a1a99b4012e5b8f8e50b013f6afeb697509cab8d
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44
45 struct lttng_consumer_global_data consumer_data = {
46 .stream_count = 0,
47 .need_update = 1,
48 .type = LTTNG_CONSUMER_UNKNOWN,
49 };
50
51 enum consumer_channel_action {
52 CONSUMER_CHANNEL_ADD,
53 CONSUMER_CHANNEL_DEL,
54 CONSUMER_CHANNEL_QUIT,
55 };
56
57 struct consumer_channel_msg {
58 enum consumer_channel_action action;
59 struct lttng_consumer_channel *chan; /* add */
60 uint64_t key; /* del */
61 };
62
63 /*
64 * Flag to inform the polling thread to quit when all fd hung up. Updated by
65 * the consumer_thread_receive_fds when it notices that all fds has hung up.
66 * Also updated by the signal handler (consumer_should_exit()). Read by the
67 * polling threads.
68 */
69 volatile int consumer_quit;
70
71 /*
72 * Global hash table containing respectively metadata and data streams. The
73 * stream element in this ht should only be updated by the metadata poll thread
74 * for the metadata and the data poll thread for the data.
75 */
76 static struct lttng_ht *metadata_ht;
77 static struct lttng_ht *data_ht;
78
79 /*
80 * Notify a thread lttng pipe to poll back again. This usually means that some
81 * global state has changed so we just send back the thread in a poll wait
82 * call.
83 */
84 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
85 {
86 struct lttng_consumer_stream *null_stream = NULL;
87
88 assert(pipe);
89
90 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
91 }
92
93 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
94 struct lttng_consumer_channel *chan,
95 uint64_t key,
96 enum consumer_channel_action action)
97 {
98 struct consumer_channel_msg msg;
99 int ret;
100
101 memset(&msg, 0, sizeof(msg));
102
103 msg.action = action;
104 msg.chan = chan;
105 msg.key = key;
106 do {
107 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
108 } while (ret < 0 && errno == EINTR);
109 }
110
111 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
112 uint64_t key)
113 {
114 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
115 }
116
117 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
118 struct lttng_consumer_channel **chan,
119 uint64_t *key,
120 enum consumer_channel_action *action)
121 {
122 struct consumer_channel_msg msg;
123 int ret;
124
125 do {
126 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
127 } while (ret < 0 && errno == EINTR);
128 if (ret > 0) {
129 *action = msg.action;
130 *chan = msg.chan;
131 *key = msg.key;
132 }
133 return ret;
134 }
135
136 /*
137 * Find a stream. The consumer_data.lock must be locked during this
138 * call.
139 */
140 static struct lttng_consumer_stream *find_stream(uint64_t key,
141 struct lttng_ht *ht)
142 {
143 struct lttng_ht_iter iter;
144 struct lttng_ht_node_u64 *node;
145 struct lttng_consumer_stream *stream = NULL;
146
147 assert(ht);
148
149 /* -1ULL keys are lookup failures */
150 if (key == (uint64_t) -1ULL) {
151 return NULL;
152 }
153
154 rcu_read_lock();
155
156 lttng_ht_lookup(ht, &key, &iter);
157 node = lttng_ht_iter_get_node_u64(&iter);
158 if (node != NULL) {
159 stream = caa_container_of(node, struct lttng_consumer_stream, node);
160 }
161
162 rcu_read_unlock();
163
164 return stream;
165 }
166
167 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
168 {
169 struct lttng_consumer_stream *stream;
170
171 rcu_read_lock();
172 stream = find_stream(key, ht);
173 if (stream) {
174 stream->key = (uint64_t) -1ULL;
175 /*
176 * We don't want the lookup to match, but we still need
177 * to iterate on this stream when iterating over the hash table. Just
178 * change the node key.
179 */
180 stream->node.key = (uint64_t) -1ULL;
181 }
182 rcu_read_unlock();
183 }
184
185 /*
186 * Return a channel object for the given key.
187 *
188 * RCU read side lock MUST be acquired before calling this function and
189 * protects the channel ptr.
190 */
191 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
192 {
193 struct lttng_ht_iter iter;
194 struct lttng_ht_node_u64 *node;
195 struct lttng_consumer_channel *channel = NULL;
196
197 /* -1ULL keys are lookup failures */
198 if (key == (uint64_t) -1ULL) {
199 return NULL;
200 }
201
202 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
203 node = lttng_ht_iter_get_node_u64(&iter);
204 if (node != NULL) {
205 channel = caa_container_of(node, struct lttng_consumer_channel, node);
206 }
207
208 return channel;
209 }
210
211 static void free_stream_rcu(struct rcu_head *head)
212 {
213 struct lttng_ht_node_u64 *node =
214 caa_container_of(head, struct lttng_ht_node_u64, head);
215 struct lttng_consumer_stream *stream =
216 caa_container_of(node, struct lttng_consumer_stream, node);
217
218 free(stream);
219 }
220
221 static void free_channel_rcu(struct rcu_head *head)
222 {
223 struct lttng_ht_node_u64 *node =
224 caa_container_of(head, struct lttng_ht_node_u64, head);
225 struct lttng_consumer_channel *channel =
226 caa_container_of(node, struct lttng_consumer_channel, node);
227
228 free(channel);
229 }
230
231 /*
232 * RCU protected relayd socket pair free.
233 */
234 static void free_relayd_rcu(struct rcu_head *head)
235 {
236 struct lttng_ht_node_u64 *node =
237 caa_container_of(head, struct lttng_ht_node_u64, head);
238 struct consumer_relayd_sock_pair *relayd =
239 caa_container_of(node, struct consumer_relayd_sock_pair, node);
240
241 /*
242 * Close all sockets. This is done in the call RCU since we don't want the
243 * socket fds to be reassigned thus potentially creating bad state of the
244 * relayd object.
245 *
246 * We do not have to lock the control socket mutex here since at this stage
247 * there is no one referencing to this relayd object.
248 */
249 (void) relayd_close(&relayd->control_sock);
250 (void) relayd_close(&relayd->data_sock);
251
252 free(relayd);
253 }
254
255 /*
256 * Destroy and free relayd socket pair object.
257 *
258 * This function MUST be called with the consumer_data lock acquired.
259 */
260 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
261 {
262 int ret;
263 struct lttng_ht_iter iter;
264
265 if (relayd == NULL) {
266 return;
267 }
268
269 DBG("Consumer destroy and close relayd socket pair");
270
271 iter.iter.node = &relayd->node.node;
272 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
273 if (ret != 0) {
274 /* We assume the relayd is being or is destroyed */
275 return;
276 }
277
278 /* RCU free() call */
279 call_rcu(&relayd->node.head, free_relayd_rcu);
280 }
281
282 /*
283 * Remove a channel from the global list protected by a mutex. This function is
284 * also responsible for freeing its data structures.
285 */
286 void consumer_del_channel(struct lttng_consumer_channel *channel)
287 {
288 int ret;
289 struct lttng_ht_iter iter;
290 struct lttng_consumer_stream *stream, *stmp;
291
292 DBG("Consumer delete channel key %" PRIu64, channel->key);
293
294 pthread_mutex_lock(&consumer_data.lock);
295
296 switch (consumer_data.type) {
297 case LTTNG_CONSUMER_KERNEL:
298 break;
299 case LTTNG_CONSUMER32_UST:
300 case LTTNG_CONSUMER64_UST:
301 /* Delete streams that might have been left in the stream list. */
302 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
303 send_node) {
304 cds_list_del(&stream->send_node);
305 lttng_ustconsumer_del_stream(stream);
306 free(stream);
307 }
308 lttng_ustconsumer_del_channel(channel);
309 break;
310 default:
311 ERR("Unknown consumer_data type");
312 assert(0);
313 goto end;
314 }
315
316 rcu_read_lock();
317 iter.iter.node = &channel->node.node;
318 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
319 assert(!ret);
320 rcu_read_unlock();
321
322 call_rcu(&channel->node.head, free_channel_rcu);
323 end:
324 pthread_mutex_unlock(&consumer_data.lock);
325 }
326
327 /*
328 * Iterate over the relayd hash table and destroy each element. Finally,
329 * destroy the whole hash table.
330 */
331 static void cleanup_relayd_ht(void)
332 {
333 struct lttng_ht_iter iter;
334 struct consumer_relayd_sock_pair *relayd;
335
336 rcu_read_lock();
337
338 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
339 node.node) {
340 destroy_relayd(relayd);
341 }
342
343 rcu_read_unlock();
344
345 lttng_ht_destroy(consumer_data.relayd_ht);
346 }
347
348 /*
349 * Update the end point status of all streams having the given network sequence
350 * index (relayd index).
351 *
352 * It's atomically set without having the stream mutex locked which is fine
353 * because we handle the write/read race with a pipe wakeup for each thread.
354 */
355 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
356 enum consumer_endpoint_status status)
357 {
358 struct lttng_ht_iter iter;
359 struct lttng_consumer_stream *stream;
360
361 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
362
363 rcu_read_lock();
364
365 /* Let's begin with metadata */
366 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
367 if (stream->net_seq_idx == net_seq_idx) {
368 uatomic_set(&stream->endpoint_status, status);
369 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
370 }
371 }
372
373 /* Follow up by the data streams */
374 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
375 if (stream->net_seq_idx == net_seq_idx) {
376 uatomic_set(&stream->endpoint_status, status);
377 DBG("Delete flag set to data stream %d", stream->wait_fd);
378 }
379 }
380 rcu_read_unlock();
381 }
382
383 /*
384 * Cleanup a relayd object by flagging every associated streams for deletion,
385 * destroying the object meaning removing it from the relayd hash table,
386 * closing the sockets and freeing the memory in a RCU call.
387 *
388 * If a local data context is available, notify the threads that the streams'
389 * state have changed.
390 */
391 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
392 struct lttng_consumer_local_data *ctx)
393 {
394 uint64_t netidx;
395
396 assert(relayd);
397
398 DBG("Cleaning up relayd sockets");
399
400 /* Save the net sequence index before destroying the object */
401 netidx = relayd->net_seq_idx;
402
403 /*
404 * Delete the relayd from the relayd hash table, close the sockets and free
405 * the object in a RCU call.
406 */
407 destroy_relayd(relayd);
408
409 /* Set inactive endpoint to all streams */
410 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
411
412 /*
413 * With a local data context, notify the threads that the streams' state
414 * have changed. The write() action on the pipe acts as an "implicit"
415 * memory barrier ordering the updates of the end point status from the
416 * read of this status which happens AFTER receiving this notify.
417 */
418 if (ctx) {
419 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
420 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
421 }
422 }
423
424 /*
425 * Flag a relayd socket pair for destruction. Destroy it if the refcount
426 * reaches zero.
427 *
428 * RCU read side lock MUST be aquired before calling this function.
429 */
430 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
431 {
432 assert(relayd);
433
434 /* Set destroy flag for this object */
435 uatomic_set(&relayd->destroy_flag, 1);
436
437 /* Destroy the relayd if refcount is 0 */
438 if (uatomic_read(&relayd->refcount) == 0) {
439 destroy_relayd(relayd);
440 }
441 }
442
443 /*
444 * Remove a stream from the global list protected by a mutex. This
445 * function is also responsible for freeing its data structures.
446 */
447 void consumer_del_stream(struct lttng_consumer_stream *stream,
448 struct lttng_ht *ht)
449 {
450 int ret;
451 struct lttng_ht_iter iter;
452 struct lttng_consumer_channel *free_chan = NULL;
453 struct consumer_relayd_sock_pair *relayd;
454
455 assert(stream);
456
457 DBG("Consumer del stream %d", stream->wait_fd);
458
459 if (ht == NULL) {
460 /* Means the stream was allocated but not successfully added */
461 goto free_stream_rcu;
462 }
463
464 pthread_mutex_lock(&consumer_data.lock);
465 pthread_mutex_lock(&stream->lock);
466
467 switch (consumer_data.type) {
468 case LTTNG_CONSUMER_KERNEL:
469 if (stream->mmap_base != NULL) {
470 ret = munmap(stream->mmap_base, stream->mmap_len);
471 if (ret != 0) {
472 PERROR("munmap");
473 }
474 }
475
476 if (stream->wait_fd >= 0) {
477 ret = close(stream->wait_fd);
478 if (ret) {
479 PERROR("close");
480 }
481 }
482 break;
483 case LTTNG_CONSUMER32_UST:
484 case LTTNG_CONSUMER64_UST:
485 lttng_ustconsumer_del_stream(stream);
486 break;
487 default:
488 ERR("Unknown consumer_data type");
489 assert(0);
490 goto end;
491 }
492
493 rcu_read_lock();
494 iter.iter.node = &stream->node.node;
495 ret = lttng_ht_del(ht, &iter);
496 assert(!ret);
497
498 iter.iter.node = &stream->node_channel_id.node;
499 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
500 assert(!ret);
501
502 iter.iter.node = &stream->node_session_id.node;
503 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
504 assert(!ret);
505 rcu_read_unlock();
506
507 assert(consumer_data.stream_count > 0);
508 consumer_data.stream_count--;
509
510 if (stream->out_fd >= 0) {
511 ret = close(stream->out_fd);
512 if (ret) {
513 PERROR("close");
514 }
515 }
516
517 /* Check and cleanup relayd */
518 rcu_read_lock();
519 relayd = consumer_find_relayd(stream->net_seq_idx);
520 if (relayd != NULL) {
521 uatomic_dec(&relayd->refcount);
522 assert(uatomic_read(&relayd->refcount) >= 0);
523
524 /* Closing streams requires to lock the control socket. */
525 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
526 ret = relayd_send_close_stream(&relayd->control_sock,
527 stream->relayd_stream_id,
528 stream->next_net_seq_num - 1);
529 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
530 if (ret < 0) {
531 DBG("Unable to close stream on the relayd. Continuing");
532 /*
533 * Continue here. There is nothing we can do for the relayd.
534 * Chances are that the relayd has closed the socket so we just
535 * continue cleaning up.
536 */
537 }
538
539 /* Both conditions are met, we destroy the relayd. */
540 if (uatomic_read(&relayd->refcount) == 0 &&
541 uatomic_read(&relayd->destroy_flag)) {
542 destroy_relayd(relayd);
543 }
544 }
545 rcu_read_unlock();
546
547 if (!uatomic_sub_return(&stream->chan->refcount, 1)
548 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
549 free_chan = stream->chan;
550 }
551
552 end:
553 consumer_data.need_update = 1;
554 pthread_mutex_unlock(&stream->lock);
555 pthread_mutex_unlock(&consumer_data.lock);
556
557 if (free_chan) {
558 consumer_del_channel(free_chan);
559 }
560
561 free_stream_rcu:
562 call_rcu(&stream->node.head, free_stream_rcu);
563 }
564
565 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
566 uint64_t stream_key,
567 enum lttng_consumer_stream_state state,
568 const char *channel_name,
569 uid_t uid,
570 gid_t gid,
571 uint64_t relayd_id,
572 uint64_t session_id,
573 int cpu,
574 int *alloc_ret,
575 enum consumer_channel_type type)
576 {
577 int ret;
578 struct lttng_consumer_stream *stream;
579
580 stream = zmalloc(sizeof(*stream));
581 if (stream == NULL) {
582 PERROR("malloc struct lttng_consumer_stream");
583 ret = -ENOMEM;
584 goto end;
585 }
586
587 rcu_read_lock();
588
589 stream->key = stream_key;
590 stream->out_fd = -1;
591 stream->out_fd_offset = 0;
592 stream->state = state;
593 stream->uid = uid;
594 stream->gid = gid;
595 stream->net_seq_idx = relayd_id;
596 stream->session_id = session_id;
597 pthread_mutex_init(&stream->lock, NULL);
598
599 /* If channel is the metadata, flag this stream as metadata. */
600 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
601 stream->metadata_flag = 1;
602 /* Metadata is flat out. */
603 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
604 } else {
605 /* Format stream name to <channel_name>_<cpu_number> */
606 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
607 channel_name, cpu);
608 if (ret < 0) {
609 PERROR("snprintf stream name");
610 goto error;
611 }
612 }
613
614 /* Key is always the wait_fd for streams. */
615 lttng_ht_node_init_u64(&stream->node, stream->key);
616
617 /* Init node per channel id key */
618 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
619
620 /* Init session id node with the stream session id */
621 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
622
623 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64 " relayd_id %" PRIu64 ", session_id %" PRIu64,
624 stream->name, stream->key, channel_key, stream->net_seq_idx, stream->session_id);
625
626 rcu_read_unlock();
627 return stream;
628
629 error:
630 rcu_read_unlock();
631 free(stream);
632 end:
633 if (alloc_ret) {
634 *alloc_ret = ret;
635 }
636 return NULL;
637 }
638
639 /*
640 * Add a stream to the global list protected by a mutex.
641 */
642 static int add_stream(struct lttng_consumer_stream *stream,
643 struct lttng_ht *ht)
644 {
645 int ret = 0;
646 struct consumer_relayd_sock_pair *relayd;
647
648 assert(stream);
649 assert(ht);
650
651 DBG3("Adding consumer stream %" PRIu64, stream->key);
652
653 pthread_mutex_lock(&consumer_data.lock);
654 pthread_mutex_lock(&stream->lock);
655 rcu_read_lock();
656
657 /* Steal stream identifier to avoid having streams with the same key */
658 steal_stream_key(stream->key, ht);
659
660 lttng_ht_add_unique_u64(ht, &stream->node);
661
662 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
663 &stream->node_channel_id);
664
665 /*
666 * Add stream to the stream_list_ht of the consumer data. No need to steal
667 * the key since the HT does not use it and we allow to add redundant keys
668 * into this table.
669 */
670 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
671
672 /* Check and cleanup relayd */
673 relayd = consumer_find_relayd(stream->net_seq_idx);
674 if (relayd != NULL) {
675 uatomic_inc(&relayd->refcount);
676 }
677
678 /*
679 * When nb_init_stream_left reaches 0, we don't need to trigger any action
680 * in terms of destroying the associated channel, because the action that
681 * causes the count to become 0 also causes a stream to be added. The
682 * channel deletion will thus be triggered by the following removal of this
683 * stream.
684 */
685 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
686 /* Increment refcount before decrementing nb_init_stream_left */
687 cmm_smp_wmb();
688 uatomic_dec(&stream->chan->nb_init_stream_left);
689 }
690
691 /* Update consumer data once the node is inserted. */
692 consumer_data.stream_count++;
693 consumer_data.need_update = 1;
694
695 rcu_read_unlock();
696 pthread_mutex_unlock(&stream->lock);
697 pthread_mutex_unlock(&consumer_data.lock);
698
699 return ret;
700 }
701
702 /*
703 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
704 * be acquired before calling this.
705 */
706 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
707 {
708 int ret = 0;
709 struct lttng_ht_node_u64 *node;
710 struct lttng_ht_iter iter;
711
712 assert(relayd);
713
714 lttng_ht_lookup(consumer_data.relayd_ht,
715 &relayd->net_seq_idx, &iter);
716 node = lttng_ht_iter_get_node_u64(&iter);
717 if (node != NULL) {
718 goto end;
719 }
720 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
721
722 end:
723 return ret;
724 }
725
726 /*
727 * Allocate and return a consumer relayd socket.
728 */
729 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
730 uint64_t net_seq_idx)
731 {
732 struct consumer_relayd_sock_pair *obj = NULL;
733
734 /* net sequence index of -1 is a failure */
735 if (net_seq_idx == (uint64_t) -1ULL) {
736 goto error;
737 }
738
739 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
740 if (obj == NULL) {
741 PERROR("zmalloc relayd sock");
742 goto error;
743 }
744
745 obj->net_seq_idx = net_seq_idx;
746 obj->refcount = 0;
747 obj->destroy_flag = 0;
748 obj->control_sock.sock.fd = -1;
749 obj->data_sock.sock.fd = -1;
750 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
751 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
752
753 error:
754 return obj;
755 }
756
757 /*
758 * Find a relayd socket pair in the global consumer data.
759 *
760 * Return the object if found else NULL.
761 * RCU read-side lock must be held across this call and while using the
762 * returned object.
763 */
764 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
765 {
766 struct lttng_ht_iter iter;
767 struct lttng_ht_node_u64 *node;
768 struct consumer_relayd_sock_pair *relayd = NULL;
769
770 /* Negative keys are lookup failures */
771 if (key == (uint64_t) -1ULL) {
772 goto error;
773 }
774
775 lttng_ht_lookup(consumer_data.relayd_ht, &key,
776 &iter);
777 node = lttng_ht_iter_get_node_u64(&iter);
778 if (node != NULL) {
779 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
780 }
781
782 error:
783 return relayd;
784 }
785
786 /*
787 * Handle stream for relayd transmission if the stream applies for network
788 * streaming where the net sequence index is set.
789 *
790 * Return destination file descriptor or negative value on error.
791 */
792 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
793 size_t data_size, unsigned long padding,
794 struct consumer_relayd_sock_pair *relayd)
795 {
796 int outfd = -1, ret;
797 struct lttcomm_relayd_data_hdr data_hdr;
798
799 /* Safety net */
800 assert(stream);
801 assert(relayd);
802
803 /* Reset data header */
804 memset(&data_hdr, 0, sizeof(data_hdr));
805
806 if (stream->metadata_flag) {
807 /* Caller MUST acquire the relayd control socket lock */
808 ret = relayd_send_metadata(&relayd->control_sock, data_size);
809 if (ret < 0) {
810 goto error;
811 }
812
813 /* Metadata are always sent on the control socket. */
814 outfd = relayd->control_sock.sock.fd;
815 } else {
816 /* Set header with stream information */
817 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
818 data_hdr.data_size = htobe32(data_size);
819 data_hdr.padding_size = htobe32(padding);
820 /*
821 * Note that net_seq_num below is assigned with the *current* value of
822 * next_net_seq_num and only after that the next_net_seq_num will be
823 * increment. This is why when issuing a command on the relayd using
824 * this next value, 1 should always be substracted in order to compare
825 * the last seen sequence number on the relayd side to the last sent.
826 */
827 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
828 /* Other fields are zeroed previously */
829
830 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
831 sizeof(data_hdr));
832 if (ret < 0) {
833 goto error;
834 }
835
836 ++stream->next_net_seq_num;
837
838 /* Set to go on data socket */
839 outfd = relayd->data_sock.sock.fd;
840 }
841
842 error:
843 return outfd;
844 }
845
846 /*
847 * Allocate and return a new lttng_consumer_channel object using the given key
848 * to initialize the hash table node.
849 *
850 * On error, return NULL.
851 */
852 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
853 uint64_t session_id,
854 const char *pathname,
855 const char *name,
856 uid_t uid,
857 gid_t gid,
858 uint64_t relayd_id,
859 enum lttng_event_output output,
860 uint64_t tracefile_size,
861 uint64_t tracefile_count,
862 uint64_t session_id_per_pid)
863 {
864 struct lttng_consumer_channel *channel;
865
866 channel = zmalloc(sizeof(*channel));
867 if (channel == NULL) {
868 PERROR("malloc struct lttng_consumer_channel");
869 goto end;
870 }
871
872 channel->key = key;
873 channel->refcount = 0;
874 channel->session_id = session_id;
875 channel->session_id_per_pid = session_id_per_pid;
876 channel->uid = uid;
877 channel->gid = gid;
878 channel->relayd_id = relayd_id;
879 channel->output = output;
880 channel->tracefile_size = tracefile_size;
881 channel->tracefile_count = tracefile_count;
882
883 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
884 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
885
886 strncpy(channel->name, name, sizeof(channel->name));
887 channel->name[sizeof(channel->name) - 1] = '\0';
888
889 lttng_ht_node_init_u64(&channel->node, channel->key);
890
891 channel->wait_fd = -1;
892
893 CDS_INIT_LIST_HEAD(&channel->streams.head);
894
895 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
896
897 end:
898 return channel;
899 }
900
901 /*
902 * Add a channel to the global list protected by a mutex.
903 *
904 * On success 0 is returned else a negative value.
905 */
906 int consumer_add_channel(struct lttng_consumer_channel *channel,
907 struct lttng_consumer_local_data *ctx)
908 {
909 int ret = 0;
910 struct lttng_ht_node_u64 *node;
911 struct lttng_ht_iter iter;
912
913 pthread_mutex_lock(&consumer_data.lock);
914 rcu_read_lock();
915
916 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
917 node = lttng_ht_iter_get_node_u64(&iter);
918 if (node != NULL) {
919 /* Channel already exist. Ignore the insertion */
920 ERR("Consumer add channel key %" PRIu64 " already exists!",
921 channel->key);
922 ret = -EEXIST;
923 goto end;
924 }
925
926 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
927
928 end:
929 rcu_read_unlock();
930 pthread_mutex_unlock(&consumer_data.lock);
931
932 if (!ret && channel->wait_fd != -1 &&
933 channel->metadata_stream == NULL) {
934 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
935 }
936 return ret;
937 }
938
939 /*
940 * Allocate the pollfd structure and the local view of the out fds to avoid
941 * doing a lookup in the linked list and concurrency issues when writing is
942 * needed. Called with consumer_data.lock held.
943 *
944 * Returns the number of fds in the structures.
945 */
946 static int update_poll_array(struct lttng_consumer_local_data *ctx,
947 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
948 struct lttng_ht *ht)
949 {
950 int i = 0;
951 struct lttng_ht_iter iter;
952 struct lttng_consumer_stream *stream;
953
954 assert(ctx);
955 assert(ht);
956 assert(pollfd);
957 assert(local_stream);
958
959 DBG("Updating poll fd array");
960 rcu_read_lock();
961 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
962 /*
963 * Only active streams with an active end point can be added to the
964 * poll set and local stream storage of the thread.
965 *
966 * There is a potential race here for endpoint_status to be updated
967 * just after the check. However, this is OK since the stream(s) will
968 * be deleted once the thread is notified that the end point state has
969 * changed where this function will be called back again.
970 */
971 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
972 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
973 continue;
974 }
975 /*
976 * This clobbers way too much the debug output. Uncomment that if you
977 * need it for debugging purposes.
978 *
979 * DBG("Active FD %d", stream->wait_fd);
980 */
981 (*pollfd)[i].fd = stream->wait_fd;
982 (*pollfd)[i].events = POLLIN | POLLPRI;
983 local_stream[i] = stream;
984 i++;
985 }
986 rcu_read_unlock();
987
988 /*
989 * Insert the consumer_data_pipe at the end of the array and don't
990 * increment i so nb_fd is the number of real FD.
991 */
992 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
993 (*pollfd)[i].events = POLLIN | POLLPRI;
994 return i;
995 }
996
997 /*
998 * Poll on the should_quit pipe and the command socket return -1 on error and
999 * should exit, 0 if data is available on the command socket
1000 */
1001 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1002 {
1003 int num_rdy;
1004
1005 restart:
1006 num_rdy = poll(consumer_sockpoll, 2, -1);
1007 if (num_rdy == -1) {
1008 /*
1009 * Restart interrupted system call.
1010 */
1011 if (errno == EINTR) {
1012 goto restart;
1013 }
1014 PERROR("Poll error");
1015 goto exit;
1016 }
1017 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1018 DBG("consumer_should_quit wake up");
1019 goto exit;
1020 }
1021 return 0;
1022
1023 exit:
1024 return -1;
1025 }
1026
1027 /*
1028 * Set the error socket.
1029 */
1030 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1031 int sock)
1032 {
1033 ctx->consumer_error_socket = sock;
1034 }
1035
1036 /*
1037 * Set the command socket path.
1038 */
1039 void lttng_consumer_set_command_sock_path(
1040 struct lttng_consumer_local_data *ctx, char *sock)
1041 {
1042 ctx->consumer_command_sock_path = sock;
1043 }
1044
1045 /*
1046 * Send return code to the session daemon.
1047 * If the socket is not defined, we return 0, it is not a fatal error
1048 */
1049 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1050 {
1051 if (ctx->consumer_error_socket > 0) {
1052 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1053 sizeof(enum lttcomm_sessiond_command));
1054 }
1055
1056 return 0;
1057 }
1058
1059 /*
1060 * Close all the tracefiles and stream fds and MUST be called when all
1061 * instances are destroyed i.e. when all threads were joined and are ended.
1062 */
1063 void lttng_consumer_cleanup(void)
1064 {
1065 struct lttng_ht_iter iter;
1066 struct lttng_consumer_channel *channel;
1067
1068 rcu_read_lock();
1069
1070 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1071 node.node) {
1072 consumer_del_channel(channel);
1073 }
1074
1075 rcu_read_unlock();
1076
1077 lttng_ht_destroy(consumer_data.channel_ht);
1078
1079 cleanup_relayd_ht();
1080
1081 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1082
1083 /*
1084 * This HT contains streams that are freed by either the metadata thread or
1085 * the data thread so we do *nothing* on the hash table and simply destroy
1086 * it.
1087 */
1088 lttng_ht_destroy(consumer_data.stream_list_ht);
1089 }
1090
1091 /*
1092 * Called from signal handler.
1093 */
1094 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1095 {
1096 int ret;
1097 consumer_quit = 1;
1098 do {
1099 ret = write(ctx->consumer_should_quit[1], "4", 1);
1100 } while (ret < 0 && errno == EINTR);
1101 if (ret < 0 || ret != 1) {
1102 PERROR("write consumer quit");
1103 }
1104
1105 DBG("Consumer flag that it should quit");
1106 }
1107
1108 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1109 off_t orig_offset)
1110 {
1111 int outfd = stream->out_fd;
1112
1113 /*
1114 * This does a blocking write-and-wait on any page that belongs to the
1115 * subbuffer prior to the one we just wrote.
1116 * Don't care about error values, as these are just hints and ways to
1117 * limit the amount of page cache used.
1118 */
1119 if (orig_offset < stream->max_sb_size) {
1120 return;
1121 }
1122 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1123 stream->max_sb_size,
1124 SYNC_FILE_RANGE_WAIT_BEFORE
1125 | SYNC_FILE_RANGE_WRITE
1126 | SYNC_FILE_RANGE_WAIT_AFTER);
1127 /*
1128 * Give hints to the kernel about how we access the file:
1129 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1130 * we write it.
1131 *
1132 * We need to call fadvise again after the file grows because the
1133 * kernel does not seem to apply fadvise to non-existing parts of the
1134 * file.
1135 *
1136 * Call fadvise _after_ having waited for the page writeback to
1137 * complete because the dirty page writeback semantic is not well
1138 * defined. So it can be expected to lead to lower throughput in
1139 * streaming.
1140 */
1141 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1142 stream->max_sb_size, POSIX_FADV_DONTNEED);
1143 }
1144
1145 /*
1146 * Initialise the necessary environnement :
1147 * - create a new context
1148 * - create the poll_pipe
1149 * - create the should_quit pipe (for signal handler)
1150 * - create the thread pipe (for splice)
1151 *
1152 * Takes a function pointer as argument, this function is called when data is
1153 * available on a buffer. This function is responsible to do the
1154 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1155 * buffer configuration and then kernctl_put_next_subbuf at the end.
1156 *
1157 * Returns a pointer to the new context or NULL on error.
1158 */
1159 struct lttng_consumer_local_data *lttng_consumer_create(
1160 enum lttng_consumer_type type,
1161 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1162 struct lttng_consumer_local_data *ctx),
1163 int (*recv_channel)(struct lttng_consumer_channel *channel),
1164 int (*recv_stream)(struct lttng_consumer_stream *stream),
1165 int (*update_stream)(uint64_t stream_key, uint32_t state))
1166 {
1167 int ret;
1168 struct lttng_consumer_local_data *ctx;
1169
1170 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1171 consumer_data.type == type);
1172 consumer_data.type = type;
1173
1174 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1175 if (ctx == NULL) {
1176 PERROR("allocating context");
1177 goto error;
1178 }
1179
1180 ctx->consumer_error_socket = -1;
1181 ctx->consumer_metadata_socket = -1;
1182 /* assign the callbacks */
1183 ctx->on_buffer_ready = buffer_ready;
1184 ctx->on_recv_channel = recv_channel;
1185 ctx->on_recv_stream = recv_stream;
1186 ctx->on_update_stream = update_stream;
1187
1188 ctx->consumer_data_pipe = lttng_pipe_open(0);
1189 if (!ctx->consumer_data_pipe) {
1190 goto error_poll_pipe;
1191 }
1192
1193 ret = pipe(ctx->consumer_should_quit);
1194 if (ret < 0) {
1195 PERROR("Error creating recv pipe");
1196 goto error_quit_pipe;
1197 }
1198
1199 ret = pipe(ctx->consumer_thread_pipe);
1200 if (ret < 0) {
1201 PERROR("Error creating thread pipe");
1202 goto error_thread_pipe;
1203 }
1204
1205 ret = pipe(ctx->consumer_channel_pipe);
1206 if (ret < 0) {
1207 PERROR("Error creating channel pipe");
1208 goto error_channel_pipe;
1209 }
1210
1211 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1212 if (!ctx->consumer_metadata_pipe) {
1213 goto error_metadata_pipe;
1214 }
1215
1216 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1217 if (ret < 0) {
1218 goto error_splice_pipe;
1219 }
1220
1221 return ctx;
1222
1223 error_splice_pipe:
1224 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1225 error_metadata_pipe:
1226 utils_close_pipe(ctx->consumer_channel_pipe);
1227 error_channel_pipe:
1228 utils_close_pipe(ctx->consumer_thread_pipe);
1229 error_thread_pipe:
1230 utils_close_pipe(ctx->consumer_should_quit);
1231 error_quit_pipe:
1232 lttng_pipe_destroy(ctx->consumer_data_pipe);
1233 error_poll_pipe:
1234 free(ctx);
1235 error:
1236 return NULL;
1237 }
1238
1239 /*
1240 * Close all fds associated with the instance and free the context.
1241 */
1242 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1243 {
1244 int ret;
1245
1246 DBG("Consumer destroying it. Closing everything.");
1247
1248 ret = close(ctx->consumer_error_socket);
1249 if (ret) {
1250 PERROR("close");
1251 }
1252 ret = close(ctx->consumer_metadata_socket);
1253 if (ret) {
1254 PERROR("close");
1255 }
1256 utils_close_pipe(ctx->consumer_thread_pipe);
1257 utils_close_pipe(ctx->consumer_channel_pipe);
1258 lttng_pipe_destroy(ctx->consumer_data_pipe);
1259 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1260 utils_close_pipe(ctx->consumer_should_quit);
1261 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1262
1263 unlink(ctx->consumer_command_sock_path);
1264 free(ctx);
1265 }
1266
1267 /*
1268 * Write the metadata stream id on the specified file descriptor.
1269 */
1270 static int write_relayd_metadata_id(int fd,
1271 struct lttng_consumer_stream *stream,
1272 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1273 {
1274 int ret;
1275 struct lttcomm_relayd_metadata_payload hdr;
1276
1277 hdr.stream_id = htobe64(stream->relayd_stream_id);
1278 hdr.padding_size = htobe32(padding);
1279 do {
1280 ret = write(fd, (void *) &hdr, sizeof(hdr));
1281 } while (ret < 0 && errno == EINTR);
1282 if (ret < 0 || ret != sizeof(hdr)) {
1283 /*
1284 * This error means that the fd's end is closed so ignore the perror
1285 * not to clubber the error output since this can happen in a normal
1286 * code path.
1287 */
1288 if (errno != EPIPE) {
1289 PERROR("write metadata stream id");
1290 }
1291 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1292 /*
1293 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1294 * handle writting the missing part so report that as an error and
1295 * don't lie to the caller.
1296 */
1297 ret = -1;
1298 goto end;
1299 }
1300 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1301 stream->relayd_stream_id, padding);
1302
1303 end:
1304 return ret;
1305 }
1306
1307 /*
1308 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1309 * core function for writing trace buffers to either the local filesystem or
1310 * the network.
1311 *
1312 * It must be called with the stream lock held.
1313 *
1314 * Careful review MUST be put if any changes occur!
1315 *
1316 * Returns the number of bytes written
1317 */
1318 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1319 struct lttng_consumer_local_data *ctx,
1320 struct lttng_consumer_stream *stream, unsigned long len,
1321 unsigned long padding)
1322 {
1323 unsigned long mmap_offset;
1324 void *mmap_base;
1325 ssize_t ret = 0, written = 0;
1326 off_t orig_offset = stream->out_fd_offset;
1327 /* Default is on the disk */
1328 int outfd = stream->out_fd;
1329 struct consumer_relayd_sock_pair *relayd = NULL;
1330 unsigned int relayd_hang_up = 0;
1331
1332 /* RCU lock for the relayd pointer */
1333 rcu_read_lock();
1334
1335 /* Flag that the current stream if set for network streaming. */
1336 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1337 relayd = consumer_find_relayd(stream->net_seq_idx);
1338 if (relayd == NULL) {
1339 goto end;
1340 }
1341 }
1342
1343 /* get the offset inside the fd to mmap */
1344 switch (consumer_data.type) {
1345 case LTTNG_CONSUMER_KERNEL:
1346 mmap_base = stream->mmap_base;
1347 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1348 break;
1349 case LTTNG_CONSUMER32_UST:
1350 case LTTNG_CONSUMER64_UST:
1351 mmap_base = lttng_ustctl_get_mmap_base(stream);
1352 if (!mmap_base) {
1353 ERR("read mmap get mmap base for stream %s", stream->name);
1354 written = -1;
1355 goto end;
1356 }
1357 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1358
1359 break;
1360 default:
1361 ERR("Unknown consumer_data type");
1362 assert(0);
1363 }
1364 if (ret != 0) {
1365 errno = -ret;
1366 PERROR("tracer ctl get_mmap_read_offset");
1367 written = ret;
1368 goto end;
1369 }
1370
1371 /* Handle stream on the relayd if the output is on the network */
1372 if (relayd) {
1373 unsigned long netlen = len;
1374
1375 /*
1376 * Lock the control socket for the complete duration of the function
1377 * since from this point on we will use the socket.
1378 */
1379 if (stream->metadata_flag) {
1380 /* Metadata requires the control socket. */
1381 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1382 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1383 }
1384
1385 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1386 if (ret >= 0) {
1387 /* Use the returned socket. */
1388 outfd = ret;
1389
1390 /* Write metadata stream id before payload */
1391 if (stream->metadata_flag) {
1392 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1393 if (ret < 0) {
1394 written = ret;
1395 /* Socket operation failed. We consider the relayd dead */
1396 if (ret == -EPIPE || ret == -EINVAL) {
1397 relayd_hang_up = 1;
1398 goto write_error;
1399 }
1400 goto end;
1401 }
1402 }
1403 } else {
1404 /* Socket operation failed. We consider the relayd dead */
1405 if (ret == -EPIPE || ret == -EINVAL) {
1406 relayd_hang_up = 1;
1407 goto write_error;
1408 }
1409 /* Else, use the default set before which is the filesystem. */
1410 }
1411 } else {
1412 /* No streaming, we have to set the len with the full padding */
1413 len += padding;
1414
1415 /*
1416 * Check if we need to change the tracefile before writing the packet.
1417 */
1418 if (stream->chan->tracefile_size > 0 &&
1419 (stream->tracefile_size_current + len) >
1420 stream->chan->tracefile_size) {
1421 ret = utils_rotate_stream_file(stream->chan->pathname,
1422 stream->name, stream->chan->tracefile_size,
1423 stream->chan->tracefile_count, stream->uid, stream->gid,
1424 stream->out_fd, &(stream->tracefile_count_current));
1425 if (ret < 0) {
1426 ERR("Rotating output file");
1427 goto end;
1428 }
1429 outfd = stream->out_fd = ret;
1430 /* Reset current size because we just perform a rotation. */
1431 stream->tracefile_size_current = 0;
1432 }
1433 stream->tracefile_size_current += len;
1434 }
1435
1436 while (len > 0) {
1437 do {
1438 ret = write(outfd, mmap_base + mmap_offset, len);
1439 } while (ret < 0 && errno == EINTR);
1440 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1441 if (ret < 0) {
1442 /*
1443 * This is possible if the fd is closed on the other side (outfd)
1444 * or any write problem. It can be verbose a bit for a normal
1445 * execution if for instance the relayd is stopped abruptly. This
1446 * can happen so set this to a DBG statement.
1447 */
1448 DBG("Error in file write mmap");
1449 if (written == 0) {
1450 written = ret;
1451 }
1452 /* Socket operation failed. We consider the relayd dead */
1453 if (errno == EPIPE || errno == EINVAL) {
1454 relayd_hang_up = 1;
1455 goto write_error;
1456 }
1457 goto end;
1458 } else if (ret > len) {
1459 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1460 written += ret;
1461 goto end;
1462 } else {
1463 len -= ret;
1464 mmap_offset += ret;
1465 }
1466
1467 /* This call is useless on a socket so better save a syscall. */
1468 if (!relayd) {
1469 /* This won't block, but will start writeout asynchronously */
1470 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1471 SYNC_FILE_RANGE_WRITE);
1472 stream->out_fd_offset += ret;
1473 }
1474 written += ret;
1475 }
1476 lttng_consumer_sync_trace_file(stream, orig_offset);
1477
1478 write_error:
1479 /*
1480 * This is a special case that the relayd has closed its socket. Let's
1481 * cleanup the relayd object and all associated streams.
1482 */
1483 if (relayd && relayd_hang_up) {
1484 cleanup_relayd(relayd, ctx);
1485 }
1486
1487 end:
1488 /* Unlock only if ctrl socket used */
1489 if (relayd && stream->metadata_flag) {
1490 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1491 }
1492
1493 rcu_read_unlock();
1494 return written;
1495 }
1496
1497 /*
1498 * Splice the data from the ring buffer to the tracefile.
1499 *
1500 * It must be called with the stream lock held.
1501 *
1502 * Returns the number of bytes spliced.
1503 */
1504 ssize_t lttng_consumer_on_read_subbuffer_splice(
1505 struct lttng_consumer_local_data *ctx,
1506 struct lttng_consumer_stream *stream, unsigned long len,
1507 unsigned long padding)
1508 {
1509 ssize_t ret = 0, written = 0, ret_splice = 0;
1510 loff_t offset = 0;
1511 off_t orig_offset = stream->out_fd_offset;
1512 int fd = stream->wait_fd;
1513 /* Default is on the disk */
1514 int outfd = stream->out_fd;
1515 struct consumer_relayd_sock_pair *relayd = NULL;
1516 int *splice_pipe;
1517 unsigned int relayd_hang_up = 0;
1518
1519 switch (consumer_data.type) {
1520 case LTTNG_CONSUMER_KERNEL:
1521 break;
1522 case LTTNG_CONSUMER32_UST:
1523 case LTTNG_CONSUMER64_UST:
1524 /* Not supported for user space tracing */
1525 return -ENOSYS;
1526 default:
1527 ERR("Unknown consumer_data type");
1528 assert(0);
1529 }
1530
1531 /* RCU lock for the relayd pointer */
1532 rcu_read_lock();
1533
1534 /* Flag that the current stream if set for network streaming. */
1535 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1536 relayd = consumer_find_relayd(stream->net_seq_idx);
1537 if (relayd == NULL) {
1538 goto end;
1539 }
1540 }
1541
1542 /*
1543 * Choose right pipe for splice. Metadata and trace data are handled by
1544 * different threads hence the use of two pipes in order not to race or
1545 * corrupt the written data.
1546 */
1547 if (stream->metadata_flag) {
1548 splice_pipe = ctx->consumer_splice_metadata_pipe;
1549 } else {
1550 splice_pipe = ctx->consumer_thread_pipe;
1551 }
1552
1553 /* Write metadata stream id before payload */
1554 if (relayd) {
1555 int total_len = len;
1556
1557 if (stream->metadata_flag) {
1558 /*
1559 * Lock the control socket for the complete duration of the function
1560 * since from this point on we will use the socket.
1561 */
1562 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1563
1564 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1565 padding);
1566 if (ret < 0) {
1567 written = ret;
1568 /* Socket operation failed. We consider the relayd dead */
1569 if (ret == -EBADF) {
1570 WARN("Remote relayd disconnected. Stopping");
1571 relayd_hang_up = 1;
1572 goto write_error;
1573 }
1574 goto end;
1575 }
1576
1577 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1578 }
1579
1580 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1581 if (ret >= 0) {
1582 /* Use the returned socket. */
1583 outfd = ret;
1584 } else {
1585 /* Socket operation failed. We consider the relayd dead */
1586 if (ret == -EBADF) {
1587 WARN("Remote relayd disconnected. Stopping");
1588 relayd_hang_up = 1;
1589 goto write_error;
1590 }
1591 goto end;
1592 }
1593 } else {
1594 /* No streaming, we have to set the len with the full padding */
1595 len += padding;
1596
1597 /*
1598 * Check if we need to change the tracefile before writing the packet.
1599 */
1600 if (stream->chan->tracefile_size > 0 &&
1601 (stream->tracefile_size_current + len) >
1602 stream->chan->tracefile_size) {
1603 ret = utils_rotate_stream_file(stream->chan->pathname,
1604 stream->name, stream->chan->tracefile_size,
1605 stream->chan->tracefile_count, stream->uid, stream->gid,
1606 stream->out_fd, &(stream->tracefile_count_current));
1607 if (ret < 0) {
1608 ERR("Rotating output file");
1609 goto end;
1610 }
1611 outfd = stream->out_fd = ret;
1612 /* Reset current size because we just perform a rotation. */
1613 stream->tracefile_size_current = 0;
1614 }
1615 stream->tracefile_size_current += len;
1616 }
1617
1618 while (len > 0) {
1619 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1620 (unsigned long)offset, len, fd, splice_pipe[1]);
1621 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1622 SPLICE_F_MOVE | SPLICE_F_MORE);
1623 DBG("splice chan to pipe, ret %zd", ret_splice);
1624 if (ret_splice < 0) {
1625 PERROR("Error in relay splice");
1626 if (written == 0) {
1627 written = ret_splice;
1628 }
1629 ret = errno;
1630 goto splice_error;
1631 }
1632
1633 /* Handle stream on the relayd if the output is on the network */
1634 if (relayd) {
1635 if (stream->metadata_flag) {
1636 size_t metadata_payload_size =
1637 sizeof(struct lttcomm_relayd_metadata_payload);
1638
1639 /* Update counter to fit the spliced data */
1640 ret_splice += metadata_payload_size;
1641 len += metadata_payload_size;
1642 /*
1643 * We do this so the return value can match the len passed as
1644 * argument to this function.
1645 */
1646 written -= metadata_payload_size;
1647 }
1648 }
1649
1650 /* Splice data out */
1651 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1652 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1653 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1654 if (ret_splice < 0) {
1655 PERROR("Error in file splice");
1656 if (written == 0) {
1657 written = ret_splice;
1658 }
1659 /* Socket operation failed. We consider the relayd dead */
1660 if (errno == EBADF || errno == EPIPE) {
1661 WARN("Remote relayd disconnected. Stopping");
1662 relayd_hang_up = 1;
1663 goto write_error;
1664 }
1665 ret = errno;
1666 goto splice_error;
1667 } else if (ret_splice > len) {
1668 errno = EINVAL;
1669 PERROR("Wrote more data than requested %zd (len: %lu)",
1670 ret_splice, len);
1671 written += ret_splice;
1672 ret = errno;
1673 goto splice_error;
1674 }
1675 len -= ret_splice;
1676
1677 /* This call is useless on a socket so better save a syscall. */
1678 if (!relayd) {
1679 /* This won't block, but will start writeout asynchronously */
1680 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1681 SYNC_FILE_RANGE_WRITE);
1682 stream->out_fd_offset += ret_splice;
1683 }
1684 written += ret_splice;
1685 }
1686 lttng_consumer_sync_trace_file(stream, orig_offset);
1687
1688 ret = ret_splice;
1689
1690 goto end;
1691
1692 write_error:
1693 /*
1694 * This is a special case that the relayd has closed its socket. Let's
1695 * cleanup the relayd object and all associated streams.
1696 */
1697 if (relayd && relayd_hang_up) {
1698 cleanup_relayd(relayd, ctx);
1699 /* Skip splice error so the consumer does not fail */
1700 goto end;
1701 }
1702
1703 splice_error:
1704 /* send the appropriate error description to sessiond */
1705 switch (ret) {
1706 case EINVAL:
1707 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1708 break;
1709 case ENOMEM:
1710 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1711 break;
1712 case ESPIPE:
1713 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1714 break;
1715 }
1716
1717 end:
1718 if (relayd && stream->metadata_flag) {
1719 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1720 }
1721
1722 rcu_read_unlock();
1723 return written;
1724 }
1725
1726 /*
1727 * Take a snapshot for a specific fd
1728 *
1729 * Returns 0 on success, < 0 on error
1730 */
1731 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1732 {
1733 switch (consumer_data.type) {
1734 case LTTNG_CONSUMER_KERNEL:
1735 return lttng_kconsumer_take_snapshot(stream);
1736 case LTTNG_CONSUMER32_UST:
1737 case LTTNG_CONSUMER64_UST:
1738 return lttng_ustconsumer_take_snapshot(stream);
1739 default:
1740 ERR("Unknown consumer_data type");
1741 assert(0);
1742 return -ENOSYS;
1743 }
1744 }
1745
1746 /*
1747 * Get the produced position
1748 *
1749 * Returns 0 on success, < 0 on error
1750 */
1751 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1752 unsigned long *pos)
1753 {
1754 switch (consumer_data.type) {
1755 case LTTNG_CONSUMER_KERNEL:
1756 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1757 case LTTNG_CONSUMER32_UST:
1758 case LTTNG_CONSUMER64_UST:
1759 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1760 default:
1761 ERR("Unknown consumer_data type");
1762 assert(0);
1763 return -ENOSYS;
1764 }
1765 }
1766
1767 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1768 int sock, struct pollfd *consumer_sockpoll)
1769 {
1770 switch (consumer_data.type) {
1771 case LTTNG_CONSUMER_KERNEL:
1772 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1773 case LTTNG_CONSUMER32_UST:
1774 case LTTNG_CONSUMER64_UST:
1775 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1776 default:
1777 ERR("Unknown consumer_data type");
1778 assert(0);
1779 return -ENOSYS;
1780 }
1781 }
1782
1783 /*
1784 * Iterate over all streams of the hashtable and free them properly.
1785 *
1786 * WARNING: *MUST* be used with data stream only.
1787 */
1788 static void destroy_data_stream_ht(struct lttng_ht *ht)
1789 {
1790 struct lttng_ht_iter iter;
1791 struct lttng_consumer_stream *stream;
1792
1793 if (ht == NULL) {
1794 return;
1795 }
1796
1797 rcu_read_lock();
1798 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1799 /*
1800 * Ignore return value since we are currently cleaning up so any error
1801 * can't be handled.
1802 */
1803 (void) consumer_del_stream(stream, ht);
1804 }
1805 rcu_read_unlock();
1806
1807 lttng_ht_destroy(ht);
1808 }
1809
1810 /*
1811 * Iterate over all streams of the hashtable and free them properly.
1812 *
1813 * XXX: Should not be only for metadata stream or else use an other name.
1814 */
1815 static void destroy_stream_ht(struct lttng_ht *ht)
1816 {
1817 struct lttng_ht_iter iter;
1818 struct lttng_consumer_stream *stream;
1819
1820 if (ht == NULL) {
1821 return;
1822 }
1823
1824 rcu_read_lock();
1825 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1826 /*
1827 * Ignore return value since we are currently cleaning up so any error
1828 * can't be handled.
1829 */
1830 (void) consumer_del_metadata_stream(stream, ht);
1831 }
1832 rcu_read_unlock();
1833
1834 lttng_ht_destroy(ht);
1835 }
1836
1837 void lttng_consumer_close_metadata(void)
1838 {
1839 switch (consumer_data.type) {
1840 case LTTNG_CONSUMER_KERNEL:
1841 /*
1842 * The Kernel consumer has a different metadata scheme so we don't
1843 * close anything because the stream will be closed by the session
1844 * daemon.
1845 */
1846 break;
1847 case LTTNG_CONSUMER32_UST:
1848 case LTTNG_CONSUMER64_UST:
1849 /*
1850 * Close all metadata streams. The metadata hash table is passed and
1851 * this call iterates over it by closing all wakeup fd. This is safe
1852 * because at this point we are sure that the metadata producer is
1853 * either dead or blocked.
1854 */
1855 lttng_ustconsumer_close_metadata(metadata_ht);
1856 break;
1857 default:
1858 ERR("Unknown consumer_data type");
1859 assert(0);
1860 }
1861 }
1862
1863 /*
1864 * Clean up a metadata stream and free its memory.
1865 */
1866 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1867 struct lttng_ht *ht)
1868 {
1869 int ret;
1870 struct lttng_ht_iter iter;
1871 struct lttng_consumer_channel *free_chan = NULL;
1872 struct consumer_relayd_sock_pair *relayd;
1873
1874 assert(stream);
1875 /*
1876 * This call should NEVER receive regular stream. It must always be
1877 * metadata stream and this is crucial for data structure synchronization.
1878 */
1879 assert(stream->metadata_flag);
1880
1881 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1882
1883 if (ht == NULL) {
1884 /* Means the stream was allocated but not successfully added */
1885 goto free_stream_rcu;
1886 }
1887
1888 pthread_mutex_lock(&consumer_data.lock);
1889 pthread_mutex_lock(&stream->lock);
1890
1891 switch (consumer_data.type) {
1892 case LTTNG_CONSUMER_KERNEL:
1893 if (stream->mmap_base != NULL) {
1894 ret = munmap(stream->mmap_base, stream->mmap_len);
1895 if (ret != 0) {
1896 PERROR("munmap metadata stream");
1897 }
1898 }
1899
1900 if (stream->wait_fd >= 0) {
1901 ret = close(stream->wait_fd);
1902 if (ret < 0) {
1903 PERROR("close kernel metadata wait_fd");
1904 }
1905 }
1906 break;
1907 case LTTNG_CONSUMER32_UST:
1908 case LTTNG_CONSUMER64_UST:
1909 lttng_ustconsumer_del_stream(stream);
1910 break;
1911 default:
1912 ERR("Unknown consumer_data type");
1913 assert(0);
1914 goto end;
1915 }
1916
1917 rcu_read_lock();
1918 iter.iter.node = &stream->node.node;
1919 ret = lttng_ht_del(ht, &iter);
1920 assert(!ret);
1921
1922 iter.iter.node = &stream->node_channel_id.node;
1923 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1924 assert(!ret);
1925
1926 iter.iter.node = &stream->node_session_id.node;
1927 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1928 assert(!ret);
1929 rcu_read_unlock();
1930
1931 if (stream->out_fd >= 0) {
1932 ret = close(stream->out_fd);
1933 if (ret) {
1934 PERROR("close");
1935 }
1936 }
1937
1938 /* Check and cleanup relayd */
1939 rcu_read_lock();
1940 relayd = consumer_find_relayd(stream->net_seq_idx);
1941 if (relayd != NULL) {
1942 uatomic_dec(&relayd->refcount);
1943 assert(uatomic_read(&relayd->refcount) >= 0);
1944
1945 /* Closing streams requires to lock the control socket. */
1946 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1947 ret = relayd_send_close_stream(&relayd->control_sock,
1948 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1949 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1950 if (ret < 0) {
1951 DBG("Unable to close stream on the relayd. Continuing");
1952 /*
1953 * Continue here. There is nothing we can do for the relayd.
1954 * Chances are that the relayd has closed the socket so we just
1955 * continue cleaning up.
1956 */
1957 }
1958
1959 /* Both conditions are met, we destroy the relayd. */
1960 if (uatomic_read(&relayd->refcount) == 0 &&
1961 uatomic_read(&relayd->destroy_flag)) {
1962 destroy_relayd(relayd);
1963 }
1964 }
1965 rcu_read_unlock();
1966
1967 /* Atomically decrement channel refcount since other threads can use it. */
1968 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1969 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1970 /* Go for channel deletion! */
1971 free_chan = stream->chan;
1972 }
1973
1974 end:
1975 /*
1976 * Nullify the stream reference so it is not used after deletion. The
1977 * consumer data lock MUST be acquired before being able to check for a
1978 * NULL pointer value.
1979 */
1980 stream->chan->metadata_stream = NULL;
1981
1982 pthread_mutex_unlock(&stream->lock);
1983 pthread_mutex_unlock(&consumer_data.lock);
1984
1985 if (free_chan) {
1986 consumer_del_channel(free_chan);
1987 }
1988
1989 free_stream_rcu:
1990 call_rcu(&stream->node.head, free_stream_rcu);
1991 }
1992
1993 /*
1994 * Action done with the metadata stream when adding it to the consumer internal
1995 * data structures to handle it.
1996 */
1997 static int add_metadata_stream(struct lttng_consumer_stream *stream,
1998 struct lttng_ht *ht)
1999 {
2000 int ret = 0;
2001 struct consumer_relayd_sock_pair *relayd;
2002 struct lttng_ht_iter iter;
2003 struct lttng_ht_node_u64 *node;
2004
2005 assert(stream);
2006 assert(ht);
2007
2008 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2009
2010 pthread_mutex_lock(&consumer_data.lock);
2011 pthread_mutex_lock(&stream->lock);
2012
2013 /*
2014 * From here, refcounts are updated so be _careful_ when returning an error
2015 * after this point.
2016 */
2017
2018 rcu_read_lock();
2019
2020 /*
2021 * Lookup the stream just to make sure it does not exist in our internal
2022 * state. This should NEVER happen.
2023 */
2024 lttng_ht_lookup(ht, &stream->key, &iter);
2025 node = lttng_ht_iter_get_node_u64(&iter);
2026 assert(!node);
2027
2028 /* Find relayd and, if one is found, increment refcount. */
2029 relayd = consumer_find_relayd(stream->net_seq_idx);
2030 if (relayd != NULL) {
2031 uatomic_inc(&relayd->refcount);
2032 }
2033
2034 /*
2035 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2036 * in terms of destroying the associated channel, because the action that
2037 * causes the count to become 0 also causes a stream to be added. The
2038 * channel deletion will thus be triggered by the following removal of this
2039 * stream.
2040 */
2041 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2042 /* Increment refcount before decrementing nb_init_stream_left */
2043 cmm_smp_wmb();
2044 uatomic_dec(&stream->chan->nb_init_stream_left);
2045 }
2046
2047 lttng_ht_add_unique_u64(ht, &stream->node);
2048
2049 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2050 &stream->node_channel_id);
2051
2052 /*
2053 * Add stream to the stream_list_ht of the consumer data. No need to steal
2054 * the key since the HT does not use it and we allow to add redundant keys
2055 * into this table.
2056 */
2057 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2058
2059 rcu_read_unlock();
2060
2061 pthread_mutex_unlock(&stream->lock);
2062 pthread_mutex_unlock(&consumer_data.lock);
2063 return ret;
2064 }
2065
2066 /*
2067 * Delete data stream that are flagged for deletion (endpoint_status).
2068 */
2069 static void validate_endpoint_status_data_stream(void)
2070 {
2071 struct lttng_ht_iter iter;
2072 struct lttng_consumer_stream *stream;
2073
2074 DBG("Consumer delete flagged data stream");
2075
2076 rcu_read_lock();
2077 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2078 /* Validate delete flag of the stream */
2079 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2080 continue;
2081 }
2082 /* Delete it right now */
2083 consumer_del_stream(stream, data_ht);
2084 }
2085 rcu_read_unlock();
2086 }
2087
2088 /*
2089 * Delete metadata stream that are flagged for deletion (endpoint_status).
2090 */
2091 static void validate_endpoint_status_metadata_stream(
2092 struct lttng_poll_event *pollset)
2093 {
2094 struct lttng_ht_iter iter;
2095 struct lttng_consumer_stream *stream;
2096
2097 DBG("Consumer delete flagged metadata stream");
2098
2099 assert(pollset);
2100
2101 rcu_read_lock();
2102 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2103 /* Validate delete flag of the stream */
2104 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2105 continue;
2106 }
2107 /*
2108 * Remove from pollset so the metadata thread can continue without
2109 * blocking on a deleted stream.
2110 */
2111 lttng_poll_del(pollset, stream->wait_fd);
2112
2113 /* Delete it right now */
2114 consumer_del_metadata_stream(stream, metadata_ht);
2115 }
2116 rcu_read_unlock();
2117 }
2118
2119 /*
2120 * Thread polls on metadata file descriptor and write them on disk or on the
2121 * network.
2122 */
2123 void *consumer_thread_metadata_poll(void *data)
2124 {
2125 int ret, i, pollfd;
2126 uint32_t revents, nb_fd;
2127 struct lttng_consumer_stream *stream = NULL;
2128 struct lttng_ht_iter iter;
2129 struct lttng_ht_node_u64 *node;
2130 struct lttng_poll_event events;
2131 struct lttng_consumer_local_data *ctx = data;
2132 ssize_t len;
2133
2134 rcu_register_thread();
2135
2136 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2137 if (!metadata_ht) {
2138 /* ENOMEM at this point. Better to bail out. */
2139 goto end_ht;
2140 }
2141
2142 DBG("Thread metadata poll started");
2143
2144 /* Size is set to 1 for the consumer_metadata pipe */
2145 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2146 if (ret < 0) {
2147 ERR("Poll set creation failed");
2148 goto end_poll;
2149 }
2150
2151 ret = lttng_poll_add(&events,
2152 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2153 if (ret < 0) {
2154 goto end;
2155 }
2156
2157 /* Main loop */
2158 DBG("Metadata main loop started");
2159
2160 while (1) {
2161 /* Only the metadata pipe is set */
2162 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2163 goto end;
2164 }
2165
2166 restart:
2167 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2168 ret = lttng_poll_wait(&events, -1);
2169 DBG("Metadata event catched in thread");
2170 if (ret < 0) {
2171 if (errno == EINTR) {
2172 ERR("Poll EINTR catched");
2173 goto restart;
2174 }
2175 goto error;
2176 }
2177
2178 nb_fd = ret;
2179
2180 /* From here, the event is a metadata wait fd */
2181 for (i = 0; i < nb_fd; i++) {
2182 revents = LTTNG_POLL_GETEV(&events, i);
2183 pollfd = LTTNG_POLL_GETFD(&events, i);
2184
2185 /* Just don't waste time if no returned events for the fd */
2186 if (!revents) {
2187 continue;
2188 }
2189
2190 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2191 if (revents & (LPOLLERR | LPOLLHUP )) {
2192 DBG("Metadata thread pipe hung up");
2193 /*
2194 * Remove the pipe from the poll set and continue the loop
2195 * since their might be data to consume.
2196 */
2197 lttng_poll_del(&events,
2198 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2199 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2200 continue;
2201 } else if (revents & LPOLLIN) {
2202 ssize_t pipe_len;
2203
2204 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2205 &stream, sizeof(stream));
2206 if (pipe_len < 0) {
2207 ERR("read metadata stream, ret: %ld", pipe_len);
2208 /*
2209 * Continue here to handle the rest of the streams.
2210 */
2211 continue;
2212 }
2213
2214 /* A NULL stream means that the state has changed. */
2215 if (stream == NULL) {
2216 /* Check for deleted streams. */
2217 validate_endpoint_status_metadata_stream(&events);
2218 goto restart;
2219 }
2220
2221 DBG("Adding metadata stream %d to poll set",
2222 stream->wait_fd);
2223
2224 ret = add_metadata_stream(stream, metadata_ht);
2225 if (ret) {
2226 ERR("Unable to add metadata stream");
2227 /* Stream was not setup properly. Continuing. */
2228 consumer_del_metadata_stream(stream, NULL);
2229 continue;
2230 }
2231
2232 /* Add metadata stream to the global poll events list */
2233 lttng_poll_add(&events, stream->wait_fd,
2234 LPOLLIN | LPOLLPRI);
2235 }
2236
2237 /* Handle other stream */
2238 continue;
2239 }
2240
2241 rcu_read_lock();
2242 {
2243 uint64_t tmp_id = (uint64_t) pollfd;
2244
2245 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2246 }
2247 node = lttng_ht_iter_get_node_u64(&iter);
2248 assert(node);
2249
2250 stream = caa_container_of(node, struct lttng_consumer_stream,
2251 node);
2252
2253 /* Check for error event */
2254 if (revents & (LPOLLERR | LPOLLHUP)) {
2255 DBG("Metadata fd %d is hup|err.", pollfd);
2256 if (!stream->hangup_flush_done
2257 && (consumer_data.type == LTTNG_CONSUMER32_UST
2258 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2259 DBG("Attempting to flush and consume the UST buffers");
2260 lttng_ustconsumer_on_stream_hangup(stream);
2261
2262 /* We just flushed the stream now read it. */
2263 do {
2264 len = ctx->on_buffer_ready(stream, ctx);
2265 /*
2266 * We don't check the return value here since if we get
2267 * a negative len, it means an error occured thus we
2268 * simply remove it from the poll set and free the
2269 * stream.
2270 */
2271 } while (len > 0);
2272 }
2273
2274 lttng_poll_del(&events, stream->wait_fd);
2275 /*
2276 * This call update the channel states, closes file descriptors
2277 * and securely free the stream.
2278 */
2279 consumer_del_metadata_stream(stream, metadata_ht);
2280 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2281 /* Get the data out of the metadata file descriptor */
2282 DBG("Metadata available on fd %d", pollfd);
2283 assert(stream->wait_fd == pollfd);
2284
2285 len = ctx->on_buffer_ready(stream, ctx);
2286 /* It's ok to have an unavailable sub-buffer */
2287 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2288 /* Clean up stream from consumer and free it. */
2289 lttng_poll_del(&events, stream->wait_fd);
2290 consumer_del_metadata_stream(stream, metadata_ht);
2291 } else if (len > 0) {
2292 stream->data_read = 1;
2293 }
2294 }
2295
2296 /* Release RCU lock for the stream looked up */
2297 rcu_read_unlock();
2298 }
2299 }
2300
2301 error:
2302 end:
2303 DBG("Metadata poll thread exiting");
2304
2305 lttng_poll_clean(&events);
2306 end_poll:
2307 destroy_stream_ht(metadata_ht);
2308 end_ht:
2309 rcu_unregister_thread();
2310 return NULL;
2311 }
2312
2313 /*
2314 * This thread polls the fds in the set to consume the data and write
2315 * it to tracefile if necessary.
2316 */
2317 void *consumer_thread_data_poll(void *data)
2318 {
2319 int num_rdy, num_hup, high_prio, ret, i;
2320 struct pollfd *pollfd = NULL;
2321 /* local view of the streams */
2322 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2323 /* local view of consumer_data.fds_count */
2324 int nb_fd = 0;
2325 struct lttng_consumer_local_data *ctx = data;
2326 ssize_t len;
2327
2328 rcu_register_thread();
2329
2330 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2331 if (data_ht == NULL) {
2332 /* ENOMEM at this point. Better to bail out. */
2333 goto end;
2334 }
2335
2336 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2337
2338 while (1) {
2339 high_prio = 0;
2340 num_hup = 0;
2341
2342 /*
2343 * the fds set has been updated, we need to update our
2344 * local array as well
2345 */
2346 pthread_mutex_lock(&consumer_data.lock);
2347 if (consumer_data.need_update) {
2348 free(pollfd);
2349 pollfd = NULL;
2350
2351 free(local_stream);
2352 local_stream = NULL;
2353
2354 /* allocate for all fds + 1 for the consumer_data_pipe */
2355 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2356 if (pollfd == NULL) {
2357 PERROR("pollfd malloc");
2358 pthread_mutex_unlock(&consumer_data.lock);
2359 goto end;
2360 }
2361
2362 /* allocate for all fds + 1 for the consumer_data_pipe */
2363 local_stream = zmalloc((consumer_data.stream_count + 1) *
2364 sizeof(struct lttng_consumer_stream *));
2365 if (local_stream == NULL) {
2366 PERROR("local_stream malloc");
2367 pthread_mutex_unlock(&consumer_data.lock);
2368 goto end;
2369 }
2370 ret = update_poll_array(ctx, &pollfd, local_stream,
2371 data_ht);
2372 if (ret < 0) {
2373 ERR("Error in allocating pollfd or local_outfds");
2374 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2375 pthread_mutex_unlock(&consumer_data.lock);
2376 goto end;
2377 }
2378 nb_fd = ret;
2379 consumer_data.need_update = 0;
2380 }
2381 pthread_mutex_unlock(&consumer_data.lock);
2382
2383 /* No FDs and consumer_quit, consumer_cleanup the thread */
2384 if (nb_fd == 0 && consumer_quit == 1) {
2385 goto end;
2386 }
2387 /* poll on the array of fds */
2388 restart:
2389 DBG("polling on %d fd", nb_fd + 1);
2390 num_rdy = poll(pollfd, nb_fd + 1, -1);
2391 DBG("poll num_rdy : %d", num_rdy);
2392 if (num_rdy == -1) {
2393 /*
2394 * Restart interrupted system call.
2395 */
2396 if (errno == EINTR) {
2397 goto restart;
2398 }
2399 PERROR("Poll error");
2400 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2401 goto end;
2402 } else if (num_rdy == 0) {
2403 DBG("Polling thread timed out");
2404 goto end;
2405 }
2406
2407 /*
2408 * If the consumer_data_pipe triggered poll go directly to the
2409 * beginning of the loop to update the array. We want to prioritize
2410 * array update over low-priority reads.
2411 */
2412 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2413 ssize_t pipe_readlen;
2414
2415 DBG("consumer_data_pipe wake up");
2416 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2417 &new_stream, sizeof(new_stream));
2418 if (pipe_readlen < 0) {
2419 ERR("Consumer data pipe ret %ld", pipe_readlen);
2420 /* Continue so we can at least handle the current stream(s). */
2421 continue;
2422 }
2423
2424 /*
2425 * If the stream is NULL, just ignore it. It's also possible that
2426 * the sessiond poll thread changed the consumer_quit state and is
2427 * waking us up to test it.
2428 */
2429 if (new_stream == NULL) {
2430 validate_endpoint_status_data_stream();
2431 continue;
2432 }
2433
2434 ret = add_stream(new_stream, data_ht);
2435 if (ret) {
2436 ERR("Consumer add stream %" PRIu64 " failed. Continuing",
2437 new_stream->key);
2438 /*
2439 * At this point, if the add_stream fails, it is not in the
2440 * hash table thus passing the NULL value here.
2441 */
2442 consumer_del_stream(new_stream, NULL);
2443 }
2444
2445 /* Continue to update the local streams and handle prio ones */
2446 continue;
2447 }
2448
2449 /* Take care of high priority channels first. */
2450 for (i = 0; i < nb_fd; i++) {
2451 if (local_stream[i] == NULL) {
2452 continue;
2453 }
2454 if (pollfd[i].revents & POLLPRI) {
2455 DBG("Urgent read on fd %d", pollfd[i].fd);
2456 high_prio = 1;
2457 len = ctx->on_buffer_ready(local_stream[i], ctx);
2458 /* it's ok to have an unavailable sub-buffer */
2459 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2460 /* Clean the stream and free it. */
2461 consumer_del_stream(local_stream[i], data_ht);
2462 local_stream[i] = NULL;
2463 } else if (len > 0) {
2464 local_stream[i]->data_read = 1;
2465 }
2466 }
2467 }
2468
2469 /*
2470 * If we read high prio channel in this loop, try again
2471 * for more high prio data.
2472 */
2473 if (high_prio) {
2474 continue;
2475 }
2476
2477 /* Take care of low priority channels. */
2478 for (i = 0; i < nb_fd; i++) {
2479 if (local_stream[i] == NULL) {
2480 continue;
2481 }
2482 if ((pollfd[i].revents & POLLIN) ||
2483 local_stream[i]->hangup_flush_done) {
2484 DBG("Normal read on fd %d", pollfd[i].fd);
2485 len = ctx->on_buffer_ready(local_stream[i], ctx);
2486 /* it's ok to have an unavailable sub-buffer */
2487 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2488 /* Clean the stream and free it. */
2489 consumer_del_stream(local_stream[i], data_ht);
2490 local_stream[i] = NULL;
2491 } else if (len > 0) {
2492 local_stream[i]->data_read = 1;
2493 }
2494 }
2495 }
2496
2497 /* Handle hangup and errors */
2498 for (i = 0; i < nb_fd; i++) {
2499 if (local_stream[i] == NULL) {
2500 continue;
2501 }
2502 if (!local_stream[i]->hangup_flush_done
2503 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2504 && (consumer_data.type == LTTNG_CONSUMER32_UST
2505 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2506 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2507 pollfd[i].fd);
2508 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2509 /* Attempt read again, for the data we just flushed. */
2510 local_stream[i]->data_read = 1;
2511 }
2512 /*
2513 * If the poll flag is HUP/ERR/NVAL and we have
2514 * read no data in this pass, we can remove the
2515 * stream from its hash table.
2516 */
2517 if ((pollfd[i].revents & POLLHUP)) {
2518 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2519 if (!local_stream[i]->data_read) {
2520 consumer_del_stream(local_stream[i], data_ht);
2521 local_stream[i] = NULL;
2522 num_hup++;
2523 }
2524 } else if (pollfd[i].revents & POLLERR) {
2525 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2526 if (!local_stream[i]->data_read) {
2527 consumer_del_stream(local_stream[i], data_ht);
2528 local_stream[i] = NULL;
2529 num_hup++;
2530 }
2531 } else if (pollfd[i].revents & POLLNVAL) {
2532 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2533 if (!local_stream[i]->data_read) {
2534 consumer_del_stream(local_stream[i], data_ht);
2535 local_stream[i] = NULL;
2536 num_hup++;
2537 }
2538 }
2539 if (local_stream[i] != NULL) {
2540 local_stream[i]->data_read = 0;
2541 }
2542 }
2543 }
2544 end:
2545 DBG("polling thread exiting");
2546 free(pollfd);
2547 free(local_stream);
2548
2549 /*
2550 * Close the write side of the pipe so epoll_wait() in
2551 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2552 * read side of the pipe. If we close them both, epoll_wait strangely does
2553 * not return and could create a endless wait period if the pipe is the
2554 * only tracked fd in the poll set. The thread will take care of closing
2555 * the read side.
2556 */
2557 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2558
2559 destroy_data_stream_ht(data_ht);
2560
2561 rcu_unregister_thread();
2562 return NULL;
2563 }
2564
2565 /*
2566 * Close wake-up end of each stream belonging to the channel. This will
2567 * allow the poll() on the stream read-side to detect when the
2568 * write-side (application) finally closes them.
2569 */
2570 static
2571 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2572 {
2573 struct lttng_ht *ht;
2574 struct lttng_consumer_stream *stream;
2575 struct lttng_ht_iter iter;
2576
2577 ht = consumer_data.stream_per_chan_id_ht;
2578
2579 rcu_read_lock();
2580 cds_lfht_for_each_entry_duplicate(ht->ht,
2581 ht->hash_fct(&channel->key, lttng_ht_seed),
2582 ht->match_fct, &channel->key,
2583 &iter.iter, stream, node_channel_id.node) {
2584 /*
2585 * Protect against teardown with mutex.
2586 */
2587 pthread_mutex_lock(&stream->lock);
2588 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2589 goto next;
2590 }
2591 switch (consumer_data.type) {
2592 case LTTNG_CONSUMER_KERNEL:
2593 break;
2594 case LTTNG_CONSUMER32_UST:
2595 case LTTNG_CONSUMER64_UST:
2596 /*
2597 * Note: a mutex is taken internally within
2598 * liblttng-ust-ctl to protect timer wakeup_fd
2599 * use from concurrent close.
2600 */
2601 lttng_ustconsumer_close_stream_wakeup(stream);
2602 break;
2603 default:
2604 ERR("Unknown consumer_data type");
2605 assert(0);
2606 }
2607 next:
2608 pthread_mutex_unlock(&stream->lock);
2609 }
2610 rcu_read_unlock();
2611 }
2612
2613 static void destroy_channel_ht(struct lttng_ht *ht)
2614 {
2615 struct lttng_ht_iter iter;
2616 struct lttng_consumer_channel *channel;
2617 int ret;
2618
2619 if (ht == NULL) {
2620 return;
2621 }
2622
2623 rcu_read_lock();
2624 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2625 ret = lttng_ht_del(ht, &iter);
2626 assert(ret != 0);
2627 }
2628 rcu_read_unlock();
2629
2630 lttng_ht_destroy(ht);
2631 }
2632
2633 /*
2634 * This thread polls the channel fds to detect when they are being
2635 * closed. It closes all related streams if the channel is detected as
2636 * closed. It is currently only used as a shim layer for UST because the
2637 * consumerd needs to keep the per-stream wakeup end of pipes open for
2638 * periodical flush.
2639 */
2640 void *consumer_thread_channel_poll(void *data)
2641 {
2642 int ret, i, pollfd;
2643 uint32_t revents, nb_fd;
2644 struct lttng_consumer_channel *chan = NULL;
2645 struct lttng_ht_iter iter;
2646 struct lttng_ht_node_u64 *node;
2647 struct lttng_poll_event events;
2648 struct lttng_consumer_local_data *ctx = data;
2649 struct lttng_ht *channel_ht;
2650
2651 rcu_register_thread();
2652
2653 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2654 if (!channel_ht) {
2655 /* ENOMEM at this point. Better to bail out. */
2656 goto end_ht;
2657 }
2658
2659 DBG("Thread channel poll started");
2660
2661 /* Size is set to 1 for the consumer_channel pipe */
2662 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2663 if (ret < 0) {
2664 ERR("Poll set creation failed");
2665 goto end_poll;
2666 }
2667
2668 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2669 if (ret < 0) {
2670 goto end;
2671 }
2672
2673 /* Main loop */
2674 DBG("Channel main loop started");
2675
2676 while (1) {
2677 /* Only the channel pipe is set */
2678 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2679 goto end;
2680 }
2681
2682 restart:
2683 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2684 ret = lttng_poll_wait(&events, -1);
2685 DBG("Channel event catched in thread");
2686 if (ret < 0) {
2687 if (errno == EINTR) {
2688 ERR("Poll EINTR catched");
2689 goto restart;
2690 }
2691 goto end;
2692 }
2693
2694 nb_fd = ret;
2695
2696 /* From here, the event is a channel wait fd */
2697 for (i = 0; i < nb_fd; i++) {
2698 revents = LTTNG_POLL_GETEV(&events, i);
2699 pollfd = LTTNG_POLL_GETFD(&events, i);
2700
2701 /* Just don't waste time if no returned events for the fd */
2702 if (!revents) {
2703 continue;
2704 }
2705 if (pollfd == ctx->consumer_channel_pipe[0]) {
2706 if (revents & (LPOLLERR | LPOLLHUP)) {
2707 DBG("Channel thread pipe hung up");
2708 /*
2709 * Remove the pipe from the poll set and continue the loop
2710 * since their might be data to consume.
2711 */
2712 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2713 continue;
2714 } else if (revents & LPOLLIN) {
2715 enum consumer_channel_action action;
2716 uint64_t key;
2717
2718 ret = read_channel_pipe(ctx, &chan, &key, &action);
2719 if (ret <= 0) {
2720 ERR("Error reading channel pipe");
2721 continue;
2722 }
2723
2724 switch (action) {
2725 case CONSUMER_CHANNEL_ADD:
2726 DBG("Adding channel %d to poll set",
2727 chan->wait_fd);
2728
2729 lttng_ht_node_init_u64(&chan->wait_fd_node,
2730 chan->wait_fd);
2731 rcu_read_lock();
2732 lttng_ht_add_unique_u64(channel_ht,
2733 &chan->wait_fd_node);
2734 rcu_read_unlock();
2735 /* Add channel to the global poll events list */
2736 lttng_poll_add(&events, chan->wait_fd,
2737 LPOLLIN | LPOLLPRI);
2738 break;
2739 case CONSUMER_CHANNEL_DEL:
2740 {
2741 struct lttng_consumer_stream *stream, *stmp;
2742
2743 rcu_read_lock();
2744 chan = consumer_find_channel(key);
2745 if (!chan) {
2746 rcu_read_unlock();
2747 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2748 break;
2749 }
2750 lttng_poll_del(&events, chan->wait_fd);
2751 iter.iter.node = &chan->wait_fd_node.node;
2752 ret = lttng_ht_del(channel_ht, &iter);
2753 assert(ret == 0);
2754 consumer_close_channel_streams(chan);
2755
2756 switch (consumer_data.type) {
2757 case LTTNG_CONSUMER_KERNEL:
2758 break;
2759 case LTTNG_CONSUMER32_UST:
2760 case LTTNG_CONSUMER64_UST:
2761 /* Delete streams that might have been left in the stream list. */
2762 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2763 send_node) {
2764 cds_list_del(&stream->send_node);
2765 lttng_ustconsumer_del_stream(stream);
2766 uatomic_sub(&stream->chan->refcount, 1);
2767 assert(&chan->refcount);
2768 free(stream);
2769 }
2770 break;
2771 default:
2772 ERR("Unknown consumer_data type");
2773 assert(0);
2774 }
2775
2776 /*
2777 * Release our own refcount. Force channel deletion even if
2778 * streams were not initialized.
2779 */
2780 if (!uatomic_sub_return(&chan->refcount, 1)) {
2781 consumer_del_channel(chan);
2782 }
2783 rcu_read_unlock();
2784 goto restart;
2785 }
2786 case CONSUMER_CHANNEL_QUIT:
2787 /*
2788 * Remove the pipe from the poll set and continue the loop
2789 * since their might be data to consume.
2790 */
2791 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2792 continue;
2793 default:
2794 ERR("Unknown action");
2795 break;
2796 }
2797 }
2798
2799 /* Handle other stream */
2800 continue;
2801 }
2802
2803 rcu_read_lock();
2804 {
2805 uint64_t tmp_id = (uint64_t) pollfd;
2806
2807 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2808 }
2809 node = lttng_ht_iter_get_node_u64(&iter);
2810 assert(node);
2811
2812 chan = caa_container_of(node, struct lttng_consumer_channel,
2813 wait_fd_node);
2814
2815 /* Check for error event */
2816 if (revents & (LPOLLERR | LPOLLHUP)) {
2817 DBG("Channel fd %d is hup|err.", pollfd);
2818
2819 lttng_poll_del(&events, chan->wait_fd);
2820 ret = lttng_ht_del(channel_ht, &iter);
2821 assert(ret == 0);
2822 assert(cds_list_empty(&chan->streams.head));
2823 consumer_close_channel_streams(chan);
2824
2825 /* Release our own refcount */
2826 if (!uatomic_sub_return(&chan->refcount, 1)
2827 && !uatomic_read(&chan->nb_init_stream_left)) {
2828 consumer_del_channel(chan);
2829 }
2830 }
2831
2832 /* Release RCU lock for the channel looked up */
2833 rcu_read_unlock();
2834 }
2835 }
2836
2837 end:
2838 lttng_poll_clean(&events);
2839 end_poll:
2840 destroy_channel_ht(channel_ht);
2841 end_ht:
2842 DBG("Channel poll thread exiting");
2843 rcu_unregister_thread();
2844 return NULL;
2845 }
2846
2847 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2848 struct pollfd *sockpoll, int client_socket)
2849 {
2850 int ret;
2851
2852 assert(ctx);
2853 assert(sockpoll);
2854
2855 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2856 ret = -1;
2857 goto error;
2858 }
2859 DBG("Metadata connection on client_socket");
2860
2861 /* Blocking call, waiting for transmission */
2862 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2863 if (ctx->consumer_metadata_socket < 0) {
2864 WARN("On accept metadata");
2865 ret = -1;
2866 goto error;
2867 }
2868 ret = 0;
2869
2870 error:
2871 return ret;
2872 }
2873
2874 /*
2875 * This thread listens on the consumerd socket and receives the file
2876 * descriptors from the session daemon.
2877 */
2878 void *consumer_thread_sessiond_poll(void *data)
2879 {
2880 int sock = -1, client_socket, ret;
2881 /*
2882 * structure to poll for incoming data on communication socket avoids
2883 * making blocking sockets.
2884 */
2885 struct pollfd consumer_sockpoll[2];
2886 struct lttng_consumer_local_data *ctx = data;
2887
2888 rcu_register_thread();
2889
2890 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2891 unlink(ctx->consumer_command_sock_path);
2892 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2893 if (client_socket < 0) {
2894 ERR("Cannot create command socket");
2895 goto end;
2896 }
2897
2898 ret = lttcomm_listen_unix_sock(client_socket);
2899 if (ret < 0) {
2900 goto end;
2901 }
2902
2903 DBG("Sending ready command to lttng-sessiond");
2904 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2905 /* return < 0 on error, but == 0 is not fatal */
2906 if (ret < 0) {
2907 ERR("Error sending ready command to lttng-sessiond");
2908 goto end;
2909 }
2910
2911 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2912 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2913 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2914 consumer_sockpoll[1].fd = client_socket;
2915 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2916
2917 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2918 goto end;
2919 }
2920 DBG("Connection on client_socket");
2921
2922 /* Blocking call, waiting for transmission */
2923 sock = lttcomm_accept_unix_sock(client_socket);
2924 if (sock < 0) {
2925 WARN("On accept");
2926 goto end;
2927 }
2928
2929 /*
2930 * Setup metadata socket which is the second socket connection on the
2931 * command unix socket.
2932 */
2933 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2934 if (ret < 0) {
2935 goto end;
2936 }
2937
2938 /* This socket is not useful anymore. */
2939 ret = close(client_socket);
2940 if (ret < 0) {
2941 PERROR("close client_socket");
2942 }
2943 client_socket = -1;
2944
2945 /* update the polling structure to poll on the established socket */
2946 consumer_sockpoll[1].fd = sock;
2947 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2948
2949 while (1) {
2950 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2951 goto end;
2952 }
2953 DBG("Incoming command on sock");
2954 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2955 if (ret == -ENOENT) {
2956 DBG("Received STOP command");
2957 goto end;
2958 }
2959 if (ret <= 0) {
2960 /*
2961 * This could simply be a session daemon quitting. Don't output
2962 * ERR() here.
2963 */
2964 DBG("Communication interrupted on command socket");
2965 goto end;
2966 }
2967 if (consumer_quit) {
2968 DBG("consumer_thread_receive_fds received quit from signal");
2969 goto end;
2970 }
2971 DBG("received command on sock");
2972 }
2973 end:
2974 DBG("Consumer thread sessiond poll exiting");
2975
2976 /*
2977 * Close metadata streams since the producer is the session daemon which
2978 * just died.
2979 *
2980 * NOTE: for now, this only applies to the UST tracer.
2981 */
2982 lttng_consumer_close_metadata();
2983
2984 /*
2985 * when all fds have hung up, the polling thread
2986 * can exit cleanly
2987 */
2988 consumer_quit = 1;
2989
2990 /*
2991 * Notify the data poll thread to poll back again and test the
2992 * consumer_quit state that we just set so to quit gracefully.
2993 */
2994 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
2995
2996 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
2997
2998 /* Cleaning up possibly open sockets. */
2999 if (sock >= 0) {
3000 ret = close(sock);
3001 if (ret < 0) {
3002 PERROR("close sock sessiond poll");
3003 }
3004 }
3005 if (client_socket >= 0) {
3006 ret = close(client_socket);
3007 if (ret < 0) {
3008 PERROR("close client_socket sessiond poll");
3009 }
3010 }
3011
3012 rcu_unregister_thread();
3013 return NULL;
3014 }
3015
3016 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3017 struct lttng_consumer_local_data *ctx)
3018 {
3019 ssize_t ret;
3020
3021 pthread_mutex_lock(&stream->lock);
3022
3023 switch (consumer_data.type) {
3024 case LTTNG_CONSUMER_KERNEL:
3025 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3026 break;
3027 case LTTNG_CONSUMER32_UST:
3028 case LTTNG_CONSUMER64_UST:
3029 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3030 break;
3031 default:
3032 ERR("Unknown consumer_data type");
3033 assert(0);
3034 ret = -ENOSYS;
3035 break;
3036 }
3037
3038 pthread_mutex_unlock(&stream->lock);
3039 return ret;
3040 }
3041
3042 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3043 {
3044 switch (consumer_data.type) {
3045 case LTTNG_CONSUMER_KERNEL:
3046 return lttng_kconsumer_on_recv_stream(stream);
3047 case LTTNG_CONSUMER32_UST:
3048 case LTTNG_CONSUMER64_UST:
3049 return lttng_ustconsumer_on_recv_stream(stream);
3050 default:
3051 ERR("Unknown consumer_data type");
3052 assert(0);
3053 return -ENOSYS;
3054 }
3055 }
3056
3057 /*
3058 * Allocate and set consumer data hash tables.
3059 */
3060 void lttng_consumer_init(void)
3061 {
3062 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3063 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3064 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3065 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3066 }
3067
3068 /*
3069 * Process the ADD_RELAYD command receive by a consumer.
3070 *
3071 * This will create a relayd socket pair and add it to the relayd hash table.
3072 * The caller MUST acquire a RCU read side lock before calling it.
3073 */
3074 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3075 struct lttng_consumer_local_data *ctx, int sock,
3076 struct pollfd *consumer_sockpoll,
3077 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id)
3078 {
3079 int fd = -1, ret = -1, relayd_created = 0;
3080 enum lttng_error_code ret_code = LTTNG_OK;
3081 struct consumer_relayd_sock_pair *relayd = NULL;
3082
3083 assert(ctx);
3084 assert(relayd_sock);
3085
3086 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3087
3088 /* Get relayd reference if exists. */
3089 relayd = consumer_find_relayd(net_seq_idx);
3090 if (relayd == NULL) {
3091 assert(sock_type == LTTNG_STREAM_CONTROL);
3092 /* Not found. Allocate one. */
3093 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3094 if (relayd == NULL) {
3095 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3096 ret = -ENOMEM;
3097 } else {
3098 relayd->sessiond_session_id = sessiond_id;
3099 relayd_created = 1;
3100 }
3101
3102 /*
3103 * This code path MUST continue to the consumer send status message to
3104 * we can notify the session daemon and continue our work without
3105 * killing everything.
3106 */
3107 } else {
3108 /*
3109 * relayd key should never be found for control socket.
3110 */
3111 assert(sock_type != LTTNG_STREAM_CONTROL);
3112 }
3113
3114 /* First send a status message before receiving the fds. */
3115 ret = consumer_send_status_msg(sock, ret_code);
3116 if (ret < 0 || ret_code != LTTNG_OK) {
3117 /* Somehow, the session daemon is not responding anymore. */
3118 goto error;
3119 }
3120
3121 /* Poll on consumer socket. */
3122 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3123 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3124 ret = -EINTR;
3125 goto error;
3126 }
3127
3128 /* Get relayd socket from session daemon */
3129 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3130 if (ret != sizeof(fd)) {
3131 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3132 ret = -1;
3133 fd = -1; /* Just in case it gets set with an invalid value. */
3134
3135 /*
3136 * Failing to receive FDs might indicate a major problem such as
3137 * reaching a fd limit during the receive where the kernel returns a
3138 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3139 * don't take any chances and stop everything.
3140 *
3141 * XXX: Feature request #558 will fix that and avoid this possible
3142 * issue when reaching the fd limit.
3143 */
3144 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3145
3146 /*
3147 * This code path MUST continue to the consumer send status message so
3148 * we can send the error to the thread expecting a reply. The above
3149 * call will make everything stop.
3150 */
3151 }
3152
3153 /* We have the fds without error. Send status back. */
3154 ret = consumer_send_status_msg(sock, ret_code);
3155 if (ret < 0 || ret_code != LTTNG_OK) {
3156 /* Somehow, the session daemon is not responding anymore. */
3157 goto error;
3158 }
3159
3160 /* Copy socket information and received FD */
3161 switch (sock_type) {
3162 case LTTNG_STREAM_CONTROL:
3163 /* Copy received lttcomm socket */
3164 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3165 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3166 /* Handle create_sock error. */
3167 if (ret < 0) {
3168 goto error;
3169 }
3170 /*
3171 * Close the socket created internally by
3172 * lttcomm_create_sock, so we can replace it by the one
3173 * received from sessiond.
3174 */
3175 if (close(relayd->control_sock.sock.fd)) {
3176 PERROR("close");
3177 }
3178
3179 /* Assign new file descriptor */
3180 relayd->control_sock.sock.fd = fd;
3181 fd = -1; /* For error path */
3182 /* Assign version values. */
3183 relayd->control_sock.major = relayd_sock->major;
3184 relayd->control_sock.minor = relayd_sock->minor;
3185
3186 /*
3187 * Create a session on the relayd and store the returned id. Lock the
3188 * control socket mutex if the relayd was NOT created before.
3189 */
3190 if (!relayd_created) {
3191 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3192 }
3193 ret = relayd_create_session(&relayd->control_sock,
3194 &relayd->relayd_session_id);
3195 if (!relayd_created) {
3196 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3197 }
3198 if (ret < 0) {
3199 /*
3200 * Close all sockets of a relayd object. It will be freed if it was
3201 * created at the error code path or else it will be garbage
3202 * collect.
3203 */
3204 (void) relayd_close(&relayd->control_sock);
3205 (void) relayd_close(&relayd->data_sock);
3206 goto error;
3207 }
3208
3209 break;
3210 case LTTNG_STREAM_DATA:
3211 /* Copy received lttcomm socket */
3212 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3213 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3214 /* Handle create_sock error. */
3215 if (ret < 0) {
3216 goto error;
3217 }
3218 /*
3219 * Close the socket created internally by
3220 * lttcomm_create_sock, so we can replace it by the one
3221 * received from sessiond.
3222 */
3223 if (close(relayd->data_sock.sock.fd)) {
3224 PERROR("close");
3225 }
3226
3227 /* Assign new file descriptor */
3228 relayd->data_sock.sock.fd = fd;
3229 fd = -1; /* for eventual error paths */
3230 /* Assign version values. */
3231 relayd->data_sock.major = relayd_sock->major;
3232 relayd->data_sock.minor = relayd_sock->minor;
3233 break;
3234 default:
3235 ERR("Unknown relayd socket type (%d)", sock_type);
3236 ret = -1;
3237 goto error;
3238 }
3239
3240 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3241 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3242 relayd->net_seq_idx, fd);
3243
3244 /*
3245 * Add relayd socket pair to consumer data hashtable. If object already
3246 * exists or on error, the function gracefully returns.
3247 */
3248 add_relayd(relayd);
3249
3250 /* All good! */
3251 return 0;
3252
3253 error:
3254 /* Close received socket if valid. */
3255 if (fd >= 0) {
3256 if (close(fd)) {
3257 PERROR("close received socket");
3258 }
3259 }
3260
3261 if (relayd_created) {
3262 free(relayd);
3263 }
3264
3265 return ret;
3266 }
3267
3268 /*
3269 * Try to lock the stream mutex.
3270 *
3271 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3272 */
3273 static int stream_try_lock(struct lttng_consumer_stream *stream)
3274 {
3275 int ret;
3276
3277 assert(stream);
3278
3279 /*
3280 * Try to lock the stream mutex. On failure, we know that the stream is
3281 * being used else where hence there is data still being extracted.
3282 */
3283 ret = pthread_mutex_trylock(&stream->lock);
3284 if (ret) {
3285 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3286 ret = 0;
3287 goto end;
3288 }
3289
3290 ret = 1;
3291
3292 end:
3293 return ret;
3294 }
3295
3296 /*
3297 * Search for a relayd associated to the session id and return the reference.
3298 *
3299 * A rcu read side lock MUST be acquire before calling this function and locked
3300 * until the relayd object is no longer necessary.
3301 */
3302 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3303 {
3304 struct lttng_ht_iter iter;
3305 struct consumer_relayd_sock_pair *relayd = NULL;
3306
3307 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3308 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3309 node.node) {
3310 /*
3311 * Check by sessiond id which is unique here where the relayd session
3312 * id might not be when having multiple relayd.
3313 */
3314 if (relayd->sessiond_session_id == id) {
3315 /* Found the relayd. There can be only one per id. */
3316 goto found;
3317 }
3318 }
3319
3320 return NULL;
3321
3322 found:
3323 return relayd;
3324 }
3325
3326 /*
3327 * Check if for a given session id there is still data needed to be extract
3328 * from the buffers.
3329 *
3330 * Return 1 if data is pending or else 0 meaning ready to be read.
3331 */
3332 int consumer_data_pending(uint64_t id)
3333 {
3334 int ret;
3335 struct lttng_ht_iter iter;
3336 struct lttng_ht *ht;
3337 struct lttng_consumer_stream *stream;
3338 struct consumer_relayd_sock_pair *relayd = NULL;
3339 int (*data_pending)(struct lttng_consumer_stream *);
3340
3341 DBG("Consumer data pending command on session id %" PRIu64, id);
3342
3343 rcu_read_lock();
3344 pthread_mutex_lock(&consumer_data.lock);
3345
3346 switch (consumer_data.type) {
3347 case LTTNG_CONSUMER_KERNEL:
3348 data_pending = lttng_kconsumer_data_pending;
3349 break;
3350 case LTTNG_CONSUMER32_UST:
3351 case LTTNG_CONSUMER64_UST:
3352 data_pending = lttng_ustconsumer_data_pending;
3353 break;
3354 default:
3355 ERR("Unknown consumer data type");
3356 assert(0);
3357 }
3358
3359 /* Ease our life a bit */
3360 ht = consumer_data.stream_list_ht;
3361
3362 relayd = find_relayd_by_session_id(id);
3363 if (relayd) {
3364 /* Send init command for data pending. */
3365 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3366 ret = relayd_begin_data_pending(&relayd->control_sock,
3367 relayd->relayd_session_id);
3368 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3369 if (ret < 0) {
3370 /* Communication error thus the relayd so no data pending. */
3371 goto data_not_pending;
3372 }
3373 }
3374
3375 cds_lfht_for_each_entry_duplicate(ht->ht,
3376 ht->hash_fct(&id, lttng_ht_seed),
3377 ht->match_fct, &id,
3378 &iter.iter, stream, node_session_id.node) {
3379 /* If this call fails, the stream is being used hence data pending. */
3380 ret = stream_try_lock(stream);
3381 if (!ret) {
3382 goto data_pending;
3383 }
3384
3385 /*
3386 * A removed node from the hash table indicates that the stream has
3387 * been deleted thus having a guarantee that the buffers are closed
3388 * on the consumer side. However, data can still be transmitted
3389 * over the network so don't skip the relayd check.
3390 */
3391 ret = cds_lfht_is_node_deleted(&stream->node.node);
3392 if (!ret) {
3393 /* Check the stream if there is data in the buffers. */
3394 ret = data_pending(stream);
3395 if (ret == 1) {
3396 pthread_mutex_unlock(&stream->lock);
3397 goto data_pending;
3398 }
3399 }
3400
3401 /* Relayd check */
3402 if (relayd) {
3403 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3404 if (stream->metadata_flag) {
3405 ret = relayd_quiescent_control(&relayd->control_sock,
3406 stream->relayd_stream_id);
3407 } else {
3408 ret = relayd_data_pending(&relayd->control_sock,
3409 stream->relayd_stream_id,
3410 stream->next_net_seq_num - 1);
3411 }
3412 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3413 if (ret == 1) {
3414 pthread_mutex_unlock(&stream->lock);
3415 goto data_pending;
3416 }
3417 }
3418 pthread_mutex_unlock(&stream->lock);
3419 }
3420
3421 if (relayd) {
3422 unsigned int is_data_inflight = 0;
3423
3424 /* Send init command for data pending. */
3425 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3426 ret = relayd_end_data_pending(&relayd->control_sock,
3427 relayd->relayd_session_id, &is_data_inflight);
3428 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3429 if (ret < 0) {
3430 goto data_not_pending;
3431 }
3432 if (is_data_inflight) {
3433 goto data_pending;
3434 }
3435 }
3436
3437 /*
3438 * Finding _no_ node in the hash table and no inflight data means that the
3439 * stream(s) have been removed thus data is guaranteed to be available for
3440 * analysis from the trace files.
3441 */
3442
3443 data_not_pending:
3444 /* Data is available to be read by a viewer. */
3445 pthread_mutex_unlock(&consumer_data.lock);
3446 rcu_read_unlock();
3447 return 0;
3448
3449 data_pending:
3450 /* Data is still being extracted from buffers. */
3451 pthread_mutex_unlock(&consumer_data.lock);
3452 rcu_read_unlock();
3453 return 1;
3454 }
3455
3456 /*
3457 * Send a ret code status message to the sessiond daemon.
3458 *
3459 * Return the sendmsg() return value.
3460 */
3461 int consumer_send_status_msg(int sock, int ret_code)
3462 {
3463 struct lttcomm_consumer_status_msg msg;
3464
3465 msg.ret_code = ret_code;
3466
3467 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3468 }
3469
3470 /*
3471 * Send a channel status message to the sessiond daemon.
3472 *
3473 * Return the sendmsg() return value.
3474 */
3475 int consumer_send_status_channel(int sock,
3476 struct lttng_consumer_channel *channel)
3477 {
3478 struct lttcomm_consumer_status_channel msg;
3479
3480 assert(sock >= 0);
3481
3482 if (!channel) {
3483 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3484 } else {
3485 msg.ret_code = LTTNG_OK;
3486 msg.key = channel->key;
3487 msg.stream_count = channel->streams.count;
3488 }
3489
3490 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3491 }
This page took 0.093828 seconds and 3 git commands to generate.