Fix: unchecked posix_fadvise() return value
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #define _LGPL_SOURCE
22 #include <assert.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/types.h>
30 #include <unistd.h>
31 #include <inttypes.h>
32 #include <signal.h>
33
34 #include <bin/lttng-consumerd/health-consumerd.h>
35 #include <common/common.h>
36 #include <common/utils.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer-timer.h>
47
48 #include "consumer.h"
49 #include "consumer-stream.h"
50 #include "consumer-testpoint.h"
51 #include "align.h"
52
53 struct lttng_consumer_global_data consumer_data = {
54 .stream_count = 0,
55 .need_update = 1,
56 .type = LTTNG_CONSUMER_UNKNOWN,
57 };
58
59 enum consumer_channel_action {
60 CONSUMER_CHANNEL_ADD,
61 CONSUMER_CHANNEL_DEL,
62 CONSUMER_CHANNEL_QUIT,
63 };
64
65 struct consumer_channel_msg {
66 enum consumer_channel_action action;
67 struct lttng_consumer_channel *chan; /* add */
68 uint64_t key; /* del */
69 };
70
71 /*
72 * Flag to inform the polling thread to quit when all fd hung up. Updated by
73 * the consumer_thread_receive_fds when it notices that all fds has hung up.
74 * Also updated by the signal handler (consumer_should_exit()). Read by the
75 * polling threads.
76 */
77 volatile int consumer_quit;
78
79 /*
80 * Global hash table containing respectively metadata and data streams. The
81 * stream element in this ht should only be updated by the metadata poll thread
82 * for the metadata and the data poll thread for the data.
83 */
84 static struct lttng_ht *metadata_ht;
85 static struct lttng_ht *data_ht;
86
87 /*
88 * Notify a thread lttng pipe to poll back again. This usually means that some
89 * global state has changed so we just send back the thread in a poll wait
90 * call.
91 */
92 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
93 {
94 struct lttng_consumer_stream *null_stream = NULL;
95
96 assert(pipe);
97
98 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
99 }
100
101 static void notify_health_quit_pipe(int *pipe)
102 {
103 ssize_t ret;
104
105 ret = lttng_write(pipe[1], "4", 1);
106 if (ret < 1) {
107 PERROR("write consumer health quit");
108 }
109 }
110
111 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
112 struct lttng_consumer_channel *chan,
113 uint64_t key,
114 enum consumer_channel_action action)
115 {
116 struct consumer_channel_msg msg;
117 ssize_t ret;
118
119 memset(&msg, 0, sizeof(msg));
120
121 msg.action = action;
122 msg.chan = chan;
123 msg.key = key;
124 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
125 if (ret < sizeof(msg)) {
126 PERROR("notify_channel_pipe write error");
127 }
128 }
129
130 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
131 uint64_t key)
132 {
133 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
134 }
135
136 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
137 struct lttng_consumer_channel **chan,
138 uint64_t *key,
139 enum consumer_channel_action *action)
140 {
141 struct consumer_channel_msg msg;
142 ssize_t ret;
143
144 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
145 if (ret < sizeof(msg)) {
146 ret = -1;
147 goto error;
148 }
149 *action = msg.action;
150 *chan = msg.chan;
151 *key = msg.key;
152 error:
153 return (int) ret;
154 }
155
156 /*
157 * Cleanup the stream list of a channel. Those streams are not yet globally
158 * visible
159 */
160 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
161 {
162 struct lttng_consumer_stream *stream, *stmp;
163
164 assert(channel);
165
166 /* Delete streams that might have been left in the stream list. */
167 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
168 send_node) {
169 cds_list_del(&stream->send_node);
170 /*
171 * Once a stream is added to this list, the buffers were created so we
172 * have a guarantee that this call will succeed. Setting the monitor
173 * mode to 0 so we don't lock nor try to delete the stream from the
174 * global hash table.
175 */
176 stream->monitor = 0;
177 consumer_stream_destroy(stream, NULL);
178 }
179 }
180
181 /*
182 * Find a stream. The consumer_data.lock must be locked during this
183 * call.
184 */
185 static struct lttng_consumer_stream *find_stream(uint64_t key,
186 struct lttng_ht *ht)
187 {
188 struct lttng_ht_iter iter;
189 struct lttng_ht_node_u64 *node;
190 struct lttng_consumer_stream *stream = NULL;
191
192 assert(ht);
193
194 /* -1ULL keys are lookup failures */
195 if (key == (uint64_t) -1ULL) {
196 return NULL;
197 }
198
199 rcu_read_lock();
200
201 lttng_ht_lookup(ht, &key, &iter);
202 node = lttng_ht_iter_get_node_u64(&iter);
203 if (node != NULL) {
204 stream = caa_container_of(node, struct lttng_consumer_stream, node);
205 }
206
207 rcu_read_unlock();
208
209 return stream;
210 }
211
212 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
213 {
214 struct lttng_consumer_stream *stream;
215
216 rcu_read_lock();
217 stream = find_stream(key, ht);
218 if (stream) {
219 stream->key = (uint64_t) -1ULL;
220 /*
221 * We don't want the lookup to match, but we still need
222 * to iterate on this stream when iterating over the hash table. Just
223 * change the node key.
224 */
225 stream->node.key = (uint64_t) -1ULL;
226 }
227 rcu_read_unlock();
228 }
229
230 /*
231 * Return a channel object for the given key.
232 *
233 * RCU read side lock MUST be acquired before calling this function and
234 * protects the channel ptr.
235 */
236 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
237 {
238 struct lttng_ht_iter iter;
239 struct lttng_ht_node_u64 *node;
240 struct lttng_consumer_channel *channel = NULL;
241
242 /* -1ULL keys are lookup failures */
243 if (key == (uint64_t) -1ULL) {
244 return NULL;
245 }
246
247 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
248 node = lttng_ht_iter_get_node_u64(&iter);
249 if (node != NULL) {
250 channel = caa_container_of(node, struct lttng_consumer_channel, node);
251 }
252
253 return channel;
254 }
255
256 /*
257 * There is a possibility that the consumer does not have enough time between
258 * the close of the channel on the session daemon and the cleanup in here thus
259 * once we have a channel add with an existing key, we know for sure that this
260 * channel will eventually get cleaned up by all streams being closed.
261 *
262 * This function just nullifies the already existing channel key.
263 */
264 static void steal_channel_key(uint64_t key)
265 {
266 struct lttng_consumer_channel *channel;
267
268 rcu_read_lock();
269 channel = consumer_find_channel(key);
270 if (channel) {
271 channel->key = (uint64_t) -1ULL;
272 /*
273 * We don't want the lookup to match, but we still need to iterate on
274 * this channel when iterating over the hash table. Just change the
275 * node key.
276 */
277 channel->node.key = (uint64_t) -1ULL;
278 }
279 rcu_read_unlock();
280 }
281
282 static void free_channel_rcu(struct rcu_head *head)
283 {
284 struct lttng_ht_node_u64 *node =
285 caa_container_of(head, struct lttng_ht_node_u64, head);
286 struct lttng_consumer_channel *channel =
287 caa_container_of(node, struct lttng_consumer_channel, node);
288
289 switch (consumer_data.type) {
290 case LTTNG_CONSUMER_KERNEL:
291 break;
292 case LTTNG_CONSUMER32_UST:
293 case LTTNG_CONSUMER64_UST:
294 lttng_ustconsumer_free_channel(channel);
295 break;
296 default:
297 ERR("Unknown consumer_data type");
298 abort();
299 }
300 free(channel);
301 }
302
303 /*
304 * RCU protected relayd socket pair free.
305 */
306 static void free_relayd_rcu(struct rcu_head *head)
307 {
308 struct lttng_ht_node_u64 *node =
309 caa_container_of(head, struct lttng_ht_node_u64, head);
310 struct consumer_relayd_sock_pair *relayd =
311 caa_container_of(node, struct consumer_relayd_sock_pair, node);
312
313 /*
314 * Close all sockets. This is done in the call RCU since we don't want the
315 * socket fds to be reassigned thus potentially creating bad state of the
316 * relayd object.
317 *
318 * We do not have to lock the control socket mutex here since at this stage
319 * there is no one referencing to this relayd object.
320 */
321 (void) relayd_close(&relayd->control_sock);
322 (void) relayd_close(&relayd->data_sock);
323
324 free(relayd);
325 }
326
327 /*
328 * Destroy and free relayd socket pair object.
329 */
330 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
331 {
332 int ret;
333 struct lttng_ht_iter iter;
334
335 if (relayd == NULL) {
336 return;
337 }
338
339 DBG("Consumer destroy and close relayd socket pair");
340
341 iter.iter.node = &relayd->node.node;
342 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
343 if (ret != 0) {
344 /* We assume the relayd is being or is destroyed */
345 return;
346 }
347
348 /* RCU free() call */
349 call_rcu(&relayd->node.head, free_relayd_rcu);
350 }
351
352 /*
353 * Remove a channel from the global list protected by a mutex. This function is
354 * also responsible for freeing its data structures.
355 */
356 void consumer_del_channel(struct lttng_consumer_channel *channel)
357 {
358 int ret;
359 struct lttng_ht_iter iter;
360
361 DBG("Consumer delete channel key %" PRIu64, channel->key);
362
363 pthread_mutex_lock(&consumer_data.lock);
364 pthread_mutex_lock(&channel->lock);
365
366 /* Destroy streams that might have been left in the stream list. */
367 clean_channel_stream_list(channel);
368
369 if (channel->live_timer_enabled == 1) {
370 consumer_timer_live_stop(channel);
371 }
372
373 switch (consumer_data.type) {
374 case LTTNG_CONSUMER_KERNEL:
375 break;
376 case LTTNG_CONSUMER32_UST:
377 case LTTNG_CONSUMER64_UST:
378 lttng_ustconsumer_del_channel(channel);
379 break;
380 default:
381 ERR("Unknown consumer_data type");
382 assert(0);
383 goto end;
384 }
385
386 rcu_read_lock();
387 iter.iter.node = &channel->node.node;
388 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
389 assert(!ret);
390 rcu_read_unlock();
391
392 call_rcu(&channel->node.head, free_channel_rcu);
393 end:
394 pthread_mutex_unlock(&channel->lock);
395 pthread_mutex_unlock(&consumer_data.lock);
396 }
397
398 /*
399 * Iterate over the relayd hash table and destroy each element. Finally,
400 * destroy the whole hash table.
401 */
402 static void cleanup_relayd_ht(void)
403 {
404 struct lttng_ht_iter iter;
405 struct consumer_relayd_sock_pair *relayd;
406
407 rcu_read_lock();
408
409 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
410 node.node) {
411 consumer_destroy_relayd(relayd);
412 }
413
414 rcu_read_unlock();
415
416 lttng_ht_destroy(consumer_data.relayd_ht);
417 }
418
419 /*
420 * Update the end point status of all streams having the given network sequence
421 * index (relayd index).
422 *
423 * It's atomically set without having the stream mutex locked which is fine
424 * because we handle the write/read race with a pipe wakeup for each thread.
425 */
426 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
427 enum consumer_endpoint_status status)
428 {
429 struct lttng_ht_iter iter;
430 struct lttng_consumer_stream *stream;
431
432 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
433
434 rcu_read_lock();
435
436 /* Let's begin with metadata */
437 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
438 if (stream->net_seq_idx == net_seq_idx) {
439 uatomic_set(&stream->endpoint_status, status);
440 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
441 }
442 }
443
444 /* Follow up by the data streams */
445 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
446 if (stream->net_seq_idx == net_seq_idx) {
447 uatomic_set(&stream->endpoint_status, status);
448 DBG("Delete flag set to data stream %d", stream->wait_fd);
449 }
450 }
451 rcu_read_unlock();
452 }
453
454 /*
455 * Cleanup a relayd object by flagging every associated streams for deletion,
456 * destroying the object meaning removing it from the relayd hash table,
457 * closing the sockets and freeing the memory in a RCU call.
458 *
459 * If a local data context is available, notify the threads that the streams'
460 * state have changed.
461 */
462 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
463 struct lttng_consumer_local_data *ctx)
464 {
465 uint64_t netidx;
466
467 assert(relayd);
468
469 DBG("Cleaning up relayd sockets");
470
471 /* Save the net sequence index before destroying the object */
472 netidx = relayd->net_seq_idx;
473
474 /*
475 * Delete the relayd from the relayd hash table, close the sockets and free
476 * the object in a RCU call.
477 */
478 consumer_destroy_relayd(relayd);
479
480 /* Set inactive endpoint to all streams */
481 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
482
483 /*
484 * With a local data context, notify the threads that the streams' state
485 * have changed. The write() action on the pipe acts as an "implicit"
486 * memory barrier ordering the updates of the end point status from the
487 * read of this status which happens AFTER receiving this notify.
488 */
489 if (ctx) {
490 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
491 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
492 }
493 }
494
495 /*
496 * Flag a relayd socket pair for destruction. Destroy it if the refcount
497 * reaches zero.
498 *
499 * RCU read side lock MUST be aquired before calling this function.
500 */
501 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
502 {
503 assert(relayd);
504
505 /* Set destroy flag for this object */
506 uatomic_set(&relayd->destroy_flag, 1);
507
508 /* Destroy the relayd if refcount is 0 */
509 if (uatomic_read(&relayd->refcount) == 0) {
510 consumer_destroy_relayd(relayd);
511 }
512 }
513
514 /*
515 * Completly destroy stream from every visiable data structure and the given
516 * hash table if one.
517 *
518 * One this call returns, the stream object is not longer usable nor visible.
519 */
520 void consumer_del_stream(struct lttng_consumer_stream *stream,
521 struct lttng_ht *ht)
522 {
523 consumer_stream_destroy(stream, ht);
524 }
525
526 /*
527 * XXX naming of del vs destroy is all mixed up.
528 */
529 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
530 {
531 consumer_stream_destroy(stream, data_ht);
532 }
533
534 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, metadata_ht);
537 }
538
539 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
540 uint64_t stream_key,
541 enum lttng_consumer_stream_state state,
542 const char *channel_name,
543 uid_t uid,
544 gid_t gid,
545 uint64_t relayd_id,
546 uint64_t session_id,
547 int cpu,
548 int *alloc_ret,
549 enum consumer_channel_type type,
550 unsigned int monitor)
551 {
552 int ret;
553 struct lttng_consumer_stream *stream;
554
555 stream = zmalloc(sizeof(*stream));
556 if (stream == NULL) {
557 PERROR("malloc struct lttng_consumer_stream");
558 ret = -ENOMEM;
559 goto end;
560 }
561
562 rcu_read_lock();
563
564 stream->key = stream_key;
565 stream->out_fd = -1;
566 stream->out_fd_offset = 0;
567 stream->output_written = 0;
568 stream->state = state;
569 stream->uid = uid;
570 stream->gid = gid;
571 stream->net_seq_idx = relayd_id;
572 stream->session_id = session_id;
573 stream->monitor = monitor;
574 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
575 stream->index_fd = -1;
576 pthread_mutex_init(&stream->lock, NULL);
577 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
578
579 /* If channel is the metadata, flag this stream as metadata. */
580 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
581 stream->metadata_flag = 1;
582 /* Metadata is flat out. */
583 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
584 /* Live rendez-vous point. */
585 pthread_cond_init(&stream->metadata_rdv, NULL);
586 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
587 } else {
588 /* Format stream name to <channel_name>_<cpu_number> */
589 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
590 channel_name, cpu);
591 if (ret < 0) {
592 PERROR("snprintf stream name");
593 goto error;
594 }
595 }
596
597 /* Key is always the wait_fd for streams. */
598 lttng_ht_node_init_u64(&stream->node, stream->key);
599
600 /* Init node per channel id key */
601 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
602
603 /* Init session id node with the stream session id */
604 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
605
606 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
607 " relayd_id %" PRIu64 ", session_id %" PRIu64,
608 stream->name, stream->key, channel_key,
609 stream->net_seq_idx, stream->session_id);
610
611 rcu_read_unlock();
612 return stream;
613
614 error:
615 rcu_read_unlock();
616 free(stream);
617 end:
618 if (alloc_ret) {
619 *alloc_ret = ret;
620 }
621 return NULL;
622 }
623
624 /*
625 * Add a stream to the global list protected by a mutex.
626 */
627 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
628 {
629 struct lttng_ht *ht = data_ht;
630 int ret = 0;
631
632 assert(stream);
633 assert(ht);
634
635 DBG3("Adding consumer stream %" PRIu64, stream->key);
636
637 pthread_mutex_lock(&consumer_data.lock);
638 pthread_mutex_lock(&stream->chan->lock);
639 pthread_mutex_lock(&stream->chan->timer_lock);
640 pthread_mutex_lock(&stream->lock);
641 rcu_read_lock();
642
643 /* Steal stream identifier to avoid having streams with the same key */
644 steal_stream_key(stream->key, ht);
645
646 lttng_ht_add_unique_u64(ht, &stream->node);
647
648 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
649 &stream->node_channel_id);
650
651 /*
652 * Add stream to the stream_list_ht of the consumer data. No need to steal
653 * the key since the HT does not use it and we allow to add redundant keys
654 * into this table.
655 */
656 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
657
658 /*
659 * When nb_init_stream_left reaches 0, we don't need to trigger any action
660 * in terms of destroying the associated channel, because the action that
661 * causes the count to become 0 also causes a stream to be added. The
662 * channel deletion will thus be triggered by the following removal of this
663 * stream.
664 */
665 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
666 /* Increment refcount before decrementing nb_init_stream_left */
667 cmm_smp_wmb();
668 uatomic_dec(&stream->chan->nb_init_stream_left);
669 }
670
671 /* Update consumer data once the node is inserted. */
672 consumer_data.stream_count++;
673 consumer_data.need_update = 1;
674
675 rcu_read_unlock();
676 pthread_mutex_unlock(&stream->lock);
677 pthread_mutex_unlock(&stream->chan->timer_lock);
678 pthread_mutex_unlock(&stream->chan->lock);
679 pthread_mutex_unlock(&consumer_data.lock);
680
681 return ret;
682 }
683
684 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
685 {
686 consumer_del_stream(stream, data_ht);
687 }
688
689 /*
690 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
691 * be acquired before calling this.
692 */
693 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
694 {
695 int ret = 0;
696 struct lttng_ht_node_u64 *node;
697 struct lttng_ht_iter iter;
698
699 assert(relayd);
700
701 lttng_ht_lookup(consumer_data.relayd_ht,
702 &relayd->net_seq_idx, &iter);
703 node = lttng_ht_iter_get_node_u64(&iter);
704 if (node != NULL) {
705 goto end;
706 }
707 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
708
709 end:
710 return ret;
711 }
712
713 /*
714 * Allocate and return a consumer relayd socket.
715 */
716 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
717 uint64_t net_seq_idx)
718 {
719 struct consumer_relayd_sock_pair *obj = NULL;
720
721 /* net sequence index of -1 is a failure */
722 if (net_seq_idx == (uint64_t) -1ULL) {
723 goto error;
724 }
725
726 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
727 if (obj == NULL) {
728 PERROR("zmalloc relayd sock");
729 goto error;
730 }
731
732 obj->net_seq_idx = net_seq_idx;
733 obj->refcount = 0;
734 obj->destroy_flag = 0;
735 obj->control_sock.sock.fd = -1;
736 obj->data_sock.sock.fd = -1;
737 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
738 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
739
740 error:
741 return obj;
742 }
743
744 /*
745 * Find a relayd socket pair in the global consumer data.
746 *
747 * Return the object if found else NULL.
748 * RCU read-side lock must be held across this call and while using the
749 * returned object.
750 */
751 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
752 {
753 struct lttng_ht_iter iter;
754 struct lttng_ht_node_u64 *node;
755 struct consumer_relayd_sock_pair *relayd = NULL;
756
757 /* Negative keys are lookup failures */
758 if (key == (uint64_t) -1ULL) {
759 goto error;
760 }
761
762 lttng_ht_lookup(consumer_data.relayd_ht, &key,
763 &iter);
764 node = lttng_ht_iter_get_node_u64(&iter);
765 if (node != NULL) {
766 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
767 }
768
769 error:
770 return relayd;
771 }
772
773 /*
774 * Find a relayd and send the stream
775 *
776 * Returns 0 on success, < 0 on error
777 */
778 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
779 char *path)
780 {
781 int ret = 0;
782 struct consumer_relayd_sock_pair *relayd;
783
784 assert(stream);
785 assert(stream->net_seq_idx != -1ULL);
786 assert(path);
787
788 /* The stream is not metadata. Get relayd reference if exists. */
789 rcu_read_lock();
790 relayd = consumer_find_relayd(stream->net_seq_idx);
791 if (relayd != NULL) {
792 /* Add stream on the relayd */
793 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
794 ret = relayd_add_stream(&relayd->control_sock, stream->name,
795 path, &stream->relayd_stream_id,
796 stream->chan->tracefile_size, stream->chan->tracefile_count);
797 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
798 if (ret < 0) {
799 goto end;
800 }
801
802 uatomic_inc(&relayd->refcount);
803 stream->sent_to_relayd = 1;
804 } else {
805 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
806 stream->key, stream->net_seq_idx);
807 ret = -1;
808 goto end;
809 }
810
811 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
812 stream->name, stream->key, stream->net_seq_idx);
813
814 end:
815 rcu_read_unlock();
816 return ret;
817 }
818
819 /*
820 * Find a relayd and send the streams sent message
821 *
822 * Returns 0 on success, < 0 on error
823 */
824 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
825 {
826 int ret = 0;
827 struct consumer_relayd_sock_pair *relayd;
828
829 assert(net_seq_idx != -1ULL);
830
831 /* The stream is not metadata. Get relayd reference if exists. */
832 rcu_read_lock();
833 relayd = consumer_find_relayd(net_seq_idx);
834 if (relayd != NULL) {
835 /* Add stream on the relayd */
836 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
837 ret = relayd_streams_sent(&relayd->control_sock);
838 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
839 if (ret < 0) {
840 goto end;
841 }
842 } else {
843 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
844 net_seq_idx);
845 ret = -1;
846 goto end;
847 }
848
849 ret = 0;
850 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
851
852 end:
853 rcu_read_unlock();
854 return ret;
855 }
856
857 /*
858 * Find a relayd and close the stream
859 */
860 void close_relayd_stream(struct lttng_consumer_stream *stream)
861 {
862 struct consumer_relayd_sock_pair *relayd;
863
864 /* The stream is not metadata. Get relayd reference if exists. */
865 rcu_read_lock();
866 relayd = consumer_find_relayd(stream->net_seq_idx);
867 if (relayd) {
868 consumer_stream_relayd_close(stream, relayd);
869 }
870 rcu_read_unlock();
871 }
872
873 /*
874 * Handle stream for relayd transmission if the stream applies for network
875 * streaming where the net sequence index is set.
876 *
877 * Return destination file descriptor or negative value on error.
878 */
879 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
880 size_t data_size, unsigned long padding,
881 struct consumer_relayd_sock_pair *relayd)
882 {
883 int outfd = -1, ret;
884 struct lttcomm_relayd_data_hdr data_hdr;
885
886 /* Safety net */
887 assert(stream);
888 assert(relayd);
889
890 /* Reset data header */
891 memset(&data_hdr, 0, sizeof(data_hdr));
892
893 if (stream->metadata_flag) {
894 /* Caller MUST acquire the relayd control socket lock */
895 ret = relayd_send_metadata(&relayd->control_sock, data_size);
896 if (ret < 0) {
897 goto error;
898 }
899
900 /* Metadata are always sent on the control socket. */
901 outfd = relayd->control_sock.sock.fd;
902 } else {
903 /* Set header with stream information */
904 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
905 data_hdr.data_size = htobe32(data_size);
906 data_hdr.padding_size = htobe32(padding);
907 /*
908 * Note that net_seq_num below is assigned with the *current* value of
909 * next_net_seq_num and only after that the next_net_seq_num will be
910 * increment. This is why when issuing a command on the relayd using
911 * this next value, 1 should always be substracted in order to compare
912 * the last seen sequence number on the relayd side to the last sent.
913 */
914 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
915 /* Other fields are zeroed previously */
916
917 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
918 sizeof(data_hdr));
919 if (ret < 0) {
920 goto error;
921 }
922
923 ++stream->next_net_seq_num;
924
925 /* Set to go on data socket */
926 outfd = relayd->data_sock.sock.fd;
927 }
928
929 error:
930 return outfd;
931 }
932
933 /*
934 * Allocate and return a new lttng_consumer_channel object using the given key
935 * to initialize the hash table node.
936 *
937 * On error, return NULL.
938 */
939 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
940 uint64_t session_id,
941 const char *pathname,
942 const char *name,
943 uid_t uid,
944 gid_t gid,
945 uint64_t relayd_id,
946 enum lttng_event_output output,
947 uint64_t tracefile_size,
948 uint64_t tracefile_count,
949 uint64_t session_id_per_pid,
950 unsigned int monitor,
951 unsigned int live_timer_interval,
952 const char *root_shm_path,
953 const char *shm_path)
954 {
955 struct lttng_consumer_channel *channel;
956
957 channel = zmalloc(sizeof(*channel));
958 if (channel == NULL) {
959 PERROR("malloc struct lttng_consumer_channel");
960 goto end;
961 }
962
963 channel->key = key;
964 channel->refcount = 0;
965 channel->session_id = session_id;
966 channel->session_id_per_pid = session_id_per_pid;
967 channel->uid = uid;
968 channel->gid = gid;
969 channel->relayd_id = relayd_id;
970 channel->tracefile_size = tracefile_size;
971 channel->tracefile_count = tracefile_count;
972 channel->monitor = monitor;
973 channel->live_timer_interval = live_timer_interval;
974 pthread_mutex_init(&channel->lock, NULL);
975 pthread_mutex_init(&channel->timer_lock, NULL);
976
977 switch (output) {
978 case LTTNG_EVENT_SPLICE:
979 channel->output = CONSUMER_CHANNEL_SPLICE;
980 break;
981 case LTTNG_EVENT_MMAP:
982 channel->output = CONSUMER_CHANNEL_MMAP;
983 break;
984 default:
985 assert(0);
986 free(channel);
987 channel = NULL;
988 goto end;
989 }
990
991 /*
992 * In monitor mode, the streams associated with the channel will be put in
993 * a special list ONLY owned by this channel. So, the refcount is set to 1
994 * here meaning that the channel itself has streams that are referenced.
995 *
996 * On a channel deletion, once the channel is no longer visible, the
997 * refcount is decremented and checked for a zero value to delete it. With
998 * streams in no monitor mode, it will now be safe to destroy the channel.
999 */
1000 if (!channel->monitor) {
1001 channel->refcount = 1;
1002 }
1003
1004 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1005 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1006
1007 strncpy(channel->name, name, sizeof(channel->name));
1008 channel->name[sizeof(channel->name) - 1] = '\0';
1009
1010 if (root_shm_path) {
1011 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1012 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1013 }
1014 if (shm_path) {
1015 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1016 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1017 }
1018
1019 lttng_ht_node_init_u64(&channel->node, channel->key);
1020
1021 channel->wait_fd = -1;
1022
1023 CDS_INIT_LIST_HEAD(&channel->streams.head);
1024
1025 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
1026
1027 end:
1028 return channel;
1029 }
1030
1031 /*
1032 * Add a channel to the global list protected by a mutex.
1033 *
1034 * Always return 0 indicating success.
1035 */
1036 int consumer_add_channel(struct lttng_consumer_channel *channel,
1037 struct lttng_consumer_local_data *ctx)
1038 {
1039 pthread_mutex_lock(&consumer_data.lock);
1040 pthread_mutex_lock(&channel->lock);
1041 pthread_mutex_lock(&channel->timer_lock);
1042
1043 /*
1044 * This gives us a guarantee that the channel we are about to add to the
1045 * channel hash table will be unique. See this function comment on the why
1046 * we need to steel the channel key at this stage.
1047 */
1048 steal_channel_key(channel->key);
1049
1050 rcu_read_lock();
1051 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1052 rcu_read_unlock();
1053
1054 pthread_mutex_unlock(&channel->timer_lock);
1055 pthread_mutex_unlock(&channel->lock);
1056 pthread_mutex_unlock(&consumer_data.lock);
1057
1058 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1059 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1060 }
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * Allocate the pollfd structure and the local view of the out fds to avoid
1067 * doing a lookup in the linked list and concurrency issues when writing is
1068 * needed. Called with consumer_data.lock held.
1069 *
1070 * Returns the number of fds in the structures.
1071 */
1072 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1073 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1074 struct lttng_ht *ht)
1075 {
1076 int i = 0;
1077 struct lttng_ht_iter iter;
1078 struct lttng_consumer_stream *stream;
1079
1080 assert(ctx);
1081 assert(ht);
1082 assert(pollfd);
1083 assert(local_stream);
1084
1085 DBG("Updating poll fd array");
1086 rcu_read_lock();
1087 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1088 /*
1089 * Only active streams with an active end point can be added to the
1090 * poll set and local stream storage of the thread.
1091 *
1092 * There is a potential race here for endpoint_status to be updated
1093 * just after the check. However, this is OK since the stream(s) will
1094 * be deleted once the thread is notified that the end point state has
1095 * changed where this function will be called back again.
1096 */
1097 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1098 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1099 continue;
1100 }
1101 /*
1102 * This clobbers way too much the debug output. Uncomment that if you
1103 * need it for debugging purposes.
1104 *
1105 * DBG("Active FD %d", stream->wait_fd);
1106 */
1107 (*pollfd)[i].fd = stream->wait_fd;
1108 (*pollfd)[i].events = POLLIN | POLLPRI;
1109 local_stream[i] = stream;
1110 i++;
1111 }
1112 rcu_read_unlock();
1113
1114 /*
1115 * Insert the consumer_data_pipe at the end of the array and don't
1116 * increment i so nb_fd is the number of real FD.
1117 */
1118 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1119 (*pollfd)[i].events = POLLIN | POLLPRI;
1120
1121 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1122 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1123 return i;
1124 }
1125
1126 /*
1127 * Poll on the should_quit pipe and the command socket return -1 on
1128 * error, 1 if should exit, 0 if data is available on the command socket
1129 */
1130 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1131 {
1132 int num_rdy;
1133
1134 restart:
1135 num_rdy = poll(consumer_sockpoll, 2, -1);
1136 if (num_rdy == -1) {
1137 /*
1138 * Restart interrupted system call.
1139 */
1140 if (errno == EINTR) {
1141 goto restart;
1142 }
1143 PERROR("Poll error");
1144 return -1;
1145 }
1146 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1147 DBG("consumer_should_quit wake up");
1148 return 1;
1149 }
1150 return 0;
1151 }
1152
1153 /*
1154 * Set the error socket.
1155 */
1156 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1157 int sock)
1158 {
1159 ctx->consumer_error_socket = sock;
1160 }
1161
1162 /*
1163 * Set the command socket path.
1164 */
1165 void lttng_consumer_set_command_sock_path(
1166 struct lttng_consumer_local_data *ctx, char *sock)
1167 {
1168 ctx->consumer_command_sock_path = sock;
1169 }
1170
1171 /*
1172 * Send return code to the session daemon.
1173 * If the socket is not defined, we return 0, it is not a fatal error
1174 */
1175 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1176 {
1177 if (ctx->consumer_error_socket > 0) {
1178 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1179 sizeof(enum lttcomm_sessiond_command));
1180 }
1181
1182 return 0;
1183 }
1184
1185 /*
1186 * Close all the tracefiles and stream fds and MUST be called when all
1187 * instances are destroyed i.e. when all threads were joined and are ended.
1188 */
1189 void lttng_consumer_cleanup(void)
1190 {
1191 struct lttng_ht_iter iter;
1192 struct lttng_consumer_channel *channel;
1193
1194 rcu_read_lock();
1195
1196 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1197 node.node) {
1198 consumer_del_channel(channel);
1199 }
1200
1201 rcu_read_unlock();
1202
1203 lttng_ht_destroy(consumer_data.channel_ht);
1204
1205 cleanup_relayd_ht();
1206
1207 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1208
1209 /*
1210 * This HT contains streams that are freed by either the metadata thread or
1211 * the data thread so we do *nothing* on the hash table and simply destroy
1212 * it.
1213 */
1214 lttng_ht_destroy(consumer_data.stream_list_ht);
1215 }
1216
1217 /*
1218 * Called from signal handler.
1219 */
1220 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1221 {
1222 ssize_t ret;
1223
1224 consumer_quit = 1;
1225 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1226 if (ret < 1) {
1227 PERROR("write consumer quit");
1228 }
1229
1230 DBG("Consumer flag that it should quit");
1231 }
1232
1233 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1234 off_t orig_offset)
1235 {
1236 int ret;
1237 int outfd = stream->out_fd;
1238
1239 /*
1240 * This does a blocking write-and-wait on any page that belongs to the
1241 * subbuffer prior to the one we just wrote.
1242 * Don't care about error values, as these are just hints and ways to
1243 * limit the amount of page cache used.
1244 */
1245 if (orig_offset < stream->max_sb_size) {
1246 return;
1247 }
1248 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1249 stream->max_sb_size,
1250 SYNC_FILE_RANGE_WAIT_BEFORE
1251 | SYNC_FILE_RANGE_WRITE
1252 | SYNC_FILE_RANGE_WAIT_AFTER);
1253 /*
1254 * Give hints to the kernel about how we access the file:
1255 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1256 * we write it.
1257 *
1258 * We need to call fadvise again after the file grows because the
1259 * kernel does not seem to apply fadvise to non-existing parts of the
1260 * file.
1261 *
1262 * Call fadvise _after_ having waited for the page writeback to
1263 * complete because the dirty page writeback semantic is not well
1264 * defined. So it can be expected to lead to lower throughput in
1265 * streaming.
1266 */
1267 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1268 stream->max_sb_size, POSIX_FADV_DONTNEED);
1269 if (ret) {
1270 WARN("posix_fadvise() error (%i)", ret);
1271 }
1272 }
1273
1274 /*
1275 * Initialise the necessary environnement :
1276 * - create a new context
1277 * - create the poll_pipe
1278 * - create the should_quit pipe (for signal handler)
1279 * - create the thread pipe (for splice)
1280 *
1281 * Takes a function pointer as argument, this function is called when data is
1282 * available on a buffer. This function is responsible to do the
1283 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1284 * buffer configuration and then kernctl_put_next_subbuf at the end.
1285 *
1286 * Returns a pointer to the new context or NULL on error.
1287 */
1288 struct lttng_consumer_local_data *lttng_consumer_create(
1289 enum lttng_consumer_type type,
1290 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1291 struct lttng_consumer_local_data *ctx),
1292 int (*recv_channel)(struct lttng_consumer_channel *channel),
1293 int (*recv_stream)(struct lttng_consumer_stream *stream),
1294 int (*update_stream)(uint64_t stream_key, uint32_t state))
1295 {
1296 int ret;
1297 struct lttng_consumer_local_data *ctx;
1298
1299 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1300 consumer_data.type == type);
1301 consumer_data.type = type;
1302
1303 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1304 if (ctx == NULL) {
1305 PERROR("allocating context");
1306 goto error;
1307 }
1308
1309 ctx->consumer_error_socket = -1;
1310 ctx->consumer_metadata_socket = -1;
1311 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1312 /* assign the callbacks */
1313 ctx->on_buffer_ready = buffer_ready;
1314 ctx->on_recv_channel = recv_channel;
1315 ctx->on_recv_stream = recv_stream;
1316 ctx->on_update_stream = update_stream;
1317
1318 ctx->consumer_data_pipe = lttng_pipe_open(0);
1319 if (!ctx->consumer_data_pipe) {
1320 goto error_poll_pipe;
1321 }
1322
1323 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1324 if (!ctx->consumer_wakeup_pipe) {
1325 goto error_wakeup_pipe;
1326 }
1327
1328 ret = pipe(ctx->consumer_should_quit);
1329 if (ret < 0) {
1330 PERROR("Error creating recv pipe");
1331 goto error_quit_pipe;
1332 }
1333
1334 ret = pipe(ctx->consumer_channel_pipe);
1335 if (ret < 0) {
1336 PERROR("Error creating channel pipe");
1337 goto error_channel_pipe;
1338 }
1339
1340 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1341 if (!ctx->consumer_metadata_pipe) {
1342 goto error_metadata_pipe;
1343 }
1344
1345 return ctx;
1346
1347 error_metadata_pipe:
1348 utils_close_pipe(ctx->consumer_channel_pipe);
1349 error_channel_pipe:
1350 utils_close_pipe(ctx->consumer_should_quit);
1351 error_quit_pipe:
1352 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1353 error_wakeup_pipe:
1354 lttng_pipe_destroy(ctx->consumer_data_pipe);
1355 error_poll_pipe:
1356 free(ctx);
1357 error:
1358 return NULL;
1359 }
1360
1361 /*
1362 * Iterate over all streams of the hashtable and free them properly.
1363 */
1364 static void destroy_data_stream_ht(struct lttng_ht *ht)
1365 {
1366 struct lttng_ht_iter iter;
1367 struct lttng_consumer_stream *stream;
1368
1369 if (ht == NULL) {
1370 return;
1371 }
1372
1373 rcu_read_lock();
1374 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1375 /*
1376 * Ignore return value since we are currently cleaning up so any error
1377 * can't be handled.
1378 */
1379 (void) consumer_del_stream(stream, ht);
1380 }
1381 rcu_read_unlock();
1382
1383 lttng_ht_destroy(ht);
1384 }
1385
1386 /*
1387 * Iterate over all streams of the metadata hashtable and free them
1388 * properly.
1389 */
1390 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1391 {
1392 struct lttng_ht_iter iter;
1393 struct lttng_consumer_stream *stream;
1394
1395 if (ht == NULL) {
1396 return;
1397 }
1398
1399 rcu_read_lock();
1400 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1401 /*
1402 * Ignore return value since we are currently cleaning up so any error
1403 * can't be handled.
1404 */
1405 (void) consumer_del_metadata_stream(stream, ht);
1406 }
1407 rcu_read_unlock();
1408
1409 lttng_ht_destroy(ht);
1410 }
1411
1412 /*
1413 * Close all fds associated with the instance and free the context.
1414 */
1415 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1416 {
1417 int ret;
1418
1419 DBG("Consumer destroying it. Closing everything.");
1420
1421 if (!ctx) {
1422 return;
1423 }
1424
1425 destroy_data_stream_ht(data_ht);
1426 destroy_metadata_stream_ht(metadata_ht);
1427
1428 ret = close(ctx->consumer_error_socket);
1429 if (ret) {
1430 PERROR("close");
1431 }
1432 ret = close(ctx->consumer_metadata_socket);
1433 if (ret) {
1434 PERROR("close");
1435 }
1436 utils_close_pipe(ctx->consumer_channel_pipe);
1437 lttng_pipe_destroy(ctx->consumer_data_pipe);
1438 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1439 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1440 utils_close_pipe(ctx->consumer_should_quit);
1441
1442 unlink(ctx->consumer_command_sock_path);
1443 free(ctx);
1444 }
1445
1446 /*
1447 * Write the metadata stream id on the specified file descriptor.
1448 */
1449 static int write_relayd_metadata_id(int fd,
1450 struct lttng_consumer_stream *stream,
1451 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1452 {
1453 ssize_t ret;
1454 struct lttcomm_relayd_metadata_payload hdr;
1455
1456 hdr.stream_id = htobe64(stream->relayd_stream_id);
1457 hdr.padding_size = htobe32(padding);
1458 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1459 if (ret < sizeof(hdr)) {
1460 /*
1461 * This error means that the fd's end is closed so ignore the PERROR
1462 * not to clubber the error output since this can happen in a normal
1463 * code path.
1464 */
1465 if (errno != EPIPE) {
1466 PERROR("write metadata stream id");
1467 }
1468 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1469 /*
1470 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1471 * handle writting the missing part so report that as an error and
1472 * don't lie to the caller.
1473 */
1474 ret = -1;
1475 goto end;
1476 }
1477 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1478 stream->relayd_stream_id, padding);
1479
1480 end:
1481 return (int) ret;
1482 }
1483
1484 /*
1485 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1486 * core function for writing trace buffers to either the local filesystem or
1487 * the network.
1488 *
1489 * It must be called with the stream lock held.
1490 *
1491 * Careful review MUST be put if any changes occur!
1492 *
1493 * Returns the number of bytes written
1494 */
1495 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1496 struct lttng_consumer_local_data *ctx,
1497 struct lttng_consumer_stream *stream, unsigned long len,
1498 unsigned long padding,
1499 struct ctf_packet_index *index)
1500 {
1501 unsigned long mmap_offset;
1502 void *mmap_base;
1503 ssize_t ret = 0;
1504 off_t orig_offset = stream->out_fd_offset;
1505 /* Default is on the disk */
1506 int outfd = stream->out_fd;
1507 struct consumer_relayd_sock_pair *relayd = NULL;
1508 unsigned int relayd_hang_up = 0;
1509
1510 /* RCU lock for the relayd pointer */
1511 rcu_read_lock();
1512
1513 /* Flag that the current stream if set for network streaming. */
1514 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1515 relayd = consumer_find_relayd(stream->net_seq_idx);
1516 if (relayd == NULL) {
1517 ret = -EPIPE;
1518 goto end;
1519 }
1520 }
1521
1522 /* get the offset inside the fd to mmap */
1523 switch (consumer_data.type) {
1524 case LTTNG_CONSUMER_KERNEL:
1525 mmap_base = stream->mmap_base;
1526 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1527 if (ret < 0) {
1528 ret = -errno;
1529 PERROR("tracer ctl get_mmap_read_offset");
1530 goto end;
1531 }
1532 break;
1533 case LTTNG_CONSUMER32_UST:
1534 case LTTNG_CONSUMER64_UST:
1535 mmap_base = lttng_ustctl_get_mmap_base(stream);
1536 if (!mmap_base) {
1537 ERR("read mmap get mmap base for stream %s", stream->name);
1538 ret = -EPERM;
1539 goto end;
1540 }
1541 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1542 if (ret != 0) {
1543 PERROR("tracer ctl get_mmap_read_offset");
1544 ret = -EINVAL;
1545 goto end;
1546 }
1547 break;
1548 default:
1549 ERR("Unknown consumer_data type");
1550 assert(0);
1551 }
1552
1553 /* Handle stream on the relayd if the output is on the network */
1554 if (relayd) {
1555 unsigned long netlen = len;
1556
1557 /*
1558 * Lock the control socket for the complete duration of the function
1559 * since from this point on we will use the socket.
1560 */
1561 if (stream->metadata_flag) {
1562 /* Metadata requires the control socket. */
1563 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1564 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1565 }
1566
1567 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1568 if (ret < 0) {
1569 relayd_hang_up = 1;
1570 goto write_error;
1571 }
1572 /* Use the returned socket. */
1573 outfd = ret;
1574
1575 /* Write metadata stream id before payload */
1576 if (stream->metadata_flag) {
1577 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1578 if (ret < 0) {
1579 relayd_hang_up = 1;
1580 goto write_error;
1581 }
1582 }
1583 } else {
1584 /* No streaming, we have to set the len with the full padding */
1585 len += padding;
1586
1587 /*
1588 * Check if we need to change the tracefile before writing the packet.
1589 */
1590 if (stream->chan->tracefile_size > 0 &&
1591 (stream->tracefile_size_current + len) >
1592 stream->chan->tracefile_size) {
1593 ret = utils_rotate_stream_file(stream->chan->pathname,
1594 stream->name, stream->chan->tracefile_size,
1595 stream->chan->tracefile_count, stream->uid, stream->gid,
1596 stream->out_fd, &(stream->tracefile_count_current),
1597 &stream->out_fd);
1598 if (ret < 0) {
1599 ERR("Rotating output file");
1600 goto end;
1601 }
1602 outfd = stream->out_fd;
1603
1604 if (stream->index_fd >= 0) {
1605 ret = close(stream->index_fd);
1606 if (ret < 0) {
1607 PERROR("Closing index");
1608 goto end;
1609 }
1610 stream->index_fd = -1;
1611 ret = index_create_file(stream->chan->pathname,
1612 stream->name, stream->uid, stream->gid,
1613 stream->chan->tracefile_size,
1614 stream->tracefile_count_current);
1615 if (ret < 0) {
1616 goto end;
1617 }
1618 stream->index_fd = ret;
1619 }
1620
1621 /* Reset current size because we just perform a rotation. */
1622 stream->tracefile_size_current = 0;
1623 stream->out_fd_offset = 0;
1624 orig_offset = 0;
1625 }
1626 stream->tracefile_size_current += len;
1627 if (index) {
1628 index->offset = htobe64(stream->out_fd_offset);
1629 }
1630 }
1631
1632 /*
1633 * This call guarantee that len or less is returned. It's impossible to
1634 * receive a ret value that is bigger than len.
1635 */
1636 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1637 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1638 if (ret < 0 || ((size_t) ret != len)) {
1639 /*
1640 * Report error to caller if nothing was written else at least send the
1641 * amount written.
1642 */
1643 if (ret < 0) {
1644 ret = -errno;
1645 }
1646 relayd_hang_up = 1;
1647
1648 /* Socket operation failed. We consider the relayd dead */
1649 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1650 /*
1651 * This is possible if the fd is closed on the other side
1652 * (outfd) or any write problem. It can be verbose a bit for a
1653 * normal execution if for instance the relayd is stopped
1654 * abruptly. This can happen so set this to a DBG statement.
1655 */
1656 DBG("Consumer mmap write detected relayd hang up");
1657 } else {
1658 /* Unhandled error, print it and stop function right now. */
1659 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1660 }
1661 goto write_error;
1662 }
1663 stream->output_written += ret;
1664
1665 /* This call is useless on a socket so better save a syscall. */
1666 if (!relayd) {
1667 /* This won't block, but will start writeout asynchronously */
1668 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1669 SYNC_FILE_RANGE_WRITE);
1670 stream->out_fd_offset += len;
1671 }
1672 lttng_consumer_sync_trace_file(stream, orig_offset);
1673
1674 write_error:
1675 /*
1676 * This is a special case that the relayd has closed its socket. Let's
1677 * cleanup the relayd object and all associated streams.
1678 */
1679 if (relayd && relayd_hang_up) {
1680 cleanup_relayd(relayd, ctx);
1681 }
1682
1683 end:
1684 /* Unlock only if ctrl socket used */
1685 if (relayd && stream->metadata_flag) {
1686 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1687 }
1688
1689 rcu_read_unlock();
1690 return ret;
1691 }
1692
1693 /*
1694 * Splice the data from the ring buffer to the tracefile.
1695 *
1696 * It must be called with the stream lock held.
1697 *
1698 * Returns the number of bytes spliced.
1699 */
1700 ssize_t lttng_consumer_on_read_subbuffer_splice(
1701 struct lttng_consumer_local_data *ctx,
1702 struct lttng_consumer_stream *stream, unsigned long len,
1703 unsigned long padding,
1704 struct ctf_packet_index *index)
1705 {
1706 ssize_t ret = 0, written = 0, ret_splice = 0;
1707 loff_t offset = 0;
1708 off_t orig_offset = stream->out_fd_offset;
1709 int fd = stream->wait_fd;
1710 /* Default is on the disk */
1711 int outfd = stream->out_fd;
1712 struct consumer_relayd_sock_pair *relayd = NULL;
1713 int *splice_pipe;
1714 unsigned int relayd_hang_up = 0;
1715
1716 switch (consumer_data.type) {
1717 case LTTNG_CONSUMER_KERNEL:
1718 break;
1719 case LTTNG_CONSUMER32_UST:
1720 case LTTNG_CONSUMER64_UST:
1721 /* Not supported for user space tracing */
1722 return -ENOSYS;
1723 default:
1724 ERR("Unknown consumer_data type");
1725 assert(0);
1726 }
1727
1728 /* RCU lock for the relayd pointer */
1729 rcu_read_lock();
1730
1731 /* Flag that the current stream if set for network streaming. */
1732 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1733 relayd = consumer_find_relayd(stream->net_seq_idx);
1734 if (relayd == NULL) {
1735 written = -ret;
1736 goto end;
1737 }
1738 }
1739 splice_pipe = stream->splice_pipe;
1740
1741 /* Write metadata stream id before payload */
1742 if (relayd) {
1743 unsigned long total_len = len;
1744
1745 if (stream->metadata_flag) {
1746 /*
1747 * Lock the control socket for the complete duration of the function
1748 * since from this point on we will use the socket.
1749 */
1750 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1751
1752 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1753 padding);
1754 if (ret < 0) {
1755 written = ret;
1756 relayd_hang_up = 1;
1757 goto write_error;
1758 }
1759
1760 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1761 }
1762
1763 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1764 if (ret < 0) {
1765 written = ret;
1766 relayd_hang_up = 1;
1767 goto write_error;
1768 }
1769 /* Use the returned socket. */
1770 outfd = ret;
1771 } else {
1772 /* No streaming, we have to set the len with the full padding */
1773 len += padding;
1774
1775 /*
1776 * Check if we need to change the tracefile before writing the packet.
1777 */
1778 if (stream->chan->tracefile_size > 0 &&
1779 (stream->tracefile_size_current + len) >
1780 stream->chan->tracefile_size) {
1781 ret = utils_rotate_stream_file(stream->chan->pathname,
1782 stream->name, stream->chan->tracefile_size,
1783 stream->chan->tracefile_count, stream->uid, stream->gid,
1784 stream->out_fd, &(stream->tracefile_count_current),
1785 &stream->out_fd);
1786 if (ret < 0) {
1787 written = ret;
1788 ERR("Rotating output file");
1789 goto end;
1790 }
1791 outfd = stream->out_fd;
1792
1793 if (stream->index_fd >= 0) {
1794 ret = close(stream->index_fd);
1795 if (ret < 0) {
1796 PERROR("Closing index");
1797 goto end;
1798 }
1799 stream->index_fd = -1;
1800 ret = index_create_file(stream->chan->pathname,
1801 stream->name, stream->uid, stream->gid,
1802 stream->chan->tracefile_size,
1803 stream->tracefile_count_current);
1804 if (ret < 0) {
1805 written = ret;
1806 goto end;
1807 }
1808 stream->index_fd = ret;
1809 }
1810
1811 /* Reset current size because we just perform a rotation. */
1812 stream->tracefile_size_current = 0;
1813 stream->out_fd_offset = 0;
1814 orig_offset = 0;
1815 }
1816 stream->tracefile_size_current += len;
1817 index->offset = htobe64(stream->out_fd_offset);
1818 }
1819
1820 while (len > 0) {
1821 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1822 (unsigned long)offset, len, fd, splice_pipe[1]);
1823 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1824 SPLICE_F_MOVE | SPLICE_F_MORE);
1825 DBG("splice chan to pipe, ret %zd", ret_splice);
1826 if (ret_splice < 0) {
1827 ret = errno;
1828 written = -ret;
1829 PERROR("Error in relay splice");
1830 goto splice_error;
1831 }
1832
1833 /* Handle stream on the relayd if the output is on the network */
1834 if (relayd && stream->metadata_flag) {
1835 size_t metadata_payload_size =
1836 sizeof(struct lttcomm_relayd_metadata_payload);
1837
1838 /* Update counter to fit the spliced data */
1839 ret_splice += metadata_payload_size;
1840 len += metadata_payload_size;
1841 /*
1842 * We do this so the return value can match the len passed as
1843 * argument to this function.
1844 */
1845 written -= metadata_payload_size;
1846 }
1847
1848 /* Splice data out */
1849 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1850 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1851 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1852 outfd, ret_splice);
1853 if (ret_splice < 0) {
1854 ret = errno;
1855 written = -ret;
1856 relayd_hang_up = 1;
1857 goto write_error;
1858 } else if (ret_splice > len) {
1859 /*
1860 * We don't expect this code path to be executed but you never know
1861 * so this is an extra protection agains a buggy splice().
1862 */
1863 ret = errno;
1864 written += ret_splice;
1865 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1866 len);
1867 goto splice_error;
1868 } else {
1869 /* All good, update current len and continue. */
1870 len -= ret_splice;
1871 }
1872
1873 /* This call is useless on a socket so better save a syscall. */
1874 if (!relayd) {
1875 /* This won't block, but will start writeout asynchronously */
1876 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1877 SYNC_FILE_RANGE_WRITE);
1878 stream->out_fd_offset += ret_splice;
1879 }
1880 stream->output_written += ret_splice;
1881 written += ret_splice;
1882 }
1883 lttng_consumer_sync_trace_file(stream, orig_offset);
1884 goto end;
1885
1886 write_error:
1887 /*
1888 * This is a special case that the relayd has closed its socket. Let's
1889 * cleanup the relayd object and all associated streams.
1890 */
1891 if (relayd && relayd_hang_up) {
1892 cleanup_relayd(relayd, ctx);
1893 /* Skip splice error so the consumer does not fail */
1894 goto end;
1895 }
1896
1897 splice_error:
1898 /* send the appropriate error description to sessiond */
1899 switch (ret) {
1900 case EINVAL:
1901 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1902 break;
1903 case ENOMEM:
1904 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1905 break;
1906 case ESPIPE:
1907 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1908 break;
1909 }
1910
1911 end:
1912 if (relayd && stream->metadata_flag) {
1913 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1914 }
1915
1916 rcu_read_unlock();
1917 return written;
1918 }
1919
1920 /*
1921 * Take a snapshot for a specific fd
1922 *
1923 * Returns 0 on success, < 0 on error
1924 */
1925 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1926 {
1927 switch (consumer_data.type) {
1928 case LTTNG_CONSUMER_KERNEL:
1929 return lttng_kconsumer_take_snapshot(stream);
1930 case LTTNG_CONSUMER32_UST:
1931 case LTTNG_CONSUMER64_UST:
1932 return lttng_ustconsumer_take_snapshot(stream);
1933 default:
1934 ERR("Unknown consumer_data type");
1935 assert(0);
1936 return -ENOSYS;
1937 }
1938 }
1939
1940 /*
1941 * Get the produced position
1942 *
1943 * Returns 0 on success, < 0 on error
1944 */
1945 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1946 unsigned long *pos)
1947 {
1948 switch (consumer_data.type) {
1949 case LTTNG_CONSUMER_KERNEL:
1950 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1951 case LTTNG_CONSUMER32_UST:
1952 case LTTNG_CONSUMER64_UST:
1953 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1954 default:
1955 ERR("Unknown consumer_data type");
1956 assert(0);
1957 return -ENOSYS;
1958 }
1959 }
1960
1961 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1962 int sock, struct pollfd *consumer_sockpoll)
1963 {
1964 switch (consumer_data.type) {
1965 case LTTNG_CONSUMER_KERNEL:
1966 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1967 case LTTNG_CONSUMER32_UST:
1968 case LTTNG_CONSUMER64_UST:
1969 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1970 default:
1971 ERR("Unknown consumer_data type");
1972 assert(0);
1973 return -ENOSYS;
1974 }
1975 }
1976
1977 void lttng_consumer_close_all_metadata(void)
1978 {
1979 switch (consumer_data.type) {
1980 case LTTNG_CONSUMER_KERNEL:
1981 /*
1982 * The Kernel consumer has a different metadata scheme so we don't
1983 * close anything because the stream will be closed by the session
1984 * daemon.
1985 */
1986 break;
1987 case LTTNG_CONSUMER32_UST:
1988 case LTTNG_CONSUMER64_UST:
1989 /*
1990 * Close all metadata streams. The metadata hash table is passed and
1991 * this call iterates over it by closing all wakeup fd. This is safe
1992 * because at this point we are sure that the metadata producer is
1993 * either dead or blocked.
1994 */
1995 lttng_ustconsumer_close_all_metadata(metadata_ht);
1996 break;
1997 default:
1998 ERR("Unknown consumer_data type");
1999 assert(0);
2000 }
2001 }
2002
2003 /*
2004 * Clean up a metadata stream and free its memory.
2005 */
2006 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2007 struct lttng_ht *ht)
2008 {
2009 struct lttng_consumer_channel *free_chan = NULL;
2010
2011 assert(stream);
2012 /*
2013 * This call should NEVER receive regular stream. It must always be
2014 * metadata stream and this is crucial for data structure synchronization.
2015 */
2016 assert(stream->metadata_flag);
2017
2018 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2019
2020 pthread_mutex_lock(&consumer_data.lock);
2021 pthread_mutex_lock(&stream->chan->lock);
2022 pthread_mutex_lock(&stream->lock);
2023
2024 /* Remove any reference to that stream. */
2025 consumer_stream_delete(stream, ht);
2026
2027 /* Close down everything including the relayd if one. */
2028 consumer_stream_close(stream);
2029 /* Destroy tracer buffers of the stream. */
2030 consumer_stream_destroy_buffers(stream);
2031
2032 /* Atomically decrement channel refcount since other threads can use it. */
2033 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2034 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2035 /* Go for channel deletion! */
2036 free_chan = stream->chan;
2037 }
2038
2039 /*
2040 * Nullify the stream reference so it is not used after deletion. The
2041 * channel lock MUST be acquired before being able to check for a NULL
2042 * pointer value.
2043 */
2044 stream->chan->metadata_stream = NULL;
2045
2046 pthread_mutex_unlock(&stream->lock);
2047 pthread_mutex_unlock(&stream->chan->lock);
2048 pthread_mutex_unlock(&consumer_data.lock);
2049
2050 if (free_chan) {
2051 consumer_del_channel(free_chan);
2052 }
2053
2054 consumer_stream_free(stream);
2055 }
2056
2057 /*
2058 * Action done with the metadata stream when adding it to the consumer internal
2059 * data structures to handle it.
2060 */
2061 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2062 {
2063 struct lttng_ht *ht = metadata_ht;
2064 int ret = 0;
2065 struct lttng_ht_iter iter;
2066 struct lttng_ht_node_u64 *node;
2067
2068 assert(stream);
2069 assert(ht);
2070
2071 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2072
2073 pthread_mutex_lock(&consumer_data.lock);
2074 pthread_mutex_lock(&stream->chan->lock);
2075 pthread_mutex_lock(&stream->chan->timer_lock);
2076 pthread_mutex_lock(&stream->lock);
2077
2078 /*
2079 * From here, refcounts are updated so be _careful_ when returning an error
2080 * after this point.
2081 */
2082
2083 rcu_read_lock();
2084
2085 /*
2086 * Lookup the stream just to make sure it does not exist in our internal
2087 * state. This should NEVER happen.
2088 */
2089 lttng_ht_lookup(ht, &stream->key, &iter);
2090 node = lttng_ht_iter_get_node_u64(&iter);
2091 assert(!node);
2092
2093 /*
2094 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2095 * in terms of destroying the associated channel, because the action that
2096 * causes the count to become 0 also causes a stream to be added. The
2097 * channel deletion will thus be triggered by the following removal of this
2098 * stream.
2099 */
2100 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2101 /* Increment refcount before decrementing nb_init_stream_left */
2102 cmm_smp_wmb();
2103 uatomic_dec(&stream->chan->nb_init_stream_left);
2104 }
2105
2106 lttng_ht_add_unique_u64(ht, &stream->node);
2107
2108 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2109 &stream->node_channel_id);
2110
2111 /*
2112 * Add stream to the stream_list_ht of the consumer data. No need to steal
2113 * the key since the HT does not use it and we allow to add redundant keys
2114 * into this table.
2115 */
2116 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2117
2118 rcu_read_unlock();
2119
2120 pthread_mutex_unlock(&stream->lock);
2121 pthread_mutex_unlock(&stream->chan->lock);
2122 pthread_mutex_unlock(&stream->chan->timer_lock);
2123 pthread_mutex_unlock(&consumer_data.lock);
2124 return ret;
2125 }
2126
2127 /*
2128 * Delete data stream that are flagged for deletion (endpoint_status).
2129 */
2130 static void validate_endpoint_status_data_stream(void)
2131 {
2132 struct lttng_ht_iter iter;
2133 struct lttng_consumer_stream *stream;
2134
2135 DBG("Consumer delete flagged data stream");
2136
2137 rcu_read_lock();
2138 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2139 /* Validate delete flag of the stream */
2140 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2141 continue;
2142 }
2143 /* Delete it right now */
2144 consumer_del_stream(stream, data_ht);
2145 }
2146 rcu_read_unlock();
2147 }
2148
2149 /*
2150 * Delete metadata stream that are flagged for deletion (endpoint_status).
2151 */
2152 static void validate_endpoint_status_metadata_stream(
2153 struct lttng_poll_event *pollset)
2154 {
2155 struct lttng_ht_iter iter;
2156 struct lttng_consumer_stream *stream;
2157
2158 DBG("Consumer delete flagged metadata stream");
2159
2160 assert(pollset);
2161
2162 rcu_read_lock();
2163 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2164 /* Validate delete flag of the stream */
2165 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2166 continue;
2167 }
2168 /*
2169 * Remove from pollset so the metadata thread can continue without
2170 * blocking on a deleted stream.
2171 */
2172 lttng_poll_del(pollset, stream->wait_fd);
2173
2174 /* Delete it right now */
2175 consumer_del_metadata_stream(stream, metadata_ht);
2176 }
2177 rcu_read_unlock();
2178 }
2179
2180 /*
2181 * Thread polls on metadata file descriptor and write them on disk or on the
2182 * network.
2183 */
2184 void *consumer_thread_metadata_poll(void *data)
2185 {
2186 int ret, i, pollfd, err = -1;
2187 uint32_t revents, nb_fd;
2188 struct lttng_consumer_stream *stream = NULL;
2189 struct lttng_ht_iter iter;
2190 struct lttng_ht_node_u64 *node;
2191 struct lttng_poll_event events;
2192 struct lttng_consumer_local_data *ctx = data;
2193 ssize_t len;
2194
2195 rcu_register_thread();
2196
2197 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2198
2199 if (testpoint(consumerd_thread_metadata)) {
2200 goto error_testpoint;
2201 }
2202
2203 health_code_update();
2204
2205 DBG("Thread metadata poll started");
2206
2207 /* Size is set to 1 for the consumer_metadata pipe */
2208 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2209 if (ret < 0) {
2210 ERR("Poll set creation failed");
2211 goto end_poll;
2212 }
2213
2214 ret = lttng_poll_add(&events,
2215 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2216 if (ret < 0) {
2217 goto end;
2218 }
2219
2220 /* Main loop */
2221 DBG("Metadata main loop started");
2222
2223 while (1) {
2224 restart:
2225 health_code_update();
2226 health_poll_entry();
2227 DBG("Metadata poll wait");
2228 ret = lttng_poll_wait(&events, -1);
2229 DBG("Metadata poll return from wait with %d fd(s)",
2230 LTTNG_POLL_GETNB(&events));
2231 health_poll_exit();
2232 DBG("Metadata event caught in thread");
2233 if (ret < 0) {
2234 if (errno == EINTR) {
2235 ERR("Poll EINTR caught");
2236 goto restart;
2237 }
2238 if (LTTNG_POLL_GETNB(&events) == 0) {
2239 err = 0; /* All is OK */
2240 }
2241 goto end;
2242 }
2243
2244 nb_fd = ret;
2245
2246 /* From here, the event is a metadata wait fd */
2247 for (i = 0; i < nb_fd; i++) {
2248 health_code_update();
2249
2250 revents = LTTNG_POLL_GETEV(&events, i);
2251 pollfd = LTTNG_POLL_GETFD(&events, i);
2252
2253 if (!revents) {
2254 /* No activity for this FD (poll implementation). */
2255 continue;
2256 }
2257
2258 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2259 if (revents & LPOLLIN) {
2260 ssize_t pipe_len;
2261
2262 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2263 &stream, sizeof(stream));
2264 if (pipe_len < sizeof(stream)) {
2265 if (pipe_len < 0) {
2266 PERROR("read metadata stream");
2267 }
2268 /*
2269 * Remove the pipe from the poll set and continue the loop
2270 * since their might be data to consume.
2271 */
2272 lttng_poll_del(&events,
2273 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2274 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2275 continue;
2276 }
2277
2278 /* A NULL stream means that the state has changed. */
2279 if (stream == NULL) {
2280 /* Check for deleted streams. */
2281 validate_endpoint_status_metadata_stream(&events);
2282 goto restart;
2283 }
2284
2285 DBG("Adding metadata stream %d to poll set",
2286 stream->wait_fd);
2287
2288 /* Add metadata stream to the global poll events list */
2289 lttng_poll_add(&events, stream->wait_fd,
2290 LPOLLIN | LPOLLPRI | LPOLLHUP);
2291 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2292 DBG("Metadata thread pipe hung up");
2293 /*
2294 * Remove the pipe from the poll set and continue the loop
2295 * since their might be data to consume.
2296 */
2297 lttng_poll_del(&events,
2298 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2299 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2300 continue;
2301 } else {
2302 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2303 goto end;
2304 }
2305
2306 /* Handle other stream */
2307 continue;
2308 }
2309
2310 rcu_read_lock();
2311 {
2312 uint64_t tmp_id = (uint64_t) pollfd;
2313
2314 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2315 }
2316 node = lttng_ht_iter_get_node_u64(&iter);
2317 assert(node);
2318
2319 stream = caa_container_of(node, struct lttng_consumer_stream,
2320 node);
2321
2322 if (revents & (LPOLLIN | LPOLLPRI)) {
2323 /* Get the data out of the metadata file descriptor */
2324 DBG("Metadata available on fd %d", pollfd);
2325 assert(stream->wait_fd == pollfd);
2326
2327 do {
2328 health_code_update();
2329
2330 len = ctx->on_buffer_ready(stream, ctx);
2331 /*
2332 * We don't check the return value here since if we get
2333 * a negative len, it means an error occured thus we
2334 * simply remove it from the poll set and free the
2335 * stream.
2336 */
2337 } while (len > 0);
2338
2339 /* It's ok to have an unavailable sub-buffer */
2340 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2341 /* Clean up stream from consumer and free it. */
2342 lttng_poll_del(&events, stream->wait_fd);
2343 consumer_del_metadata_stream(stream, metadata_ht);
2344 }
2345 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2346 DBG("Metadata fd %d is hup|err.", pollfd);
2347 if (!stream->hangup_flush_done
2348 && (consumer_data.type == LTTNG_CONSUMER32_UST
2349 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2350 DBG("Attempting to flush and consume the UST buffers");
2351 lttng_ustconsumer_on_stream_hangup(stream);
2352
2353 /* We just flushed the stream now read it. */
2354 do {
2355 health_code_update();
2356
2357 len = ctx->on_buffer_ready(stream, ctx);
2358 /*
2359 * We don't check the return value here since if we get
2360 * a negative len, it means an error occured thus we
2361 * simply remove it from the poll set and free the
2362 * stream.
2363 */
2364 } while (len > 0);
2365 }
2366
2367 lttng_poll_del(&events, stream->wait_fd);
2368 /*
2369 * This call update the channel states, closes file descriptors
2370 * and securely free the stream.
2371 */
2372 consumer_del_metadata_stream(stream, metadata_ht);
2373 } else {
2374 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2375 rcu_read_unlock();
2376 goto end;
2377 }
2378 /* Release RCU lock for the stream looked up */
2379 rcu_read_unlock();
2380 }
2381 }
2382
2383 /* All is OK */
2384 err = 0;
2385 end:
2386 DBG("Metadata poll thread exiting");
2387
2388 lttng_poll_clean(&events);
2389 end_poll:
2390 error_testpoint:
2391 if (err) {
2392 health_error();
2393 ERR("Health error occurred in %s", __func__);
2394 }
2395 health_unregister(health_consumerd);
2396 rcu_unregister_thread();
2397 return NULL;
2398 }
2399
2400 /*
2401 * This thread polls the fds in the set to consume the data and write
2402 * it to tracefile if necessary.
2403 */
2404 void *consumer_thread_data_poll(void *data)
2405 {
2406 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2407 struct pollfd *pollfd = NULL;
2408 /* local view of the streams */
2409 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2410 /* local view of consumer_data.fds_count */
2411 int nb_fd = 0;
2412 struct lttng_consumer_local_data *ctx = data;
2413 ssize_t len;
2414
2415 rcu_register_thread();
2416
2417 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2418
2419 if (testpoint(consumerd_thread_data)) {
2420 goto error_testpoint;
2421 }
2422
2423 health_code_update();
2424
2425 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2426 if (local_stream == NULL) {
2427 PERROR("local_stream malloc");
2428 goto end;
2429 }
2430
2431 while (1) {
2432 health_code_update();
2433
2434 high_prio = 0;
2435 num_hup = 0;
2436
2437 /*
2438 * the fds set has been updated, we need to update our
2439 * local array as well
2440 */
2441 pthread_mutex_lock(&consumer_data.lock);
2442 if (consumer_data.need_update) {
2443 free(pollfd);
2444 pollfd = NULL;
2445
2446 free(local_stream);
2447 local_stream = NULL;
2448
2449 /*
2450 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2451 * wake up pipe.
2452 */
2453 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2454 if (pollfd == NULL) {
2455 PERROR("pollfd malloc");
2456 pthread_mutex_unlock(&consumer_data.lock);
2457 goto end;
2458 }
2459
2460 local_stream = zmalloc((consumer_data.stream_count + 2) *
2461 sizeof(struct lttng_consumer_stream *));
2462 if (local_stream == NULL) {
2463 PERROR("local_stream malloc");
2464 pthread_mutex_unlock(&consumer_data.lock);
2465 goto end;
2466 }
2467 ret = update_poll_array(ctx, &pollfd, local_stream,
2468 data_ht);
2469 if (ret < 0) {
2470 ERR("Error in allocating pollfd or local_outfds");
2471 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2472 pthread_mutex_unlock(&consumer_data.lock);
2473 goto end;
2474 }
2475 nb_fd = ret;
2476 consumer_data.need_update = 0;
2477 }
2478 pthread_mutex_unlock(&consumer_data.lock);
2479
2480 /* No FDs and consumer_quit, consumer_cleanup the thread */
2481 if (nb_fd == 0 && consumer_quit == 1) {
2482 err = 0; /* All is OK */
2483 goto end;
2484 }
2485 /* poll on the array of fds */
2486 restart:
2487 DBG("polling on %d fd", nb_fd + 2);
2488 health_poll_entry();
2489 num_rdy = poll(pollfd, nb_fd + 2, -1);
2490 health_poll_exit();
2491 DBG("poll num_rdy : %d", num_rdy);
2492 if (num_rdy == -1) {
2493 /*
2494 * Restart interrupted system call.
2495 */
2496 if (errno == EINTR) {
2497 goto restart;
2498 }
2499 PERROR("Poll error");
2500 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2501 goto end;
2502 } else if (num_rdy == 0) {
2503 DBG("Polling thread timed out");
2504 goto end;
2505 }
2506
2507 /*
2508 * If the consumer_data_pipe triggered poll go directly to the
2509 * beginning of the loop to update the array. We want to prioritize
2510 * array update over low-priority reads.
2511 */
2512 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2513 ssize_t pipe_readlen;
2514
2515 DBG("consumer_data_pipe wake up");
2516 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2517 &new_stream, sizeof(new_stream));
2518 if (pipe_readlen < sizeof(new_stream)) {
2519 PERROR("Consumer data pipe");
2520 /* Continue so we can at least handle the current stream(s). */
2521 continue;
2522 }
2523
2524 /*
2525 * If the stream is NULL, just ignore it. It's also possible that
2526 * the sessiond poll thread changed the consumer_quit state and is
2527 * waking us up to test it.
2528 */
2529 if (new_stream == NULL) {
2530 validate_endpoint_status_data_stream();
2531 continue;
2532 }
2533
2534 /* Continue to update the local streams and handle prio ones */
2535 continue;
2536 }
2537
2538 /* Handle wakeup pipe. */
2539 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2540 char dummy;
2541 ssize_t pipe_readlen;
2542
2543 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2544 sizeof(dummy));
2545 if (pipe_readlen < 0) {
2546 PERROR("Consumer data wakeup pipe");
2547 }
2548 /* We've been awakened to handle stream(s). */
2549 ctx->has_wakeup = 0;
2550 }
2551
2552 /* Take care of high priority channels first. */
2553 for (i = 0; i < nb_fd; i++) {
2554 health_code_update();
2555
2556 if (local_stream[i] == NULL) {
2557 continue;
2558 }
2559 if (pollfd[i].revents & POLLPRI) {
2560 DBG("Urgent read on fd %d", pollfd[i].fd);
2561 high_prio = 1;
2562 len = ctx->on_buffer_ready(local_stream[i], ctx);
2563 /* it's ok to have an unavailable sub-buffer */
2564 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2565 /* Clean the stream and free it. */
2566 consumer_del_stream(local_stream[i], data_ht);
2567 local_stream[i] = NULL;
2568 } else if (len > 0) {
2569 local_stream[i]->data_read = 1;
2570 }
2571 }
2572 }
2573
2574 /*
2575 * If we read high prio channel in this loop, try again
2576 * for more high prio data.
2577 */
2578 if (high_prio) {
2579 continue;
2580 }
2581
2582 /* Take care of low priority channels. */
2583 for (i = 0; i < nb_fd; i++) {
2584 health_code_update();
2585
2586 if (local_stream[i] == NULL) {
2587 continue;
2588 }
2589 if ((pollfd[i].revents & POLLIN) ||
2590 local_stream[i]->hangup_flush_done ||
2591 local_stream[i]->has_data) {
2592 DBG("Normal read on fd %d", pollfd[i].fd);
2593 len = ctx->on_buffer_ready(local_stream[i], ctx);
2594 /* it's ok to have an unavailable sub-buffer */
2595 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2596 /* Clean the stream and free it. */
2597 consumer_del_stream(local_stream[i], data_ht);
2598 local_stream[i] = NULL;
2599 } else if (len > 0) {
2600 local_stream[i]->data_read = 1;
2601 }
2602 }
2603 }
2604
2605 /* Handle hangup and errors */
2606 for (i = 0; i < nb_fd; i++) {
2607 health_code_update();
2608
2609 if (local_stream[i] == NULL) {
2610 continue;
2611 }
2612 if (!local_stream[i]->hangup_flush_done
2613 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2614 && (consumer_data.type == LTTNG_CONSUMER32_UST
2615 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2616 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2617 pollfd[i].fd);
2618 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2619 /* Attempt read again, for the data we just flushed. */
2620 local_stream[i]->data_read = 1;
2621 }
2622 /*
2623 * If the poll flag is HUP/ERR/NVAL and we have
2624 * read no data in this pass, we can remove the
2625 * stream from its hash table.
2626 */
2627 if ((pollfd[i].revents & POLLHUP)) {
2628 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2629 if (!local_stream[i]->data_read) {
2630 consumer_del_stream(local_stream[i], data_ht);
2631 local_stream[i] = NULL;
2632 num_hup++;
2633 }
2634 } else if (pollfd[i].revents & POLLERR) {
2635 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2636 if (!local_stream[i]->data_read) {
2637 consumer_del_stream(local_stream[i], data_ht);
2638 local_stream[i] = NULL;
2639 num_hup++;
2640 }
2641 } else if (pollfd[i].revents & POLLNVAL) {
2642 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2643 if (!local_stream[i]->data_read) {
2644 consumer_del_stream(local_stream[i], data_ht);
2645 local_stream[i] = NULL;
2646 num_hup++;
2647 }
2648 }
2649 if (local_stream[i] != NULL) {
2650 local_stream[i]->data_read = 0;
2651 }
2652 }
2653 }
2654 /* All is OK */
2655 err = 0;
2656 end:
2657 DBG("polling thread exiting");
2658 free(pollfd);
2659 free(local_stream);
2660
2661 /*
2662 * Close the write side of the pipe so epoll_wait() in
2663 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2664 * read side of the pipe. If we close them both, epoll_wait strangely does
2665 * not return and could create a endless wait period if the pipe is the
2666 * only tracked fd in the poll set. The thread will take care of closing
2667 * the read side.
2668 */
2669 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2670
2671 error_testpoint:
2672 if (err) {
2673 health_error();
2674 ERR("Health error occurred in %s", __func__);
2675 }
2676 health_unregister(health_consumerd);
2677
2678 rcu_unregister_thread();
2679 return NULL;
2680 }
2681
2682 /*
2683 * Close wake-up end of each stream belonging to the channel. This will
2684 * allow the poll() on the stream read-side to detect when the
2685 * write-side (application) finally closes them.
2686 */
2687 static
2688 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2689 {
2690 struct lttng_ht *ht;
2691 struct lttng_consumer_stream *stream;
2692 struct lttng_ht_iter iter;
2693
2694 ht = consumer_data.stream_per_chan_id_ht;
2695
2696 rcu_read_lock();
2697 cds_lfht_for_each_entry_duplicate(ht->ht,
2698 ht->hash_fct(&channel->key, lttng_ht_seed),
2699 ht->match_fct, &channel->key,
2700 &iter.iter, stream, node_channel_id.node) {
2701 /*
2702 * Protect against teardown with mutex.
2703 */
2704 pthread_mutex_lock(&stream->lock);
2705 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2706 goto next;
2707 }
2708 switch (consumer_data.type) {
2709 case LTTNG_CONSUMER_KERNEL:
2710 break;
2711 case LTTNG_CONSUMER32_UST:
2712 case LTTNG_CONSUMER64_UST:
2713 if (stream->metadata_flag) {
2714 /* Safe and protected by the stream lock. */
2715 lttng_ustconsumer_close_metadata(stream->chan);
2716 } else {
2717 /*
2718 * Note: a mutex is taken internally within
2719 * liblttng-ust-ctl to protect timer wakeup_fd
2720 * use from concurrent close.
2721 */
2722 lttng_ustconsumer_close_stream_wakeup(stream);
2723 }
2724 break;
2725 default:
2726 ERR("Unknown consumer_data type");
2727 assert(0);
2728 }
2729 next:
2730 pthread_mutex_unlock(&stream->lock);
2731 }
2732 rcu_read_unlock();
2733 }
2734
2735 static void destroy_channel_ht(struct lttng_ht *ht)
2736 {
2737 struct lttng_ht_iter iter;
2738 struct lttng_consumer_channel *channel;
2739 int ret;
2740
2741 if (ht == NULL) {
2742 return;
2743 }
2744
2745 rcu_read_lock();
2746 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2747 ret = lttng_ht_del(ht, &iter);
2748 assert(ret != 0);
2749 }
2750 rcu_read_unlock();
2751
2752 lttng_ht_destroy(ht);
2753 }
2754
2755 /*
2756 * This thread polls the channel fds to detect when they are being
2757 * closed. It closes all related streams if the channel is detected as
2758 * closed. It is currently only used as a shim layer for UST because the
2759 * consumerd needs to keep the per-stream wakeup end of pipes open for
2760 * periodical flush.
2761 */
2762 void *consumer_thread_channel_poll(void *data)
2763 {
2764 int ret, i, pollfd, err = -1;
2765 uint32_t revents, nb_fd;
2766 struct lttng_consumer_channel *chan = NULL;
2767 struct lttng_ht_iter iter;
2768 struct lttng_ht_node_u64 *node;
2769 struct lttng_poll_event events;
2770 struct lttng_consumer_local_data *ctx = data;
2771 struct lttng_ht *channel_ht;
2772
2773 rcu_register_thread();
2774
2775 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2776
2777 if (testpoint(consumerd_thread_channel)) {
2778 goto error_testpoint;
2779 }
2780
2781 health_code_update();
2782
2783 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2784 if (!channel_ht) {
2785 /* ENOMEM at this point. Better to bail out. */
2786 goto end_ht;
2787 }
2788
2789 DBG("Thread channel poll started");
2790
2791 /* Size is set to 1 for the consumer_channel pipe */
2792 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2793 if (ret < 0) {
2794 ERR("Poll set creation failed");
2795 goto end_poll;
2796 }
2797
2798 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2799 if (ret < 0) {
2800 goto end;
2801 }
2802
2803 /* Main loop */
2804 DBG("Channel main loop started");
2805
2806 while (1) {
2807 restart:
2808 health_code_update();
2809 DBG("Channel poll wait");
2810 health_poll_entry();
2811 ret = lttng_poll_wait(&events, -1);
2812 DBG("Channel poll return from wait with %d fd(s)",
2813 LTTNG_POLL_GETNB(&events));
2814 health_poll_exit();
2815 DBG("Channel event caught in thread");
2816 if (ret < 0) {
2817 if (errno == EINTR) {
2818 ERR("Poll EINTR caught");
2819 goto restart;
2820 }
2821 if (LTTNG_POLL_GETNB(&events) == 0) {
2822 err = 0; /* All is OK */
2823 }
2824 goto end;
2825 }
2826
2827 nb_fd = ret;
2828
2829 /* From here, the event is a channel wait fd */
2830 for (i = 0; i < nb_fd; i++) {
2831 health_code_update();
2832
2833 revents = LTTNG_POLL_GETEV(&events, i);
2834 pollfd = LTTNG_POLL_GETFD(&events, i);
2835
2836 if (!revents) {
2837 /* No activity for this FD (poll implementation). */
2838 continue;
2839 }
2840
2841 if (pollfd == ctx->consumer_channel_pipe[0]) {
2842 if (revents & LPOLLIN) {
2843 enum consumer_channel_action action;
2844 uint64_t key;
2845
2846 ret = read_channel_pipe(ctx, &chan, &key, &action);
2847 if (ret <= 0) {
2848 if (ret < 0) {
2849 ERR("Error reading channel pipe");
2850 }
2851 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2852 continue;
2853 }
2854
2855 switch (action) {
2856 case CONSUMER_CHANNEL_ADD:
2857 DBG("Adding channel %d to poll set",
2858 chan->wait_fd);
2859
2860 lttng_ht_node_init_u64(&chan->wait_fd_node,
2861 chan->wait_fd);
2862 rcu_read_lock();
2863 lttng_ht_add_unique_u64(channel_ht,
2864 &chan->wait_fd_node);
2865 rcu_read_unlock();
2866 /* Add channel to the global poll events list */
2867 lttng_poll_add(&events, chan->wait_fd,
2868 LPOLLERR | LPOLLHUP);
2869 break;
2870 case CONSUMER_CHANNEL_DEL:
2871 {
2872 /*
2873 * This command should never be called if the channel
2874 * has streams monitored by either the data or metadata
2875 * thread. The consumer only notify this thread with a
2876 * channel del. command if it receives a destroy
2877 * channel command from the session daemon that send it
2878 * if a command prior to the GET_CHANNEL failed.
2879 */
2880
2881 rcu_read_lock();
2882 chan = consumer_find_channel(key);
2883 if (!chan) {
2884 rcu_read_unlock();
2885 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2886 break;
2887 }
2888 lttng_poll_del(&events, chan->wait_fd);
2889 iter.iter.node = &chan->wait_fd_node.node;
2890 ret = lttng_ht_del(channel_ht, &iter);
2891 assert(ret == 0);
2892
2893 switch (consumer_data.type) {
2894 case LTTNG_CONSUMER_KERNEL:
2895 break;
2896 case LTTNG_CONSUMER32_UST:
2897 case LTTNG_CONSUMER64_UST:
2898 health_code_update();
2899 /* Destroy streams that might have been left in the stream list. */
2900 clean_channel_stream_list(chan);
2901 break;
2902 default:
2903 ERR("Unknown consumer_data type");
2904 assert(0);
2905 }
2906
2907 /*
2908 * Release our own refcount. Force channel deletion even if
2909 * streams were not initialized.
2910 */
2911 if (!uatomic_sub_return(&chan->refcount, 1)) {
2912 consumer_del_channel(chan);
2913 }
2914 rcu_read_unlock();
2915 goto restart;
2916 }
2917 case CONSUMER_CHANNEL_QUIT:
2918 /*
2919 * Remove the pipe from the poll set and continue the loop
2920 * since their might be data to consume.
2921 */
2922 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2923 continue;
2924 default:
2925 ERR("Unknown action");
2926 break;
2927 }
2928 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2929 DBG("Channel thread pipe hung up");
2930 /*
2931 * Remove the pipe from the poll set and continue the loop
2932 * since their might be data to consume.
2933 */
2934 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2935 continue;
2936 } else {
2937 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2938 goto end;
2939 }
2940
2941 /* Handle other stream */
2942 continue;
2943 }
2944
2945 rcu_read_lock();
2946 {
2947 uint64_t tmp_id = (uint64_t) pollfd;
2948
2949 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2950 }
2951 node = lttng_ht_iter_get_node_u64(&iter);
2952 assert(node);
2953
2954 chan = caa_container_of(node, struct lttng_consumer_channel,
2955 wait_fd_node);
2956
2957 /* Check for error event */
2958 if (revents & (LPOLLERR | LPOLLHUP)) {
2959 DBG("Channel fd %d is hup|err.", pollfd);
2960
2961 lttng_poll_del(&events, chan->wait_fd);
2962 ret = lttng_ht_del(channel_ht, &iter);
2963 assert(ret == 0);
2964
2965 /*
2966 * This will close the wait fd for each stream associated to
2967 * this channel AND monitored by the data/metadata thread thus
2968 * will be clean by the right thread.
2969 */
2970 consumer_close_channel_streams(chan);
2971
2972 /* Release our own refcount */
2973 if (!uatomic_sub_return(&chan->refcount, 1)
2974 && !uatomic_read(&chan->nb_init_stream_left)) {
2975 consumer_del_channel(chan);
2976 }
2977 } else {
2978 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2979 rcu_read_unlock();
2980 goto end;
2981 }
2982
2983 /* Release RCU lock for the channel looked up */
2984 rcu_read_unlock();
2985 }
2986 }
2987
2988 /* All is OK */
2989 err = 0;
2990 end:
2991 lttng_poll_clean(&events);
2992 end_poll:
2993 destroy_channel_ht(channel_ht);
2994 end_ht:
2995 error_testpoint:
2996 DBG("Channel poll thread exiting");
2997 if (err) {
2998 health_error();
2999 ERR("Health error occurred in %s", __func__);
3000 }
3001 health_unregister(health_consumerd);
3002 rcu_unregister_thread();
3003 return NULL;
3004 }
3005
3006 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3007 struct pollfd *sockpoll, int client_socket)
3008 {
3009 int ret;
3010
3011 assert(ctx);
3012 assert(sockpoll);
3013
3014 ret = lttng_consumer_poll_socket(sockpoll);
3015 if (ret) {
3016 goto error;
3017 }
3018 DBG("Metadata connection on client_socket");
3019
3020 /* Blocking call, waiting for transmission */
3021 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3022 if (ctx->consumer_metadata_socket < 0) {
3023 WARN("On accept metadata");
3024 ret = -1;
3025 goto error;
3026 }
3027 ret = 0;
3028
3029 error:
3030 return ret;
3031 }
3032
3033 /*
3034 * This thread listens on the consumerd socket and receives the file
3035 * descriptors from the session daemon.
3036 */
3037 void *consumer_thread_sessiond_poll(void *data)
3038 {
3039 int sock = -1, client_socket, ret, err = -1;
3040 /*
3041 * structure to poll for incoming data on communication socket avoids
3042 * making blocking sockets.
3043 */
3044 struct pollfd consumer_sockpoll[2];
3045 struct lttng_consumer_local_data *ctx = data;
3046
3047 rcu_register_thread();
3048
3049 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3050
3051 if (testpoint(consumerd_thread_sessiond)) {
3052 goto error_testpoint;
3053 }
3054
3055 health_code_update();
3056
3057 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3058 unlink(ctx->consumer_command_sock_path);
3059 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3060 if (client_socket < 0) {
3061 ERR("Cannot create command socket");
3062 goto end;
3063 }
3064
3065 ret = lttcomm_listen_unix_sock(client_socket);
3066 if (ret < 0) {
3067 goto end;
3068 }
3069
3070 DBG("Sending ready command to lttng-sessiond");
3071 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3072 /* return < 0 on error, but == 0 is not fatal */
3073 if (ret < 0) {
3074 ERR("Error sending ready command to lttng-sessiond");
3075 goto end;
3076 }
3077
3078 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3079 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3080 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3081 consumer_sockpoll[1].fd = client_socket;
3082 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3083
3084 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3085 if (ret) {
3086 if (ret > 0) {
3087 /* should exit */
3088 err = 0;
3089 }
3090 goto end;
3091 }
3092 DBG("Connection on client_socket");
3093
3094 /* Blocking call, waiting for transmission */
3095 sock = lttcomm_accept_unix_sock(client_socket);
3096 if (sock < 0) {
3097 WARN("On accept");
3098 goto end;
3099 }
3100
3101 /*
3102 * Setup metadata socket which is the second socket connection on the
3103 * command unix socket.
3104 */
3105 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3106 if (ret) {
3107 if (ret > 0) {
3108 /* should exit */
3109 err = 0;
3110 }
3111 goto end;
3112 }
3113
3114 /* This socket is not useful anymore. */
3115 ret = close(client_socket);
3116 if (ret < 0) {
3117 PERROR("close client_socket");
3118 }
3119 client_socket = -1;
3120
3121 /* update the polling structure to poll on the established socket */
3122 consumer_sockpoll[1].fd = sock;
3123 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3124
3125 while (1) {
3126 health_code_update();
3127
3128 health_poll_entry();
3129 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3130 health_poll_exit();
3131 if (ret) {
3132 if (ret > 0) {
3133 /* should exit */
3134 err = 0;
3135 }
3136 goto end;
3137 }
3138 DBG("Incoming command on sock");
3139 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3140 if (ret <= 0) {
3141 /*
3142 * This could simply be a session daemon quitting. Don't output
3143 * ERR() here.
3144 */
3145 DBG("Communication interrupted on command socket");
3146 err = 0;
3147 goto end;
3148 }
3149 if (consumer_quit) {
3150 DBG("consumer_thread_receive_fds received quit from signal");
3151 err = 0; /* All is OK */
3152 goto end;
3153 }
3154 DBG("received command on sock");
3155 }
3156 /* All is OK */
3157 err = 0;
3158
3159 end:
3160 DBG("Consumer thread sessiond poll exiting");
3161
3162 /*
3163 * Close metadata streams since the producer is the session daemon which
3164 * just died.
3165 *
3166 * NOTE: for now, this only applies to the UST tracer.
3167 */
3168 lttng_consumer_close_all_metadata();
3169
3170 /*
3171 * when all fds have hung up, the polling thread
3172 * can exit cleanly
3173 */
3174 consumer_quit = 1;
3175
3176 /*
3177 * Notify the data poll thread to poll back again and test the
3178 * consumer_quit state that we just set so to quit gracefully.
3179 */
3180 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3181
3182 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3183
3184 notify_health_quit_pipe(health_quit_pipe);
3185
3186 /* Cleaning up possibly open sockets. */
3187 if (sock >= 0) {
3188 ret = close(sock);
3189 if (ret < 0) {
3190 PERROR("close sock sessiond poll");
3191 }
3192 }
3193 if (client_socket >= 0) {
3194 ret = close(client_socket);
3195 if (ret < 0) {
3196 PERROR("close client_socket sessiond poll");
3197 }
3198 }
3199
3200 error_testpoint:
3201 if (err) {
3202 health_error();
3203 ERR("Health error occurred in %s", __func__);
3204 }
3205 health_unregister(health_consumerd);
3206
3207 rcu_unregister_thread();
3208 return NULL;
3209 }
3210
3211 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3212 struct lttng_consumer_local_data *ctx)
3213 {
3214 ssize_t ret;
3215
3216 pthread_mutex_lock(&stream->lock);
3217 if (stream->metadata_flag) {
3218 pthread_mutex_lock(&stream->metadata_rdv_lock);
3219 }
3220
3221 switch (consumer_data.type) {
3222 case LTTNG_CONSUMER_KERNEL:
3223 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3224 break;
3225 case LTTNG_CONSUMER32_UST:
3226 case LTTNG_CONSUMER64_UST:
3227 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3228 break;
3229 default:
3230 ERR("Unknown consumer_data type");
3231 assert(0);
3232 ret = -ENOSYS;
3233 break;
3234 }
3235
3236 if (stream->metadata_flag) {
3237 pthread_cond_broadcast(&stream->metadata_rdv);
3238 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3239 }
3240 pthread_mutex_unlock(&stream->lock);
3241 return ret;
3242 }
3243
3244 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3245 {
3246 switch (consumer_data.type) {
3247 case LTTNG_CONSUMER_KERNEL:
3248 return lttng_kconsumer_on_recv_stream(stream);
3249 case LTTNG_CONSUMER32_UST:
3250 case LTTNG_CONSUMER64_UST:
3251 return lttng_ustconsumer_on_recv_stream(stream);
3252 default:
3253 ERR("Unknown consumer_data type");
3254 assert(0);
3255 return -ENOSYS;
3256 }
3257 }
3258
3259 /*
3260 * Allocate and set consumer data hash tables.
3261 */
3262 int lttng_consumer_init(void)
3263 {
3264 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3265 if (!consumer_data.channel_ht) {
3266 goto error;
3267 }
3268
3269 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3270 if (!consumer_data.relayd_ht) {
3271 goto error;
3272 }
3273
3274 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3275 if (!consumer_data.stream_list_ht) {
3276 goto error;
3277 }
3278
3279 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3280 if (!consumer_data.stream_per_chan_id_ht) {
3281 goto error;
3282 }
3283
3284 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3285 if (!data_ht) {
3286 goto error;
3287 }
3288
3289 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3290 if (!metadata_ht) {
3291 goto error;
3292 }
3293
3294 return 0;
3295
3296 error:
3297 return -1;
3298 }
3299
3300 /*
3301 * Process the ADD_RELAYD command receive by a consumer.
3302 *
3303 * This will create a relayd socket pair and add it to the relayd hash table.
3304 * The caller MUST acquire a RCU read side lock before calling it.
3305 */
3306 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3307 struct lttng_consumer_local_data *ctx, int sock,
3308 struct pollfd *consumer_sockpoll,
3309 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3310 uint64_t relayd_session_id)
3311 {
3312 int fd = -1, ret = -1, relayd_created = 0;
3313 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3314 struct consumer_relayd_sock_pair *relayd = NULL;
3315
3316 assert(ctx);
3317 assert(relayd_sock);
3318
3319 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3320
3321 /* Get relayd reference if exists. */
3322 relayd = consumer_find_relayd(net_seq_idx);
3323 if (relayd == NULL) {
3324 assert(sock_type == LTTNG_STREAM_CONTROL);
3325 /* Not found. Allocate one. */
3326 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3327 if (relayd == NULL) {
3328 ret = -ENOMEM;
3329 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3330 goto error;
3331 } else {
3332 relayd->sessiond_session_id = sessiond_id;
3333 relayd_created = 1;
3334 }
3335
3336 /*
3337 * This code path MUST continue to the consumer send status message to
3338 * we can notify the session daemon and continue our work without
3339 * killing everything.
3340 */
3341 } else {
3342 /*
3343 * relayd key should never be found for control socket.
3344 */
3345 assert(sock_type != LTTNG_STREAM_CONTROL);
3346 }
3347
3348 /* First send a status message before receiving the fds. */
3349 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3350 if (ret < 0) {
3351 /* Somehow, the session daemon is not responding anymore. */
3352 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3353 goto error_nosignal;
3354 }
3355
3356 /* Poll on consumer socket. */
3357 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3358 if (ret) {
3359 /* Needing to exit in the middle of a command: error. */
3360 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3361 ret = -EINTR;
3362 goto error_nosignal;
3363 }
3364
3365 /* Get relayd socket from session daemon */
3366 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3367 if (ret != sizeof(fd)) {
3368 ret = -1;
3369 fd = -1; /* Just in case it gets set with an invalid value. */
3370
3371 /*
3372 * Failing to receive FDs might indicate a major problem such as
3373 * reaching a fd limit during the receive where the kernel returns a
3374 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3375 * don't take any chances and stop everything.
3376 *
3377 * XXX: Feature request #558 will fix that and avoid this possible
3378 * issue when reaching the fd limit.
3379 */
3380 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3381 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3382 goto error;
3383 }
3384
3385 /* Copy socket information and received FD */
3386 switch (sock_type) {
3387 case LTTNG_STREAM_CONTROL:
3388 /* Copy received lttcomm socket */
3389 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3390 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3391 /* Handle create_sock error. */
3392 if (ret < 0) {
3393 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3394 goto error;
3395 }
3396 /*
3397 * Close the socket created internally by
3398 * lttcomm_create_sock, so we can replace it by the one
3399 * received from sessiond.
3400 */
3401 if (close(relayd->control_sock.sock.fd)) {
3402 PERROR("close");
3403 }
3404
3405 /* Assign new file descriptor */
3406 relayd->control_sock.sock.fd = fd;
3407 fd = -1; /* For error path */
3408 /* Assign version values. */
3409 relayd->control_sock.major = relayd_sock->major;
3410 relayd->control_sock.minor = relayd_sock->minor;
3411
3412 relayd->relayd_session_id = relayd_session_id;
3413
3414 break;
3415 case LTTNG_STREAM_DATA:
3416 /* Copy received lttcomm socket */
3417 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3418 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3419 /* Handle create_sock error. */
3420 if (ret < 0) {
3421 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3422 goto error;
3423 }
3424 /*
3425 * Close the socket created internally by
3426 * lttcomm_create_sock, so we can replace it by the one
3427 * received from sessiond.
3428 */
3429 if (close(relayd->data_sock.sock.fd)) {
3430 PERROR("close");
3431 }
3432
3433 /* Assign new file descriptor */
3434 relayd->data_sock.sock.fd = fd;
3435 fd = -1; /* for eventual error paths */
3436 /* Assign version values. */
3437 relayd->data_sock.major = relayd_sock->major;
3438 relayd->data_sock.minor = relayd_sock->minor;
3439 break;
3440 default:
3441 ERR("Unknown relayd socket type (%d)", sock_type);
3442 ret = -1;
3443 ret_code = LTTCOMM_CONSUMERD_FATAL;
3444 goto error;
3445 }
3446
3447 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3448 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3449 relayd->net_seq_idx, fd);
3450
3451 /* We successfully added the socket. Send status back. */
3452 ret = consumer_send_status_msg(sock, ret_code);
3453 if (ret < 0) {
3454 /* Somehow, the session daemon is not responding anymore. */
3455 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3456 goto error_nosignal;
3457 }
3458
3459 /*
3460 * Add relayd socket pair to consumer data hashtable. If object already
3461 * exists or on error, the function gracefully returns.
3462 */
3463 add_relayd(relayd);
3464
3465 /* All good! */
3466 return 0;
3467
3468 error:
3469 if (consumer_send_status_msg(sock, ret_code) < 0) {
3470 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3471 }
3472
3473 error_nosignal:
3474 /* Close received socket if valid. */
3475 if (fd >= 0) {
3476 if (close(fd)) {
3477 PERROR("close received socket");
3478 }
3479 }
3480
3481 if (relayd_created) {
3482 free(relayd);
3483 }
3484
3485 return ret;
3486 }
3487
3488 /*
3489 * Try to lock the stream mutex.
3490 *
3491 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3492 */
3493 static int stream_try_lock(struct lttng_consumer_stream *stream)
3494 {
3495 int ret;
3496
3497 assert(stream);
3498
3499 /*
3500 * Try to lock the stream mutex. On failure, we know that the stream is
3501 * being used else where hence there is data still being extracted.
3502 */
3503 ret = pthread_mutex_trylock(&stream->lock);
3504 if (ret) {
3505 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3506 ret = 0;
3507 goto end;
3508 }
3509
3510 ret = 1;
3511
3512 end:
3513 return ret;
3514 }
3515
3516 /*
3517 * Search for a relayd associated to the session id and return the reference.
3518 *
3519 * A rcu read side lock MUST be acquire before calling this function and locked
3520 * until the relayd object is no longer necessary.
3521 */
3522 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3523 {
3524 struct lttng_ht_iter iter;
3525 struct consumer_relayd_sock_pair *relayd = NULL;
3526
3527 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3528 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3529 node.node) {
3530 /*
3531 * Check by sessiond id which is unique here where the relayd session
3532 * id might not be when having multiple relayd.
3533 */
3534 if (relayd->sessiond_session_id == id) {
3535 /* Found the relayd. There can be only one per id. */
3536 goto found;
3537 }
3538 }
3539
3540 return NULL;
3541
3542 found:
3543 return relayd;
3544 }
3545
3546 /*
3547 * Check if for a given session id there is still data needed to be extract
3548 * from the buffers.
3549 *
3550 * Return 1 if data is pending or else 0 meaning ready to be read.
3551 */
3552 int consumer_data_pending(uint64_t id)
3553 {
3554 int ret;
3555 struct lttng_ht_iter iter;
3556 struct lttng_ht *ht;
3557 struct lttng_consumer_stream *stream;
3558 struct consumer_relayd_sock_pair *relayd = NULL;
3559 int (*data_pending)(struct lttng_consumer_stream *);
3560
3561 DBG("Consumer data pending command on session id %" PRIu64, id);
3562
3563 rcu_read_lock();
3564 pthread_mutex_lock(&consumer_data.lock);
3565
3566 switch (consumer_data.type) {
3567 case LTTNG_CONSUMER_KERNEL:
3568 data_pending = lttng_kconsumer_data_pending;
3569 break;
3570 case LTTNG_CONSUMER32_UST:
3571 case LTTNG_CONSUMER64_UST:
3572 data_pending = lttng_ustconsumer_data_pending;
3573 break;
3574 default:
3575 ERR("Unknown consumer data type");
3576 assert(0);
3577 }
3578
3579 /* Ease our life a bit */
3580 ht = consumer_data.stream_list_ht;
3581
3582 relayd = find_relayd_by_session_id(id);
3583 if (relayd) {
3584 /* Send init command for data pending. */
3585 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3586 ret = relayd_begin_data_pending(&relayd->control_sock,
3587 relayd->relayd_session_id);
3588 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3589 if (ret < 0) {
3590 /* Communication error thus the relayd so no data pending. */
3591 goto data_not_pending;
3592 }
3593 }
3594
3595 cds_lfht_for_each_entry_duplicate(ht->ht,
3596 ht->hash_fct(&id, lttng_ht_seed),
3597 ht->match_fct, &id,
3598 &iter.iter, stream, node_session_id.node) {
3599 /* If this call fails, the stream is being used hence data pending. */
3600 ret = stream_try_lock(stream);
3601 if (!ret) {
3602 goto data_pending;
3603 }
3604
3605 /*
3606 * A removed node from the hash table indicates that the stream has
3607 * been deleted thus having a guarantee that the buffers are closed
3608 * on the consumer side. However, data can still be transmitted
3609 * over the network so don't skip the relayd check.
3610 */
3611 ret = cds_lfht_is_node_deleted(&stream->node.node);
3612 if (!ret) {
3613 /* Check the stream if there is data in the buffers. */
3614 ret = data_pending(stream);
3615 if (ret == 1) {
3616 pthread_mutex_unlock(&stream->lock);
3617 goto data_pending;
3618 }
3619 }
3620
3621 /* Relayd check */
3622 if (relayd) {
3623 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3624 if (stream->metadata_flag) {
3625 ret = relayd_quiescent_control(&relayd->control_sock,
3626 stream->relayd_stream_id);
3627 } else {
3628 ret = relayd_data_pending(&relayd->control_sock,
3629 stream->relayd_stream_id,
3630 stream->next_net_seq_num - 1);
3631 }
3632 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3633 if (ret == 1) {
3634 pthread_mutex_unlock(&stream->lock);
3635 goto data_pending;
3636 }
3637 }
3638 pthread_mutex_unlock(&stream->lock);
3639 }
3640
3641 if (relayd) {
3642 unsigned int is_data_inflight = 0;
3643
3644 /* Send init command for data pending. */
3645 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3646 ret = relayd_end_data_pending(&relayd->control_sock,
3647 relayd->relayd_session_id, &is_data_inflight);
3648 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3649 if (ret < 0) {
3650 goto data_not_pending;
3651 }
3652 if (is_data_inflight) {
3653 goto data_pending;
3654 }
3655 }
3656
3657 /*
3658 * Finding _no_ node in the hash table and no inflight data means that the
3659 * stream(s) have been removed thus data is guaranteed to be available for
3660 * analysis from the trace files.
3661 */
3662
3663 data_not_pending:
3664 /* Data is available to be read by a viewer. */
3665 pthread_mutex_unlock(&consumer_data.lock);
3666 rcu_read_unlock();
3667 return 0;
3668
3669 data_pending:
3670 /* Data is still being extracted from buffers. */
3671 pthread_mutex_unlock(&consumer_data.lock);
3672 rcu_read_unlock();
3673 return 1;
3674 }
3675
3676 /*
3677 * Send a ret code status message to the sessiond daemon.
3678 *
3679 * Return the sendmsg() return value.
3680 */
3681 int consumer_send_status_msg(int sock, int ret_code)
3682 {
3683 struct lttcomm_consumer_status_msg msg;
3684
3685 memset(&msg, 0, sizeof(msg));
3686 msg.ret_code = ret_code;
3687
3688 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3689 }
3690
3691 /*
3692 * Send a channel status message to the sessiond daemon.
3693 *
3694 * Return the sendmsg() return value.
3695 */
3696 int consumer_send_status_channel(int sock,
3697 struct lttng_consumer_channel *channel)
3698 {
3699 struct lttcomm_consumer_status_channel msg;
3700
3701 assert(sock >= 0);
3702
3703 memset(&msg, 0, sizeof(msg));
3704 if (!channel) {
3705 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3706 } else {
3707 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3708 msg.key = channel->key;
3709 msg.stream_count = channel->streams.count;
3710 }
3711
3712 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3713 }
3714
3715 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3716 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3717 uint64_t max_sb_size)
3718 {
3719 unsigned long start_pos;
3720
3721 if (!nb_packets_per_stream) {
3722 return consumed_pos; /* Grab everything */
3723 }
3724 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3725 start_pos -= max_sb_size * nb_packets_per_stream;
3726 if ((long) (start_pos - consumed_pos) < 0) {
3727 return consumed_pos; /* Grab everything */
3728 }
3729 return start_pos;
3730 }
This page took 0.109021 seconds and 4 git commands to generate.