consumer: introduce channel lock
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44
45 struct lttng_consumer_global_data consumer_data = {
46 .stream_count = 0,
47 .need_update = 1,
48 .type = LTTNG_CONSUMER_UNKNOWN,
49 };
50
51 enum consumer_channel_action {
52 CONSUMER_CHANNEL_ADD,
53 CONSUMER_CHANNEL_DEL,
54 CONSUMER_CHANNEL_QUIT,
55 };
56
57 struct consumer_channel_msg {
58 enum consumer_channel_action action;
59 struct lttng_consumer_channel *chan; /* add */
60 uint64_t key; /* del */
61 };
62
63 /*
64 * Flag to inform the polling thread to quit when all fd hung up. Updated by
65 * the consumer_thread_receive_fds when it notices that all fds has hung up.
66 * Also updated by the signal handler (consumer_should_exit()). Read by the
67 * polling threads.
68 */
69 volatile int consumer_quit;
70
71 /*
72 * Global hash table containing respectively metadata and data streams. The
73 * stream element in this ht should only be updated by the metadata poll thread
74 * for the metadata and the data poll thread for the data.
75 */
76 static struct lttng_ht *metadata_ht;
77 static struct lttng_ht *data_ht;
78
79 /*
80 * Notify a thread lttng pipe to poll back again. This usually means that some
81 * global state has changed so we just send back the thread in a poll wait
82 * call.
83 */
84 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
85 {
86 struct lttng_consumer_stream *null_stream = NULL;
87
88 assert(pipe);
89
90 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
91 }
92
93 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
94 struct lttng_consumer_channel *chan,
95 uint64_t key,
96 enum consumer_channel_action action)
97 {
98 struct consumer_channel_msg msg;
99 int ret;
100
101 memset(&msg, 0, sizeof(msg));
102
103 msg.action = action;
104 msg.chan = chan;
105 msg.key = key;
106 do {
107 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
108 } while (ret < 0 && errno == EINTR);
109 }
110
111 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
112 uint64_t key)
113 {
114 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
115 }
116
117 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
118 struct lttng_consumer_channel **chan,
119 uint64_t *key,
120 enum consumer_channel_action *action)
121 {
122 struct consumer_channel_msg msg;
123 int ret;
124
125 do {
126 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
127 } while (ret < 0 && errno == EINTR);
128 if (ret > 0) {
129 *action = msg.action;
130 *chan = msg.chan;
131 *key = msg.key;
132 }
133 return ret;
134 }
135
136 /*
137 * Find a stream. The consumer_data.lock must be locked during this
138 * call.
139 */
140 static struct lttng_consumer_stream *find_stream(uint64_t key,
141 struct lttng_ht *ht)
142 {
143 struct lttng_ht_iter iter;
144 struct lttng_ht_node_u64 *node;
145 struct lttng_consumer_stream *stream = NULL;
146
147 assert(ht);
148
149 /* -1ULL keys are lookup failures */
150 if (key == (uint64_t) -1ULL) {
151 return NULL;
152 }
153
154 rcu_read_lock();
155
156 lttng_ht_lookup(ht, &key, &iter);
157 node = lttng_ht_iter_get_node_u64(&iter);
158 if (node != NULL) {
159 stream = caa_container_of(node, struct lttng_consumer_stream, node);
160 }
161
162 rcu_read_unlock();
163
164 return stream;
165 }
166
167 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
168 {
169 struct lttng_consumer_stream *stream;
170
171 rcu_read_lock();
172 stream = find_stream(key, ht);
173 if (stream) {
174 stream->key = (uint64_t) -1ULL;
175 /*
176 * We don't want the lookup to match, but we still need
177 * to iterate on this stream when iterating over the hash table. Just
178 * change the node key.
179 */
180 stream->node.key = (uint64_t) -1ULL;
181 }
182 rcu_read_unlock();
183 }
184
185 /*
186 * Return a channel object for the given key.
187 *
188 * RCU read side lock MUST be acquired before calling this function and
189 * protects the channel ptr.
190 */
191 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
192 {
193 struct lttng_ht_iter iter;
194 struct lttng_ht_node_u64 *node;
195 struct lttng_consumer_channel *channel = NULL;
196
197 /* -1ULL keys are lookup failures */
198 if (key == (uint64_t) -1ULL) {
199 return NULL;
200 }
201
202 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
203 node = lttng_ht_iter_get_node_u64(&iter);
204 if (node != NULL) {
205 channel = caa_container_of(node, struct lttng_consumer_channel, node);
206 }
207
208 return channel;
209 }
210
211 static void free_stream_rcu(struct rcu_head *head)
212 {
213 struct lttng_ht_node_u64 *node =
214 caa_container_of(head, struct lttng_ht_node_u64, head);
215 struct lttng_consumer_stream *stream =
216 caa_container_of(node, struct lttng_consumer_stream, node);
217
218 free(stream);
219 }
220
221 static void free_channel_rcu(struct rcu_head *head)
222 {
223 struct lttng_ht_node_u64 *node =
224 caa_container_of(head, struct lttng_ht_node_u64, head);
225 struct lttng_consumer_channel *channel =
226 caa_container_of(node, struct lttng_consumer_channel, node);
227
228 free(channel);
229 }
230
231 /*
232 * RCU protected relayd socket pair free.
233 */
234 static void free_relayd_rcu(struct rcu_head *head)
235 {
236 struct lttng_ht_node_u64 *node =
237 caa_container_of(head, struct lttng_ht_node_u64, head);
238 struct consumer_relayd_sock_pair *relayd =
239 caa_container_of(node, struct consumer_relayd_sock_pair, node);
240
241 /*
242 * Close all sockets. This is done in the call RCU since we don't want the
243 * socket fds to be reassigned thus potentially creating bad state of the
244 * relayd object.
245 *
246 * We do not have to lock the control socket mutex here since at this stage
247 * there is no one referencing to this relayd object.
248 */
249 (void) relayd_close(&relayd->control_sock);
250 (void) relayd_close(&relayd->data_sock);
251
252 free(relayd);
253 }
254
255 /*
256 * Destroy and free relayd socket pair object.
257 *
258 * This function MUST be called with the consumer_data lock acquired.
259 */
260 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
261 {
262 int ret;
263 struct lttng_ht_iter iter;
264
265 if (relayd == NULL) {
266 return;
267 }
268
269 DBG("Consumer destroy and close relayd socket pair");
270
271 iter.iter.node = &relayd->node.node;
272 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
273 if (ret != 0) {
274 /* We assume the relayd is being or is destroyed */
275 return;
276 }
277
278 /* RCU free() call */
279 call_rcu(&relayd->node.head, free_relayd_rcu);
280 }
281
282 /*
283 * Remove a channel from the global list protected by a mutex. This function is
284 * also responsible for freeing its data structures.
285 */
286 void consumer_del_channel(struct lttng_consumer_channel *channel)
287 {
288 int ret;
289 struct lttng_ht_iter iter;
290 struct lttng_consumer_stream *stream, *stmp;
291
292 DBG("Consumer delete channel key %" PRIu64, channel->key);
293
294 pthread_mutex_lock(&consumer_data.lock);
295 pthread_mutex_lock(&channel->lock);
296
297 switch (consumer_data.type) {
298 case LTTNG_CONSUMER_KERNEL:
299 break;
300 case LTTNG_CONSUMER32_UST:
301 case LTTNG_CONSUMER64_UST:
302 /* Delete streams that might have been left in the stream list. */
303 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
304 send_node) {
305 cds_list_del(&stream->send_node);
306 lttng_ustconsumer_del_stream(stream);
307 free(stream);
308 }
309 lttng_ustconsumer_del_channel(channel);
310 break;
311 default:
312 ERR("Unknown consumer_data type");
313 assert(0);
314 goto end;
315 }
316
317 rcu_read_lock();
318 iter.iter.node = &channel->node.node;
319 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
320 assert(!ret);
321 rcu_read_unlock();
322
323 call_rcu(&channel->node.head, free_channel_rcu);
324 end:
325 pthread_mutex_unlock(&channel->lock);
326 pthread_mutex_unlock(&consumer_data.lock);
327 }
328
329 /*
330 * Iterate over the relayd hash table and destroy each element. Finally,
331 * destroy the whole hash table.
332 */
333 static void cleanup_relayd_ht(void)
334 {
335 struct lttng_ht_iter iter;
336 struct consumer_relayd_sock_pair *relayd;
337
338 rcu_read_lock();
339
340 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
341 node.node) {
342 destroy_relayd(relayd);
343 }
344
345 rcu_read_unlock();
346
347 lttng_ht_destroy(consumer_data.relayd_ht);
348 }
349
350 /*
351 * Update the end point status of all streams having the given network sequence
352 * index (relayd index).
353 *
354 * It's atomically set without having the stream mutex locked which is fine
355 * because we handle the write/read race with a pipe wakeup for each thread.
356 */
357 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
358 enum consumer_endpoint_status status)
359 {
360 struct lttng_ht_iter iter;
361 struct lttng_consumer_stream *stream;
362
363 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
364
365 rcu_read_lock();
366
367 /* Let's begin with metadata */
368 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
369 if (stream->net_seq_idx == net_seq_idx) {
370 uatomic_set(&stream->endpoint_status, status);
371 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
372 }
373 }
374
375 /* Follow up by the data streams */
376 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
377 if (stream->net_seq_idx == net_seq_idx) {
378 uatomic_set(&stream->endpoint_status, status);
379 DBG("Delete flag set to data stream %d", stream->wait_fd);
380 }
381 }
382 rcu_read_unlock();
383 }
384
385 /*
386 * Cleanup a relayd object by flagging every associated streams for deletion,
387 * destroying the object meaning removing it from the relayd hash table,
388 * closing the sockets and freeing the memory in a RCU call.
389 *
390 * If a local data context is available, notify the threads that the streams'
391 * state have changed.
392 */
393 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
394 struct lttng_consumer_local_data *ctx)
395 {
396 uint64_t netidx;
397
398 assert(relayd);
399
400 DBG("Cleaning up relayd sockets");
401
402 /* Save the net sequence index before destroying the object */
403 netidx = relayd->net_seq_idx;
404
405 /*
406 * Delete the relayd from the relayd hash table, close the sockets and free
407 * the object in a RCU call.
408 */
409 destroy_relayd(relayd);
410
411 /* Set inactive endpoint to all streams */
412 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
413
414 /*
415 * With a local data context, notify the threads that the streams' state
416 * have changed. The write() action on the pipe acts as an "implicit"
417 * memory barrier ordering the updates of the end point status from the
418 * read of this status which happens AFTER receiving this notify.
419 */
420 if (ctx) {
421 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
422 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
423 }
424 }
425
426 /*
427 * Flag a relayd socket pair for destruction. Destroy it if the refcount
428 * reaches zero.
429 *
430 * RCU read side lock MUST be aquired before calling this function.
431 */
432 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
433 {
434 assert(relayd);
435
436 /* Set destroy flag for this object */
437 uatomic_set(&relayd->destroy_flag, 1);
438
439 /* Destroy the relayd if refcount is 0 */
440 if (uatomic_read(&relayd->refcount) == 0) {
441 destroy_relayd(relayd);
442 }
443 }
444
445 /*
446 * Remove a stream from the global list protected by a mutex. This
447 * function is also responsible for freeing its data structures.
448 */
449 void consumer_del_stream(struct lttng_consumer_stream *stream,
450 struct lttng_ht *ht)
451 {
452 int ret;
453 struct lttng_ht_iter iter;
454 struct lttng_consumer_channel *free_chan = NULL;
455 struct consumer_relayd_sock_pair *relayd;
456
457 assert(stream);
458
459 DBG("Consumer del stream %d", stream->wait_fd);
460
461 if (ht == NULL) {
462 /* Means the stream was allocated but not successfully added */
463 goto free_stream_rcu;
464 }
465
466 pthread_mutex_lock(&consumer_data.lock);
467 pthread_mutex_lock(&stream->lock);
468
469 switch (consumer_data.type) {
470 case LTTNG_CONSUMER_KERNEL:
471 if (stream->mmap_base != NULL) {
472 ret = munmap(stream->mmap_base, stream->mmap_len);
473 if (ret != 0) {
474 PERROR("munmap");
475 }
476 }
477
478 if (stream->wait_fd >= 0) {
479 ret = close(stream->wait_fd);
480 if (ret) {
481 PERROR("close");
482 }
483 }
484 break;
485 case LTTNG_CONSUMER32_UST:
486 case LTTNG_CONSUMER64_UST:
487 lttng_ustconsumer_del_stream(stream);
488 break;
489 default:
490 ERR("Unknown consumer_data type");
491 assert(0);
492 goto end;
493 }
494
495 rcu_read_lock();
496 iter.iter.node = &stream->node.node;
497 ret = lttng_ht_del(ht, &iter);
498 assert(!ret);
499
500 iter.iter.node = &stream->node_channel_id.node;
501 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
502 assert(!ret);
503
504 iter.iter.node = &stream->node_session_id.node;
505 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
506 assert(!ret);
507 rcu_read_unlock();
508
509 assert(consumer_data.stream_count > 0);
510 consumer_data.stream_count--;
511
512 if (stream->out_fd >= 0) {
513 ret = close(stream->out_fd);
514 if (ret) {
515 PERROR("close");
516 }
517 }
518
519 /* Check and cleanup relayd */
520 rcu_read_lock();
521 relayd = consumer_find_relayd(stream->net_seq_idx);
522 if (relayd != NULL) {
523 uatomic_dec(&relayd->refcount);
524 assert(uatomic_read(&relayd->refcount) >= 0);
525
526 /* Closing streams requires to lock the control socket. */
527 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
528 ret = relayd_send_close_stream(&relayd->control_sock,
529 stream->relayd_stream_id,
530 stream->next_net_seq_num - 1);
531 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
532 if (ret < 0) {
533 DBG("Unable to close stream on the relayd. Continuing");
534 /*
535 * Continue here. There is nothing we can do for the relayd.
536 * Chances are that the relayd has closed the socket so we just
537 * continue cleaning up.
538 */
539 }
540
541 /* Both conditions are met, we destroy the relayd. */
542 if (uatomic_read(&relayd->refcount) == 0 &&
543 uatomic_read(&relayd->destroy_flag)) {
544 destroy_relayd(relayd);
545 }
546 }
547 rcu_read_unlock();
548
549 if (!uatomic_sub_return(&stream->chan->refcount, 1)
550 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
551 free_chan = stream->chan;
552 }
553
554 end:
555 consumer_data.need_update = 1;
556 pthread_mutex_unlock(&stream->lock);
557 pthread_mutex_unlock(&consumer_data.lock);
558
559 if (free_chan) {
560 consumer_del_channel(free_chan);
561 }
562
563 free_stream_rcu:
564 call_rcu(&stream->node.head, free_stream_rcu);
565 }
566
567 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
568 uint64_t stream_key,
569 enum lttng_consumer_stream_state state,
570 const char *channel_name,
571 uid_t uid,
572 gid_t gid,
573 uint64_t relayd_id,
574 uint64_t session_id,
575 int cpu,
576 int *alloc_ret,
577 enum consumer_channel_type type)
578 {
579 int ret;
580 struct lttng_consumer_stream *stream;
581
582 stream = zmalloc(sizeof(*stream));
583 if (stream == NULL) {
584 PERROR("malloc struct lttng_consumer_stream");
585 ret = -ENOMEM;
586 goto end;
587 }
588
589 rcu_read_lock();
590
591 stream->key = stream_key;
592 stream->out_fd = -1;
593 stream->out_fd_offset = 0;
594 stream->state = state;
595 stream->uid = uid;
596 stream->gid = gid;
597 stream->net_seq_idx = relayd_id;
598 stream->session_id = session_id;
599 pthread_mutex_init(&stream->lock, NULL);
600
601 /* If channel is the metadata, flag this stream as metadata. */
602 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
603 stream->metadata_flag = 1;
604 /* Metadata is flat out. */
605 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
606 } else {
607 /* Format stream name to <channel_name>_<cpu_number> */
608 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
609 channel_name, cpu);
610 if (ret < 0) {
611 PERROR("snprintf stream name");
612 goto error;
613 }
614 }
615
616 /* Key is always the wait_fd for streams. */
617 lttng_ht_node_init_u64(&stream->node, stream->key);
618
619 /* Init node per channel id key */
620 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
621
622 /* Init session id node with the stream session id */
623 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
624
625 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64 " relayd_id %" PRIu64 ", session_id %" PRIu64,
626 stream->name, stream->key, channel_key, stream->net_seq_idx, stream->session_id);
627
628 rcu_read_unlock();
629 return stream;
630
631 error:
632 rcu_read_unlock();
633 free(stream);
634 end:
635 if (alloc_ret) {
636 *alloc_ret = ret;
637 }
638 return NULL;
639 }
640
641 /*
642 * Add a stream to the global list protected by a mutex.
643 */
644 static int add_stream(struct lttng_consumer_stream *stream,
645 struct lttng_ht *ht)
646 {
647 int ret = 0;
648 struct consumer_relayd_sock_pair *relayd;
649
650 assert(stream);
651 assert(ht);
652
653 DBG3("Adding consumer stream %" PRIu64, stream->key);
654
655 pthread_mutex_lock(&consumer_data.lock);
656 pthread_mutex_lock(&stream->chan->lock);
657 pthread_mutex_lock(&stream->lock);
658 rcu_read_lock();
659
660 /* Steal stream identifier to avoid having streams with the same key */
661 steal_stream_key(stream->key, ht);
662
663 lttng_ht_add_unique_u64(ht, &stream->node);
664
665 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
666 &stream->node_channel_id);
667
668 /*
669 * Add stream to the stream_list_ht of the consumer data. No need to steal
670 * the key since the HT does not use it and we allow to add redundant keys
671 * into this table.
672 */
673 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
674
675 /* Check and cleanup relayd */
676 relayd = consumer_find_relayd(stream->net_seq_idx);
677 if (relayd != NULL) {
678 uatomic_inc(&relayd->refcount);
679 }
680
681 /*
682 * When nb_init_stream_left reaches 0, we don't need to trigger any action
683 * in terms of destroying the associated channel, because the action that
684 * causes the count to become 0 also causes a stream to be added. The
685 * channel deletion will thus be triggered by the following removal of this
686 * stream.
687 */
688 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
689 /* Increment refcount before decrementing nb_init_stream_left */
690 cmm_smp_wmb();
691 uatomic_dec(&stream->chan->nb_init_stream_left);
692 }
693
694 /* Update consumer data once the node is inserted. */
695 consumer_data.stream_count++;
696 consumer_data.need_update = 1;
697
698 rcu_read_unlock();
699 pthread_mutex_unlock(&stream->lock);
700 pthread_mutex_unlock(&stream->chan->lock);
701 pthread_mutex_unlock(&consumer_data.lock);
702
703 return ret;
704 }
705
706 /*
707 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
708 * be acquired before calling this.
709 */
710 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
711 {
712 int ret = 0;
713 struct lttng_ht_node_u64 *node;
714 struct lttng_ht_iter iter;
715
716 assert(relayd);
717
718 lttng_ht_lookup(consumer_data.relayd_ht,
719 &relayd->net_seq_idx, &iter);
720 node = lttng_ht_iter_get_node_u64(&iter);
721 if (node != NULL) {
722 goto end;
723 }
724 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
725
726 end:
727 return ret;
728 }
729
730 /*
731 * Allocate and return a consumer relayd socket.
732 */
733 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
734 uint64_t net_seq_idx)
735 {
736 struct consumer_relayd_sock_pair *obj = NULL;
737
738 /* net sequence index of -1 is a failure */
739 if (net_seq_idx == (uint64_t) -1ULL) {
740 goto error;
741 }
742
743 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
744 if (obj == NULL) {
745 PERROR("zmalloc relayd sock");
746 goto error;
747 }
748
749 obj->net_seq_idx = net_seq_idx;
750 obj->refcount = 0;
751 obj->destroy_flag = 0;
752 obj->control_sock.sock.fd = -1;
753 obj->data_sock.sock.fd = -1;
754 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
755 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
756
757 error:
758 return obj;
759 }
760
761 /*
762 * Find a relayd socket pair in the global consumer data.
763 *
764 * Return the object if found else NULL.
765 * RCU read-side lock must be held across this call and while using the
766 * returned object.
767 */
768 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
769 {
770 struct lttng_ht_iter iter;
771 struct lttng_ht_node_u64 *node;
772 struct consumer_relayd_sock_pair *relayd = NULL;
773
774 /* Negative keys are lookup failures */
775 if (key == (uint64_t) -1ULL) {
776 goto error;
777 }
778
779 lttng_ht_lookup(consumer_data.relayd_ht, &key,
780 &iter);
781 node = lttng_ht_iter_get_node_u64(&iter);
782 if (node != NULL) {
783 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
784 }
785
786 error:
787 return relayd;
788 }
789
790 /*
791 * Handle stream for relayd transmission if the stream applies for network
792 * streaming where the net sequence index is set.
793 *
794 * Return destination file descriptor or negative value on error.
795 */
796 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
797 size_t data_size, unsigned long padding,
798 struct consumer_relayd_sock_pair *relayd)
799 {
800 int outfd = -1, ret;
801 struct lttcomm_relayd_data_hdr data_hdr;
802
803 /* Safety net */
804 assert(stream);
805 assert(relayd);
806
807 /* Reset data header */
808 memset(&data_hdr, 0, sizeof(data_hdr));
809
810 if (stream->metadata_flag) {
811 /* Caller MUST acquire the relayd control socket lock */
812 ret = relayd_send_metadata(&relayd->control_sock, data_size);
813 if (ret < 0) {
814 goto error;
815 }
816
817 /* Metadata are always sent on the control socket. */
818 outfd = relayd->control_sock.sock.fd;
819 } else {
820 /* Set header with stream information */
821 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
822 data_hdr.data_size = htobe32(data_size);
823 data_hdr.padding_size = htobe32(padding);
824 /*
825 * Note that net_seq_num below is assigned with the *current* value of
826 * next_net_seq_num and only after that the next_net_seq_num will be
827 * increment. This is why when issuing a command on the relayd using
828 * this next value, 1 should always be substracted in order to compare
829 * the last seen sequence number on the relayd side to the last sent.
830 */
831 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
832 /* Other fields are zeroed previously */
833
834 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
835 sizeof(data_hdr));
836 if (ret < 0) {
837 goto error;
838 }
839
840 ++stream->next_net_seq_num;
841
842 /* Set to go on data socket */
843 outfd = relayd->data_sock.sock.fd;
844 }
845
846 error:
847 return outfd;
848 }
849
850 /*
851 * Allocate and return a new lttng_consumer_channel object using the given key
852 * to initialize the hash table node.
853 *
854 * On error, return NULL.
855 */
856 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
857 uint64_t session_id,
858 const char *pathname,
859 const char *name,
860 uid_t uid,
861 gid_t gid,
862 uint64_t relayd_id,
863 enum lttng_event_output output,
864 uint64_t tracefile_size,
865 uint64_t tracefile_count,
866 uint64_t session_id_per_pid)
867 {
868 struct lttng_consumer_channel *channel;
869
870 channel = zmalloc(sizeof(*channel));
871 if (channel == NULL) {
872 PERROR("malloc struct lttng_consumer_channel");
873 goto end;
874 }
875
876 channel->key = key;
877 channel->refcount = 0;
878 channel->session_id = session_id;
879 channel->session_id_per_pid = session_id_per_pid;
880 channel->uid = uid;
881 channel->gid = gid;
882 channel->relayd_id = relayd_id;
883 channel->output = output;
884 channel->tracefile_size = tracefile_size;
885 channel->tracefile_count = tracefile_count;
886 pthread_mutex_init(&channel->lock, NULL);
887
888 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
889 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
890
891 strncpy(channel->name, name, sizeof(channel->name));
892 channel->name[sizeof(channel->name) - 1] = '\0';
893
894 lttng_ht_node_init_u64(&channel->node, channel->key);
895
896 channel->wait_fd = -1;
897
898 CDS_INIT_LIST_HEAD(&channel->streams.head);
899
900 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
901
902 end:
903 return channel;
904 }
905
906 /*
907 * Add a channel to the global list protected by a mutex.
908 *
909 * On success 0 is returned else a negative value.
910 */
911 int consumer_add_channel(struct lttng_consumer_channel *channel,
912 struct lttng_consumer_local_data *ctx)
913 {
914 int ret = 0;
915 struct lttng_ht_node_u64 *node;
916 struct lttng_ht_iter iter;
917
918 pthread_mutex_lock(&consumer_data.lock);
919 pthread_mutex_lock(&channel->lock);
920 rcu_read_lock();
921
922 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
923 node = lttng_ht_iter_get_node_u64(&iter);
924 if (node != NULL) {
925 /* Channel already exist. Ignore the insertion */
926 ERR("Consumer add channel key %" PRIu64 " already exists!",
927 channel->key);
928 ret = -EEXIST;
929 goto end;
930 }
931
932 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
933
934 end:
935 rcu_read_unlock();
936 pthread_mutex_unlock(&channel->lock);
937 pthread_mutex_unlock(&consumer_data.lock);
938
939 if (!ret && channel->wait_fd != -1 &&
940 channel->metadata_stream == NULL) {
941 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
942 }
943 return ret;
944 }
945
946 /*
947 * Allocate the pollfd structure and the local view of the out fds to avoid
948 * doing a lookup in the linked list and concurrency issues when writing is
949 * needed. Called with consumer_data.lock held.
950 *
951 * Returns the number of fds in the structures.
952 */
953 static int update_poll_array(struct lttng_consumer_local_data *ctx,
954 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
955 struct lttng_ht *ht)
956 {
957 int i = 0;
958 struct lttng_ht_iter iter;
959 struct lttng_consumer_stream *stream;
960
961 assert(ctx);
962 assert(ht);
963 assert(pollfd);
964 assert(local_stream);
965
966 DBG("Updating poll fd array");
967 rcu_read_lock();
968 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
969 /*
970 * Only active streams with an active end point can be added to the
971 * poll set and local stream storage of the thread.
972 *
973 * There is a potential race here for endpoint_status to be updated
974 * just after the check. However, this is OK since the stream(s) will
975 * be deleted once the thread is notified that the end point state has
976 * changed where this function will be called back again.
977 */
978 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
979 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
980 continue;
981 }
982 /*
983 * This clobbers way too much the debug output. Uncomment that if you
984 * need it for debugging purposes.
985 *
986 * DBG("Active FD %d", stream->wait_fd);
987 */
988 (*pollfd)[i].fd = stream->wait_fd;
989 (*pollfd)[i].events = POLLIN | POLLPRI;
990 local_stream[i] = stream;
991 i++;
992 }
993 rcu_read_unlock();
994
995 /*
996 * Insert the consumer_data_pipe at the end of the array and don't
997 * increment i so nb_fd is the number of real FD.
998 */
999 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1000 (*pollfd)[i].events = POLLIN | POLLPRI;
1001 return i;
1002 }
1003
1004 /*
1005 * Poll on the should_quit pipe and the command socket return -1 on error and
1006 * should exit, 0 if data is available on the command socket
1007 */
1008 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1009 {
1010 int num_rdy;
1011
1012 restart:
1013 num_rdy = poll(consumer_sockpoll, 2, -1);
1014 if (num_rdy == -1) {
1015 /*
1016 * Restart interrupted system call.
1017 */
1018 if (errno == EINTR) {
1019 goto restart;
1020 }
1021 PERROR("Poll error");
1022 goto exit;
1023 }
1024 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1025 DBG("consumer_should_quit wake up");
1026 goto exit;
1027 }
1028 return 0;
1029
1030 exit:
1031 return -1;
1032 }
1033
1034 /*
1035 * Set the error socket.
1036 */
1037 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1038 int sock)
1039 {
1040 ctx->consumer_error_socket = sock;
1041 }
1042
1043 /*
1044 * Set the command socket path.
1045 */
1046 void lttng_consumer_set_command_sock_path(
1047 struct lttng_consumer_local_data *ctx, char *sock)
1048 {
1049 ctx->consumer_command_sock_path = sock;
1050 }
1051
1052 /*
1053 * Send return code to the session daemon.
1054 * If the socket is not defined, we return 0, it is not a fatal error
1055 */
1056 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1057 {
1058 if (ctx->consumer_error_socket > 0) {
1059 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1060 sizeof(enum lttcomm_sessiond_command));
1061 }
1062
1063 return 0;
1064 }
1065
1066 /*
1067 * Close all the tracefiles and stream fds and MUST be called when all
1068 * instances are destroyed i.e. when all threads were joined and are ended.
1069 */
1070 void lttng_consumer_cleanup(void)
1071 {
1072 struct lttng_ht_iter iter;
1073 struct lttng_consumer_channel *channel;
1074
1075 rcu_read_lock();
1076
1077 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1078 node.node) {
1079 consumer_del_channel(channel);
1080 }
1081
1082 rcu_read_unlock();
1083
1084 lttng_ht_destroy(consumer_data.channel_ht);
1085
1086 cleanup_relayd_ht();
1087
1088 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1089
1090 /*
1091 * This HT contains streams that are freed by either the metadata thread or
1092 * the data thread so we do *nothing* on the hash table and simply destroy
1093 * it.
1094 */
1095 lttng_ht_destroy(consumer_data.stream_list_ht);
1096 }
1097
1098 /*
1099 * Called from signal handler.
1100 */
1101 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1102 {
1103 int ret;
1104 consumer_quit = 1;
1105 do {
1106 ret = write(ctx->consumer_should_quit[1], "4", 1);
1107 } while (ret < 0 && errno == EINTR);
1108 if (ret < 0 || ret != 1) {
1109 PERROR("write consumer quit");
1110 }
1111
1112 DBG("Consumer flag that it should quit");
1113 }
1114
1115 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1116 off_t orig_offset)
1117 {
1118 int outfd = stream->out_fd;
1119
1120 /*
1121 * This does a blocking write-and-wait on any page that belongs to the
1122 * subbuffer prior to the one we just wrote.
1123 * Don't care about error values, as these are just hints and ways to
1124 * limit the amount of page cache used.
1125 */
1126 if (orig_offset < stream->max_sb_size) {
1127 return;
1128 }
1129 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1130 stream->max_sb_size,
1131 SYNC_FILE_RANGE_WAIT_BEFORE
1132 | SYNC_FILE_RANGE_WRITE
1133 | SYNC_FILE_RANGE_WAIT_AFTER);
1134 /*
1135 * Give hints to the kernel about how we access the file:
1136 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1137 * we write it.
1138 *
1139 * We need to call fadvise again after the file grows because the
1140 * kernel does not seem to apply fadvise to non-existing parts of the
1141 * file.
1142 *
1143 * Call fadvise _after_ having waited for the page writeback to
1144 * complete because the dirty page writeback semantic is not well
1145 * defined. So it can be expected to lead to lower throughput in
1146 * streaming.
1147 */
1148 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1149 stream->max_sb_size, POSIX_FADV_DONTNEED);
1150 }
1151
1152 /*
1153 * Initialise the necessary environnement :
1154 * - create a new context
1155 * - create the poll_pipe
1156 * - create the should_quit pipe (for signal handler)
1157 * - create the thread pipe (for splice)
1158 *
1159 * Takes a function pointer as argument, this function is called when data is
1160 * available on a buffer. This function is responsible to do the
1161 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1162 * buffer configuration and then kernctl_put_next_subbuf at the end.
1163 *
1164 * Returns a pointer to the new context or NULL on error.
1165 */
1166 struct lttng_consumer_local_data *lttng_consumer_create(
1167 enum lttng_consumer_type type,
1168 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1169 struct lttng_consumer_local_data *ctx),
1170 int (*recv_channel)(struct lttng_consumer_channel *channel),
1171 int (*recv_stream)(struct lttng_consumer_stream *stream),
1172 int (*update_stream)(uint64_t stream_key, uint32_t state))
1173 {
1174 int ret;
1175 struct lttng_consumer_local_data *ctx;
1176
1177 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1178 consumer_data.type == type);
1179 consumer_data.type = type;
1180
1181 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1182 if (ctx == NULL) {
1183 PERROR("allocating context");
1184 goto error;
1185 }
1186
1187 ctx->consumer_error_socket = -1;
1188 ctx->consumer_metadata_socket = -1;
1189 /* assign the callbacks */
1190 ctx->on_buffer_ready = buffer_ready;
1191 ctx->on_recv_channel = recv_channel;
1192 ctx->on_recv_stream = recv_stream;
1193 ctx->on_update_stream = update_stream;
1194
1195 ctx->consumer_data_pipe = lttng_pipe_open(0);
1196 if (!ctx->consumer_data_pipe) {
1197 goto error_poll_pipe;
1198 }
1199
1200 ret = pipe(ctx->consumer_should_quit);
1201 if (ret < 0) {
1202 PERROR("Error creating recv pipe");
1203 goto error_quit_pipe;
1204 }
1205
1206 ret = pipe(ctx->consumer_thread_pipe);
1207 if (ret < 0) {
1208 PERROR("Error creating thread pipe");
1209 goto error_thread_pipe;
1210 }
1211
1212 ret = pipe(ctx->consumer_channel_pipe);
1213 if (ret < 0) {
1214 PERROR("Error creating channel pipe");
1215 goto error_channel_pipe;
1216 }
1217
1218 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1219 if (!ctx->consumer_metadata_pipe) {
1220 goto error_metadata_pipe;
1221 }
1222
1223 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1224 if (ret < 0) {
1225 goto error_splice_pipe;
1226 }
1227
1228 return ctx;
1229
1230 error_splice_pipe:
1231 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1232 error_metadata_pipe:
1233 utils_close_pipe(ctx->consumer_channel_pipe);
1234 error_channel_pipe:
1235 utils_close_pipe(ctx->consumer_thread_pipe);
1236 error_thread_pipe:
1237 utils_close_pipe(ctx->consumer_should_quit);
1238 error_quit_pipe:
1239 lttng_pipe_destroy(ctx->consumer_data_pipe);
1240 error_poll_pipe:
1241 free(ctx);
1242 error:
1243 return NULL;
1244 }
1245
1246 /*
1247 * Close all fds associated with the instance and free the context.
1248 */
1249 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1250 {
1251 int ret;
1252
1253 DBG("Consumer destroying it. Closing everything.");
1254
1255 ret = close(ctx->consumer_error_socket);
1256 if (ret) {
1257 PERROR("close");
1258 }
1259 ret = close(ctx->consumer_metadata_socket);
1260 if (ret) {
1261 PERROR("close");
1262 }
1263 utils_close_pipe(ctx->consumer_thread_pipe);
1264 utils_close_pipe(ctx->consumer_channel_pipe);
1265 lttng_pipe_destroy(ctx->consumer_data_pipe);
1266 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1267 utils_close_pipe(ctx->consumer_should_quit);
1268 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1269
1270 unlink(ctx->consumer_command_sock_path);
1271 free(ctx);
1272 }
1273
1274 /*
1275 * Write the metadata stream id on the specified file descriptor.
1276 */
1277 static int write_relayd_metadata_id(int fd,
1278 struct lttng_consumer_stream *stream,
1279 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1280 {
1281 int ret;
1282 struct lttcomm_relayd_metadata_payload hdr;
1283
1284 hdr.stream_id = htobe64(stream->relayd_stream_id);
1285 hdr.padding_size = htobe32(padding);
1286 do {
1287 ret = write(fd, (void *) &hdr, sizeof(hdr));
1288 } while (ret < 0 && errno == EINTR);
1289 if (ret < 0 || ret != sizeof(hdr)) {
1290 /*
1291 * This error means that the fd's end is closed so ignore the perror
1292 * not to clubber the error output since this can happen in a normal
1293 * code path.
1294 */
1295 if (errno != EPIPE) {
1296 PERROR("write metadata stream id");
1297 }
1298 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1299 /*
1300 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1301 * handle writting the missing part so report that as an error and
1302 * don't lie to the caller.
1303 */
1304 ret = -1;
1305 goto end;
1306 }
1307 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1308 stream->relayd_stream_id, padding);
1309
1310 end:
1311 return ret;
1312 }
1313
1314 /*
1315 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1316 * core function for writing trace buffers to either the local filesystem or
1317 * the network.
1318 *
1319 * It must be called with the stream lock held.
1320 *
1321 * Careful review MUST be put if any changes occur!
1322 *
1323 * Returns the number of bytes written
1324 */
1325 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1326 struct lttng_consumer_local_data *ctx,
1327 struct lttng_consumer_stream *stream, unsigned long len,
1328 unsigned long padding)
1329 {
1330 unsigned long mmap_offset;
1331 void *mmap_base;
1332 ssize_t ret = 0, written = 0;
1333 off_t orig_offset = stream->out_fd_offset;
1334 /* Default is on the disk */
1335 int outfd = stream->out_fd;
1336 struct consumer_relayd_sock_pair *relayd = NULL;
1337 unsigned int relayd_hang_up = 0;
1338
1339 /* RCU lock for the relayd pointer */
1340 rcu_read_lock();
1341
1342 /* Flag that the current stream if set for network streaming. */
1343 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1344 relayd = consumer_find_relayd(stream->net_seq_idx);
1345 if (relayd == NULL) {
1346 goto end;
1347 }
1348 }
1349
1350 /* get the offset inside the fd to mmap */
1351 switch (consumer_data.type) {
1352 case LTTNG_CONSUMER_KERNEL:
1353 mmap_base = stream->mmap_base;
1354 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1355 break;
1356 case LTTNG_CONSUMER32_UST:
1357 case LTTNG_CONSUMER64_UST:
1358 mmap_base = lttng_ustctl_get_mmap_base(stream);
1359 if (!mmap_base) {
1360 ERR("read mmap get mmap base for stream %s", stream->name);
1361 written = -1;
1362 goto end;
1363 }
1364 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1365
1366 break;
1367 default:
1368 ERR("Unknown consumer_data type");
1369 assert(0);
1370 }
1371 if (ret != 0) {
1372 errno = -ret;
1373 PERROR("tracer ctl get_mmap_read_offset");
1374 written = ret;
1375 goto end;
1376 }
1377
1378 /* Handle stream on the relayd if the output is on the network */
1379 if (relayd) {
1380 unsigned long netlen = len;
1381
1382 /*
1383 * Lock the control socket for the complete duration of the function
1384 * since from this point on we will use the socket.
1385 */
1386 if (stream->metadata_flag) {
1387 /* Metadata requires the control socket. */
1388 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1389 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1390 }
1391
1392 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1393 if (ret >= 0) {
1394 /* Use the returned socket. */
1395 outfd = ret;
1396
1397 /* Write metadata stream id before payload */
1398 if (stream->metadata_flag) {
1399 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1400 if (ret < 0) {
1401 written = ret;
1402 /* Socket operation failed. We consider the relayd dead */
1403 if (ret == -EPIPE || ret == -EINVAL) {
1404 relayd_hang_up = 1;
1405 goto write_error;
1406 }
1407 goto end;
1408 }
1409 }
1410 } else {
1411 /* Socket operation failed. We consider the relayd dead */
1412 if (ret == -EPIPE || ret == -EINVAL) {
1413 relayd_hang_up = 1;
1414 goto write_error;
1415 }
1416 /* Else, use the default set before which is the filesystem. */
1417 }
1418 } else {
1419 /* No streaming, we have to set the len with the full padding */
1420 len += padding;
1421
1422 /*
1423 * Check if we need to change the tracefile before writing the packet.
1424 */
1425 if (stream->chan->tracefile_size > 0 &&
1426 (stream->tracefile_size_current + len) >
1427 stream->chan->tracefile_size) {
1428 ret = utils_rotate_stream_file(stream->chan->pathname,
1429 stream->name, stream->chan->tracefile_size,
1430 stream->chan->tracefile_count, stream->uid, stream->gid,
1431 stream->out_fd, &(stream->tracefile_count_current));
1432 if (ret < 0) {
1433 ERR("Rotating output file");
1434 goto end;
1435 }
1436 outfd = stream->out_fd = ret;
1437 /* Reset current size because we just perform a rotation. */
1438 stream->tracefile_size_current = 0;
1439 }
1440 stream->tracefile_size_current += len;
1441 }
1442
1443 while (len > 0) {
1444 do {
1445 ret = write(outfd, mmap_base + mmap_offset, len);
1446 } while (ret < 0 && errno == EINTR);
1447 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1448 if (ret < 0) {
1449 /*
1450 * This is possible if the fd is closed on the other side (outfd)
1451 * or any write problem. It can be verbose a bit for a normal
1452 * execution if for instance the relayd is stopped abruptly. This
1453 * can happen so set this to a DBG statement.
1454 */
1455 DBG("Error in file write mmap");
1456 if (written == 0) {
1457 written = ret;
1458 }
1459 /* Socket operation failed. We consider the relayd dead */
1460 if (errno == EPIPE || errno == EINVAL) {
1461 relayd_hang_up = 1;
1462 goto write_error;
1463 }
1464 goto end;
1465 } else if (ret > len) {
1466 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1467 written += ret;
1468 goto end;
1469 } else {
1470 len -= ret;
1471 mmap_offset += ret;
1472 }
1473
1474 /* This call is useless on a socket so better save a syscall. */
1475 if (!relayd) {
1476 /* This won't block, but will start writeout asynchronously */
1477 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1478 SYNC_FILE_RANGE_WRITE);
1479 stream->out_fd_offset += ret;
1480 }
1481 written += ret;
1482 }
1483 lttng_consumer_sync_trace_file(stream, orig_offset);
1484
1485 write_error:
1486 /*
1487 * This is a special case that the relayd has closed its socket. Let's
1488 * cleanup the relayd object and all associated streams.
1489 */
1490 if (relayd && relayd_hang_up) {
1491 cleanup_relayd(relayd, ctx);
1492 }
1493
1494 end:
1495 /* Unlock only if ctrl socket used */
1496 if (relayd && stream->metadata_flag) {
1497 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1498 }
1499
1500 rcu_read_unlock();
1501 return written;
1502 }
1503
1504 /*
1505 * Splice the data from the ring buffer to the tracefile.
1506 *
1507 * It must be called with the stream lock held.
1508 *
1509 * Returns the number of bytes spliced.
1510 */
1511 ssize_t lttng_consumer_on_read_subbuffer_splice(
1512 struct lttng_consumer_local_data *ctx,
1513 struct lttng_consumer_stream *stream, unsigned long len,
1514 unsigned long padding)
1515 {
1516 ssize_t ret = 0, written = 0, ret_splice = 0;
1517 loff_t offset = 0;
1518 off_t orig_offset = stream->out_fd_offset;
1519 int fd = stream->wait_fd;
1520 /* Default is on the disk */
1521 int outfd = stream->out_fd;
1522 struct consumer_relayd_sock_pair *relayd = NULL;
1523 int *splice_pipe;
1524 unsigned int relayd_hang_up = 0;
1525
1526 switch (consumer_data.type) {
1527 case LTTNG_CONSUMER_KERNEL:
1528 break;
1529 case LTTNG_CONSUMER32_UST:
1530 case LTTNG_CONSUMER64_UST:
1531 /* Not supported for user space tracing */
1532 return -ENOSYS;
1533 default:
1534 ERR("Unknown consumer_data type");
1535 assert(0);
1536 }
1537
1538 /* RCU lock for the relayd pointer */
1539 rcu_read_lock();
1540
1541 /* Flag that the current stream if set for network streaming. */
1542 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1543 relayd = consumer_find_relayd(stream->net_seq_idx);
1544 if (relayd == NULL) {
1545 goto end;
1546 }
1547 }
1548
1549 /*
1550 * Choose right pipe for splice. Metadata and trace data are handled by
1551 * different threads hence the use of two pipes in order not to race or
1552 * corrupt the written data.
1553 */
1554 if (stream->metadata_flag) {
1555 splice_pipe = ctx->consumer_splice_metadata_pipe;
1556 } else {
1557 splice_pipe = ctx->consumer_thread_pipe;
1558 }
1559
1560 /* Write metadata stream id before payload */
1561 if (relayd) {
1562 int total_len = len;
1563
1564 if (stream->metadata_flag) {
1565 /*
1566 * Lock the control socket for the complete duration of the function
1567 * since from this point on we will use the socket.
1568 */
1569 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1570
1571 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1572 padding);
1573 if (ret < 0) {
1574 written = ret;
1575 /* Socket operation failed. We consider the relayd dead */
1576 if (ret == -EBADF) {
1577 WARN("Remote relayd disconnected. Stopping");
1578 relayd_hang_up = 1;
1579 goto write_error;
1580 }
1581 goto end;
1582 }
1583
1584 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1585 }
1586
1587 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1588 if (ret >= 0) {
1589 /* Use the returned socket. */
1590 outfd = ret;
1591 } else {
1592 /* Socket operation failed. We consider the relayd dead */
1593 if (ret == -EBADF) {
1594 WARN("Remote relayd disconnected. Stopping");
1595 relayd_hang_up = 1;
1596 goto write_error;
1597 }
1598 goto end;
1599 }
1600 } else {
1601 /* No streaming, we have to set the len with the full padding */
1602 len += padding;
1603
1604 /*
1605 * Check if we need to change the tracefile before writing the packet.
1606 */
1607 if (stream->chan->tracefile_size > 0 &&
1608 (stream->tracefile_size_current + len) >
1609 stream->chan->tracefile_size) {
1610 ret = utils_rotate_stream_file(stream->chan->pathname,
1611 stream->name, stream->chan->tracefile_size,
1612 stream->chan->tracefile_count, stream->uid, stream->gid,
1613 stream->out_fd, &(stream->tracefile_count_current));
1614 if (ret < 0) {
1615 ERR("Rotating output file");
1616 goto end;
1617 }
1618 outfd = stream->out_fd = ret;
1619 /* Reset current size because we just perform a rotation. */
1620 stream->tracefile_size_current = 0;
1621 }
1622 stream->tracefile_size_current += len;
1623 }
1624
1625 while (len > 0) {
1626 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1627 (unsigned long)offset, len, fd, splice_pipe[1]);
1628 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1629 SPLICE_F_MOVE | SPLICE_F_MORE);
1630 DBG("splice chan to pipe, ret %zd", ret_splice);
1631 if (ret_splice < 0) {
1632 PERROR("Error in relay splice");
1633 if (written == 0) {
1634 written = ret_splice;
1635 }
1636 ret = errno;
1637 goto splice_error;
1638 }
1639
1640 /* Handle stream on the relayd if the output is on the network */
1641 if (relayd) {
1642 if (stream->metadata_flag) {
1643 size_t metadata_payload_size =
1644 sizeof(struct lttcomm_relayd_metadata_payload);
1645
1646 /* Update counter to fit the spliced data */
1647 ret_splice += metadata_payload_size;
1648 len += metadata_payload_size;
1649 /*
1650 * We do this so the return value can match the len passed as
1651 * argument to this function.
1652 */
1653 written -= metadata_payload_size;
1654 }
1655 }
1656
1657 /* Splice data out */
1658 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1659 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1660 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1661 if (ret_splice < 0) {
1662 PERROR("Error in file splice");
1663 if (written == 0) {
1664 written = ret_splice;
1665 }
1666 /* Socket operation failed. We consider the relayd dead */
1667 if (errno == EBADF || errno == EPIPE) {
1668 WARN("Remote relayd disconnected. Stopping");
1669 relayd_hang_up = 1;
1670 goto write_error;
1671 }
1672 ret = errno;
1673 goto splice_error;
1674 } else if (ret_splice > len) {
1675 errno = EINVAL;
1676 PERROR("Wrote more data than requested %zd (len: %lu)",
1677 ret_splice, len);
1678 written += ret_splice;
1679 ret = errno;
1680 goto splice_error;
1681 }
1682 len -= ret_splice;
1683
1684 /* This call is useless on a socket so better save a syscall. */
1685 if (!relayd) {
1686 /* This won't block, but will start writeout asynchronously */
1687 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1688 SYNC_FILE_RANGE_WRITE);
1689 stream->out_fd_offset += ret_splice;
1690 }
1691 written += ret_splice;
1692 }
1693 lttng_consumer_sync_trace_file(stream, orig_offset);
1694
1695 ret = ret_splice;
1696
1697 goto end;
1698
1699 write_error:
1700 /*
1701 * This is a special case that the relayd has closed its socket. Let's
1702 * cleanup the relayd object and all associated streams.
1703 */
1704 if (relayd && relayd_hang_up) {
1705 cleanup_relayd(relayd, ctx);
1706 /* Skip splice error so the consumer does not fail */
1707 goto end;
1708 }
1709
1710 splice_error:
1711 /* send the appropriate error description to sessiond */
1712 switch (ret) {
1713 case EINVAL:
1714 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1715 break;
1716 case ENOMEM:
1717 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1718 break;
1719 case ESPIPE:
1720 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1721 break;
1722 }
1723
1724 end:
1725 if (relayd && stream->metadata_flag) {
1726 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1727 }
1728
1729 rcu_read_unlock();
1730 return written;
1731 }
1732
1733 /*
1734 * Take a snapshot for a specific fd
1735 *
1736 * Returns 0 on success, < 0 on error
1737 */
1738 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1739 {
1740 switch (consumer_data.type) {
1741 case LTTNG_CONSUMER_KERNEL:
1742 return lttng_kconsumer_take_snapshot(stream);
1743 case LTTNG_CONSUMER32_UST:
1744 case LTTNG_CONSUMER64_UST:
1745 return lttng_ustconsumer_take_snapshot(stream);
1746 default:
1747 ERR("Unknown consumer_data type");
1748 assert(0);
1749 return -ENOSYS;
1750 }
1751 }
1752
1753 /*
1754 * Get the produced position
1755 *
1756 * Returns 0 on success, < 0 on error
1757 */
1758 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1759 unsigned long *pos)
1760 {
1761 switch (consumer_data.type) {
1762 case LTTNG_CONSUMER_KERNEL:
1763 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1764 case LTTNG_CONSUMER32_UST:
1765 case LTTNG_CONSUMER64_UST:
1766 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1767 default:
1768 ERR("Unknown consumer_data type");
1769 assert(0);
1770 return -ENOSYS;
1771 }
1772 }
1773
1774 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1775 int sock, struct pollfd *consumer_sockpoll)
1776 {
1777 switch (consumer_data.type) {
1778 case LTTNG_CONSUMER_KERNEL:
1779 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1780 case LTTNG_CONSUMER32_UST:
1781 case LTTNG_CONSUMER64_UST:
1782 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1783 default:
1784 ERR("Unknown consumer_data type");
1785 assert(0);
1786 return -ENOSYS;
1787 }
1788 }
1789
1790 /*
1791 * Iterate over all streams of the hashtable and free them properly.
1792 *
1793 * WARNING: *MUST* be used with data stream only.
1794 */
1795 static void destroy_data_stream_ht(struct lttng_ht *ht)
1796 {
1797 struct lttng_ht_iter iter;
1798 struct lttng_consumer_stream *stream;
1799
1800 if (ht == NULL) {
1801 return;
1802 }
1803
1804 rcu_read_lock();
1805 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1806 /*
1807 * Ignore return value since we are currently cleaning up so any error
1808 * can't be handled.
1809 */
1810 (void) consumer_del_stream(stream, ht);
1811 }
1812 rcu_read_unlock();
1813
1814 lttng_ht_destroy(ht);
1815 }
1816
1817 /*
1818 * Iterate over all streams of the hashtable and free them properly.
1819 *
1820 * XXX: Should not be only for metadata stream or else use an other name.
1821 */
1822 static void destroy_stream_ht(struct lttng_ht *ht)
1823 {
1824 struct lttng_ht_iter iter;
1825 struct lttng_consumer_stream *stream;
1826
1827 if (ht == NULL) {
1828 return;
1829 }
1830
1831 rcu_read_lock();
1832 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1833 /*
1834 * Ignore return value since we are currently cleaning up so any error
1835 * can't be handled.
1836 */
1837 (void) consumer_del_metadata_stream(stream, ht);
1838 }
1839 rcu_read_unlock();
1840
1841 lttng_ht_destroy(ht);
1842 }
1843
1844 void lttng_consumer_close_metadata(void)
1845 {
1846 switch (consumer_data.type) {
1847 case LTTNG_CONSUMER_KERNEL:
1848 /*
1849 * The Kernel consumer has a different metadata scheme so we don't
1850 * close anything because the stream will be closed by the session
1851 * daemon.
1852 */
1853 break;
1854 case LTTNG_CONSUMER32_UST:
1855 case LTTNG_CONSUMER64_UST:
1856 /*
1857 * Close all metadata streams. The metadata hash table is passed and
1858 * this call iterates over it by closing all wakeup fd. This is safe
1859 * because at this point we are sure that the metadata producer is
1860 * either dead or blocked.
1861 */
1862 lttng_ustconsumer_close_metadata(metadata_ht);
1863 break;
1864 default:
1865 ERR("Unknown consumer_data type");
1866 assert(0);
1867 }
1868 }
1869
1870 /*
1871 * Clean up a metadata stream and free its memory.
1872 */
1873 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1874 struct lttng_ht *ht)
1875 {
1876 int ret;
1877 struct lttng_ht_iter iter;
1878 struct lttng_consumer_channel *free_chan = NULL;
1879 struct consumer_relayd_sock_pair *relayd;
1880
1881 assert(stream);
1882 /*
1883 * This call should NEVER receive regular stream. It must always be
1884 * metadata stream and this is crucial for data structure synchronization.
1885 */
1886 assert(stream->metadata_flag);
1887
1888 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1889
1890 if (ht == NULL) {
1891 /* Means the stream was allocated but not successfully added */
1892 goto free_stream_rcu;
1893 }
1894
1895 pthread_mutex_lock(&consumer_data.lock);
1896 pthread_mutex_lock(&stream->chan->lock);
1897 pthread_mutex_lock(&stream->lock);
1898
1899 switch (consumer_data.type) {
1900 case LTTNG_CONSUMER_KERNEL:
1901 if (stream->mmap_base != NULL) {
1902 ret = munmap(stream->mmap_base, stream->mmap_len);
1903 if (ret != 0) {
1904 PERROR("munmap metadata stream");
1905 }
1906 }
1907
1908 if (stream->wait_fd >= 0) {
1909 ret = close(stream->wait_fd);
1910 if (ret < 0) {
1911 PERROR("close kernel metadata wait_fd");
1912 }
1913 }
1914 break;
1915 case LTTNG_CONSUMER32_UST:
1916 case LTTNG_CONSUMER64_UST:
1917 lttng_ustconsumer_del_stream(stream);
1918 break;
1919 default:
1920 ERR("Unknown consumer_data type");
1921 assert(0);
1922 goto end;
1923 }
1924
1925 rcu_read_lock();
1926 iter.iter.node = &stream->node.node;
1927 ret = lttng_ht_del(ht, &iter);
1928 assert(!ret);
1929
1930 iter.iter.node = &stream->node_channel_id.node;
1931 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1932 assert(!ret);
1933
1934 iter.iter.node = &stream->node_session_id.node;
1935 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1936 assert(!ret);
1937 rcu_read_unlock();
1938
1939 if (stream->out_fd >= 0) {
1940 ret = close(stream->out_fd);
1941 if (ret) {
1942 PERROR("close");
1943 }
1944 }
1945
1946 /* Check and cleanup relayd */
1947 rcu_read_lock();
1948 relayd = consumer_find_relayd(stream->net_seq_idx);
1949 if (relayd != NULL) {
1950 uatomic_dec(&relayd->refcount);
1951 assert(uatomic_read(&relayd->refcount) >= 0);
1952
1953 /* Closing streams requires to lock the control socket. */
1954 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1955 ret = relayd_send_close_stream(&relayd->control_sock,
1956 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1957 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1958 if (ret < 0) {
1959 DBG("Unable to close stream on the relayd. Continuing");
1960 /*
1961 * Continue here. There is nothing we can do for the relayd.
1962 * Chances are that the relayd has closed the socket so we just
1963 * continue cleaning up.
1964 */
1965 }
1966
1967 /* Both conditions are met, we destroy the relayd. */
1968 if (uatomic_read(&relayd->refcount) == 0 &&
1969 uatomic_read(&relayd->destroy_flag)) {
1970 destroy_relayd(relayd);
1971 }
1972 }
1973 rcu_read_unlock();
1974
1975 /* Atomically decrement channel refcount since other threads can use it. */
1976 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1977 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1978 /* Go for channel deletion! */
1979 free_chan = stream->chan;
1980 }
1981
1982 end:
1983 /*
1984 * Nullify the stream reference so it is not used after deletion. The
1985 * consumer data lock MUST be acquired before being able to check for a
1986 * NULL pointer value.
1987 */
1988 stream->chan->metadata_stream = NULL;
1989
1990 pthread_mutex_unlock(&stream->lock);
1991 pthread_mutex_unlock(&stream->chan->lock);
1992 pthread_mutex_unlock(&consumer_data.lock);
1993
1994 if (free_chan) {
1995 consumer_del_channel(free_chan);
1996 }
1997
1998 free_stream_rcu:
1999 call_rcu(&stream->node.head, free_stream_rcu);
2000 }
2001
2002 /*
2003 * Action done with the metadata stream when adding it to the consumer internal
2004 * data structures to handle it.
2005 */
2006 static int add_metadata_stream(struct lttng_consumer_stream *stream,
2007 struct lttng_ht *ht)
2008 {
2009 int ret = 0;
2010 struct consumer_relayd_sock_pair *relayd;
2011 struct lttng_ht_iter iter;
2012 struct lttng_ht_node_u64 *node;
2013
2014 assert(stream);
2015 assert(ht);
2016
2017 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2018
2019 pthread_mutex_lock(&consumer_data.lock);
2020 pthread_mutex_lock(&stream->chan->lock);
2021 pthread_mutex_lock(&stream->lock);
2022
2023 /*
2024 * From here, refcounts are updated so be _careful_ when returning an error
2025 * after this point.
2026 */
2027
2028 rcu_read_lock();
2029
2030 /*
2031 * Lookup the stream just to make sure it does not exist in our internal
2032 * state. This should NEVER happen.
2033 */
2034 lttng_ht_lookup(ht, &stream->key, &iter);
2035 node = lttng_ht_iter_get_node_u64(&iter);
2036 assert(!node);
2037
2038 /* Find relayd and, if one is found, increment refcount. */
2039 relayd = consumer_find_relayd(stream->net_seq_idx);
2040 if (relayd != NULL) {
2041 uatomic_inc(&relayd->refcount);
2042 }
2043
2044 /*
2045 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2046 * in terms of destroying the associated channel, because the action that
2047 * causes the count to become 0 also causes a stream to be added. The
2048 * channel deletion will thus be triggered by the following removal of this
2049 * stream.
2050 */
2051 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2052 /* Increment refcount before decrementing nb_init_stream_left */
2053 cmm_smp_wmb();
2054 uatomic_dec(&stream->chan->nb_init_stream_left);
2055 }
2056
2057 lttng_ht_add_unique_u64(ht, &stream->node);
2058
2059 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2060 &stream->node_channel_id);
2061
2062 /*
2063 * Add stream to the stream_list_ht of the consumer data. No need to steal
2064 * the key since the HT does not use it and we allow to add redundant keys
2065 * into this table.
2066 */
2067 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2068
2069 rcu_read_unlock();
2070
2071 pthread_mutex_unlock(&stream->lock);
2072 pthread_mutex_unlock(&stream->chan->lock);
2073 pthread_mutex_unlock(&consumer_data.lock);
2074 return ret;
2075 }
2076
2077 /*
2078 * Delete data stream that are flagged for deletion (endpoint_status).
2079 */
2080 static void validate_endpoint_status_data_stream(void)
2081 {
2082 struct lttng_ht_iter iter;
2083 struct lttng_consumer_stream *stream;
2084
2085 DBG("Consumer delete flagged data stream");
2086
2087 rcu_read_lock();
2088 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2089 /* Validate delete flag of the stream */
2090 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2091 continue;
2092 }
2093 /* Delete it right now */
2094 consumer_del_stream(stream, data_ht);
2095 }
2096 rcu_read_unlock();
2097 }
2098
2099 /*
2100 * Delete metadata stream that are flagged for deletion (endpoint_status).
2101 */
2102 static void validate_endpoint_status_metadata_stream(
2103 struct lttng_poll_event *pollset)
2104 {
2105 struct lttng_ht_iter iter;
2106 struct lttng_consumer_stream *stream;
2107
2108 DBG("Consumer delete flagged metadata stream");
2109
2110 assert(pollset);
2111
2112 rcu_read_lock();
2113 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2114 /* Validate delete flag of the stream */
2115 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2116 continue;
2117 }
2118 /*
2119 * Remove from pollset so the metadata thread can continue without
2120 * blocking on a deleted stream.
2121 */
2122 lttng_poll_del(pollset, stream->wait_fd);
2123
2124 /* Delete it right now */
2125 consumer_del_metadata_stream(stream, metadata_ht);
2126 }
2127 rcu_read_unlock();
2128 }
2129
2130 /*
2131 * Thread polls on metadata file descriptor and write them on disk or on the
2132 * network.
2133 */
2134 void *consumer_thread_metadata_poll(void *data)
2135 {
2136 int ret, i, pollfd;
2137 uint32_t revents, nb_fd;
2138 struct lttng_consumer_stream *stream = NULL;
2139 struct lttng_ht_iter iter;
2140 struct lttng_ht_node_u64 *node;
2141 struct lttng_poll_event events;
2142 struct lttng_consumer_local_data *ctx = data;
2143 ssize_t len;
2144
2145 rcu_register_thread();
2146
2147 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2148 if (!metadata_ht) {
2149 /* ENOMEM at this point. Better to bail out. */
2150 goto end_ht;
2151 }
2152
2153 DBG("Thread metadata poll started");
2154
2155 /* Size is set to 1 for the consumer_metadata pipe */
2156 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2157 if (ret < 0) {
2158 ERR("Poll set creation failed");
2159 goto end_poll;
2160 }
2161
2162 ret = lttng_poll_add(&events,
2163 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2164 if (ret < 0) {
2165 goto end;
2166 }
2167
2168 /* Main loop */
2169 DBG("Metadata main loop started");
2170
2171 while (1) {
2172 /* Only the metadata pipe is set */
2173 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2174 goto end;
2175 }
2176
2177 restart:
2178 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2179 ret = lttng_poll_wait(&events, -1);
2180 DBG("Metadata event catched in thread");
2181 if (ret < 0) {
2182 if (errno == EINTR) {
2183 ERR("Poll EINTR catched");
2184 goto restart;
2185 }
2186 goto error;
2187 }
2188
2189 nb_fd = ret;
2190
2191 /* From here, the event is a metadata wait fd */
2192 for (i = 0; i < nb_fd; i++) {
2193 revents = LTTNG_POLL_GETEV(&events, i);
2194 pollfd = LTTNG_POLL_GETFD(&events, i);
2195
2196 /* Just don't waste time if no returned events for the fd */
2197 if (!revents) {
2198 continue;
2199 }
2200
2201 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2202 if (revents & (LPOLLERR | LPOLLHUP )) {
2203 DBG("Metadata thread pipe hung up");
2204 /*
2205 * Remove the pipe from the poll set and continue the loop
2206 * since their might be data to consume.
2207 */
2208 lttng_poll_del(&events,
2209 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2210 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2211 continue;
2212 } else if (revents & LPOLLIN) {
2213 ssize_t pipe_len;
2214
2215 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2216 &stream, sizeof(stream));
2217 if (pipe_len < 0) {
2218 ERR("read metadata stream, ret: %ld", pipe_len);
2219 /*
2220 * Continue here to handle the rest of the streams.
2221 */
2222 continue;
2223 }
2224
2225 /* A NULL stream means that the state has changed. */
2226 if (stream == NULL) {
2227 /* Check for deleted streams. */
2228 validate_endpoint_status_metadata_stream(&events);
2229 goto restart;
2230 }
2231
2232 DBG("Adding metadata stream %d to poll set",
2233 stream->wait_fd);
2234
2235 ret = add_metadata_stream(stream, metadata_ht);
2236 if (ret) {
2237 ERR("Unable to add metadata stream");
2238 /* Stream was not setup properly. Continuing. */
2239 consumer_del_metadata_stream(stream, NULL);
2240 continue;
2241 }
2242
2243 /* Add metadata stream to the global poll events list */
2244 lttng_poll_add(&events, stream->wait_fd,
2245 LPOLLIN | LPOLLPRI);
2246 }
2247
2248 /* Handle other stream */
2249 continue;
2250 }
2251
2252 rcu_read_lock();
2253 {
2254 uint64_t tmp_id = (uint64_t) pollfd;
2255
2256 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2257 }
2258 node = lttng_ht_iter_get_node_u64(&iter);
2259 assert(node);
2260
2261 stream = caa_container_of(node, struct lttng_consumer_stream,
2262 node);
2263
2264 /* Check for error event */
2265 if (revents & (LPOLLERR | LPOLLHUP)) {
2266 DBG("Metadata fd %d is hup|err.", pollfd);
2267 if (!stream->hangup_flush_done
2268 && (consumer_data.type == LTTNG_CONSUMER32_UST
2269 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2270 DBG("Attempting to flush and consume the UST buffers");
2271 lttng_ustconsumer_on_stream_hangup(stream);
2272
2273 /* We just flushed the stream now read it. */
2274 do {
2275 len = ctx->on_buffer_ready(stream, ctx);
2276 /*
2277 * We don't check the return value here since if we get
2278 * a negative len, it means an error occured thus we
2279 * simply remove it from the poll set and free the
2280 * stream.
2281 */
2282 } while (len > 0);
2283 }
2284
2285 lttng_poll_del(&events, stream->wait_fd);
2286 /*
2287 * This call update the channel states, closes file descriptors
2288 * and securely free the stream.
2289 */
2290 consumer_del_metadata_stream(stream, metadata_ht);
2291 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2292 /* Get the data out of the metadata file descriptor */
2293 DBG("Metadata available on fd %d", pollfd);
2294 assert(stream->wait_fd == pollfd);
2295
2296 len = ctx->on_buffer_ready(stream, ctx);
2297 /* It's ok to have an unavailable sub-buffer */
2298 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2299 /* Clean up stream from consumer and free it. */
2300 lttng_poll_del(&events, stream->wait_fd);
2301 consumer_del_metadata_stream(stream, metadata_ht);
2302 } else if (len > 0) {
2303 stream->data_read = 1;
2304 }
2305 }
2306
2307 /* Release RCU lock for the stream looked up */
2308 rcu_read_unlock();
2309 }
2310 }
2311
2312 error:
2313 end:
2314 DBG("Metadata poll thread exiting");
2315
2316 lttng_poll_clean(&events);
2317 end_poll:
2318 destroy_stream_ht(metadata_ht);
2319 end_ht:
2320 rcu_unregister_thread();
2321 return NULL;
2322 }
2323
2324 /*
2325 * This thread polls the fds in the set to consume the data and write
2326 * it to tracefile if necessary.
2327 */
2328 void *consumer_thread_data_poll(void *data)
2329 {
2330 int num_rdy, num_hup, high_prio, ret, i;
2331 struct pollfd *pollfd = NULL;
2332 /* local view of the streams */
2333 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2334 /* local view of consumer_data.fds_count */
2335 int nb_fd = 0;
2336 struct lttng_consumer_local_data *ctx = data;
2337 ssize_t len;
2338
2339 rcu_register_thread();
2340
2341 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2342 if (data_ht == NULL) {
2343 /* ENOMEM at this point. Better to bail out. */
2344 goto end;
2345 }
2346
2347 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2348
2349 while (1) {
2350 high_prio = 0;
2351 num_hup = 0;
2352
2353 /*
2354 * the fds set has been updated, we need to update our
2355 * local array as well
2356 */
2357 pthread_mutex_lock(&consumer_data.lock);
2358 if (consumer_data.need_update) {
2359 free(pollfd);
2360 pollfd = NULL;
2361
2362 free(local_stream);
2363 local_stream = NULL;
2364
2365 /* allocate for all fds + 1 for the consumer_data_pipe */
2366 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2367 if (pollfd == NULL) {
2368 PERROR("pollfd malloc");
2369 pthread_mutex_unlock(&consumer_data.lock);
2370 goto end;
2371 }
2372
2373 /* allocate for all fds + 1 for the consumer_data_pipe */
2374 local_stream = zmalloc((consumer_data.stream_count + 1) *
2375 sizeof(struct lttng_consumer_stream *));
2376 if (local_stream == NULL) {
2377 PERROR("local_stream malloc");
2378 pthread_mutex_unlock(&consumer_data.lock);
2379 goto end;
2380 }
2381 ret = update_poll_array(ctx, &pollfd, local_stream,
2382 data_ht);
2383 if (ret < 0) {
2384 ERR("Error in allocating pollfd or local_outfds");
2385 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2386 pthread_mutex_unlock(&consumer_data.lock);
2387 goto end;
2388 }
2389 nb_fd = ret;
2390 consumer_data.need_update = 0;
2391 }
2392 pthread_mutex_unlock(&consumer_data.lock);
2393
2394 /* No FDs and consumer_quit, consumer_cleanup the thread */
2395 if (nb_fd == 0 && consumer_quit == 1) {
2396 goto end;
2397 }
2398 /* poll on the array of fds */
2399 restart:
2400 DBG("polling on %d fd", nb_fd + 1);
2401 num_rdy = poll(pollfd, nb_fd + 1, -1);
2402 DBG("poll num_rdy : %d", num_rdy);
2403 if (num_rdy == -1) {
2404 /*
2405 * Restart interrupted system call.
2406 */
2407 if (errno == EINTR) {
2408 goto restart;
2409 }
2410 PERROR("Poll error");
2411 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2412 goto end;
2413 } else if (num_rdy == 0) {
2414 DBG("Polling thread timed out");
2415 goto end;
2416 }
2417
2418 /*
2419 * If the consumer_data_pipe triggered poll go directly to the
2420 * beginning of the loop to update the array. We want to prioritize
2421 * array update over low-priority reads.
2422 */
2423 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2424 ssize_t pipe_readlen;
2425
2426 DBG("consumer_data_pipe wake up");
2427 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2428 &new_stream, sizeof(new_stream));
2429 if (pipe_readlen < 0) {
2430 ERR("Consumer data pipe ret %ld", pipe_readlen);
2431 /* Continue so we can at least handle the current stream(s). */
2432 continue;
2433 }
2434
2435 /*
2436 * If the stream is NULL, just ignore it. It's also possible that
2437 * the sessiond poll thread changed the consumer_quit state and is
2438 * waking us up to test it.
2439 */
2440 if (new_stream == NULL) {
2441 validate_endpoint_status_data_stream();
2442 continue;
2443 }
2444
2445 ret = add_stream(new_stream, data_ht);
2446 if (ret) {
2447 ERR("Consumer add stream %" PRIu64 " failed. Continuing",
2448 new_stream->key);
2449 /*
2450 * At this point, if the add_stream fails, it is not in the
2451 * hash table thus passing the NULL value here.
2452 */
2453 consumer_del_stream(new_stream, NULL);
2454 }
2455
2456 /* Continue to update the local streams and handle prio ones */
2457 continue;
2458 }
2459
2460 /* Take care of high priority channels first. */
2461 for (i = 0; i < nb_fd; i++) {
2462 if (local_stream[i] == NULL) {
2463 continue;
2464 }
2465 if (pollfd[i].revents & POLLPRI) {
2466 DBG("Urgent read on fd %d", pollfd[i].fd);
2467 high_prio = 1;
2468 len = ctx->on_buffer_ready(local_stream[i], ctx);
2469 /* it's ok to have an unavailable sub-buffer */
2470 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2471 /* Clean the stream and free it. */
2472 consumer_del_stream(local_stream[i], data_ht);
2473 local_stream[i] = NULL;
2474 } else if (len > 0) {
2475 local_stream[i]->data_read = 1;
2476 }
2477 }
2478 }
2479
2480 /*
2481 * If we read high prio channel in this loop, try again
2482 * for more high prio data.
2483 */
2484 if (high_prio) {
2485 continue;
2486 }
2487
2488 /* Take care of low priority channels. */
2489 for (i = 0; i < nb_fd; i++) {
2490 if (local_stream[i] == NULL) {
2491 continue;
2492 }
2493 if ((pollfd[i].revents & POLLIN) ||
2494 local_stream[i]->hangup_flush_done) {
2495 DBG("Normal read on fd %d", pollfd[i].fd);
2496 len = ctx->on_buffer_ready(local_stream[i], ctx);
2497 /* it's ok to have an unavailable sub-buffer */
2498 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2499 /* Clean the stream and free it. */
2500 consumer_del_stream(local_stream[i], data_ht);
2501 local_stream[i] = NULL;
2502 } else if (len > 0) {
2503 local_stream[i]->data_read = 1;
2504 }
2505 }
2506 }
2507
2508 /* Handle hangup and errors */
2509 for (i = 0; i < nb_fd; i++) {
2510 if (local_stream[i] == NULL) {
2511 continue;
2512 }
2513 if (!local_stream[i]->hangup_flush_done
2514 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2515 && (consumer_data.type == LTTNG_CONSUMER32_UST
2516 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2517 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2518 pollfd[i].fd);
2519 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2520 /* Attempt read again, for the data we just flushed. */
2521 local_stream[i]->data_read = 1;
2522 }
2523 /*
2524 * If the poll flag is HUP/ERR/NVAL and we have
2525 * read no data in this pass, we can remove the
2526 * stream from its hash table.
2527 */
2528 if ((pollfd[i].revents & POLLHUP)) {
2529 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2530 if (!local_stream[i]->data_read) {
2531 consumer_del_stream(local_stream[i], data_ht);
2532 local_stream[i] = NULL;
2533 num_hup++;
2534 }
2535 } else if (pollfd[i].revents & POLLERR) {
2536 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2537 if (!local_stream[i]->data_read) {
2538 consumer_del_stream(local_stream[i], data_ht);
2539 local_stream[i] = NULL;
2540 num_hup++;
2541 }
2542 } else if (pollfd[i].revents & POLLNVAL) {
2543 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2544 if (!local_stream[i]->data_read) {
2545 consumer_del_stream(local_stream[i], data_ht);
2546 local_stream[i] = NULL;
2547 num_hup++;
2548 }
2549 }
2550 if (local_stream[i] != NULL) {
2551 local_stream[i]->data_read = 0;
2552 }
2553 }
2554 }
2555 end:
2556 DBG("polling thread exiting");
2557 free(pollfd);
2558 free(local_stream);
2559
2560 /*
2561 * Close the write side of the pipe so epoll_wait() in
2562 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2563 * read side of the pipe. If we close them both, epoll_wait strangely does
2564 * not return and could create a endless wait period if the pipe is the
2565 * only tracked fd in the poll set. The thread will take care of closing
2566 * the read side.
2567 */
2568 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2569
2570 destroy_data_stream_ht(data_ht);
2571
2572 rcu_unregister_thread();
2573 return NULL;
2574 }
2575
2576 /*
2577 * Close wake-up end of each stream belonging to the channel. This will
2578 * allow the poll() on the stream read-side to detect when the
2579 * write-side (application) finally closes them.
2580 */
2581 static
2582 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2583 {
2584 struct lttng_ht *ht;
2585 struct lttng_consumer_stream *stream;
2586 struct lttng_ht_iter iter;
2587
2588 ht = consumer_data.stream_per_chan_id_ht;
2589
2590 rcu_read_lock();
2591 cds_lfht_for_each_entry_duplicate(ht->ht,
2592 ht->hash_fct(&channel->key, lttng_ht_seed),
2593 ht->match_fct, &channel->key,
2594 &iter.iter, stream, node_channel_id.node) {
2595 /*
2596 * Protect against teardown with mutex.
2597 */
2598 pthread_mutex_lock(&stream->lock);
2599 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2600 goto next;
2601 }
2602 switch (consumer_data.type) {
2603 case LTTNG_CONSUMER_KERNEL:
2604 break;
2605 case LTTNG_CONSUMER32_UST:
2606 case LTTNG_CONSUMER64_UST:
2607 /*
2608 * Note: a mutex is taken internally within
2609 * liblttng-ust-ctl to protect timer wakeup_fd
2610 * use from concurrent close.
2611 */
2612 lttng_ustconsumer_close_stream_wakeup(stream);
2613 break;
2614 default:
2615 ERR("Unknown consumer_data type");
2616 assert(0);
2617 }
2618 next:
2619 pthread_mutex_unlock(&stream->lock);
2620 }
2621 rcu_read_unlock();
2622 }
2623
2624 static void destroy_channel_ht(struct lttng_ht *ht)
2625 {
2626 struct lttng_ht_iter iter;
2627 struct lttng_consumer_channel *channel;
2628 int ret;
2629
2630 if (ht == NULL) {
2631 return;
2632 }
2633
2634 rcu_read_lock();
2635 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2636 ret = lttng_ht_del(ht, &iter);
2637 assert(ret != 0);
2638 }
2639 rcu_read_unlock();
2640
2641 lttng_ht_destroy(ht);
2642 }
2643
2644 /*
2645 * This thread polls the channel fds to detect when they are being
2646 * closed. It closes all related streams if the channel is detected as
2647 * closed. It is currently only used as a shim layer for UST because the
2648 * consumerd needs to keep the per-stream wakeup end of pipes open for
2649 * periodical flush.
2650 */
2651 void *consumer_thread_channel_poll(void *data)
2652 {
2653 int ret, i, pollfd;
2654 uint32_t revents, nb_fd;
2655 struct lttng_consumer_channel *chan = NULL;
2656 struct lttng_ht_iter iter;
2657 struct lttng_ht_node_u64 *node;
2658 struct lttng_poll_event events;
2659 struct lttng_consumer_local_data *ctx = data;
2660 struct lttng_ht *channel_ht;
2661
2662 rcu_register_thread();
2663
2664 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2665 if (!channel_ht) {
2666 /* ENOMEM at this point. Better to bail out. */
2667 goto end_ht;
2668 }
2669
2670 DBG("Thread channel poll started");
2671
2672 /* Size is set to 1 for the consumer_channel pipe */
2673 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2674 if (ret < 0) {
2675 ERR("Poll set creation failed");
2676 goto end_poll;
2677 }
2678
2679 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2680 if (ret < 0) {
2681 goto end;
2682 }
2683
2684 /* Main loop */
2685 DBG("Channel main loop started");
2686
2687 while (1) {
2688 /* Only the channel pipe is set */
2689 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2690 goto end;
2691 }
2692
2693 restart:
2694 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2695 ret = lttng_poll_wait(&events, -1);
2696 DBG("Channel event catched in thread");
2697 if (ret < 0) {
2698 if (errno == EINTR) {
2699 ERR("Poll EINTR catched");
2700 goto restart;
2701 }
2702 goto end;
2703 }
2704
2705 nb_fd = ret;
2706
2707 /* From here, the event is a channel wait fd */
2708 for (i = 0; i < nb_fd; i++) {
2709 revents = LTTNG_POLL_GETEV(&events, i);
2710 pollfd = LTTNG_POLL_GETFD(&events, i);
2711
2712 /* Just don't waste time if no returned events for the fd */
2713 if (!revents) {
2714 continue;
2715 }
2716 if (pollfd == ctx->consumer_channel_pipe[0]) {
2717 if (revents & (LPOLLERR | LPOLLHUP)) {
2718 DBG("Channel thread pipe hung up");
2719 /*
2720 * Remove the pipe from the poll set and continue the loop
2721 * since their might be data to consume.
2722 */
2723 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2724 continue;
2725 } else if (revents & LPOLLIN) {
2726 enum consumer_channel_action action;
2727 uint64_t key;
2728
2729 ret = read_channel_pipe(ctx, &chan, &key, &action);
2730 if (ret <= 0) {
2731 ERR("Error reading channel pipe");
2732 continue;
2733 }
2734
2735 switch (action) {
2736 case CONSUMER_CHANNEL_ADD:
2737 DBG("Adding channel %d to poll set",
2738 chan->wait_fd);
2739
2740 lttng_ht_node_init_u64(&chan->wait_fd_node,
2741 chan->wait_fd);
2742 rcu_read_lock();
2743 lttng_ht_add_unique_u64(channel_ht,
2744 &chan->wait_fd_node);
2745 rcu_read_unlock();
2746 /* Add channel to the global poll events list */
2747 lttng_poll_add(&events, chan->wait_fd,
2748 LPOLLIN | LPOLLPRI);
2749 break;
2750 case CONSUMER_CHANNEL_DEL:
2751 {
2752 struct lttng_consumer_stream *stream, *stmp;
2753
2754 rcu_read_lock();
2755 chan = consumer_find_channel(key);
2756 if (!chan) {
2757 rcu_read_unlock();
2758 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2759 break;
2760 }
2761 lttng_poll_del(&events, chan->wait_fd);
2762 iter.iter.node = &chan->wait_fd_node.node;
2763 ret = lttng_ht_del(channel_ht, &iter);
2764 assert(ret == 0);
2765 consumer_close_channel_streams(chan);
2766
2767 switch (consumer_data.type) {
2768 case LTTNG_CONSUMER_KERNEL:
2769 break;
2770 case LTTNG_CONSUMER32_UST:
2771 case LTTNG_CONSUMER64_UST:
2772 /* Delete streams that might have been left in the stream list. */
2773 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2774 send_node) {
2775 cds_list_del(&stream->send_node);
2776 lttng_ustconsumer_del_stream(stream);
2777 uatomic_sub(&stream->chan->refcount, 1);
2778 assert(&chan->refcount);
2779 free(stream);
2780 }
2781 break;
2782 default:
2783 ERR("Unknown consumer_data type");
2784 assert(0);
2785 }
2786
2787 /*
2788 * Release our own refcount. Force channel deletion even if
2789 * streams were not initialized.
2790 */
2791 if (!uatomic_sub_return(&chan->refcount, 1)) {
2792 consumer_del_channel(chan);
2793 }
2794 rcu_read_unlock();
2795 goto restart;
2796 }
2797 case CONSUMER_CHANNEL_QUIT:
2798 /*
2799 * Remove the pipe from the poll set and continue the loop
2800 * since their might be data to consume.
2801 */
2802 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2803 continue;
2804 default:
2805 ERR("Unknown action");
2806 break;
2807 }
2808 }
2809
2810 /* Handle other stream */
2811 continue;
2812 }
2813
2814 rcu_read_lock();
2815 {
2816 uint64_t tmp_id = (uint64_t) pollfd;
2817
2818 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2819 }
2820 node = lttng_ht_iter_get_node_u64(&iter);
2821 assert(node);
2822
2823 chan = caa_container_of(node, struct lttng_consumer_channel,
2824 wait_fd_node);
2825
2826 /* Check for error event */
2827 if (revents & (LPOLLERR | LPOLLHUP)) {
2828 DBG("Channel fd %d is hup|err.", pollfd);
2829
2830 lttng_poll_del(&events, chan->wait_fd);
2831 ret = lttng_ht_del(channel_ht, &iter);
2832 assert(ret == 0);
2833 assert(cds_list_empty(&chan->streams.head));
2834 consumer_close_channel_streams(chan);
2835
2836 /* Release our own refcount */
2837 if (!uatomic_sub_return(&chan->refcount, 1)
2838 && !uatomic_read(&chan->nb_init_stream_left)) {
2839 consumer_del_channel(chan);
2840 }
2841 }
2842
2843 /* Release RCU lock for the channel looked up */
2844 rcu_read_unlock();
2845 }
2846 }
2847
2848 end:
2849 lttng_poll_clean(&events);
2850 end_poll:
2851 destroy_channel_ht(channel_ht);
2852 end_ht:
2853 DBG("Channel poll thread exiting");
2854 rcu_unregister_thread();
2855 return NULL;
2856 }
2857
2858 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2859 struct pollfd *sockpoll, int client_socket)
2860 {
2861 int ret;
2862
2863 assert(ctx);
2864 assert(sockpoll);
2865
2866 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2867 ret = -1;
2868 goto error;
2869 }
2870 DBG("Metadata connection on client_socket");
2871
2872 /* Blocking call, waiting for transmission */
2873 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2874 if (ctx->consumer_metadata_socket < 0) {
2875 WARN("On accept metadata");
2876 ret = -1;
2877 goto error;
2878 }
2879 ret = 0;
2880
2881 error:
2882 return ret;
2883 }
2884
2885 /*
2886 * This thread listens on the consumerd socket and receives the file
2887 * descriptors from the session daemon.
2888 */
2889 void *consumer_thread_sessiond_poll(void *data)
2890 {
2891 int sock = -1, client_socket, ret;
2892 /*
2893 * structure to poll for incoming data on communication socket avoids
2894 * making blocking sockets.
2895 */
2896 struct pollfd consumer_sockpoll[2];
2897 struct lttng_consumer_local_data *ctx = data;
2898
2899 rcu_register_thread();
2900
2901 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2902 unlink(ctx->consumer_command_sock_path);
2903 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2904 if (client_socket < 0) {
2905 ERR("Cannot create command socket");
2906 goto end;
2907 }
2908
2909 ret = lttcomm_listen_unix_sock(client_socket);
2910 if (ret < 0) {
2911 goto end;
2912 }
2913
2914 DBG("Sending ready command to lttng-sessiond");
2915 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2916 /* return < 0 on error, but == 0 is not fatal */
2917 if (ret < 0) {
2918 ERR("Error sending ready command to lttng-sessiond");
2919 goto end;
2920 }
2921
2922 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2923 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2924 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2925 consumer_sockpoll[1].fd = client_socket;
2926 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2927
2928 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2929 goto end;
2930 }
2931 DBG("Connection on client_socket");
2932
2933 /* Blocking call, waiting for transmission */
2934 sock = lttcomm_accept_unix_sock(client_socket);
2935 if (sock < 0) {
2936 WARN("On accept");
2937 goto end;
2938 }
2939
2940 /*
2941 * Setup metadata socket which is the second socket connection on the
2942 * command unix socket.
2943 */
2944 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2945 if (ret < 0) {
2946 goto end;
2947 }
2948
2949 /* This socket is not useful anymore. */
2950 ret = close(client_socket);
2951 if (ret < 0) {
2952 PERROR("close client_socket");
2953 }
2954 client_socket = -1;
2955
2956 /* update the polling structure to poll on the established socket */
2957 consumer_sockpoll[1].fd = sock;
2958 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2959
2960 while (1) {
2961 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2962 goto end;
2963 }
2964 DBG("Incoming command on sock");
2965 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2966 if (ret == -ENOENT) {
2967 DBG("Received STOP command");
2968 goto end;
2969 }
2970 if (ret <= 0) {
2971 /*
2972 * This could simply be a session daemon quitting. Don't output
2973 * ERR() here.
2974 */
2975 DBG("Communication interrupted on command socket");
2976 goto end;
2977 }
2978 if (consumer_quit) {
2979 DBG("consumer_thread_receive_fds received quit from signal");
2980 goto end;
2981 }
2982 DBG("received command on sock");
2983 }
2984 end:
2985 DBG("Consumer thread sessiond poll exiting");
2986
2987 /*
2988 * Close metadata streams since the producer is the session daemon which
2989 * just died.
2990 *
2991 * NOTE: for now, this only applies to the UST tracer.
2992 */
2993 lttng_consumer_close_metadata();
2994
2995 /*
2996 * when all fds have hung up, the polling thread
2997 * can exit cleanly
2998 */
2999 consumer_quit = 1;
3000
3001 /*
3002 * Notify the data poll thread to poll back again and test the
3003 * consumer_quit state that we just set so to quit gracefully.
3004 */
3005 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3006
3007 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3008
3009 /* Cleaning up possibly open sockets. */
3010 if (sock >= 0) {
3011 ret = close(sock);
3012 if (ret < 0) {
3013 PERROR("close sock sessiond poll");
3014 }
3015 }
3016 if (client_socket >= 0) {
3017 ret = close(client_socket);
3018 if (ret < 0) {
3019 PERROR("close client_socket sessiond poll");
3020 }
3021 }
3022
3023 rcu_unregister_thread();
3024 return NULL;
3025 }
3026
3027 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3028 struct lttng_consumer_local_data *ctx)
3029 {
3030 ssize_t ret;
3031
3032 pthread_mutex_lock(&stream->lock);
3033
3034 switch (consumer_data.type) {
3035 case LTTNG_CONSUMER_KERNEL:
3036 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3037 break;
3038 case LTTNG_CONSUMER32_UST:
3039 case LTTNG_CONSUMER64_UST:
3040 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3041 break;
3042 default:
3043 ERR("Unknown consumer_data type");
3044 assert(0);
3045 ret = -ENOSYS;
3046 break;
3047 }
3048
3049 pthread_mutex_unlock(&stream->lock);
3050 return ret;
3051 }
3052
3053 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3054 {
3055 switch (consumer_data.type) {
3056 case LTTNG_CONSUMER_KERNEL:
3057 return lttng_kconsumer_on_recv_stream(stream);
3058 case LTTNG_CONSUMER32_UST:
3059 case LTTNG_CONSUMER64_UST:
3060 return lttng_ustconsumer_on_recv_stream(stream);
3061 default:
3062 ERR("Unknown consumer_data type");
3063 assert(0);
3064 return -ENOSYS;
3065 }
3066 }
3067
3068 /*
3069 * Allocate and set consumer data hash tables.
3070 */
3071 void lttng_consumer_init(void)
3072 {
3073 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3074 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3075 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3076 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3077 }
3078
3079 /*
3080 * Process the ADD_RELAYD command receive by a consumer.
3081 *
3082 * This will create a relayd socket pair and add it to the relayd hash table.
3083 * The caller MUST acquire a RCU read side lock before calling it.
3084 */
3085 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3086 struct lttng_consumer_local_data *ctx, int sock,
3087 struct pollfd *consumer_sockpoll,
3088 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id)
3089 {
3090 int fd = -1, ret = -1, relayd_created = 0;
3091 enum lttng_error_code ret_code = LTTNG_OK;
3092 struct consumer_relayd_sock_pair *relayd = NULL;
3093
3094 assert(ctx);
3095 assert(relayd_sock);
3096
3097 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3098
3099 /* Get relayd reference if exists. */
3100 relayd = consumer_find_relayd(net_seq_idx);
3101 if (relayd == NULL) {
3102 assert(sock_type == LTTNG_STREAM_CONTROL);
3103 /* Not found. Allocate one. */
3104 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3105 if (relayd == NULL) {
3106 ret = -ENOMEM;
3107 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3108 goto error;
3109 } else {
3110 relayd->sessiond_session_id = sessiond_id;
3111 relayd_created = 1;
3112 }
3113
3114 /*
3115 * This code path MUST continue to the consumer send status message to
3116 * we can notify the session daemon and continue our work without
3117 * killing everything.
3118 */
3119 } else {
3120 /*
3121 * relayd key should never be found for control socket.
3122 */
3123 assert(sock_type != LTTNG_STREAM_CONTROL);
3124 }
3125
3126 /* First send a status message before receiving the fds. */
3127 ret = consumer_send_status_msg(sock, LTTNG_OK);
3128 if (ret < 0) {
3129 /* Somehow, the session daemon is not responding anymore. */
3130 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3131 goto error_nosignal;
3132 }
3133
3134 /* Poll on consumer socket. */
3135 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3136 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3137 ret = -EINTR;
3138 goto error_nosignal;
3139 }
3140
3141 /* Get relayd socket from session daemon */
3142 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3143 if (ret != sizeof(fd)) {
3144 ret = -1;
3145 fd = -1; /* Just in case it gets set with an invalid value. */
3146
3147 /*
3148 * Failing to receive FDs might indicate a major problem such as
3149 * reaching a fd limit during the receive where the kernel returns a
3150 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3151 * don't take any chances and stop everything.
3152 *
3153 * XXX: Feature request #558 will fix that and avoid this possible
3154 * issue when reaching the fd limit.
3155 */
3156 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3157 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3158 goto error;
3159 }
3160
3161 /* Copy socket information and received FD */
3162 switch (sock_type) {
3163 case LTTNG_STREAM_CONTROL:
3164 /* Copy received lttcomm socket */
3165 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3166 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3167 /* Handle create_sock error. */
3168 if (ret < 0) {
3169 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3170 goto error;
3171 }
3172 /*
3173 * Close the socket created internally by
3174 * lttcomm_create_sock, so we can replace it by the one
3175 * received from sessiond.
3176 */
3177 if (close(relayd->control_sock.sock.fd)) {
3178 PERROR("close");
3179 }
3180
3181 /* Assign new file descriptor */
3182 relayd->control_sock.sock.fd = fd;
3183 fd = -1; /* For error path */
3184 /* Assign version values. */
3185 relayd->control_sock.major = relayd_sock->major;
3186 relayd->control_sock.minor = relayd_sock->minor;
3187
3188 /*
3189 * Create a session on the relayd and store the returned id. Lock the
3190 * control socket mutex if the relayd was NOT created before.
3191 */
3192 if (!relayd_created) {
3193 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3194 }
3195 ret = relayd_create_session(&relayd->control_sock,
3196 &relayd->relayd_session_id);
3197 if (!relayd_created) {
3198 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3199 }
3200 if (ret < 0) {
3201 /*
3202 * Close all sockets of a relayd object. It will be freed if it was
3203 * created at the error code path or else it will be garbage
3204 * collect.
3205 */
3206 (void) relayd_close(&relayd->control_sock);
3207 (void) relayd_close(&relayd->data_sock);
3208 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
3209 goto error;
3210 }
3211
3212 break;
3213 case LTTNG_STREAM_DATA:
3214 /* Copy received lttcomm socket */
3215 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3216 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3217 /* Handle create_sock error. */
3218 if (ret < 0) {
3219 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3220 goto error;
3221 }
3222 /*
3223 * Close the socket created internally by
3224 * lttcomm_create_sock, so we can replace it by the one
3225 * received from sessiond.
3226 */
3227 if (close(relayd->data_sock.sock.fd)) {
3228 PERROR("close");
3229 }
3230
3231 /* Assign new file descriptor */
3232 relayd->data_sock.sock.fd = fd;
3233 fd = -1; /* for eventual error paths */
3234 /* Assign version values. */
3235 relayd->data_sock.major = relayd_sock->major;
3236 relayd->data_sock.minor = relayd_sock->minor;
3237 break;
3238 default:
3239 ERR("Unknown relayd socket type (%d)", sock_type);
3240 ret = -1;
3241 ret_code = LTTCOMM_CONSUMERD_FATAL;
3242 goto error;
3243 }
3244
3245 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3246 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3247 relayd->net_seq_idx, fd);
3248
3249 /* We successfully added the socket. Send status back. */
3250 ret = consumer_send_status_msg(sock, ret_code);
3251 if (ret < 0) {
3252 /* Somehow, the session daemon is not responding anymore. */
3253 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3254 goto error_nosignal;
3255 }
3256
3257 /*
3258 * Add relayd socket pair to consumer data hashtable. If object already
3259 * exists or on error, the function gracefully returns.
3260 */
3261 add_relayd(relayd);
3262
3263 /* All good! */
3264 return 0;
3265
3266 error:
3267 if (consumer_send_status_msg(sock, ret_code) < 0) {
3268 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3269 }
3270
3271 error_nosignal:
3272 /* Close received socket if valid. */
3273 if (fd >= 0) {
3274 if (close(fd)) {
3275 PERROR("close received socket");
3276 }
3277 }
3278
3279 if (relayd_created) {
3280 free(relayd);
3281 }
3282
3283 return ret;
3284 }
3285
3286 /*
3287 * Try to lock the stream mutex.
3288 *
3289 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3290 */
3291 static int stream_try_lock(struct lttng_consumer_stream *stream)
3292 {
3293 int ret;
3294
3295 assert(stream);
3296
3297 /*
3298 * Try to lock the stream mutex. On failure, we know that the stream is
3299 * being used else where hence there is data still being extracted.
3300 */
3301 ret = pthread_mutex_trylock(&stream->lock);
3302 if (ret) {
3303 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3304 ret = 0;
3305 goto end;
3306 }
3307
3308 ret = 1;
3309
3310 end:
3311 return ret;
3312 }
3313
3314 /*
3315 * Search for a relayd associated to the session id and return the reference.
3316 *
3317 * A rcu read side lock MUST be acquire before calling this function and locked
3318 * until the relayd object is no longer necessary.
3319 */
3320 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3321 {
3322 struct lttng_ht_iter iter;
3323 struct consumer_relayd_sock_pair *relayd = NULL;
3324
3325 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3326 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3327 node.node) {
3328 /*
3329 * Check by sessiond id which is unique here where the relayd session
3330 * id might not be when having multiple relayd.
3331 */
3332 if (relayd->sessiond_session_id == id) {
3333 /* Found the relayd. There can be only one per id. */
3334 goto found;
3335 }
3336 }
3337
3338 return NULL;
3339
3340 found:
3341 return relayd;
3342 }
3343
3344 /*
3345 * Check if for a given session id there is still data needed to be extract
3346 * from the buffers.
3347 *
3348 * Return 1 if data is pending or else 0 meaning ready to be read.
3349 */
3350 int consumer_data_pending(uint64_t id)
3351 {
3352 int ret;
3353 struct lttng_ht_iter iter;
3354 struct lttng_ht *ht;
3355 struct lttng_consumer_stream *stream;
3356 struct consumer_relayd_sock_pair *relayd = NULL;
3357 int (*data_pending)(struct lttng_consumer_stream *);
3358
3359 DBG("Consumer data pending command on session id %" PRIu64, id);
3360
3361 rcu_read_lock();
3362 pthread_mutex_lock(&consumer_data.lock);
3363
3364 switch (consumer_data.type) {
3365 case LTTNG_CONSUMER_KERNEL:
3366 data_pending = lttng_kconsumer_data_pending;
3367 break;
3368 case LTTNG_CONSUMER32_UST:
3369 case LTTNG_CONSUMER64_UST:
3370 data_pending = lttng_ustconsumer_data_pending;
3371 break;
3372 default:
3373 ERR("Unknown consumer data type");
3374 assert(0);
3375 }
3376
3377 /* Ease our life a bit */
3378 ht = consumer_data.stream_list_ht;
3379
3380 relayd = find_relayd_by_session_id(id);
3381 if (relayd) {
3382 /* Send init command for data pending. */
3383 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3384 ret = relayd_begin_data_pending(&relayd->control_sock,
3385 relayd->relayd_session_id);
3386 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3387 if (ret < 0) {
3388 /* Communication error thus the relayd so no data pending. */
3389 goto data_not_pending;
3390 }
3391 }
3392
3393 cds_lfht_for_each_entry_duplicate(ht->ht,
3394 ht->hash_fct(&id, lttng_ht_seed),
3395 ht->match_fct, &id,
3396 &iter.iter, stream, node_session_id.node) {
3397 /* If this call fails, the stream is being used hence data pending. */
3398 ret = stream_try_lock(stream);
3399 if (!ret) {
3400 goto data_pending;
3401 }
3402
3403 /*
3404 * A removed node from the hash table indicates that the stream has
3405 * been deleted thus having a guarantee that the buffers are closed
3406 * on the consumer side. However, data can still be transmitted
3407 * over the network so don't skip the relayd check.
3408 */
3409 ret = cds_lfht_is_node_deleted(&stream->node.node);
3410 if (!ret) {
3411 /* Check the stream if there is data in the buffers. */
3412 ret = data_pending(stream);
3413 if (ret == 1) {
3414 pthread_mutex_unlock(&stream->lock);
3415 goto data_pending;
3416 }
3417 }
3418
3419 /* Relayd check */
3420 if (relayd) {
3421 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3422 if (stream->metadata_flag) {
3423 ret = relayd_quiescent_control(&relayd->control_sock,
3424 stream->relayd_stream_id);
3425 } else {
3426 ret = relayd_data_pending(&relayd->control_sock,
3427 stream->relayd_stream_id,
3428 stream->next_net_seq_num - 1);
3429 }
3430 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3431 if (ret == 1) {
3432 pthread_mutex_unlock(&stream->lock);
3433 goto data_pending;
3434 }
3435 }
3436 pthread_mutex_unlock(&stream->lock);
3437 }
3438
3439 if (relayd) {
3440 unsigned int is_data_inflight = 0;
3441
3442 /* Send init command for data pending. */
3443 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3444 ret = relayd_end_data_pending(&relayd->control_sock,
3445 relayd->relayd_session_id, &is_data_inflight);
3446 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3447 if (ret < 0) {
3448 goto data_not_pending;
3449 }
3450 if (is_data_inflight) {
3451 goto data_pending;
3452 }
3453 }
3454
3455 /*
3456 * Finding _no_ node in the hash table and no inflight data means that the
3457 * stream(s) have been removed thus data is guaranteed to be available for
3458 * analysis from the trace files.
3459 */
3460
3461 data_not_pending:
3462 /* Data is available to be read by a viewer. */
3463 pthread_mutex_unlock(&consumer_data.lock);
3464 rcu_read_unlock();
3465 return 0;
3466
3467 data_pending:
3468 /* Data is still being extracted from buffers. */
3469 pthread_mutex_unlock(&consumer_data.lock);
3470 rcu_read_unlock();
3471 return 1;
3472 }
3473
3474 /*
3475 * Send a ret code status message to the sessiond daemon.
3476 *
3477 * Return the sendmsg() return value.
3478 */
3479 int consumer_send_status_msg(int sock, int ret_code)
3480 {
3481 struct lttcomm_consumer_status_msg msg;
3482
3483 msg.ret_code = ret_code;
3484
3485 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3486 }
3487
3488 /*
3489 * Send a channel status message to the sessiond daemon.
3490 *
3491 * Return the sendmsg() return value.
3492 */
3493 int consumer_send_status_channel(int sock,
3494 struct lttng_consumer_channel *channel)
3495 {
3496 struct lttcomm_consumer_status_channel msg;
3497
3498 assert(sock >= 0);
3499
3500 if (!channel) {
3501 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3502 } else {
3503 msg.ret_code = LTTNG_OK;
3504 msg.key = channel->key;
3505 msg.stream_count = channel->streams.count;
3506 }
3507
3508 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3509 }
This page took 0.099996 seconds and 4 git commands to generate.