cleanup: Remove redefinition of CHAR_BIT
[lttng-ust.git] / liblttng-ust / rculfhash.c
1 /*
2 * SPDX-License-Identifier: LGPL-2.1-or-later
3 *
4 * Copyright 2010-2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 * Copyright 2011 Lai Jiangshan <laijs@cn.fujitsu.com>
6 *
7 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
8 */
9
10 /*
11 * Based on the following articles:
12 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
13 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
14 * - Michael, M. M. High performance dynamic lock-free hash tables
15 * and list-based sets. In Proceedings of the fourteenth annual ACM
16 * symposium on Parallel algorithms and architectures, ACM Press,
17 * (2002), 73-82.
18 *
19 * Some specificities of this Lock-Free Resizable RCU Hash Table
20 * implementation:
21 *
22 * - RCU read-side critical section allows readers to perform hash
23 * table lookups, as well as traversals, and use the returned objects
24 * safely by allowing memory reclaim to take place only after a grace
25 * period.
26 * - Add and remove operations are lock-free, and do not need to
27 * allocate memory. They need to be executed within RCU read-side
28 * critical section to ensure the objects they read are valid and to
29 * deal with the cmpxchg ABA problem.
30 * - add and add_unique operations are supported. add_unique checks if
31 * the node key already exists in the hash table. It ensures not to
32 * populate a duplicate key if the node key already exists in the hash
33 * table.
34 * - The resize operation executes concurrently with
35 * add/add_unique/add_replace/remove/lookup/traversal.
36 * - Hash table nodes are contained within a split-ordered list. This
37 * list is ordered by incrementing reversed-bits-hash value.
38 * - An index of bucket nodes is kept. These bucket nodes are the hash
39 * table "buckets". These buckets are internal nodes that allow to
40 * perform a fast hash lookup, similarly to a skip list. These
41 * buckets are chained together in the split-ordered list, which
42 * allows recursive expansion by inserting new buckets between the
43 * existing buckets. The split-ordered list allows adding new buckets
44 * between existing buckets as the table needs to grow.
45 * - The resize operation for small tables only allows expanding the
46 * hash table. It is triggered automatically by detecting long chains
47 * in the add operation.
48 * - The resize operation for larger tables (and available through an
49 * API) allows both expanding and shrinking the hash table.
50 * - Split-counters are used to keep track of the number of
51 * nodes within the hash table for automatic resize triggering.
52 * - Resize operation initiated by long chain detection is executed by a
53 * worker thread, which keeps lock-freedom of add and remove.
54 * - Resize operations are protected by a mutex.
55 * - The removal operation is split in two parts: first, a "removed"
56 * flag is set in the next pointer within the node to remove. Then,
57 * a "garbage collection" is performed in the bucket containing the
58 * removed node (from the start of the bucket up to the removed node).
59 * All encountered nodes with "removed" flag set in their next
60 * pointers are removed from the linked-list. If the cmpxchg used for
61 * removal fails (due to concurrent garbage-collection or concurrent
62 * add), we retry from the beginning of the bucket. This ensures that
63 * the node with "removed" flag set is removed from the hash table
64 * (not visible to lookups anymore) before the RCU read-side critical
65 * section held across removal ends. Furthermore, this ensures that
66 * the node with "removed" flag set is removed from the linked-list
67 * before its memory is reclaimed. After setting the "removal" flag,
68 * only the thread which removal is the first to set the "removal
69 * owner" flag (with an xchg) into a node's next pointer is considered
70 * to have succeeded its removal (and thus owns the node to reclaim).
71 * Because we garbage-collect starting from an invariant node (the
72 * start-of-bucket bucket node) up to the "removed" node (or find a
73 * reverse-hash that is higher), we are sure that a successful
74 * traversal of the chain leads to a chain that is present in the
75 * linked-list (the start node is never removed) and that it does not
76 * contain the "removed" node anymore, even if concurrent delete/add
77 * operations are changing the structure of the list concurrently.
78 * - The add operations perform garbage collection of buckets if they
79 * encounter nodes with removed flag set in the bucket where they want
80 * to add their new node. This ensures lock-freedom of add operation by
81 * helping the remover unlink nodes from the list rather than to wait
82 * for it do to so.
83 * - There are three memory backends for the hash table buckets: the
84 * "order table", the "chunks", and the "mmap".
85 * - These bucket containers contain a compact version of the hash table
86 * nodes.
87 * - The RCU "order table":
88 * - has a first level table indexed by log2(hash index) which is
89 * copied and expanded by the resize operation. This order table
90 * allows finding the "bucket node" tables.
91 * - There is one bucket node table per hash index order. The size of
92 * each bucket node table is half the number of hashes contained in
93 * this order (except for order 0).
94 * - The RCU "chunks" is best suited for close interaction with a page
95 * allocator. It uses a linear array as index to "chunks" containing
96 * each the same number of buckets.
97 * - The RCU "mmap" memory backend uses a single memory map to hold
98 * all buckets.
99 * - synchronize_rcu is used to garbage-collect the old bucket node table.
100 *
101 * Ordering Guarantees:
102 *
103 * To discuss these guarantees, we first define "read" operation as any
104 * of the the basic lttng_ust_lfht_lookup, lttng_ust_lfht_next_duplicate,
105 * lttng_ust_lfht_first, lttng_ust_lfht_next operation, as well as
106 * lttng_ust_lfht_add_unique (failure).
107 *
108 * We define "read traversal" operation as any of the following
109 * group of operations
110 * - lttng_ust_lfht_lookup followed by iteration with lttng_ust_lfht_next_duplicate
111 * (and/or lttng_ust_lfht_next, although less common).
112 * - lttng_ust_lfht_add_unique (failure) followed by iteration with
113 * lttng_ust_lfht_next_duplicate (and/or lttng_ust_lfht_next, although less
114 * common).
115 * - lttng_ust_lfht_first followed iteration with lttng_ust_lfht_next (and/or
116 * lttng_ust_lfht_next_duplicate, although less common).
117 *
118 * We define "write" operations as any of lttng_ust_lfht_add, lttng_ust_lfht_replace,
119 * lttng_ust_lfht_add_unique (success), lttng_ust_lfht_add_replace, lttng_ust_lfht_del.
120 *
121 * When lttng_ust_lfht_add_unique succeeds (returns the node passed as
122 * parameter), it acts as a "write" operation. When lttng_ust_lfht_add_unique
123 * fails (returns a node different from the one passed as parameter), it
124 * acts as a "read" operation. A lttng_ust_lfht_add_unique failure is a
125 * lttng_ust_lfht_lookup "read" operation, therefore, any ordering guarantee
126 * referring to "lookup" imply any of "lookup" or lttng_ust_lfht_add_unique
127 * (failure).
128 *
129 * We define "prior" and "later" node as nodes observable by reads and
130 * read traversals respectively before and after a write or sequence of
131 * write operations.
132 *
133 * Hash-table operations are often cascaded, for example, the pointer
134 * returned by a lttng_ust_lfht_lookup() might be passed to a lttng_ust_lfht_next(),
135 * whose return value might in turn be passed to another hash-table
136 * operation. This entire cascaded series of operations must be enclosed
137 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
138 * operations.
139 *
140 * The following ordering guarantees are offered by this hash table:
141 *
142 * A.1) "read" after "write": if there is ordering between a write and a
143 * later read, then the read is guaranteed to see the write or some
144 * later write.
145 * A.2) "read traversal" after "write": given that there is dependency
146 * ordering between reads in a "read traversal", if there is
147 * ordering between a write and the first read of the traversal,
148 * then the "read traversal" is guaranteed to see the write or
149 * some later write.
150 * B.1) "write" after "read": if there is ordering between a read and a
151 * later write, then the read will never see the write.
152 * B.2) "write" after "read traversal": given that there is dependency
153 * ordering between reads in a "read traversal", if there is
154 * ordering between the last read of the traversal and a later
155 * write, then the "read traversal" will never see the write.
156 * C) "write" while "read traversal": if a write occurs during a "read
157 * traversal", the traversal may, or may not, see the write.
158 * D.1) "write" after "write": if there is ordering between a write and
159 * a later write, then the later write is guaranteed to see the
160 * effects of the first write.
161 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
162 * order to any pair of concurrent conflicting writes.
163 * Non-conflicting writes (for example, to different keys) are
164 * unordered.
165 * E) If a grace period separates a "del" or "replace" operation
166 * and a subsequent operation, then that subsequent operation is
167 * guaranteed not to see the removed item.
168 * F) Uniqueness guarantee: given a hash table that does not contain
169 * duplicate items for a given key, there will only be one item in
170 * the hash table after an arbitrary sequence of add_unique and/or
171 * add_replace operations. Note, however, that a pair of
172 * concurrent read operations might well access two different items
173 * with that key.
174 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
175 * memory barrier), then the second lookup will return the same
176 * node as the previous lookup, or some later node.
177 * G.2) A "read traversal" that starts after the end of a prior "read
178 * traversal" (ordered by memory barriers) is guaranteed to see the
179 * same nodes as the previous traversal, or some later nodes.
180 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
181 * example, if a pair of reads to the same key run concurrently
182 * with an insertion of that same key, the reads remain unordered
183 * regardless of their return values. In other words, you cannot
184 * rely on the values returned by the reads to deduce ordering.
185 *
186 * Progress guarantees:
187 *
188 * * Reads are wait-free. These operations always move forward in the
189 * hash table linked list, and this list has no loop.
190 * * Writes are lock-free. Any retry loop performed by a write operation
191 * is triggered by progress made within another update operation.
192 *
193 * Bucket node tables:
194 *
195 * hash table hash table the last all bucket node tables
196 * order size bucket node 0 1 2 3 4 5 6(index)
197 * table size
198 * 0 1 1 1
199 * 1 2 1 1 1
200 * 2 4 2 1 1 2
201 * 3 8 4 1 1 2 4
202 * 4 16 8 1 1 2 4 8
203 * 5 32 16 1 1 2 4 8 16
204 * 6 64 32 1 1 2 4 8 16 32
205 *
206 * When growing/shrinking, we only focus on the last bucket node table
207 * which size is (!order ? 1 : (1 << (order -1))).
208 *
209 * Example for growing/shrinking:
210 * grow hash table from order 5 to 6: init the index=6 bucket node table
211 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
212 *
213 * A bit of ascii art explanation:
214 *
215 * The order index is the off-by-one compared to the actual power of 2
216 * because we use index 0 to deal with the 0 special-case.
217 *
218 * This shows the nodes for a small table ordered by reversed bits:
219 *
220 * bits reverse
221 * 0 000 000
222 * 4 100 001
223 * 2 010 010
224 * 6 110 011
225 * 1 001 100
226 * 5 101 101
227 * 3 011 110
228 * 7 111 111
229 *
230 * This shows the nodes in order of non-reversed bits, linked by
231 * reversed-bit order.
232 *
233 * order bits reverse
234 * 0 0 000 000
235 * 1 | 1 001 100 <-
236 * 2 | | 2 010 010 <- |
237 * | | | 3 011 110 | <- |
238 * 3 -> | | | 4 100 001 | |
239 * -> | | 5 101 101 |
240 * -> | 6 110 011
241 * -> 7 111 111
242 */
243
244 /*
245 * Note on port to lttng-ust: auto-resize and accounting features are
246 * removed.
247 */
248
249 #define _LGPL_SOURCE
250 #include <stdlib.h>
251 #include <errno.h>
252 #include <assert.h>
253 #include <stdio.h>
254 #include <stdint.h>
255 #include <string.h>
256 #include <sched.h>
257 #include <unistd.h>
258
259 #include <lttng/ust-arch.h>
260 #include <lttng/urcu/pointer.h>
261 #include <urcu/arch.h>
262 #include <urcu/uatomic.h>
263 #include <urcu/compiler.h>
264 #include "rculfhash.h"
265 #include "rculfhash-internal.h"
266 #include <stdio.h>
267 #include <pthread.h>
268 #include <signal.h>
269
270 /*
271 * Split-counters lazily update the global counter each 1024
272 * addition/removal. It automatically keeps track of resize required.
273 * We use the bucket length as indicator for need to expand for small
274 * tables and machines lacking per-cpu data support.
275 */
276 #define COUNT_COMMIT_ORDER 10
277
278 /*
279 * Define the minimum table size.
280 */
281 #define MIN_TABLE_ORDER 0
282 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
283
284 /*
285 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
286 */
287 #define MIN_PARTITION_PER_THREAD_ORDER 12
288 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
289
290 /*
291 * The removed flag needs to be updated atomically with the pointer.
292 * It indicates that no node must attach to the node scheduled for
293 * removal, and that node garbage collection must be performed.
294 * The bucket flag does not require to be updated atomically with the
295 * pointer, but it is added as a pointer low bit flag to save space.
296 * The "removal owner" flag is used to detect which of the "del"
297 * operation that has set the "removed flag" gets to return the removed
298 * node to its caller. Note that the replace operation does not need to
299 * iteract with the "removal owner" flag, because it validates that
300 * the "removed" flag is not set before performing its cmpxchg.
301 */
302 #define REMOVED_FLAG (1UL << 0)
303 #define BUCKET_FLAG (1UL << 1)
304 #define REMOVAL_OWNER_FLAG (1UL << 2)
305 #define FLAGS_MASK ((1UL << 3) - 1)
306
307 /* Value of the end pointer. Should not interact with flags. */
308 #define END_VALUE NULL
309
310 /*
311 * ht_items_count: Split-counters counting the number of node addition
312 * and removal in the table. Only used if the LTTNG_UST_LFHT_ACCOUNTING flag
313 * is set at hash table creation.
314 *
315 * These are free-running counters, never reset to zero. They count the
316 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
317 * operations to update the global counter. We choose a power-of-2 value
318 * for the trigger to deal with 32 or 64-bit overflow of the counter.
319 */
320 struct ht_items_count {
321 unsigned long add, del;
322 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
323
324 #ifdef CONFIG_LTTNG_UST_LFHT_ITER_DEBUG
325
326 static
327 void lttng_ust_lfht_iter_debug_set_ht(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
328 {
329 iter->lfht = ht;
330 }
331
332 #define lttng_ust_lfht_iter_debug_assert(...) assert(__VA_ARGS__)
333
334 #else
335
336 static
337 void lttng_ust_lfht_iter_debug_set_ht(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
338 {
339 }
340
341 #define lttng_ust_lfht_iter_debug_assert(...)
342
343 #endif
344
345 /*
346 * Algorithm to reverse bits in a word by lookup table, extended to
347 * 64-bit words.
348 * Source:
349 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
350 * Originally from Public Domain.
351 */
352
353 static const uint8_t BitReverseTable256[256] =
354 {
355 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
356 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
357 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
358 R6(0), R6(2), R6(1), R6(3)
359 };
360 #undef R2
361 #undef R4
362 #undef R6
363
364 static
365 uint8_t bit_reverse_u8(uint8_t v)
366 {
367 return BitReverseTable256[v];
368 }
369
370 #if (CAA_BITS_PER_LONG == 32)
371 static
372 uint32_t bit_reverse_u32(uint32_t v)
373 {
374 return ((uint32_t) bit_reverse_u8(v) << 24) |
375 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
376 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
377 ((uint32_t) bit_reverse_u8(v >> 24));
378 }
379 #else
380 static
381 uint64_t bit_reverse_u64(uint64_t v)
382 {
383 return ((uint64_t) bit_reverse_u8(v) << 56) |
384 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
385 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
386 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
387 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
388 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
389 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
390 ((uint64_t) bit_reverse_u8(v >> 56));
391 }
392 #endif
393
394 static
395 unsigned long bit_reverse_ulong(unsigned long v)
396 {
397 #if (CAA_BITS_PER_LONG == 32)
398 return bit_reverse_u32(v);
399 #else
400 return bit_reverse_u64(v);
401 #endif
402 }
403
404 /*
405 * fls: returns the position of the most significant bit.
406 * Returns 0 if no bit is set, else returns the position of the most
407 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
408 */
409 #if defined(LTTNG_UST_ARCH_X86)
410 static inline
411 unsigned int fls_u32(uint32_t x)
412 {
413 int r;
414
415 __asm__ ("bsrl %1,%0\n\t"
416 "jnz 1f\n\t"
417 "movl $-1,%0\n\t"
418 "1:\n\t"
419 : "=r" (r) : "rm" (x));
420 return r + 1;
421 }
422 #define HAS_FLS_U32
423 #endif
424
425 #if defined(LTTNG_UST_ARCH_AMD64)
426 static inline
427 unsigned int fls_u64(uint64_t x)
428 {
429 long r;
430
431 __asm__ ("bsrq %1,%0\n\t"
432 "jnz 1f\n\t"
433 "movq $-1,%0\n\t"
434 "1:\n\t"
435 : "=r" (r) : "rm" (x));
436 return r + 1;
437 }
438 #define HAS_FLS_U64
439 #endif
440
441 #ifndef HAS_FLS_U64
442 static __attribute__((unused))
443 unsigned int fls_u64(uint64_t x)
444 {
445 unsigned int r = 64;
446
447 if (!x)
448 return 0;
449
450 if (!(x & 0xFFFFFFFF00000000ULL)) {
451 x <<= 32;
452 r -= 32;
453 }
454 if (!(x & 0xFFFF000000000000ULL)) {
455 x <<= 16;
456 r -= 16;
457 }
458 if (!(x & 0xFF00000000000000ULL)) {
459 x <<= 8;
460 r -= 8;
461 }
462 if (!(x & 0xF000000000000000ULL)) {
463 x <<= 4;
464 r -= 4;
465 }
466 if (!(x & 0xC000000000000000ULL)) {
467 x <<= 2;
468 r -= 2;
469 }
470 if (!(x & 0x8000000000000000ULL)) {
471 x <<= 1;
472 r -= 1;
473 }
474 return r;
475 }
476 #endif
477
478 #ifndef HAS_FLS_U32
479 static __attribute__((unused))
480 unsigned int fls_u32(uint32_t x)
481 {
482 unsigned int r = 32;
483
484 if (!x)
485 return 0;
486 if (!(x & 0xFFFF0000U)) {
487 x <<= 16;
488 r -= 16;
489 }
490 if (!(x & 0xFF000000U)) {
491 x <<= 8;
492 r -= 8;
493 }
494 if (!(x & 0xF0000000U)) {
495 x <<= 4;
496 r -= 4;
497 }
498 if (!(x & 0xC0000000U)) {
499 x <<= 2;
500 r -= 2;
501 }
502 if (!(x & 0x80000000U)) {
503 x <<= 1;
504 r -= 1;
505 }
506 return r;
507 }
508 #endif
509
510 unsigned int lttng_ust_lfht_fls_ulong(unsigned long x)
511 {
512 #if (CAA_BITS_PER_LONG == 32)
513 return fls_u32(x);
514 #else
515 return fls_u64(x);
516 #endif
517 }
518
519 /*
520 * Return the minimum order for which x <= (1UL << order).
521 * Return -1 if x is 0.
522 */
523 int lttng_ust_lfht_get_count_order_u32(uint32_t x)
524 {
525 if (!x)
526 return -1;
527
528 return fls_u32(x - 1);
529 }
530
531 /*
532 * Return the minimum order for which x <= (1UL << order).
533 * Return -1 if x is 0.
534 */
535 int lttng_ust_lfht_get_count_order_ulong(unsigned long x)
536 {
537 if (!x)
538 return -1;
539
540 return lttng_ust_lfht_fls_ulong(x - 1);
541 }
542
543 static
544 struct lttng_ust_lfht_node *clear_flag(struct lttng_ust_lfht_node *node)
545 {
546 return (struct lttng_ust_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
547 }
548
549 static
550 int is_removed(const struct lttng_ust_lfht_node *node)
551 {
552 return ((unsigned long) node) & REMOVED_FLAG;
553 }
554
555 static
556 int is_bucket(struct lttng_ust_lfht_node *node)
557 {
558 return ((unsigned long) node) & BUCKET_FLAG;
559 }
560
561 static
562 struct lttng_ust_lfht_node *flag_bucket(struct lttng_ust_lfht_node *node)
563 {
564 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
565 }
566
567 static
568 int is_removal_owner(struct lttng_ust_lfht_node *node)
569 {
570 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
571 }
572
573 static
574 struct lttng_ust_lfht_node *flag_removal_owner(struct lttng_ust_lfht_node *node)
575 {
576 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
577 }
578
579 static
580 struct lttng_ust_lfht_node *flag_removed_or_removal_owner(struct lttng_ust_lfht_node *node)
581 {
582 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
583 }
584
585 static
586 struct lttng_ust_lfht_node *get_end(void)
587 {
588 return (struct lttng_ust_lfht_node *) END_VALUE;
589 }
590
591 static
592 int is_end(struct lttng_ust_lfht_node *node)
593 {
594 return clear_flag(node) == (struct lttng_ust_lfht_node *) END_VALUE;
595 }
596
597 static
598 void lttng_ust_lfht_alloc_bucket_table(struct lttng_ust_lfht *ht, unsigned long order)
599 {
600 return ht->mm->alloc_bucket_table(ht, order);
601 }
602
603 /*
604 * lttng_ust_lfht_free_bucket_table() should be called with decreasing order.
605 * When lttng_ust_lfht_free_bucket_table(0) is called, it means the whole
606 * lfht is destroyed.
607 */
608 static
609 void lttng_ust_lfht_free_bucket_table(struct lttng_ust_lfht *ht, unsigned long order)
610 {
611 return ht->mm->free_bucket_table(ht, order);
612 }
613
614 static inline
615 struct lttng_ust_lfht_node *bucket_at(struct lttng_ust_lfht *ht, unsigned long index)
616 {
617 return ht->bucket_at(ht, index);
618 }
619
620 static inline
621 struct lttng_ust_lfht_node *lookup_bucket(struct lttng_ust_lfht *ht, unsigned long size,
622 unsigned long hash)
623 {
624 assert(size > 0);
625 return bucket_at(ht, hash & (size - 1));
626 }
627
628 /*
629 * Remove all logically deleted nodes from a bucket up to a certain node key.
630 */
631 static
632 void _lttng_ust_lfht_gc_bucket(struct lttng_ust_lfht_node *bucket, struct lttng_ust_lfht_node *node)
633 {
634 struct lttng_ust_lfht_node *iter_prev, *iter, *next, *new_next;
635
636 assert(!is_bucket(bucket));
637 assert(!is_removed(bucket));
638 assert(!is_removal_owner(bucket));
639 assert(!is_bucket(node));
640 assert(!is_removed(node));
641 assert(!is_removal_owner(node));
642 for (;;) {
643 iter_prev = bucket;
644 /* We can always skip the bucket node initially */
645 iter = lttng_ust_rcu_dereference(iter_prev->next);
646 assert(!is_removed(iter));
647 assert(!is_removal_owner(iter));
648 assert(iter_prev->reverse_hash <= node->reverse_hash);
649 /*
650 * We should never be called with bucket (start of chain)
651 * and logically removed node (end of path compression
652 * marker) being the actual same node. This would be a
653 * bug in the algorithm implementation.
654 */
655 assert(bucket != node);
656 for (;;) {
657 if (caa_unlikely(is_end(iter)))
658 return;
659 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
660 return;
661 next = lttng_ust_rcu_dereference(clear_flag(iter)->next);
662 if (caa_likely(is_removed(next)))
663 break;
664 iter_prev = clear_flag(iter);
665 iter = next;
666 }
667 assert(!is_removed(iter));
668 assert(!is_removal_owner(iter));
669 if (is_bucket(iter))
670 new_next = flag_bucket(clear_flag(next));
671 else
672 new_next = clear_flag(next);
673 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
674 }
675 }
676
677 static
678 int _lttng_ust_lfht_replace(struct lttng_ust_lfht *ht, unsigned long size,
679 struct lttng_ust_lfht_node *old_node,
680 struct lttng_ust_lfht_node *old_next,
681 struct lttng_ust_lfht_node *new_node)
682 {
683 struct lttng_ust_lfht_node *bucket, *ret_next;
684
685 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
686 return -ENOENT;
687
688 assert(!is_removed(old_node));
689 assert(!is_removal_owner(old_node));
690 assert(!is_bucket(old_node));
691 assert(!is_removed(new_node));
692 assert(!is_removal_owner(new_node));
693 assert(!is_bucket(new_node));
694 assert(new_node != old_node);
695 for (;;) {
696 /* Insert after node to be replaced */
697 if (is_removed(old_next)) {
698 /*
699 * Too late, the old node has been removed under us
700 * between lookup and replace. Fail.
701 */
702 return -ENOENT;
703 }
704 assert(old_next == clear_flag(old_next));
705 assert(new_node != old_next);
706 /*
707 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
708 * flag. It is either set atomically at the same time
709 * (replace) or after (del).
710 */
711 assert(!is_removal_owner(old_next));
712 new_node->next = old_next;
713 /*
714 * Here is the whole trick for lock-free replace: we add
715 * the replacement node _after_ the node we want to
716 * replace by atomically setting its next pointer at the
717 * same time we set its removal flag. Given that
718 * the lookups/get next use an iterator aware of the
719 * next pointer, they will either skip the old node due
720 * to the removal flag and see the new node, or use
721 * the old node, but will not see the new one.
722 * This is a replacement of a node with another node
723 * that has the same value: we are therefore not
724 * removing a value from the hash table. We set both the
725 * REMOVED and REMOVAL_OWNER flags atomically so we own
726 * the node after successful cmpxchg.
727 */
728 ret_next = uatomic_cmpxchg(&old_node->next,
729 old_next, flag_removed_or_removal_owner(new_node));
730 if (ret_next == old_next)
731 break; /* We performed the replacement. */
732 old_next = ret_next;
733 }
734
735 /*
736 * Ensure that the old node is not visible to readers anymore:
737 * lookup for the node, and remove it (along with any other
738 * logically removed node) if found.
739 */
740 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
741 _lttng_ust_lfht_gc_bucket(bucket, new_node);
742
743 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
744 return 0;
745 }
746
747 /*
748 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
749 * mode. A NULL unique_ret allows creation of duplicate keys.
750 */
751 static
752 void _lttng_ust_lfht_add(struct lttng_ust_lfht *ht,
753 unsigned long hash,
754 lttng_ust_lfht_match_fct match,
755 const void *key,
756 unsigned long size,
757 struct lttng_ust_lfht_node *node,
758 struct lttng_ust_lfht_iter *unique_ret,
759 int bucket_flag)
760 {
761 struct lttng_ust_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
762 *return_node;
763 struct lttng_ust_lfht_node *bucket;
764
765 assert(!is_bucket(node));
766 assert(!is_removed(node));
767 assert(!is_removal_owner(node));
768 bucket = lookup_bucket(ht, size, hash);
769 for (;;) {
770 /*
771 * iter_prev points to the non-removed node prior to the
772 * insert location.
773 */
774 iter_prev = bucket;
775 /* We can always skip the bucket node initially */
776 iter = lttng_ust_rcu_dereference(iter_prev->next);
777 assert(iter_prev->reverse_hash <= node->reverse_hash);
778 for (;;) {
779 if (caa_unlikely(is_end(iter)))
780 goto insert;
781 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
782 goto insert;
783
784 /* bucket node is the first node of the identical-hash-value chain */
785 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
786 goto insert;
787
788 next = lttng_ust_rcu_dereference(clear_flag(iter)->next);
789 if (caa_unlikely(is_removed(next)))
790 goto gc_node;
791
792 /* uniquely add */
793 if (unique_ret
794 && !is_bucket(next)
795 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
796 struct lttng_ust_lfht_iter d_iter = {
797 .node = node,
798 .next = iter,
799 #ifdef CONFIG_LTTNG_UST_LFHT_ITER_DEBUG
800 .lfht = ht,
801 #endif
802 };
803
804 /*
805 * uniquely adding inserts the node as the first
806 * node of the identical-hash-value node chain.
807 *
808 * This semantic ensures no duplicated keys
809 * should ever be observable in the table
810 * (including traversing the table node by
811 * node by forward iterations)
812 */
813 lttng_ust_lfht_next_duplicate(ht, match, key, &d_iter);
814 if (!d_iter.node)
815 goto insert;
816
817 *unique_ret = d_iter;
818 return;
819 }
820
821 iter_prev = clear_flag(iter);
822 iter = next;
823 }
824
825 insert:
826 assert(node != clear_flag(iter));
827 assert(!is_removed(iter_prev));
828 assert(!is_removal_owner(iter_prev));
829 assert(!is_removed(iter));
830 assert(!is_removal_owner(iter));
831 assert(iter_prev != node);
832 if (!bucket_flag)
833 node->next = clear_flag(iter);
834 else
835 node->next = flag_bucket(clear_flag(iter));
836 if (is_bucket(iter))
837 new_node = flag_bucket(node);
838 else
839 new_node = node;
840 if (uatomic_cmpxchg(&iter_prev->next, iter,
841 new_node) != iter) {
842 continue; /* retry */
843 } else {
844 return_node = node;
845 goto end;
846 }
847
848 gc_node:
849 assert(!is_removed(iter));
850 assert(!is_removal_owner(iter));
851 if (is_bucket(iter))
852 new_next = flag_bucket(clear_flag(next));
853 else
854 new_next = clear_flag(next);
855 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
856 /* retry */
857 }
858 end:
859 if (unique_ret) {
860 unique_ret->node = return_node;
861 /* unique_ret->next left unset, never used. */
862 }
863 }
864
865 static
866 int _lttng_ust_lfht_del(struct lttng_ust_lfht *ht, unsigned long size,
867 struct lttng_ust_lfht_node *node)
868 {
869 struct lttng_ust_lfht_node *bucket, *next;
870
871 if (!node) /* Return -ENOENT if asked to delete NULL node */
872 return -ENOENT;
873
874 /* logically delete the node */
875 assert(!is_bucket(node));
876 assert(!is_removed(node));
877 assert(!is_removal_owner(node));
878
879 /*
880 * We are first checking if the node had previously been
881 * logically removed (this check is not atomic with setting the
882 * logical removal flag). Return -ENOENT if the node had
883 * previously been removed.
884 */
885 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
886 if (caa_unlikely(is_removed(next)))
887 return -ENOENT;
888 assert(!is_bucket(next));
889 /*
890 * The del operation semantic guarantees a full memory barrier
891 * before the uatomic_or atomic commit of the deletion flag.
892 */
893 cmm_smp_mb__before_uatomic_or();
894 /*
895 * We set the REMOVED_FLAG unconditionally. Note that there may
896 * be more than one concurrent thread setting this flag.
897 * Knowing which wins the race will be known after the garbage
898 * collection phase, stay tuned!
899 */
900 uatomic_or(&node->next, REMOVED_FLAG);
901 /* We performed the (logical) deletion. */
902
903 /*
904 * Ensure that the node is not visible to readers anymore: lookup for
905 * the node, and remove it (along with any other logically removed node)
906 * if found.
907 */
908 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
909 _lttng_ust_lfht_gc_bucket(bucket, node);
910
911 assert(is_removed(CMM_LOAD_SHARED(node->next)));
912 /*
913 * Last phase: atomically exchange node->next with a version
914 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
915 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
916 * the node and win the removal race.
917 * It is interesting to note that all "add" paths are forbidden
918 * to change the next pointer starting from the point where the
919 * REMOVED_FLAG is set, so here using a read, followed by a
920 * xchg() suffice to guarantee that the xchg() will ever only
921 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
922 * was already set).
923 */
924 if (!is_removal_owner(uatomic_xchg(&node->next,
925 flag_removal_owner(node->next))))
926 return 0;
927 else
928 return -ENOENT;
929 }
930
931 /*
932 * Never called with size < 1.
933 */
934 static
935 void lttng_ust_lfht_create_bucket(struct lttng_ust_lfht *ht, unsigned long size)
936 {
937 struct lttng_ust_lfht_node *prev, *node;
938 unsigned long order, len, i;
939 int bucket_order;
940
941 lttng_ust_lfht_alloc_bucket_table(ht, 0);
942
943 dbg_printf("create bucket: order 0 index 0 hash 0\n");
944 node = bucket_at(ht, 0);
945 node->next = flag_bucket(get_end());
946 node->reverse_hash = 0;
947
948 bucket_order = lttng_ust_lfht_get_count_order_ulong(size);
949 assert(bucket_order >= 0);
950
951 for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
952 len = 1UL << (order - 1);
953 lttng_ust_lfht_alloc_bucket_table(ht, order);
954
955 for (i = 0; i < len; i++) {
956 /*
957 * Now, we are trying to init the node with the
958 * hash=(len+i) (which is also a bucket with the
959 * index=(len+i)) and insert it into the hash table,
960 * so this node has to be inserted after the bucket
961 * with the index=(len+i)&(len-1)=i. And because there
962 * is no other non-bucket node nor bucket node with
963 * larger index/hash inserted, so the bucket node
964 * being inserted should be inserted directly linked
965 * after the bucket node with index=i.
966 */
967 prev = bucket_at(ht, i);
968 node = bucket_at(ht, len + i);
969
970 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
971 order, len + i, len + i);
972 node->reverse_hash = bit_reverse_ulong(len + i);
973
974 /* insert after prev */
975 assert(is_bucket(prev->next));
976 node->next = prev->next;
977 prev->next = flag_bucket(node);
978 }
979 }
980 }
981
982 #if (CAA_BITS_PER_LONG > 32)
983 /*
984 * For 64-bit architectures, with max number of buckets small enough not to
985 * use the entire 64-bit memory mapping space (and allowing a fair number of
986 * hash table instances), use the mmap allocator, which is faster. Otherwise,
987 * fallback to the order allocator.
988 */
989 static
990 const struct lttng_ust_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
991 {
992 if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
993 return &lttng_ust_lfht_mm_mmap;
994 else
995 return &lttng_ust_lfht_mm_order;
996 }
997 #else
998 /*
999 * For 32-bit architectures, use the order allocator.
1000 */
1001 static
1002 const struct lttng_ust_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1003 {
1004 return &lttng_ust_lfht_mm_order;
1005 }
1006 #endif
1007
1008 struct lttng_ust_lfht *lttng_ust_lfht_new(unsigned long init_size,
1009 unsigned long min_nr_alloc_buckets,
1010 unsigned long max_nr_buckets,
1011 int flags,
1012 const struct lttng_ust_lfht_mm_type *mm)
1013 {
1014 struct lttng_ust_lfht *ht;
1015 unsigned long order;
1016
1017 /* min_nr_alloc_buckets must be power of two */
1018 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1019 return NULL;
1020
1021 /* init_size must be power of two */
1022 if (!init_size || (init_size & (init_size - 1)))
1023 return NULL;
1024
1025 /*
1026 * Memory management plugin default.
1027 */
1028 if (!mm)
1029 mm = get_mm_type(max_nr_buckets);
1030
1031 /* max_nr_buckets == 0 for order based mm means infinite */
1032 if (mm == &lttng_ust_lfht_mm_order && !max_nr_buckets)
1033 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1034
1035 /* max_nr_buckets must be power of two */
1036 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1037 return NULL;
1038
1039 if (flags & LTTNG_UST_LFHT_AUTO_RESIZE)
1040 return NULL;
1041
1042 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1043 init_size = max(init_size, MIN_TABLE_SIZE);
1044 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1045 init_size = min(init_size, max_nr_buckets);
1046
1047 ht = mm->alloc_lttng_ust_lfht(min_nr_alloc_buckets, max_nr_buckets);
1048 assert(ht);
1049 assert(ht->mm == mm);
1050 assert(ht->bucket_at == mm->bucket_at);
1051
1052 ht->flags = flags;
1053 /* this mutex should not nest in read-side C.S. */
1054 pthread_mutex_init(&ht->resize_mutex, NULL);
1055 order = lttng_ust_lfht_get_count_order_ulong(init_size);
1056 ht->resize_target = 1UL << order;
1057 lttng_ust_lfht_create_bucket(ht, 1UL << order);
1058 ht->size = 1UL << order;
1059 return ht;
1060 }
1061
1062 void lttng_ust_lfht_lookup(struct lttng_ust_lfht *ht, unsigned long hash,
1063 lttng_ust_lfht_match_fct match, const void *key,
1064 struct lttng_ust_lfht_iter *iter)
1065 {
1066 struct lttng_ust_lfht_node *node, *next, *bucket;
1067 unsigned long reverse_hash, size;
1068
1069 lttng_ust_lfht_iter_debug_set_ht(ht, iter);
1070
1071 reverse_hash = bit_reverse_ulong(hash);
1072
1073 size = lttng_ust_rcu_dereference(ht->size);
1074 bucket = lookup_bucket(ht, size, hash);
1075 /* We can always skip the bucket node initially */
1076 node = lttng_ust_rcu_dereference(bucket->next);
1077 node = clear_flag(node);
1078 for (;;) {
1079 if (caa_unlikely(is_end(node))) {
1080 node = next = NULL;
1081 break;
1082 }
1083 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1084 node = next = NULL;
1085 break;
1086 }
1087 next = lttng_ust_rcu_dereference(node->next);
1088 assert(node == clear_flag(node));
1089 if (caa_likely(!is_removed(next))
1090 && !is_bucket(next)
1091 && node->reverse_hash == reverse_hash
1092 && caa_likely(match(node, key))) {
1093 break;
1094 }
1095 node = clear_flag(next);
1096 }
1097 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1098 iter->node = node;
1099 iter->next = next;
1100 }
1101
1102 void lttng_ust_lfht_next_duplicate(struct lttng_ust_lfht *ht, lttng_ust_lfht_match_fct match,
1103 const void *key, struct lttng_ust_lfht_iter *iter)
1104 {
1105 struct lttng_ust_lfht_node *node, *next;
1106 unsigned long reverse_hash;
1107
1108 lttng_ust_lfht_iter_debug_assert(ht == iter->lfht);
1109 node = iter->node;
1110 reverse_hash = node->reverse_hash;
1111 next = iter->next;
1112 node = clear_flag(next);
1113
1114 for (;;) {
1115 if (caa_unlikely(is_end(node))) {
1116 node = next = NULL;
1117 break;
1118 }
1119 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1120 node = next = NULL;
1121 break;
1122 }
1123 next = lttng_ust_rcu_dereference(node->next);
1124 if (caa_likely(!is_removed(next))
1125 && !is_bucket(next)
1126 && caa_likely(match(node, key))) {
1127 break;
1128 }
1129 node = clear_flag(next);
1130 }
1131 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1132 iter->node = node;
1133 iter->next = next;
1134 }
1135
1136 void lttng_ust_lfht_next(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
1137 {
1138 struct lttng_ust_lfht_node *node, *next;
1139
1140 lttng_ust_lfht_iter_debug_assert(ht == iter->lfht);
1141 node = clear_flag(iter->next);
1142 for (;;) {
1143 if (caa_unlikely(is_end(node))) {
1144 node = next = NULL;
1145 break;
1146 }
1147 next = lttng_ust_rcu_dereference(node->next);
1148 if (caa_likely(!is_removed(next))
1149 && !is_bucket(next)) {
1150 break;
1151 }
1152 node = clear_flag(next);
1153 }
1154 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1155 iter->node = node;
1156 iter->next = next;
1157 }
1158
1159 void lttng_ust_lfht_first(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
1160 {
1161 lttng_ust_lfht_iter_debug_set_ht(ht, iter);
1162 /*
1163 * Get next after first bucket node. The first bucket node is the
1164 * first node of the linked list.
1165 */
1166 iter->next = bucket_at(ht, 0)->next;
1167 lttng_ust_lfht_next(ht, iter);
1168 }
1169
1170 void lttng_ust_lfht_add(struct lttng_ust_lfht *ht, unsigned long hash,
1171 struct lttng_ust_lfht_node *node)
1172 {
1173 unsigned long size;
1174
1175 node->reverse_hash = bit_reverse_ulong(hash);
1176 size = lttng_ust_rcu_dereference(ht->size);
1177 _lttng_ust_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1178 }
1179
1180 struct lttng_ust_lfht_node *lttng_ust_lfht_add_unique(struct lttng_ust_lfht *ht,
1181 unsigned long hash,
1182 lttng_ust_lfht_match_fct match,
1183 const void *key,
1184 struct lttng_ust_lfht_node *node)
1185 {
1186 unsigned long size;
1187 struct lttng_ust_lfht_iter iter;
1188
1189 node->reverse_hash = bit_reverse_ulong(hash);
1190 size = lttng_ust_rcu_dereference(ht->size);
1191 _lttng_ust_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1192 return iter.node;
1193 }
1194
1195 struct lttng_ust_lfht_node *lttng_ust_lfht_add_replace(struct lttng_ust_lfht *ht,
1196 unsigned long hash,
1197 lttng_ust_lfht_match_fct match,
1198 const void *key,
1199 struct lttng_ust_lfht_node *node)
1200 {
1201 unsigned long size;
1202 struct lttng_ust_lfht_iter iter;
1203
1204 node->reverse_hash = bit_reverse_ulong(hash);
1205 size = lttng_ust_rcu_dereference(ht->size);
1206 for (;;) {
1207 _lttng_ust_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1208 if (iter.node == node) {
1209 return NULL;
1210 }
1211
1212 if (!_lttng_ust_lfht_replace(ht, size, iter.node, iter.next, node))
1213 return iter.node;
1214 }
1215 }
1216
1217 int lttng_ust_lfht_replace(struct lttng_ust_lfht *ht,
1218 struct lttng_ust_lfht_iter *old_iter,
1219 unsigned long hash,
1220 lttng_ust_lfht_match_fct match,
1221 const void *key,
1222 struct lttng_ust_lfht_node *new_node)
1223 {
1224 unsigned long size;
1225
1226 new_node->reverse_hash = bit_reverse_ulong(hash);
1227 if (!old_iter->node)
1228 return -ENOENT;
1229 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1230 return -EINVAL;
1231 if (caa_unlikely(!match(old_iter->node, key)))
1232 return -EINVAL;
1233 size = lttng_ust_rcu_dereference(ht->size);
1234 return _lttng_ust_lfht_replace(ht, size, old_iter->node, old_iter->next,
1235 new_node);
1236 }
1237
1238 int lttng_ust_lfht_del(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_node *node)
1239 {
1240 unsigned long size;
1241
1242 size = lttng_ust_rcu_dereference(ht->size);
1243 return _lttng_ust_lfht_del(ht, size, node);
1244 }
1245
1246 int lttng_ust_lfht_is_node_deleted(const struct lttng_ust_lfht_node *node)
1247 {
1248 return is_removed(CMM_LOAD_SHARED(node->next));
1249 }
1250
1251 static
1252 int lttng_ust_lfht_delete_bucket(struct lttng_ust_lfht *ht)
1253 {
1254 struct lttng_ust_lfht_node *node;
1255 unsigned long order, i, size;
1256
1257 /* Check that the table is empty */
1258 node = bucket_at(ht, 0);
1259 do {
1260 node = clear_flag(node)->next;
1261 if (!is_bucket(node))
1262 return -EPERM;
1263 assert(!is_removed(node));
1264 assert(!is_removal_owner(node));
1265 } while (!is_end(node));
1266 /*
1267 * size accessed without lttng_ust_rcu_dereference because hash table is
1268 * being destroyed.
1269 */
1270 size = ht->size;
1271 /* Internal sanity check: all nodes left should be buckets */
1272 for (i = 0; i < size; i++) {
1273 node = bucket_at(ht, i);
1274 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1275 i, i, bit_reverse_ulong(node->reverse_hash));
1276 assert(is_bucket(node->next));
1277 }
1278
1279 for (order = lttng_ust_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1280 lttng_ust_lfht_free_bucket_table(ht, order);
1281
1282 return 0;
1283 }
1284
1285 /*
1286 * Should only be called when no more concurrent readers nor writers can
1287 * possibly access the table.
1288 */
1289 int lttng_ust_lfht_destroy(struct lttng_ust_lfht *ht)
1290 {
1291 int ret;
1292
1293 ret = lttng_ust_lfht_delete_bucket(ht);
1294 if (ret)
1295 return ret;
1296 ret = pthread_mutex_destroy(&ht->resize_mutex);
1297 if (ret)
1298 ret = -EBUSY;
1299 poison_free(ht);
1300 return ret;
1301 }
This page took 0.055972 seconds and 4 git commands to generate.