channel (not shared) */
1024 shmobj = shm_object_table_alloc(handle->table, shmsize, SHM_OBJECT_MEM,
1025 -1, -1);
1026 if (!shmobj)
1027 goto error_append;
1028 /* struct lttng_ust_lib_ring_buffer_channel is at object 0, offset 0 (hardcoded) */
1029 set_shmp(handle->chan, zalloc_shm(shmobj, chansize));
1030 assert(handle->chan._ref.index == 0);
1031 assert(handle->chan._ref.offset == 0);
1032 chan = shmp(handle, handle->chan);
1033 if (!chan)
1034 goto error_append;
1035 chan->nr_streams = nr_streams;
1036
1037 /* space for private data */
1038 if (priv_data_size) {
1039 void *priv_config;
1040
1041 DECLARE_SHMP(void, priv_data_alloc);
1042
1043 align_shm(shmobj, priv_data_align);
1044 chan->priv_data_offset = shmobj->allocated_len;
1045 set_shmp(priv_data_alloc, zalloc_shm(shmobj, priv_data_size));
1046 if (!shmp(handle, priv_data_alloc))
1047 goto error_append;
1048 priv_config = channel_get_private_config(chan);
1049 memcpy(priv_config, priv_data_init, priv_data_size);
1050 } else {
1051 chan->priv_data_offset = -1;
1052 }
1053
1054 chan->u.s.blocking_timeout_ms = (int32_t) blocking_timeout_ms;
1055
1056 channel_set_private(chan, priv);
1057
1058 ret = channel_backend_init(&chan->backend, name, config,
1059 subbuf_size, num_subbuf, handle,
1060 stream_fds);
1061 if (ret)
1062 goto error_backend_init;
1063
1064 chan->handle = handle;
1065 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
1066
1067 chan->switch_timer_interval = switch_timer_interval;
1068 chan->read_timer_interval = read_timer_interval;
1069 lib_ring_buffer_channel_switch_timer_start(chan);
1070 lib_ring_buffer_channel_read_timer_start(chan);
1071
1072 return handle;
1073
1074 error_backend_init:
1075 error_append:
1076 shm_object_table_destroy(handle->table, 1);
1077 error_table_alloc:
1078 free(handle);
1079 return NULL;
1080 }
1081
1082 struct lttng_ust_shm_handle *channel_handle_create(void *data,
1083 uint64_t memory_map_size,
1084 int wakeup_fd)
1085 {
1086 struct lttng_ust_shm_handle *handle;
1087 struct shm_object *object;
1088
1089 handle = zmalloc(sizeof(struct lttng_ust_shm_handle));
1090 if (!handle)
1091 return NULL;
1092
1093 /* Allocate table for channel + per-cpu buffers */
1094 handle->table = shm_object_table_create(1 + num_possible_cpus());
1095 if (!handle->table)
1096 goto error_table_alloc;
1097 /* Add channel object */
1098 object = shm_object_table_append_mem(handle->table, data,
1099 memory_map_size, wakeup_fd);
1100 if (!object)
1101 goto error_table_object;
1102 /* struct lttng_ust_lib_ring_buffer_channel is at object 0, offset 0 (hardcoded) */
1103 handle->chan._ref.index = 0;
1104 handle->chan._ref.offset = 0;
1105 return handle;
1106
1107 error_table_object:
1108 shm_object_table_destroy(handle->table, 0);
1109 error_table_alloc:
1110 free(handle);
1111 return NULL;
1112 }
1113
1114 int channel_handle_add_stream(struct lttng_ust_shm_handle *handle,
1115 int shm_fd, int wakeup_fd, uint32_t stream_nr,
1116 uint64_t memory_map_size)
1117 {
1118 struct shm_object *object;
1119
1120 /* Add stream object */
1121 object = shm_object_table_append_shm(handle->table,
1122 shm_fd, wakeup_fd, stream_nr,
1123 memory_map_size);
1124 if (!object)
1125 return -EINVAL;
1126 return 0;
1127 }
1128
1129 unsigned int channel_handle_get_nr_streams(struct lttng_ust_shm_handle *handle)
1130 {
1131 assert(handle->table);
1132 return handle->table->allocated_len - 1;
1133 }
1134
1135 static
1136 void channel_release(struct lttng_ust_lib_ring_buffer_channel *chan, struct lttng_ust_shm_handle *handle,
1137 int consumer)
1138 {
1139 channel_free(chan, handle, consumer);
1140 }
1141
1142 /**
1143 * channel_destroy - Finalize, wait for q.s. and destroy channel.
1144 * @chan: channel to destroy
1145 *
1146 * Holds cpu hotplug.
1147 * Call "destroy" callback, finalize channels, decrement the channel
1148 * reference count. Note that when readers have completed data
1149 * consumption of finalized channels, get_subbuf() will return -ENODATA.
1150 * They should release their handle at that point.
1151 */
1152 void channel_destroy(struct lttng_ust_lib_ring_buffer_channel *chan, struct lttng_ust_shm_handle *handle,
1153 int consumer)
1154 {
1155 if (consumer) {
1156 /*
1157 * Note: the consumer takes care of finalizing and
1158 * switching the buffers.
1159 */
1160 channel_unregister_notifiers(chan, handle);
1161 /*
1162 * The consumer prints errors.
1163 */
1164 channel_print_errors(chan, handle);
1165 }
1166
1167 /*
1168 * sessiond/consumer are keeping a reference on the shm file
1169 * descriptor directly. No need to refcount.
1170 */
1171 channel_release(chan, handle, consumer);
1172 return;
1173 }
1174
1175 struct lttng_ust_lib_ring_buffer *channel_get_ring_buffer(
1176 const struct lttng_ust_lib_ring_buffer_config *config,
1177 struct lttng_ust_lib_ring_buffer_channel *chan, int cpu,
1178 struct lttng_ust_shm_handle *handle,
1179 int *shm_fd, int *wait_fd,
1180 int *wakeup_fd,
1181 uint64_t *memory_map_size)
1182 {
1183 struct shm_ref *ref;
1184
1185 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL) {
1186 cpu = 0;
1187 } else {
1188 if (cpu >= num_possible_cpus())
1189 return NULL;
1190 }
1191 ref = &chan->backend.buf[cpu].shmp._ref;
1192 *shm_fd = shm_get_shm_fd(handle, ref);
1193 *wait_fd = shm_get_wait_fd(handle, ref);
1194 *wakeup_fd = shm_get_wakeup_fd(handle, ref);
1195 if (shm_get_shm_size(handle, ref, memory_map_size))
1196 return NULL;
1197 return shmp(handle, chan->backend.buf[cpu].shmp);
1198 }
1199
1200 int ring_buffer_channel_close_wait_fd(const struct lttng_ust_lib_ring_buffer_config *config,
1201 struct lttng_ust_lib_ring_buffer_channel *chan,
1202 struct lttng_ust_shm_handle *handle)
1203 {
1204 struct shm_ref *ref;
1205
1206 ref = &handle->chan._ref;
1207 return shm_close_wait_fd(handle, ref);
1208 }
1209
1210 int ring_buffer_channel_close_wakeup_fd(const struct lttng_ust_lib_ring_buffer_config *config,
1211 struct lttng_ust_lib_ring_buffer_channel *chan,
1212 struct lttng_ust_shm_handle *handle)
1213 {
1214 struct shm_ref *ref;
1215
1216 ref = &handle->chan._ref;
1217 return shm_close_wakeup_fd(handle, ref);
1218 }
1219
1220 int ring_buffer_stream_close_wait_fd(const struct lttng_ust_lib_ring_buffer_config *config,
1221 struct lttng_ust_lib_ring_buffer_channel *chan,
1222 struct lttng_ust_shm_handle *handle,
1223 int cpu)
1224 {
1225 struct shm_ref *ref;
1226
1227 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL) {
1228 cpu = 0;
1229 } else {
1230 if (cpu >= num_possible_cpus())
1231 return -EINVAL;
1232 }
1233 ref = &chan->backend.buf[cpu].shmp._ref;
1234 return shm_close_wait_fd(handle, ref);
1235 }
1236
1237 int ring_buffer_stream_close_wakeup_fd(const struct lttng_ust_lib_ring_buffer_config *config,
1238 struct lttng_ust_lib_ring_buffer_channel *chan,
1239 struct lttng_ust_shm_handle *handle,
1240 int cpu)
1241 {
1242 struct shm_ref *ref;
1243 int ret;
1244
1245 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL) {
1246 cpu = 0;
1247 } else {
1248 if (cpu >= num_possible_cpus())
1249 return -EINVAL;
1250 }
1251 ref = &chan->backend.buf[cpu].shmp._ref;
1252 pthread_mutex_lock(&wakeup_fd_mutex);
1253 ret = shm_close_wakeup_fd(handle, ref);
1254 pthread_mutex_unlock(&wakeup_fd_mutex);
1255 return ret;
1256 }
1257
1258 int lib_ring_buffer_open_read(struct lttng_ust_lib_ring_buffer *buf,
1259 struct lttng_ust_shm_handle *handle)
1260 {
1261 if (uatomic_cmpxchg(&buf->active_readers, 0, 1) != 0)
1262 return -EBUSY;
1263 cmm_smp_mb();
1264 return 0;
1265 }
1266
1267 void lib_ring_buffer_release_read(struct lttng_ust_lib_ring_buffer *buf,
1268 struct lttng_ust_shm_handle *handle)
1269 {
1270 struct lttng_ust_lib_ring_buffer_channel *chan = shmp(handle, buf->backend.chan);
1271
1272 if (!chan)
1273 return;
1274 CHAN_WARN_ON(chan, uatomic_read(&buf->active_readers) != 1);
1275 cmm_smp_mb();
1276 uatomic_dec(&buf->active_readers);
1277 }
1278
1279 /**
1280 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
1281 * @buf: ring buffer
1282 * @consumed: consumed count indicating the position where to read
1283 * @produced: produced count, indicates position when to stop reading
1284 *
1285 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1286 * data to read at consumed position, or 0 if the get operation succeeds.
1287 */
1288
1289 int lib_ring_buffer_snapshot(struct lttng_ust_lib_ring_buffer *buf,
1290 unsigned long *consumed, unsigned long *produced,
1291 struct lttng_ust_shm_handle *handle)
1292 {
1293 struct lttng_ust_lib_ring_buffer_channel *chan;
1294 const struct lttng_ust_lib_ring_buffer_config *config;
1295 unsigned long consumed_cur, write_offset;
1296 int finalized;
1297
1298 chan = shmp(handle, buf->backend.chan);
1299 if (!chan)
1300 return -EPERM;
1301 config = &chan->backend.config;
1302 finalized = CMM_ACCESS_ONCE(buf->finalized);
1303 /*
1304 * Read finalized before counters.
1305 */
1306 cmm_smp_rmb();
1307 consumed_cur = uatomic_read(&buf->consumed);
1308 /*
1309 * No need to issue a memory barrier between consumed count read and
1310 * write offset read, because consumed count can only change
1311 * concurrently in overwrite mode, and we keep a sequence counter
1312 * identifier derived from the write offset to check we are getting
1313 * the same sub-buffer we are expecting (the sub-buffers are atomically
1314 * "tagged" upon writes, tags are checked upon read).
1315 */
1316 write_offset = v_read(config, &buf->offset);
1317
1318 /*
1319 * Check that we are not about to read the same subbuffer in
1320 * which the writer head is.
1321 */
1322 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1323 == 0)
1324 goto nodata;
1325
1326 *consumed = consumed_cur;
1327 *produced = subbuf_trunc(write_offset, chan);
1328
1329 return 0;
1330
1331 nodata:
1332 /*
1333 * The memory barriers __wait_event()/wake_up_interruptible() take care
1334 * of "raw_spin_is_locked" memory ordering.
1335 */
1336 if (finalized)
1337 return -ENODATA;
1338 else
1339 return -EAGAIN;
1340 }
1341
1342 /**
1343 * Performs the same function as lib_ring_buffer_snapshot(), but the positions
1344 * are saved regardless of whether the consumed and produced positions are
1345 * in the same subbuffer.
1346 * @buf: ring buffer
1347 * @consumed: consumed byte count indicating the last position read
1348 * @produced: produced byte count indicating the last position written
1349 *
1350 * This function is meant to provide information on the exact producer and
1351 * consumer positions without regard for the "snapshot" feature.
1352 */
1353 int lib_ring_buffer_snapshot_sample_positions(
1354 struct lttng_ust_lib_ring_buffer *buf,
1355 unsigned long *consumed, unsigned long *produced,
1356 struct lttng_ust_shm_handle *handle)
1357 {
1358 struct lttng_ust_lib_ring_buffer_channel *chan;
1359 const struct lttng_ust_lib_ring_buffer_config *config;
1360
1361 chan = shmp(handle, buf->backend.chan);
1362 if (!chan)
1363 return -EPERM;
1364 config = &chan->backend.config;
1365 cmm_smp_rmb();
1366 *consumed = uatomic_read(&buf->consumed);
1367 /*
1368 * No need to issue a memory barrier between consumed count read and
1369 * write offset read, because consumed count can only change
1370 * concurrently in overwrite mode, and we keep a sequence counter
1371 * identifier derived from the write offset to check we are getting
1372 * the same sub-buffer we are expecting (the sub-buffers are atomically
1373 * "tagged" upon writes, tags are checked upon read).
1374 */
1375 *produced = v_read(config, &buf->offset);
1376 return 0;
1377 }
1378
1379 /**
1380 * lib_ring_buffer_move_consumer - move consumed counter forward
1381 * @buf: ring buffer
1382 * @consumed_new: new consumed count value
1383 */
1384 void lib_ring_buffer_move_consumer(struct lttng_ust_lib_ring_buffer *buf,
1385 unsigned long consumed_new,
1386 struct lttng_ust_shm_handle *handle)
1387 {
1388 struct lttng_ust_lib_ring_buffer_backend *bufb = &buf->backend;
1389 struct lttng_ust_lib_ring_buffer_channel *chan;
1390 unsigned long consumed;
1391
1392 chan = shmp(handle, bufb->chan);
1393 if (!chan)
1394 return;
1395 CHAN_WARN_ON(chan, uatomic_read(&buf->active_readers) != 1);
1396
1397 /*
1398 * Only push the consumed value forward.
1399 * If the consumed cmpxchg fails, this is because we have been pushed by
1400 * the writer in flight recorder mode.
1401 */
1402 consumed = uatomic_read(&buf->consumed);
1403 while ((long) consumed - (long) consumed_new < 0)
1404 consumed = uatomic_cmpxchg(&buf->consumed, consumed,
1405 consumed_new);
1406 }
1407
1408 /**
1409 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
1410 * @buf: ring buffer
1411 * @consumed: consumed count indicating the position where to read
1412 *
1413 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1414 * data to read at consumed position, or 0 if the get operation succeeds.
1415 */
1416 int lib_ring_buffer_get_subbuf(struct lttng_ust_lib_ring_buffer *buf,
1417 unsigned long consumed,
1418 struct lttng_ust_shm_handle *handle)
1419 {
1420 struct lttng_ust_lib_ring_buffer_channel *chan;
1421 const struct lttng_ust_lib_ring_buffer_config *config;
1422 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1423 int ret, finalized, nr_retry = LTTNG_UST_RING_BUFFER_GET_RETRY;
1424 struct commit_counters_cold *cc_cold;
1425
1426 chan = shmp(handle, buf->backend.chan);
1427 if (!chan)
1428 return -EPERM;
1429 config = &chan->backend.config;
1430 retry:
1431 finalized = CMM_ACCESS_ONCE(buf->finalized);
1432 /*
1433 * Read finalized before counters.
1434 */
1435 cmm_smp_rmb();
1436 consumed_cur = uatomic_read(&buf->consumed);
1437 consumed_idx = subbuf_index(consumed, chan);
1438 cc_cold = shmp_index(handle, buf->commit_cold, consumed_idx);
1439 if (!cc_cold)
1440 return -EPERM;
1441 commit_count = v_read(config, &cc_cold->cc_sb);
1442 /*
1443 * Make sure we read the commit count before reading the buffer
1444 * data and the write offset. Correct consumed offset ordering
1445 * wrt commit count is insured by the use of cmpxchg to update
1446 * the consumed offset.
1447 */
1448 /*
1449 * Local rmb to match the remote wmb to read the commit count
1450 * before the buffer data and the write offset.
1451 */
1452 cmm_smp_rmb();
1453
1454 write_offset = v_read(config, &buf->offset);
1455
1456 /*
1457 * Check that the buffer we are getting is after or at consumed_cur
1458 * position.
1459 */
1460 if ((long) subbuf_trunc(consumed, chan)
1461 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1462 goto nodata;
1463
1464 /*
1465 * Check that the subbuffer we are trying to consume has been
1466 * already fully committed. There are a few causes that can make
1467 * this unavailability situation occur:
1468 *
1469 * Temporary (short-term) situation:
1470 * - Application is running on a different CPU, between reserve
1471 * and commit ring buffer operations,
1472 * - Application is preempted between reserve and commit ring
1473 * buffer operations,
1474 *
1475 * Long-term situation:
1476 * - Application is stopped (SIGSTOP) between reserve and commit
1477 * ring buffer operations. Could eventually be resumed by
1478 * SIGCONT.
1479 * - Application is killed (SIGTERM, SIGINT, SIGKILL) between
1480 * reserve and commit ring buffer operation.
1481 *
1482 * From a consumer perspective, handling short-term
1483 * unavailability situations is performed by retrying a few
1484 * times after a delay. Handling long-term unavailability
1485 * situations is handled by failing to get the sub-buffer.
1486 *
1487 * In all of those situations, if the application is taking a
1488 * long time to perform its commit after ring buffer space
1489 * reservation, we can end up in a situation where the producer
1490 * will fill the ring buffer and try to write into the same
1491 * sub-buffer again (which has a missing commit). This is
1492 * handled by the producer in the sub-buffer switch handling
1493 * code of the reserve routine by detecting unbalanced
1494 * reserve/commit counters and discarding all further events
1495 * until the situation is resolved in those situations. Two
1496 * scenarios can occur:
1497 *
1498 * 1) The application causing the reserve/commit counters to be
1499 * unbalanced has been terminated. In this situation, all
1500 * further events will be discarded in the buffers, and no
1501 * further buffer data will be readable by the consumer
1502 * daemon. Tearing down the UST tracing session and starting
1503 * anew is a work-around for those situations. Note that this
1504 * only affects per-UID tracing. In per-PID tracing, the
1505 * application vanishes with the termination, and therefore
1506 * no more data needs to be written to the buffers.
1507 * 2) The application causing the unbalance has been delayed for
1508 * a long time, but will eventually try to increment the
1509 * commit counter after eventually writing to the sub-buffer.
1510 * This situation can cause events to be discarded until the
1511 * application resumes its operations.
1512 */
1513 if (((commit_count - chan->backend.subbuf_size)
1514 & chan->commit_count_mask)
1515 - (buf_trunc(consumed, chan)
1516 >> chan->backend.num_subbuf_order)
1517 != 0) {
1518 if (nr_retry-- > 0) {
1519 if (nr_retry <= (LTTNG_UST_RING_BUFFER_GET_RETRY >> 1))
1520 (void) poll(NULL, 0, LTTNG_UST_RING_BUFFER_RETRY_DELAY_MS);
1521 goto retry;
1522 } else {
1523 goto nodata;
1524 }
1525 }
1526
1527 /*
1528 * Check that we are not about to read the same subbuffer in
1529 * which the writer head is.
1530 */
1531 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1532 == 0)
1533 goto nodata;
1534
1535 /*
1536 * Failure to get the subbuffer causes a busy-loop retry without going
1537 * to a wait queue. These are caused by short-lived race windows where
1538 * the writer is getting access to a subbuffer we were trying to get
1539 * access to. Also checks that the "consumed" buffer count we are
1540 * looking for matches the one contained in the subbuffer id.
1541 *
1542 * The short-lived race window described here can be affected by
1543 * application signals and preemption, thus requiring to bound
1544 * the loop to a maximum number of retry.
1545 */
1546 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1547 consumed_idx, buf_trunc_val(consumed, chan),
1548 handle);
1549 if (ret) {
1550 if (nr_retry-- > 0) {
1551 if (nr_retry <= (LTTNG_UST_RING_BUFFER_GET_RETRY >> 1))
1552 (void) poll(NULL, 0, LTTNG_UST_RING_BUFFER_RETRY_DELAY_MS);
1553 goto retry;
1554 } else {
1555 goto nodata;
1556 }
1557 }
1558 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1559
1560 buf->get_subbuf_consumed = consumed;
1561 buf->get_subbuf = 1;
1562
1563 return 0;
1564
1565 nodata:
1566 /*
1567 * The memory barriers __wait_event()/wake_up_interruptible() take care
1568 * of "raw_spin_is_locked" memory ordering.
1569 */
1570 if (finalized)
1571 return -ENODATA;
1572 else
1573 return -EAGAIN;
1574 }
1575
1576 /**
1577 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1578 * @buf: ring buffer
1579 */
1580 void lib_ring_buffer_put_subbuf(struct lttng_ust_lib_ring_buffer *buf,
1581 struct lttng_ust_shm_handle *handle)
1582 {
1583 struct lttng_ust_lib_ring_buffer_backend *bufb = &buf->backend;
1584 struct lttng_ust_lib_ring_buffer_channel *chan;
1585 const struct lttng_ust_lib_ring_buffer_config *config;
1586 unsigned long sb_bindex, consumed_idx, consumed;
1587 struct lttng_ust_lib_ring_buffer_backend_pages_shmp *rpages;
1588 struct lttng_ust_lib_ring_buffer_backend_pages *backend_pages;
1589
1590 chan = shmp(handle, bufb->chan);
1591 if (!chan)
1592 return;
1593 config = &chan->backend.config;
1594 CHAN_WARN_ON(chan, uatomic_read(&buf->active_readers) != 1);
1595
1596 if (!buf->get_subbuf) {
1597 /*
1598 * Reader puts a subbuffer it did not get.
1599 */
1600 CHAN_WARN_ON(chan, 1);
1601 return;
1602 }
1603 consumed = buf->get_subbuf_consumed;
1604 buf->get_subbuf = 0;
1605
1606 /*
1607 * Clear the records_unread counter. (overruns counter)
1608 * Can still be non-zero if a file reader simply grabbed the data
1609 * without using iterators.
1610 * Can be below zero if an iterator is used on a snapshot more than
1611 * once.
1612 */
1613 sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1614 rpages = shmp_index(handle, bufb->array, sb_bindex);
1615 if (!rpages)
1616 return;
1617 backend_pages = shmp(handle, rpages->shmp);
1618 if (!backend_pages)
1619 return;
1620 v_add(config, v_read(config, &backend_pages->records_unread),
1621 &bufb->records_read);
1622 v_set(config, &backend_pages->records_unread, 0);
1623 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1624 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1625 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1626
1627 /*
1628 * Exchange the reader subbuffer with the one we put in its place in the
1629 * writer subbuffer table. Expect the original consumed count. If
1630 * update_read_sb_index fails, this is because the writer updated the
1631 * subbuffer concurrently. We should therefore keep the subbuffer we
1632 * currently have: it has become invalid to try reading this sub-buffer
1633 * consumed count value anyway.
1634 */
1635 consumed_idx = subbuf_index(consumed, chan);
1636 update_read_sb_index(config, &buf->backend, &chan->backend,
1637 consumed_idx, buf_trunc_val(consumed, chan),
1638 handle);
1639 /*
1640 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1641 * if the writer concurrently updated it.
1642 */
1643 }
1644
1645 /*
1646 * cons_offset is an iterator on all subbuffer offsets between the reader
1647 * position and the writer position. (inclusive)
1648 */
1649 static
1650 void lib_ring_buffer_print_subbuffer_errors(struct lttng_ust_lib_ring_buffer *buf,
1651 struct lttng_ust_lib_ring_buffer_channel *chan,
1652 unsigned long cons_offset,
1653 int cpu,
1654 struct lttng_ust_shm_handle *handle)
1655 {
1656 const struct lttng_ust_lib_ring_buffer_config *config = &chan->backend.config;
1657 unsigned long cons_idx, commit_count, commit_count_sb;
1658 struct commit_counters_hot *cc_hot;
1659 struct commit_counters_cold *cc_cold;
1660
1661 cons_idx = subbuf_index(cons_offset, chan);
1662 cc_hot = shmp_index(handle, buf->commit_hot, cons_idx);
1663 if (!cc_hot)
1664 return;
1665 cc_cold = shmp_index(handle, buf->commit_cold, cons_idx);
1666 if (!cc_cold)
1667 return;
1668 commit_count = v_read(config, &cc_hot->cc);
1669 commit_count_sb = v_read(config, &cc_cold->cc_sb);
1670
1671 if (subbuf_offset(commit_count, chan) != 0)
1672 DBG("ring buffer %s, cpu %d: "
1673 "commit count in subbuffer %lu,\n"
1674 "expecting multiples of %lu bytes\n"
1675 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1676 chan->backend.name, cpu, cons_idx,
1677 chan->backend.subbuf_size,
1678 commit_count, commit_count_sb);
1679
1680 DBG("ring buffer: %s, cpu %d: %lu bytes committed\n",
1681 chan->backend.name, cpu, commit_count);
1682 }
1683
1684 static
1685 void lib_ring_buffer_print_buffer_errors(struct lttng_ust_lib_ring_buffer *buf,
1686 struct lttng_ust_lib_ring_buffer_channel *chan,
1687 int cpu, struct lttng_ust_shm_handle *handle)
1688 {
1689 const struct lttng_ust_lib_ring_buffer_config *config = &chan->backend.config;
1690 unsigned long write_offset, cons_offset;
1691
1692 /*
1693 * No need to order commit_count, write_offset and cons_offset reads
1694 * because we execute at teardown when no more writer nor reader
1695 * references are left.
1696 */
1697 write_offset = v_read(config, &buf->offset);
1698 cons_offset = uatomic_read(&buf->consumed);
1699 if (write_offset != cons_offset)
1700 DBG("ring buffer %s, cpu %d: "
1701 "non-consumed data\n"
1702 " [ %lu bytes written, %lu bytes read ]\n",
1703 chan->backend.name, cpu, write_offset, cons_offset);
1704
1705 for (cons_offset = uatomic_read(&buf->consumed);
1706 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1707 chan)
1708 - cons_offset) > 0;
1709 cons_offset = subbuf_align(cons_offset, chan))
1710 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1711 cpu, handle);
1712 }
1713
1714 static
1715 void lib_ring_buffer_print_errors(struct lttng_ust_lib_ring_buffer_channel *chan,
1716 struct lttng_ust_lib_ring_buffer *buf, int cpu,
1717 struct lttng_ust_shm_handle *handle)
1718 {
1719 const struct lttng_ust_lib_ring_buffer_config *config = &chan->backend.config;
1720
1721 if (!strcmp(chan->backend.name, "relay-metadata-mmap")) {
1722 DBG("ring buffer %s: %lu records written, "
1723 "%lu records overrun\n",
1724 chan->backend.name,
1725 v_read(config, &buf->records_count),
1726 v_read(config, &buf->records_overrun));
1727 } else {
1728 DBG("ring buffer %s, cpu %d: %lu records written, "
1729 "%lu records overrun\n",
1730 chan->backend.name, cpu,
1731 v_read(config, &buf->records_count),
1732 v_read(config, &buf->records_overrun));
1733
1734 if (v_read(config, &buf->records_lost_full)
1735 || v_read(config, &buf->records_lost_wrap)
1736 || v_read(config, &buf->records_lost_big))
1737 DBG("ring buffer %s, cpu %d: records were lost. Caused by:\n"
1738 " [ %lu buffer full, %lu nest buffer wrap-around, "
1739 "%lu event too big ]\n",
1740 chan->backend.name, cpu,
1741 v_read(config, &buf->records_lost_full),
1742 v_read(config, &buf->records_lost_wrap),
1743 v_read(config, &buf->records_lost_big));
1744 }
1745 lib_ring_buffer_print_buffer_errors(buf, chan, cpu, handle);
1746 }
1747
1748 /*
1749 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1750 *
1751 * Only executed by SWITCH_FLUSH, which can be issued while tracing is
1752 * active or at buffer finalization (destroy).
1753 */
1754 static
1755 void lib_ring_buffer_switch_old_start(struct lttng_ust_lib_ring_buffer *buf,
1756 struct lttng_ust_lib_ring_buffer_channel *chan,
1757 struct switch_offsets *offsets,
1758 uint64_t tsc,
1759 struct lttng_ust_shm_handle *handle)
1760 {
1761 const struct lttng_ust_lib_ring_buffer_config *config = &chan->backend.config;
1762 unsigned long oldidx = subbuf_index(offsets->old, chan);
1763 unsigned long commit_count;
1764 struct commit_counters_hot *cc_hot;
1765
1766 config->cb.buffer_begin(buf, tsc, oldidx, handle);
1767
1768 /*
1769 * Order all writes to buffer before the commit count update that will
1770 * determine that the subbuffer is full.
1771 */
1772 cmm_smp_wmb();
1773 cc_hot = shmp_index(handle, buf->commit_hot, oldidx);
1774 if (!cc_hot)
1775 return;
1776 v_add(config, config->cb.subbuffer_header_size(),
1777 &cc_hot->cc);
1778 commit_count = v_read(config, &cc_hot->cc);
1779 /* Check if the written buffer has to be delivered */
1780 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1781 commit_count, oldidx, handle, tsc);
1782 lib_ring_buffer_write_commit_counter(config, buf, chan,
1783 offsets->old + config->cb.subbuffer_header_size(),
1784 commit_count, handle, cc_hot);
1785 }
1786
1787 /*
1788 * lib_ring_buffer_switch_old_end: switch old subbuffer
1789 *
1790 * Note : offset_old should never be 0 here. It is ok, because we never perform
1791 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1792 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1793 * subbuffer.
1794 */
1795 static
1796 void lib_ring_buffer_switch_old_end(struct lttng_ust_lib_ring_buffer *buf,
1797 struct lttng_ust_lib_ring_buffer_channel *chan,
1798 struct switch_offsets *offsets,
1799 uint64_t tsc,
1800 struct lttng_ust_shm_handle *handle)
1801 {
1802 const struct lttng_ust_lib_ring_buffer_config *config = &chan->backend.config;
1803 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1804 unsigned long commit_count, padding_size, data_size;
1805 struct commit_counters_hot *cc_hot;
1806 uint64_t *ts_end;
1807
1808 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1809 padding_size = chan->backend.subbuf_size - data_size;
1810 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size,
1811 handle);
1812
1813 ts_end = shmp_index(handle, buf->ts_end, oldidx);
1814 if (!ts_end)
1815 return;
1816 /*
1817 * This is the last space reservation in that sub-buffer before
1818 * it gets delivered. This provides exclusive access to write to
1819 * this sub-buffer's ts_end. There are also no concurrent
1820 * readers of that ts_end because delivery of that sub-buffer is
1821 * postponed until the commit counter is incremented for the
1822 * current space reservation.
1823 */
1824 *ts_end = tsc;
1825
1826 /*
1827 * Order all writes to buffer and store to ts_end before the commit
1828 * count update that will determine that the subbuffer is full.
1829 */
1830 cmm_smp_wmb();
1831 cc_hot = shmp_index(handle, buf->commit_hot, oldidx);
1832 if (!cc_hot)
1833 return;
1834 v_add(config, padding_size, &cc_hot->cc);
1835 commit_count = v_read(config, &cc_hot->cc);
1836 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1837 commit_count, oldidx, handle, tsc);
1838 lib_ring_buffer_write_commit_counter(config, buf, chan,
1839 offsets->old + padding_size, commit_count, handle,
1840 cc_hot);
1841 }
1842
1843 /*
1844 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1845 *
1846 * This code can be executed unordered : writers may already have written to the
1847 * sub-buffer before this code gets executed, caution. The commit makes sure
1848 * that this code is executed before the deliver of this sub-buffer.
1849 */
1850 static
1851 void lib_ring_buffer_switch_new_start(struct lttng_ust_lib_ring_buffer *buf,
1852 struct lttng_ust_lib_ring_buffer_channel *chan,
1853 struct switch_offsets *offsets,
1854 uint64_t tsc,
1855 struct lttng_ust_shm_handle *handle)
1856 {
1857 const struct lttng_ust_lib_ring_buffer_config *config = &chan->backend.config;
1858 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1859 unsigned long commit_count;
1860 struct commit_counters_hot *cc_hot;
1861
1862 config->cb.buffer_begin(buf, tsc, beginidx, handle);
1863
1864 /*
1865 * Order all writes to buffer before the commit count update that will
1866 * determine that the subbuffer is full.
1867 */
1868 cmm_smp_wmb();
1869 cc_hot = shmp_index(handle, buf->commit_hot, beginidx);
1870 if (!cc_hot)
1871 return;
1872 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1873 commit_count = v_read(config, &cc_hot->cc);
1874 /* Check if the written buffer has to be delivered */
1875 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1876 commit_count, beginidx, handle, tsc);
1877 lib_ring_buffer_write_commit_counter(config, buf, chan,
1878 offsets->begin + config->cb.subbuffer_header_size(),
1879 commit_count, handle, cc_hot);
1880 }
1881
1882 /*
1883 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1884 *
1885 * Calls subbuffer_set_data_size() to set the data size of the current
1886 * sub-buffer. We do not need to perform check_deliver nor commit here,
1887 * since this task will be done by the "commit" of the event for which
1888 * we are currently doing the space reservation.
1889 */
1890 static
1891 void lib_ring_buffer_switch_new_end(struct lttng_ust_lib_ring_buffer *buf,
1892 struct lttng_ust_lib_ring_buffer_channel *chan,
1893 struct switch_offsets *offsets,
1894 uint64_t tsc,
1895 struct lttng_ust_shm_handle *handle)
1896 {
1897 const struct lttng_ust_lib_ring_buffer_config *config = &chan->backend.config;
1898 unsigned long endidx, data_size;
1899 uint64_t *ts_end;
1900
1901 endidx = subbuf_index(offsets->end - 1, chan);
1902 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1903 subbuffer_set_data_size(config, &buf->backend, endidx, data_size,
1904 handle);
1905 ts_end = shmp_index(handle, buf->ts_end, endidx);
1906 if (!ts_end)
1907 return;
1908 /*
1909 * This is the last space reservation in that sub-buffer before
1910 * it gets delivered. This provides exclusive access to write to
1911 * this sub-buffer's ts_end. There are also no concurrent
1912 * readers of that ts_end because delivery of that sub-buffer is
1913 * postponed until the commit counter is incremented for the
1914 * current space reservation.
1915 */
1916 *ts_end = tsc;
1917 }
1918
1919 /*
1920 * Returns :
1921 * 0 if ok
1922 * !0 if execution must be aborted.
1923 */
1924 static
1925 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1926 struct lttng_ust_lib_ring_buffer *buf,
1927 struct lttng_ust_lib_ring_buffer_channel *chan,
1928 struct switch_offsets *offsets,
1929 uint64_t *tsc,
1930 struct lttng_ust_shm_handle *handle)
1931 {
1932 const struct lttng_ust_lib_ring_buffer_config *config = &chan->backend.config;
1933 unsigned long off, reserve_commit_diff;
1934
1935 offsets->begin = v_read(config, &buf->offset);
1936 offsets->old = offsets->begin;
1937 offsets->switch_old_start = 0;
1938 off = subbuf_offset(offsets->begin, chan);
1939
1940 *tsc = config->cb.ring_buffer_clock_read(chan);
1941
1942 /*
1943 * Ensure we flush the header of an empty subbuffer when doing the
1944 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1945 * total data gathering duration even if there were no records saved
1946 * after the last buffer switch.
1947 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1948 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1949 * subbuffer header as appropriate.
1950 * The next record that reserves space will be responsible for
1951 * populating the following subbuffer header. We choose not to populate
1952 * the next subbuffer header here because we want to be able to use
1953 * SWITCH_ACTIVE for periodical buffer flush, which must
1954 * guarantee that all the buffer content (records and header
1955 * timestamps) are visible to the reader. This is required for
1956 * quiescence guarantees for the fusion merge.
1957 */
1958 if (mode != SWITCH_FLUSH && !off)
1959 return -1; /* we do not have to switch : buffer is empty */
1960
1961 if (caa_unlikely(off == 0)) {
1962 unsigned long sb_index, commit_count;
1963 struct commit_counters_cold *cc_cold;
1964
1965 /*
1966 * We are performing a SWITCH_FLUSH. There may be concurrent
1967 * writes into the buffer if e.g. invoked while performing a
1968 * snapshot on an active trace.
1969 *
1970 * If the client does not save any header information
1971 * (sub-buffer header size == 0), don't switch empty subbuffer
1972 * on finalize, because it is invalid to deliver a completely
1973 * empty subbuffer.
1974 */
1975 if (!config->cb.subbuffer_header_size())
1976 return -1;
1977
1978 /* Test new buffer integrity */
1979 sb_index = subbuf_index(offsets->begin, chan);
1980 cc_cold = shmp_index(handle, buf->commit_cold, sb_index);
1981 if (!cc_cold)
1982 return -1;
1983 commit_count = v_read(config, &cc_cold->cc_sb);
1984 reserve_commit_diff =
1985 (buf_trunc(offsets->begin, chan)
1986 >> chan->backend.num_subbuf_order)
1987 - (commit_count & chan->commit_count_mask);
1988 if (caa_likely(reserve_commit_diff == 0)) {
1989 /* Next subbuffer not being written to. */
1990 if (caa_unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1991 subbuf_trunc(offsets->begin, chan)
1992 - subbuf_trunc((unsigned long)
1993 uatomic_read(&buf->consumed), chan)
1994 >= chan->backend.buf_size)) {
1995 /*
1996 * We do not overwrite non consumed buffers
1997 * and we are full : don't switch.
1998 */
1999 return -1;
2000 } else {
2001 /*
2002 * Next subbuffer not being written to, and we
2003 * are either in overwrite mode or the buffer is
2004 * not full. It's safe to write in this new
2005 * subbuffer.
2006 */
2007 }
2008 } else {
2009 /*
2010 * Next subbuffer reserve offset does not match the
2011 * commit offset. Don't perform switch in
2012 * producer-consumer and overwrite mode. Caused by
2013 * either a writer OOPS or too many nested writes over a
2014 * reserve/commit pair.
2015 */
2016 return -1;
2017 }
2018
2019 /*
2020 * Need to write the subbuffer start header on finalize.
2021 */
2022 offsets->switch_old_start = 1;
2023 }
2024 offsets->begin = subbuf_align(offsets->begin, chan);
2025 /* Note: old points to the next subbuf at offset 0 */
2026 offsets->end = offsets->begin;
2027 return 0;
2028 }
2029
2030 /*
2031 * Force a sub-buffer switch. This operation is completely reentrant : can be
2032 * called while tracing is active with absolutely no lock held.
2033 *
2034 * For RING_BUFFER_SYNC_PER_CPU ring buffers, as a v_cmpxchg is used for
2035 * some atomic operations, this function must be called from the CPU
2036 * which owns the buffer for a ACTIVE flush. However, for
2037 * RING_BUFFER_SYNC_GLOBAL ring buffers, this function can be called
2038 * from any CPU.
2039 */
2040 void lib_ring_buffer_switch_slow(struct lttng_ust_lib_ring_buffer *buf, enum switch_mode mode,
2041 struct lttng_ust_shm_handle *handle)
2042 {
2043 struct lttng_ust_lib_ring_buffer_channel *chan;
2044 const struct lttng_ust_lib_ring_buffer_config *config;
2045 struct switch_offsets offsets;
2046 unsigned long oldidx;
2047 uint64_t tsc;
2048
2049 chan = shmp(handle, buf->backend.chan);
2050 if (!chan)
2051 return;
2052 config = &chan->backend.config;
2053
2054 offsets.size = 0;
2055
2056 /*
2057 * Perform retryable operations.
2058 */
2059 do {
2060 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
2061 &tsc, handle))
2062 return; /* Switch not needed */
2063 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
2064 != offsets.old);
2065
2066 /*
2067 * Atomically update last_tsc. This update races against concurrent
2068 * atomic updates, but the race will always cause supplementary full TSC
2069 * records, never the opposite (missing a full TSC record when it would
2070 * be needed).
2071 */
2072 save_last_tsc(config, buf, tsc);
2073
2074 /*
2075 * Push the reader if necessary
2076 */
2077 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
2078
2079 oldidx = subbuf_index(offsets.old, chan);
2080 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx, handle);
2081
2082 /*
2083 * May need to populate header start on SWITCH_FLUSH.
2084 */
2085 if (offsets.switch_old_start) {
2086 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc, handle);
2087 offsets.old += config->cb.subbuffer_header_size();
2088 }
2089
2090 /*
2091 * Switch old subbuffer.
2092 */
2093 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc, handle);
2094 }
2095
2096 static
2097 bool handle_blocking_retry(int *timeout_left_ms)
2098 {
2099 int timeout = *timeout_left_ms, delay;
2100
2101 if (caa_likely(!timeout))
2102 return false; /* Do not retry, discard event. */
2103 if (timeout < 0) /* Wait forever. */
2104 delay = RETRY_DELAY_MS;
2105 else
2106 delay = min_t(int, timeout, RETRY_DELAY_MS);
2107 (void) poll(NULL, 0, delay);
2108 if (timeout > 0)
2109 *timeout_left_ms -= delay;
2110 return true; /* Retry. */
2111 }
2112
2113 /*
2114 * Returns :
2115 * 0 if ok
2116 * -ENOSPC if event size is too large for packet.
2117 * -ENOBUFS if there is currently not enough space in buffer for the event.
2118 * -EIO if data cannot be written into the buffer for any other reason.
2119 */
2120 static
2121 int lib_ring_buffer_try_reserve_slow(struct lttng_ust_lib_ring_buffer *buf,
2122 struct lttng_ust_lib_ring_buffer_channel *chan,
2123 struct switch_offsets *offsets,
2124 struct lttng_ust_lib_ring_buffer_ctx *ctx,
2125 void *client_ctx)
2126 {
2127 const struct lttng_ust_lib_ring_buffer_config *config = &chan->backend.config;
2128 struct lttng_ust_shm_handle *handle = ctx->chan->handle;
2129 unsigned long reserve_commit_diff, offset_cmp;
2130 int timeout_left_ms = lttng_ust_ringbuffer_get_timeout(chan);
2131
2132 retry:
2133 offsets->begin = offset_cmp = v_read(config, &buf->offset);
2134 offsets->old = offsets->begin;
2135 offsets->switch_new_start = 0;
2136 offsets->switch_new_end = 0;
2137 offsets->switch_old_end = 0;
2138 offsets->pre_header_padding = 0;
2139
2140 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
2141 if ((int64_t) ctx->tsc == -EIO)
2142 return -EIO;
2143
2144 if (last_tsc_overflow(config, buf, ctx->tsc))
2145 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
2146
2147 if (caa_unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
2148 offsets->switch_new_start = 1; /* For offsets->begin */
2149 } else {
2150 offsets->size = config->cb.record_header_size(config, chan,
2151 offsets->begin,
2152 &offsets->pre_header_padding,
2153 ctx, client_ctx);
2154 offsets->size +=
2155 lttng_ust_lib_ring_buffer_align(offsets->begin + offsets->size,
2156 ctx->largest_align)
2157 + ctx->data_size;
2158 if (caa_unlikely(subbuf_offset(offsets->begin, chan) +
2159 offsets->size > chan->backend.subbuf_size)) {
2160 offsets->switch_old_end = 1; /* For offsets->old */
2161 offsets->switch_new_start = 1; /* For offsets->begin */
2162 }
2163 }
2164 if (caa_unlikely(offsets->switch_new_start)) {
2165 unsigned long sb_index, commit_count;
2166 struct commit_counters_cold *cc_cold;
2167
2168 /*
2169 * We are typically not filling the previous buffer completely.
2170 */
2171 if (caa_likely(offsets->switch_old_end))
2172 offsets->begin = subbuf_align(offsets->begin, chan);
2173 offsets->begin = offsets->begin
2174 + config->cb.subbuffer_header_size();
2175 /* Test new buffer integrity */
2176 sb_index = subbuf_index(offsets->begin, chan);
2177 /*
2178 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
2179 * lib_ring_buffer_check_deliver() has the matching
2180 * memory barriers required around commit_cold cc_sb
2181 * updates to ensure reserve and commit counter updates
2182 * are not seen reordered when updated by another CPU.
2183 */
2184 cmm_smp_rmb();
2185 cc_cold = shmp_index(handle, buf->commit_cold, sb_index);
2186 if (!cc_cold)
2187 return -1;
2188 commit_count = v_read(config, &cc_cold->cc_sb);
2189 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
2190 cmm_smp_rmb();
2191 if (caa_unlikely(offset_cmp != v_read(config, &buf->offset))) {
2192 /*
2193 * The reserve counter have been concurrently updated
2194 * while we read the commit counter. This means the
2195 * commit counter we read might not match buf->offset
2196 * due to concurrent update. We therefore need to retry.
2197 */
2198 goto retry;
2199 }
2200 reserve_commit_diff =
2201 (buf_trunc(offsets->begin, chan)
2202 >> chan->backend.num_subbuf_order)
2203 - (commit_count & chan->commit_count_mask);
2204 if (caa_likely(reserve_commit_diff == 0)) {
2205 /* Next subbuffer not being written to. */
2206 if (caa_unlikely(config->mode != RING_BUFFER_OVERWRITE &&
2207 subbuf_trunc(offsets->begin, chan)
2208 - subbuf_trunc((unsigned long)
2209 uatomic_read(&buf->consumed), chan)
2210 >= chan->backend.buf_size)) {
2211 unsigned long nr_lost;
2212
2213 if (handle_blocking_retry(&timeout_left_ms))
2214 goto retry;
2215
2216 /*
2217 * We do not overwrite non consumed buffers
2218 * and we are full : record is lost.
2219 */
2220 nr_lost = v_read(config, &buf->records_lost_full);
2221 v_inc(config, &buf->records_lost_full);
2222 if ((nr_lost & (DBG_PRINT_NR_LOST - 1)) == 0) {
2223 DBG("%lu or more records lost in (%s:%d) (buffer full)\n",
2224 nr_lost + 1, chan->backend.name,
2225 buf->backend.cpu);
2226 }
2227 return -ENOBUFS;
2228 } else {
2229 /*
2230 * Next subbuffer not being written to, and we
2231 * are either in overwrite mode or the buffer is
2232 * not full. It's safe to write in this new
2233 * subbuffer.
2234 */
2235 }
2236 } else {
2237 unsigned long nr_lost;
2238
2239 /*
2240 * Next subbuffer reserve offset does not match the
2241 * commit offset, and this did not involve update to the
2242 * reserve counter. Drop record in producer-consumer and
2243 * overwrite mode. Caused by either a writer OOPS or too
2244 * many nested writes over a reserve/commit pair.
2245 */
2246 nr_lost = v_read(config, &buf->records_lost_wrap);
2247 v_inc(config, &buf->records_lost_wrap);
2248 if ((nr_lost & (DBG_PRINT_NR_LOST - 1)) == 0) {
2249 DBG("%lu or more records lost in (%s:%d) (wrap-around)\n",
2250 nr_lost + 1, chan->backend.name,
2251 buf->backend.cpu);
2252 }
2253 return -EIO;
2254 }
2255 offsets->size =
2256 config->cb.record_header_size(config, chan,
2257 offsets->begin,
2258 &offsets->pre_header_padding,
2259 ctx, client_ctx);
2260 offsets->size +=
2261 lttng_ust_lib_ring_buffer_align(offsets->begin + offsets->size,
2262 ctx->largest_align)
2263 + ctx->data_size;
2264 if (caa_unlikely(subbuf_offset(offsets->begin, chan)
2265 + offsets->size > chan->backend.subbuf_size)) {
2266 unsigned long nr_lost;
2267
2268 /*
2269 * Record too big for subbuffers, report error, don't
2270 * complete the sub-buffer switch.
2271 */
2272 nr_lost = v_read(config, &buf->records_lost_big);
2273 v_inc(config, &buf->records_lost_big);
2274 if ((nr_lost & (DBG_PRINT_NR_LOST - 1)) == 0) {
2275 DBG("%lu or more records lost in (%s:%d) record size "
2276 " of %zu bytes is too large for buffer\n",
2277 nr_lost + 1, chan->backend.name,
2278 buf->backend.cpu, offsets->size);
2279 }
2280 return -ENOSPC;
2281 } else {
2282 /*
2283 * We just made a successful buffer switch and the
2284 * record fits in the new subbuffer. Let's write.
2285 */
2286 }
2287 } else {
2288 /*
2289 * Record fits in the current buffer and we are not on a switch
2290 * boundary. It's safe to write.
2291 */
2292 }
2293 offsets->end = offsets->begin + offsets->size;
2294
2295 if (caa_unlikely(subbuf_offset(offsets->end, chan) == 0)) {
2296 /*
2297 * The offset_end will fall at the very beginning of the next
2298 * subbuffer.
2299 */
2300 offsets->switch_new_end = 1; /* For offsets->begin */
2301 }
2302 return 0;
2303 }
2304
2305 /**
2306 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
2307 * @ctx: ring buffer context.
2308 *
2309 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
2310 * -EIO for other errors, else returns 0.
2311 * It will take care of sub-buffer switching.
2312 */
2313 int lib_ring_buffer_reserve_slow(struct lttng_ust_lib_ring_buffer_ctx *ctx,
2314 void *client_ctx)
2315 {
2316 struct lttng_ust_lib_ring_buffer_channel *chan = ctx->chan;
2317 struct lttng_ust_shm_handle *handle = ctx->chan->handle;
2318 const struct lttng_ust_lib_ring_buffer_config *config = &chan->backend.config;
2319 struct lttng_ust_lib_ring_buffer *buf;
2320 struct switch_offsets offsets;
2321 int ret;
2322
2323 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
2324 buf = shmp(handle, chan->backend.buf[ctx->reserve_cpu].shmp);
2325 else
2326 buf = shmp(handle, chan->backend.buf[0].shmp);
2327 if (!buf)
2328 return -EIO;
2329 ctx->buf = buf;
2330
2331 offsets.size = 0;
2332
2333 do {
2334 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
2335 ctx, client_ctx);
2336 if (caa_unlikely(ret))
2337 return ret;
2338 } while (caa_unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
2339 offsets.end)
2340 != offsets.old));
2341
2342 /*
2343 * Atomically update last_tsc. This update races against concurrent
2344 * atomic updates, but the race will always cause supplementary full TSC
2345 * records, never the opposite (missing a full TSC record when it would
2346 * be needed).
2347 */
2348 save_last_tsc(config, buf, ctx->tsc);
2349
2350 /*
2351 * Push the reader if necessary
2352 */
2353 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
2354
2355 /*
2356 * Clear noref flag for this subbuffer.
2357 */
2358 lib_ring_buffer_clear_noref(config, &buf->backend,
2359 subbuf_index(offsets.end - 1, chan),
2360 handle);
2361
2362 /*
2363 * Switch old subbuffer if needed.
2364 */
2365 if (caa_unlikely(offsets.switch_old_end)) {
2366 lib_ring_buffer_clear_noref(config, &buf->backend,
2367 subbuf_index(offsets.old - 1, chan),
2368 handle);
2369 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc, handle);
2370 }
2371
2372 /*
2373 * Populate new subbuffer.
2374 */
2375 if (caa_unlikely(offsets.switch_new_start))
2376 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc, handle);
2377
2378 if (caa_unlikely(offsets.switch_new_end))
2379 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc, handle);
2380
2381 ctx->slot_size = offsets.size;
2382 ctx->pre_offset = offsets.begin;
2383 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
2384 return 0;
2385 }
2386
2387 static
2388 void lib_ring_buffer_vmcore_check_deliver(const struct lttng_ust_lib_ring_buffer_config *config,
2389 struct lttng_ust_lib_ring_buffer *buf,
2390 unsigned long commit_count,
2391 unsigned long idx,
2392 struct lttng_ust_shm_handle *handle)
2393 {
2394 struct commit_counters_hot *cc_hot;
2395
2396 if (config->oops != RING_BUFFER_OOPS_CONSISTENCY)
2397 return;
2398 cc_hot = shmp_index(handle, buf->commit_hot, idx);
2399 if (!cc_hot)
2400 return;
2401 v_set(config, &cc_hot->seq, commit_count);
2402 }
2403
2404 /*
2405 * The ring buffer can count events recorded and overwritten per buffer,
2406 * but it is disabled by default due to its performance overhead.
2407 */
2408 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
2409 static
2410 void deliver_count_events(const struct lttng_ust_lib_ring_buffer_config *config,
2411 struct lttng_ust_lib_ring_buffer *buf,
2412 unsigned long idx,
2413 struct lttng_ust_shm_handle *handle)
2414 {
2415 v_add(config, subbuffer_get_records_count(config,
2416 &buf->backend, idx, handle),
2417 &buf->records_count);
2418 v_add(config, subbuffer_count_records_overrun(config,
2419 &buf->backend, idx, handle),
2420 &buf->records_overrun);
2421 }
2422 #else /* LTTNG_RING_BUFFER_COUNT_EVENTS */
2423 static
2424 void deliver_count_events(const struct lttng_ust_lib_ring_buffer_config *config,
2425 struct lttng_ust_lib_ring_buffer *buf,
2426 unsigned long idx,
2427 struct lttng_ust_shm_handle *handle)
2428 {
2429 }
2430 #endif /* #else LTTNG_RING_BUFFER_COUNT_EVENTS */
2431
2432 void lib_ring_buffer_check_deliver_slow(const struct lttng_ust_lib_ring_buffer_config *config,
2433 struct lttng_ust_lib_ring_buffer *buf,
2434 struct lttng_ust_lib_ring_buffer_channel *chan,
2435 unsigned long offset,
2436 unsigned long commit_count,
2437 unsigned long idx,
2438 struct lttng_ust_shm_handle *handle,
2439 uint64_t tsc)
2440 {
2441 unsigned long old_commit_count = commit_count
2442 - chan->backend.subbuf_size;
2443 struct commit_counters_cold *cc_cold;
2444
2445 /*
2446 * If we succeeded at updating cc_sb below, we are the subbuffer
2447 * writer delivering the subbuffer. Deals with concurrent
2448 * updates of the "cc" value without adding a add_return atomic
2449 * operation to the fast path.
2450 *
2451 * We are doing the delivery in two steps:
2452 * - First, we cmpxchg() cc_sb to the new value
2453 * old_commit_count + 1. This ensures that we are the only
2454 * subbuffer user successfully filling the subbuffer, but we
2455 * do _not_ set the cc_sb value to "commit_count" yet.
2456 * Therefore, other writers that would wrap around the ring
2457 * buffer and try to start writing to our subbuffer would
2458 * have to drop records, because it would appear as
2459 * non-filled.
2460 * We therefore have exclusive access to the subbuffer control
2461 * structures. This mutual exclusion with other writers is
2462 * crucially important to perform record overruns count in
2463 * flight recorder mode locklessly.
2464 * - When we are ready to release the subbuffer (either for
2465 * reading or for overrun by other writers), we simply set the
2466 * cc_sb value to "commit_count" and perform delivery.
2467 *
2468 * The subbuffer size is least 2 bytes (minimum size: 1 page).
2469 * This guarantees that old_commit_count + 1 != commit_count.
2470 */
2471
2472 /*
2473 * Order prior updates to reserve count prior to the
2474 * commit_cold cc_sb update.
2475 */
2476 cmm_smp_wmb();
2477 cc_cold = shmp_index(handle, buf->commit_cold, idx);
2478 if (!cc_cold)
2479 return;
2480 if (caa_likely(v_cmpxchg(config, &cc_cold->cc_sb,
2481 old_commit_count, old_commit_count + 1)
2482 == old_commit_count)) {
2483 uint64_t *ts_end;
2484
2485 /*
2486 * Start of exclusive subbuffer access. We are
2487 * guaranteed to be the last writer in this subbuffer
2488 * and any other writer trying to access this subbuffer
2489 * in this state is required to drop records.
2490 *
2491 * We can read the ts_end for the current sub-buffer
2492 * which has been saved by the very last space
2493 * reservation for the current sub-buffer.
2494 *
2495 * Order increment of commit counter before reading ts_end.
2496 */
2497 cmm_smp_mb();
2498 ts_end = shmp_index(handle, buf->ts_end, idx);
2499 if (!ts_end)
2500 return;
2501 deliver_count_events(config, buf, idx, handle);
2502 config->cb.buffer_end(buf, *ts_end, idx,
2503 lib_ring_buffer_get_data_size(config,
2504 buf,
2505 idx,
2506 handle),
2507 handle);
2508
2509 /*
2510 * Increment the packet counter while we have exclusive
2511 * access.
2512 */
2513 subbuffer_inc_packet_count(config, &buf->backend, idx, handle);
2514
2515 /*
2516 * Set noref flag and offset for this subbuffer id.
2517 * Contains a memory barrier that ensures counter stores
2518 * are ordered before set noref and offset.
2519 */
2520 lib_ring_buffer_set_noref_offset(config, &buf->backend, idx,
2521 buf_trunc_val(offset, chan), handle);
2522
2523 /*
2524 * Order set_noref and record counter updates before the
2525 * end of subbuffer exclusive access. Orders with
2526 * respect to writers coming into the subbuffer after
2527 * wrap around, and also order wrt concurrent readers.
2528 */
2529 cmm_smp_mb();
2530 /* End of exclusive subbuffer access */
2531 v_set(config, &cc_cold->cc_sb, commit_count);
2532 /*
2533 * Order later updates to reserve count after
2534 * the commit cold cc_sb update.
2535 */
2536 cmm_smp_wmb();
2537 lib_ring_buffer_vmcore_check_deliver(config, buf,
2538 commit_count, idx, handle);
2539
2540 /*
2541 * RING_BUFFER_WAKEUP_BY_WRITER wakeup is not lock-free.
2542 */
2543 if (config->wakeup == RING_BUFFER_WAKEUP_BY_WRITER
2544 && uatomic_read(&buf->active_readers)
2545 && lib_ring_buffer_poll_deliver(config, buf, chan, handle)) {
2546 lib_ring_buffer_wakeup(buf, handle);
2547 }
2548 }
2549 }
2550
2551 /*
2552 * Force a read (imply TLS fixup for dlopen) of TLS variables.
2553 */
2554 void lttng_fixup_ringbuffer_tls(void)
2555 {
2556 asm volatile ("" : : "m" (URCU_TLS(lib_ring_buffer_nesting)));
2557 }
2558
2559 void lib_ringbuffer_signal_init(void)
2560 {
2561 sigset_t mask;
2562 int ret;
2563
2564 /*
2565 * Block signal for entire process, so only our thread processes
2566 * it.
2567 */
2568 rb_setmask(&mask);
2569 ret = pthread_sigmask(SIG_BLOCK, &mask, NULL);
2570 if (ret) {
2571 errno = ret;
2572 PERROR("pthread_sigmask");
2573 }
2574 }
This page took 0.078867 seconds and 3 git commands to generate.