Fix: posix_fadvise wrapper returns -ENOSYS on FreeBSD
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #define _LGPL_SOURCE
22 #include <assert.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/types.h>
30 #include <unistd.h>
31 #include <inttypes.h>
32 #include <signal.h>
33
34 #include <bin/lttng-consumerd/health-consumerd.h>
35 #include <common/common.h>
36 #include <common/utils.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer-timer.h>
47
48 #include "consumer.h"
49 #include "consumer-stream.h"
50 #include "consumer-testpoint.h"
51 #include "align.h"
52
53 struct lttng_consumer_global_data consumer_data = {
54 .stream_count = 0,
55 .need_update = 1,
56 .type = LTTNG_CONSUMER_UNKNOWN,
57 };
58
59 enum consumer_channel_action {
60 CONSUMER_CHANNEL_ADD,
61 CONSUMER_CHANNEL_DEL,
62 CONSUMER_CHANNEL_QUIT,
63 };
64
65 struct consumer_channel_msg {
66 enum consumer_channel_action action;
67 struct lttng_consumer_channel *chan; /* add */
68 uint64_t key; /* del */
69 };
70
71 /*
72 * Flag to inform the polling thread to quit when all fd hung up. Updated by
73 * the consumer_thread_receive_fds when it notices that all fds has hung up.
74 * Also updated by the signal handler (consumer_should_exit()). Read by the
75 * polling threads.
76 */
77 volatile int consumer_quit;
78
79 /*
80 * Global hash table containing respectively metadata and data streams. The
81 * stream element in this ht should only be updated by the metadata poll thread
82 * for the metadata and the data poll thread for the data.
83 */
84 static struct lttng_ht *metadata_ht;
85 static struct lttng_ht *data_ht;
86
87 /*
88 * Notify a thread lttng pipe to poll back again. This usually means that some
89 * global state has changed so we just send back the thread in a poll wait
90 * call.
91 */
92 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
93 {
94 struct lttng_consumer_stream *null_stream = NULL;
95
96 assert(pipe);
97
98 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
99 }
100
101 static void notify_health_quit_pipe(int *pipe)
102 {
103 ssize_t ret;
104
105 ret = lttng_write(pipe[1], "4", 1);
106 if (ret < 1) {
107 PERROR("write consumer health quit");
108 }
109 }
110
111 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
112 struct lttng_consumer_channel *chan,
113 uint64_t key,
114 enum consumer_channel_action action)
115 {
116 struct consumer_channel_msg msg;
117 ssize_t ret;
118
119 memset(&msg, 0, sizeof(msg));
120
121 msg.action = action;
122 msg.chan = chan;
123 msg.key = key;
124 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
125 if (ret < sizeof(msg)) {
126 PERROR("notify_channel_pipe write error");
127 }
128 }
129
130 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
131 uint64_t key)
132 {
133 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
134 }
135
136 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
137 struct lttng_consumer_channel **chan,
138 uint64_t *key,
139 enum consumer_channel_action *action)
140 {
141 struct consumer_channel_msg msg;
142 ssize_t ret;
143
144 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
145 if (ret < sizeof(msg)) {
146 ret = -1;
147 goto error;
148 }
149 *action = msg.action;
150 *chan = msg.chan;
151 *key = msg.key;
152 error:
153 return (int) ret;
154 }
155
156 /*
157 * Cleanup the stream list of a channel. Those streams are not yet globally
158 * visible
159 */
160 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
161 {
162 struct lttng_consumer_stream *stream, *stmp;
163
164 assert(channel);
165
166 /* Delete streams that might have been left in the stream list. */
167 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
168 send_node) {
169 cds_list_del(&stream->send_node);
170 /*
171 * Once a stream is added to this list, the buffers were created so we
172 * have a guarantee that this call will succeed. Setting the monitor
173 * mode to 0 so we don't lock nor try to delete the stream from the
174 * global hash table.
175 */
176 stream->monitor = 0;
177 consumer_stream_destroy(stream, NULL);
178 }
179 }
180
181 /*
182 * Find a stream. The consumer_data.lock must be locked during this
183 * call.
184 */
185 static struct lttng_consumer_stream *find_stream(uint64_t key,
186 struct lttng_ht *ht)
187 {
188 struct lttng_ht_iter iter;
189 struct lttng_ht_node_u64 *node;
190 struct lttng_consumer_stream *stream = NULL;
191
192 assert(ht);
193
194 /* -1ULL keys are lookup failures */
195 if (key == (uint64_t) -1ULL) {
196 return NULL;
197 }
198
199 rcu_read_lock();
200
201 lttng_ht_lookup(ht, &key, &iter);
202 node = lttng_ht_iter_get_node_u64(&iter);
203 if (node != NULL) {
204 stream = caa_container_of(node, struct lttng_consumer_stream, node);
205 }
206
207 rcu_read_unlock();
208
209 return stream;
210 }
211
212 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
213 {
214 struct lttng_consumer_stream *stream;
215
216 rcu_read_lock();
217 stream = find_stream(key, ht);
218 if (stream) {
219 stream->key = (uint64_t) -1ULL;
220 /*
221 * We don't want the lookup to match, but we still need
222 * to iterate on this stream when iterating over the hash table. Just
223 * change the node key.
224 */
225 stream->node.key = (uint64_t) -1ULL;
226 }
227 rcu_read_unlock();
228 }
229
230 /*
231 * Return a channel object for the given key.
232 *
233 * RCU read side lock MUST be acquired before calling this function and
234 * protects the channel ptr.
235 */
236 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
237 {
238 struct lttng_ht_iter iter;
239 struct lttng_ht_node_u64 *node;
240 struct lttng_consumer_channel *channel = NULL;
241
242 /* -1ULL keys are lookup failures */
243 if (key == (uint64_t) -1ULL) {
244 return NULL;
245 }
246
247 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
248 node = lttng_ht_iter_get_node_u64(&iter);
249 if (node != NULL) {
250 channel = caa_container_of(node, struct lttng_consumer_channel, node);
251 }
252
253 return channel;
254 }
255
256 /*
257 * There is a possibility that the consumer does not have enough time between
258 * the close of the channel on the session daemon and the cleanup in here thus
259 * once we have a channel add with an existing key, we know for sure that this
260 * channel will eventually get cleaned up by all streams being closed.
261 *
262 * This function just nullifies the already existing channel key.
263 */
264 static void steal_channel_key(uint64_t key)
265 {
266 struct lttng_consumer_channel *channel;
267
268 rcu_read_lock();
269 channel = consumer_find_channel(key);
270 if (channel) {
271 channel->key = (uint64_t) -1ULL;
272 /*
273 * We don't want the lookup to match, but we still need to iterate on
274 * this channel when iterating over the hash table. Just change the
275 * node key.
276 */
277 channel->node.key = (uint64_t) -1ULL;
278 }
279 rcu_read_unlock();
280 }
281
282 static void free_channel_rcu(struct rcu_head *head)
283 {
284 struct lttng_ht_node_u64 *node =
285 caa_container_of(head, struct lttng_ht_node_u64, head);
286 struct lttng_consumer_channel *channel =
287 caa_container_of(node, struct lttng_consumer_channel, node);
288
289 switch (consumer_data.type) {
290 case LTTNG_CONSUMER_KERNEL:
291 break;
292 case LTTNG_CONSUMER32_UST:
293 case LTTNG_CONSUMER64_UST:
294 lttng_ustconsumer_free_channel(channel);
295 break;
296 default:
297 ERR("Unknown consumer_data type");
298 abort();
299 }
300 free(channel);
301 }
302
303 /*
304 * RCU protected relayd socket pair free.
305 */
306 static void free_relayd_rcu(struct rcu_head *head)
307 {
308 struct lttng_ht_node_u64 *node =
309 caa_container_of(head, struct lttng_ht_node_u64, head);
310 struct consumer_relayd_sock_pair *relayd =
311 caa_container_of(node, struct consumer_relayd_sock_pair, node);
312
313 /*
314 * Close all sockets. This is done in the call RCU since we don't want the
315 * socket fds to be reassigned thus potentially creating bad state of the
316 * relayd object.
317 *
318 * We do not have to lock the control socket mutex here since at this stage
319 * there is no one referencing to this relayd object.
320 */
321 (void) relayd_close(&relayd->control_sock);
322 (void) relayd_close(&relayd->data_sock);
323
324 free(relayd);
325 }
326
327 /*
328 * Destroy and free relayd socket pair object.
329 */
330 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
331 {
332 int ret;
333 struct lttng_ht_iter iter;
334
335 if (relayd == NULL) {
336 return;
337 }
338
339 DBG("Consumer destroy and close relayd socket pair");
340
341 iter.iter.node = &relayd->node.node;
342 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
343 if (ret != 0) {
344 /* We assume the relayd is being or is destroyed */
345 return;
346 }
347
348 /* RCU free() call */
349 call_rcu(&relayd->node.head, free_relayd_rcu);
350 }
351
352 /*
353 * Remove a channel from the global list protected by a mutex. This function is
354 * also responsible for freeing its data structures.
355 */
356 void consumer_del_channel(struct lttng_consumer_channel *channel)
357 {
358 int ret;
359 struct lttng_ht_iter iter;
360
361 DBG("Consumer delete channel key %" PRIu64, channel->key);
362
363 pthread_mutex_lock(&consumer_data.lock);
364 pthread_mutex_lock(&channel->lock);
365
366 /* Destroy streams that might have been left in the stream list. */
367 clean_channel_stream_list(channel);
368
369 if (channel->live_timer_enabled == 1) {
370 consumer_timer_live_stop(channel);
371 }
372
373 switch (consumer_data.type) {
374 case LTTNG_CONSUMER_KERNEL:
375 break;
376 case LTTNG_CONSUMER32_UST:
377 case LTTNG_CONSUMER64_UST:
378 lttng_ustconsumer_del_channel(channel);
379 break;
380 default:
381 ERR("Unknown consumer_data type");
382 assert(0);
383 goto end;
384 }
385
386 rcu_read_lock();
387 iter.iter.node = &channel->node.node;
388 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
389 assert(!ret);
390 rcu_read_unlock();
391
392 call_rcu(&channel->node.head, free_channel_rcu);
393 end:
394 pthread_mutex_unlock(&channel->lock);
395 pthread_mutex_unlock(&consumer_data.lock);
396 }
397
398 /*
399 * Iterate over the relayd hash table and destroy each element. Finally,
400 * destroy the whole hash table.
401 */
402 static void cleanup_relayd_ht(void)
403 {
404 struct lttng_ht_iter iter;
405 struct consumer_relayd_sock_pair *relayd;
406
407 rcu_read_lock();
408
409 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
410 node.node) {
411 consumer_destroy_relayd(relayd);
412 }
413
414 rcu_read_unlock();
415
416 lttng_ht_destroy(consumer_data.relayd_ht);
417 }
418
419 /*
420 * Update the end point status of all streams having the given network sequence
421 * index (relayd index).
422 *
423 * It's atomically set without having the stream mutex locked which is fine
424 * because we handle the write/read race with a pipe wakeup for each thread.
425 */
426 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
427 enum consumer_endpoint_status status)
428 {
429 struct lttng_ht_iter iter;
430 struct lttng_consumer_stream *stream;
431
432 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
433
434 rcu_read_lock();
435
436 /* Let's begin with metadata */
437 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
438 if (stream->net_seq_idx == net_seq_idx) {
439 uatomic_set(&stream->endpoint_status, status);
440 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
441 }
442 }
443
444 /* Follow up by the data streams */
445 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
446 if (stream->net_seq_idx == net_seq_idx) {
447 uatomic_set(&stream->endpoint_status, status);
448 DBG("Delete flag set to data stream %d", stream->wait_fd);
449 }
450 }
451 rcu_read_unlock();
452 }
453
454 /*
455 * Cleanup a relayd object by flagging every associated streams for deletion,
456 * destroying the object meaning removing it from the relayd hash table,
457 * closing the sockets and freeing the memory in a RCU call.
458 *
459 * If a local data context is available, notify the threads that the streams'
460 * state have changed.
461 */
462 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
463 struct lttng_consumer_local_data *ctx)
464 {
465 uint64_t netidx;
466
467 assert(relayd);
468
469 DBG("Cleaning up relayd sockets");
470
471 /* Save the net sequence index before destroying the object */
472 netidx = relayd->net_seq_idx;
473
474 /*
475 * Delete the relayd from the relayd hash table, close the sockets and free
476 * the object in a RCU call.
477 */
478 consumer_destroy_relayd(relayd);
479
480 /* Set inactive endpoint to all streams */
481 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
482
483 /*
484 * With a local data context, notify the threads that the streams' state
485 * have changed. The write() action on the pipe acts as an "implicit"
486 * memory barrier ordering the updates of the end point status from the
487 * read of this status which happens AFTER receiving this notify.
488 */
489 if (ctx) {
490 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
491 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
492 }
493 }
494
495 /*
496 * Flag a relayd socket pair for destruction. Destroy it if the refcount
497 * reaches zero.
498 *
499 * RCU read side lock MUST be aquired before calling this function.
500 */
501 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
502 {
503 assert(relayd);
504
505 /* Set destroy flag for this object */
506 uatomic_set(&relayd->destroy_flag, 1);
507
508 /* Destroy the relayd if refcount is 0 */
509 if (uatomic_read(&relayd->refcount) == 0) {
510 consumer_destroy_relayd(relayd);
511 }
512 }
513
514 /*
515 * Completly destroy stream from every visiable data structure and the given
516 * hash table if one.
517 *
518 * One this call returns, the stream object is not longer usable nor visible.
519 */
520 void consumer_del_stream(struct lttng_consumer_stream *stream,
521 struct lttng_ht *ht)
522 {
523 consumer_stream_destroy(stream, ht);
524 }
525
526 /*
527 * XXX naming of del vs destroy is all mixed up.
528 */
529 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
530 {
531 consumer_stream_destroy(stream, data_ht);
532 }
533
534 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, metadata_ht);
537 }
538
539 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
540 uint64_t stream_key,
541 enum lttng_consumer_stream_state state,
542 const char *channel_name,
543 uid_t uid,
544 gid_t gid,
545 uint64_t relayd_id,
546 uint64_t session_id,
547 int cpu,
548 int *alloc_ret,
549 enum consumer_channel_type type,
550 unsigned int monitor)
551 {
552 int ret;
553 struct lttng_consumer_stream *stream;
554
555 stream = zmalloc(sizeof(*stream));
556 if (stream == NULL) {
557 PERROR("malloc struct lttng_consumer_stream");
558 ret = -ENOMEM;
559 goto end;
560 }
561
562 rcu_read_lock();
563
564 stream->key = stream_key;
565 stream->out_fd = -1;
566 stream->out_fd_offset = 0;
567 stream->output_written = 0;
568 stream->state = state;
569 stream->uid = uid;
570 stream->gid = gid;
571 stream->net_seq_idx = relayd_id;
572 stream->session_id = session_id;
573 stream->monitor = monitor;
574 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
575 stream->index_fd = -1;
576 pthread_mutex_init(&stream->lock, NULL);
577 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
578
579 /* If channel is the metadata, flag this stream as metadata. */
580 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
581 stream->metadata_flag = 1;
582 /* Metadata is flat out. */
583 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
584 /* Live rendez-vous point. */
585 pthread_cond_init(&stream->metadata_rdv, NULL);
586 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
587 } else {
588 /* Format stream name to <channel_name>_<cpu_number> */
589 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
590 channel_name, cpu);
591 if (ret < 0) {
592 PERROR("snprintf stream name");
593 goto error;
594 }
595 }
596
597 /* Key is always the wait_fd for streams. */
598 lttng_ht_node_init_u64(&stream->node, stream->key);
599
600 /* Init node per channel id key */
601 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
602
603 /* Init session id node with the stream session id */
604 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
605
606 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
607 " relayd_id %" PRIu64 ", session_id %" PRIu64,
608 stream->name, stream->key, channel_key,
609 stream->net_seq_idx, stream->session_id);
610
611 rcu_read_unlock();
612 return stream;
613
614 error:
615 rcu_read_unlock();
616 free(stream);
617 end:
618 if (alloc_ret) {
619 *alloc_ret = ret;
620 }
621 return NULL;
622 }
623
624 /*
625 * Add a stream to the global list protected by a mutex.
626 */
627 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
628 {
629 struct lttng_ht *ht = data_ht;
630 int ret = 0;
631
632 assert(stream);
633 assert(ht);
634
635 DBG3("Adding consumer stream %" PRIu64, stream->key);
636
637 pthread_mutex_lock(&consumer_data.lock);
638 pthread_mutex_lock(&stream->chan->lock);
639 pthread_mutex_lock(&stream->chan->timer_lock);
640 pthread_mutex_lock(&stream->lock);
641 rcu_read_lock();
642
643 /* Steal stream identifier to avoid having streams with the same key */
644 steal_stream_key(stream->key, ht);
645
646 lttng_ht_add_unique_u64(ht, &stream->node);
647
648 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
649 &stream->node_channel_id);
650
651 /*
652 * Add stream to the stream_list_ht of the consumer data. No need to steal
653 * the key since the HT does not use it and we allow to add redundant keys
654 * into this table.
655 */
656 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
657
658 /*
659 * When nb_init_stream_left reaches 0, we don't need to trigger any action
660 * in terms of destroying the associated channel, because the action that
661 * causes the count to become 0 also causes a stream to be added. The
662 * channel deletion will thus be triggered by the following removal of this
663 * stream.
664 */
665 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
666 /* Increment refcount before decrementing nb_init_stream_left */
667 cmm_smp_wmb();
668 uatomic_dec(&stream->chan->nb_init_stream_left);
669 }
670
671 /* Update consumer data once the node is inserted. */
672 consumer_data.stream_count++;
673 consumer_data.need_update = 1;
674
675 rcu_read_unlock();
676 pthread_mutex_unlock(&stream->lock);
677 pthread_mutex_unlock(&stream->chan->timer_lock);
678 pthread_mutex_unlock(&stream->chan->lock);
679 pthread_mutex_unlock(&consumer_data.lock);
680
681 return ret;
682 }
683
684 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
685 {
686 consumer_del_stream(stream, data_ht);
687 }
688
689 /*
690 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
691 * be acquired before calling this.
692 */
693 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
694 {
695 int ret = 0;
696 struct lttng_ht_node_u64 *node;
697 struct lttng_ht_iter iter;
698
699 assert(relayd);
700
701 lttng_ht_lookup(consumer_data.relayd_ht,
702 &relayd->net_seq_idx, &iter);
703 node = lttng_ht_iter_get_node_u64(&iter);
704 if (node != NULL) {
705 goto end;
706 }
707 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
708
709 end:
710 return ret;
711 }
712
713 /*
714 * Allocate and return a consumer relayd socket.
715 */
716 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
717 uint64_t net_seq_idx)
718 {
719 struct consumer_relayd_sock_pair *obj = NULL;
720
721 /* net sequence index of -1 is a failure */
722 if (net_seq_idx == (uint64_t) -1ULL) {
723 goto error;
724 }
725
726 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
727 if (obj == NULL) {
728 PERROR("zmalloc relayd sock");
729 goto error;
730 }
731
732 obj->net_seq_idx = net_seq_idx;
733 obj->refcount = 0;
734 obj->destroy_flag = 0;
735 obj->control_sock.sock.fd = -1;
736 obj->data_sock.sock.fd = -1;
737 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
738 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
739
740 error:
741 return obj;
742 }
743
744 /*
745 * Find a relayd socket pair in the global consumer data.
746 *
747 * Return the object if found else NULL.
748 * RCU read-side lock must be held across this call and while using the
749 * returned object.
750 */
751 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
752 {
753 struct lttng_ht_iter iter;
754 struct lttng_ht_node_u64 *node;
755 struct consumer_relayd_sock_pair *relayd = NULL;
756
757 /* Negative keys are lookup failures */
758 if (key == (uint64_t) -1ULL) {
759 goto error;
760 }
761
762 lttng_ht_lookup(consumer_data.relayd_ht, &key,
763 &iter);
764 node = lttng_ht_iter_get_node_u64(&iter);
765 if (node != NULL) {
766 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
767 }
768
769 error:
770 return relayd;
771 }
772
773 /*
774 * Find a relayd and send the stream
775 *
776 * Returns 0 on success, < 0 on error
777 */
778 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
779 char *path)
780 {
781 int ret = 0;
782 struct consumer_relayd_sock_pair *relayd;
783
784 assert(stream);
785 assert(stream->net_seq_idx != -1ULL);
786 assert(path);
787
788 /* The stream is not metadata. Get relayd reference if exists. */
789 rcu_read_lock();
790 relayd = consumer_find_relayd(stream->net_seq_idx);
791 if (relayd != NULL) {
792 /* Add stream on the relayd */
793 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
794 ret = relayd_add_stream(&relayd->control_sock, stream->name,
795 path, &stream->relayd_stream_id,
796 stream->chan->tracefile_size, stream->chan->tracefile_count);
797 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
798 if (ret < 0) {
799 goto end;
800 }
801
802 uatomic_inc(&relayd->refcount);
803 stream->sent_to_relayd = 1;
804 } else {
805 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
806 stream->key, stream->net_seq_idx);
807 ret = -1;
808 goto end;
809 }
810
811 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
812 stream->name, stream->key, stream->net_seq_idx);
813
814 end:
815 rcu_read_unlock();
816 return ret;
817 }
818
819 /*
820 * Find a relayd and send the streams sent message
821 *
822 * Returns 0 on success, < 0 on error
823 */
824 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
825 {
826 int ret = 0;
827 struct consumer_relayd_sock_pair *relayd;
828
829 assert(net_seq_idx != -1ULL);
830
831 /* The stream is not metadata. Get relayd reference if exists. */
832 rcu_read_lock();
833 relayd = consumer_find_relayd(net_seq_idx);
834 if (relayd != NULL) {
835 /* Add stream on the relayd */
836 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
837 ret = relayd_streams_sent(&relayd->control_sock);
838 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
839 if (ret < 0) {
840 goto end;
841 }
842 } else {
843 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
844 net_seq_idx);
845 ret = -1;
846 goto end;
847 }
848
849 ret = 0;
850 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
851
852 end:
853 rcu_read_unlock();
854 return ret;
855 }
856
857 /*
858 * Find a relayd and close the stream
859 */
860 void close_relayd_stream(struct lttng_consumer_stream *stream)
861 {
862 struct consumer_relayd_sock_pair *relayd;
863
864 /* The stream is not metadata. Get relayd reference if exists. */
865 rcu_read_lock();
866 relayd = consumer_find_relayd(stream->net_seq_idx);
867 if (relayd) {
868 consumer_stream_relayd_close(stream, relayd);
869 }
870 rcu_read_unlock();
871 }
872
873 /*
874 * Handle stream for relayd transmission if the stream applies for network
875 * streaming where the net sequence index is set.
876 *
877 * Return destination file descriptor or negative value on error.
878 */
879 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
880 size_t data_size, unsigned long padding,
881 struct consumer_relayd_sock_pair *relayd)
882 {
883 int outfd = -1, ret;
884 struct lttcomm_relayd_data_hdr data_hdr;
885
886 /* Safety net */
887 assert(stream);
888 assert(relayd);
889
890 /* Reset data header */
891 memset(&data_hdr, 0, sizeof(data_hdr));
892
893 if (stream->metadata_flag) {
894 /* Caller MUST acquire the relayd control socket lock */
895 ret = relayd_send_metadata(&relayd->control_sock, data_size);
896 if (ret < 0) {
897 goto error;
898 }
899
900 /* Metadata are always sent on the control socket. */
901 outfd = relayd->control_sock.sock.fd;
902 } else {
903 /* Set header with stream information */
904 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
905 data_hdr.data_size = htobe32(data_size);
906 data_hdr.padding_size = htobe32(padding);
907 /*
908 * Note that net_seq_num below is assigned with the *current* value of
909 * next_net_seq_num and only after that the next_net_seq_num will be
910 * increment. This is why when issuing a command on the relayd using
911 * this next value, 1 should always be substracted in order to compare
912 * the last seen sequence number on the relayd side to the last sent.
913 */
914 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
915 /* Other fields are zeroed previously */
916
917 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
918 sizeof(data_hdr));
919 if (ret < 0) {
920 goto error;
921 }
922
923 ++stream->next_net_seq_num;
924
925 /* Set to go on data socket */
926 outfd = relayd->data_sock.sock.fd;
927 }
928
929 error:
930 return outfd;
931 }
932
933 /*
934 * Allocate and return a new lttng_consumer_channel object using the given key
935 * to initialize the hash table node.
936 *
937 * On error, return NULL.
938 */
939 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
940 uint64_t session_id,
941 const char *pathname,
942 const char *name,
943 uid_t uid,
944 gid_t gid,
945 uint64_t relayd_id,
946 enum lttng_event_output output,
947 uint64_t tracefile_size,
948 uint64_t tracefile_count,
949 uint64_t session_id_per_pid,
950 unsigned int monitor,
951 unsigned int live_timer_interval,
952 const char *root_shm_path,
953 const char *shm_path)
954 {
955 struct lttng_consumer_channel *channel;
956
957 channel = zmalloc(sizeof(*channel));
958 if (channel == NULL) {
959 PERROR("malloc struct lttng_consumer_channel");
960 goto end;
961 }
962
963 channel->key = key;
964 channel->refcount = 0;
965 channel->session_id = session_id;
966 channel->session_id_per_pid = session_id_per_pid;
967 channel->uid = uid;
968 channel->gid = gid;
969 channel->relayd_id = relayd_id;
970 channel->tracefile_size = tracefile_size;
971 channel->tracefile_count = tracefile_count;
972 channel->monitor = monitor;
973 channel->live_timer_interval = live_timer_interval;
974 pthread_mutex_init(&channel->lock, NULL);
975 pthread_mutex_init(&channel->timer_lock, NULL);
976
977 switch (output) {
978 case LTTNG_EVENT_SPLICE:
979 channel->output = CONSUMER_CHANNEL_SPLICE;
980 break;
981 case LTTNG_EVENT_MMAP:
982 channel->output = CONSUMER_CHANNEL_MMAP;
983 break;
984 default:
985 assert(0);
986 free(channel);
987 channel = NULL;
988 goto end;
989 }
990
991 /*
992 * In monitor mode, the streams associated with the channel will be put in
993 * a special list ONLY owned by this channel. So, the refcount is set to 1
994 * here meaning that the channel itself has streams that are referenced.
995 *
996 * On a channel deletion, once the channel is no longer visible, the
997 * refcount is decremented and checked for a zero value to delete it. With
998 * streams in no monitor mode, it will now be safe to destroy the channel.
999 */
1000 if (!channel->monitor) {
1001 channel->refcount = 1;
1002 }
1003
1004 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1005 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1006
1007 strncpy(channel->name, name, sizeof(channel->name));
1008 channel->name[sizeof(channel->name) - 1] = '\0';
1009
1010 if (root_shm_path) {
1011 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1012 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1013 }
1014 if (shm_path) {
1015 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1016 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1017 }
1018
1019 lttng_ht_node_init_u64(&channel->node, channel->key);
1020
1021 channel->wait_fd = -1;
1022
1023 CDS_INIT_LIST_HEAD(&channel->streams.head);
1024
1025 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
1026
1027 end:
1028 return channel;
1029 }
1030
1031 /*
1032 * Add a channel to the global list protected by a mutex.
1033 *
1034 * Always return 0 indicating success.
1035 */
1036 int consumer_add_channel(struct lttng_consumer_channel *channel,
1037 struct lttng_consumer_local_data *ctx)
1038 {
1039 pthread_mutex_lock(&consumer_data.lock);
1040 pthread_mutex_lock(&channel->lock);
1041 pthread_mutex_lock(&channel->timer_lock);
1042
1043 /*
1044 * This gives us a guarantee that the channel we are about to add to the
1045 * channel hash table will be unique. See this function comment on the why
1046 * we need to steel the channel key at this stage.
1047 */
1048 steal_channel_key(channel->key);
1049
1050 rcu_read_lock();
1051 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1052 rcu_read_unlock();
1053
1054 pthread_mutex_unlock(&channel->timer_lock);
1055 pthread_mutex_unlock(&channel->lock);
1056 pthread_mutex_unlock(&consumer_data.lock);
1057
1058 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1059 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1060 }
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * Allocate the pollfd structure and the local view of the out fds to avoid
1067 * doing a lookup in the linked list and concurrency issues when writing is
1068 * needed. Called with consumer_data.lock held.
1069 *
1070 * Returns the number of fds in the structures.
1071 */
1072 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1073 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1074 struct lttng_ht *ht)
1075 {
1076 int i = 0;
1077 struct lttng_ht_iter iter;
1078 struct lttng_consumer_stream *stream;
1079
1080 assert(ctx);
1081 assert(ht);
1082 assert(pollfd);
1083 assert(local_stream);
1084
1085 DBG("Updating poll fd array");
1086 rcu_read_lock();
1087 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1088 /*
1089 * Only active streams with an active end point can be added to the
1090 * poll set and local stream storage of the thread.
1091 *
1092 * There is a potential race here for endpoint_status to be updated
1093 * just after the check. However, this is OK since the stream(s) will
1094 * be deleted once the thread is notified that the end point state has
1095 * changed where this function will be called back again.
1096 */
1097 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1098 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1099 continue;
1100 }
1101 /*
1102 * This clobbers way too much the debug output. Uncomment that if you
1103 * need it for debugging purposes.
1104 *
1105 * DBG("Active FD %d", stream->wait_fd);
1106 */
1107 (*pollfd)[i].fd = stream->wait_fd;
1108 (*pollfd)[i].events = POLLIN | POLLPRI;
1109 local_stream[i] = stream;
1110 i++;
1111 }
1112 rcu_read_unlock();
1113
1114 /*
1115 * Insert the consumer_data_pipe at the end of the array and don't
1116 * increment i so nb_fd is the number of real FD.
1117 */
1118 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1119 (*pollfd)[i].events = POLLIN | POLLPRI;
1120
1121 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1122 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1123 return i;
1124 }
1125
1126 /*
1127 * Poll on the should_quit pipe and the command socket return -1 on
1128 * error, 1 if should exit, 0 if data is available on the command socket
1129 */
1130 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1131 {
1132 int num_rdy;
1133
1134 restart:
1135 num_rdy = poll(consumer_sockpoll, 2, -1);
1136 if (num_rdy == -1) {
1137 /*
1138 * Restart interrupted system call.
1139 */
1140 if (errno == EINTR) {
1141 goto restart;
1142 }
1143 PERROR("Poll error");
1144 return -1;
1145 }
1146 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1147 DBG("consumer_should_quit wake up");
1148 return 1;
1149 }
1150 return 0;
1151 }
1152
1153 /*
1154 * Set the error socket.
1155 */
1156 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1157 int sock)
1158 {
1159 ctx->consumer_error_socket = sock;
1160 }
1161
1162 /*
1163 * Set the command socket path.
1164 */
1165 void lttng_consumer_set_command_sock_path(
1166 struct lttng_consumer_local_data *ctx, char *sock)
1167 {
1168 ctx->consumer_command_sock_path = sock;
1169 }
1170
1171 /*
1172 * Send return code to the session daemon.
1173 * If the socket is not defined, we return 0, it is not a fatal error
1174 */
1175 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1176 {
1177 if (ctx->consumer_error_socket > 0) {
1178 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1179 sizeof(enum lttcomm_sessiond_command));
1180 }
1181
1182 return 0;
1183 }
1184
1185 /*
1186 * Close all the tracefiles and stream fds and MUST be called when all
1187 * instances are destroyed i.e. when all threads were joined and are ended.
1188 */
1189 void lttng_consumer_cleanup(void)
1190 {
1191 struct lttng_ht_iter iter;
1192 struct lttng_consumer_channel *channel;
1193
1194 rcu_read_lock();
1195
1196 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1197 node.node) {
1198 consumer_del_channel(channel);
1199 }
1200
1201 rcu_read_unlock();
1202
1203 lttng_ht_destroy(consumer_data.channel_ht);
1204
1205 cleanup_relayd_ht();
1206
1207 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1208
1209 /*
1210 * This HT contains streams that are freed by either the metadata thread or
1211 * the data thread so we do *nothing* on the hash table and simply destroy
1212 * it.
1213 */
1214 lttng_ht_destroy(consumer_data.stream_list_ht);
1215 }
1216
1217 /*
1218 * Called from signal handler.
1219 */
1220 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1221 {
1222 ssize_t ret;
1223
1224 consumer_quit = 1;
1225 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1226 if (ret < 1) {
1227 PERROR("write consumer quit");
1228 }
1229
1230 DBG("Consumer flag that it should quit");
1231 }
1232
1233 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1234 off_t orig_offset)
1235 {
1236 int ret;
1237 int outfd = stream->out_fd;
1238
1239 /*
1240 * This does a blocking write-and-wait on any page that belongs to the
1241 * subbuffer prior to the one we just wrote.
1242 * Don't care about error values, as these are just hints and ways to
1243 * limit the amount of page cache used.
1244 */
1245 if (orig_offset < stream->max_sb_size) {
1246 return;
1247 }
1248 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1249 stream->max_sb_size,
1250 SYNC_FILE_RANGE_WAIT_BEFORE
1251 | SYNC_FILE_RANGE_WRITE
1252 | SYNC_FILE_RANGE_WAIT_AFTER);
1253 /*
1254 * Give hints to the kernel about how we access the file:
1255 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1256 * we write it.
1257 *
1258 * We need to call fadvise again after the file grows because the
1259 * kernel does not seem to apply fadvise to non-existing parts of the
1260 * file.
1261 *
1262 * Call fadvise _after_ having waited for the page writeback to
1263 * complete because the dirty page writeback semantic is not well
1264 * defined. So it can be expected to lead to lower throughput in
1265 * streaming.
1266 */
1267 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1268 stream->max_sb_size, POSIX_FADV_DONTNEED);
1269 if (ret && ret != -ENOSYS) {
1270 errno = -ret;
1271 PERROR("posix_fadvise");
1272 }
1273 }
1274
1275 /*
1276 * Initialise the necessary environnement :
1277 * - create a new context
1278 * - create the poll_pipe
1279 * - create the should_quit pipe (for signal handler)
1280 * - create the thread pipe (for splice)
1281 *
1282 * Takes a function pointer as argument, this function is called when data is
1283 * available on a buffer. This function is responsible to do the
1284 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1285 * buffer configuration and then kernctl_put_next_subbuf at the end.
1286 *
1287 * Returns a pointer to the new context or NULL on error.
1288 */
1289 struct lttng_consumer_local_data *lttng_consumer_create(
1290 enum lttng_consumer_type type,
1291 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1292 struct lttng_consumer_local_data *ctx),
1293 int (*recv_channel)(struct lttng_consumer_channel *channel),
1294 int (*recv_stream)(struct lttng_consumer_stream *stream),
1295 int (*update_stream)(uint64_t stream_key, uint32_t state))
1296 {
1297 int ret;
1298 struct lttng_consumer_local_data *ctx;
1299
1300 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1301 consumer_data.type == type);
1302 consumer_data.type = type;
1303
1304 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1305 if (ctx == NULL) {
1306 PERROR("allocating context");
1307 goto error;
1308 }
1309
1310 ctx->consumer_error_socket = -1;
1311 ctx->consumer_metadata_socket = -1;
1312 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1313 /* assign the callbacks */
1314 ctx->on_buffer_ready = buffer_ready;
1315 ctx->on_recv_channel = recv_channel;
1316 ctx->on_recv_stream = recv_stream;
1317 ctx->on_update_stream = update_stream;
1318
1319 ctx->consumer_data_pipe = lttng_pipe_open(0);
1320 if (!ctx->consumer_data_pipe) {
1321 goto error_poll_pipe;
1322 }
1323
1324 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1325 if (!ctx->consumer_wakeup_pipe) {
1326 goto error_wakeup_pipe;
1327 }
1328
1329 ret = pipe(ctx->consumer_should_quit);
1330 if (ret < 0) {
1331 PERROR("Error creating recv pipe");
1332 goto error_quit_pipe;
1333 }
1334
1335 ret = pipe(ctx->consumer_channel_pipe);
1336 if (ret < 0) {
1337 PERROR("Error creating channel pipe");
1338 goto error_channel_pipe;
1339 }
1340
1341 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1342 if (!ctx->consumer_metadata_pipe) {
1343 goto error_metadata_pipe;
1344 }
1345
1346 return ctx;
1347
1348 error_metadata_pipe:
1349 utils_close_pipe(ctx->consumer_channel_pipe);
1350 error_channel_pipe:
1351 utils_close_pipe(ctx->consumer_should_quit);
1352 error_quit_pipe:
1353 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1354 error_wakeup_pipe:
1355 lttng_pipe_destroy(ctx->consumer_data_pipe);
1356 error_poll_pipe:
1357 free(ctx);
1358 error:
1359 return NULL;
1360 }
1361
1362 /*
1363 * Iterate over all streams of the hashtable and free them properly.
1364 */
1365 static void destroy_data_stream_ht(struct lttng_ht *ht)
1366 {
1367 struct lttng_ht_iter iter;
1368 struct lttng_consumer_stream *stream;
1369
1370 if (ht == NULL) {
1371 return;
1372 }
1373
1374 rcu_read_lock();
1375 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1376 /*
1377 * Ignore return value since we are currently cleaning up so any error
1378 * can't be handled.
1379 */
1380 (void) consumer_del_stream(stream, ht);
1381 }
1382 rcu_read_unlock();
1383
1384 lttng_ht_destroy(ht);
1385 }
1386
1387 /*
1388 * Iterate over all streams of the metadata hashtable and free them
1389 * properly.
1390 */
1391 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1392 {
1393 struct lttng_ht_iter iter;
1394 struct lttng_consumer_stream *stream;
1395
1396 if (ht == NULL) {
1397 return;
1398 }
1399
1400 rcu_read_lock();
1401 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1402 /*
1403 * Ignore return value since we are currently cleaning up so any error
1404 * can't be handled.
1405 */
1406 (void) consumer_del_metadata_stream(stream, ht);
1407 }
1408 rcu_read_unlock();
1409
1410 lttng_ht_destroy(ht);
1411 }
1412
1413 /*
1414 * Close all fds associated with the instance and free the context.
1415 */
1416 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1417 {
1418 int ret;
1419
1420 DBG("Consumer destroying it. Closing everything.");
1421
1422 if (!ctx) {
1423 return;
1424 }
1425
1426 destroy_data_stream_ht(data_ht);
1427 destroy_metadata_stream_ht(metadata_ht);
1428
1429 ret = close(ctx->consumer_error_socket);
1430 if (ret) {
1431 PERROR("close");
1432 }
1433 ret = close(ctx->consumer_metadata_socket);
1434 if (ret) {
1435 PERROR("close");
1436 }
1437 utils_close_pipe(ctx->consumer_channel_pipe);
1438 lttng_pipe_destroy(ctx->consumer_data_pipe);
1439 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1440 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1441 utils_close_pipe(ctx->consumer_should_quit);
1442
1443 unlink(ctx->consumer_command_sock_path);
1444 free(ctx);
1445 }
1446
1447 /*
1448 * Write the metadata stream id on the specified file descriptor.
1449 */
1450 static int write_relayd_metadata_id(int fd,
1451 struct lttng_consumer_stream *stream,
1452 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1453 {
1454 ssize_t ret;
1455 struct lttcomm_relayd_metadata_payload hdr;
1456
1457 hdr.stream_id = htobe64(stream->relayd_stream_id);
1458 hdr.padding_size = htobe32(padding);
1459 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1460 if (ret < sizeof(hdr)) {
1461 /*
1462 * This error means that the fd's end is closed so ignore the PERROR
1463 * not to clubber the error output since this can happen in a normal
1464 * code path.
1465 */
1466 if (errno != EPIPE) {
1467 PERROR("write metadata stream id");
1468 }
1469 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1470 /*
1471 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1472 * handle writting the missing part so report that as an error and
1473 * don't lie to the caller.
1474 */
1475 ret = -1;
1476 goto end;
1477 }
1478 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1479 stream->relayd_stream_id, padding);
1480
1481 end:
1482 return (int) ret;
1483 }
1484
1485 /*
1486 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1487 * core function for writing trace buffers to either the local filesystem or
1488 * the network.
1489 *
1490 * It must be called with the stream lock held.
1491 *
1492 * Careful review MUST be put if any changes occur!
1493 *
1494 * Returns the number of bytes written
1495 */
1496 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1497 struct lttng_consumer_local_data *ctx,
1498 struct lttng_consumer_stream *stream, unsigned long len,
1499 unsigned long padding,
1500 struct ctf_packet_index *index)
1501 {
1502 unsigned long mmap_offset;
1503 void *mmap_base;
1504 ssize_t ret = 0;
1505 off_t orig_offset = stream->out_fd_offset;
1506 /* Default is on the disk */
1507 int outfd = stream->out_fd;
1508 struct consumer_relayd_sock_pair *relayd = NULL;
1509 unsigned int relayd_hang_up = 0;
1510
1511 /* RCU lock for the relayd pointer */
1512 rcu_read_lock();
1513
1514 /* Flag that the current stream if set for network streaming. */
1515 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1516 relayd = consumer_find_relayd(stream->net_seq_idx);
1517 if (relayd == NULL) {
1518 ret = -EPIPE;
1519 goto end;
1520 }
1521 }
1522
1523 /* get the offset inside the fd to mmap */
1524 switch (consumer_data.type) {
1525 case LTTNG_CONSUMER_KERNEL:
1526 mmap_base = stream->mmap_base;
1527 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1528 if (ret < 0) {
1529 ret = -errno;
1530 PERROR("tracer ctl get_mmap_read_offset");
1531 goto end;
1532 }
1533 break;
1534 case LTTNG_CONSUMER32_UST:
1535 case LTTNG_CONSUMER64_UST:
1536 mmap_base = lttng_ustctl_get_mmap_base(stream);
1537 if (!mmap_base) {
1538 ERR("read mmap get mmap base for stream %s", stream->name);
1539 ret = -EPERM;
1540 goto end;
1541 }
1542 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1543 if (ret != 0) {
1544 PERROR("tracer ctl get_mmap_read_offset");
1545 ret = -EINVAL;
1546 goto end;
1547 }
1548 break;
1549 default:
1550 ERR("Unknown consumer_data type");
1551 assert(0);
1552 }
1553
1554 /* Handle stream on the relayd if the output is on the network */
1555 if (relayd) {
1556 unsigned long netlen = len;
1557
1558 /*
1559 * Lock the control socket for the complete duration of the function
1560 * since from this point on we will use the socket.
1561 */
1562 if (stream->metadata_flag) {
1563 /* Metadata requires the control socket. */
1564 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1565 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1566 }
1567
1568 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1569 if (ret < 0) {
1570 relayd_hang_up = 1;
1571 goto write_error;
1572 }
1573 /* Use the returned socket. */
1574 outfd = ret;
1575
1576 /* Write metadata stream id before payload */
1577 if (stream->metadata_flag) {
1578 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1579 if (ret < 0) {
1580 relayd_hang_up = 1;
1581 goto write_error;
1582 }
1583 }
1584 } else {
1585 /* No streaming, we have to set the len with the full padding */
1586 len += padding;
1587
1588 /*
1589 * Check if we need to change the tracefile before writing the packet.
1590 */
1591 if (stream->chan->tracefile_size > 0 &&
1592 (stream->tracefile_size_current + len) >
1593 stream->chan->tracefile_size) {
1594 ret = utils_rotate_stream_file(stream->chan->pathname,
1595 stream->name, stream->chan->tracefile_size,
1596 stream->chan->tracefile_count, stream->uid, stream->gid,
1597 stream->out_fd, &(stream->tracefile_count_current),
1598 &stream->out_fd);
1599 if (ret < 0) {
1600 ERR("Rotating output file");
1601 goto end;
1602 }
1603 outfd = stream->out_fd;
1604
1605 if (stream->index_fd >= 0) {
1606 ret = close(stream->index_fd);
1607 if (ret < 0) {
1608 PERROR("Closing index");
1609 goto end;
1610 }
1611 stream->index_fd = -1;
1612 ret = index_create_file(stream->chan->pathname,
1613 stream->name, stream->uid, stream->gid,
1614 stream->chan->tracefile_size,
1615 stream->tracefile_count_current);
1616 if (ret < 0) {
1617 goto end;
1618 }
1619 stream->index_fd = ret;
1620 }
1621
1622 /* Reset current size because we just perform a rotation. */
1623 stream->tracefile_size_current = 0;
1624 stream->out_fd_offset = 0;
1625 orig_offset = 0;
1626 }
1627 stream->tracefile_size_current += len;
1628 if (index) {
1629 index->offset = htobe64(stream->out_fd_offset);
1630 }
1631 }
1632
1633 /*
1634 * This call guarantee that len or less is returned. It's impossible to
1635 * receive a ret value that is bigger than len.
1636 */
1637 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1638 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1639 if (ret < 0 || ((size_t) ret != len)) {
1640 /*
1641 * Report error to caller if nothing was written else at least send the
1642 * amount written.
1643 */
1644 if (ret < 0) {
1645 ret = -errno;
1646 }
1647 relayd_hang_up = 1;
1648
1649 /* Socket operation failed. We consider the relayd dead */
1650 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1651 /*
1652 * This is possible if the fd is closed on the other side
1653 * (outfd) or any write problem. It can be verbose a bit for a
1654 * normal execution if for instance the relayd is stopped
1655 * abruptly. This can happen so set this to a DBG statement.
1656 */
1657 DBG("Consumer mmap write detected relayd hang up");
1658 } else {
1659 /* Unhandled error, print it and stop function right now. */
1660 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1661 }
1662 goto write_error;
1663 }
1664 stream->output_written += ret;
1665
1666 /* This call is useless on a socket so better save a syscall. */
1667 if (!relayd) {
1668 /* This won't block, but will start writeout asynchronously */
1669 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1670 SYNC_FILE_RANGE_WRITE);
1671 stream->out_fd_offset += len;
1672 }
1673 lttng_consumer_sync_trace_file(stream, orig_offset);
1674
1675 write_error:
1676 /*
1677 * This is a special case that the relayd has closed its socket. Let's
1678 * cleanup the relayd object and all associated streams.
1679 */
1680 if (relayd && relayd_hang_up) {
1681 cleanup_relayd(relayd, ctx);
1682 }
1683
1684 end:
1685 /* Unlock only if ctrl socket used */
1686 if (relayd && stream->metadata_flag) {
1687 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1688 }
1689
1690 rcu_read_unlock();
1691 return ret;
1692 }
1693
1694 /*
1695 * Splice the data from the ring buffer to the tracefile.
1696 *
1697 * It must be called with the stream lock held.
1698 *
1699 * Returns the number of bytes spliced.
1700 */
1701 ssize_t lttng_consumer_on_read_subbuffer_splice(
1702 struct lttng_consumer_local_data *ctx,
1703 struct lttng_consumer_stream *stream, unsigned long len,
1704 unsigned long padding,
1705 struct ctf_packet_index *index)
1706 {
1707 ssize_t ret = 0, written = 0, ret_splice = 0;
1708 loff_t offset = 0;
1709 off_t orig_offset = stream->out_fd_offset;
1710 int fd = stream->wait_fd;
1711 /* Default is on the disk */
1712 int outfd = stream->out_fd;
1713 struct consumer_relayd_sock_pair *relayd = NULL;
1714 int *splice_pipe;
1715 unsigned int relayd_hang_up = 0;
1716
1717 switch (consumer_data.type) {
1718 case LTTNG_CONSUMER_KERNEL:
1719 break;
1720 case LTTNG_CONSUMER32_UST:
1721 case LTTNG_CONSUMER64_UST:
1722 /* Not supported for user space tracing */
1723 return -ENOSYS;
1724 default:
1725 ERR("Unknown consumer_data type");
1726 assert(0);
1727 }
1728
1729 /* RCU lock for the relayd pointer */
1730 rcu_read_lock();
1731
1732 /* Flag that the current stream if set for network streaming. */
1733 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1734 relayd = consumer_find_relayd(stream->net_seq_idx);
1735 if (relayd == NULL) {
1736 written = -ret;
1737 goto end;
1738 }
1739 }
1740 splice_pipe = stream->splice_pipe;
1741
1742 /* Write metadata stream id before payload */
1743 if (relayd) {
1744 unsigned long total_len = len;
1745
1746 if (stream->metadata_flag) {
1747 /*
1748 * Lock the control socket for the complete duration of the function
1749 * since from this point on we will use the socket.
1750 */
1751 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1752
1753 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1754 padding);
1755 if (ret < 0) {
1756 written = ret;
1757 relayd_hang_up = 1;
1758 goto write_error;
1759 }
1760
1761 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1762 }
1763
1764 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1765 if (ret < 0) {
1766 written = ret;
1767 relayd_hang_up = 1;
1768 goto write_error;
1769 }
1770 /* Use the returned socket. */
1771 outfd = ret;
1772 } else {
1773 /* No streaming, we have to set the len with the full padding */
1774 len += padding;
1775
1776 /*
1777 * Check if we need to change the tracefile before writing the packet.
1778 */
1779 if (stream->chan->tracefile_size > 0 &&
1780 (stream->tracefile_size_current + len) >
1781 stream->chan->tracefile_size) {
1782 ret = utils_rotate_stream_file(stream->chan->pathname,
1783 stream->name, stream->chan->tracefile_size,
1784 stream->chan->tracefile_count, stream->uid, stream->gid,
1785 stream->out_fd, &(stream->tracefile_count_current),
1786 &stream->out_fd);
1787 if (ret < 0) {
1788 written = ret;
1789 ERR("Rotating output file");
1790 goto end;
1791 }
1792 outfd = stream->out_fd;
1793
1794 if (stream->index_fd >= 0) {
1795 ret = close(stream->index_fd);
1796 if (ret < 0) {
1797 PERROR("Closing index");
1798 goto end;
1799 }
1800 stream->index_fd = -1;
1801 ret = index_create_file(stream->chan->pathname,
1802 stream->name, stream->uid, stream->gid,
1803 stream->chan->tracefile_size,
1804 stream->tracefile_count_current);
1805 if (ret < 0) {
1806 written = ret;
1807 goto end;
1808 }
1809 stream->index_fd = ret;
1810 }
1811
1812 /* Reset current size because we just perform a rotation. */
1813 stream->tracefile_size_current = 0;
1814 stream->out_fd_offset = 0;
1815 orig_offset = 0;
1816 }
1817 stream->tracefile_size_current += len;
1818 index->offset = htobe64(stream->out_fd_offset);
1819 }
1820
1821 while (len > 0) {
1822 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1823 (unsigned long)offset, len, fd, splice_pipe[1]);
1824 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1825 SPLICE_F_MOVE | SPLICE_F_MORE);
1826 DBG("splice chan to pipe, ret %zd", ret_splice);
1827 if (ret_splice < 0) {
1828 ret = errno;
1829 written = -ret;
1830 PERROR("Error in relay splice");
1831 goto splice_error;
1832 }
1833
1834 /* Handle stream on the relayd if the output is on the network */
1835 if (relayd && stream->metadata_flag) {
1836 size_t metadata_payload_size =
1837 sizeof(struct lttcomm_relayd_metadata_payload);
1838
1839 /* Update counter to fit the spliced data */
1840 ret_splice += metadata_payload_size;
1841 len += metadata_payload_size;
1842 /*
1843 * We do this so the return value can match the len passed as
1844 * argument to this function.
1845 */
1846 written -= metadata_payload_size;
1847 }
1848
1849 /* Splice data out */
1850 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1851 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1852 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1853 outfd, ret_splice);
1854 if (ret_splice < 0) {
1855 ret = errno;
1856 written = -ret;
1857 relayd_hang_up = 1;
1858 goto write_error;
1859 } else if (ret_splice > len) {
1860 /*
1861 * We don't expect this code path to be executed but you never know
1862 * so this is an extra protection agains a buggy splice().
1863 */
1864 ret = errno;
1865 written += ret_splice;
1866 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1867 len);
1868 goto splice_error;
1869 } else {
1870 /* All good, update current len and continue. */
1871 len -= ret_splice;
1872 }
1873
1874 /* This call is useless on a socket so better save a syscall. */
1875 if (!relayd) {
1876 /* This won't block, but will start writeout asynchronously */
1877 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1878 SYNC_FILE_RANGE_WRITE);
1879 stream->out_fd_offset += ret_splice;
1880 }
1881 stream->output_written += ret_splice;
1882 written += ret_splice;
1883 }
1884 lttng_consumer_sync_trace_file(stream, orig_offset);
1885 goto end;
1886
1887 write_error:
1888 /*
1889 * This is a special case that the relayd has closed its socket. Let's
1890 * cleanup the relayd object and all associated streams.
1891 */
1892 if (relayd && relayd_hang_up) {
1893 cleanup_relayd(relayd, ctx);
1894 /* Skip splice error so the consumer does not fail */
1895 goto end;
1896 }
1897
1898 splice_error:
1899 /* send the appropriate error description to sessiond */
1900 switch (ret) {
1901 case EINVAL:
1902 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1903 break;
1904 case ENOMEM:
1905 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1906 break;
1907 case ESPIPE:
1908 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1909 break;
1910 }
1911
1912 end:
1913 if (relayd && stream->metadata_flag) {
1914 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1915 }
1916
1917 rcu_read_unlock();
1918 return written;
1919 }
1920
1921 /*
1922 * Take a snapshot for a specific fd
1923 *
1924 * Returns 0 on success, < 0 on error
1925 */
1926 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1927 {
1928 switch (consumer_data.type) {
1929 case LTTNG_CONSUMER_KERNEL:
1930 return lttng_kconsumer_take_snapshot(stream);
1931 case LTTNG_CONSUMER32_UST:
1932 case LTTNG_CONSUMER64_UST:
1933 return lttng_ustconsumer_take_snapshot(stream);
1934 default:
1935 ERR("Unknown consumer_data type");
1936 assert(0);
1937 return -ENOSYS;
1938 }
1939 }
1940
1941 /*
1942 * Get the produced position
1943 *
1944 * Returns 0 on success, < 0 on error
1945 */
1946 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1947 unsigned long *pos)
1948 {
1949 switch (consumer_data.type) {
1950 case LTTNG_CONSUMER_KERNEL:
1951 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1952 case LTTNG_CONSUMER32_UST:
1953 case LTTNG_CONSUMER64_UST:
1954 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1955 default:
1956 ERR("Unknown consumer_data type");
1957 assert(0);
1958 return -ENOSYS;
1959 }
1960 }
1961
1962 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1963 int sock, struct pollfd *consumer_sockpoll)
1964 {
1965 switch (consumer_data.type) {
1966 case LTTNG_CONSUMER_KERNEL:
1967 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1968 case LTTNG_CONSUMER32_UST:
1969 case LTTNG_CONSUMER64_UST:
1970 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1971 default:
1972 ERR("Unknown consumer_data type");
1973 assert(0);
1974 return -ENOSYS;
1975 }
1976 }
1977
1978 void lttng_consumer_close_all_metadata(void)
1979 {
1980 switch (consumer_data.type) {
1981 case LTTNG_CONSUMER_KERNEL:
1982 /*
1983 * The Kernel consumer has a different metadata scheme so we don't
1984 * close anything because the stream will be closed by the session
1985 * daemon.
1986 */
1987 break;
1988 case LTTNG_CONSUMER32_UST:
1989 case LTTNG_CONSUMER64_UST:
1990 /*
1991 * Close all metadata streams. The metadata hash table is passed and
1992 * this call iterates over it by closing all wakeup fd. This is safe
1993 * because at this point we are sure that the metadata producer is
1994 * either dead or blocked.
1995 */
1996 lttng_ustconsumer_close_all_metadata(metadata_ht);
1997 break;
1998 default:
1999 ERR("Unknown consumer_data type");
2000 assert(0);
2001 }
2002 }
2003
2004 /*
2005 * Clean up a metadata stream and free its memory.
2006 */
2007 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2008 struct lttng_ht *ht)
2009 {
2010 struct lttng_consumer_channel *free_chan = NULL;
2011
2012 assert(stream);
2013 /*
2014 * This call should NEVER receive regular stream. It must always be
2015 * metadata stream and this is crucial for data structure synchronization.
2016 */
2017 assert(stream->metadata_flag);
2018
2019 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2020
2021 pthread_mutex_lock(&consumer_data.lock);
2022 pthread_mutex_lock(&stream->chan->lock);
2023 pthread_mutex_lock(&stream->lock);
2024
2025 /* Remove any reference to that stream. */
2026 consumer_stream_delete(stream, ht);
2027
2028 /* Close down everything including the relayd if one. */
2029 consumer_stream_close(stream);
2030 /* Destroy tracer buffers of the stream. */
2031 consumer_stream_destroy_buffers(stream);
2032
2033 /* Atomically decrement channel refcount since other threads can use it. */
2034 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2035 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2036 /* Go for channel deletion! */
2037 free_chan = stream->chan;
2038 }
2039
2040 /*
2041 * Nullify the stream reference so it is not used after deletion. The
2042 * channel lock MUST be acquired before being able to check for a NULL
2043 * pointer value.
2044 */
2045 stream->chan->metadata_stream = NULL;
2046
2047 pthread_mutex_unlock(&stream->lock);
2048 pthread_mutex_unlock(&stream->chan->lock);
2049 pthread_mutex_unlock(&consumer_data.lock);
2050
2051 if (free_chan) {
2052 consumer_del_channel(free_chan);
2053 }
2054
2055 consumer_stream_free(stream);
2056 }
2057
2058 /*
2059 * Action done with the metadata stream when adding it to the consumer internal
2060 * data structures to handle it.
2061 */
2062 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2063 {
2064 struct lttng_ht *ht = metadata_ht;
2065 int ret = 0;
2066 struct lttng_ht_iter iter;
2067 struct lttng_ht_node_u64 *node;
2068
2069 assert(stream);
2070 assert(ht);
2071
2072 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2073
2074 pthread_mutex_lock(&consumer_data.lock);
2075 pthread_mutex_lock(&stream->chan->lock);
2076 pthread_mutex_lock(&stream->chan->timer_lock);
2077 pthread_mutex_lock(&stream->lock);
2078
2079 /*
2080 * From here, refcounts are updated so be _careful_ when returning an error
2081 * after this point.
2082 */
2083
2084 rcu_read_lock();
2085
2086 /*
2087 * Lookup the stream just to make sure it does not exist in our internal
2088 * state. This should NEVER happen.
2089 */
2090 lttng_ht_lookup(ht, &stream->key, &iter);
2091 node = lttng_ht_iter_get_node_u64(&iter);
2092 assert(!node);
2093
2094 /*
2095 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2096 * in terms of destroying the associated channel, because the action that
2097 * causes the count to become 0 also causes a stream to be added. The
2098 * channel deletion will thus be triggered by the following removal of this
2099 * stream.
2100 */
2101 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2102 /* Increment refcount before decrementing nb_init_stream_left */
2103 cmm_smp_wmb();
2104 uatomic_dec(&stream->chan->nb_init_stream_left);
2105 }
2106
2107 lttng_ht_add_unique_u64(ht, &stream->node);
2108
2109 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2110 &stream->node_channel_id);
2111
2112 /*
2113 * Add stream to the stream_list_ht of the consumer data. No need to steal
2114 * the key since the HT does not use it and we allow to add redundant keys
2115 * into this table.
2116 */
2117 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2118
2119 rcu_read_unlock();
2120
2121 pthread_mutex_unlock(&stream->lock);
2122 pthread_mutex_unlock(&stream->chan->lock);
2123 pthread_mutex_unlock(&stream->chan->timer_lock);
2124 pthread_mutex_unlock(&consumer_data.lock);
2125 return ret;
2126 }
2127
2128 /*
2129 * Delete data stream that are flagged for deletion (endpoint_status).
2130 */
2131 static void validate_endpoint_status_data_stream(void)
2132 {
2133 struct lttng_ht_iter iter;
2134 struct lttng_consumer_stream *stream;
2135
2136 DBG("Consumer delete flagged data stream");
2137
2138 rcu_read_lock();
2139 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2140 /* Validate delete flag of the stream */
2141 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2142 continue;
2143 }
2144 /* Delete it right now */
2145 consumer_del_stream(stream, data_ht);
2146 }
2147 rcu_read_unlock();
2148 }
2149
2150 /*
2151 * Delete metadata stream that are flagged for deletion (endpoint_status).
2152 */
2153 static void validate_endpoint_status_metadata_stream(
2154 struct lttng_poll_event *pollset)
2155 {
2156 struct lttng_ht_iter iter;
2157 struct lttng_consumer_stream *stream;
2158
2159 DBG("Consumer delete flagged metadata stream");
2160
2161 assert(pollset);
2162
2163 rcu_read_lock();
2164 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2165 /* Validate delete flag of the stream */
2166 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2167 continue;
2168 }
2169 /*
2170 * Remove from pollset so the metadata thread can continue without
2171 * blocking on a deleted stream.
2172 */
2173 lttng_poll_del(pollset, stream->wait_fd);
2174
2175 /* Delete it right now */
2176 consumer_del_metadata_stream(stream, metadata_ht);
2177 }
2178 rcu_read_unlock();
2179 }
2180
2181 /*
2182 * Thread polls on metadata file descriptor and write them on disk or on the
2183 * network.
2184 */
2185 void *consumer_thread_metadata_poll(void *data)
2186 {
2187 int ret, i, pollfd, err = -1;
2188 uint32_t revents, nb_fd;
2189 struct lttng_consumer_stream *stream = NULL;
2190 struct lttng_ht_iter iter;
2191 struct lttng_ht_node_u64 *node;
2192 struct lttng_poll_event events;
2193 struct lttng_consumer_local_data *ctx = data;
2194 ssize_t len;
2195
2196 rcu_register_thread();
2197
2198 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2199
2200 if (testpoint(consumerd_thread_metadata)) {
2201 goto error_testpoint;
2202 }
2203
2204 health_code_update();
2205
2206 DBG("Thread metadata poll started");
2207
2208 /* Size is set to 1 for the consumer_metadata pipe */
2209 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2210 if (ret < 0) {
2211 ERR("Poll set creation failed");
2212 goto end_poll;
2213 }
2214
2215 ret = lttng_poll_add(&events,
2216 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2217 if (ret < 0) {
2218 goto end;
2219 }
2220
2221 /* Main loop */
2222 DBG("Metadata main loop started");
2223
2224 while (1) {
2225 restart:
2226 health_code_update();
2227 health_poll_entry();
2228 DBG("Metadata poll wait");
2229 ret = lttng_poll_wait(&events, -1);
2230 DBG("Metadata poll return from wait with %d fd(s)",
2231 LTTNG_POLL_GETNB(&events));
2232 health_poll_exit();
2233 DBG("Metadata event caught in thread");
2234 if (ret < 0) {
2235 if (errno == EINTR) {
2236 ERR("Poll EINTR caught");
2237 goto restart;
2238 }
2239 if (LTTNG_POLL_GETNB(&events) == 0) {
2240 err = 0; /* All is OK */
2241 }
2242 goto end;
2243 }
2244
2245 nb_fd = ret;
2246
2247 /* From here, the event is a metadata wait fd */
2248 for (i = 0; i < nb_fd; i++) {
2249 health_code_update();
2250
2251 revents = LTTNG_POLL_GETEV(&events, i);
2252 pollfd = LTTNG_POLL_GETFD(&events, i);
2253
2254 if (!revents) {
2255 /* No activity for this FD (poll implementation). */
2256 continue;
2257 }
2258
2259 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2260 if (revents & LPOLLIN) {
2261 ssize_t pipe_len;
2262
2263 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2264 &stream, sizeof(stream));
2265 if (pipe_len < sizeof(stream)) {
2266 if (pipe_len < 0) {
2267 PERROR("read metadata stream");
2268 }
2269 /*
2270 * Remove the pipe from the poll set and continue the loop
2271 * since their might be data to consume.
2272 */
2273 lttng_poll_del(&events,
2274 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2275 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2276 continue;
2277 }
2278
2279 /* A NULL stream means that the state has changed. */
2280 if (stream == NULL) {
2281 /* Check for deleted streams. */
2282 validate_endpoint_status_metadata_stream(&events);
2283 goto restart;
2284 }
2285
2286 DBG("Adding metadata stream %d to poll set",
2287 stream->wait_fd);
2288
2289 /* Add metadata stream to the global poll events list */
2290 lttng_poll_add(&events, stream->wait_fd,
2291 LPOLLIN | LPOLLPRI | LPOLLHUP);
2292 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2293 DBG("Metadata thread pipe hung up");
2294 /*
2295 * Remove the pipe from the poll set and continue the loop
2296 * since their might be data to consume.
2297 */
2298 lttng_poll_del(&events,
2299 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2300 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2301 continue;
2302 } else {
2303 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2304 goto end;
2305 }
2306
2307 /* Handle other stream */
2308 continue;
2309 }
2310
2311 rcu_read_lock();
2312 {
2313 uint64_t tmp_id = (uint64_t) pollfd;
2314
2315 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2316 }
2317 node = lttng_ht_iter_get_node_u64(&iter);
2318 assert(node);
2319
2320 stream = caa_container_of(node, struct lttng_consumer_stream,
2321 node);
2322
2323 if (revents & (LPOLLIN | LPOLLPRI)) {
2324 /* Get the data out of the metadata file descriptor */
2325 DBG("Metadata available on fd %d", pollfd);
2326 assert(stream->wait_fd == pollfd);
2327
2328 do {
2329 health_code_update();
2330
2331 len = ctx->on_buffer_ready(stream, ctx);
2332 /*
2333 * We don't check the return value here since if we get
2334 * a negative len, it means an error occured thus we
2335 * simply remove it from the poll set and free the
2336 * stream.
2337 */
2338 } while (len > 0);
2339
2340 /* It's ok to have an unavailable sub-buffer */
2341 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2342 /* Clean up stream from consumer and free it. */
2343 lttng_poll_del(&events, stream->wait_fd);
2344 consumer_del_metadata_stream(stream, metadata_ht);
2345 }
2346 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2347 DBG("Metadata fd %d is hup|err.", pollfd);
2348 if (!stream->hangup_flush_done
2349 && (consumer_data.type == LTTNG_CONSUMER32_UST
2350 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2351 DBG("Attempting to flush and consume the UST buffers");
2352 lttng_ustconsumer_on_stream_hangup(stream);
2353
2354 /* We just flushed the stream now read it. */
2355 do {
2356 health_code_update();
2357
2358 len = ctx->on_buffer_ready(stream, ctx);
2359 /*
2360 * We don't check the return value here since if we get
2361 * a negative len, it means an error occured thus we
2362 * simply remove it from the poll set and free the
2363 * stream.
2364 */
2365 } while (len > 0);
2366 }
2367
2368 lttng_poll_del(&events, stream->wait_fd);
2369 /*
2370 * This call update the channel states, closes file descriptors
2371 * and securely free the stream.
2372 */
2373 consumer_del_metadata_stream(stream, metadata_ht);
2374 } else {
2375 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2376 rcu_read_unlock();
2377 goto end;
2378 }
2379 /* Release RCU lock for the stream looked up */
2380 rcu_read_unlock();
2381 }
2382 }
2383
2384 /* All is OK */
2385 err = 0;
2386 end:
2387 DBG("Metadata poll thread exiting");
2388
2389 lttng_poll_clean(&events);
2390 end_poll:
2391 error_testpoint:
2392 if (err) {
2393 health_error();
2394 ERR("Health error occurred in %s", __func__);
2395 }
2396 health_unregister(health_consumerd);
2397 rcu_unregister_thread();
2398 return NULL;
2399 }
2400
2401 /*
2402 * This thread polls the fds in the set to consume the data and write
2403 * it to tracefile if necessary.
2404 */
2405 void *consumer_thread_data_poll(void *data)
2406 {
2407 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2408 struct pollfd *pollfd = NULL;
2409 /* local view of the streams */
2410 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2411 /* local view of consumer_data.fds_count */
2412 int nb_fd = 0;
2413 struct lttng_consumer_local_data *ctx = data;
2414 ssize_t len;
2415
2416 rcu_register_thread();
2417
2418 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2419
2420 if (testpoint(consumerd_thread_data)) {
2421 goto error_testpoint;
2422 }
2423
2424 health_code_update();
2425
2426 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2427 if (local_stream == NULL) {
2428 PERROR("local_stream malloc");
2429 goto end;
2430 }
2431
2432 while (1) {
2433 health_code_update();
2434
2435 high_prio = 0;
2436 num_hup = 0;
2437
2438 /*
2439 * the fds set has been updated, we need to update our
2440 * local array as well
2441 */
2442 pthread_mutex_lock(&consumer_data.lock);
2443 if (consumer_data.need_update) {
2444 free(pollfd);
2445 pollfd = NULL;
2446
2447 free(local_stream);
2448 local_stream = NULL;
2449
2450 /*
2451 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2452 * wake up pipe.
2453 */
2454 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2455 if (pollfd == NULL) {
2456 PERROR("pollfd malloc");
2457 pthread_mutex_unlock(&consumer_data.lock);
2458 goto end;
2459 }
2460
2461 local_stream = zmalloc((consumer_data.stream_count + 2) *
2462 sizeof(struct lttng_consumer_stream *));
2463 if (local_stream == NULL) {
2464 PERROR("local_stream malloc");
2465 pthread_mutex_unlock(&consumer_data.lock);
2466 goto end;
2467 }
2468 ret = update_poll_array(ctx, &pollfd, local_stream,
2469 data_ht);
2470 if (ret < 0) {
2471 ERR("Error in allocating pollfd or local_outfds");
2472 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2473 pthread_mutex_unlock(&consumer_data.lock);
2474 goto end;
2475 }
2476 nb_fd = ret;
2477 consumer_data.need_update = 0;
2478 }
2479 pthread_mutex_unlock(&consumer_data.lock);
2480
2481 /* No FDs and consumer_quit, consumer_cleanup the thread */
2482 if (nb_fd == 0 && consumer_quit == 1) {
2483 err = 0; /* All is OK */
2484 goto end;
2485 }
2486 /* poll on the array of fds */
2487 restart:
2488 DBG("polling on %d fd", nb_fd + 2);
2489 health_poll_entry();
2490 num_rdy = poll(pollfd, nb_fd + 2, -1);
2491 health_poll_exit();
2492 DBG("poll num_rdy : %d", num_rdy);
2493 if (num_rdy == -1) {
2494 /*
2495 * Restart interrupted system call.
2496 */
2497 if (errno == EINTR) {
2498 goto restart;
2499 }
2500 PERROR("Poll error");
2501 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2502 goto end;
2503 } else if (num_rdy == 0) {
2504 DBG("Polling thread timed out");
2505 goto end;
2506 }
2507
2508 /*
2509 * If the consumer_data_pipe triggered poll go directly to the
2510 * beginning of the loop to update the array. We want to prioritize
2511 * array update over low-priority reads.
2512 */
2513 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2514 ssize_t pipe_readlen;
2515
2516 DBG("consumer_data_pipe wake up");
2517 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2518 &new_stream, sizeof(new_stream));
2519 if (pipe_readlen < sizeof(new_stream)) {
2520 PERROR("Consumer data pipe");
2521 /* Continue so we can at least handle the current stream(s). */
2522 continue;
2523 }
2524
2525 /*
2526 * If the stream is NULL, just ignore it. It's also possible that
2527 * the sessiond poll thread changed the consumer_quit state and is
2528 * waking us up to test it.
2529 */
2530 if (new_stream == NULL) {
2531 validate_endpoint_status_data_stream();
2532 continue;
2533 }
2534
2535 /* Continue to update the local streams and handle prio ones */
2536 continue;
2537 }
2538
2539 /* Handle wakeup pipe. */
2540 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2541 char dummy;
2542 ssize_t pipe_readlen;
2543
2544 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2545 sizeof(dummy));
2546 if (pipe_readlen < 0) {
2547 PERROR("Consumer data wakeup pipe");
2548 }
2549 /* We've been awakened to handle stream(s). */
2550 ctx->has_wakeup = 0;
2551 }
2552
2553 /* Take care of high priority channels first. */
2554 for (i = 0; i < nb_fd; i++) {
2555 health_code_update();
2556
2557 if (local_stream[i] == NULL) {
2558 continue;
2559 }
2560 if (pollfd[i].revents & POLLPRI) {
2561 DBG("Urgent read on fd %d", pollfd[i].fd);
2562 high_prio = 1;
2563 len = ctx->on_buffer_ready(local_stream[i], ctx);
2564 /* it's ok to have an unavailable sub-buffer */
2565 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2566 /* Clean the stream and free it. */
2567 consumer_del_stream(local_stream[i], data_ht);
2568 local_stream[i] = NULL;
2569 } else if (len > 0) {
2570 local_stream[i]->data_read = 1;
2571 }
2572 }
2573 }
2574
2575 /*
2576 * If we read high prio channel in this loop, try again
2577 * for more high prio data.
2578 */
2579 if (high_prio) {
2580 continue;
2581 }
2582
2583 /* Take care of low priority channels. */
2584 for (i = 0; i < nb_fd; i++) {
2585 health_code_update();
2586
2587 if (local_stream[i] == NULL) {
2588 continue;
2589 }
2590 if ((pollfd[i].revents & POLLIN) ||
2591 local_stream[i]->hangup_flush_done ||
2592 local_stream[i]->has_data) {
2593 DBG("Normal read on fd %d", pollfd[i].fd);
2594 len = ctx->on_buffer_ready(local_stream[i], ctx);
2595 /* it's ok to have an unavailable sub-buffer */
2596 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2597 /* Clean the stream and free it. */
2598 consumer_del_stream(local_stream[i], data_ht);
2599 local_stream[i] = NULL;
2600 } else if (len > 0) {
2601 local_stream[i]->data_read = 1;
2602 }
2603 }
2604 }
2605
2606 /* Handle hangup and errors */
2607 for (i = 0; i < nb_fd; i++) {
2608 health_code_update();
2609
2610 if (local_stream[i] == NULL) {
2611 continue;
2612 }
2613 if (!local_stream[i]->hangup_flush_done
2614 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2615 && (consumer_data.type == LTTNG_CONSUMER32_UST
2616 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2617 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2618 pollfd[i].fd);
2619 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2620 /* Attempt read again, for the data we just flushed. */
2621 local_stream[i]->data_read = 1;
2622 }
2623 /*
2624 * If the poll flag is HUP/ERR/NVAL and we have
2625 * read no data in this pass, we can remove the
2626 * stream from its hash table.
2627 */
2628 if ((pollfd[i].revents & POLLHUP)) {
2629 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2630 if (!local_stream[i]->data_read) {
2631 consumer_del_stream(local_stream[i], data_ht);
2632 local_stream[i] = NULL;
2633 num_hup++;
2634 }
2635 } else if (pollfd[i].revents & POLLERR) {
2636 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2637 if (!local_stream[i]->data_read) {
2638 consumer_del_stream(local_stream[i], data_ht);
2639 local_stream[i] = NULL;
2640 num_hup++;
2641 }
2642 } else if (pollfd[i].revents & POLLNVAL) {
2643 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2644 if (!local_stream[i]->data_read) {
2645 consumer_del_stream(local_stream[i], data_ht);
2646 local_stream[i] = NULL;
2647 num_hup++;
2648 }
2649 }
2650 if (local_stream[i] != NULL) {
2651 local_stream[i]->data_read = 0;
2652 }
2653 }
2654 }
2655 /* All is OK */
2656 err = 0;
2657 end:
2658 DBG("polling thread exiting");
2659 free(pollfd);
2660 free(local_stream);
2661
2662 /*
2663 * Close the write side of the pipe so epoll_wait() in
2664 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2665 * read side of the pipe. If we close them both, epoll_wait strangely does
2666 * not return and could create a endless wait period if the pipe is the
2667 * only tracked fd in the poll set. The thread will take care of closing
2668 * the read side.
2669 */
2670 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2671
2672 error_testpoint:
2673 if (err) {
2674 health_error();
2675 ERR("Health error occurred in %s", __func__);
2676 }
2677 health_unregister(health_consumerd);
2678
2679 rcu_unregister_thread();
2680 return NULL;
2681 }
2682
2683 /*
2684 * Close wake-up end of each stream belonging to the channel. This will
2685 * allow the poll() on the stream read-side to detect when the
2686 * write-side (application) finally closes them.
2687 */
2688 static
2689 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2690 {
2691 struct lttng_ht *ht;
2692 struct lttng_consumer_stream *stream;
2693 struct lttng_ht_iter iter;
2694
2695 ht = consumer_data.stream_per_chan_id_ht;
2696
2697 rcu_read_lock();
2698 cds_lfht_for_each_entry_duplicate(ht->ht,
2699 ht->hash_fct(&channel->key, lttng_ht_seed),
2700 ht->match_fct, &channel->key,
2701 &iter.iter, stream, node_channel_id.node) {
2702 /*
2703 * Protect against teardown with mutex.
2704 */
2705 pthread_mutex_lock(&stream->lock);
2706 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2707 goto next;
2708 }
2709 switch (consumer_data.type) {
2710 case LTTNG_CONSUMER_KERNEL:
2711 break;
2712 case LTTNG_CONSUMER32_UST:
2713 case LTTNG_CONSUMER64_UST:
2714 if (stream->metadata_flag) {
2715 /* Safe and protected by the stream lock. */
2716 lttng_ustconsumer_close_metadata(stream->chan);
2717 } else {
2718 /*
2719 * Note: a mutex is taken internally within
2720 * liblttng-ust-ctl to protect timer wakeup_fd
2721 * use from concurrent close.
2722 */
2723 lttng_ustconsumer_close_stream_wakeup(stream);
2724 }
2725 break;
2726 default:
2727 ERR("Unknown consumer_data type");
2728 assert(0);
2729 }
2730 next:
2731 pthread_mutex_unlock(&stream->lock);
2732 }
2733 rcu_read_unlock();
2734 }
2735
2736 static void destroy_channel_ht(struct lttng_ht *ht)
2737 {
2738 struct lttng_ht_iter iter;
2739 struct lttng_consumer_channel *channel;
2740 int ret;
2741
2742 if (ht == NULL) {
2743 return;
2744 }
2745
2746 rcu_read_lock();
2747 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2748 ret = lttng_ht_del(ht, &iter);
2749 assert(ret != 0);
2750 }
2751 rcu_read_unlock();
2752
2753 lttng_ht_destroy(ht);
2754 }
2755
2756 /*
2757 * This thread polls the channel fds to detect when they are being
2758 * closed. It closes all related streams if the channel is detected as
2759 * closed. It is currently only used as a shim layer for UST because the
2760 * consumerd needs to keep the per-stream wakeup end of pipes open for
2761 * periodical flush.
2762 */
2763 void *consumer_thread_channel_poll(void *data)
2764 {
2765 int ret, i, pollfd, err = -1;
2766 uint32_t revents, nb_fd;
2767 struct lttng_consumer_channel *chan = NULL;
2768 struct lttng_ht_iter iter;
2769 struct lttng_ht_node_u64 *node;
2770 struct lttng_poll_event events;
2771 struct lttng_consumer_local_data *ctx = data;
2772 struct lttng_ht *channel_ht;
2773
2774 rcu_register_thread();
2775
2776 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2777
2778 if (testpoint(consumerd_thread_channel)) {
2779 goto error_testpoint;
2780 }
2781
2782 health_code_update();
2783
2784 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2785 if (!channel_ht) {
2786 /* ENOMEM at this point. Better to bail out. */
2787 goto end_ht;
2788 }
2789
2790 DBG("Thread channel poll started");
2791
2792 /* Size is set to 1 for the consumer_channel pipe */
2793 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2794 if (ret < 0) {
2795 ERR("Poll set creation failed");
2796 goto end_poll;
2797 }
2798
2799 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2800 if (ret < 0) {
2801 goto end;
2802 }
2803
2804 /* Main loop */
2805 DBG("Channel main loop started");
2806
2807 while (1) {
2808 restart:
2809 health_code_update();
2810 DBG("Channel poll wait");
2811 health_poll_entry();
2812 ret = lttng_poll_wait(&events, -1);
2813 DBG("Channel poll return from wait with %d fd(s)",
2814 LTTNG_POLL_GETNB(&events));
2815 health_poll_exit();
2816 DBG("Channel event caught in thread");
2817 if (ret < 0) {
2818 if (errno == EINTR) {
2819 ERR("Poll EINTR caught");
2820 goto restart;
2821 }
2822 if (LTTNG_POLL_GETNB(&events) == 0) {
2823 err = 0; /* All is OK */
2824 }
2825 goto end;
2826 }
2827
2828 nb_fd = ret;
2829
2830 /* From here, the event is a channel wait fd */
2831 for (i = 0; i < nb_fd; i++) {
2832 health_code_update();
2833
2834 revents = LTTNG_POLL_GETEV(&events, i);
2835 pollfd = LTTNG_POLL_GETFD(&events, i);
2836
2837 if (!revents) {
2838 /* No activity for this FD (poll implementation). */
2839 continue;
2840 }
2841
2842 if (pollfd == ctx->consumer_channel_pipe[0]) {
2843 if (revents & LPOLLIN) {
2844 enum consumer_channel_action action;
2845 uint64_t key;
2846
2847 ret = read_channel_pipe(ctx, &chan, &key, &action);
2848 if (ret <= 0) {
2849 if (ret < 0) {
2850 ERR("Error reading channel pipe");
2851 }
2852 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2853 continue;
2854 }
2855
2856 switch (action) {
2857 case CONSUMER_CHANNEL_ADD:
2858 DBG("Adding channel %d to poll set",
2859 chan->wait_fd);
2860
2861 lttng_ht_node_init_u64(&chan->wait_fd_node,
2862 chan->wait_fd);
2863 rcu_read_lock();
2864 lttng_ht_add_unique_u64(channel_ht,
2865 &chan->wait_fd_node);
2866 rcu_read_unlock();
2867 /* Add channel to the global poll events list */
2868 lttng_poll_add(&events, chan->wait_fd,
2869 LPOLLERR | LPOLLHUP);
2870 break;
2871 case CONSUMER_CHANNEL_DEL:
2872 {
2873 /*
2874 * This command should never be called if the channel
2875 * has streams monitored by either the data or metadata
2876 * thread. The consumer only notify this thread with a
2877 * channel del. command if it receives a destroy
2878 * channel command from the session daemon that send it
2879 * if a command prior to the GET_CHANNEL failed.
2880 */
2881
2882 rcu_read_lock();
2883 chan = consumer_find_channel(key);
2884 if (!chan) {
2885 rcu_read_unlock();
2886 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2887 break;
2888 }
2889 lttng_poll_del(&events, chan->wait_fd);
2890 iter.iter.node = &chan->wait_fd_node.node;
2891 ret = lttng_ht_del(channel_ht, &iter);
2892 assert(ret == 0);
2893
2894 switch (consumer_data.type) {
2895 case LTTNG_CONSUMER_KERNEL:
2896 break;
2897 case LTTNG_CONSUMER32_UST:
2898 case LTTNG_CONSUMER64_UST:
2899 health_code_update();
2900 /* Destroy streams that might have been left in the stream list. */
2901 clean_channel_stream_list(chan);
2902 break;
2903 default:
2904 ERR("Unknown consumer_data type");
2905 assert(0);
2906 }
2907
2908 /*
2909 * Release our own refcount. Force channel deletion even if
2910 * streams were not initialized.
2911 */
2912 if (!uatomic_sub_return(&chan->refcount, 1)) {
2913 consumer_del_channel(chan);
2914 }
2915 rcu_read_unlock();
2916 goto restart;
2917 }
2918 case CONSUMER_CHANNEL_QUIT:
2919 /*
2920 * Remove the pipe from the poll set and continue the loop
2921 * since their might be data to consume.
2922 */
2923 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2924 continue;
2925 default:
2926 ERR("Unknown action");
2927 break;
2928 }
2929 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2930 DBG("Channel thread pipe hung up");
2931 /*
2932 * Remove the pipe from the poll set and continue the loop
2933 * since their might be data to consume.
2934 */
2935 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2936 continue;
2937 } else {
2938 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2939 goto end;
2940 }
2941
2942 /* Handle other stream */
2943 continue;
2944 }
2945
2946 rcu_read_lock();
2947 {
2948 uint64_t tmp_id = (uint64_t) pollfd;
2949
2950 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2951 }
2952 node = lttng_ht_iter_get_node_u64(&iter);
2953 assert(node);
2954
2955 chan = caa_container_of(node, struct lttng_consumer_channel,
2956 wait_fd_node);
2957
2958 /* Check for error event */
2959 if (revents & (LPOLLERR | LPOLLHUP)) {
2960 DBG("Channel fd %d is hup|err.", pollfd);
2961
2962 lttng_poll_del(&events, chan->wait_fd);
2963 ret = lttng_ht_del(channel_ht, &iter);
2964 assert(ret == 0);
2965
2966 /*
2967 * This will close the wait fd for each stream associated to
2968 * this channel AND monitored by the data/metadata thread thus
2969 * will be clean by the right thread.
2970 */
2971 consumer_close_channel_streams(chan);
2972
2973 /* Release our own refcount */
2974 if (!uatomic_sub_return(&chan->refcount, 1)
2975 && !uatomic_read(&chan->nb_init_stream_left)) {
2976 consumer_del_channel(chan);
2977 }
2978 } else {
2979 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2980 rcu_read_unlock();
2981 goto end;
2982 }
2983
2984 /* Release RCU lock for the channel looked up */
2985 rcu_read_unlock();
2986 }
2987 }
2988
2989 /* All is OK */
2990 err = 0;
2991 end:
2992 lttng_poll_clean(&events);
2993 end_poll:
2994 destroy_channel_ht(channel_ht);
2995 end_ht:
2996 error_testpoint:
2997 DBG("Channel poll thread exiting");
2998 if (err) {
2999 health_error();
3000 ERR("Health error occurred in %s", __func__);
3001 }
3002 health_unregister(health_consumerd);
3003 rcu_unregister_thread();
3004 return NULL;
3005 }
3006
3007 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3008 struct pollfd *sockpoll, int client_socket)
3009 {
3010 int ret;
3011
3012 assert(ctx);
3013 assert(sockpoll);
3014
3015 ret = lttng_consumer_poll_socket(sockpoll);
3016 if (ret) {
3017 goto error;
3018 }
3019 DBG("Metadata connection on client_socket");
3020
3021 /* Blocking call, waiting for transmission */
3022 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3023 if (ctx->consumer_metadata_socket < 0) {
3024 WARN("On accept metadata");
3025 ret = -1;
3026 goto error;
3027 }
3028 ret = 0;
3029
3030 error:
3031 return ret;
3032 }
3033
3034 /*
3035 * This thread listens on the consumerd socket and receives the file
3036 * descriptors from the session daemon.
3037 */
3038 void *consumer_thread_sessiond_poll(void *data)
3039 {
3040 int sock = -1, client_socket, ret, err = -1;
3041 /*
3042 * structure to poll for incoming data on communication socket avoids
3043 * making blocking sockets.
3044 */
3045 struct pollfd consumer_sockpoll[2];
3046 struct lttng_consumer_local_data *ctx = data;
3047
3048 rcu_register_thread();
3049
3050 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3051
3052 if (testpoint(consumerd_thread_sessiond)) {
3053 goto error_testpoint;
3054 }
3055
3056 health_code_update();
3057
3058 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3059 unlink(ctx->consumer_command_sock_path);
3060 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3061 if (client_socket < 0) {
3062 ERR("Cannot create command socket");
3063 goto end;
3064 }
3065
3066 ret = lttcomm_listen_unix_sock(client_socket);
3067 if (ret < 0) {
3068 goto end;
3069 }
3070
3071 DBG("Sending ready command to lttng-sessiond");
3072 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3073 /* return < 0 on error, but == 0 is not fatal */
3074 if (ret < 0) {
3075 ERR("Error sending ready command to lttng-sessiond");
3076 goto end;
3077 }
3078
3079 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3080 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3081 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3082 consumer_sockpoll[1].fd = client_socket;
3083 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3084
3085 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3086 if (ret) {
3087 if (ret > 0) {
3088 /* should exit */
3089 err = 0;
3090 }
3091 goto end;
3092 }
3093 DBG("Connection on client_socket");
3094
3095 /* Blocking call, waiting for transmission */
3096 sock = lttcomm_accept_unix_sock(client_socket);
3097 if (sock < 0) {
3098 WARN("On accept");
3099 goto end;
3100 }
3101
3102 /*
3103 * Setup metadata socket which is the second socket connection on the
3104 * command unix socket.
3105 */
3106 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3107 if (ret) {
3108 if (ret > 0) {
3109 /* should exit */
3110 err = 0;
3111 }
3112 goto end;
3113 }
3114
3115 /* This socket is not useful anymore. */
3116 ret = close(client_socket);
3117 if (ret < 0) {
3118 PERROR("close client_socket");
3119 }
3120 client_socket = -1;
3121
3122 /* update the polling structure to poll on the established socket */
3123 consumer_sockpoll[1].fd = sock;
3124 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3125
3126 while (1) {
3127 health_code_update();
3128
3129 health_poll_entry();
3130 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3131 health_poll_exit();
3132 if (ret) {
3133 if (ret > 0) {
3134 /* should exit */
3135 err = 0;
3136 }
3137 goto end;
3138 }
3139 DBG("Incoming command on sock");
3140 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3141 if (ret <= 0) {
3142 /*
3143 * This could simply be a session daemon quitting. Don't output
3144 * ERR() here.
3145 */
3146 DBG("Communication interrupted on command socket");
3147 err = 0;
3148 goto end;
3149 }
3150 if (consumer_quit) {
3151 DBG("consumer_thread_receive_fds received quit from signal");
3152 err = 0; /* All is OK */
3153 goto end;
3154 }
3155 DBG("received command on sock");
3156 }
3157 /* All is OK */
3158 err = 0;
3159
3160 end:
3161 DBG("Consumer thread sessiond poll exiting");
3162
3163 /*
3164 * Close metadata streams since the producer is the session daemon which
3165 * just died.
3166 *
3167 * NOTE: for now, this only applies to the UST tracer.
3168 */
3169 lttng_consumer_close_all_metadata();
3170
3171 /*
3172 * when all fds have hung up, the polling thread
3173 * can exit cleanly
3174 */
3175 consumer_quit = 1;
3176
3177 /*
3178 * Notify the data poll thread to poll back again and test the
3179 * consumer_quit state that we just set so to quit gracefully.
3180 */
3181 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3182
3183 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3184
3185 notify_health_quit_pipe(health_quit_pipe);
3186
3187 /* Cleaning up possibly open sockets. */
3188 if (sock >= 0) {
3189 ret = close(sock);
3190 if (ret < 0) {
3191 PERROR("close sock sessiond poll");
3192 }
3193 }
3194 if (client_socket >= 0) {
3195 ret = close(client_socket);
3196 if (ret < 0) {
3197 PERROR("close client_socket sessiond poll");
3198 }
3199 }
3200
3201 error_testpoint:
3202 if (err) {
3203 health_error();
3204 ERR("Health error occurred in %s", __func__);
3205 }
3206 health_unregister(health_consumerd);
3207
3208 rcu_unregister_thread();
3209 return NULL;
3210 }
3211
3212 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3213 struct lttng_consumer_local_data *ctx)
3214 {
3215 ssize_t ret;
3216
3217 pthread_mutex_lock(&stream->lock);
3218 if (stream->metadata_flag) {
3219 pthread_mutex_lock(&stream->metadata_rdv_lock);
3220 }
3221
3222 switch (consumer_data.type) {
3223 case LTTNG_CONSUMER_KERNEL:
3224 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3225 break;
3226 case LTTNG_CONSUMER32_UST:
3227 case LTTNG_CONSUMER64_UST:
3228 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3229 break;
3230 default:
3231 ERR("Unknown consumer_data type");
3232 assert(0);
3233 ret = -ENOSYS;
3234 break;
3235 }
3236
3237 if (stream->metadata_flag) {
3238 pthread_cond_broadcast(&stream->metadata_rdv);
3239 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3240 }
3241 pthread_mutex_unlock(&stream->lock);
3242 return ret;
3243 }
3244
3245 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3246 {
3247 switch (consumer_data.type) {
3248 case LTTNG_CONSUMER_KERNEL:
3249 return lttng_kconsumer_on_recv_stream(stream);
3250 case LTTNG_CONSUMER32_UST:
3251 case LTTNG_CONSUMER64_UST:
3252 return lttng_ustconsumer_on_recv_stream(stream);
3253 default:
3254 ERR("Unknown consumer_data type");
3255 assert(0);
3256 return -ENOSYS;
3257 }
3258 }
3259
3260 /*
3261 * Allocate and set consumer data hash tables.
3262 */
3263 int lttng_consumer_init(void)
3264 {
3265 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3266 if (!consumer_data.channel_ht) {
3267 goto error;
3268 }
3269
3270 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3271 if (!consumer_data.relayd_ht) {
3272 goto error;
3273 }
3274
3275 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3276 if (!consumer_data.stream_list_ht) {
3277 goto error;
3278 }
3279
3280 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3281 if (!consumer_data.stream_per_chan_id_ht) {
3282 goto error;
3283 }
3284
3285 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3286 if (!data_ht) {
3287 goto error;
3288 }
3289
3290 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3291 if (!metadata_ht) {
3292 goto error;
3293 }
3294
3295 return 0;
3296
3297 error:
3298 return -1;
3299 }
3300
3301 /*
3302 * Process the ADD_RELAYD command receive by a consumer.
3303 *
3304 * This will create a relayd socket pair and add it to the relayd hash table.
3305 * The caller MUST acquire a RCU read side lock before calling it.
3306 */
3307 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3308 struct lttng_consumer_local_data *ctx, int sock,
3309 struct pollfd *consumer_sockpoll,
3310 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3311 uint64_t relayd_session_id)
3312 {
3313 int fd = -1, ret = -1, relayd_created = 0;
3314 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3315 struct consumer_relayd_sock_pair *relayd = NULL;
3316
3317 assert(ctx);
3318 assert(relayd_sock);
3319
3320 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3321
3322 /* Get relayd reference if exists. */
3323 relayd = consumer_find_relayd(net_seq_idx);
3324 if (relayd == NULL) {
3325 assert(sock_type == LTTNG_STREAM_CONTROL);
3326 /* Not found. Allocate one. */
3327 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3328 if (relayd == NULL) {
3329 ret = -ENOMEM;
3330 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3331 goto error;
3332 } else {
3333 relayd->sessiond_session_id = sessiond_id;
3334 relayd_created = 1;
3335 }
3336
3337 /*
3338 * This code path MUST continue to the consumer send status message to
3339 * we can notify the session daemon and continue our work without
3340 * killing everything.
3341 */
3342 } else {
3343 /*
3344 * relayd key should never be found for control socket.
3345 */
3346 assert(sock_type != LTTNG_STREAM_CONTROL);
3347 }
3348
3349 /* First send a status message before receiving the fds. */
3350 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3351 if (ret < 0) {
3352 /* Somehow, the session daemon is not responding anymore. */
3353 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3354 goto error_nosignal;
3355 }
3356
3357 /* Poll on consumer socket. */
3358 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3359 if (ret) {
3360 /* Needing to exit in the middle of a command: error. */
3361 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3362 ret = -EINTR;
3363 goto error_nosignal;
3364 }
3365
3366 /* Get relayd socket from session daemon */
3367 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3368 if (ret != sizeof(fd)) {
3369 ret = -1;
3370 fd = -1; /* Just in case it gets set with an invalid value. */
3371
3372 /*
3373 * Failing to receive FDs might indicate a major problem such as
3374 * reaching a fd limit during the receive where the kernel returns a
3375 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3376 * don't take any chances and stop everything.
3377 *
3378 * XXX: Feature request #558 will fix that and avoid this possible
3379 * issue when reaching the fd limit.
3380 */
3381 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3382 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3383 goto error;
3384 }
3385
3386 /* Copy socket information and received FD */
3387 switch (sock_type) {
3388 case LTTNG_STREAM_CONTROL:
3389 /* Copy received lttcomm socket */
3390 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3391 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3392 /* Handle create_sock error. */
3393 if (ret < 0) {
3394 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3395 goto error;
3396 }
3397 /*
3398 * Close the socket created internally by
3399 * lttcomm_create_sock, so we can replace it by the one
3400 * received from sessiond.
3401 */
3402 if (close(relayd->control_sock.sock.fd)) {
3403 PERROR("close");
3404 }
3405
3406 /* Assign new file descriptor */
3407 relayd->control_sock.sock.fd = fd;
3408 fd = -1; /* For error path */
3409 /* Assign version values. */
3410 relayd->control_sock.major = relayd_sock->major;
3411 relayd->control_sock.minor = relayd_sock->minor;
3412
3413 relayd->relayd_session_id = relayd_session_id;
3414
3415 break;
3416 case LTTNG_STREAM_DATA:
3417 /* Copy received lttcomm socket */
3418 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3419 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3420 /* Handle create_sock error. */
3421 if (ret < 0) {
3422 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3423 goto error;
3424 }
3425 /*
3426 * Close the socket created internally by
3427 * lttcomm_create_sock, so we can replace it by the one
3428 * received from sessiond.
3429 */
3430 if (close(relayd->data_sock.sock.fd)) {
3431 PERROR("close");
3432 }
3433
3434 /* Assign new file descriptor */
3435 relayd->data_sock.sock.fd = fd;
3436 fd = -1; /* for eventual error paths */
3437 /* Assign version values. */
3438 relayd->data_sock.major = relayd_sock->major;
3439 relayd->data_sock.minor = relayd_sock->minor;
3440 break;
3441 default:
3442 ERR("Unknown relayd socket type (%d)", sock_type);
3443 ret = -1;
3444 ret_code = LTTCOMM_CONSUMERD_FATAL;
3445 goto error;
3446 }
3447
3448 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3449 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3450 relayd->net_seq_idx, fd);
3451
3452 /* We successfully added the socket. Send status back. */
3453 ret = consumer_send_status_msg(sock, ret_code);
3454 if (ret < 0) {
3455 /* Somehow, the session daemon is not responding anymore. */
3456 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3457 goto error_nosignal;
3458 }
3459
3460 /*
3461 * Add relayd socket pair to consumer data hashtable. If object already
3462 * exists or on error, the function gracefully returns.
3463 */
3464 add_relayd(relayd);
3465
3466 /* All good! */
3467 return 0;
3468
3469 error:
3470 if (consumer_send_status_msg(sock, ret_code) < 0) {
3471 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3472 }
3473
3474 error_nosignal:
3475 /* Close received socket if valid. */
3476 if (fd >= 0) {
3477 if (close(fd)) {
3478 PERROR("close received socket");
3479 }
3480 }
3481
3482 if (relayd_created) {
3483 free(relayd);
3484 }
3485
3486 return ret;
3487 }
3488
3489 /*
3490 * Try to lock the stream mutex.
3491 *
3492 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3493 */
3494 static int stream_try_lock(struct lttng_consumer_stream *stream)
3495 {
3496 int ret;
3497
3498 assert(stream);
3499
3500 /*
3501 * Try to lock the stream mutex. On failure, we know that the stream is
3502 * being used else where hence there is data still being extracted.
3503 */
3504 ret = pthread_mutex_trylock(&stream->lock);
3505 if (ret) {
3506 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3507 ret = 0;
3508 goto end;
3509 }
3510
3511 ret = 1;
3512
3513 end:
3514 return ret;
3515 }
3516
3517 /*
3518 * Search for a relayd associated to the session id and return the reference.
3519 *
3520 * A rcu read side lock MUST be acquire before calling this function and locked
3521 * until the relayd object is no longer necessary.
3522 */
3523 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3524 {
3525 struct lttng_ht_iter iter;
3526 struct consumer_relayd_sock_pair *relayd = NULL;
3527
3528 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3529 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3530 node.node) {
3531 /*
3532 * Check by sessiond id which is unique here where the relayd session
3533 * id might not be when having multiple relayd.
3534 */
3535 if (relayd->sessiond_session_id == id) {
3536 /* Found the relayd. There can be only one per id. */
3537 goto found;
3538 }
3539 }
3540
3541 return NULL;
3542
3543 found:
3544 return relayd;
3545 }
3546
3547 /*
3548 * Check if for a given session id there is still data needed to be extract
3549 * from the buffers.
3550 *
3551 * Return 1 if data is pending or else 0 meaning ready to be read.
3552 */
3553 int consumer_data_pending(uint64_t id)
3554 {
3555 int ret;
3556 struct lttng_ht_iter iter;
3557 struct lttng_ht *ht;
3558 struct lttng_consumer_stream *stream;
3559 struct consumer_relayd_sock_pair *relayd = NULL;
3560 int (*data_pending)(struct lttng_consumer_stream *);
3561
3562 DBG("Consumer data pending command on session id %" PRIu64, id);
3563
3564 rcu_read_lock();
3565 pthread_mutex_lock(&consumer_data.lock);
3566
3567 switch (consumer_data.type) {
3568 case LTTNG_CONSUMER_KERNEL:
3569 data_pending = lttng_kconsumer_data_pending;
3570 break;
3571 case LTTNG_CONSUMER32_UST:
3572 case LTTNG_CONSUMER64_UST:
3573 data_pending = lttng_ustconsumer_data_pending;
3574 break;
3575 default:
3576 ERR("Unknown consumer data type");
3577 assert(0);
3578 }
3579
3580 /* Ease our life a bit */
3581 ht = consumer_data.stream_list_ht;
3582
3583 relayd = find_relayd_by_session_id(id);
3584 if (relayd) {
3585 /* Send init command for data pending. */
3586 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3587 ret = relayd_begin_data_pending(&relayd->control_sock,
3588 relayd->relayd_session_id);
3589 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3590 if (ret < 0) {
3591 /* Communication error thus the relayd so no data pending. */
3592 goto data_not_pending;
3593 }
3594 }
3595
3596 cds_lfht_for_each_entry_duplicate(ht->ht,
3597 ht->hash_fct(&id, lttng_ht_seed),
3598 ht->match_fct, &id,
3599 &iter.iter, stream, node_session_id.node) {
3600 /* If this call fails, the stream is being used hence data pending. */
3601 ret = stream_try_lock(stream);
3602 if (!ret) {
3603 goto data_pending;
3604 }
3605
3606 /*
3607 * A removed node from the hash table indicates that the stream has
3608 * been deleted thus having a guarantee that the buffers are closed
3609 * on the consumer side. However, data can still be transmitted
3610 * over the network so don't skip the relayd check.
3611 */
3612 ret = cds_lfht_is_node_deleted(&stream->node.node);
3613 if (!ret) {
3614 /* Check the stream if there is data in the buffers. */
3615 ret = data_pending(stream);
3616 if (ret == 1) {
3617 pthread_mutex_unlock(&stream->lock);
3618 goto data_pending;
3619 }
3620 }
3621
3622 /* Relayd check */
3623 if (relayd) {
3624 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3625 if (stream->metadata_flag) {
3626 ret = relayd_quiescent_control(&relayd->control_sock,
3627 stream->relayd_stream_id);
3628 } else {
3629 ret = relayd_data_pending(&relayd->control_sock,
3630 stream->relayd_stream_id,
3631 stream->next_net_seq_num - 1);
3632 }
3633 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3634 if (ret == 1) {
3635 pthread_mutex_unlock(&stream->lock);
3636 goto data_pending;
3637 }
3638 }
3639 pthread_mutex_unlock(&stream->lock);
3640 }
3641
3642 if (relayd) {
3643 unsigned int is_data_inflight = 0;
3644
3645 /* Send init command for data pending. */
3646 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3647 ret = relayd_end_data_pending(&relayd->control_sock,
3648 relayd->relayd_session_id, &is_data_inflight);
3649 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3650 if (ret < 0) {
3651 goto data_not_pending;
3652 }
3653 if (is_data_inflight) {
3654 goto data_pending;
3655 }
3656 }
3657
3658 /*
3659 * Finding _no_ node in the hash table and no inflight data means that the
3660 * stream(s) have been removed thus data is guaranteed to be available for
3661 * analysis from the trace files.
3662 */
3663
3664 data_not_pending:
3665 /* Data is available to be read by a viewer. */
3666 pthread_mutex_unlock(&consumer_data.lock);
3667 rcu_read_unlock();
3668 return 0;
3669
3670 data_pending:
3671 /* Data is still being extracted from buffers. */
3672 pthread_mutex_unlock(&consumer_data.lock);
3673 rcu_read_unlock();
3674 return 1;
3675 }
3676
3677 /*
3678 * Send a ret code status message to the sessiond daemon.
3679 *
3680 * Return the sendmsg() return value.
3681 */
3682 int consumer_send_status_msg(int sock, int ret_code)
3683 {
3684 struct lttcomm_consumer_status_msg msg;
3685
3686 memset(&msg, 0, sizeof(msg));
3687 msg.ret_code = ret_code;
3688
3689 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3690 }
3691
3692 /*
3693 * Send a channel status message to the sessiond daemon.
3694 *
3695 * Return the sendmsg() return value.
3696 */
3697 int consumer_send_status_channel(int sock,
3698 struct lttng_consumer_channel *channel)
3699 {
3700 struct lttcomm_consumer_status_channel msg;
3701
3702 assert(sock >= 0);
3703
3704 memset(&msg, 0, sizeof(msg));
3705 if (!channel) {
3706 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3707 } else {
3708 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3709 msg.key = channel->key;
3710 msg.stream_count = channel->streams.count;
3711 }
3712
3713 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3714 }
3715
3716 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3717 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3718 uint64_t max_sb_size)
3719 {
3720 unsigned long start_pos;
3721
3722 if (!nb_packets_per_stream) {
3723 return consumed_pos; /* Grab everything */
3724 }
3725 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3726 start_pos -= max_sb_size * nb_packets_per_stream;
3727 if ((long) (start_pos - consumed_pos) < 0) {
3728 return consumed_pos; /* Grab everything */
3729 }
3730 return start_pos;
3731 }
This page took 0.108931 seconds and 4 git commands to generate.