Introduce LTTNG_UST_MAP_POPULATE_POLICY environment variable
[lttng-ust.git] / liblttng-ust / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Header copied from Linux kernel v4.7 installed headers.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, you can access it online at
25 * http://www.gnu.org/licenses/gpl-2.0.html.
26 */
27 #ifndef _UAPI_LINUX_PERF_EVENT_H
28 #define _UAPI_LINUX_PERF_EVENT_H
29
30 #include <linux/types.h>
31 #include <linux/ioctl.h>
32 #include <asm/byteorder.h>
33
34 /*
35 * User-space ABI bits:
36 */
37
38 /*
39 * attr.type
40 */
41 enum perf_type_id {
42 PERF_TYPE_HARDWARE = 0,
43 PERF_TYPE_SOFTWARE = 1,
44 PERF_TYPE_TRACEPOINT = 2,
45 PERF_TYPE_HW_CACHE = 3,
46 PERF_TYPE_RAW = 4,
47 PERF_TYPE_BREAKPOINT = 5,
48
49 PERF_TYPE_MAX, /* non-ABI */
50 };
51
52 /*
53 * Generalized performance event event_id types, used by the
54 * attr.event_id parameter of the sys_perf_event_open()
55 * syscall:
56 */
57 enum perf_hw_id {
58 /*
59 * Common hardware events, generalized by the kernel:
60 */
61 PERF_COUNT_HW_CPU_CYCLES = 0,
62 PERF_COUNT_HW_INSTRUCTIONS = 1,
63 PERF_COUNT_HW_CACHE_REFERENCES = 2,
64 PERF_COUNT_HW_CACHE_MISSES = 3,
65 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
66 PERF_COUNT_HW_BRANCH_MISSES = 5,
67 PERF_COUNT_HW_BUS_CYCLES = 6,
68 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
69 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
70 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
71
72 PERF_COUNT_HW_MAX, /* non-ABI */
73 };
74
75 /*
76 * Generalized hardware cache events:
77 *
78 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
79 * { read, write, prefetch } x
80 * { accesses, misses }
81 */
82 enum perf_hw_cache_id {
83 PERF_COUNT_HW_CACHE_L1D = 0,
84 PERF_COUNT_HW_CACHE_L1I = 1,
85 PERF_COUNT_HW_CACHE_LL = 2,
86 PERF_COUNT_HW_CACHE_DTLB = 3,
87 PERF_COUNT_HW_CACHE_ITLB = 4,
88 PERF_COUNT_HW_CACHE_BPU = 5,
89 PERF_COUNT_HW_CACHE_NODE = 6,
90
91 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
92 };
93
94 enum perf_hw_cache_op_id {
95 PERF_COUNT_HW_CACHE_OP_READ = 0,
96 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
97 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
98
99 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
100 };
101
102 enum perf_hw_cache_op_result_id {
103 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
104 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
105
106 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
107 };
108
109 /*
110 * Special "software" events provided by the kernel, even if the hardware
111 * does not support performance events. These events measure various
112 * physical and sw events of the kernel (and allow the profiling of them as
113 * well):
114 */
115 enum perf_sw_ids {
116 PERF_COUNT_SW_CPU_CLOCK = 0,
117 PERF_COUNT_SW_TASK_CLOCK = 1,
118 PERF_COUNT_SW_PAGE_FAULTS = 2,
119 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
120 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
121 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
122 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
123 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
124 PERF_COUNT_SW_EMULATION_FAULTS = 8,
125 PERF_COUNT_SW_DUMMY = 9,
126 PERF_COUNT_SW_BPF_OUTPUT = 10,
127
128 PERF_COUNT_SW_MAX, /* non-ABI */
129 };
130
131 /*
132 * Bits that can be set in attr.sample_type to request information
133 * in the overflow packets.
134 */
135 enum perf_event_sample_format {
136 PERF_SAMPLE_IP = 1U << 0,
137 PERF_SAMPLE_TID = 1U << 1,
138 PERF_SAMPLE_TIME = 1U << 2,
139 PERF_SAMPLE_ADDR = 1U << 3,
140 PERF_SAMPLE_READ = 1U << 4,
141 PERF_SAMPLE_CALLCHAIN = 1U << 5,
142 PERF_SAMPLE_ID = 1U << 6,
143 PERF_SAMPLE_CPU = 1U << 7,
144 PERF_SAMPLE_PERIOD = 1U << 8,
145 PERF_SAMPLE_STREAM_ID = 1U << 9,
146 PERF_SAMPLE_RAW = 1U << 10,
147 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
148 PERF_SAMPLE_REGS_USER = 1U << 12,
149 PERF_SAMPLE_STACK_USER = 1U << 13,
150 PERF_SAMPLE_WEIGHT = 1U << 14,
151 PERF_SAMPLE_DATA_SRC = 1U << 15,
152 PERF_SAMPLE_IDENTIFIER = 1U << 16,
153 PERF_SAMPLE_TRANSACTION = 1U << 17,
154 PERF_SAMPLE_REGS_INTR = 1U << 18,
155
156 PERF_SAMPLE_MAX = 1U << 19, /* non-ABI */
157 };
158
159 /*
160 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
161 *
162 * If the user does not pass priv level information via branch_sample_type,
163 * the kernel uses the event's priv level. Branch and event priv levels do
164 * not have to match. Branch priv level is checked for permissions.
165 *
166 * The branch types can be combined, however BRANCH_ANY covers all types
167 * of branches and therefore it supersedes all the other types.
168 */
169 enum perf_branch_sample_type_shift {
170 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
171 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
172 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
173
174 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
175 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
176 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
177 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
178 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
179 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
180 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
181 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
182
183 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
184 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
185 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
186
187 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */
188 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */
189
190 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
191 };
192
193 enum perf_branch_sample_type {
194 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
195 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
196 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
197
198 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
199 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
200 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
201 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
202 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
203 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
204 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
205 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
206
207 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
208 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
209 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
210
211 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
212 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
213
214 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
215 };
216
217 #define PERF_SAMPLE_BRANCH_PLM_ALL \
218 (PERF_SAMPLE_BRANCH_USER|\
219 PERF_SAMPLE_BRANCH_KERNEL|\
220 PERF_SAMPLE_BRANCH_HV)
221
222 /*
223 * Values to determine ABI of the registers dump.
224 */
225 enum perf_sample_regs_abi {
226 PERF_SAMPLE_REGS_ABI_NONE = 0,
227 PERF_SAMPLE_REGS_ABI_32 = 1,
228 PERF_SAMPLE_REGS_ABI_64 = 2,
229 };
230
231 /*
232 * Values for the memory transaction event qualifier, mostly for
233 * abort events. Multiple bits can be set.
234 */
235 enum {
236 PERF_TXN_ELISION = (1 << 0), /* From elision */
237 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
238 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
239 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
240 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
241 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
242 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
243 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
244
245 PERF_TXN_MAX = (1 << 8), /* non-ABI */
246
247 /* bits 32..63 are reserved for the abort code */
248
249 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
250 PERF_TXN_ABORT_SHIFT = 32,
251 };
252
253 /*
254 * The format of the data returned by read() on a perf event fd,
255 * as specified by attr.read_format:
256 *
257 * struct read_format {
258 * { u64 value;
259 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
260 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
261 * { u64 id; } && PERF_FORMAT_ID
262 * } && !PERF_FORMAT_GROUP
263 *
264 * { u64 nr;
265 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
266 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
267 * { u64 value;
268 * { u64 id; } && PERF_FORMAT_ID
269 * } cntr[nr];
270 * } && PERF_FORMAT_GROUP
271 * };
272 */
273 enum perf_event_read_format {
274 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
275 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
276 PERF_FORMAT_ID = 1U << 2,
277 PERF_FORMAT_GROUP = 1U << 3,
278
279 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
280 };
281
282 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
283 #define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
284 #define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
285 #define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
286 /* add: sample_stack_user */
287 #define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
288 #define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
289
290 /*
291 * Hardware event_id to monitor via a performance monitoring event:
292 */
293 struct perf_event_attr {
294
295 /*
296 * Major type: hardware/software/tracepoint/etc.
297 */
298 __u32 type;
299
300 /*
301 * Size of the attr structure, for fwd/bwd compat.
302 */
303 __u32 size;
304
305 /*
306 * Type specific configuration information.
307 */
308 __u64 config;
309
310 union {
311 __u64 sample_period;
312 __u64 sample_freq;
313 };
314
315 __u64 sample_type;
316 __u64 read_format;
317
318 __u64 disabled : 1, /* off by default */
319 inherit : 1, /* children inherit it */
320 pinned : 1, /* must always be on PMU */
321 exclusive : 1, /* only group on PMU */
322 exclude_user : 1, /* don't count user */
323 exclude_kernel : 1, /* ditto kernel */
324 exclude_hv : 1, /* ditto hypervisor */
325 exclude_idle : 1, /* don't count when idle */
326 mmap : 1, /* include mmap data */
327 comm : 1, /* include comm data */
328 freq : 1, /* use freq, not period */
329 inherit_stat : 1, /* per task counts */
330 enable_on_exec : 1, /* next exec enables */
331 task : 1, /* trace fork/exit */
332 watermark : 1, /* wakeup_watermark */
333 /*
334 * precise_ip:
335 *
336 * 0 - SAMPLE_IP can have arbitrary skid
337 * 1 - SAMPLE_IP must have constant skid
338 * 2 - SAMPLE_IP requested to have 0 skid
339 * 3 - SAMPLE_IP must have 0 skid
340 *
341 * See also PERF_RECORD_MISC_EXACT_IP
342 */
343 precise_ip : 2, /* skid constraint */
344 mmap_data : 1, /* non-exec mmap data */
345 sample_id_all : 1, /* sample_type all events */
346
347 exclude_host : 1, /* don't count in host */
348 exclude_guest : 1, /* don't count in guest */
349
350 exclude_callchain_kernel : 1, /* exclude kernel callchains */
351 exclude_callchain_user : 1, /* exclude user callchains */
352 mmap2 : 1, /* include mmap with inode data */
353 comm_exec : 1, /* flag comm events that are due to an exec */
354 use_clockid : 1, /* use @clockid for time fields */
355 context_switch : 1, /* context switch data */
356 write_backward : 1, /* Write ring buffer from end to beginning */
357 __reserved_1 : 36;
358
359 union {
360 __u32 wakeup_events; /* wakeup every n events */
361 __u32 wakeup_watermark; /* bytes before wakeup */
362 };
363
364 __u32 bp_type;
365 union {
366 __u64 bp_addr;
367 __u64 config1; /* extension of config */
368 };
369 union {
370 __u64 bp_len;
371 __u64 config2; /* extension of config1 */
372 };
373 __u64 branch_sample_type; /* enum perf_branch_sample_type */
374
375 /*
376 * Defines set of user regs to dump on samples.
377 * See asm/perf_regs.h for details.
378 */
379 __u64 sample_regs_user;
380
381 /*
382 * Defines size of the user stack to dump on samples.
383 */
384 __u32 sample_stack_user;
385
386 __s32 clockid;
387 /*
388 * Defines set of regs to dump for each sample
389 * state captured on:
390 * - precise = 0: PMU interrupt
391 * - precise > 0: sampled instruction
392 *
393 * See asm/perf_regs.h for details.
394 */
395 __u64 sample_regs_intr;
396
397 /*
398 * Wakeup watermark for AUX area
399 */
400 __u32 aux_watermark;
401 __u32 __reserved_2; /* align to __u64 */
402 };
403
404 #define perf_flags(attr) (*(&(attr)->read_format + 1))
405
406 /*
407 * Ioctls that can be done on a perf event fd:
408 */
409 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
410 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
411 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
412 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
413 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
414 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
415 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
416 #define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
417 #define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
418 #define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32)
419
420 enum perf_event_ioc_flags {
421 PERF_IOC_FLAG_GROUP = 1U << 0,
422 };
423
424 /*
425 * Structure of the page that can be mapped via mmap
426 */
427 struct perf_event_mmap_page {
428 __u32 version; /* version number of this structure */
429 __u32 compat_version; /* lowest version this is compat with */
430
431 /*
432 * Bits needed to read the hw events in user-space.
433 *
434 * u32 seq, time_mult, time_shift, index, width;
435 * u64 count, enabled, running;
436 * u64 cyc, time_offset;
437 * s64 pmc = 0;
438 *
439 * do {
440 * seq = pc->lock;
441 * barrier()
442 *
443 * enabled = pc->time_enabled;
444 * running = pc->time_running;
445 *
446 * if (pc->cap_usr_time && enabled != running) {
447 * cyc = rdtsc();
448 * time_offset = pc->time_offset;
449 * time_mult = pc->time_mult;
450 * time_shift = pc->time_shift;
451 * }
452 *
453 * index = pc->index;
454 * count = pc->offset;
455 * if (pc->cap_user_rdpmc && index) {
456 * width = pc->pmc_width;
457 * pmc = rdpmc(index - 1);
458 * }
459 *
460 * barrier();
461 * } while (pc->lock != seq);
462 *
463 * NOTE: for obvious reason this only works on self-monitoring
464 * processes.
465 */
466 __u32 lock; /* seqlock for synchronization */
467 __u32 index; /* hardware event identifier */
468 __s64 offset; /* add to hardware event value */
469 __u64 time_enabled; /* time event active */
470 __u64 time_running; /* time event on cpu */
471 union {
472 __u64 capabilities;
473 struct {
474 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
475 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
476
477 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
478 cap_user_time : 1, /* The time_* fields are used */
479 cap_user_time_zero : 1, /* The time_zero field is used */
480 cap_____res : 59;
481 };
482 };
483
484 /*
485 * If cap_user_rdpmc this field provides the bit-width of the value
486 * read using the rdpmc() or equivalent instruction. This can be used
487 * to sign extend the result like:
488 *
489 * pmc <<= 64 - width;
490 * pmc >>= 64 - width; // signed shift right
491 * count += pmc;
492 */
493 __u16 pmc_width;
494
495 /*
496 * If cap_usr_time the below fields can be used to compute the time
497 * delta since time_enabled (in ns) using rdtsc or similar.
498 *
499 * u64 quot, rem;
500 * u64 delta;
501 *
502 * quot = (cyc >> time_shift);
503 * rem = cyc & (((u64)1 << time_shift) - 1);
504 * delta = time_offset + quot * time_mult +
505 * ((rem * time_mult) >> time_shift);
506 *
507 * Where time_offset,time_mult,time_shift and cyc are read in the
508 * seqcount loop described above. This delta can then be added to
509 * enabled and possible running (if index), improving the scaling:
510 *
511 * enabled += delta;
512 * if (index)
513 * running += delta;
514 *
515 * quot = count / running;
516 * rem = count % running;
517 * count = quot * enabled + (rem * enabled) / running;
518 */
519 __u16 time_shift;
520 __u32 time_mult;
521 __u64 time_offset;
522 /*
523 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
524 * from sample timestamps.
525 *
526 * time = timestamp - time_zero;
527 * quot = time / time_mult;
528 * rem = time % time_mult;
529 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
530 *
531 * And vice versa:
532 *
533 * quot = cyc >> time_shift;
534 * rem = cyc & (((u64)1 << time_shift) - 1);
535 * timestamp = time_zero + quot * time_mult +
536 * ((rem * time_mult) >> time_shift);
537 */
538 __u64 time_zero;
539 __u32 size; /* Header size up to __reserved[] fields. */
540
541 /*
542 * Hole for extension of the self monitor capabilities
543 */
544
545 __u8 __reserved[118*8+4]; /* align to 1k. */
546
547 /*
548 * Control data for the mmap() data buffer.
549 *
550 * User-space reading the @data_head value should issue an smp_rmb(),
551 * after reading this value.
552 *
553 * When the mapping is PROT_WRITE the @data_tail value should be
554 * written by userspace to reflect the last read data, after issueing
555 * an smp_mb() to separate the data read from the ->data_tail store.
556 * In this case the kernel will not over-write unread data.
557 *
558 * See perf_output_put_handle() for the data ordering.
559 *
560 * data_{offset,size} indicate the location and size of the perf record
561 * buffer within the mmapped area.
562 */
563 __u64 data_head; /* head in the data section */
564 __u64 data_tail; /* user-space written tail */
565 __u64 data_offset; /* where the buffer starts */
566 __u64 data_size; /* data buffer size */
567
568 /*
569 * AUX area is defined by aux_{offset,size} fields that should be set
570 * by the userspace, so that
571 *
572 * aux_offset >= data_offset + data_size
573 *
574 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
575 *
576 * Ring buffer pointers aux_{head,tail} have the same semantics as
577 * data_{head,tail} and same ordering rules apply.
578 */
579 __u64 aux_head;
580 __u64 aux_tail;
581 __u64 aux_offset;
582 __u64 aux_size;
583 };
584
585 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
586 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
587 #define PERF_RECORD_MISC_KERNEL (1 << 0)
588 #define PERF_RECORD_MISC_USER (2 << 0)
589 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
590 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
591 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
592
593 /*
594 * Indicates that /proc/PID/maps parsing are truncated by time out.
595 */
596 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
597 /*
598 * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
599 * different events so can reuse the same bit position.
600 * Ditto PERF_RECORD_MISC_SWITCH_OUT.
601 */
602 #define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
603 #define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
604 #define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
605 /*
606 * Indicates that the content of PERF_SAMPLE_IP points to
607 * the actual instruction that triggered the event. See also
608 * perf_event_attr::precise_ip.
609 */
610 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
611 /*
612 * Reserve the last bit to indicate some extended misc field
613 */
614 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
615
616 struct perf_event_header {
617 __u32 type;
618 __u16 misc;
619 __u16 size;
620 };
621
622 enum perf_event_type {
623
624 /*
625 * If perf_event_attr.sample_id_all is set then all event types will
626 * have the sample_type selected fields related to where/when
627 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
628 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
629 * just after the perf_event_header and the fields already present for
630 * the existing fields, i.e. at the end of the payload. That way a newer
631 * perf.data file will be supported by older perf tools, with these new
632 * optional fields being ignored.
633 *
634 * struct sample_id {
635 * { u32 pid, tid; } && PERF_SAMPLE_TID
636 * { u64 time; } && PERF_SAMPLE_TIME
637 * { u64 id; } && PERF_SAMPLE_ID
638 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
639 * { u32 cpu, res; } && PERF_SAMPLE_CPU
640 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
641 * } && perf_event_attr::sample_id_all
642 *
643 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
644 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
645 * relative to header.size.
646 */
647
648 /*
649 * The MMAP events record the PROT_EXEC mappings so that we can
650 * correlate userspace IPs to code. They have the following structure:
651 *
652 * struct {
653 * struct perf_event_header header;
654 *
655 * u32 pid, tid;
656 * u64 addr;
657 * u64 len;
658 * u64 pgoff;
659 * char filename[];
660 * struct sample_id sample_id;
661 * };
662 */
663 PERF_RECORD_MMAP = 1,
664
665 /*
666 * struct {
667 * struct perf_event_header header;
668 * u64 id;
669 * u64 lost;
670 * struct sample_id sample_id;
671 * };
672 */
673 PERF_RECORD_LOST = 2,
674
675 /*
676 * struct {
677 * struct perf_event_header header;
678 *
679 * u32 pid, tid;
680 * char comm[];
681 * struct sample_id sample_id;
682 * };
683 */
684 PERF_RECORD_COMM = 3,
685
686 /*
687 * struct {
688 * struct perf_event_header header;
689 * u32 pid, ppid;
690 * u32 tid, ptid;
691 * u64 time;
692 * struct sample_id sample_id;
693 * };
694 */
695 PERF_RECORD_EXIT = 4,
696
697 /*
698 * struct {
699 * struct perf_event_header header;
700 * u64 time;
701 * u64 id;
702 * u64 stream_id;
703 * struct sample_id sample_id;
704 * };
705 */
706 PERF_RECORD_THROTTLE = 5,
707 PERF_RECORD_UNTHROTTLE = 6,
708
709 /*
710 * struct {
711 * struct perf_event_header header;
712 * u32 pid, ppid;
713 * u32 tid, ptid;
714 * u64 time;
715 * struct sample_id sample_id;
716 * };
717 */
718 PERF_RECORD_FORK = 7,
719
720 /*
721 * struct {
722 * struct perf_event_header header;
723 * u32 pid, tid;
724 *
725 * struct read_format values;
726 * struct sample_id sample_id;
727 * };
728 */
729 PERF_RECORD_READ = 8,
730
731 /*
732 * struct {
733 * struct perf_event_header header;
734 *
735 * #
736 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
737 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
738 * # is fixed relative to header.
739 * #
740 *
741 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
742 * { u64 ip; } && PERF_SAMPLE_IP
743 * { u32 pid, tid; } && PERF_SAMPLE_TID
744 * { u64 time; } && PERF_SAMPLE_TIME
745 * { u64 addr; } && PERF_SAMPLE_ADDR
746 * { u64 id; } && PERF_SAMPLE_ID
747 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
748 * { u32 cpu, res; } && PERF_SAMPLE_CPU
749 * { u64 period; } && PERF_SAMPLE_PERIOD
750 *
751 * { struct read_format values; } && PERF_SAMPLE_READ
752 *
753 * { u64 nr,
754 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
755 *
756 * #
757 * # The RAW record below is opaque data wrt the ABI
758 * #
759 * # That is, the ABI doesn't make any promises wrt to
760 * # the stability of its content, it may vary depending
761 * # on event, hardware, kernel version and phase of
762 * # the moon.
763 * #
764 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
765 * #
766 *
767 * { u32 size;
768 * char data[size];}&& PERF_SAMPLE_RAW
769 *
770 * { u64 nr;
771 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
772 *
773 * { u64 abi; # enum perf_sample_regs_abi
774 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
775 *
776 * { u64 size;
777 * char data[size];
778 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
779 *
780 * { u64 weight; } && PERF_SAMPLE_WEIGHT
781 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
782 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
783 * { u64 abi; # enum perf_sample_regs_abi
784 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
785 * };
786 */
787 PERF_RECORD_SAMPLE = 9,
788
789 /*
790 * The MMAP2 records are an augmented version of MMAP, they add
791 * maj, min, ino numbers to be used to uniquely identify each mapping
792 *
793 * struct {
794 * struct perf_event_header header;
795 *
796 * u32 pid, tid;
797 * u64 addr;
798 * u64 len;
799 * u64 pgoff;
800 * u32 maj;
801 * u32 min;
802 * u64 ino;
803 * u64 ino_generation;
804 * u32 prot, flags;
805 * char filename[];
806 * struct sample_id sample_id;
807 * };
808 */
809 PERF_RECORD_MMAP2 = 10,
810
811 /*
812 * Records that new data landed in the AUX buffer part.
813 *
814 * struct {
815 * struct perf_event_header header;
816 *
817 * u64 aux_offset;
818 * u64 aux_size;
819 * u64 flags;
820 * struct sample_id sample_id;
821 * };
822 */
823 PERF_RECORD_AUX = 11,
824
825 /*
826 * Indicates that instruction trace has started
827 *
828 * struct {
829 * struct perf_event_header header;
830 * u32 pid;
831 * u32 tid;
832 * };
833 */
834 PERF_RECORD_ITRACE_START = 12,
835
836 /*
837 * Records the dropped/lost sample number.
838 *
839 * struct {
840 * struct perf_event_header header;
841 *
842 * u64 lost;
843 * struct sample_id sample_id;
844 * };
845 */
846 PERF_RECORD_LOST_SAMPLES = 13,
847
848 /*
849 * Records a context switch in or out (flagged by
850 * PERF_RECORD_MISC_SWITCH_OUT). See also
851 * PERF_RECORD_SWITCH_CPU_WIDE.
852 *
853 * struct {
854 * struct perf_event_header header;
855 * struct sample_id sample_id;
856 * };
857 */
858 PERF_RECORD_SWITCH = 14,
859
860 /*
861 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
862 * next_prev_tid that are the next (switching out) or previous
863 * (switching in) pid/tid.
864 *
865 * struct {
866 * struct perf_event_header header;
867 * u32 next_prev_pid;
868 * u32 next_prev_tid;
869 * struct sample_id sample_id;
870 * };
871 */
872 PERF_RECORD_SWITCH_CPU_WIDE = 15,
873
874 PERF_RECORD_MAX, /* non-ABI */
875 };
876
877 #define PERF_MAX_STACK_DEPTH 127
878 #define PERF_MAX_CONTEXTS_PER_STACK 8
879
880 enum perf_callchain_context {
881 PERF_CONTEXT_HV = (__u64)-32,
882 PERF_CONTEXT_KERNEL = (__u64)-128,
883 PERF_CONTEXT_USER = (__u64)-512,
884
885 PERF_CONTEXT_GUEST = (__u64)-2048,
886 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
887 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
888
889 PERF_CONTEXT_MAX = (__u64)-4095,
890 };
891
892 /**
893 * PERF_RECORD_AUX::flags bits
894 */
895 #define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
896 #define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
897
898 #define PERF_FLAG_FD_NO_GROUP (1UL << 0)
899 #define PERF_FLAG_FD_OUTPUT (1UL << 1)
900 #define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
901 #define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
902
903 union perf_mem_data_src {
904 __u64 val;
905 struct {
906 __u64 mem_op:5, /* type of opcode */
907 mem_lvl:14, /* memory hierarchy level */
908 mem_snoop:5, /* snoop mode */
909 mem_lock:2, /* lock instr */
910 mem_dtlb:7, /* tlb access */
911 mem_rsvd:31;
912 };
913 };
914
915 /* type of opcode (load/store/prefetch,code) */
916 #define PERF_MEM_OP_NA 0x01 /* not available */
917 #define PERF_MEM_OP_LOAD 0x02 /* load instruction */
918 #define PERF_MEM_OP_STORE 0x04 /* store instruction */
919 #define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
920 #define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
921 #define PERF_MEM_OP_SHIFT 0
922
923 /* memory hierarchy (memory level, hit or miss) */
924 #define PERF_MEM_LVL_NA 0x01 /* not available */
925 #define PERF_MEM_LVL_HIT 0x02 /* hit level */
926 #define PERF_MEM_LVL_MISS 0x04 /* miss level */
927 #define PERF_MEM_LVL_L1 0x08 /* L1 */
928 #define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
929 #define PERF_MEM_LVL_L2 0x20 /* L2 */
930 #define PERF_MEM_LVL_L3 0x40 /* L3 */
931 #define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
932 #define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
933 #define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
934 #define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
935 #define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
936 #define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
937 #define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
938 #define PERF_MEM_LVL_SHIFT 5
939
940 /* snoop mode */
941 #define PERF_MEM_SNOOP_NA 0x01 /* not available */
942 #define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
943 #define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
944 #define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
945 #define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
946 #define PERF_MEM_SNOOP_SHIFT 19
947
948 /* locked instruction */
949 #define PERF_MEM_LOCK_NA 0x01 /* not available */
950 #define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
951 #define PERF_MEM_LOCK_SHIFT 24
952
953 /* TLB access */
954 #define PERF_MEM_TLB_NA 0x01 /* not available */
955 #define PERF_MEM_TLB_HIT 0x02 /* hit level */
956 #define PERF_MEM_TLB_MISS 0x04 /* miss level */
957 #define PERF_MEM_TLB_L1 0x08 /* L1 */
958 #define PERF_MEM_TLB_L2 0x10 /* L2 */
959 #define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
960 #define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
961 #define PERF_MEM_TLB_SHIFT 26
962
963 #define PERF_MEM_S(a, s) \
964 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
965
966 /*
967 * single taken branch record layout:
968 *
969 * from: source instruction (may not always be a branch insn)
970 * to: branch target
971 * mispred: branch target was mispredicted
972 * predicted: branch target was predicted
973 *
974 * support for mispred, predicted is optional. In case it
975 * is not supported mispred = predicted = 0.
976 *
977 * in_tx: running in a hardware transaction
978 * abort: aborting a hardware transaction
979 * cycles: cycles from last branch (or 0 if not supported)
980 */
981 struct perf_branch_entry {
982 __u64 from;
983 __u64 to;
984 __u64 mispred:1, /* target mispredicted */
985 predicted:1,/* target predicted */
986 in_tx:1, /* in transaction */
987 abort:1, /* transaction abort */
988 cycles:16, /* cycle count to last branch */
989 reserved:44;
990 };
991
992 #endif /* _UAPI_LINUX_PERF_EVENT_H */
This page took 0.047764 seconds and 4 git commands to generate.