5041ed951b9ffa7d56d639f1e20a0afd3776e34f
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer-timer.h>
46
47 #include "consumer.h"
48 #include "consumer-stream.h"
49 #include "consumer-testpoint.h"
50
51 struct lttng_consumer_global_data consumer_data = {
52 .stream_count = 0,
53 .need_update = 1,
54 .type = LTTNG_CONSUMER_UNKNOWN,
55 };
56
57 enum consumer_channel_action {
58 CONSUMER_CHANNEL_ADD,
59 CONSUMER_CHANNEL_DEL,
60 CONSUMER_CHANNEL_QUIT,
61 };
62
63 struct consumer_channel_msg {
64 enum consumer_channel_action action;
65 struct lttng_consumer_channel *chan; /* add */
66 uint64_t key; /* del */
67 };
68
69 /*
70 * Flag to inform the polling thread to quit when all fd hung up. Updated by
71 * the consumer_thread_receive_fds when it notices that all fds has hung up.
72 * Also updated by the signal handler (consumer_should_exit()). Read by the
73 * polling threads.
74 */
75 volatile int consumer_quit;
76
77 /*
78 * Global hash table containing respectively metadata and data streams. The
79 * stream element in this ht should only be updated by the metadata poll thread
80 * for the metadata and the data poll thread for the data.
81 */
82 static struct lttng_ht *metadata_ht;
83 static struct lttng_ht *data_ht;
84
85 /*
86 * Notify a thread lttng pipe to poll back again. This usually means that some
87 * global state has changed so we just send back the thread in a poll wait
88 * call.
89 */
90 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
91 {
92 struct lttng_consumer_stream *null_stream = NULL;
93
94 assert(pipe);
95
96 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
97 }
98
99 static void notify_health_quit_pipe(int *pipe)
100 {
101 ssize_t ret;
102
103 ret = lttng_write(pipe[1], "4", 1);
104 if (ret < 1) {
105 PERROR("write consumer health quit");
106 }
107 }
108
109 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
110 struct lttng_consumer_channel *chan,
111 uint64_t key,
112 enum consumer_channel_action action)
113 {
114 struct consumer_channel_msg msg;
115 ssize_t ret;
116
117 memset(&msg, 0, sizeof(msg));
118
119 msg.action = action;
120 msg.chan = chan;
121 msg.key = key;
122 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
123 if (ret < sizeof(msg)) {
124 PERROR("notify_channel_pipe write error");
125 }
126 }
127
128 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
129 uint64_t key)
130 {
131 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
132 }
133
134 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
135 struct lttng_consumer_channel **chan,
136 uint64_t *key,
137 enum consumer_channel_action *action)
138 {
139 struct consumer_channel_msg msg;
140 ssize_t ret;
141
142 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
143 if (ret < sizeof(msg)) {
144 ret = -1;
145 goto error;
146 }
147 *action = msg.action;
148 *chan = msg.chan;
149 *key = msg.key;
150 error:
151 return (int) ret;
152 }
153
154 /*
155 * Cleanup the stream list of a channel. Those streams are not yet globally
156 * visible
157 */
158 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
159 {
160 struct lttng_consumer_stream *stream, *stmp;
161
162 assert(channel);
163
164 /* Delete streams that might have been left in the stream list. */
165 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
166 send_node) {
167 cds_list_del(&stream->send_node);
168 /*
169 * Once a stream is added to this list, the buffers were created so we
170 * have a guarantee that this call will succeed. Setting the monitor
171 * mode to 0 so we don't lock nor try to delete the stream from the
172 * global hash table.
173 */
174 stream->monitor = 0;
175 consumer_stream_destroy(stream, NULL);
176 }
177 }
178
179 /*
180 * Find a stream. The consumer_data.lock must be locked during this
181 * call.
182 */
183 static struct lttng_consumer_stream *find_stream(uint64_t key,
184 struct lttng_ht *ht)
185 {
186 struct lttng_ht_iter iter;
187 struct lttng_ht_node_u64 *node;
188 struct lttng_consumer_stream *stream = NULL;
189
190 assert(ht);
191
192 /* -1ULL keys are lookup failures */
193 if (key == (uint64_t) -1ULL) {
194 return NULL;
195 }
196
197 rcu_read_lock();
198
199 lttng_ht_lookup(ht, &key, &iter);
200 node = lttng_ht_iter_get_node_u64(&iter);
201 if (node != NULL) {
202 stream = caa_container_of(node, struct lttng_consumer_stream, node);
203 }
204
205 rcu_read_unlock();
206
207 return stream;
208 }
209
210 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
211 {
212 struct lttng_consumer_stream *stream;
213
214 rcu_read_lock();
215 stream = find_stream(key, ht);
216 if (stream) {
217 stream->key = (uint64_t) -1ULL;
218 /*
219 * We don't want the lookup to match, but we still need
220 * to iterate on this stream when iterating over the hash table. Just
221 * change the node key.
222 */
223 stream->node.key = (uint64_t) -1ULL;
224 }
225 rcu_read_unlock();
226 }
227
228 /*
229 * Return a channel object for the given key.
230 *
231 * RCU read side lock MUST be acquired before calling this function and
232 * protects the channel ptr.
233 */
234 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
235 {
236 struct lttng_ht_iter iter;
237 struct lttng_ht_node_u64 *node;
238 struct lttng_consumer_channel *channel = NULL;
239
240 /* -1ULL keys are lookup failures */
241 if (key == (uint64_t) -1ULL) {
242 return NULL;
243 }
244
245 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
246 node = lttng_ht_iter_get_node_u64(&iter);
247 if (node != NULL) {
248 channel = caa_container_of(node, struct lttng_consumer_channel, node);
249 }
250
251 return channel;
252 }
253
254 /*
255 * There is a possibility that the consumer does not have enough time between
256 * the close of the channel on the session daemon and the cleanup in here thus
257 * once we have a channel add with an existing key, we know for sure that this
258 * channel will eventually get cleaned up by all streams being closed.
259 *
260 * This function just nullifies the already existing channel key.
261 */
262 static void steal_channel_key(uint64_t key)
263 {
264 struct lttng_consumer_channel *channel;
265
266 rcu_read_lock();
267 channel = consumer_find_channel(key);
268 if (channel) {
269 channel->key = (uint64_t) -1ULL;
270 /*
271 * We don't want the lookup to match, but we still need to iterate on
272 * this channel when iterating over the hash table. Just change the
273 * node key.
274 */
275 channel->node.key = (uint64_t) -1ULL;
276 }
277 rcu_read_unlock();
278 }
279
280 static void free_channel_rcu(struct rcu_head *head)
281 {
282 struct lttng_ht_node_u64 *node =
283 caa_container_of(head, struct lttng_ht_node_u64, head);
284 struct lttng_consumer_channel *channel =
285 caa_container_of(node, struct lttng_consumer_channel, node);
286
287 free(channel);
288 }
289
290 /*
291 * RCU protected relayd socket pair free.
292 */
293 static void free_relayd_rcu(struct rcu_head *head)
294 {
295 struct lttng_ht_node_u64 *node =
296 caa_container_of(head, struct lttng_ht_node_u64, head);
297 struct consumer_relayd_sock_pair *relayd =
298 caa_container_of(node, struct consumer_relayd_sock_pair, node);
299
300 /*
301 * Close all sockets. This is done in the call RCU since we don't want the
302 * socket fds to be reassigned thus potentially creating bad state of the
303 * relayd object.
304 *
305 * We do not have to lock the control socket mutex here since at this stage
306 * there is no one referencing to this relayd object.
307 */
308 (void) relayd_close(&relayd->control_sock);
309 (void) relayd_close(&relayd->data_sock);
310
311 free(relayd);
312 }
313
314 /*
315 * Destroy and free relayd socket pair object.
316 */
317 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
318 {
319 int ret;
320 struct lttng_ht_iter iter;
321
322 if (relayd == NULL) {
323 return;
324 }
325
326 DBG("Consumer destroy and close relayd socket pair");
327
328 iter.iter.node = &relayd->node.node;
329 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
330 if (ret != 0) {
331 /* We assume the relayd is being or is destroyed */
332 return;
333 }
334
335 /* RCU free() call */
336 call_rcu(&relayd->node.head, free_relayd_rcu);
337 }
338
339 /*
340 * Remove a channel from the global list protected by a mutex. This function is
341 * also responsible for freeing its data structures.
342 */
343 void consumer_del_channel(struct lttng_consumer_channel *channel)
344 {
345 int ret;
346 struct lttng_ht_iter iter;
347
348 DBG("Consumer delete channel key %" PRIu64, channel->key);
349
350 pthread_mutex_lock(&consumer_data.lock);
351 pthread_mutex_lock(&channel->lock);
352
353 /* Destroy streams that might have been left in the stream list. */
354 clean_channel_stream_list(channel);
355
356 if (channel->live_timer_enabled == 1) {
357 consumer_timer_live_stop(channel);
358 }
359
360 switch (consumer_data.type) {
361 case LTTNG_CONSUMER_KERNEL:
362 break;
363 case LTTNG_CONSUMER32_UST:
364 case LTTNG_CONSUMER64_UST:
365 lttng_ustconsumer_del_channel(channel);
366 break;
367 default:
368 ERR("Unknown consumer_data type");
369 assert(0);
370 goto end;
371 }
372
373 rcu_read_lock();
374 iter.iter.node = &channel->node.node;
375 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
376 assert(!ret);
377 rcu_read_unlock();
378
379 call_rcu(&channel->node.head, free_channel_rcu);
380 end:
381 pthread_mutex_unlock(&channel->lock);
382 pthread_mutex_unlock(&consumer_data.lock);
383 }
384
385 /*
386 * Iterate over the relayd hash table and destroy each element. Finally,
387 * destroy the whole hash table.
388 */
389 static void cleanup_relayd_ht(void)
390 {
391 struct lttng_ht_iter iter;
392 struct consumer_relayd_sock_pair *relayd;
393
394 rcu_read_lock();
395
396 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
397 node.node) {
398 consumer_destroy_relayd(relayd);
399 }
400
401 rcu_read_unlock();
402
403 lttng_ht_destroy(consumer_data.relayd_ht);
404 }
405
406 /*
407 * Update the end point status of all streams having the given network sequence
408 * index (relayd index).
409 *
410 * It's atomically set without having the stream mutex locked which is fine
411 * because we handle the write/read race with a pipe wakeup for each thread.
412 */
413 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
414 enum consumer_endpoint_status status)
415 {
416 struct lttng_ht_iter iter;
417 struct lttng_consumer_stream *stream;
418
419 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
420
421 rcu_read_lock();
422
423 /* Let's begin with metadata */
424 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
425 if (stream->net_seq_idx == net_seq_idx) {
426 uatomic_set(&stream->endpoint_status, status);
427 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
428 }
429 }
430
431 /* Follow up by the data streams */
432 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
433 if (stream->net_seq_idx == net_seq_idx) {
434 uatomic_set(&stream->endpoint_status, status);
435 DBG("Delete flag set to data stream %d", stream->wait_fd);
436 }
437 }
438 rcu_read_unlock();
439 }
440
441 /*
442 * Cleanup a relayd object by flagging every associated streams for deletion,
443 * destroying the object meaning removing it from the relayd hash table,
444 * closing the sockets and freeing the memory in a RCU call.
445 *
446 * If a local data context is available, notify the threads that the streams'
447 * state have changed.
448 */
449 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
450 struct lttng_consumer_local_data *ctx)
451 {
452 uint64_t netidx;
453
454 assert(relayd);
455
456 DBG("Cleaning up relayd sockets");
457
458 /* Save the net sequence index before destroying the object */
459 netidx = relayd->net_seq_idx;
460
461 /*
462 * Delete the relayd from the relayd hash table, close the sockets and free
463 * the object in a RCU call.
464 */
465 consumer_destroy_relayd(relayd);
466
467 /* Set inactive endpoint to all streams */
468 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
469
470 /*
471 * With a local data context, notify the threads that the streams' state
472 * have changed. The write() action on the pipe acts as an "implicit"
473 * memory barrier ordering the updates of the end point status from the
474 * read of this status which happens AFTER receiving this notify.
475 */
476 if (ctx) {
477 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
478 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
479 }
480 }
481
482 /*
483 * Flag a relayd socket pair for destruction. Destroy it if the refcount
484 * reaches zero.
485 *
486 * RCU read side lock MUST be aquired before calling this function.
487 */
488 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
489 {
490 assert(relayd);
491
492 /* Set destroy flag for this object */
493 uatomic_set(&relayd->destroy_flag, 1);
494
495 /* Destroy the relayd if refcount is 0 */
496 if (uatomic_read(&relayd->refcount) == 0) {
497 consumer_destroy_relayd(relayd);
498 }
499 }
500
501 /*
502 * Completly destroy stream from every visiable data structure and the given
503 * hash table if one.
504 *
505 * One this call returns, the stream object is not longer usable nor visible.
506 */
507 void consumer_del_stream(struct lttng_consumer_stream *stream,
508 struct lttng_ht *ht)
509 {
510 consumer_stream_destroy(stream, ht);
511 }
512
513 /*
514 * XXX naming of del vs destroy is all mixed up.
515 */
516 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
517 {
518 consumer_stream_destroy(stream, data_ht);
519 }
520
521 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
522 {
523 consumer_stream_destroy(stream, metadata_ht);
524 }
525
526 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
527 uint64_t stream_key,
528 enum lttng_consumer_stream_state state,
529 const char *channel_name,
530 uid_t uid,
531 gid_t gid,
532 uint64_t relayd_id,
533 uint64_t session_id,
534 int cpu,
535 int *alloc_ret,
536 enum consumer_channel_type type,
537 unsigned int monitor)
538 {
539 int ret;
540 struct lttng_consumer_stream *stream;
541
542 stream = zmalloc(sizeof(*stream));
543 if (stream == NULL) {
544 PERROR("malloc struct lttng_consumer_stream");
545 ret = -ENOMEM;
546 goto end;
547 }
548
549 rcu_read_lock();
550
551 stream->key = stream_key;
552 stream->out_fd = -1;
553 stream->out_fd_offset = 0;
554 stream->output_written = 0;
555 stream->state = state;
556 stream->uid = uid;
557 stream->gid = gid;
558 stream->net_seq_idx = relayd_id;
559 stream->session_id = session_id;
560 stream->monitor = monitor;
561 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
562 stream->index_fd = -1;
563 pthread_mutex_init(&stream->lock, NULL);
564
565 /* If channel is the metadata, flag this stream as metadata. */
566 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
567 stream->metadata_flag = 1;
568 /* Metadata is flat out. */
569 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
570 /* Live rendez-vous point. */
571 pthread_cond_init(&stream->metadata_rdv, NULL);
572 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
573 } else {
574 /* Format stream name to <channel_name>_<cpu_number> */
575 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
576 channel_name, cpu);
577 if (ret < 0) {
578 PERROR("snprintf stream name");
579 goto error;
580 }
581 }
582
583 /* Key is always the wait_fd for streams. */
584 lttng_ht_node_init_u64(&stream->node, stream->key);
585
586 /* Init node per channel id key */
587 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
588
589 /* Init session id node with the stream session id */
590 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
591
592 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
593 " relayd_id %" PRIu64 ", session_id %" PRIu64,
594 stream->name, stream->key, channel_key,
595 stream->net_seq_idx, stream->session_id);
596
597 rcu_read_unlock();
598 return stream;
599
600 error:
601 rcu_read_unlock();
602 free(stream);
603 end:
604 if (alloc_ret) {
605 *alloc_ret = ret;
606 }
607 return NULL;
608 }
609
610 /*
611 * Add a stream to the global list protected by a mutex.
612 */
613 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
614 {
615 struct lttng_ht *ht = data_ht;
616 int ret = 0;
617
618 assert(stream);
619 assert(ht);
620
621 DBG3("Adding consumer stream %" PRIu64, stream->key);
622
623 pthread_mutex_lock(&consumer_data.lock);
624 pthread_mutex_lock(&stream->chan->lock);
625 pthread_mutex_lock(&stream->chan->timer_lock);
626 pthread_mutex_lock(&stream->lock);
627 rcu_read_lock();
628
629 /* Steal stream identifier to avoid having streams with the same key */
630 steal_stream_key(stream->key, ht);
631
632 lttng_ht_add_unique_u64(ht, &stream->node);
633
634 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
635 &stream->node_channel_id);
636
637 /*
638 * Add stream to the stream_list_ht of the consumer data. No need to steal
639 * the key since the HT does not use it and we allow to add redundant keys
640 * into this table.
641 */
642 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
643
644 /*
645 * When nb_init_stream_left reaches 0, we don't need to trigger any action
646 * in terms of destroying the associated channel, because the action that
647 * causes the count to become 0 also causes a stream to be added. The
648 * channel deletion will thus be triggered by the following removal of this
649 * stream.
650 */
651 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
652 /* Increment refcount before decrementing nb_init_stream_left */
653 cmm_smp_wmb();
654 uatomic_dec(&stream->chan->nb_init_stream_left);
655 }
656
657 /* Update consumer data once the node is inserted. */
658 consumer_data.stream_count++;
659 consumer_data.need_update = 1;
660
661 rcu_read_unlock();
662 pthread_mutex_unlock(&stream->lock);
663 pthread_mutex_unlock(&stream->chan->timer_lock);
664 pthread_mutex_unlock(&stream->chan->lock);
665 pthread_mutex_unlock(&consumer_data.lock);
666
667 return ret;
668 }
669
670 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
671 {
672 consumer_del_stream(stream, data_ht);
673 }
674
675 /*
676 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
677 * be acquired before calling this.
678 */
679 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
680 {
681 int ret = 0;
682 struct lttng_ht_node_u64 *node;
683 struct lttng_ht_iter iter;
684
685 assert(relayd);
686
687 lttng_ht_lookup(consumer_data.relayd_ht,
688 &relayd->net_seq_idx, &iter);
689 node = lttng_ht_iter_get_node_u64(&iter);
690 if (node != NULL) {
691 goto end;
692 }
693 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
694
695 end:
696 return ret;
697 }
698
699 /*
700 * Allocate and return a consumer relayd socket.
701 */
702 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
703 uint64_t net_seq_idx)
704 {
705 struct consumer_relayd_sock_pair *obj = NULL;
706
707 /* net sequence index of -1 is a failure */
708 if (net_seq_idx == (uint64_t) -1ULL) {
709 goto error;
710 }
711
712 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
713 if (obj == NULL) {
714 PERROR("zmalloc relayd sock");
715 goto error;
716 }
717
718 obj->net_seq_idx = net_seq_idx;
719 obj->refcount = 0;
720 obj->destroy_flag = 0;
721 obj->control_sock.sock.fd = -1;
722 obj->data_sock.sock.fd = -1;
723 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
724 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
725
726 error:
727 return obj;
728 }
729
730 /*
731 * Find a relayd socket pair in the global consumer data.
732 *
733 * Return the object if found else NULL.
734 * RCU read-side lock must be held across this call and while using the
735 * returned object.
736 */
737 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
738 {
739 struct lttng_ht_iter iter;
740 struct lttng_ht_node_u64 *node;
741 struct consumer_relayd_sock_pair *relayd = NULL;
742
743 /* Negative keys are lookup failures */
744 if (key == (uint64_t) -1ULL) {
745 goto error;
746 }
747
748 lttng_ht_lookup(consumer_data.relayd_ht, &key,
749 &iter);
750 node = lttng_ht_iter_get_node_u64(&iter);
751 if (node != NULL) {
752 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
753 }
754
755 error:
756 return relayd;
757 }
758
759 /*
760 * Find a relayd and send the stream
761 *
762 * Returns 0 on success, < 0 on error
763 */
764 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
765 char *path)
766 {
767 int ret = 0;
768 struct consumer_relayd_sock_pair *relayd;
769
770 assert(stream);
771 assert(stream->net_seq_idx != -1ULL);
772 assert(path);
773
774 /* The stream is not metadata. Get relayd reference if exists. */
775 rcu_read_lock();
776 relayd = consumer_find_relayd(stream->net_seq_idx);
777 if (relayd != NULL) {
778 /* Add stream on the relayd */
779 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
780 ret = relayd_add_stream(&relayd->control_sock, stream->name,
781 path, &stream->relayd_stream_id,
782 stream->chan->tracefile_size, stream->chan->tracefile_count);
783 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
784 if (ret < 0) {
785 goto end;
786 }
787
788 uatomic_inc(&relayd->refcount);
789 stream->sent_to_relayd = 1;
790 } else {
791 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
792 stream->key, stream->net_seq_idx);
793 ret = -1;
794 goto end;
795 }
796
797 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
798 stream->name, stream->key, stream->net_seq_idx);
799
800 end:
801 rcu_read_unlock();
802 return ret;
803 }
804
805 /*
806 * Find a relayd and send the streams sent message
807 *
808 * Returns 0 on success, < 0 on error
809 */
810 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
811 {
812 int ret = 0;
813 struct consumer_relayd_sock_pair *relayd;
814
815 assert(net_seq_idx != -1ULL);
816
817 /* The stream is not metadata. Get relayd reference if exists. */
818 rcu_read_lock();
819 relayd = consumer_find_relayd(net_seq_idx);
820 if (relayd != NULL) {
821 /* Add stream on the relayd */
822 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
823 ret = relayd_streams_sent(&relayd->control_sock);
824 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
825 if (ret < 0) {
826 goto end;
827 }
828 } else {
829 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
830 net_seq_idx);
831 ret = -1;
832 goto end;
833 }
834
835 ret = 0;
836 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
837
838 end:
839 rcu_read_unlock();
840 return ret;
841 }
842
843 /*
844 * Find a relayd and close the stream
845 */
846 void close_relayd_stream(struct lttng_consumer_stream *stream)
847 {
848 struct consumer_relayd_sock_pair *relayd;
849
850 /* The stream is not metadata. Get relayd reference if exists. */
851 rcu_read_lock();
852 relayd = consumer_find_relayd(stream->net_seq_idx);
853 if (relayd) {
854 consumer_stream_relayd_close(stream, relayd);
855 }
856 rcu_read_unlock();
857 }
858
859 /*
860 * Handle stream for relayd transmission if the stream applies for network
861 * streaming where the net sequence index is set.
862 *
863 * Return destination file descriptor or negative value on error.
864 */
865 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
866 size_t data_size, unsigned long padding,
867 struct consumer_relayd_sock_pair *relayd)
868 {
869 int outfd = -1, ret;
870 struct lttcomm_relayd_data_hdr data_hdr;
871
872 /* Safety net */
873 assert(stream);
874 assert(relayd);
875
876 /* Reset data header */
877 memset(&data_hdr, 0, sizeof(data_hdr));
878
879 if (stream->metadata_flag) {
880 /* Caller MUST acquire the relayd control socket lock */
881 ret = relayd_send_metadata(&relayd->control_sock, data_size);
882 if (ret < 0) {
883 goto error;
884 }
885
886 /* Metadata are always sent on the control socket. */
887 outfd = relayd->control_sock.sock.fd;
888 } else {
889 /* Set header with stream information */
890 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
891 data_hdr.data_size = htobe32(data_size);
892 data_hdr.padding_size = htobe32(padding);
893 /*
894 * Note that net_seq_num below is assigned with the *current* value of
895 * next_net_seq_num and only after that the next_net_seq_num will be
896 * increment. This is why when issuing a command on the relayd using
897 * this next value, 1 should always be substracted in order to compare
898 * the last seen sequence number on the relayd side to the last sent.
899 */
900 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
901 /* Other fields are zeroed previously */
902
903 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
904 sizeof(data_hdr));
905 if (ret < 0) {
906 goto error;
907 }
908
909 ++stream->next_net_seq_num;
910
911 /* Set to go on data socket */
912 outfd = relayd->data_sock.sock.fd;
913 }
914
915 error:
916 return outfd;
917 }
918
919 /*
920 * Allocate and return a new lttng_consumer_channel object using the given key
921 * to initialize the hash table node.
922 *
923 * On error, return NULL.
924 */
925 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
926 uint64_t session_id,
927 const char *pathname,
928 const char *name,
929 uid_t uid,
930 gid_t gid,
931 uint64_t relayd_id,
932 enum lttng_event_output output,
933 uint64_t tracefile_size,
934 uint64_t tracefile_count,
935 uint64_t session_id_per_pid,
936 unsigned int monitor,
937 unsigned int live_timer_interval)
938 {
939 struct lttng_consumer_channel *channel;
940
941 channel = zmalloc(sizeof(*channel));
942 if (channel == NULL) {
943 PERROR("malloc struct lttng_consumer_channel");
944 goto end;
945 }
946
947 channel->key = key;
948 channel->refcount = 0;
949 channel->session_id = session_id;
950 channel->session_id_per_pid = session_id_per_pid;
951 channel->uid = uid;
952 channel->gid = gid;
953 channel->relayd_id = relayd_id;
954 channel->tracefile_size = tracefile_size;
955 channel->tracefile_count = tracefile_count;
956 channel->monitor = monitor;
957 channel->live_timer_interval = live_timer_interval;
958 pthread_mutex_init(&channel->lock, NULL);
959 pthread_mutex_init(&channel->timer_lock, NULL);
960
961 switch (output) {
962 case LTTNG_EVENT_SPLICE:
963 channel->output = CONSUMER_CHANNEL_SPLICE;
964 break;
965 case LTTNG_EVENT_MMAP:
966 channel->output = CONSUMER_CHANNEL_MMAP;
967 break;
968 default:
969 assert(0);
970 free(channel);
971 channel = NULL;
972 goto end;
973 }
974
975 /*
976 * In monitor mode, the streams associated with the channel will be put in
977 * a special list ONLY owned by this channel. So, the refcount is set to 1
978 * here meaning that the channel itself has streams that are referenced.
979 *
980 * On a channel deletion, once the channel is no longer visible, the
981 * refcount is decremented and checked for a zero value to delete it. With
982 * streams in no monitor mode, it will now be safe to destroy the channel.
983 */
984 if (!channel->monitor) {
985 channel->refcount = 1;
986 }
987
988 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
989 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
990
991 strncpy(channel->name, name, sizeof(channel->name));
992 channel->name[sizeof(channel->name) - 1] = '\0';
993
994 lttng_ht_node_init_u64(&channel->node, channel->key);
995
996 channel->wait_fd = -1;
997
998 CDS_INIT_LIST_HEAD(&channel->streams.head);
999
1000 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
1001
1002 end:
1003 return channel;
1004 }
1005
1006 /*
1007 * Add a channel to the global list protected by a mutex.
1008 *
1009 * Always return 0 indicating success.
1010 */
1011 int consumer_add_channel(struct lttng_consumer_channel *channel,
1012 struct lttng_consumer_local_data *ctx)
1013 {
1014 pthread_mutex_lock(&consumer_data.lock);
1015 pthread_mutex_lock(&channel->lock);
1016 pthread_mutex_lock(&channel->timer_lock);
1017
1018 /*
1019 * This gives us a guarantee that the channel we are about to add to the
1020 * channel hash table will be unique. See this function comment on the why
1021 * we need to steel the channel key at this stage.
1022 */
1023 steal_channel_key(channel->key);
1024
1025 rcu_read_lock();
1026 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1027 rcu_read_unlock();
1028
1029 pthread_mutex_unlock(&channel->timer_lock);
1030 pthread_mutex_unlock(&channel->lock);
1031 pthread_mutex_unlock(&consumer_data.lock);
1032
1033 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1034 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1035 }
1036
1037 return 0;
1038 }
1039
1040 /*
1041 * Allocate the pollfd structure and the local view of the out fds to avoid
1042 * doing a lookup in the linked list and concurrency issues when writing is
1043 * needed. Called with consumer_data.lock held.
1044 *
1045 * Returns the number of fds in the structures.
1046 */
1047 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1048 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1049 struct lttng_ht *ht)
1050 {
1051 int i = 0;
1052 struct lttng_ht_iter iter;
1053 struct lttng_consumer_stream *stream;
1054
1055 assert(ctx);
1056 assert(ht);
1057 assert(pollfd);
1058 assert(local_stream);
1059
1060 DBG("Updating poll fd array");
1061 rcu_read_lock();
1062 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1063 /*
1064 * Only active streams with an active end point can be added to the
1065 * poll set and local stream storage of the thread.
1066 *
1067 * There is a potential race here for endpoint_status to be updated
1068 * just after the check. However, this is OK since the stream(s) will
1069 * be deleted once the thread is notified that the end point state has
1070 * changed where this function will be called back again.
1071 */
1072 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1073 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1074 continue;
1075 }
1076 /*
1077 * This clobbers way too much the debug output. Uncomment that if you
1078 * need it for debugging purposes.
1079 *
1080 * DBG("Active FD %d", stream->wait_fd);
1081 */
1082 (*pollfd)[i].fd = stream->wait_fd;
1083 (*pollfd)[i].events = POLLIN | POLLPRI;
1084 local_stream[i] = stream;
1085 i++;
1086 }
1087 rcu_read_unlock();
1088
1089 /*
1090 * Insert the consumer_data_pipe at the end of the array and don't
1091 * increment i so nb_fd is the number of real FD.
1092 */
1093 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1094 (*pollfd)[i].events = POLLIN | POLLPRI;
1095
1096 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1097 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1098 return i;
1099 }
1100
1101 /*
1102 * Poll on the should_quit pipe and the command socket return -1 on
1103 * error, 1 if should exit, 0 if data is available on the command socket
1104 */
1105 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1106 {
1107 int num_rdy;
1108
1109 restart:
1110 num_rdy = poll(consumer_sockpoll, 2, -1);
1111 if (num_rdy == -1) {
1112 /*
1113 * Restart interrupted system call.
1114 */
1115 if (errno == EINTR) {
1116 goto restart;
1117 }
1118 PERROR("Poll error");
1119 return -1;
1120 }
1121 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1122 DBG("consumer_should_quit wake up");
1123 return 1;
1124 }
1125 return 0;
1126 }
1127
1128 /*
1129 * Set the error socket.
1130 */
1131 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1132 int sock)
1133 {
1134 ctx->consumer_error_socket = sock;
1135 }
1136
1137 /*
1138 * Set the command socket path.
1139 */
1140 void lttng_consumer_set_command_sock_path(
1141 struct lttng_consumer_local_data *ctx, char *sock)
1142 {
1143 ctx->consumer_command_sock_path = sock;
1144 }
1145
1146 /*
1147 * Send return code to the session daemon.
1148 * If the socket is not defined, we return 0, it is not a fatal error
1149 */
1150 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1151 {
1152 if (ctx->consumer_error_socket > 0) {
1153 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1154 sizeof(enum lttcomm_sessiond_command));
1155 }
1156
1157 return 0;
1158 }
1159
1160 /*
1161 * Close all the tracefiles and stream fds and MUST be called when all
1162 * instances are destroyed i.e. when all threads were joined and are ended.
1163 */
1164 void lttng_consumer_cleanup(void)
1165 {
1166 struct lttng_ht_iter iter;
1167 struct lttng_consumer_channel *channel;
1168
1169 rcu_read_lock();
1170
1171 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1172 node.node) {
1173 consumer_del_channel(channel);
1174 }
1175
1176 rcu_read_unlock();
1177
1178 lttng_ht_destroy(consumer_data.channel_ht);
1179
1180 cleanup_relayd_ht();
1181
1182 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1183
1184 /*
1185 * This HT contains streams that are freed by either the metadata thread or
1186 * the data thread so we do *nothing* on the hash table and simply destroy
1187 * it.
1188 */
1189 lttng_ht_destroy(consumer_data.stream_list_ht);
1190 }
1191
1192 /*
1193 * Called from signal handler.
1194 */
1195 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1196 {
1197 ssize_t ret;
1198
1199 consumer_quit = 1;
1200 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1201 if (ret < 1) {
1202 PERROR("write consumer quit");
1203 }
1204
1205 DBG("Consumer flag that it should quit");
1206 }
1207
1208 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1209 off_t orig_offset)
1210 {
1211 int outfd = stream->out_fd;
1212
1213 /*
1214 * This does a blocking write-and-wait on any page that belongs to the
1215 * subbuffer prior to the one we just wrote.
1216 * Don't care about error values, as these are just hints and ways to
1217 * limit the amount of page cache used.
1218 */
1219 if (orig_offset < stream->max_sb_size) {
1220 return;
1221 }
1222 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1223 stream->max_sb_size,
1224 SYNC_FILE_RANGE_WAIT_BEFORE
1225 | SYNC_FILE_RANGE_WRITE
1226 | SYNC_FILE_RANGE_WAIT_AFTER);
1227 /*
1228 * Give hints to the kernel about how we access the file:
1229 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1230 * we write it.
1231 *
1232 * We need to call fadvise again after the file grows because the
1233 * kernel does not seem to apply fadvise to non-existing parts of the
1234 * file.
1235 *
1236 * Call fadvise _after_ having waited for the page writeback to
1237 * complete because the dirty page writeback semantic is not well
1238 * defined. So it can be expected to lead to lower throughput in
1239 * streaming.
1240 */
1241 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1242 stream->max_sb_size, POSIX_FADV_DONTNEED);
1243 }
1244
1245 /*
1246 * Initialise the necessary environnement :
1247 * - create a new context
1248 * - create the poll_pipe
1249 * - create the should_quit pipe (for signal handler)
1250 * - create the thread pipe (for splice)
1251 *
1252 * Takes a function pointer as argument, this function is called when data is
1253 * available on a buffer. This function is responsible to do the
1254 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1255 * buffer configuration and then kernctl_put_next_subbuf at the end.
1256 *
1257 * Returns a pointer to the new context or NULL on error.
1258 */
1259 struct lttng_consumer_local_data *lttng_consumer_create(
1260 enum lttng_consumer_type type,
1261 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1262 struct lttng_consumer_local_data *ctx),
1263 int (*recv_channel)(struct lttng_consumer_channel *channel),
1264 int (*recv_stream)(struct lttng_consumer_stream *stream),
1265 int (*update_stream)(uint64_t stream_key, uint32_t state))
1266 {
1267 int ret;
1268 struct lttng_consumer_local_data *ctx;
1269
1270 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1271 consumer_data.type == type);
1272 consumer_data.type = type;
1273
1274 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1275 if (ctx == NULL) {
1276 PERROR("allocating context");
1277 goto error;
1278 }
1279
1280 ctx->consumer_error_socket = -1;
1281 ctx->consumer_metadata_socket = -1;
1282 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1283 /* assign the callbacks */
1284 ctx->on_buffer_ready = buffer_ready;
1285 ctx->on_recv_channel = recv_channel;
1286 ctx->on_recv_stream = recv_stream;
1287 ctx->on_update_stream = update_stream;
1288
1289 ctx->consumer_data_pipe = lttng_pipe_open(0);
1290 if (!ctx->consumer_data_pipe) {
1291 goto error_poll_pipe;
1292 }
1293
1294 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1295 if (!ctx->consumer_wakeup_pipe) {
1296 goto error_wakeup_pipe;
1297 }
1298
1299 ret = pipe(ctx->consumer_should_quit);
1300 if (ret < 0) {
1301 PERROR("Error creating recv pipe");
1302 goto error_quit_pipe;
1303 }
1304
1305 ret = pipe(ctx->consumer_channel_pipe);
1306 if (ret < 0) {
1307 PERROR("Error creating channel pipe");
1308 goto error_channel_pipe;
1309 }
1310
1311 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1312 if (!ctx->consumer_metadata_pipe) {
1313 goto error_metadata_pipe;
1314 }
1315
1316 return ctx;
1317
1318 error_metadata_pipe:
1319 utils_close_pipe(ctx->consumer_channel_pipe);
1320 error_channel_pipe:
1321 utils_close_pipe(ctx->consumer_should_quit);
1322 error_quit_pipe:
1323 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1324 error_wakeup_pipe:
1325 lttng_pipe_destroy(ctx->consumer_data_pipe);
1326 error_poll_pipe:
1327 free(ctx);
1328 error:
1329 return NULL;
1330 }
1331
1332 /*
1333 * Iterate over all streams of the hashtable and free them properly.
1334 */
1335 static void destroy_data_stream_ht(struct lttng_ht *ht)
1336 {
1337 struct lttng_ht_iter iter;
1338 struct lttng_consumer_stream *stream;
1339
1340 if (ht == NULL) {
1341 return;
1342 }
1343
1344 rcu_read_lock();
1345 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1346 /*
1347 * Ignore return value since we are currently cleaning up so any error
1348 * can't be handled.
1349 */
1350 (void) consumer_del_stream(stream, ht);
1351 }
1352 rcu_read_unlock();
1353
1354 lttng_ht_destroy(ht);
1355 }
1356
1357 /*
1358 * Iterate over all streams of the metadata hashtable and free them
1359 * properly.
1360 */
1361 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1362 {
1363 struct lttng_ht_iter iter;
1364 struct lttng_consumer_stream *stream;
1365
1366 if (ht == NULL) {
1367 return;
1368 }
1369
1370 rcu_read_lock();
1371 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1372 /*
1373 * Ignore return value since we are currently cleaning up so any error
1374 * can't be handled.
1375 */
1376 (void) consumer_del_metadata_stream(stream, ht);
1377 }
1378 rcu_read_unlock();
1379
1380 lttng_ht_destroy(ht);
1381 }
1382
1383 /*
1384 * Close all fds associated with the instance and free the context.
1385 */
1386 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1387 {
1388 int ret;
1389
1390 DBG("Consumer destroying it. Closing everything.");
1391
1392 if (!ctx) {
1393 return;
1394 }
1395
1396 destroy_data_stream_ht(data_ht);
1397 destroy_metadata_stream_ht(metadata_ht);
1398
1399 ret = close(ctx->consumer_error_socket);
1400 if (ret) {
1401 PERROR("close");
1402 }
1403 ret = close(ctx->consumer_metadata_socket);
1404 if (ret) {
1405 PERROR("close");
1406 }
1407 utils_close_pipe(ctx->consumer_channel_pipe);
1408 lttng_pipe_destroy(ctx->consumer_data_pipe);
1409 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1410 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1411 utils_close_pipe(ctx->consumer_should_quit);
1412
1413 unlink(ctx->consumer_command_sock_path);
1414 free(ctx);
1415 }
1416
1417 /*
1418 * Write the metadata stream id on the specified file descriptor.
1419 */
1420 static int write_relayd_metadata_id(int fd,
1421 struct lttng_consumer_stream *stream,
1422 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1423 {
1424 ssize_t ret;
1425 struct lttcomm_relayd_metadata_payload hdr;
1426
1427 hdr.stream_id = htobe64(stream->relayd_stream_id);
1428 hdr.padding_size = htobe32(padding);
1429 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1430 if (ret < sizeof(hdr)) {
1431 /*
1432 * This error means that the fd's end is closed so ignore the perror
1433 * not to clubber the error output since this can happen in a normal
1434 * code path.
1435 */
1436 if (errno != EPIPE) {
1437 PERROR("write metadata stream id");
1438 }
1439 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1440 /*
1441 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1442 * handle writting the missing part so report that as an error and
1443 * don't lie to the caller.
1444 */
1445 ret = -1;
1446 goto end;
1447 }
1448 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1449 stream->relayd_stream_id, padding);
1450
1451 end:
1452 return (int) ret;
1453 }
1454
1455 /*
1456 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1457 * core function for writing trace buffers to either the local filesystem or
1458 * the network.
1459 *
1460 * It must be called with the stream lock held.
1461 *
1462 * Careful review MUST be put if any changes occur!
1463 *
1464 * Returns the number of bytes written
1465 */
1466 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1467 struct lttng_consumer_local_data *ctx,
1468 struct lttng_consumer_stream *stream, unsigned long len,
1469 unsigned long padding,
1470 struct ctf_packet_index *index)
1471 {
1472 unsigned long mmap_offset;
1473 void *mmap_base;
1474 ssize_t ret = 0;
1475 off_t orig_offset = stream->out_fd_offset;
1476 /* Default is on the disk */
1477 int outfd = stream->out_fd;
1478 struct consumer_relayd_sock_pair *relayd = NULL;
1479 unsigned int relayd_hang_up = 0;
1480
1481 /* RCU lock for the relayd pointer */
1482 rcu_read_lock();
1483
1484 /* Flag that the current stream if set for network streaming. */
1485 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1486 relayd = consumer_find_relayd(stream->net_seq_idx);
1487 if (relayd == NULL) {
1488 ret = -EPIPE;
1489 goto end;
1490 }
1491 }
1492
1493 /* get the offset inside the fd to mmap */
1494 switch (consumer_data.type) {
1495 case LTTNG_CONSUMER_KERNEL:
1496 mmap_base = stream->mmap_base;
1497 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1498 if (ret < 0) {
1499 ret = -errno;
1500 PERROR("tracer ctl get_mmap_read_offset");
1501 goto end;
1502 }
1503 break;
1504 case LTTNG_CONSUMER32_UST:
1505 case LTTNG_CONSUMER64_UST:
1506 mmap_base = lttng_ustctl_get_mmap_base(stream);
1507 if (!mmap_base) {
1508 ERR("read mmap get mmap base for stream %s", stream->name);
1509 ret = -EPERM;
1510 goto end;
1511 }
1512 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1513 if (ret != 0) {
1514 PERROR("tracer ctl get_mmap_read_offset");
1515 ret = -EINVAL;
1516 goto end;
1517 }
1518 break;
1519 default:
1520 ERR("Unknown consumer_data type");
1521 assert(0);
1522 }
1523
1524 /* Handle stream on the relayd if the output is on the network */
1525 if (relayd) {
1526 unsigned long netlen = len;
1527
1528 /*
1529 * Lock the control socket for the complete duration of the function
1530 * since from this point on we will use the socket.
1531 */
1532 if (stream->metadata_flag) {
1533 /* Metadata requires the control socket. */
1534 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1535 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1536 }
1537
1538 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1539 if (ret < 0) {
1540 relayd_hang_up = 1;
1541 goto write_error;
1542 }
1543 /* Use the returned socket. */
1544 outfd = ret;
1545
1546 /* Write metadata stream id before payload */
1547 if (stream->metadata_flag) {
1548 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1549 if (ret < 0) {
1550 relayd_hang_up = 1;
1551 goto write_error;
1552 }
1553 }
1554 } else {
1555 /* No streaming, we have to set the len with the full padding */
1556 len += padding;
1557
1558 /*
1559 * Check if we need to change the tracefile before writing the packet.
1560 */
1561 if (stream->chan->tracefile_size > 0 &&
1562 (stream->tracefile_size_current + len) >
1563 stream->chan->tracefile_size) {
1564 ret = utils_rotate_stream_file(stream->chan->pathname,
1565 stream->name, stream->chan->tracefile_size,
1566 stream->chan->tracefile_count, stream->uid, stream->gid,
1567 stream->out_fd, &(stream->tracefile_count_current),
1568 &stream->out_fd);
1569 if (ret < 0) {
1570 ERR("Rotating output file");
1571 goto end;
1572 }
1573 outfd = stream->out_fd;
1574
1575 if (stream->index_fd >= 0) {
1576 ret = index_create_file(stream->chan->pathname,
1577 stream->name, stream->uid, stream->gid,
1578 stream->chan->tracefile_size,
1579 stream->tracefile_count_current);
1580 if (ret < 0) {
1581 goto end;
1582 }
1583 stream->index_fd = ret;
1584 }
1585
1586 /* Reset current size because we just perform a rotation. */
1587 stream->tracefile_size_current = 0;
1588 stream->out_fd_offset = 0;
1589 orig_offset = 0;
1590 }
1591 stream->tracefile_size_current += len;
1592 if (index) {
1593 index->offset = htobe64(stream->out_fd_offset);
1594 }
1595 }
1596
1597 /*
1598 * This call guarantee that len or less is returned. It's impossible to
1599 * receive a ret value that is bigger than len.
1600 */
1601 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1602 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1603 if (ret < 0 || ((size_t) ret != len)) {
1604 /*
1605 * Report error to caller if nothing was written else at least send the
1606 * amount written.
1607 */
1608 if (ret < 0) {
1609 ret = -errno;
1610 }
1611 relayd_hang_up = 1;
1612
1613 /* Socket operation failed. We consider the relayd dead */
1614 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1615 /*
1616 * This is possible if the fd is closed on the other side
1617 * (outfd) or any write problem. It can be verbose a bit for a
1618 * normal execution if for instance the relayd is stopped
1619 * abruptly. This can happen so set this to a DBG statement.
1620 */
1621 DBG("Consumer mmap write detected relayd hang up");
1622 } else {
1623 /* Unhandled error, print it and stop function right now. */
1624 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1625 }
1626 goto write_error;
1627 }
1628 stream->output_written += ret;
1629
1630 /* This call is useless on a socket so better save a syscall. */
1631 if (!relayd) {
1632 /* This won't block, but will start writeout asynchronously */
1633 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1634 SYNC_FILE_RANGE_WRITE);
1635 stream->out_fd_offset += len;
1636 }
1637 lttng_consumer_sync_trace_file(stream, orig_offset);
1638
1639 write_error:
1640 /*
1641 * This is a special case that the relayd has closed its socket. Let's
1642 * cleanup the relayd object and all associated streams.
1643 */
1644 if (relayd && relayd_hang_up) {
1645 cleanup_relayd(relayd, ctx);
1646 }
1647
1648 end:
1649 /* Unlock only if ctrl socket used */
1650 if (relayd && stream->metadata_flag) {
1651 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1652 }
1653
1654 rcu_read_unlock();
1655 return ret;
1656 }
1657
1658 /*
1659 * Splice the data from the ring buffer to the tracefile.
1660 *
1661 * It must be called with the stream lock held.
1662 *
1663 * Returns the number of bytes spliced.
1664 */
1665 ssize_t lttng_consumer_on_read_subbuffer_splice(
1666 struct lttng_consumer_local_data *ctx,
1667 struct lttng_consumer_stream *stream, unsigned long len,
1668 unsigned long padding,
1669 struct ctf_packet_index *index)
1670 {
1671 ssize_t ret = 0, written = 0, ret_splice = 0;
1672 loff_t offset = 0;
1673 off_t orig_offset = stream->out_fd_offset;
1674 int fd = stream->wait_fd;
1675 /* Default is on the disk */
1676 int outfd = stream->out_fd;
1677 struct consumer_relayd_sock_pair *relayd = NULL;
1678 int *splice_pipe;
1679 unsigned int relayd_hang_up = 0;
1680
1681 switch (consumer_data.type) {
1682 case LTTNG_CONSUMER_KERNEL:
1683 break;
1684 case LTTNG_CONSUMER32_UST:
1685 case LTTNG_CONSUMER64_UST:
1686 /* Not supported for user space tracing */
1687 return -ENOSYS;
1688 default:
1689 ERR("Unknown consumer_data type");
1690 assert(0);
1691 }
1692
1693 /* RCU lock for the relayd pointer */
1694 rcu_read_lock();
1695
1696 /* Flag that the current stream if set for network streaming. */
1697 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1698 relayd = consumer_find_relayd(stream->net_seq_idx);
1699 if (relayd == NULL) {
1700 written = -ret;
1701 goto end;
1702 }
1703 }
1704 splice_pipe = stream->splice_pipe;
1705
1706 /* Write metadata stream id before payload */
1707 if (relayd) {
1708 unsigned long total_len = len;
1709
1710 if (stream->metadata_flag) {
1711 /*
1712 * Lock the control socket for the complete duration of the function
1713 * since from this point on we will use the socket.
1714 */
1715 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1716
1717 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1718 padding);
1719 if (ret < 0) {
1720 written = ret;
1721 relayd_hang_up = 1;
1722 goto write_error;
1723 }
1724
1725 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1726 }
1727
1728 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1729 if (ret < 0) {
1730 written = ret;
1731 relayd_hang_up = 1;
1732 goto write_error;
1733 }
1734 /* Use the returned socket. */
1735 outfd = ret;
1736 } else {
1737 /* No streaming, we have to set the len with the full padding */
1738 len += padding;
1739
1740 /*
1741 * Check if we need to change the tracefile before writing the packet.
1742 */
1743 if (stream->chan->tracefile_size > 0 &&
1744 (stream->tracefile_size_current + len) >
1745 stream->chan->tracefile_size) {
1746 ret = utils_rotate_stream_file(stream->chan->pathname,
1747 stream->name, stream->chan->tracefile_size,
1748 stream->chan->tracefile_count, stream->uid, stream->gid,
1749 stream->out_fd, &(stream->tracefile_count_current),
1750 &stream->out_fd);
1751 if (ret < 0) {
1752 written = ret;
1753 ERR("Rotating output file");
1754 goto end;
1755 }
1756 outfd = stream->out_fd;
1757
1758 if (stream->index_fd >= 0) {
1759 ret = index_create_file(stream->chan->pathname,
1760 stream->name, stream->uid, stream->gid,
1761 stream->chan->tracefile_size,
1762 stream->tracefile_count_current);
1763 if (ret < 0) {
1764 written = ret;
1765 goto end;
1766 }
1767 stream->index_fd = ret;
1768 }
1769
1770 /* Reset current size because we just perform a rotation. */
1771 stream->tracefile_size_current = 0;
1772 stream->out_fd_offset = 0;
1773 orig_offset = 0;
1774 }
1775 stream->tracefile_size_current += len;
1776 index->offset = htobe64(stream->out_fd_offset);
1777 }
1778
1779 while (len > 0) {
1780 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1781 (unsigned long)offset, len, fd, splice_pipe[1]);
1782 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1783 SPLICE_F_MOVE | SPLICE_F_MORE);
1784 DBG("splice chan to pipe, ret %zd", ret_splice);
1785 if (ret_splice < 0) {
1786 ret = errno;
1787 written = -ret;
1788 PERROR("Error in relay splice");
1789 goto splice_error;
1790 }
1791
1792 /* Handle stream on the relayd if the output is on the network */
1793 if (relayd && stream->metadata_flag) {
1794 size_t metadata_payload_size =
1795 sizeof(struct lttcomm_relayd_metadata_payload);
1796
1797 /* Update counter to fit the spliced data */
1798 ret_splice += metadata_payload_size;
1799 len += metadata_payload_size;
1800 /*
1801 * We do this so the return value can match the len passed as
1802 * argument to this function.
1803 */
1804 written -= metadata_payload_size;
1805 }
1806
1807 /* Splice data out */
1808 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1809 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1810 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1811 outfd, ret_splice);
1812 if (ret_splice < 0) {
1813 ret = errno;
1814 written = -ret;
1815 relayd_hang_up = 1;
1816 goto write_error;
1817 } else if (ret_splice > len) {
1818 /*
1819 * We don't expect this code path to be executed but you never know
1820 * so this is an extra protection agains a buggy splice().
1821 */
1822 ret = errno;
1823 written += ret_splice;
1824 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1825 len);
1826 goto splice_error;
1827 } else {
1828 /* All good, update current len and continue. */
1829 len -= ret_splice;
1830 }
1831
1832 /* This call is useless on a socket so better save a syscall. */
1833 if (!relayd) {
1834 /* This won't block, but will start writeout asynchronously */
1835 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1836 SYNC_FILE_RANGE_WRITE);
1837 stream->out_fd_offset += ret_splice;
1838 }
1839 stream->output_written += ret_splice;
1840 written += ret_splice;
1841 }
1842 lttng_consumer_sync_trace_file(stream, orig_offset);
1843 goto end;
1844
1845 write_error:
1846 /*
1847 * This is a special case that the relayd has closed its socket. Let's
1848 * cleanup the relayd object and all associated streams.
1849 */
1850 if (relayd && relayd_hang_up) {
1851 cleanup_relayd(relayd, ctx);
1852 /* Skip splice error so the consumer does not fail */
1853 goto end;
1854 }
1855
1856 splice_error:
1857 /* send the appropriate error description to sessiond */
1858 switch (ret) {
1859 case EINVAL:
1860 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1861 break;
1862 case ENOMEM:
1863 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1864 break;
1865 case ESPIPE:
1866 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1867 break;
1868 }
1869
1870 end:
1871 if (relayd && stream->metadata_flag) {
1872 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1873 }
1874
1875 rcu_read_unlock();
1876 return written;
1877 }
1878
1879 /*
1880 * Take a snapshot for a specific fd
1881 *
1882 * Returns 0 on success, < 0 on error
1883 */
1884 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1885 {
1886 switch (consumer_data.type) {
1887 case LTTNG_CONSUMER_KERNEL:
1888 return lttng_kconsumer_take_snapshot(stream);
1889 case LTTNG_CONSUMER32_UST:
1890 case LTTNG_CONSUMER64_UST:
1891 return lttng_ustconsumer_take_snapshot(stream);
1892 default:
1893 ERR("Unknown consumer_data type");
1894 assert(0);
1895 return -ENOSYS;
1896 }
1897 }
1898
1899 /*
1900 * Get the produced position
1901 *
1902 * Returns 0 on success, < 0 on error
1903 */
1904 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1905 unsigned long *pos)
1906 {
1907 switch (consumer_data.type) {
1908 case LTTNG_CONSUMER_KERNEL:
1909 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1910 case LTTNG_CONSUMER32_UST:
1911 case LTTNG_CONSUMER64_UST:
1912 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1913 default:
1914 ERR("Unknown consumer_data type");
1915 assert(0);
1916 return -ENOSYS;
1917 }
1918 }
1919
1920 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1921 int sock, struct pollfd *consumer_sockpoll)
1922 {
1923 switch (consumer_data.type) {
1924 case LTTNG_CONSUMER_KERNEL:
1925 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1926 case LTTNG_CONSUMER32_UST:
1927 case LTTNG_CONSUMER64_UST:
1928 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1929 default:
1930 ERR("Unknown consumer_data type");
1931 assert(0);
1932 return -ENOSYS;
1933 }
1934 }
1935
1936 void lttng_consumer_close_all_metadata(void)
1937 {
1938 switch (consumer_data.type) {
1939 case LTTNG_CONSUMER_KERNEL:
1940 /*
1941 * The Kernel consumer has a different metadata scheme so we don't
1942 * close anything because the stream will be closed by the session
1943 * daemon.
1944 */
1945 break;
1946 case LTTNG_CONSUMER32_UST:
1947 case LTTNG_CONSUMER64_UST:
1948 /*
1949 * Close all metadata streams. The metadata hash table is passed and
1950 * this call iterates over it by closing all wakeup fd. This is safe
1951 * because at this point we are sure that the metadata producer is
1952 * either dead or blocked.
1953 */
1954 lttng_ustconsumer_close_all_metadata(metadata_ht);
1955 break;
1956 default:
1957 ERR("Unknown consumer_data type");
1958 assert(0);
1959 }
1960 }
1961
1962 /*
1963 * Clean up a metadata stream and free its memory.
1964 */
1965 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1966 struct lttng_ht *ht)
1967 {
1968 struct lttng_consumer_channel *free_chan = NULL;
1969
1970 assert(stream);
1971 /*
1972 * This call should NEVER receive regular stream. It must always be
1973 * metadata stream and this is crucial for data structure synchronization.
1974 */
1975 assert(stream->metadata_flag);
1976
1977 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1978
1979 pthread_mutex_lock(&consumer_data.lock);
1980 pthread_mutex_lock(&stream->chan->lock);
1981 pthread_mutex_lock(&stream->lock);
1982
1983 /* Remove any reference to that stream. */
1984 consumer_stream_delete(stream, ht);
1985
1986 /* Close down everything including the relayd if one. */
1987 consumer_stream_close(stream);
1988 /* Destroy tracer buffers of the stream. */
1989 consumer_stream_destroy_buffers(stream);
1990
1991 /* Atomically decrement channel refcount since other threads can use it. */
1992 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1993 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1994 /* Go for channel deletion! */
1995 free_chan = stream->chan;
1996 }
1997
1998 /*
1999 * Nullify the stream reference so it is not used after deletion. The
2000 * channel lock MUST be acquired before being able to check for a NULL
2001 * pointer value.
2002 */
2003 stream->chan->metadata_stream = NULL;
2004
2005 pthread_mutex_unlock(&stream->lock);
2006 pthread_mutex_unlock(&stream->chan->lock);
2007 pthread_mutex_unlock(&consumer_data.lock);
2008
2009 if (free_chan) {
2010 consumer_del_channel(free_chan);
2011 }
2012
2013 consumer_stream_free(stream);
2014 }
2015
2016 /*
2017 * Action done with the metadata stream when adding it to the consumer internal
2018 * data structures to handle it.
2019 */
2020 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2021 {
2022 struct lttng_ht *ht = metadata_ht;
2023 int ret = 0;
2024 struct lttng_ht_iter iter;
2025 struct lttng_ht_node_u64 *node;
2026
2027 assert(stream);
2028 assert(ht);
2029
2030 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2031
2032 pthread_mutex_lock(&consumer_data.lock);
2033 pthread_mutex_lock(&stream->chan->lock);
2034 pthread_mutex_lock(&stream->chan->timer_lock);
2035 pthread_mutex_lock(&stream->lock);
2036
2037 /*
2038 * From here, refcounts are updated so be _careful_ when returning an error
2039 * after this point.
2040 */
2041
2042 rcu_read_lock();
2043
2044 /*
2045 * Lookup the stream just to make sure it does not exist in our internal
2046 * state. This should NEVER happen.
2047 */
2048 lttng_ht_lookup(ht, &stream->key, &iter);
2049 node = lttng_ht_iter_get_node_u64(&iter);
2050 assert(!node);
2051
2052 /*
2053 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2054 * in terms of destroying the associated channel, because the action that
2055 * causes the count to become 0 also causes a stream to be added. The
2056 * channel deletion will thus be triggered by the following removal of this
2057 * stream.
2058 */
2059 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2060 /* Increment refcount before decrementing nb_init_stream_left */
2061 cmm_smp_wmb();
2062 uatomic_dec(&stream->chan->nb_init_stream_left);
2063 }
2064
2065 lttng_ht_add_unique_u64(ht, &stream->node);
2066
2067 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2068 &stream->node_channel_id);
2069
2070 /*
2071 * Add stream to the stream_list_ht of the consumer data. No need to steal
2072 * the key since the HT does not use it and we allow to add redundant keys
2073 * into this table.
2074 */
2075 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2076
2077 rcu_read_unlock();
2078
2079 pthread_mutex_unlock(&stream->lock);
2080 pthread_mutex_unlock(&stream->chan->lock);
2081 pthread_mutex_unlock(&stream->chan->timer_lock);
2082 pthread_mutex_unlock(&consumer_data.lock);
2083 return ret;
2084 }
2085
2086 /*
2087 * Delete data stream that are flagged for deletion (endpoint_status).
2088 */
2089 static void validate_endpoint_status_data_stream(void)
2090 {
2091 struct lttng_ht_iter iter;
2092 struct lttng_consumer_stream *stream;
2093
2094 DBG("Consumer delete flagged data stream");
2095
2096 rcu_read_lock();
2097 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2098 /* Validate delete flag of the stream */
2099 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2100 continue;
2101 }
2102 /* Delete it right now */
2103 consumer_del_stream(stream, data_ht);
2104 }
2105 rcu_read_unlock();
2106 }
2107
2108 /*
2109 * Delete metadata stream that are flagged for deletion (endpoint_status).
2110 */
2111 static void validate_endpoint_status_metadata_stream(
2112 struct lttng_poll_event *pollset)
2113 {
2114 struct lttng_ht_iter iter;
2115 struct lttng_consumer_stream *stream;
2116
2117 DBG("Consumer delete flagged metadata stream");
2118
2119 assert(pollset);
2120
2121 rcu_read_lock();
2122 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2123 /* Validate delete flag of the stream */
2124 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2125 continue;
2126 }
2127 /*
2128 * Remove from pollset so the metadata thread can continue without
2129 * blocking on a deleted stream.
2130 */
2131 lttng_poll_del(pollset, stream->wait_fd);
2132
2133 /* Delete it right now */
2134 consumer_del_metadata_stream(stream, metadata_ht);
2135 }
2136 rcu_read_unlock();
2137 }
2138
2139 /*
2140 * Thread polls on metadata file descriptor and write them on disk or on the
2141 * network.
2142 */
2143 void *consumer_thread_metadata_poll(void *data)
2144 {
2145 int ret, i, pollfd, err = -1;
2146 uint32_t revents, nb_fd;
2147 struct lttng_consumer_stream *stream = NULL;
2148 struct lttng_ht_iter iter;
2149 struct lttng_ht_node_u64 *node;
2150 struct lttng_poll_event events;
2151 struct lttng_consumer_local_data *ctx = data;
2152 ssize_t len;
2153
2154 rcu_register_thread();
2155
2156 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2157
2158 if (testpoint(consumerd_thread_metadata)) {
2159 goto error_testpoint;
2160 }
2161
2162 health_code_update();
2163
2164 DBG("Thread metadata poll started");
2165
2166 /* Size is set to 1 for the consumer_metadata pipe */
2167 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2168 if (ret < 0) {
2169 ERR("Poll set creation failed");
2170 goto end_poll;
2171 }
2172
2173 ret = lttng_poll_add(&events,
2174 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2175 if (ret < 0) {
2176 goto end;
2177 }
2178
2179 /* Main loop */
2180 DBG("Metadata main loop started");
2181
2182 while (1) {
2183 restart:
2184 health_code_update();
2185 health_poll_entry();
2186 DBG("Metadata poll wait");
2187 ret = lttng_poll_wait(&events, -1);
2188 DBG("Metadata poll return from wait with %d fd(s)",
2189 LTTNG_POLL_GETNB(&events));
2190 health_poll_exit();
2191 DBG("Metadata event catched in thread");
2192 if (ret < 0) {
2193 if (errno == EINTR) {
2194 ERR("Poll EINTR catched");
2195 goto restart;
2196 }
2197 if (LTTNG_POLL_GETNB(&events) == 0) {
2198 err = 0; /* All is OK */
2199 }
2200 goto end;
2201 }
2202
2203 nb_fd = ret;
2204
2205 /* From here, the event is a metadata wait fd */
2206 for (i = 0; i < nb_fd; i++) {
2207 health_code_update();
2208
2209 revents = LTTNG_POLL_GETEV(&events, i);
2210 pollfd = LTTNG_POLL_GETFD(&events, i);
2211
2212 if (!revents) {
2213 /* No activity for this FD (poll implementation). */
2214 continue;
2215 }
2216
2217 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2218 if (revents & (LPOLLERR | LPOLLHUP )) {
2219 DBG("Metadata thread pipe hung up");
2220 /*
2221 * Remove the pipe from the poll set and continue the loop
2222 * since their might be data to consume.
2223 */
2224 lttng_poll_del(&events,
2225 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2226 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2227 continue;
2228 } else if (revents & LPOLLIN) {
2229 ssize_t pipe_len;
2230
2231 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2232 &stream, sizeof(stream));
2233 if (pipe_len < sizeof(stream)) {
2234 PERROR("read metadata stream");
2235 /*
2236 * Continue here to handle the rest of the streams.
2237 */
2238 continue;
2239 }
2240
2241 /* A NULL stream means that the state has changed. */
2242 if (stream == NULL) {
2243 /* Check for deleted streams. */
2244 validate_endpoint_status_metadata_stream(&events);
2245 goto restart;
2246 }
2247
2248 DBG("Adding metadata stream %d to poll set",
2249 stream->wait_fd);
2250
2251 /* Add metadata stream to the global poll events list */
2252 lttng_poll_add(&events, stream->wait_fd,
2253 LPOLLIN | LPOLLPRI | LPOLLHUP);
2254 }
2255
2256 /* Handle other stream */
2257 continue;
2258 }
2259
2260 rcu_read_lock();
2261 {
2262 uint64_t tmp_id = (uint64_t) pollfd;
2263
2264 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2265 }
2266 node = lttng_ht_iter_get_node_u64(&iter);
2267 assert(node);
2268
2269 stream = caa_container_of(node, struct lttng_consumer_stream,
2270 node);
2271
2272 /* Check for error event */
2273 if (revents & (LPOLLERR | LPOLLHUP)) {
2274 DBG("Metadata fd %d is hup|err.", pollfd);
2275 if (!stream->hangup_flush_done
2276 && (consumer_data.type == LTTNG_CONSUMER32_UST
2277 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2278 DBG("Attempting to flush and consume the UST buffers");
2279 lttng_ustconsumer_on_stream_hangup(stream);
2280
2281 /* We just flushed the stream now read it. */
2282 do {
2283 health_code_update();
2284
2285 len = ctx->on_buffer_ready(stream, ctx);
2286 /*
2287 * We don't check the return value here since if we get
2288 * a negative len, it means an error occured thus we
2289 * simply remove it from the poll set and free the
2290 * stream.
2291 */
2292 } while (len > 0);
2293 }
2294
2295 lttng_poll_del(&events, stream->wait_fd);
2296 /*
2297 * This call update the channel states, closes file descriptors
2298 * and securely free the stream.
2299 */
2300 consumer_del_metadata_stream(stream, metadata_ht);
2301 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2302 /* Get the data out of the metadata file descriptor */
2303 DBG("Metadata available on fd %d", pollfd);
2304 assert(stream->wait_fd == pollfd);
2305
2306 do {
2307 health_code_update();
2308
2309 len = ctx->on_buffer_ready(stream, ctx);
2310 /*
2311 * We don't check the return value here since if we get
2312 * a negative len, it means an error occured thus we
2313 * simply remove it from the poll set and free the
2314 * stream.
2315 */
2316 } while (len > 0);
2317
2318 /* It's ok to have an unavailable sub-buffer */
2319 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2320 /* Clean up stream from consumer and free it. */
2321 lttng_poll_del(&events, stream->wait_fd);
2322 consumer_del_metadata_stream(stream, metadata_ht);
2323 }
2324 }
2325
2326 /* Release RCU lock for the stream looked up */
2327 rcu_read_unlock();
2328 }
2329 }
2330
2331 /* All is OK */
2332 err = 0;
2333 error:
2334 end:
2335 DBG("Metadata poll thread exiting");
2336
2337 lttng_poll_clean(&events);
2338 end_poll:
2339 error_testpoint:
2340 if (err) {
2341 health_error();
2342 ERR("Health error occurred in %s", __func__);
2343 }
2344 health_unregister(health_consumerd);
2345 rcu_unregister_thread();
2346 return NULL;
2347 }
2348
2349 /*
2350 * This thread polls the fds in the set to consume the data and write
2351 * it to tracefile if necessary.
2352 */
2353 void *consumer_thread_data_poll(void *data)
2354 {
2355 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2356 struct pollfd *pollfd = NULL;
2357 /* local view of the streams */
2358 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2359 /* local view of consumer_data.fds_count */
2360 int nb_fd = 0;
2361 struct lttng_consumer_local_data *ctx = data;
2362 ssize_t len;
2363
2364 rcu_register_thread();
2365
2366 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2367
2368 if (testpoint(consumerd_thread_data)) {
2369 goto error_testpoint;
2370 }
2371
2372 health_code_update();
2373
2374 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2375 if (local_stream == NULL) {
2376 PERROR("local_stream malloc");
2377 goto end;
2378 }
2379
2380 while (1) {
2381 health_code_update();
2382
2383 high_prio = 0;
2384 num_hup = 0;
2385
2386 /*
2387 * the fds set has been updated, we need to update our
2388 * local array as well
2389 */
2390 pthread_mutex_lock(&consumer_data.lock);
2391 if (consumer_data.need_update) {
2392 free(pollfd);
2393 pollfd = NULL;
2394
2395 free(local_stream);
2396 local_stream = NULL;
2397
2398 /*
2399 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2400 * wake up pipe.
2401 */
2402 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2403 if (pollfd == NULL) {
2404 PERROR("pollfd malloc");
2405 pthread_mutex_unlock(&consumer_data.lock);
2406 goto end;
2407 }
2408
2409 local_stream = zmalloc((consumer_data.stream_count + 2) *
2410 sizeof(struct lttng_consumer_stream *));
2411 if (local_stream == NULL) {
2412 PERROR("local_stream malloc");
2413 pthread_mutex_unlock(&consumer_data.lock);
2414 goto end;
2415 }
2416 ret = update_poll_array(ctx, &pollfd, local_stream,
2417 data_ht);
2418 if (ret < 0) {
2419 ERR("Error in allocating pollfd or local_outfds");
2420 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2421 pthread_mutex_unlock(&consumer_data.lock);
2422 goto end;
2423 }
2424 nb_fd = ret;
2425 consumer_data.need_update = 0;
2426 }
2427 pthread_mutex_unlock(&consumer_data.lock);
2428
2429 /* No FDs and consumer_quit, consumer_cleanup the thread */
2430 if (nb_fd == 0 && consumer_quit == 1) {
2431 err = 0; /* All is OK */
2432 goto end;
2433 }
2434 /* poll on the array of fds */
2435 restart:
2436 DBG("polling on %d fd", nb_fd + 2);
2437 health_poll_entry();
2438 num_rdy = poll(pollfd, nb_fd + 2, -1);
2439 health_poll_exit();
2440 DBG("poll num_rdy : %d", num_rdy);
2441 if (num_rdy == -1) {
2442 /*
2443 * Restart interrupted system call.
2444 */
2445 if (errno == EINTR) {
2446 goto restart;
2447 }
2448 PERROR("Poll error");
2449 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2450 goto end;
2451 } else if (num_rdy == 0) {
2452 DBG("Polling thread timed out");
2453 goto end;
2454 }
2455
2456 /*
2457 * If the consumer_data_pipe triggered poll go directly to the
2458 * beginning of the loop to update the array. We want to prioritize
2459 * array update over low-priority reads.
2460 */
2461 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2462 ssize_t pipe_readlen;
2463
2464 DBG("consumer_data_pipe wake up");
2465 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2466 &new_stream, sizeof(new_stream));
2467 if (pipe_readlen < sizeof(new_stream)) {
2468 PERROR("Consumer data pipe");
2469 /* Continue so we can at least handle the current stream(s). */
2470 continue;
2471 }
2472
2473 /*
2474 * If the stream is NULL, just ignore it. It's also possible that
2475 * the sessiond poll thread changed the consumer_quit state and is
2476 * waking us up to test it.
2477 */
2478 if (new_stream == NULL) {
2479 validate_endpoint_status_data_stream();
2480 continue;
2481 }
2482
2483 /* Continue to update the local streams and handle prio ones */
2484 continue;
2485 }
2486
2487 /* Handle wakeup pipe. */
2488 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2489 char dummy;
2490 ssize_t pipe_readlen;
2491
2492 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2493 sizeof(dummy));
2494 if (pipe_readlen < 0) {
2495 PERROR("Consumer data wakeup pipe");
2496 }
2497 /* We've been awakened to handle stream(s). */
2498 ctx->has_wakeup = 0;
2499 }
2500
2501 /* Take care of high priority channels first. */
2502 for (i = 0; i < nb_fd; i++) {
2503 health_code_update();
2504
2505 if (local_stream[i] == NULL) {
2506 continue;
2507 }
2508 if (pollfd[i].revents & POLLPRI) {
2509 DBG("Urgent read on fd %d", pollfd[i].fd);
2510 high_prio = 1;
2511 len = ctx->on_buffer_ready(local_stream[i], ctx);
2512 /* it's ok to have an unavailable sub-buffer */
2513 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2514 /* Clean the stream and free it. */
2515 consumer_del_stream(local_stream[i], data_ht);
2516 local_stream[i] = NULL;
2517 } else if (len > 0) {
2518 local_stream[i]->data_read = 1;
2519 }
2520 }
2521 }
2522
2523 /*
2524 * If we read high prio channel in this loop, try again
2525 * for more high prio data.
2526 */
2527 if (high_prio) {
2528 continue;
2529 }
2530
2531 /* Take care of low priority channels. */
2532 for (i = 0; i < nb_fd; i++) {
2533 health_code_update();
2534
2535 if (local_stream[i] == NULL) {
2536 continue;
2537 }
2538 if ((pollfd[i].revents & POLLIN) ||
2539 local_stream[i]->hangup_flush_done ||
2540 local_stream[i]->has_data) {
2541 DBG("Normal read on fd %d", pollfd[i].fd);
2542 len = ctx->on_buffer_ready(local_stream[i], ctx);
2543 /* it's ok to have an unavailable sub-buffer */
2544 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2545 /* Clean the stream and free it. */
2546 consumer_del_stream(local_stream[i], data_ht);
2547 local_stream[i] = NULL;
2548 } else if (len > 0) {
2549 local_stream[i]->data_read = 1;
2550 }
2551 }
2552 }
2553
2554 /* Handle hangup and errors */
2555 for (i = 0; i < nb_fd; i++) {
2556 health_code_update();
2557
2558 if (local_stream[i] == NULL) {
2559 continue;
2560 }
2561 if (!local_stream[i]->hangup_flush_done
2562 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2563 && (consumer_data.type == LTTNG_CONSUMER32_UST
2564 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2565 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2566 pollfd[i].fd);
2567 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2568 /* Attempt read again, for the data we just flushed. */
2569 local_stream[i]->data_read = 1;
2570 }
2571 /*
2572 * If the poll flag is HUP/ERR/NVAL and we have
2573 * read no data in this pass, we can remove the
2574 * stream from its hash table.
2575 */
2576 if ((pollfd[i].revents & POLLHUP)) {
2577 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2578 if (!local_stream[i]->data_read) {
2579 consumer_del_stream(local_stream[i], data_ht);
2580 local_stream[i] = NULL;
2581 num_hup++;
2582 }
2583 } else if (pollfd[i].revents & POLLERR) {
2584 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2585 if (!local_stream[i]->data_read) {
2586 consumer_del_stream(local_stream[i], data_ht);
2587 local_stream[i] = NULL;
2588 num_hup++;
2589 }
2590 } else if (pollfd[i].revents & POLLNVAL) {
2591 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2592 if (!local_stream[i]->data_read) {
2593 consumer_del_stream(local_stream[i], data_ht);
2594 local_stream[i] = NULL;
2595 num_hup++;
2596 }
2597 }
2598 if (local_stream[i] != NULL) {
2599 local_stream[i]->data_read = 0;
2600 }
2601 }
2602 }
2603 /* All is OK */
2604 err = 0;
2605 end:
2606 DBG("polling thread exiting");
2607 free(pollfd);
2608 free(local_stream);
2609
2610 /*
2611 * Close the write side of the pipe so epoll_wait() in
2612 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2613 * read side of the pipe. If we close them both, epoll_wait strangely does
2614 * not return and could create a endless wait period if the pipe is the
2615 * only tracked fd in the poll set. The thread will take care of closing
2616 * the read side.
2617 */
2618 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2619
2620 error_testpoint:
2621 if (err) {
2622 health_error();
2623 ERR("Health error occurred in %s", __func__);
2624 }
2625 health_unregister(health_consumerd);
2626
2627 rcu_unregister_thread();
2628 return NULL;
2629 }
2630
2631 /*
2632 * Close wake-up end of each stream belonging to the channel. This will
2633 * allow the poll() on the stream read-side to detect when the
2634 * write-side (application) finally closes them.
2635 */
2636 static
2637 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2638 {
2639 struct lttng_ht *ht;
2640 struct lttng_consumer_stream *stream;
2641 struct lttng_ht_iter iter;
2642
2643 ht = consumer_data.stream_per_chan_id_ht;
2644
2645 rcu_read_lock();
2646 cds_lfht_for_each_entry_duplicate(ht->ht,
2647 ht->hash_fct(&channel->key, lttng_ht_seed),
2648 ht->match_fct, &channel->key,
2649 &iter.iter, stream, node_channel_id.node) {
2650 /*
2651 * Protect against teardown with mutex.
2652 */
2653 pthread_mutex_lock(&stream->lock);
2654 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2655 goto next;
2656 }
2657 switch (consumer_data.type) {
2658 case LTTNG_CONSUMER_KERNEL:
2659 break;
2660 case LTTNG_CONSUMER32_UST:
2661 case LTTNG_CONSUMER64_UST:
2662 if (stream->metadata_flag) {
2663 /* Safe and protected by the stream lock. */
2664 lttng_ustconsumer_close_metadata(stream->chan);
2665 } else {
2666 /*
2667 * Note: a mutex is taken internally within
2668 * liblttng-ust-ctl to protect timer wakeup_fd
2669 * use from concurrent close.
2670 */
2671 lttng_ustconsumer_close_stream_wakeup(stream);
2672 }
2673 break;
2674 default:
2675 ERR("Unknown consumer_data type");
2676 assert(0);
2677 }
2678 next:
2679 pthread_mutex_unlock(&stream->lock);
2680 }
2681 rcu_read_unlock();
2682 }
2683
2684 static void destroy_channel_ht(struct lttng_ht *ht)
2685 {
2686 struct lttng_ht_iter iter;
2687 struct lttng_consumer_channel *channel;
2688 int ret;
2689
2690 if (ht == NULL) {
2691 return;
2692 }
2693
2694 rcu_read_lock();
2695 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2696 ret = lttng_ht_del(ht, &iter);
2697 assert(ret != 0);
2698 }
2699 rcu_read_unlock();
2700
2701 lttng_ht_destroy(ht);
2702 }
2703
2704 /*
2705 * This thread polls the channel fds to detect when they are being
2706 * closed. It closes all related streams if the channel is detected as
2707 * closed. It is currently only used as a shim layer for UST because the
2708 * consumerd needs to keep the per-stream wakeup end of pipes open for
2709 * periodical flush.
2710 */
2711 void *consumer_thread_channel_poll(void *data)
2712 {
2713 int ret, i, pollfd, err = -1;
2714 uint32_t revents, nb_fd;
2715 struct lttng_consumer_channel *chan = NULL;
2716 struct lttng_ht_iter iter;
2717 struct lttng_ht_node_u64 *node;
2718 struct lttng_poll_event events;
2719 struct lttng_consumer_local_data *ctx = data;
2720 struct lttng_ht *channel_ht;
2721
2722 rcu_register_thread();
2723
2724 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2725
2726 if (testpoint(consumerd_thread_channel)) {
2727 goto error_testpoint;
2728 }
2729
2730 health_code_update();
2731
2732 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2733 if (!channel_ht) {
2734 /* ENOMEM at this point. Better to bail out. */
2735 goto end_ht;
2736 }
2737
2738 DBG("Thread channel poll started");
2739
2740 /* Size is set to 1 for the consumer_channel pipe */
2741 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2742 if (ret < 0) {
2743 ERR("Poll set creation failed");
2744 goto end_poll;
2745 }
2746
2747 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2748 if (ret < 0) {
2749 goto end;
2750 }
2751
2752 /* Main loop */
2753 DBG("Channel main loop started");
2754
2755 while (1) {
2756 restart:
2757 health_code_update();
2758 DBG("Channel poll wait");
2759 health_poll_entry();
2760 ret = lttng_poll_wait(&events, -1);
2761 DBG("Channel poll return from wait with %d fd(s)",
2762 LTTNG_POLL_GETNB(&events));
2763 health_poll_exit();
2764 DBG("Channel event catched in thread");
2765 if (ret < 0) {
2766 if (errno == EINTR) {
2767 ERR("Poll EINTR catched");
2768 goto restart;
2769 }
2770 if (LTTNG_POLL_GETNB(&events) == 0) {
2771 err = 0; /* All is OK */
2772 }
2773 goto end;
2774 }
2775
2776 nb_fd = ret;
2777
2778 /* From here, the event is a channel wait fd */
2779 for (i = 0; i < nb_fd; i++) {
2780 health_code_update();
2781
2782 revents = LTTNG_POLL_GETEV(&events, i);
2783 pollfd = LTTNG_POLL_GETFD(&events, i);
2784
2785 if (!revents) {
2786 /* No activity for this FD (poll implementation). */
2787 continue;
2788 }
2789
2790 if (pollfd == ctx->consumer_channel_pipe[0]) {
2791 if (revents & (LPOLLERR | LPOLLHUP)) {
2792 DBG("Channel thread pipe hung up");
2793 /*
2794 * Remove the pipe from the poll set and continue the loop
2795 * since their might be data to consume.
2796 */
2797 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2798 continue;
2799 } else if (revents & LPOLLIN) {
2800 enum consumer_channel_action action;
2801 uint64_t key;
2802
2803 ret = read_channel_pipe(ctx, &chan, &key, &action);
2804 if (ret <= 0) {
2805 ERR("Error reading channel pipe");
2806 continue;
2807 }
2808
2809 switch (action) {
2810 case CONSUMER_CHANNEL_ADD:
2811 DBG("Adding channel %d to poll set",
2812 chan->wait_fd);
2813
2814 lttng_ht_node_init_u64(&chan->wait_fd_node,
2815 chan->wait_fd);
2816 rcu_read_lock();
2817 lttng_ht_add_unique_u64(channel_ht,
2818 &chan->wait_fd_node);
2819 rcu_read_unlock();
2820 /* Add channel to the global poll events list */
2821 lttng_poll_add(&events, chan->wait_fd,
2822 LPOLLIN | LPOLLPRI);
2823 break;
2824 case CONSUMER_CHANNEL_DEL:
2825 {
2826 /*
2827 * This command should never be called if the channel
2828 * has streams monitored by either the data or metadata
2829 * thread. The consumer only notify this thread with a
2830 * channel del. command if it receives a destroy
2831 * channel command from the session daemon that send it
2832 * if a command prior to the GET_CHANNEL failed.
2833 */
2834
2835 rcu_read_lock();
2836 chan = consumer_find_channel(key);
2837 if (!chan) {
2838 rcu_read_unlock();
2839 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2840 break;
2841 }
2842 lttng_poll_del(&events, chan->wait_fd);
2843 iter.iter.node = &chan->wait_fd_node.node;
2844 ret = lttng_ht_del(channel_ht, &iter);
2845 assert(ret == 0);
2846
2847 switch (consumer_data.type) {
2848 case LTTNG_CONSUMER_KERNEL:
2849 break;
2850 case LTTNG_CONSUMER32_UST:
2851 case LTTNG_CONSUMER64_UST:
2852 health_code_update();
2853 /* Destroy streams that might have been left in the stream list. */
2854 clean_channel_stream_list(chan);
2855 break;
2856 default:
2857 ERR("Unknown consumer_data type");
2858 assert(0);
2859 }
2860
2861 /*
2862 * Release our own refcount. Force channel deletion even if
2863 * streams were not initialized.
2864 */
2865 if (!uatomic_sub_return(&chan->refcount, 1)) {
2866 consumer_del_channel(chan);
2867 }
2868 rcu_read_unlock();
2869 goto restart;
2870 }
2871 case CONSUMER_CHANNEL_QUIT:
2872 /*
2873 * Remove the pipe from the poll set and continue the loop
2874 * since their might be data to consume.
2875 */
2876 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2877 continue;
2878 default:
2879 ERR("Unknown action");
2880 break;
2881 }
2882 }
2883
2884 /* Handle other stream */
2885 continue;
2886 }
2887
2888 rcu_read_lock();
2889 {
2890 uint64_t tmp_id = (uint64_t) pollfd;
2891
2892 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2893 }
2894 node = lttng_ht_iter_get_node_u64(&iter);
2895 assert(node);
2896
2897 chan = caa_container_of(node, struct lttng_consumer_channel,
2898 wait_fd_node);
2899
2900 /* Check for error event */
2901 if (revents & (LPOLLERR | LPOLLHUP)) {
2902 DBG("Channel fd %d is hup|err.", pollfd);
2903
2904 lttng_poll_del(&events, chan->wait_fd);
2905 ret = lttng_ht_del(channel_ht, &iter);
2906 assert(ret == 0);
2907
2908 /*
2909 * This will close the wait fd for each stream associated to
2910 * this channel AND monitored by the data/metadata thread thus
2911 * will be clean by the right thread.
2912 */
2913 consumer_close_channel_streams(chan);
2914
2915 /* Release our own refcount */
2916 if (!uatomic_sub_return(&chan->refcount, 1)
2917 && !uatomic_read(&chan->nb_init_stream_left)) {
2918 consumer_del_channel(chan);
2919 }
2920 }
2921
2922 /* Release RCU lock for the channel looked up */
2923 rcu_read_unlock();
2924 }
2925 }
2926
2927 /* All is OK */
2928 err = 0;
2929 end:
2930 lttng_poll_clean(&events);
2931 end_poll:
2932 destroy_channel_ht(channel_ht);
2933 end_ht:
2934 error_testpoint:
2935 DBG("Channel poll thread exiting");
2936 if (err) {
2937 health_error();
2938 ERR("Health error occurred in %s", __func__);
2939 }
2940 health_unregister(health_consumerd);
2941 rcu_unregister_thread();
2942 return NULL;
2943 }
2944
2945 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2946 struct pollfd *sockpoll, int client_socket)
2947 {
2948 int ret;
2949
2950 assert(ctx);
2951 assert(sockpoll);
2952
2953 ret = lttng_consumer_poll_socket(sockpoll);
2954 if (ret) {
2955 goto error;
2956 }
2957 DBG("Metadata connection on client_socket");
2958
2959 /* Blocking call, waiting for transmission */
2960 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2961 if (ctx->consumer_metadata_socket < 0) {
2962 WARN("On accept metadata");
2963 ret = -1;
2964 goto error;
2965 }
2966 ret = 0;
2967
2968 error:
2969 return ret;
2970 }
2971
2972 /*
2973 * This thread listens on the consumerd socket and receives the file
2974 * descriptors from the session daemon.
2975 */
2976 void *consumer_thread_sessiond_poll(void *data)
2977 {
2978 int sock = -1, client_socket, ret, err = -1;
2979 /*
2980 * structure to poll for incoming data on communication socket avoids
2981 * making blocking sockets.
2982 */
2983 struct pollfd consumer_sockpoll[2];
2984 struct lttng_consumer_local_data *ctx = data;
2985
2986 rcu_register_thread();
2987
2988 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
2989
2990 if (testpoint(consumerd_thread_sessiond)) {
2991 goto error_testpoint;
2992 }
2993
2994 health_code_update();
2995
2996 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2997 unlink(ctx->consumer_command_sock_path);
2998 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2999 if (client_socket < 0) {
3000 ERR("Cannot create command socket");
3001 goto end;
3002 }
3003
3004 ret = lttcomm_listen_unix_sock(client_socket);
3005 if (ret < 0) {
3006 goto end;
3007 }
3008
3009 DBG("Sending ready command to lttng-sessiond");
3010 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3011 /* return < 0 on error, but == 0 is not fatal */
3012 if (ret < 0) {
3013 ERR("Error sending ready command to lttng-sessiond");
3014 goto end;
3015 }
3016
3017 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3018 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3019 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3020 consumer_sockpoll[1].fd = client_socket;
3021 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3022
3023 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3024 if (ret) {
3025 if (ret > 0) {
3026 /* should exit */
3027 err = 0;
3028 }
3029 goto end;
3030 }
3031 DBG("Connection on client_socket");
3032
3033 /* Blocking call, waiting for transmission */
3034 sock = lttcomm_accept_unix_sock(client_socket);
3035 if (sock < 0) {
3036 WARN("On accept");
3037 goto end;
3038 }
3039
3040 /*
3041 * Setup metadata socket which is the second socket connection on the
3042 * command unix socket.
3043 */
3044 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3045 if (ret) {
3046 if (ret > 0) {
3047 /* should exit */
3048 err = 0;
3049 }
3050 goto end;
3051 }
3052
3053 /* This socket is not useful anymore. */
3054 ret = close(client_socket);
3055 if (ret < 0) {
3056 PERROR("close client_socket");
3057 }
3058 client_socket = -1;
3059
3060 /* update the polling structure to poll on the established socket */
3061 consumer_sockpoll[1].fd = sock;
3062 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3063
3064 while (1) {
3065 health_code_update();
3066
3067 health_poll_entry();
3068 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3069 health_poll_exit();
3070 if (ret) {
3071 if (ret > 0) {
3072 /* should exit */
3073 err = 0;
3074 }
3075 goto end;
3076 }
3077 DBG("Incoming command on sock");
3078 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3079 if (ret <= 0) {
3080 /*
3081 * This could simply be a session daemon quitting. Don't output
3082 * ERR() here.
3083 */
3084 DBG("Communication interrupted on command socket");
3085 err = 0;
3086 goto end;
3087 }
3088 if (consumer_quit) {
3089 DBG("consumer_thread_receive_fds received quit from signal");
3090 err = 0; /* All is OK */
3091 goto end;
3092 }
3093 DBG("received command on sock");
3094 }
3095 /* All is OK */
3096 err = 0;
3097
3098 end:
3099 DBG("Consumer thread sessiond poll exiting");
3100
3101 /*
3102 * Close metadata streams since the producer is the session daemon which
3103 * just died.
3104 *
3105 * NOTE: for now, this only applies to the UST tracer.
3106 */
3107 lttng_consumer_close_all_metadata();
3108
3109 /*
3110 * when all fds have hung up, the polling thread
3111 * can exit cleanly
3112 */
3113 consumer_quit = 1;
3114
3115 /*
3116 * Notify the data poll thread to poll back again and test the
3117 * consumer_quit state that we just set so to quit gracefully.
3118 */
3119 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3120
3121 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3122
3123 notify_health_quit_pipe(health_quit_pipe);
3124
3125 /* Cleaning up possibly open sockets. */
3126 if (sock >= 0) {
3127 ret = close(sock);
3128 if (ret < 0) {
3129 PERROR("close sock sessiond poll");
3130 }
3131 }
3132 if (client_socket >= 0) {
3133 ret = close(client_socket);
3134 if (ret < 0) {
3135 PERROR("close client_socket sessiond poll");
3136 }
3137 }
3138
3139 error_testpoint:
3140 if (err) {
3141 health_error();
3142 ERR("Health error occurred in %s", __func__);
3143 }
3144 health_unregister(health_consumerd);
3145
3146 rcu_unregister_thread();
3147 return NULL;
3148 }
3149
3150 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3151 struct lttng_consumer_local_data *ctx)
3152 {
3153 ssize_t ret;
3154
3155 pthread_mutex_lock(&stream->lock);
3156 if (stream->metadata_flag) {
3157 pthread_mutex_lock(&stream->metadata_rdv_lock);
3158 }
3159
3160 switch (consumer_data.type) {
3161 case LTTNG_CONSUMER_KERNEL:
3162 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3163 break;
3164 case LTTNG_CONSUMER32_UST:
3165 case LTTNG_CONSUMER64_UST:
3166 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3167 break;
3168 default:
3169 ERR("Unknown consumer_data type");
3170 assert(0);
3171 ret = -ENOSYS;
3172 break;
3173 }
3174
3175 if (stream->metadata_flag) {
3176 pthread_cond_broadcast(&stream->metadata_rdv);
3177 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3178 }
3179 pthread_mutex_unlock(&stream->lock);
3180 return ret;
3181 }
3182
3183 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3184 {
3185 switch (consumer_data.type) {
3186 case LTTNG_CONSUMER_KERNEL:
3187 return lttng_kconsumer_on_recv_stream(stream);
3188 case LTTNG_CONSUMER32_UST:
3189 case LTTNG_CONSUMER64_UST:
3190 return lttng_ustconsumer_on_recv_stream(stream);
3191 default:
3192 ERR("Unknown consumer_data type");
3193 assert(0);
3194 return -ENOSYS;
3195 }
3196 }
3197
3198 /*
3199 * Allocate and set consumer data hash tables.
3200 */
3201 int lttng_consumer_init(void)
3202 {
3203 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3204 if (!consumer_data.channel_ht) {
3205 goto error;
3206 }
3207
3208 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3209 if (!consumer_data.relayd_ht) {
3210 goto error;
3211 }
3212
3213 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3214 if (!consumer_data.stream_list_ht) {
3215 goto error;
3216 }
3217
3218 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3219 if (!consumer_data.stream_per_chan_id_ht) {
3220 goto error;
3221 }
3222
3223 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3224 if (!data_ht) {
3225 goto error;
3226 }
3227
3228 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3229 if (!metadata_ht) {
3230 goto error;
3231 }
3232
3233 return 0;
3234
3235 error:
3236 return -1;
3237 }
3238
3239 /*
3240 * Process the ADD_RELAYD command receive by a consumer.
3241 *
3242 * This will create a relayd socket pair and add it to the relayd hash table.
3243 * The caller MUST acquire a RCU read side lock before calling it.
3244 */
3245 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3246 struct lttng_consumer_local_data *ctx, int sock,
3247 struct pollfd *consumer_sockpoll,
3248 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3249 uint64_t relayd_session_id)
3250 {
3251 int fd = -1, ret = -1, relayd_created = 0;
3252 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3253 struct consumer_relayd_sock_pair *relayd = NULL;
3254
3255 assert(ctx);
3256 assert(relayd_sock);
3257
3258 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3259
3260 /* Get relayd reference if exists. */
3261 relayd = consumer_find_relayd(net_seq_idx);
3262 if (relayd == NULL) {
3263 assert(sock_type == LTTNG_STREAM_CONTROL);
3264 /* Not found. Allocate one. */
3265 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3266 if (relayd == NULL) {
3267 ret = -ENOMEM;
3268 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3269 goto error;
3270 } else {
3271 relayd->sessiond_session_id = sessiond_id;
3272 relayd_created = 1;
3273 }
3274
3275 /*
3276 * This code path MUST continue to the consumer send status message to
3277 * we can notify the session daemon and continue our work without
3278 * killing everything.
3279 */
3280 } else {
3281 /*
3282 * relayd key should never be found for control socket.
3283 */
3284 assert(sock_type != LTTNG_STREAM_CONTROL);
3285 }
3286
3287 /* First send a status message before receiving the fds. */
3288 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3289 if (ret < 0) {
3290 /* Somehow, the session daemon is not responding anymore. */
3291 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3292 goto error_nosignal;
3293 }
3294
3295 /* Poll on consumer socket. */
3296 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3297 if (ret) {
3298 /* Needing to exit in the middle of a command: error. */
3299 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3300 ret = -EINTR;
3301 goto error_nosignal;
3302 }
3303
3304 /* Get relayd socket from session daemon */
3305 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3306 if (ret != sizeof(fd)) {
3307 ret = -1;
3308 fd = -1; /* Just in case it gets set with an invalid value. */
3309
3310 /*
3311 * Failing to receive FDs might indicate a major problem such as
3312 * reaching a fd limit during the receive where the kernel returns a
3313 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3314 * don't take any chances and stop everything.
3315 *
3316 * XXX: Feature request #558 will fix that and avoid this possible
3317 * issue when reaching the fd limit.
3318 */
3319 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3320 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3321 goto error;
3322 }
3323
3324 /* Copy socket information and received FD */
3325 switch (sock_type) {
3326 case LTTNG_STREAM_CONTROL:
3327 /* Copy received lttcomm socket */
3328 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3329 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3330 /* Handle create_sock error. */
3331 if (ret < 0) {
3332 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3333 goto error;
3334 }
3335 /*
3336 * Close the socket created internally by
3337 * lttcomm_create_sock, so we can replace it by the one
3338 * received from sessiond.
3339 */
3340 if (close(relayd->control_sock.sock.fd)) {
3341 PERROR("close");
3342 }
3343
3344 /* Assign new file descriptor */
3345 relayd->control_sock.sock.fd = fd;
3346 fd = -1; /* For error path */
3347 /* Assign version values. */
3348 relayd->control_sock.major = relayd_sock->major;
3349 relayd->control_sock.minor = relayd_sock->minor;
3350
3351 relayd->relayd_session_id = relayd_session_id;
3352
3353 break;
3354 case LTTNG_STREAM_DATA:
3355 /* Copy received lttcomm socket */
3356 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3357 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3358 /* Handle create_sock error. */
3359 if (ret < 0) {
3360 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3361 goto error;
3362 }
3363 /*
3364 * Close the socket created internally by
3365 * lttcomm_create_sock, so we can replace it by the one
3366 * received from sessiond.
3367 */
3368 if (close(relayd->data_sock.sock.fd)) {
3369 PERROR("close");
3370 }
3371
3372 /* Assign new file descriptor */
3373 relayd->data_sock.sock.fd = fd;
3374 fd = -1; /* for eventual error paths */
3375 /* Assign version values. */
3376 relayd->data_sock.major = relayd_sock->major;
3377 relayd->data_sock.minor = relayd_sock->minor;
3378 break;
3379 default:
3380 ERR("Unknown relayd socket type (%d)", sock_type);
3381 ret = -1;
3382 ret_code = LTTCOMM_CONSUMERD_FATAL;
3383 goto error;
3384 }
3385
3386 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3387 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3388 relayd->net_seq_idx, fd);
3389
3390 /* We successfully added the socket. Send status back. */
3391 ret = consumer_send_status_msg(sock, ret_code);
3392 if (ret < 0) {
3393 /* Somehow, the session daemon is not responding anymore. */
3394 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3395 goto error_nosignal;
3396 }
3397
3398 /*
3399 * Add relayd socket pair to consumer data hashtable. If object already
3400 * exists or on error, the function gracefully returns.
3401 */
3402 add_relayd(relayd);
3403
3404 /* All good! */
3405 return 0;
3406
3407 error:
3408 if (consumer_send_status_msg(sock, ret_code) < 0) {
3409 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3410 }
3411
3412 error_nosignal:
3413 /* Close received socket if valid. */
3414 if (fd >= 0) {
3415 if (close(fd)) {
3416 PERROR("close received socket");
3417 }
3418 }
3419
3420 if (relayd_created) {
3421 free(relayd);
3422 }
3423
3424 return ret;
3425 }
3426
3427 /*
3428 * Try to lock the stream mutex.
3429 *
3430 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3431 */
3432 static int stream_try_lock(struct lttng_consumer_stream *stream)
3433 {
3434 int ret;
3435
3436 assert(stream);
3437
3438 /*
3439 * Try to lock the stream mutex. On failure, we know that the stream is
3440 * being used else where hence there is data still being extracted.
3441 */
3442 ret = pthread_mutex_trylock(&stream->lock);
3443 if (ret) {
3444 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3445 ret = 0;
3446 goto end;
3447 }
3448
3449 ret = 1;
3450
3451 end:
3452 return ret;
3453 }
3454
3455 /*
3456 * Search for a relayd associated to the session id and return the reference.
3457 *
3458 * A rcu read side lock MUST be acquire before calling this function and locked
3459 * until the relayd object is no longer necessary.
3460 */
3461 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3462 {
3463 struct lttng_ht_iter iter;
3464 struct consumer_relayd_sock_pair *relayd = NULL;
3465
3466 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3467 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3468 node.node) {
3469 /*
3470 * Check by sessiond id which is unique here where the relayd session
3471 * id might not be when having multiple relayd.
3472 */
3473 if (relayd->sessiond_session_id == id) {
3474 /* Found the relayd. There can be only one per id. */
3475 goto found;
3476 }
3477 }
3478
3479 return NULL;
3480
3481 found:
3482 return relayd;
3483 }
3484
3485 /*
3486 * Check if for a given session id there is still data needed to be extract
3487 * from the buffers.
3488 *
3489 * Return 1 if data is pending or else 0 meaning ready to be read.
3490 */
3491 int consumer_data_pending(uint64_t id)
3492 {
3493 int ret;
3494 struct lttng_ht_iter iter;
3495 struct lttng_ht *ht;
3496 struct lttng_consumer_stream *stream;
3497 struct consumer_relayd_sock_pair *relayd = NULL;
3498 int (*data_pending)(struct lttng_consumer_stream *);
3499
3500 DBG("Consumer data pending command on session id %" PRIu64, id);
3501
3502 rcu_read_lock();
3503 pthread_mutex_lock(&consumer_data.lock);
3504
3505 switch (consumer_data.type) {
3506 case LTTNG_CONSUMER_KERNEL:
3507 data_pending = lttng_kconsumer_data_pending;
3508 break;
3509 case LTTNG_CONSUMER32_UST:
3510 case LTTNG_CONSUMER64_UST:
3511 data_pending = lttng_ustconsumer_data_pending;
3512 break;
3513 default:
3514 ERR("Unknown consumer data type");
3515 assert(0);
3516 }
3517
3518 /* Ease our life a bit */
3519 ht = consumer_data.stream_list_ht;
3520
3521 relayd = find_relayd_by_session_id(id);
3522 if (relayd) {
3523 /* Send init command for data pending. */
3524 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3525 ret = relayd_begin_data_pending(&relayd->control_sock,
3526 relayd->relayd_session_id);
3527 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3528 if (ret < 0) {
3529 /* Communication error thus the relayd so no data pending. */
3530 goto data_not_pending;
3531 }
3532 }
3533
3534 cds_lfht_for_each_entry_duplicate(ht->ht,
3535 ht->hash_fct(&id, lttng_ht_seed),
3536 ht->match_fct, &id,
3537 &iter.iter, stream, node_session_id.node) {
3538 /* If this call fails, the stream is being used hence data pending. */
3539 ret = stream_try_lock(stream);
3540 if (!ret) {
3541 goto data_pending;
3542 }
3543
3544 /*
3545 * A removed node from the hash table indicates that the stream has
3546 * been deleted thus having a guarantee that the buffers are closed
3547 * on the consumer side. However, data can still be transmitted
3548 * over the network so don't skip the relayd check.
3549 */
3550 ret = cds_lfht_is_node_deleted(&stream->node.node);
3551 if (!ret) {
3552 /* Check the stream if there is data in the buffers. */
3553 ret = data_pending(stream);
3554 if (ret == 1) {
3555 pthread_mutex_unlock(&stream->lock);
3556 goto data_pending;
3557 }
3558 }
3559
3560 /* Relayd check */
3561 if (relayd) {
3562 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3563 if (stream->metadata_flag) {
3564 ret = relayd_quiescent_control(&relayd->control_sock,
3565 stream->relayd_stream_id);
3566 } else {
3567 ret = relayd_data_pending(&relayd->control_sock,
3568 stream->relayd_stream_id,
3569 stream->next_net_seq_num - 1);
3570 }
3571 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3572 if (ret == 1) {
3573 pthread_mutex_unlock(&stream->lock);
3574 goto data_pending;
3575 }
3576 }
3577 pthread_mutex_unlock(&stream->lock);
3578 }
3579
3580 if (relayd) {
3581 unsigned int is_data_inflight = 0;
3582
3583 /* Send init command for data pending. */
3584 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3585 ret = relayd_end_data_pending(&relayd->control_sock,
3586 relayd->relayd_session_id, &is_data_inflight);
3587 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3588 if (ret < 0) {
3589 goto data_not_pending;
3590 }
3591 if (is_data_inflight) {
3592 goto data_pending;
3593 }
3594 }
3595
3596 /*
3597 * Finding _no_ node in the hash table and no inflight data means that the
3598 * stream(s) have been removed thus data is guaranteed to be available for
3599 * analysis from the trace files.
3600 */
3601
3602 data_not_pending:
3603 /* Data is available to be read by a viewer. */
3604 pthread_mutex_unlock(&consumer_data.lock);
3605 rcu_read_unlock();
3606 return 0;
3607
3608 data_pending:
3609 /* Data is still being extracted from buffers. */
3610 pthread_mutex_unlock(&consumer_data.lock);
3611 rcu_read_unlock();
3612 return 1;
3613 }
3614
3615 /*
3616 * Send a ret code status message to the sessiond daemon.
3617 *
3618 * Return the sendmsg() return value.
3619 */
3620 int consumer_send_status_msg(int sock, int ret_code)
3621 {
3622 struct lttcomm_consumer_status_msg msg;
3623
3624 memset(&msg, 0, sizeof(msg));
3625 msg.ret_code = ret_code;
3626
3627 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3628 }
3629
3630 /*
3631 * Send a channel status message to the sessiond daemon.
3632 *
3633 * Return the sendmsg() return value.
3634 */
3635 int consumer_send_status_channel(int sock,
3636 struct lttng_consumer_channel *channel)
3637 {
3638 struct lttcomm_consumer_status_channel msg;
3639
3640 assert(sock >= 0);
3641
3642 memset(&msg, 0, sizeof(msg));
3643 if (!channel) {
3644 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3645 } else {
3646 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3647 msg.key = channel->key;
3648 msg.stream_count = channel->streams.count;
3649 }
3650
3651 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3652 }
3653
3654 /*
3655 * Using a maximum stream size with the produced and consumed position of a
3656 * stream, computes the new consumed position to be as close as possible to the
3657 * maximum possible stream size.
3658 *
3659 * If maximum stream size is lower than the possible buffer size (produced -
3660 * consumed), the consumed_pos given is returned untouched else the new value
3661 * is returned.
3662 */
3663 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos,
3664 unsigned long produced_pos, uint64_t max_stream_size)
3665 {
3666 if (max_stream_size && max_stream_size < (produced_pos - consumed_pos)) {
3667 /* Offset from the produced position to get the latest buffers. */
3668 return produced_pos - max_stream_size;
3669 }
3670
3671 return consumed_pos;
3672 }
This page took 0.152563 seconds and 3 git commands to generate.