Fix: relayd control socket mutex is not destroyed
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /*
71 * Flag to inform the polling thread to quit when all fd hung up. Updated by
72 * the consumer_thread_receive_fds when it notices that all fds has hung up.
73 * Also updated by the signal handler (consumer_should_exit()). Read by the
74 * polling threads.
75 */
76 volatile int consumer_quit;
77
78 /*
79 * Global hash table containing respectively metadata and data streams. The
80 * stream element in this ht should only be updated by the metadata poll thread
81 * for the metadata and the data poll thread for the data.
82 */
83 static struct lttng_ht *metadata_ht;
84 static struct lttng_ht *data_ht;
85
86 /*
87 * Notify a thread lttng pipe to poll back again. This usually means that some
88 * global state has changed so we just send back the thread in a poll wait
89 * call.
90 */
91 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
92 {
93 struct lttng_consumer_stream *null_stream = NULL;
94
95 assert(pipe);
96
97 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
98 }
99
100 static void notify_health_quit_pipe(int *pipe)
101 {
102 ssize_t ret;
103
104 ret = lttng_write(pipe[1], "4", 1);
105 if (ret < 1) {
106 PERROR("write consumer health quit");
107 }
108 }
109
110 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
111 struct lttng_consumer_channel *chan,
112 uint64_t key,
113 enum consumer_channel_action action)
114 {
115 struct consumer_channel_msg msg;
116 ssize_t ret;
117
118 memset(&msg, 0, sizeof(msg));
119
120 msg.action = action;
121 msg.chan = chan;
122 msg.key = key;
123 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
124 if (ret < sizeof(msg)) {
125 PERROR("notify_channel_pipe write error");
126 }
127 }
128
129 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
130 uint64_t key)
131 {
132 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
133 }
134
135 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
136 struct lttng_consumer_channel **chan,
137 uint64_t *key,
138 enum consumer_channel_action *action)
139 {
140 struct consumer_channel_msg msg;
141 ssize_t ret;
142
143 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
144 if (ret < sizeof(msg)) {
145 ret = -1;
146 goto error;
147 }
148 *action = msg.action;
149 *chan = msg.chan;
150 *key = msg.key;
151 error:
152 return (int) ret;
153 }
154
155 /*
156 * Cleanup the stream list of a channel. Those streams are not yet globally
157 * visible
158 */
159 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
160 {
161 struct lttng_consumer_stream *stream, *stmp;
162
163 assert(channel);
164
165 /* Delete streams that might have been left in the stream list. */
166 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
167 send_node) {
168 cds_list_del(&stream->send_node);
169 /*
170 * Once a stream is added to this list, the buffers were created so we
171 * have a guarantee that this call will succeed. Setting the monitor
172 * mode to 0 so we don't lock nor try to delete the stream from the
173 * global hash table.
174 */
175 stream->monitor = 0;
176 consumer_stream_destroy(stream, NULL);
177 }
178 }
179
180 /*
181 * Find a stream. The consumer_data.lock must be locked during this
182 * call.
183 */
184 static struct lttng_consumer_stream *find_stream(uint64_t key,
185 struct lttng_ht *ht)
186 {
187 struct lttng_ht_iter iter;
188 struct lttng_ht_node_u64 *node;
189 struct lttng_consumer_stream *stream = NULL;
190
191 assert(ht);
192
193 /* -1ULL keys are lookup failures */
194 if (key == (uint64_t) -1ULL) {
195 return NULL;
196 }
197
198 rcu_read_lock();
199
200 lttng_ht_lookup(ht, &key, &iter);
201 node = lttng_ht_iter_get_node_u64(&iter);
202 if (node != NULL) {
203 stream = caa_container_of(node, struct lttng_consumer_stream, node);
204 }
205
206 rcu_read_unlock();
207
208 return stream;
209 }
210
211 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
212 {
213 struct lttng_consumer_stream *stream;
214
215 rcu_read_lock();
216 stream = find_stream(key, ht);
217 if (stream) {
218 stream->key = (uint64_t) -1ULL;
219 /*
220 * We don't want the lookup to match, but we still need
221 * to iterate on this stream when iterating over the hash table. Just
222 * change the node key.
223 */
224 stream->node.key = (uint64_t) -1ULL;
225 }
226 rcu_read_unlock();
227 }
228
229 /*
230 * Return a channel object for the given key.
231 *
232 * RCU read side lock MUST be acquired before calling this function and
233 * protects the channel ptr.
234 */
235 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
236 {
237 struct lttng_ht_iter iter;
238 struct lttng_ht_node_u64 *node;
239 struct lttng_consumer_channel *channel = NULL;
240
241 /* -1ULL keys are lookup failures */
242 if (key == (uint64_t) -1ULL) {
243 return NULL;
244 }
245
246 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
247 node = lttng_ht_iter_get_node_u64(&iter);
248 if (node != NULL) {
249 channel = caa_container_of(node, struct lttng_consumer_channel, node);
250 }
251
252 return channel;
253 }
254
255 /*
256 * There is a possibility that the consumer does not have enough time between
257 * the close of the channel on the session daemon and the cleanup in here thus
258 * once we have a channel add with an existing key, we know for sure that this
259 * channel will eventually get cleaned up by all streams being closed.
260 *
261 * This function just nullifies the already existing channel key.
262 */
263 static void steal_channel_key(uint64_t key)
264 {
265 struct lttng_consumer_channel *channel;
266
267 rcu_read_lock();
268 channel = consumer_find_channel(key);
269 if (channel) {
270 channel->key = (uint64_t) -1ULL;
271 /*
272 * We don't want the lookup to match, but we still need to iterate on
273 * this channel when iterating over the hash table. Just change the
274 * node key.
275 */
276 channel->node.key = (uint64_t) -1ULL;
277 }
278 rcu_read_unlock();
279 }
280
281 static void free_channel_rcu(struct rcu_head *head)
282 {
283 struct lttng_ht_node_u64 *node =
284 caa_container_of(head, struct lttng_ht_node_u64, head);
285 struct lttng_consumer_channel *channel =
286 caa_container_of(node, struct lttng_consumer_channel, node);
287
288 switch (consumer_data.type) {
289 case LTTNG_CONSUMER_KERNEL:
290 break;
291 case LTTNG_CONSUMER32_UST:
292 case LTTNG_CONSUMER64_UST:
293 lttng_ustconsumer_free_channel(channel);
294 break;
295 default:
296 ERR("Unknown consumer_data type");
297 abort();
298 }
299 free(channel);
300 }
301
302 /*
303 * RCU protected relayd socket pair free.
304 */
305 static void free_relayd_rcu(struct rcu_head *head)
306 {
307 struct lttng_ht_node_u64 *node =
308 caa_container_of(head, struct lttng_ht_node_u64, head);
309 struct consumer_relayd_sock_pair *relayd =
310 caa_container_of(node, struct consumer_relayd_sock_pair, node);
311
312 /*
313 * Close all sockets. This is done in the call RCU since we don't want the
314 * socket fds to be reassigned thus potentially creating bad state of the
315 * relayd object.
316 *
317 * We do not have to lock the control socket mutex here since at this stage
318 * there is no one referencing to this relayd object.
319 */
320 (void) relayd_close(&relayd->control_sock);
321 (void) relayd_close(&relayd->data_sock);
322
323 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
324 free(relayd);
325 }
326
327 /*
328 * Destroy and free relayd socket pair object.
329 */
330 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
331 {
332 int ret;
333 struct lttng_ht_iter iter;
334
335 if (relayd == NULL) {
336 return;
337 }
338
339 DBG("Consumer destroy and close relayd socket pair");
340
341 iter.iter.node = &relayd->node.node;
342 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
343 if (ret != 0) {
344 /* We assume the relayd is being or is destroyed */
345 return;
346 }
347
348 /* RCU free() call */
349 call_rcu(&relayd->node.head, free_relayd_rcu);
350 }
351
352 /*
353 * Remove a channel from the global list protected by a mutex. This function is
354 * also responsible for freeing its data structures.
355 */
356 void consumer_del_channel(struct lttng_consumer_channel *channel)
357 {
358 int ret;
359 struct lttng_ht_iter iter;
360
361 DBG("Consumer delete channel key %" PRIu64, channel->key);
362
363 pthread_mutex_lock(&consumer_data.lock);
364 pthread_mutex_lock(&channel->lock);
365
366 /* Destroy streams that might have been left in the stream list. */
367 clean_channel_stream_list(channel);
368
369 if (channel->live_timer_enabled == 1) {
370 consumer_timer_live_stop(channel);
371 }
372
373 switch (consumer_data.type) {
374 case LTTNG_CONSUMER_KERNEL:
375 break;
376 case LTTNG_CONSUMER32_UST:
377 case LTTNG_CONSUMER64_UST:
378 lttng_ustconsumer_del_channel(channel);
379 break;
380 default:
381 ERR("Unknown consumer_data type");
382 assert(0);
383 goto end;
384 }
385
386 rcu_read_lock();
387 iter.iter.node = &channel->node.node;
388 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
389 assert(!ret);
390 rcu_read_unlock();
391
392 call_rcu(&channel->node.head, free_channel_rcu);
393 end:
394 pthread_mutex_unlock(&channel->lock);
395 pthread_mutex_unlock(&consumer_data.lock);
396 }
397
398 /*
399 * Iterate over the relayd hash table and destroy each element. Finally,
400 * destroy the whole hash table.
401 */
402 static void cleanup_relayd_ht(void)
403 {
404 struct lttng_ht_iter iter;
405 struct consumer_relayd_sock_pair *relayd;
406
407 rcu_read_lock();
408
409 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
410 node.node) {
411 consumer_destroy_relayd(relayd);
412 }
413
414 rcu_read_unlock();
415
416 lttng_ht_destroy(consumer_data.relayd_ht);
417 }
418
419 /*
420 * Update the end point status of all streams having the given network sequence
421 * index (relayd index).
422 *
423 * It's atomically set without having the stream mutex locked which is fine
424 * because we handle the write/read race with a pipe wakeup for each thread.
425 */
426 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
427 enum consumer_endpoint_status status)
428 {
429 struct lttng_ht_iter iter;
430 struct lttng_consumer_stream *stream;
431
432 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
433
434 rcu_read_lock();
435
436 /* Let's begin with metadata */
437 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
438 if (stream->net_seq_idx == net_seq_idx) {
439 uatomic_set(&stream->endpoint_status, status);
440 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
441 }
442 }
443
444 /* Follow up by the data streams */
445 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
446 if (stream->net_seq_idx == net_seq_idx) {
447 uatomic_set(&stream->endpoint_status, status);
448 DBG("Delete flag set to data stream %d", stream->wait_fd);
449 }
450 }
451 rcu_read_unlock();
452 }
453
454 /*
455 * Cleanup a relayd object by flagging every associated streams for deletion,
456 * destroying the object meaning removing it from the relayd hash table,
457 * closing the sockets and freeing the memory in a RCU call.
458 *
459 * If a local data context is available, notify the threads that the streams'
460 * state have changed.
461 */
462 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
463 struct lttng_consumer_local_data *ctx)
464 {
465 uint64_t netidx;
466
467 assert(relayd);
468
469 DBG("Cleaning up relayd sockets");
470
471 /* Save the net sequence index before destroying the object */
472 netidx = relayd->net_seq_idx;
473
474 /*
475 * Delete the relayd from the relayd hash table, close the sockets and free
476 * the object in a RCU call.
477 */
478 consumer_destroy_relayd(relayd);
479
480 /* Set inactive endpoint to all streams */
481 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
482
483 /*
484 * With a local data context, notify the threads that the streams' state
485 * have changed. The write() action on the pipe acts as an "implicit"
486 * memory barrier ordering the updates of the end point status from the
487 * read of this status which happens AFTER receiving this notify.
488 */
489 if (ctx) {
490 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
491 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
492 }
493 }
494
495 /*
496 * Flag a relayd socket pair for destruction. Destroy it if the refcount
497 * reaches zero.
498 *
499 * RCU read side lock MUST be aquired before calling this function.
500 */
501 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
502 {
503 assert(relayd);
504
505 /* Set destroy flag for this object */
506 uatomic_set(&relayd->destroy_flag, 1);
507
508 /* Destroy the relayd if refcount is 0 */
509 if (uatomic_read(&relayd->refcount) == 0) {
510 consumer_destroy_relayd(relayd);
511 }
512 }
513
514 /*
515 * Completly destroy stream from every visiable data structure and the given
516 * hash table if one.
517 *
518 * One this call returns, the stream object is not longer usable nor visible.
519 */
520 void consumer_del_stream(struct lttng_consumer_stream *stream,
521 struct lttng_ht *ht)
522 {
523 consumer_stream_destroy(stream, ht);
524 }
525
526 /*
527 * XXX naming of del vs destroy is all mixed up.
528 */
529 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
530 {
531 consumer_stream_destroy(stream, data_ht);
532 }
533
534 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, metadata_ht);
537 }
538
539 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
540 uint64_t stream_key,
541 enum lttng_consumer_stream_state state,
542 const char *channel_name,
543 uid_t uid,
544 gid_t gid,
545 uint64_t relayd_id,
546 uint64_t session_id,
547 int cpu,
548 int *alloc_ret,
549 enum consumer_channel_type type,
550 unsigned int monitor)
551 {
552 int ret;
553 struct lttng_consumer_stream *stream;
554
555 stream = zmalloc(sizeof(*stream));
556 if (stream == NULL) {
557 PERROR("malloc struct lttng_consumer_stream");
558 ret = -ENOMEM;
559 goto end;
560 }
561
562 rcu_read_lock();
563
564 stream->key = stream_key;
565 stream->out_fd = -1;
566 stream->out_fd_offset = 0;
567 stream->output_written = 0;
568 stream->state = state;
569 stream->uid = uid;
570 stream->gid = gid;
571 stream->net_seq_idx = relayd_id;
572 stream->session_id = session_id;
573 stream->monitor = monitor;
574 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
575 stream->index_file = NULL;
576 stream->last_sequence_number = -1ULL;
577 pthread_mutex_init(&stream->lock, NULL);
578 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
579
580 /* If channel is the metadata, flag this stream as metadata. */
581 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
582 stream->metadata_flag = 1;
583 /* Metadata is flat out. */
584 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
585 /* Live rendez-vous point. */
586 pthread_cond_init(&stream->metadata_rdv, NULL);
587 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
588 } else {
589 /* Format stream name to <channel_name>_<cpu_number> */
590 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
591 channel_name, cpu);
592 if (ret < 0) {
593 PERROR("snprintf stream name");
594 goto error;
595 }
596 }
597
598 /* Key is always the wait_fd for streams. */
599 lttng_ht_node_init_u64(&stream->node, stream->key);
600
601 /* Init node per channel id key */
602 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
603
604 /* Init session id node with the stream session id */
605 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
606
607 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
608 " relayd_id %" PRIu64 ", session_id %" PRIu64,
609 stream->name, stream->key, channel_key,
610 stream->net_seq_idx, stream->session_id);
611
612 rcu_read_unlock();
613 return stream;
614
615 error:
616 rcu_read_unlock();
617 free(stream);
618 end:
619 if (alloc_ret) {
620 *alloc_ret = ret;
621 }
622 return NULL;
623 }
624
625 /*
626 * Add a stream to the global list protected by a mutex.
627 */
628 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
629 {
630 struct lttng_ht *ht = data_ht;
631 int ret = 0;
632
633 assert(stream);
634 assert(ht);
635
636 DBG3("Adding consumer stream %" PRIu64, stream->key);
637
638 pthread_mutex_lock(&consumer_data.lock);
639 pthread_mutex_lock(&stream->chan->lock);
640 pthread_mutex_lock(&stream->chan->timer_lock);
641 pthread_mutex_lock(&stream->lock);
642 rcu_read_lock();
643
644 /* Steal stream identifier to avoid having streams with the same key */
645 steal_stream_key(stream->key, ht);
646
647 lttng_ht_add_unique_u64(ht, &stream->node);
648
649 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
650 &stream->node_channel_id);
651
652 /*
653 * Add stream to the stream_list_ht of the consumer data. No need to steal
654 * the key since the HT does not use it and we allow to add redundant keys
655 * into this table.
656 */
657 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
658
659 /*
660 * When nb_init_stream_left reaches 0, we don't need to trigger any action
661 * in terms of destroying the associated channel, because the action that
662 * causes the count to become 0 also causes a stream to be added. The
663 * channel deletion will thus be triggered by the following removal of this
664 * stream.
665 */
666 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
667 /* Increment refcount before decrementing nb_init_stream_left */
668 cmm_smp_wmb();
669 uatomic_dec(&stream->chan->nb_init_stream_left);
670 }
671
672 /* Update consumer data once the node is inserted. */
673 consumer_data.stream_count++;
674 consumer_data.need_update = 1;
675
676 rcu_read_unlock();
677 pthread_mutex_unlock(&stream->lock);
678 pthread_mutex_unlock(&stream->chan->timer_lock);
679 pthread_mutex_unlock(&stream->chan->lock);
680 pthread_mutex_unlock(&consumer_data.lock);
681
682 return ret;
683 }
684
685 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
686 {
687 consumer_del_stream(stream, data_ht);
688 }
689
690 /*
691 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
692 * be acquired before calling this.
693 */
694 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
695 {
696 int ret = 0;
697 struct lttng_ht_node_u64 *node;
698 struct lttng_ht_iter iter;
699
700 assert(relayd);
701
702 lttng_ht_lookup(consumer_data.relayd_ht,
703 &relayd->net_seq_idx, &iter);
704 node = lttng_ht_iter_get_node_u64(&iter);
705 if (node != NULL) {
706 goto end;
707 }
708 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
709
710 end:
711 return ret;
712 }
713
714 /*
715 * Allocate and return a consumer relayd socket.
716 */
717 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
718 uint64_t net_seq_idx)
719 {
720 struct consumer_relayd_sock_pair *obj = NULL;
721
722 /* net sequence index of -1 is a failure */
723 if (net_seq_idx == (uint64_t) -1ULL) {
724 goto error;
725 }
726
727 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
728 if (obj == NULL) {
729 PERROR("zmalloc relayd sock");
730 goto error;
731 }
732
733 obj->net_seq_idx = net_seq_idx;
734 obj->refcount = 0;
735 obj->destroy_flag = 0;
736 obj->control_sock.sock.fd = -1;
737 obj->data_sock.sock.fd = -1;
738 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
739 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
740
741 error:
742 return obj;
743 }
744
745 /*
746 * Find a relayd socket pair in the global consumer data.
747 *
748 * Return the object if found else NULL.
749 * RCU read-side lock must be held across this call and while using the
750 * returned object.
751 */
752 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
753 {
754 struct lttng_ht_iter iter;
755 struct lttng_ht_node_u64 *node;
756 struct consumer_relayd_sock_pair *relayd = NULL;
757
758 /* Negative keys are lookup failures */
759 if (key == (uint64_t) -1ULL) {
760 goto error;
761 }
762
763 lttng_ht_lookup(consumer_data.relayd_ht, &key,
764 &iter);
765 node = lttng_ht_iter_get_node_u64(&iter);
766 if (node != NULL) {
767 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
768 }
769
770 error:
771 return relayd;
772 }
773
774 /*
775 * Find a relayd and send the stream
776 *
777 * Returns 0 on success, < 0 on error
778 */
779 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
780 char *path)
781 {
782 int ret = 0;
783 struct consumer_relayd_sock_pair *relayd;
784
785 assert(stream);
786 assert(stream->net_seq_idx != -1ULL);
787 assert(path);
788
789 /* The stream is not metadata. Get relayd reference if exists. */
790 rcu_read_lock();
791 relayd = consumer_find_relayd(stream->net_seq_idx);
792 if (relayd != NULL) {
793 /* Add stream on the relayd */
794 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
795 ret = relayd_add_stream(&relayd->control_sock, stream->name,
796 path, &stream->relayd_stream_id,
797 stream->chan->tracefile_size, stream->chan->tracefile_count);
798 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
799 if (ret < 0) {
800 goto end;
801 }
802
803 uatomic_inc(&relayd->refcount);
804 stream->sent_to_relayd = 1;
805 } else {
806 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
807 stream->key, stream->net_seq_idx);
808 ret = -1;
809 goto end;
810 }
811
812 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
813 stream->name, stream->key, stream->net_seq_idx);
814
815 end:
816 rcu_read_unlock();
817 return ret;
818 }
819
820 /*
821 * Find a relayd and send the streams sent message
822 *
823 * Returns 0 on success, < 0 on error
824 */
825 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
826 {
827 int ret = 0;
828 struct consumer_relayd_sock_pair *relayd;
829
830 assert(net_seq_idx != -1ULL);
831
832 /* The stream is not metadata. Get relayd reference if exists. */
833 rcu_read_lock();
834 relayd = consumer_find_relayd(net_seq_idx);
835 if (relayd != NULL) {
836 /* Add stream on the relayd */
837 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
838 ret = relayd_streams_sent(&relayd->control_sock);
839 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
840 if (ret < 0) {
841 goto end;
842 }
843 } else {
844 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
845 net_seq_idx);
846 ret = -1;
847 goto end;
848 }
849
850 ret = 0;
851 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
852
853 end:
854 rcu_read_unlock();
855 return ret;
856 }
857
858 /*
859 * Find a relayd and close the stream
860 */
861 void close_relayd_stream(struct lttng_consumer_stream *stream)
862 {
863 struct consumer_relayd_sock_pair *relayd;
864
865 /* The stream is not metadata. Get relayd reference if exists. */
866 rcu_read_lock();
867 relayd = consumer_find_relayd(stream->net_seq_idx);
868 if (relayd) {
869 consumer_stream_relayd_close(stream, relayd);
870 }
871 rcu_read_unlock();
872 }
873
874 /*
875 * Handle stream for relayd transmission if the stream applies for network
876 * streaming where the net sequence index is set.
877 *
878 * Return destination file descriptor or negative value on error.
879 */
880 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
881 size_t data_size, unsigned long padding,
882 struct consumer_relayd_sock_pair *relayd)
883 {
884 int outfd = -1, ret;
885 struct lttcomm_relayd_data_hdr data_hdr;
886
887 /* Safety net */
888 assert(stream);
889 assert(relayd);
890
891 /* Reset data header */
892 memset(&data_hdr, 0, sizeof(data_hdr));
893
894 if (stream->metadata_flag) {
895 /* Caller MUST acquire the relayd control socket lock */
896 ret = relayd_send_metadata(&relayd->control_sock, data_size);
897 if (ret < 0) {
898 goto error;
899 }
900
901 /* Metadata are always sent on the control socket. */
902 outfd = relayd->control_sock.sock.fd;
903 } else {
904 /* Set header with stream information */
905 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
906 data_hdr.data_size = htobe32(data_size);
907 data_hdr.padding_size = htobe32(padding);
908 /*
909 * Note that net_seq_num below is assigned with the *current* value of
910 * next_net_seq_num and only after that the next_net_seq_num will be
911 * increment. This is why when issuing a command on the relayd using
912 * this next value, 1 should always be substracted in order to compare
913 * the last seen sequence number on the relayd side to the last sent.
914 */
915 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
916 /* Other fields are zeroed previously */
917
918 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
919 sizeof(data_hdr));
920 if (ret < 0) {
921 goto error;
922 }
923
924 ++stream->next_net_seq_num;
925
926 /* Set to go on data socket */
927 outfd = relayd->data_sock.sock.fd;
928 }
929
930 error:
931 return outfd;
932 }
933
934 /*
935 * Allocate and return a new lttng_consumer_channel object using the given key
936 * to initialize the hash table node.
937 *
938 * On error, return NULL.
939 */
940 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
941 uint64_t session_id,
942 const char *pathname,
943 const char *name,
944 uid_t uid,
945 gid_t gid,
946 uint64_t relayd_id,
947 enum lttng_event_output output,
948 uint64_t tracefile_size,
949 uint64_t tracefile_count,
950 uint64_t session_id_per_pid,
951 unsigned int monitor,
952 unsigned int live_timer_interval,
953 const char *root_shm_path,
954 const char *shm_path)
955 {
956 struct lttng_consumer_channel *channel;
957
958 channel = zmalloc(sizeof(*channel));
959 if (channel == NULL) {
960 PERROR("malloc struct lttng_consumer_channel");
961 goto end;
962 }
963
964 channel->key = key;
965 channel->refcount = 0;
966 channel->session_id = session_id;
967 channel->session_id_per_pid = session_id_per_pid;
968 channel->uid = uid;
969 channel->gid = gid;
970 channel->relayd_id = relayd_id;
971 channel->tracefile_size = tracefile_size;
972 channel->tracefile_count = tracefile_count;
973 channel->monitor = monitor;
974 channel->live_timer_interval = live_timer_interval;
975 pthread_mutex_init(&channel->lock, NULL);
976 pthread_mutex_init(&channel->timer_lock, NULL);
977
978 switch (output) {
979 case LTTNG_EVENT_SPLICE:
980 channel->output = CONSUMER_CHANNEL_SPLICE;
981 break;
982 case LTTNG_EVENT_MMAP:
983 channel->output = CONSUMER_CHANNEL_MMAP;
984 break;
985 default:
986 assert(0);
987 free(channel);
988 channel = NULL;
989 goto end;
990 }
991
992 /*
993 * In monitor mode, the streams associated with the channel will be put in
994 * a special list ONLY owned by this channel. So, the refcount is set to 1
995 * here meaning that the channel itself has streams that are referenced.
996 *
997 * On a channel deletion, once the channel is no longer visible, the
998 * refcount is decremented and checked for a zero value to delete it. With
999 * streams in no monitor mode, it will now be safe to destroy the channel.
1000 */
1001 if (!channel->monitor) {
1002 channel->refcount = 1;
1003 }
1004
1005 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1006 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1007
1008 strncpy(channel->name, name, sizeof(channel->name));
1009 channel->name[sizeof(channel->name) - 1] = '\0';
1010
1011 if (root_shm_path) {
1012 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1013 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1014 }
1015 if (shm_path) {
1016 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1017 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1018 }
1019
1020 lttng_ht_node_init_u64(&channel->node, channel->key);
1021
1022 channel->wait_fd = -1;
1023
1024 CDS_INIT_LIST_HEAD(&channel->streams.head);
1025
1026 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1027
1028 end:
1029 return channel;
1030 }
1031
1032 /*
1033 * Add a channel to the global list protected by a mutex.
1034 *
1035 * Always return 0 indicating success.
1036 */
1037 int consumer_add_channel(struct lttng_consumer_channel *channel,
1038 struct lttng_consumer_local_data *ctx)
1039 {
1040 pthread_mutex_lock(&consumer_data.lock);
1041 pthread_mutex_lock(&channel->lock);
1042 pthread_mutex_lock(&channel->timer_lock);
1043
1044 /*
1045 * This gives us a guarantee that the channel we are about to add to the
1046 * channel hash table will be unique. See this function comment on the why
1047 * we need to steel the channel key at this stage.
1048 */
1049 steal_channel_key(channel->key);
1050
1051 rcu_read_lock();
1052 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1053 rcu_read_unlock();
1054
1055 pthread_mutex_unlock(&channel->timer_lock);
1056 pthread_mutex_unlock(&channel->lock);
1057 pthread_mutex_unlock(&consumer_data.lock);
1058
1059 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1060 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1061 }
1062
1063 return 0;
1064 }
1065
1066 /*
1067 * Allocate the pollfd structure and the local view of the out fds to avoid
1068 * doing a lookup in the linked list and concurrency issues when writing is
1069 * needed. Called with consumer_data.lock held.
1070 *
1071 * Returns the number of fds in the structures.
1072 */
1073 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1074 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1075 struct lttng_ht *ht, int *nb_inactive_fd)
1076 {
1077 int i = 0;
1078 struct lttng_ht_iter iter;
1079 struct lttng_consumer_stream *stream;
1080
1081 assert(ctx);
1082 assert(ht);
1083 assert(pollfd);
1084 assert(local_stream);
1085
1086 DBG("Updating poll fd array");
1087 *nb_inactive_fd = 0;
1088 rcu_read_lock();
1089 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1090 /*
1091 * Only active streams with an active end point can be added to the
1092 * poll set and local stream storage of the thread.
1093 *
1094 * There is a potential race here for endpoint_status to be updated
1095 * just after the check. However, this is OK since the stream(s) will
1096 * be deleted once the thread is notified that the end point state has
1097 * changed where this function will be called back again.
1098 *
1099 * We track the number of inactive FDs because they still need to be
1100 * closed by the polling thread after a wakeup on the data_pipe or
1101 * metadata_pipe.
1102 */
1103 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1104 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1105 (*nb_inactive_fd)++;
1106 continue;
1107 }
1108 /*
1109 * This clobbers way too much the debug output. Uncomment that if you
1110 * need it for debugging purposes.
1111 *
1112 * DBG("Active FD %d", stream->wait_fd);
1113 */
1114 (*pollfd)[i].fd = stream->wait_fd;
1115 (*pollfd)[i].events = POLLIN | POLLPRI;
1116 local_stream[i] = stream;
1117 i++;
1118 }
1119 rcu_read_unlock();
1120
1121 /*
1122 * Insert the consumer_data_pipe at the end of the array and don't
1123 * increment i so nb_fd is the number of real FD.
1124 */
1125 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1126 (*pollfd)[i].events = POLLIN | POLLPRI;
1127
1128 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1129 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1130 return i;
1131 }
1132
1133 /*
1134 * Poll on the should_quit pipe and the command socket return -1 on
1135 * error, 1 if should exit, 0 if data is available on the command socket
1136 */
1137 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1138 {
1139 int num_rdy;
1140
1141 restart:
1142 num_rdy = poll(consumer_sockpoll, 2, -1);
1143 if (num_rdy == -1) {
1144 /*
1145 * Restart interrupted system call.
1146 */
1147 if (errno == EINTR) {
1148 goto restart;
1149 }
1150 PERROR("Poll error");
1151 return -1;
1152 }
1153 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1154 DBG("consumer_should_quit wake up");
1155 return 1;
1156 }
1157 return 0;
1158 }
1159
1160 /*
1161 * Set the error socket.
1162 */
1163 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1164 int sock)
1165 {
1166 ctx->consumer_error_socket = sock;
1167 }
1168
1169 /*
1170 * Set the command socket path.
1171 */
1172 void lttng_consumer_set_command_sock_path(
1173 struct lttng_consumer_local_data *ctx, char *sock)
1174 {
1175 ctx->consumer_command_sock_path = sock;
1176 }
1177
1178 /*
1179 * Send return code to the session daemon.
1180 * If the socket is not defined, we return 0, it is not a fatal error
1181 */
1182 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1183 {
1184 if (ctx->consumer_error_socket > 0) {
1185 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1186 sizeof(enum lttcomm_sessiond_command));
1187 }
1188
1189 return 0;
1190 }
1191
1192 /*
1193 * Close all the tracefiles and stream fds and MUST be called when all
1194 * instances are destroyed i.e. when all threads were joined and are ended.
1195 */
1196 void lttng_consumer_cleanup(void)
1197 {
1198 struct lttng_ht_iter iter;
1199 struct lttng_consumer_channel *channel;
1200
1201 rcu_read_lock();
1202
1203 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1204 node.node) {
1205 consumer_del_channel(channel);
1206 }
1207
1208 rcu_read_unlock();
1209
1210 lttng_ht_destroy(consumer_data.channel_ht);
1211
1212 cleanup_relayd_ht();
1213
1214 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1215
1216 /*
1217 * This HT contains streams that are freed by either the metadata thread or
1218 * the data thread so we do *nothing* on the hash table and simply destroy
1219 * it.
1220 */
1221 lttng_ht_destroy(consumer_data.stream_list_ht);
1222 }
1223
1224 /*
1225 * Called from signal handler.
1226 */
1227 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1228 {
1229 ssize_t ret;
1230
1231 consumer_quit = 1;
1232 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1233 if (ret < 1) {
1234 PERROR("write consumer quit");
1235 }
1236
1237 DBG("Consumer flag that it should quit");
1238 }
1239
1240
1241 /*
1242 * Flush pending writes to trace output disk file.
1243 */
1244 static
1245 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1246 off_t orig_offset)
1247 {
1248 int ret;
1249 int outfd = stream->out_fd;
1250
1251 /*
1252 * This does a blocking write-and-wait on any page that belongs to the
1253 * subbuffer prior to the one we just wrote.
1254 * Don't care about error values, as these are just hints and ways to
1255 * limit the amount of page cache used.
1256 */
1257 if (orig_offset < stream->max_sb_size) {
1258 return;
1259 }
1260 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1261 stream->max_sb_size,
1262 SYNC_FILE_RANGE_WAIT_BEFORE
1263 | SYNC_FILE_RANGE_WRITE
1264 | SYNC_FILE_RANGE_WAIT_AFTER);
1265 /*
1266 * Give hints to the kernel about how we access the file:
1267 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1268 * we write it.
1269 *
1270 * We need to call fadvise again after the file grows because the
1271 * kernel does not seem to apply fadvise to non-existing parts of the
1272 * file.
1273 *
1274 * Call fadvise _after_ having waited for the page writeback to
1275 * complete because the dirty page writeback semantic is not well
1276 * defined. So it can be expected to lead to lower throughput in
1277 * streaming.
1278 */
1279 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1280 stream->max_sb_size, POSIX_FADV_DONTNEED);
1281 if (ret && ret != -ENOSYS) {
1282 errno = ret;
1283 PERROR("posix_fadvise on fd %i", outfd);
1284 }
1285 }
1286
1287 /*
1288 * Initialise the necessary environnement :
1289 * - create a new context
1290 * - create the poll_pipe
1291 * - create the should_quit pipe (for signal handler)
1292 * - create the thread pipe (for splice)
1293 *
1294 * Takes a function pointer as argument, this function is called when data is
1295 * available on a buffer. This function is responsible to do the
1296 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1297 * buffer configuration and then kernctl_put_next_subbuf at the end.
1298 *
1299 * Returns a pointer to the new context or NULL on error.
1300 */
1301 struct lttng_consumer_local_data *lttng_consumer_create(
1302 enum lttng_consumer_type type,
1303 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1304 struct lttng_consumer_local_data *ctx),
1305 int (*recv_channel)(struct lttng_consumer_channel *channel),
1306 int (*recv_stream)(struct lttng_consumer_stream *stream),
1307 int (*update_stream)(uint64_t stream_key, uint32_t state))
1308 {
1309 int ret;
1310 struct lttng_consumer_local_data *ctx;
1311
1312 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1313 consumer_data.type == type);
1314 consumer_data.type = type;
1315
1316 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1317 if (ctx == NULL) {
1318 PERROR("allocating context");
1319 goto error;
1320 }
1321
1322 ctx->consumer_error_socket = -1;
1323 ctx->consumer_metadata_socket = -1;
1324 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1325 /* assign the callbacks */
1326 ctx->on_buffer_ready = buffer_ready;
1327 ctx->on_recv_channel = recv_channel;
1328 ctx->on_recv_stream = recv_stream;
1329 ctx->on_update_stream = update_stream;
1330
1331 ctx->consumer_data_pipe = lttng_pipe_open(0);
1332 if (!ctx->consumer_data_pipe) {
1333 goto error_poll_pipe;
1334 }
1335
1336 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1337 if (!ctx->consumer_wakeup_pipe) {
1338 goto error_wakeup_pipe;
1339 }
1340
1341 ret = pipe(ctx->consumer_should_quit);
1342 if (ret < 0) {
1343 PERROR("Error creating recv pipe");
1344 goto error_quit_pipe;
1345 }
1346
1347 ret = pipe(ctx->consumer_channel_pipe);
1348 if (ret < 0) {
1349 PERROR("Error creating channel pipe");
1350 goto error_channel_pipe;
1351 }
1352
1353 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1354 if (!ctx->consumer_metadata_pipe) {
1355 goto error_metadata_pipe;
1356 }
1357
1358 return ctx;
1359
1360 error_metadata_pipe:
1361 utils_close_pipe(ctx->consumer_channel_pipe);
1362 error_channel_pipe:
1363 utils_close_pipe(ctx->consumer_should_quit);
1364 error_quit_pipe:
1365 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1366 error_wakeup_pipe:
1367 lttng_pipe_destroy(ctx->consumer_data_pipe);
1368 error_poll_pipe:
1369 free(ctx);
1370 error:
1371 return NULL;
1372 }
1373
1374 /*
1375 * Iterate over all streams of the hashtable and free them properly.
1376 */
1377 static void destroy_data_stream_ht(struct lttng_ht *ht)
1378 {
1379 struct lttng_ht_iter iter;
1380 struct lttng_consumer_stream *stream;
1381
1382 if (ht == NULL) {
1383 return;
1384 }
1385
1386 rcu_read_lock();
1387 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1388 /*
1389 * Ignore return value since we are currently cleaning up so any error
1390 * can't be handled.
1391 */
1392 (void) consumer_del_stream(stream, ht);
1393 }
1394 rcu_read_unlock();
1395
1396 lttng_ht_destroy(ht);
1397 }
1398
1399 /*
1400 * Iterate over all streams of the metadata hashtable and free them
1401 * properly.
1402 */
1403 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1404 {
1405 struct lttng_ht_iter iter;
1406 struct lttng_consumer_stream *stream;
1407
1408 if (ht == NULL) {
1409 return;
1410 }
1411
1412 rcu_read_lock();
1413 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1414 /*
1415 * Ignore return value since we are currently cleaning up so any error
1416 * can't be handled.
1417 */
1418 (void) consumer_del_metadata_stream(stream, ht);
1419 }
1420 rcu_read_unlock();
1421
1422 lttng_ht_destroy(ht);
1423 }
1424
1425 /*
1426 * Close all fds associated with the instance and free the context.
1427 */
1428 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1429 {
1430 int ret;
1431
1432 DBG("Consumer destroying it. Closing everything.");
1433
1434 if (!ctx) {
1435 return;
1436 }
1437
1438 destroy_data_stream_ht(data_ht);
1439 destroy_metadata_stream_ht(metadata_ht);
1440
1441 ret = close(ctx->consumer_error_socket);
1442 if (ret) {
1443 PERROR("close");
1444 }
1445 ret = close(ctx->consumer_metadata_socket);
1446 if (ret) {
1447 PERROR("close");
1448 }
1449 utils_close_pipe(ctx->consumer_channel_pipe);
1450 lttng_pipe_destroy(ctx->consumer_data_pipe);
1451 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1452 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1453 utils_close_pipe(ctx->consumer_should_quit);
1454
1455 unlink(ctx->consumer_command_sock_path);
1456 free(ctx);
1457 }
1458
1459 /*
1460 * Write the metadata stream id on the specified file descriptor.
1461 */
1462 static int write_relayd_metadata_id(int fd,
1463 struct lttng_consumer_stream *stream,
1464 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1465 {
1466 ssize_t ret;
1467 struct lttcomm_relayd_metadata_payload hdr;
1468
1469 hdr.stream_id = htobe64(stream->relayd_stream_id);
1470 hdr.padding_size = htobe32(padding);
1471 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1472 if (ret < sizeof(hdr)) {
1473 /*
1474 * This error means that the fd's end is closed so ignore the PERROR
1475 * not to clubber the error output since this can happen in a normal
1476 * code path.
1477 */
1478 if (errno != EPIPE) {
1479 PERROR("write metadata stream id");
1480 }
1481 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1482 /*
1483 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1484 * handle writting the missing part so report that as an error and
1485 * don't lie to the caller.
1486 */
1487 ret = -1;
1488 goto end;
1489 }
1490 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1491 stream->relayd_stream_id, padding);
1492
1493 end:
1494 return (int) ret;
1495 }
1496
1497 /*
1498 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1499 * core function for writing trace buffers to either the local filesystem or
1500 * the network.
1501 *
1502 * It must be called with the stream lock held.
1503 *
1504 * Careful review MUST be put if any changes occur!
1505 *
1506 * Returns the number of bytes written
1507 */
1508 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1509 struct lttng_consumer_local_data *ctx,
1510 struct lttng_consumer_stream *stream, unsigned long len,
1511 unsigned long padding,
1512 struct ctf_packet_index *index)
1513 {
1514 unsigned long mmap_offset;
1515 void *mmap_base;
1516 ssize_t ret = 0;
1517 off_t orig_offset = stream->out_fd_offset;
1518 /* Default is on the disk */
1519 int outfd = stream->out_fd;
1520 struct consumer_relayd_sock_pair *relayd = NULL;
1521 unsigned int relayd_hang_up = 0;
1522
1523 /* RCU lock for the relayd pointer */
1524 rcu_read_lock();
1525
1526 /* Flag that the current stream if set for network streaming. */
1527 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1528 relayd = consumer_find_relayd(stream->net_seq_idx);
1529 if (relayd == NULL) {
1530 ret = -EPIPE;
1531 goto end;
1532 }
1533 }
1534
1535 /* get the offset inside the fd to mmap */
1536 switch (consumer_data.type) {
1537 case LTTNG_CONSUMER_KERNEL:
1538 mmap_base = stream->mmap_base;
1539 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1540 if (ret < 0) {
1541 PERROR("tracer ctl get_mmap_read_offset");
1542 goto end;
1543 }
1544 break;
1545 case LTTNG_CONSUMER32_UST:
1546 case LTTNG_CONSUMER64_UST:
1547 mmap_base = lttng_ustctl_get_mmap_base(stream);
1548 if (!mmap_base) {
1549 ERR("read mmap get mmap base for stream %s", stream->name);
1550 ret = -EPERM;
1551 goto end;
1552 }
1553 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1554 if (ret != 0) {
1555 PERROR("tracer ctl get_mmap_read_offset");
1556 ret = -EINVAL;
1557 goto end;
1558 }
1559 break;
1560 default:
1561 ERR("Unknown consumer_data type");
1562 assert(0);
1563 }
1564
1565 /* Handle stream on the relayd if the output is on the network */
1566 if (relayd) {
1567 unsigned long netlen = len;
1568
1569 /*
1570 * Lock the control socket for the complete duration of the function
1571 * since from this point on we will use the socket.
1572 */
1573 if (stream->metadata_flag) {
1574 /* Metadata requires the control socket. */
1575 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1576 if (stream->reset_metadata_flag) {
1577 ret = relayd_reset_metadata(&relayd->control_sock,
1578 stream->relayd_stream_id,
1579 stream->metadata_version);
1580 if (ret < 0) {
1581 relayd_hang_up = 1;
1582 goto write_error;
1583 }
1584 stream->reset_metadata_flag = 0;
1585 }
1586 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1587 }
1588
1589 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1590 if (ret < 0) {
1591 relayd_hang_up = 1;
1592 goto write_error;
1593 }
1594 /* Use the returned socket. */
1595 outfd = ret;
1596
1597 /* Write metadata stream id before payload */
1598 if (stream->metadata_flag) {
1599 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1600 if (ret < 0) {
1601 relayd_hang_up = 1;
1602 goto write_error;
1603 }
1604 }
1605 } else {
1606 /* No streaming, we have to set the len with the full padding */
1607 len += padding;
1608
1609 if (stream->metadata_flag && stream->reset_metadata_flag) {
1610 ret = utils_truncate_stream_file(stream->out_fd, 0);
1611 if (ret < 0) {
1612 ERR("Reset metadata file");
1613 goto end;
1614 }
1615 stream->reset_metadata_flag = 0;
1616 }
1617
1618 /*
1619 * Check if we need to change the tracefile before writing the packet.
1620 */
1621 if (stream->chan->tracefile_size > 0 &&
1622 (stream->tracefile_size_current + len) >
1623 stream->chan->tracefile_size) {
1624 ret = utils_rotate_stream_file(stream->chan->pathname,
1625 stream->name, stream->chan->tracefile_size,
1626 stream->chan->tracefile_count, stream->uid, stream->gid,
1627 stream->out_fd, &(stream->tracefile_count_current),
1628 &stream->out_fd);
1629 if (ret < 0) {
1630 ERR("Rotating output file");
1631 goto end;
1632 }
1633 outfd = stream->out_fd;
1634
1635 if (stream->index_file) {
1636 lttng_index_file_put(stream->index_file);
1637 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1638 stream->name, stream->uid, stream->gid,
1639 stream->chan->tracefile_size,
1640 stream->tracefile_count_current,
1641 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1642 if (!stream->index_file) {
1643 goto end;
1644 }
1645 }
1646
1647 /* Reset current size because we just perform a rotation. */
1648 stream->tracefile_size_current = 0;
1649 stream->out_fd_offset = 0;
1650 orig_offset = 0;
1651 }
1652 stream->tracefile_size_current += len;
1653 if (index) {
1654 index->offset = htobe64(stream->out_fd_offset);
1655 }
1656 }
1657
1658 /*
1659 * This call guarantee that len or less is returned. It's impossible to
1660 * receive a ret value that is bigger than len.
1661 */
1662 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1663 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1664 if (ret < 0 || ((size_t) ret != len)) {
1665 /*
1666 * Report error to caller if nothing was written else at least send the
1667 * amount written.
1668 */
1669 if (ret < 0) {
1670 ret = -errno;
1671 }
1672 relayd_hang_up = 1;
1673
1674 /* Socket operation failed. We consider the relayd dead */
1675 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1676 /*
1677 * This is possible if the fd is closed on the other side
1678 * (outfd) or any write problem. It can be verbose a bit for a
1679 * normal execution if for instance the relayd is stopped
1680 * abruptly. This can happen so set this to a DBG statement.
1681 */
1682 DBG("Consumer mmap write detected relayd hang up");
1683 } else {
1684 /* Unhandled error, print it and stop function right now. */
1685 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1686 }
1687 goto write_error;
1688 }
1689 stream->output_written += ret;
1690
1691 /* This call is useless on a socket so better save a syscall. */
1692 if (!relayd) {
1693 /* This won't block, but will start writeout asynchronously */
1694 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1695 SYNC_FILE_RANGE_WRITE);
1696 stream->out_fd_offset += len;
1697 lttng_consumer_sync_trace_file(stream, orig_offset);
1698 }
1699
1700 write_error:
1701 /*
1702 * This is a special case that the relayd has closed its socket. Let's
1703 * cleanup the relayd object and all associated streams.
1704 */
1705 if (relayd && relayd_hang_up) {
1706 cleanup_relayd(relayd, ctx);
1707 }
1708
1709 end:
1710 /* Unlock only if ctrl socket used */
1711 if (relayd && stream->metadata_flag) {
1712 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1713 }
1714
1715 rcu_read_unlock();
1716 return ret;
1717 }
1718
1719 /*
1720 * Splice the data from the ring buffer to the tracefile.
1721 *
1722 * It must be called with the stream lock held.
1723 *
1724 * Returns the number of bytes spliced.
1725 */
1726 ssize_t lttng_consumer_on_read_subbuffer_splice(
1727 struct lttng_consumer_local_data *ctx,
1728 struct lttng_consumer_stream *stream, unsigned long len,
1729 unsigned long padding,
1730 struct ctf_packet_index *index)
1731 {
1732 ssize_t ret = 0, written = 0, ret_splice = 0;
1733 loff_t offset = 0;
1734 off_t orig_offset = stream->out_fd_offset;
1735 int fd = stream->wait_fd;
1736 /* Default is on the disk */
1737 int outfd = stream->out_fd;
1738 struct consumer_relayd_sock_pair *relayd = NULL;
1739 int *splice_pipe;
1740 unsigned int relayd_hang_up = 0;
1741
1742 switch (consumer_data.type) {
1743 case LTTNG_CONSUMER_KERNEL:
1744 break;
1745 case LTTNG_CONSUMER32_UST:
1746 case LTTNG_CONSUMER64_UST:
1747 /* Not supported for user space tracing */
1748 return -ENOSYS;
1749 default:
1750 ERR("Unknown consumer_data type");
1751 assert(0);
1752 }
1753
1754 /* RCU lock for the relayd pointer */
1755 rcu_read_lock();
1756
1757 /* Flag that the current stream if set for network streaming. */
1758 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1759 relayd = consumer_find_relayd(stream->net_seq_idx);
1760 if (relayd == NULL) {
1761 written = -ret;
1762 goto end;
1763 }
1764 }
1765 splice_pipe = stream->splice_pipe;
1766
1767 /* Write metadata stream id before payload */
1768 if (relayd) {
1769 unsigned long total_len = len;
1770
1771 if (stream->metadata_flag) {
1772 /*
1773 * Lock the control socket for the complete duration of the function
1774 * since from this point on we will use the socket.
1775 */
1776 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1777
1778 if (stream->reset_metadata_flag) {
1779 ret = relayd_reset_metadata(&relayd->control_sock,
1780 stream->relayd_stream_id,
1781 stream->metadata_version);
1782 if (ret < 0) {
1783 relayd_hang_up = 1;
1784 goto write_error;
1785 }
1786 stream->reset_metadata_flag = 0;
1787 }
1788 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1789 padding);
1790 if (ret < 0) {
1791 written = ret;
1792 relayd_hang_up = 1;
1793 goto write_error;
1794 }
1795
1796 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1797 }
1798
1799 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1800 if (ret < 0) {
1801 written = ret;
1802 relayd_hang_up = 1;
1803 goto write_error;
1804 }
1805 /* Use the returned socket. */
1806 outfd = ret;
1807 } else {
1808 /* No streaming, we have to set the len with the full padding */
1809 len += padding;
1810
1811 if (stream->metadata_flag && stream->reset_metadata_flag) {
1812 ret = utils_truncate_stream_file(stream->out_fd, 0);
1813 if (ret < 0) {
1814 ERR("Reset metadata file");
1815 goto end;
1816 }
1817 stream->reset_metadata_flag = 0;
1818 }
1819 /*
1820 * Check if we need to change the tracefile before writing the packet.
1821 */
1822 if (stream->chan->tracefile_size > 0 &&
1823 (stream->tracefile_size_current + len) >
1824 stream->chan->tracefile_size) {
1825 ret = utils_rotate_stream_file(stream->chan->pathname,
1826 stream->name, stream->chan->tracefile_size,
1827 stream->chan->tracefile_count, stream->uid, stream->gid,
1828 stream->out_fd, &(stream->tracefile_count_current),
1829 &stream->out_fd);
1830 if (ret < 0) {
1831 written = ret;
1832 ERR("Rotating output file");
1833 goto end;
1834 }
1835 outfd = stream->out_fd;
1836
1837 if (stream->index_file) {
1838 lttng_index_file_put(stream->index_file);
1839 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1840 stream->name, stream->uid, stream->gid,
1841 stream->chan->tracefile_size,
1842 stream->tracefile_count_current,
1843 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1844 if (!stream->index_file) {
1845 goto end;
1846 }
1847 }
1848
1849 /* Reset current size because we just perform a rotation. */
1850 stream->tracefile_size_current = 0;
1851 stream->out_fd_offset = 0;
1852 orig_offset = 0;
1853 }
1854 stream->tracefile_size_current += len;
1855 index->offset = htobe64(stream->out_fd_offset);
1856 }
1857
1858 while (len > 0) {
1859 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1860 (unsigned long)offset, len, fd, splice_pipe[1]);
1861 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1862 SPLICE_F_MOVE | SPLICE_F_MORE);
1863 DBG("splice chan to pipe, ret %zd", ret_splice);
1864 if (ret_splice < 0) {
1865 ret = errno;
1866 written = -ret;
1867 PERROR("Error in relay splice");
1868 goto splice_error;
1869 }
1870
1871 /* Handle stream on the relayd if the output is on the network */
1872 if (relayd && stream->metadata_flag) {
1873 size_t metadata_payload_size =
1874 sizeof(struct lttcomm_relayd_metadata_payload);
1875
1876 /* Update counter to fit the spliced data */
1877 ret_splice += metadata_payload_size;
1878 len += metadata_payload_size;
1879 /*
1880 * We do this so the return value can match the len passed as
1881 * argument to this function.
1882 */
1883 written -= metadata_payload_size;
1884 }
1885
1886 /* Splice data out */
1887 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1888 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1889 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1890 outfd, ret_splice);
1891 if (ret_splice < 0) {
1892 ret = errno;
1893 written = -ret;
1894 relayd_hang_up = 1;
1895 goto write_error;
1896 } else if (ret_splice > len) {
1897 /*
1898 * We don't expect this code path to be executed but you never know
1899 * so this is an extra protection agains a buggy splice().
1900 */
1901 ret = errno;
1902 written += ret_splice;
1903 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1904 len);
1905 goto splice_error;
1906 } else {
1907 /* All good, update current len and continue. */
1908 len -= ret_splice;
1909 }
1910
1911 /* This call is useless on a socket so better save a syscall. */
1912 if (!relayd) {
1913 /* This won't block, but will start writeout asynchronously */
1914 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1915 SYNC_FILE_RANGE_WRITE);
1916 stream->out_fd_offset += ret_splice;
1917 }
1918 stream->output_written += ret_splice;
1919 written += ret_splice;
1920 }
1921 if (!relayd) {
1922 lttng_consumer_sync_trace_file(stream, orig_offset);
1923 }
1924 goto end;
1925
1926 write_error:
1927 /*
1928 * This is a special case that the relayd has closed its socket. Let's
1929 * cleanup the relayd object and all associated streams.
1930 */
1931 if (relayd && relayd_hang_up) {
1932 cleanup_relayd(relayd, ctx);
1933 /* Skip splice error so the consumer does not fail */
1934 goto end;
1935 }
1936
1937 splice_error:
1938 /* send the appropriate error description to sessiond */
1939 switch (ret) {
1940 case EINVAL:
1941 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1942 break;
1943 case ENOMEM:
1944 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1945 break;
1946 case ESPIPE:
1947 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1948 break;
1949 }
1950
1951 end:
1952 if (relayd && stream->metadata_flag) {
1953 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1954 }
1955
1956 rcu_read_unlock();
1957 return written;
1958 }
1959
1960 /*
1961 * Take a snapshot for a specific fd
1962 *
1963 * Returns 0 on success, < 0 on error
1964 */
1965 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1966 {
1967 switch (consumer_data.type) {
1968 case LTTNG_CONSUMER_KERNEL:
1969 return lttng_kconsumer_take_snapshot(stream);
1970 case LTTNG_CONSUMER32_UST:
1971 case LTTNG_CONSUMER64_UST:
1972 return lttng_ustconsumer_take_snapshot(stream);
1973 default:
1974 ERR("Unknown consumer_data type");
1975 assert(0);
1976 return -ENOSYS;
1977 }
1978 }
1979
1980 /*
1981 * Get the produced position
1982 *
1983 * Returns 0 on success, < 0 on error
1984 */
1985 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1986 unsigned long *pos)
1987 {
1988 switch (consumer_data.type) {
1989 case LTTNG_CONSUMER_KERNEL:
1990 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1991 case LTTNG_CONSUMER32_UST:
1992 case LTTNG_CONSUMER64_UST:
1993 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1994 default:
1995 ERR("Unknown consumer_data type");
1996 assert(0);
1997 return -ENOSYS;
1998 }
1999 }
2000
2001 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2002 int sock, struct pollfd *consumer_sockpoll)
2003 {
2004 switch (consumer_data.type) {
2005 case LTTNG_CONSUMER_KERNEL:
2006 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2007 case LTTNG_CONSUMER32_UST:
2008 case LTTNG_CONSUMER64_UST:
2009 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2010 default:
2011 ERR("Unknown consumer_data type");
2012 assert(0);
2013 return -ENOSYS;
2014 }
2015 }
2016
2017 void lttng_consumer_close_all_metadata(void)
2018 {
2019 switch (consumer_data.type) {
2020 case LTTNG_CONSUMER_KERNEL:
2021 /*
2022 * The Kernel consumer has a different metadata scheme so we don't
2023 * close anything because the stream will be closed by the session
2024 * daemon.
2025 */
2026 break;
2027 case LTTNG_CONSUMER32_UST:
2028 case LTTNG_CONSUMER64_UST:
2029 /*
2030 * Close all metadata streams. The metadata hash table is passed and
2031 * this call iterates over it by closing all wakeup fd. This is safe
2032 * because at this point we are sure that the metadata producer is
2033 * either dead or blocked.
2034 */
2035 lttng_ustconsumer_close_all_metadata(metadata_ht);
2036 break;
2037 default:
2038 ERR("Unknown consumer_data type");
2039 assert(0);
2040 }
2041 }
2042
2043 /*
2044 * Clean up a metadata stream and free its memory.
2045 */
2046 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2047 struct lttng_ht *ht)
2048 {
2049 struct lttng_consumer_channel *free_chan = NULL;
2050
2051 assert(stream);
2052 /*
2053 * This call should NEVER receive regular stream. It must always be
2054 * metadata stream and this is crucial for data structure synchronization.
2055 */
2056 assert(stream->metadata_flag);
2057
2058 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2059
2060 pthread_mutex_lock(&consumer_data.lock);
2061 pthread_mutex_lock(&stream->chan->lock);
2062 pthread_mutex_lock(&stream->lock);
2063 if (stream->chan->metadata_cache) {
2064 /* Only applicable to userspace consumers. */
2065 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2066 }
2067
2068 /* Remove any reference to that stream. */
2069 consumer_stream_delete(stream, ht);
2070
2071 /* Close down everything including the relayd if one. */
2072 consumer_stream_close(stream);
2073 /* Destroy tracer buffers of the stream. */
2074 consumer_stream_destroy_buffers(stream);
2075
2076 /* Atomically decrement channel refcount since other threads can use it. */
2077 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2078 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2079 /* Go for channel deletion! */
2080 free_chan = stream->chan;
2081 }
2082
2083 /*
2084 * Nullify the stream reference so it is not used after deletion. The
2085 * channel lock MUST be acquired before being able to check for a NULL
2086 * pointer value.
2087 */
2088 stream->chan->metadata_stream = NULL;
2089
2090 if (stream->chan->metadata_cache) {
2091 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2092 }
2093 pthread_mutex_unlock(&stream->lock);
2094 pthread_mutex_unlock(&stream->chan->lock);
2095 pthread_mutex_unlock(&consumer_data.lock);
2096
2097 if (free_chan) {
2098 consumer_del_channel(free_chan);
2099 }
2100
2101 consumer_stream_free(stream);
2102 }
2103
2104 /*
2105 * Action done with the metadata stream when adding it to the consumer internal
2106 * data structures to handle it.
2107 */
2108 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2109 {
2110 struct lttng_ht *ht = metadata_ht;
2111 int ret = 0;
2112 struct lttng_ht_iter iter;
2113 struct lttng_ht_node_u64 *node;
2114
2115 assert(stream);
2116 assert(ht);
2117
2118 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2119
2120 pthread_mutex_lock(&consumer_data.lock);
2121 pthread_mutex_lock(&stream->chan->lock);
2122 pthread_mutex_lock(&stream->chan->timer_lock);
2123 pthread_mutex_lock(&stream->lock);
2124
2125 /*
2126 * From here, refcounts are updated so be _careful_ when returning an error
2127 * after this point.
2128 */
2129
2130 rcu_read_lock();
2131
2132 /*
2133 * Lookup the stream just to make sure it does not exist in our internal
2134 * state. This should NEVER happen.
2135 */
2136 lttng_ht_lookup(ht, &stream->key, &iter);
2137 node = lttng_ht_iter_get_node_u64(&iter);
2138 assert(!node);
2139
2140 /*
2141 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2142 * in terms of destroying the associated channel, because the action that
2143 * causes the count to become 0 also causes a stream to be added. The
2144 * channel deletion will thus be triggered by the following removal of this
2145 * stream.
2146 */
2147 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2148 /* Increment refcount before decrementing nb_init_stream_left */
2149 cmm_smp_wmb();
2150 uatomic_dec(&stream->chan->nb_init_stream_left);
2151 }
2152
2153 lttng_ht_add_unique_u64(ht, &stream->node);
2154
2155 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2156 &stream->node_channel_id);
2157
2158 /*
2159 * Add stream to the stream_list_ht of the consumer data. No need to steal
2160 * the key since the HT does not use it and we allow to add redundant keys
2161 * into this table.
2162 */
2163 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2164
2165 rcu_read_unlock();
2166
2167 pthread_mutex_unlock(&stream->lock);
2168 pthread_mutex_unlock(&stream->chan->lock);
2169 pthread_mutex_unlock(&stream->chan->timer_lock);
2170 pthread_mutex_unlock(&consumer_data.lock);
2171 return ret;
2172 }
2173
2174 /*
2175 * Delete data stream that are flagged for deletion (endpoint_status).
2176 */
2177 static void validate_endpoint_status_data_stream(void)
2178 {
2179 struct lttng_ht_iter iter;
2180 struct lttng_consumer_stream *stream;
2181
2182 DBG("Consumer delete flagged data stream");
2183
2184 rcu_read_lock();
2185 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2186 /* Validate delete flag of the stream */
2187 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2188 continue;
2189 }
2190 /* Delete it right now */
2191 consumer_del_stream(stream, data_ht);
2192 }
2193 rcu_read_unlock();
2194 }
2195
2196 /*
2197 * Delete metadata stream that are flagged for deletion (endpoint_status).
2198 */
2199 static void validate_endpoint_status_metadata_stream(
2200 struct lttng_poll_event *pollset)
2201 {
2202 struct lttng_ht_iter iter;
2203 struct lttng_consumer_stream *stream;
2204
2205 DBG("Consumer delete flagged metadata stream");
2206
2207 assert(pollset);
2208
2209 rcu_read_lock();
2210 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2211 /* Validate delete flag of the stream */
2212 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2213 continue;
2214 }
2215 /*
2216 * Remove from pollset so the metadata thread can continue without
2217 * blocking on a deleted stream.
2218 */
2219 lttng_poll_del(pollset, stream->wait_fd);
2220
2221 /* Delete it right now */
2222 consumer_del_metadata_stream(stream, metadata_ht);
2223 }
2224 rcu_read_unlock();
2225 }
2226
2227 /*
2228 * Thread polls on metadata file descriptor and write them on disk or on the
2229 * network.
2230 */
2231 void *consumer_thread_metadata_poll(void *data)
2232 {
2233 int ret, i, pollfd, err = -1;
2234 uint32_t revents, nb_fd;
2235 struct lttng_consumer_stream *stream = NULL;
2236 struct lttng_ht_iter iter;
2237 struct lttng_ht_node_u64 *node;
2238 struct lttng_poll_event events;
2239 struct lttng_consumer_local_data *ctx = data;
2240 ssize_t len;
2241
2242 rcu_register_thread();
2243
2244 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2245
2246 if (testpoint(consumerd_thread_metadata)) {
2247 goto error_testpoint;
2248 }
2249
2250 health_code_update();
2251
2252 DBG("Thread metadata poll started");
2253
2254 /* Size is set to 1 for the consumer_metadata pipe */
2255 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2256 if (ret < 0) {
2257 ERR("Poll set creation failed");
2258 goto end_poll;
2259 }
2260
2261 ret = lttng_poll_add(&events,
2262 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2263 if (ret < 0) {
2264 goto end;
2265 }
2266
2267 /* Main loop */
2268 DBG("Metadata main loop started");
2269
2270 while (1) {
2271 restart:
2272 health_code_update();
2273 health_poll_entry();
2274 DBG("Metadata poll wait");
2275 ret = lttng_poll_wait(&events, -1);
2276 DBG("Metadata poll return from wait with %d fd(s)",
2277 LTTNG_POLL_GETNB(&events));
2278 health_poll_exit();
2279 DBG("Metadata event caught in thread");
2280 if (ret < 0) {
2281 if (errno == EINTR) {
2282 ERR("Poll EINTR caught");
2283 goto restart;
2284 }
2285 if (LTTNG_POLL_GETNB(&events) == 0) {
2286 err = 0; /* All is OK */
2287 }
2288 goto end;
2289 }
2290
2291 nb_fd = ret;
2292
2293 /* From here, the event is a metadata wait fd */
2294 for (i = 0; i < nb_fd; i++) {
2295 health_code_update();
2296
2297 revents = LTTNG_POLL_GETEV(&events, i);
2298 pollfd = LTTNG_POLL_GETFD(&events, i);
2299
2300 if (!revents) {
2301 /* No activity for this FD (poll implementation). */
2302 continue;
2303 }
2304
2305 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2306 if (revents & LPOLLIN) {
2307 ssize_t pipe_len;
2308
2309 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2310 &stream, sizeof(stream));
2311 if (pipe_len < sizeof(stream)) {
2312 if (pipe_len < 0) {
2313 PERROR("read metadata stream");
2314 }
2315 /*
2316 * Remove the pipe from the poll set and continue the loop
2317 * since their might be data to consume.
2318 */
2319 lttng_poll_del(&events,
2320 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2321 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2322 continue;
2323 }
2324
2325 /* A NULL stream means that the state has changed. */
2326 if (stream == NULL) {
2327 /* Check for deleted streams. */
2328 validate_endpoint_status_metadata_stream(&events);
2329 goto restart;
2330 }
2331
2332 DBG("Adding metadata stream %d to poll set",
2333 stream->wait_fd);
2334
2335 /* Add metadata stream to the global poll events list */
2336 lttng_poll_add(&events, stream->wait_fd,
2337 LPOLLIN | LPOLLPRI | LPOLLHUP);
2338 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2339 DBG("Metadata thread pipe hung up");
2340 /*
2341 * Remove the pipe from the poll set and continue the loop
2342 * since their might be data to consume.
2343 */
2344 lttng_poll_del(&events,
2345 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2346 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2347 continue;
2348 } else {
2349 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2350 goto end;
2351 }
2352
2353 /* Handle other stream */
2354 continue;
2355 }
2356
2357 rcu_read_lock();
2358 {
2359 uint64_t tmp_id = (uint64_t) pollfd;
2360
2361 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2362 }
2363 node = lttng_ht_iter_get_node_u64(&iter);
2364 assert(node);
2365
2366 stream = caa_container_of(node, struct lttng_consumer_stream,
2367 node);
2368
2369 if (revents & (LPOLLIN | LPOLLPRI)) {
2370 /* Get the data out of the metadata file descriptor */
2371 DBG("Metadata available on fd %d", pollfd);
2372 assert(stream->wait_fd == pollfd);
2373
2374 do {
2375 health_code_update();
2376
2377 len = ctx->on_buffer_ready(stream, ctx);
2378 /*
2379 * We don't check the return value here since if we get
2380 * a negative len, it means an error occurred thus we
2381 * simply remove it from the poll set and free the
2382 * stream.
2383 */
2384 } while (len > 0);
2385
2386 /* It's ok to have an unavailable sub-buffer */
2387 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2388 /* Clean up stream from consumer and free it. */
2389 lttng_poll_del(&events, stream->wait_fd);
2390 consumer_del_metadata_stream(stream, metadata_ht);
2391 }
2392 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2393 DBG("Metadata fd %d is hup|err.", pollfd);
2394 if (!stream->hangup_flush_done
2395 && (consumer_data.type == LTTNG_CONSUMER32_UST
2396 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2397 DBG("Attempting to flush and consume the UST buffers");
2398 lttng_ustconsumer_on_stream_hangup(stream);
2399
2400 /* We just flushed the stream now read it. */
2401 do {
2402 health_code_update();
2403
2404 len = ctx->on_buffer_ready(stream, ctx);
2405 /*
2406 * We don't check the return value here since if we get
2407 * a negative len, it means an error occurred thus we
2408 * simply remove it from the poll set and free the
2409 * stream.
2410 */
2411 } while (len > 0);
2412 }
2413
2414 lttng_poll_del(&events, stream->wait_fd);
2415 /*
2416 * This call update the channel states, closes file descriptors
2417 * and securely free the stream.
2418 */
2419 consumer_del_metadata_stream(stream, metadata_ht);
2420 } else {
2421 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2422 rcu_read_unlock();
2423 goto end;
2424 }
2425 /* Release RCU lock for the stream looked up */
2426 rcu_read_unlock();
2427 }
2428 }
2429
2430 /* All is OK */
2431 err = 0;
2432 end:
2433 DBG("Metadata poll thread exiting");
2434
2435 lttng_poll_clean(&events);
2436 end_poll:
2437 error_testpoint:
2438 if (err) {
2439 health_error();
2440 ERR("Health error occurred in %s", __func__);
2441 }
2442 health_unregister(health_consumerd);
2443 rcu_unregister_thread();
2444 return NULL;
2445 }
2446
2447 /*
2448 * This thread polls the fds in the set to consume the data and write
2449 * it to tracefile if necessary.
2450 */
2451 void *consumer_thread_data_poll(void *data)
2452 {
2453 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2454 struct pollfd *pollfd = NULL;
2455 /* local view of the streams */
2456 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2457 /* local view of consumer_data.fds_count */
2458 int nb_fd = 0;
2459 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2460 int nb_inactive_fd = 0;
2461 struct lttng_consumer_local_data *ctx = data;
2462 ssize_t len;
2463
2464 rcu_register_thread();
2465
2466 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2467
2468 if (testpoint(consumerd_thread_data)) {
2469 goto error_testpoint;
2470 }
2471
2472 health_code_update();
2473
2474 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2475 if (local_stream == NULL) {
2476 PERROR("local_stream malloc");
2477 goto end;
2478 }
2479
2480 while (1) {
2481 health_code_update();
2482
2483 high_prio = 0;
2484 num_hup = 0;
2485
2486 /*
2487 * the fds set has been updated, we need to update our
2488 * local array as well
2489 */
2490 pthread_mutex_lock(&consumer_data.lock);
2491 if (consumer_data.need_update) {
2492 free(pollfd);
2493 pollfd = NULL;
2494
2495 free(local_stream);
2496 local_stream = NULL;
2497
2498 /*
2499 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2500 * wake up pipe.
2501 */
2502 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2503 if (pollfd == NULL) {
2504 PERROR("pollfd malloc");
2505 pthread_mutex_unlock(&consumer_data.lock);
2506 goto end;
2507 }
2508
2509 local_stream = zmalloc((consumer_data.stream_count + 2) *
2510 sizeof(struct lttng_consumer_stream *));
2511 if (local_stream == NULL) {
2512 PERROR("local_stream malloc");
2513 pthread_mutex_unlock(&consumer_data.lock);
2514 goto end;
2515 }
2516 ret = update_poll_array(ctx, &pollfd, local_stream,
2517 data_ht, &nb_inactive_fd);
2518 if (ret < 0) {
2519 ERR("Error in allocating pollfd or local_outfds");
2520 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2521 pthread_mutex_unlock(&consumer_data.lock);
2522 goto end;
2523 }
2524 nb_fd = ret;
2525 consumer_data.need_update = 0;
2526 }
2527 pthread_mutex_unlock(&consumer_data.lock);
2528
2529 /* No FDs and consumer_quit, consumer_cleanup the thread */
2530 if (nb_fd == 0 && consumer_quit == 1 && nb_inactive_fd == 0) {
2531 err = 0; /* All is OK */
2532 goto end;
2533 }
2534 /* poll on the array of fds */
2535 restart:
2536 DBG("polling on %d fd", nb_fd + 2);
2537 health_poll_entry();
2538 num_rdy = poll(pollfd, nb_fd + 2, -1);
2539 health_poll_exit();
2540 DBG("poll num_rdy : %d", num_rdy);
2541 if (num_rdy == -1) {
2542 /*
2543 * Restart interrupted system call.
2544 */
2545 if (errno == EINTR) {
2546 goto restart;
2547 }
2548 PERROR("Poll error");
2549 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2550 goto end;
2551 } else if (num_rdy == 0) {
2552 DBG("Polling thread timed out");
2553 goto end;
2554 }
2555
2556 /*
2557 * If the consumer_data_pipe triggered poll go directly to the
2558 * beginning of the loop to update the array. We want to prioritize
2559 * array update over low-priority reads.
2560 */
2561 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2562 ssize_t pipe_readlen;
2563
2564 DBG("consumer_data_pipe wake up");
2565 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2566 &new_stream, sizeof(new_stream));
2567 if (pipe_readlen < sizeof(new_stream)) {
2568 PERROR("Consumer data pipe");
2569 /* Continue so we can at least handle the current stream(s). */
2570 continue;
2571 }
2572
2573 /*
2574 * If the stream is NULL, just ignore it. It's also possible that
2575 * the sessiond poll thread changed the consumer_quit state and is
2576 * waking us up to test it.
2577 */
2578 if (new_stream == NULL) {
2579 validate_endpoint_status_data_stream();
2580 continue;
2581 }
2582
2583 /* Continue to update the local streams and handle prio ones */
2584 continue;
2585 }
2586
2587 /* Handle wakeup pipe. */
2588 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2589 char dummy;
2590 ssize_t pipe_readlen;
2591
2592 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2593 sizeof(dummy));
2594 if (pipe_readlen < 0) {
2595 PERROR("Consumer data wakeup pipe");
2596 }
2597 /* We've been awakened to handle stream(s). */
2598 ctx->has_wakeup = 0;
2599 }
2600
2601 /* Take care of high priority channels first. */
2602 for (i = 0; i < nb_fd; i++) {
2603 health_code_update();
2604
2605 if (local_stream[i] == NULL) {
2606 continue;
2607 }
2608 if (pollfd[i].revents & POLLPRI) {
2609 DBG("Urgent read on fd %d", pollfd[i].fd);
2610 high_prio = 1;
2611 len = ctx->on_buffer_ready(local_stream[i], ctx);
2612 /* it's ok to have an unavailable sub-buffer */
2613 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2614 /* Clean the stream and free it. */
2615 consumer_del_stream(local_stream[i], data_ht);
2616 local_stream[i] = NULL;
2617 } else if (len > 0) {
2618 local_stream[i]->data_read = 1;
2619 }
2620 }
2621 }
2622
2623 /*
2624 * If we read high prio channel in this loop, try again
2625 * for more high prio data.
2626 */
2627 if (high_prio) {
2628 continue;
2629 }
2630
2631 /* Take care of low priority channels. */
2632 for (i = 0; i < nb_fd; i++) {
2633 health_code_update();
2634
2635 if (local_stream[i] == NULL) {
2636 continue;
2637 }
2638 if ((pollfd[i].revents & POLLIN) ||
2639 local_stream[i]->hangup_flush_done ||
2640 local_stream[i]->has_data) {
2641 DBG("Normal read on fd %d", pollfd[i].fd);
2642 len = ctx->on_buffer_ready(local_stream[i], ctx);
2643 /* it's ok to have an unavailable sub-buffer */
2644 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2645 /* Clean the stream and free it. */
2646 consumer_del_stream(local_stream[i], data_ht);
2647 local_stream[i] = NULL;
2648 } else if (len > 0) {
2649 local_stream[i]->data_read = 1;
2650 }
2651 }
2652 }
2653
2654 /* Handle hangup and errors */
2655 for (i = 0; i < nb_fd; i++) {
2656 health_code_update();
2657
2658 if (local_stream[i] == NULL) {
2659 continue;
2660 }
2661 if (!local_stream[i]->hangup_flush_done
2662 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2663 && (consumer_data.type == LTTNG_CONSUMER32_UST
2664 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2665 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2666 pollfd[i].fd);
2667 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2668 /* Attempt read again, for the data we just flushed. */
2669 local_stream[i]->data_read = 1;
2670 }
2671 /*
2672 * If the poll flag is HUP/ERR/NVAL and we have
2673 * read no data in this pass, we can remove the
2674 * stream from its hash table.
2675 */
2676 if ((pollfd[i].revents & POLLHUP)) {
2677 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2678 if (!local_stream[i]->data_read) {
2679 consumer_del_stream(local_stream[i], data_ht);
2680 local_stream[i] = NULL;
2681 num_hup++;
2682 }
2683 } else if (pollfd[i].revents & POLLERR) {
2684 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2685 if (!local_stream[i]->data_read) {
2686 consumer_del_stream(local_stream[i], data_ht);
2687 local_stream[i] = NULL;
2688 num_hup++;
2689 }
2690 } else if (pollfd[i].revents & POLLNVAL) {
2691 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2692 if (!local_stream[i]->data_read) {
2693 consumer_del_stream(local_stream[i], data_ht);
2694 local_stream[i] = NULL;
2695 num_hup++;
2696 }
2697 }
2698 if (local_stream[i] != NULL) {
2699 local_stream[i]->data_read = 0;
2700 }
2701 }
2702 }
2703 /* All is OK */
2704 err = 0;
2705 end:
2706 DBG("polling thread exiting");
2707 free(pollfd);
2708 free(local_stream);
2709
2710 /*
2711 * Close the write side of the pipe so epoll_wait() in
2712 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2713 * read side of the pipe. If we close them both, epoll_wait strangely does
2714 * not return and could create a endless wait period if the pipe is the
2715 * only tracked fd in the poll set. The thread will take care of closing
2716 * the read side.
2717 */
2718 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2719
2720 error_testpoint:
2721 if (err) {
2722 health_error();
2723 ERR("Health error occurred in %s", __func__);
2724 }
2725 health_unregister(health_consumerd);
2726
2727 rcu_unregister_thread();
2728 return NULL;
2729 }
2730
2731 /*
2732 * Close wake-up end of each stream belonging to the channel. This will
2733 * allow the poll() on the stream read-side to detect when the
2734 * write-side (application) finally closes them.
2735 */
2736 static
2737 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2738 {
2739 struct lttng_ht *ht;
2740 struct lttng_consumer_stream *stream;
2741 struct lttng_ht_iter iter;
2742
2743 ht = consumer_data.stream_per_chan_id_ht;
2744
2745 rcu_read_lock();
2746 cds_lfht_for_each_entry_duplicate(ht->ht,
2747 ht->hash_fct(&channel->key, lttng_ht_seed),
2748 ht->match_fct, &channel->key,
2749 &iter.iter, stream, node_channel_id.node) {
2750 /*
2751 * Protect against teardown with mutex.
2752 */
2753 pthread_mutex_lock(&stream->lock);
2754 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2755 goto next;
2756 }
2757 switch (consumer_data.type) {
2758 case LTTNG_CONSUMER_KERNEL:
2759 break;
2760 case LTTNG_CONSUMER32_UST:
2761 case LTTNG_CONSUMER64_UST:
2762 if (stream->metadata_flag) {
2763 /* Safe and protected by the stream lock. */
2764 lttng_ustconsumer_close_metadata(stream->chan);
2765 } else {
2766 /*
2767 * Note: a mutex is taken internally within
2768 * liblttng-ust-ctl to protect timer wakeup_fd
2769 * use from concurrent close.
2770 */
2771 lttng_ustconsumer_close_stream_wakeup(stream);
2772 }
2773 break;
2774 default:
2775 ERR("Unknown consumer_data type");
2776 assert(0);
2777 }
2778 next:
2779 pthread_mutex_unlock(&stream->lock);
2780 }
2781 rcu_read_unlock();
2782 }
2783
2784 static void destroy_channel_ht(struct lttng_ht *ht)
2785 {
2786 struct lttng_ht_iter iter;
2787 struct lttng_consumer_channel *channel;
2788 int ret;
2789
2790 if (ht == NULL) {
2791 return;
2792 }
2793
2794 rcu_read_lock();
2795 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2796 ret = lttng_ht_del(ht, &iter);
2797 assert(ret != 0);
2798 }
2799 rcu_read_unlock();
2800
2801 lttng_ht_destroy(ht);
2802 }
2803
2804 /*
2805 * This thread polls the channel fds to detect when they are being
2806 * closed. It closes all related streams if the channel is detected as
2807 * closed. It is currently only used as a shim layer for UST because the
2808 * consumerd needs to keep the per-stream wakeup end of pipes open for
2809 * periodical flush.
2810 */
2811 void *consumer_thread_channel_poll(void *data)
2812 {
2813 int ret, i, pollfd, err = -1;
2814 uint32_t revents, nb_fd;
2815 struct lttng_consumer_channel *chan = NULL;
2816 struct lttng_ht_iter iter;
2817 struct lttng_ht_node_u64 *node;
2818 struct lttng_poll_event events;
2819 struct lttng_consumer_local_data *ctx = data;
2820 struct lttng_ht *channel_ht;
2821
2822 rcu_register_thread();
2823
2824 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2825
2826 if (testpoint(consumerd_thread_channel)) {
2827 goto error_testpoint;
2828 }
2829
2830 health_code_update();
2831
2832 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2833 if (!channel_ht) {
2834 /* ENOMEM at this point. Better to bail out. */
2835 goto end_ht;
2836 }
2837
2838 DBG("Thread channel poll started");
2839
2840 /* Size is set to 1 for the consumer_channel pipe */
2841 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2842 if (ret < 0) {
2843 ERR("Poll set creation failed");
2844 goto end_poll;
2845 }
2846
2847 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2848 if (ret < 0) {
2849 goto end;
2850 }
2851
2852 /* Main loop */
2853 DBG("Channel main loop started");
2854
2855 while (1) {
2856 restart:
2857 health_code_update();
2858 DBG("Channel poll wait");
2859 health_poll_entry();
2860 ret = lttng_poll_wait(&events, -1);
2861 DBG("Channel poll return from wait with %d fd(s)",
2862 LTTNG_POLL_GETNB(&events));
2863 health_poll_exit();
2864 DBG("Channel event caught in thread");
2865 if (ret < 0) {
2866 if (errno == EINTR) {
2867 ERR("Poll EINTR caught");
2868 goto restart;
2869 }
2870 if (LTTNG_POLL_GETNB(&events) == 0) {
2871 err = 0; /* All is OK */
2872 }
2873 goto end;
2874 }
2875
2876 nb_fd = ret;
2877
2878 /* From here, the event is a channel wait fd */
2879 for (i = 0; i < nb_fd; i++) {
2880 health_code_update();
2881
2882 revents = LTTNG_POLL_GETEV(&events, i);
2883 pollfd = LTTNG_POLL_GETFD(&events, i);
2884
2885 if (!revents) {
2886 /* No activity for this FD (poll implementation). */
2887 continue;
2888 }
2889
2890 if (pollfd == ctx->consumer_channel_pipe[0]) {
2891 if (revents & LPOLLIN) {
2892 enum consumer_channel_action action;
2893 uint64_t key;
2894
2895 ret = read_channel_pipe(ctx, &chan, &key, &action);
2896 if (ret <= 0) {
2897 if (ret < 0) {
2898 ERR("Error reading channel pipe");
2899 }
2900 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2901 continue;
2902 }
2903
2904 switch (action) {
2905 case CONSUMER_CHANNEL_ADD:
2906 DBG("Adding channel %d to poll set",
2907 chan->wait_fd);
2908
2909 lttng_ht_node_init_u64(&chan->wait_fd_node,
2910 chan->wait_fd);
2911 rcu_read_lock();
2912 lttng_ht_add_unique_u64(channel_ht,
2913 &chan->wait_fd_node);
2914 rcu_read_unlock();
2915 /* Add channel to the global poll events list */
2916 lttng_poll_add(&events, chan->wait_fd,
2917 LPOLLERR | LPOLLHUP);
2918 break;
2919 case CONSUMER_CHANNEL_DEL:
2920 {
2921 /*
2922 * This command should never be called if the channel
2923 * has streams monitored by either the data or metadata
2924 * thread. The consumer only notify this thread with a
2925 * channel del. command if it receives a destroy
2926 * channel command from the session daemon that send it
2927 * if a command prior to the GET_CHANNEL failed.
2928 */
2929
2930 rcu_read_lock();
2931 chan = consumer_find_channel(key);
2932 if (!chan) {
2933 rcu_read_unlock();
2934 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2935 break;
2936 }
2937 lttng_poll_del(&events, chan->wait_fd);
2938 iter.iter.node = &chan->wait_fd_node.node;
2939 ret = lttng_ht_del(channel_ht, &iter);
2940 assert(ret == 0);
2941
2942 switch (consumer_data.type) {
2943 case LTTNG_CONSUMER_KERNEL:
2944 break;
2945 case LTTNG_CONSUMER32_UST:
2946 case LTTNG_CONSUMER64_UST:
2947 health_code_update();
2948 /* Destroy streams that might have been left in the stream list. */
2949 clean_channel_stream_list(chan);
2950 break;
2951 default:
2952 ERR("Unknown consumer_data type");
2953 assert(0);
2954 }
2955
2956 /*
2957 * Release our own refcount. Force channel deletion even if
2958 * streams were not initialized.
2959 */
2960 if (!uatomic_sub_return(&chan->refcount, 1)) {
2961 consumer_del_channel(chan);
2962 }
2963 rcu_read_unlock();
2964 goto restart;
2965 }
2966 case CONSUMER_CHANNEL_QUIT:
2967 /*
2968 * Remove the pipe from the poll set and continue the loop
2969 * since their might be data to consume.
2970 */
2971 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2972 continue;
2973 default:
2974 ERR("Unknown action");
2975 break;
2976 }
2977 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2978 DBG("Channel thread pipe hung up");
2979 /*
2980 * Remove the pipe from the poll set and continue the loop
2981 * since their might be data to consume.
2982 */
2983 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2984 continue;
2985 } else {
2986 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2987 goto end;
2988 }
2989
2990 /* Handle other stream */
2991 continue;
2992 }
2993
2994 rcu_read_lock();
2995 {
2996 uint64_t tmp_id = (uint64_t) pollfd;
2997
2998 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2999 }
3000 node = lttng_ht_iter_get_node_u64(&iter);
3001 assert(node);
3002
3003 chan = caa_container_of(node, struct lttng_consumer_channel,
3004 wait_fd_node);
3005
3006 /* Check for error event */
3007 if (revents & (LPOLLERR | LPOLLHUP)) {
3008 DBG("Channel fd %d is hup|err.", pollfd);
3009
3010 lttng_poll_del(&events, chan->wait_fd);
3011 ret = lttng_ht_del(channel_ht, &iter);
3012 assert(ret == 0);
3013
3014 /*
3015 * This will close the wait fd for each stream associated to
3016 * this channel AND monitored by the data/metadata thread thus
3017 * will be clean by the right thread.
3018 */
3019 consumer_close_channel_streams(chan);
3020
3021 /* Release our own refcount */
3022 if (!uatomic_sub_return(&chan->refcount, 1)
3023 && !uatomic_read(&chan->nb_init_stream_left)) {
3024 consumer_del_channel(chan);
3025 }
3026 } else {
3027 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3028 rcu_read_unlock();
3029 goto end;
3030 }
3031
3032 /* Release RCU lock for the channel looked up */
3033 rcu_read_unlock();
3034 }
3035 }
3036
3037 /* All is OK */
3038 err = 0;
3039 end:
3040 lttng_poll_clean(&events);
3041 end_poll:
3042 destroy_channel_ht(channel_ht);
3043 end_ht:
3044 error_testpoint:
3045 DBG("Channel poll thread exiting");
3046 if (err) {
3047 health_error();
3048 ERR("Health error occurred in %s", __func__);
3049 }
3050 health_unregister(health_consumerd);
3051 rcu_unregister_thread();
3052 return NULL;
3053 }
3054
3055 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3056 struct pollfd *sockpoll, int client_socket)
3057 {
3058 int ret;
3059
3060 assert(ctx);
3061 assert(sockpoll);
3062
3063 ret = lttng_consumer_poll_socket(sockpoll);
3064 if (ret) {
3065 goto error;
3066 }
3067 DBG("Metadata connection on client_socket");
3068
3069 /* Blocking call, waiting for transmission */
3070 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3071 if (ctx->consumer_metadata_socket < 0) {
3072 WARN("On accept metadata");
3073 ret = -1;
3074 goto error;
3075 }
3076 ret = 0;
3077
3078 error:
3079 return ret;
3080 }
3081
3082 /*
3083 * This thread listens on the consumerd socket and receives the file
3084 * descriptors from the session daemon.
3085 */
3086 void *consumer_thread_sessiond_poll(void *data)
3087 {
3088 int sock = -1, client_socket, ret, err = -1;
3089 /*
3090 * structure to poll for incoming data on communication socket avoids
3091 * making blocking sockets.
3092 */
3093 struct pollfd consumer_sockpoll[2];
3094 struct lttng_consumer_local_data *ctx = data;
3095
3096 rcu_register_thread();
3097
3098 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3099
3100 if (testpoint(consumerd_thread_sessiond)) {
3101 goto error_testpoint;
3102 }
3103
3104 health_code_update();
3105
3106 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3107 unlink(ctx->consumer_command_sock_path);
3108 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3109 if (client_socket < 0) {
3110 ERR("Cannot create command socket");
3111 goto end;
3112 }
3113
3114 ret = lttcomm_listen_unix_sock(client_socket);
3115 if (ret < 0) {
3116 goto end;
3117 }
3118
3119 DBG("Sending ready command to lttng-sessiond");
3120 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3121 /* return < 0 on error, but == 0 is not fatal */
3122 if (ret < 0) {
3123 ERR("Error sending ready command to lttng-sessiond");
3124 goto end;
3125 }
3126
3127 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3128 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3129 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3130 consumer_sockpoll[1].fd = client_socket;
3131 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3132
3133 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3134 if (ret) {
3135 if (ret > 0) {
3136 /* should exit */
3137 err = 0;
3138 }
3139 goto end;
3140 }
3141 DBG("Connection on client_socket");
3142
3143 /* Blocking call, waiting for transmission */
3144 sock = lttcomm_accept_unix_sock(client_socket);
3145 if (sock < 0) {
3146 WARN("On accept");
3147 goto end;
3148 }
3149
3150 /*
3151 * Setup metadata socket which is the second socket connection on the
3152 * command unix socket.
3153 */
3154 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3155 if (ret) {
3156 if (ret > 0) {
3157 /* should exit */
3158 err = 0;
3159 }
3160 goto end;
3161 }
3162
3163 /* This socket is not useful anymore. */
3164 ret = close(client_socket);
3165 if (ret < 0) {
3166 PERROR("close client_socket");
3167 }
3168 client_socket = -1;
3169
3170 /* update the polling structure to poll on the established socket */
3171 consumer_sockpoll[1].fd = sock;
3172 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3173
3174 while (1) {
3175 health_code_update();
3176
3177 health_poll_entry();
3178 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3179 health_poll_exit();
3180 if (ret) {
3181 if (ret > 0) {
3182 /* should exit */
3183 err = 0;
3184 }
3185 goto end;
3186 }
3187 DBG("Incoming command on sock");
3188 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3189 if (ret <= 0) {
3190 /*
3191 * This could simply be a session daemon quitting. Don't output
3192 * ERR() here.
3193 */
3194 DBG("Communication interrupted on command socket");
3195 err = 0;
3196 goto end;
3197 }
3198 if (consumer_quit) {
3199 DBG("consumer_thread_receive_fds received quit from signal");
3200 err = 0; /* All is OK */
3201 goto end;
3202 }
3203 DBG("received command on sock");
3204 }
3205 /* All is OK */
3206 err = 0;
3207
3208 end:
3209 DBG("Consumer thread sessiond poll exiting");
3210
3211 /*
3212 * Close metadata streams since the producer is the session daemon which
3213 * just died.
3214 *
3215 * NOTE: for now, this only applies to the UST tracer.
3216 */
3217 lttng_consumer_close_all_metadata();
3218
3219 /*
3220 * when all fds have hung up, the polling thread
3221 * can exit cleanly
3222 */
3223 consumer_quit = 1;
3224
3225 /*
3226 * Notify the data poll thread to poll back again and test the
3227 * consumer_quit state that we just set so to quit gracefully.
3228 */
3229 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3230
3231 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3232
3233 notify_health_quit_pipe(health_quit_pipe);
3234
3235 /* Cleaning up possibly open sockets. */
3236 if (sock >= 0) {
3237 ret = close(sock);
3238 if (ret < 0) {
3239 PERROR("close sock sessiond poll");
3240 }
3241 }
3242 if (client_socket >= 0) {
3243 ret = close(client_socket);
3244 if (ret < 0) {
3245 PERROR("close client_socket sessiond poll");
3246 }
3247 }
3248
3249 error_testpoint:
3250 if (err) {
3251 health_error();
3252 ERR("Health error occurred in %s", __func__);
3253 }
3254 health_unregister(health_consumerd);
3255
3256 rcu_unregister_thread();
3257 return NULL;
3258 }
3259
3260 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3261 struct lttng_consumer_local_data *ctx)
3262 {
3263 ssize_t ret;
3264
3265 pthread_mutex_lock(&stream->lock);
3266 if (stream->metadata_flag) {
3267 pthread_mutex_lock(&stream->metadata_rdv_lock);
3268 }
3269
3270 switch (consumer_data.type) {
3271 case LTTNG_CONSUMER_KERNEL:
3272 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3273 break;
3274 case LTTNG_CONSUMER32_UST:
3275 case LTTNG_CONSUMER64_UST:
3276 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3277 break;
3278 default:
3279 ERR("Unknown consumer_data type");
3280 assert(0);
3281 ret = -ENOSYS;
3282 break;
3283 }
3284
3285 if (stream->metadata_flag) {
3286 pthread_cond_broadcast(&stream->metadata_rdv);
3287 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3288 }
3289 pthread_mutex_unlock(&stream->lock);
3290 return ret;
3291 }
3292
3293 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3294 {
3295 switch (consumer_data.type) {
3296 case LTTNG_CONSUMER_KERNEL:
3297 return lttng_kconsumer_on_recv_stream(stream);
3298 case LTTNG_CONSUMER32_UST:
3299 case LTTNG_CONSUMER64_UST:
3300 return lttng_ustconsumer_on_recv_stream(stream);
3301 default:
3302 ERR("Unknown consumer_data type");
3303 assert(0);
3304 return -ENOSYS;
3305 }
3306 }
3307
3308 /*
3309 * Allocate and set consumer data hash tables.
3310 */
3311 int lttng_consumer_init(void)
3312 {
3313 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3314 if (!consumer_data.channel_ht) {
3315 goto error;
3316 }
3317
3318 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3319 if (!consumer_data.relayd_ht) {
3320 goto error;
3321 }
3322
3323 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3324 if (!consumer_data.stream_list_ht) {
3325 goto error;
3326 }
3327
3328 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3329 if (!consumer_data.stream_per_chan_id_ht) {
3330 goto error;
3331 }
3332
3333 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3334 if (!data_ht) {
3335 goto error;
3336 }
3337
3338 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3339 if (!metadata_ht) {
3340 goto error;
3341 }
3342
3343 return 0;
3344
3345 error:
3346 return -1;
3347 }
3348
3349 /*
3350 * Process the ADD_RELAYD command receive by a consumer.
3351 *
3352 * This will create a relayd socket pair and add it to the relayd hash table.
3353 * The caller MUST acquire a RCU read side lock before calling it.
3354 */
3355 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3356 struct lttng_consumer_local_data *ctx, int sock,
3357 struct pollfd *consumer_sockpoll,
3358 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3359 uint64_t relayd_session_id)
3360 {
3361 int fd = -1, ret = -1, relayd_created = 0;
3362 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3363 struct consumer_relayd_sock_pair *relayd = NULL;
3364
3365 assert(ctx);
3366 assert(relayd_sock);
3367
3368 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3369
3370 /* Get relayd reference if exists. */
3371 relayd = consumer_find_relayd(net_seq_idx);
3372 if (relayd == NULL) {
3373 assert(sock_type == LTTNG_STREAM_CONTROL);
3374 /* Not found. Allocate one. */
3375 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3376 if (relayd == NULL) {
3377 ret = -ENOMEM;
3378 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3379 goto error;
3380 } else {
3381 relayd->sessiond_session_id = sessiond_id;
3382 relayd_created = 1;
3383 }
3384
3385 /*
3386 * This code path MUST continue to the consumer send status message to
3387 * we can notify the session daemon and continue our work without
3388 * killing everything.
3389 */
3390 } else {
3391 /*
3392 * relayd key should never be found for control socket.
3393 */
3394 assert(sock_type != LTTNG_STREAM_CONTROL);
3395 }
3396
3397 /* First send a status message before receiving the fds. */
3398 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3399 if (ret < 0) {
3400 /* Somehow, the session daemon is not responding anymore. */
3401 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3402 goto error_nosignal;
3403 }
3404
3405 /* Poll on consumer socket. */
3406 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3407 if (ret) {
3408 /* Needing to exit in the middle of a command: error. */
3409 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3410 ret = -EINTR;
3411 goto error_nosignal;
3412 }
3413
3414 /* Get relayd socket from session daemon */
3415 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3416 if (ret != sizeof(fd)) {
3417 ret = -1;
3418 fd = -1; /* Just in case it gets set with an invalid value. */
3419
3420 /*
3421 * Failing to receive FDs might indicate a major problem such as
3422 * reaching a fd limit during the receive where the kernel returns a
3423 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3424 * don't take any chances and stop everything.
3425 *
3426 * XXX: Feature request #558 will fix that and avoid this possible
3427 * issue when reaching the fd limit.
3428 */
3429 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3430 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3431 goto error;
3432 }
3433
3434 /* Copy socket information and received FD */
3435 switch (sock_type) {
3436 case LTTNG_STREAM_CONTROL:
3437 /* Copy received lttcomm socket */
3438 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3439 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3440 /* Handle create_sock error. */
3441 if (ret < 0) {
3442 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3443 goto error;
3444 }
3445 /*
3446 * Close the socket created internally by
3447 * lttcomm_create_sock, so we can replace it by the one
3448 * received from sessiond.
3449 */
3450 if (close(relayd->control_sock.sock.fd)) {
3451 PERROR("close");
3452 }
3453
3454 /* Assign new file descriptor */
3455 relayd->control_sock.sock.fd = fd;
3456 fd = -1; /* For error path */
3457 /* Assign version values. */
3458 relayd->control_sock.major = relayd_sock->major;
3459 relayd->control_sock.minor = relayd_sock->minor;
3460
3461 relayd->relayd_session_id = relayd_session_id;
3462
3463 break;
3464 case LTTNG_STREAM_DATA:
3465 /* Copy received lttcomm socket */
3466 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3467 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3468 /* Handle create_sock error. */
3469 if (ret < 0) {
3470 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3471 goto error;
3472 }
3473 /*
3474 * Close the socket created internally by
3475 * lttcomm_create_sock, so we can replace it by the one
3476 * received from sessiond.
3477 */
3478 if (close(relayd->data_sock.sock.fd)) {
3479 PERROR("close");
3480 }
3481
3482 /* Assign new file descriptor */
3483 relayd->data_sock.sock.fd = fd;
3484 fd = -1; /* for eventual error paths */
3485 /* Assign version values. */
3486 relayd->data_sock.major = relayd_sock->major;
3487 relayd->data_sock.minor = relayd_sock->minor;
3488 break;
3489 default:
3490 ERR("Unknown relayd socket type (%d)", sock_type);
3491 ret = -1;
3492 ret_code = LTTCOMM_CONSUMERD_FATAL;
3493 goto error;
3494 }
3495
3496 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3497 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3498 relayd->net_seq_idx, fd);
3499
3500 /* We successfully added the socket. Send status back. */
3501 ret = consumer_send_status_msg(sock, ret_code);
3502 if (ret < 0) {
3503 /* Somehow, the session daemon is not responding anymore. */
3504 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3505 goto error_nosignal;
3506 }
3507
3508 /*
3509 * Add relayd socket pair to consumer data hashtable. If object already
3510 * exists or on error, the function gracefully returns.
3511 */
3512 add_relayd(relayd);
3513
3514 /* All good! */
3515 return 0;
3516
3517 error:
3518 if (consumer_send_status_msg(sock, ret_code) < 0) {
3519 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3520 }
3521
3522 error_nosignal:
3523 /* Close received socket if valid. */
3524 if (fd >= 0) {
3525 if (close(fd)) {
3526 PERROR("close received socket");
3527 }
3528 }
3529
3530 if (relayd_created) {
3531 free(relayd);
3532 }
3533
3534 return ret;
3535 }
3536
3537 /*
3538 * Try to lock the stream mutex.
3539 *
3540 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3541 */
3542 static int stream_try_lock(struct lttng_consumer_stream *stream)
3543 {
3544 int ret;
3545
3546 assert(stream);
3547
3548 /*
3549 * Try to lock the stream mutex. On failure, we know that the stream is
3550 * being used else where hence there is data still being extracted.
3551 */
3552 ret = pthread_mutex_trylock(&stream->lock);
3553 if (ret) {
3554 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3555 ret = 0;
3556 goto end;
3557 }
3558
3559 ret = 1;
3560
3561 end:
3562 return ret;
3563 }
3564
3565 /*
3566 * Search for a relayd associated to the session id and return the reference.
3567 *
3568 * A rcu read side lock MUST be acquire before calling this function and locked
3569 * until the relayd object is no longer necessary.
3570 */
3571 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3572 {
3573 struct lttng_ht_iter iter;
3574 struct consumer_relayd_sock_pair *relayd = NULL;
3575
3576 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3577 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3578 node.node) {
3579 /*
3580 * Check by sessiond id which is unique here where the relayd session
3581 * id might not be when having multiple relayd.
3582 */
3583 if (relayd->sessiond_session_id == id) {
3584 /* Found the relayd. There can be only one per id. */
3585 goto found;
3586 }
3587 }
3588
3589 return NULL;
3590
3591 found:
3592 return relayd;
3593 }
3594
3595 /*
3596 * Check if for a given session id there is still data needed to be extract
3597 * from the buffers.
3598 *
3599 * Return 1 if data is pending or else 0 meaning ready to be read.
3600 */
3601 int consumer_data_pending(uint64_t id)
3602 {
3603 int ret;
3604 struct lttng_ht_iter iter;
3605 struct lttng_ht *ht;
3606 struct lttng_consumer_stream *stream;
3607 struct consumer_relayd_sock_pair *relayd = NULL;
3608 int (*data_pending)(struct lttng_consumer_stream *);
3609
3610 DBG("Consumer data pending command on session id %" PRIu64, id);
3611
3612 rcu_read_lock();
3613 pthread_mutex_lock(&consumer_data.lock);
3614
3615 switch (consumer_data.type) {
3616 case LTTNG_CONSUMER_KERNEL:
3617 data_pending = lttng_kconsumer_data_pending;
3618 break;
3619 case LTTNG_CONSUMER32_UST:
3620 case LTTNG_CONSUMER64_UST:
3621 data_pending = lttng_ustconsumer_data_pending;
3622 break;
3623 default:
3624 ERR("Unknown consumer data type");
3625 assert(0);
3626 }
3627
3628 /* Ease our life a bit */
3629 ht = consumer_data.stream_list_ht;
3630
3631 relayd = find_relayd_by_session_id(id);
3632 if (relayd) {
3633 /* Send init command for data pending. */
3634 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3635 ret = relayd_begin_data_pending(&relayd->control_sock,
3636 relayd->relayd_session_id);
3637 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3638 if (ret < 0) {
3639 /* Communication error thus the relayd so no data pending. */
3640 goto data_not_pending;
3641 }
3642 }
3643
3644 cds_lfht_for_each_entry_duplicate(ht->ht,
3645 ht->hash_fct(&id, lttng_ht_seed),
3646 ht->match_fct, &id,
3647 &iter.iter, stream, node_session_id.node) {
3648 /* If this call fails, the stream is being used hence data pending. */
3649 ret = stream_try_lock(stream);
3650 if (!ret) {
3651 goto data_pending;
3652 }
3653
3654 /*
3655 * A removed node from the hash table indicates that the stream has
3656 * been deleted thus having a guarantee that the buffers are closed
3657 * on the consumer side. However, data can still be transmitted
3658 * over the network so don't skip the relayd check.
3659 */
3660 ret = cds_lfht_is_node_deleted(&stream->node.node);
3661 if (!ret) {
3662 /* Check the stream if there is data in the buffers. */
3663 ret = data_pending(stream);
3664 if (ret == 1) {
3665 pthread_mutex_unlock(&stream->lock);
3666 goto data_pending;
3667 }
3668 }
3669
3670 /* Relayd check */
3671 if (relayd) {
3672 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3673 if (stream->metadata_flag) {
3674 ret = relayd_quiescent_control(&relayd->control_sock,
3675 stream->relayd_stream_id);
3676 } else {
3677 ret = relayd_data_pending(&relayd->control_sock,
3678 stream->relayd_stream_id,
3679 stream->next_net_seq_num - 1);
3680 }
3681 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3682 if (ret == 1) {
3683 pthread_mutex_unlock(&stream->lock);
3684 goto data_pending;
3685 }
3686 }
3687 pthread_mutex_unlock(&stream->lock);
3688 }
3689
3690 if (relayd) {
3691 unsigned int is_data_inflight = 0;
3692
3693 /* Send init command for data pending. */
3694 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3695 ret = relayd_end_data_pending(&relayd->control_sock,
3696 relayd->relayd_session_id, &is_data_inflight);
3697 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3698 if (ret < 0) {
3699 goto data_not_pending;
3700 }
3701 if (is_data_inflight) {
3702 goto data_pending;
3703 }
3704 }
3705
3706 /*
3707 * Finding _no_ node in the hash table and no inflight data means that the
3708 * stream(s) have been removed thus data is guaranteed to be available for
3709 * analysis from the trace files.
3710 */
3711
3712 data_not_pending:
3713 /* Data is available to be read by a viewer. */
3714 pthread_mutex_unlock(&consumer_data.lock);
3715 rcu_read_unlock();
3716 return 0;
3717
3718 data_pending:
3719 /* Data is still being extracted from buffers. */
3720 pthread_mutex_unlock(&consumer_data.lock);
3721 rcu_read_unlock();
3722 return 1;
3723 }
3724
3725 /*
3726 * Send a ret code status message to the sessiond daemon.
3727 *
3728 * Return the sendmsg() return value.
3729 */
3730 int consumer_send_status_msg(int sock, int ret_code)
3731 {
3732 struct lttcomm_consumer_status_msg msg;
3733
3734 memset(&msg, 0, sizeof(msg));
3735 msg.ret_code = ret_code;
3736
3737 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3738 }
3739
3740 /*
3741 * Send a channel status message to the sessiond daemon.
3742 *
3743 * Return the sendmsg() return value.
3744 */
3745 int consumer_send_status_channel(int sock,
3746 struct lttng_consumer_channel *channel)
3747 {
3748 struct lttcomm_consumer_status_channel msg;
3749
3750 assert(sock >= 0);
3751
3752 memset(&msg, 0, sizeof(msg));
3753 if (!channel) {
3754 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3755 } else {
3756 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3757 msg.key = channel->key;
3758 msg.stream_count = channel->streams.count;
3759 }
3760
3761 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3762 }
3763
3764 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3765 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3766 uint64_t max_sb_size)
3767 {
3768 unsigned long start_pos;
3769
3770 if (!nb_packets_per_stream) {
3771 return consumed_pos; /* Grab everything */
3772 }
3773 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3774 start_pos -= max_sb_size * nb_packets_per_stream;
3775 if ((long) (start_pos - consumed_pos) < 0) {
3776 return consumed_pos; /* Grab everything */
3777 }
3778 return start_pos;
3779 }
This page took 0.108827 seconds and 4 git commands to generate.