Fix CPU hotplug section mismatches
[lttng-modules.git] / lib / ringbuffer / ring_buffer_frontend.c
1 /*
2 * ring_buffer_frontend.c
3 *
4 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; only
9 * version 2.1 of the License.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *
21 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
22 * recorder (overwrite) modes. See thesis:
23 *
24 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
25 * dissertation, Ecole Polytechnique de Montreal.
26 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
27 *
28 * - Algorithm presentation in Chapter 5:
29 * "Lockless Multi-Core High-Throughput Buffering".
30 * - Algorithm formal verification in Section 8.6:
31 * "Formal verification of LTTng"
32 *
33 * Author:
34 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
35 *
36 * Inspired from LTT and RelayFS:
37 * Karim Yaghmour <karim@opersys.com>
38 * Tom Zanussi <zanussi@us.ibm.com>
39 * Bob Wisniewski <bob@watson.ibm.com>
40 * And from K42 :
41 * Bob Wisniewski <bob@watson.ibm.com>
42 *
43 * Buffer reader semantic :
44 *
45 * - get_subbuf_size
46 * while buffer is not finalized and empty
47 * - get_subbuf
48 * - if return value != 0, continue
49 * - splice one subbuffer worth of data to a pipe
50 * - splice the data from pipe to disk/network
51 * - put_subbuf
52 */
53
54 #include <linux/delay.h>
55 #include <linux/module.h>
56 #include <linux/percpu.h>
57
58 #include "../../wrapper/ringbuffer/config.h"
59 #include "../../wrapper/ringbuffer/backend.h"
60 #include "../../wrapper/ringbuffer/frontend.h"
61 #include "../../wrapper/ringbuffer/iterator.h"
62 #include "../../wrapper/ringbuffer/nohz.h"
63
64 /*
65 * Internal structure representing offsets to use at a sub-buffer switch.
66 */
67 struct switch_offsets {
68 unsigned long begin, end, old;
69 size_t pre_header_padding, size;
70 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
71 switch_old_end:1;
72 };
73
74 #ifdef CONFIG_NO_HZ
75 enum tick_nohz_val {
76 TICK_NOHZ_STOP,
77 TICK_NOHZ_FLUSH,
78 TICK_NOHZ_RESTART,
79 };
80
81 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
82 #endif /* CONFIG_NO_HZ */
83
84 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
85
86 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
87 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
88
89 static
90 void lib_ring_buffer_print_errors(struct channel *chan,
91 struct lib_ring_buffer *buf, int cpu);
92
93 /*
94 * Must be called under cpu hotplug protection.
95 */
96 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
97 {
98 struct channel *chan = buf->backend.chan;
99
100 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
101 kfree(buf->commit_hot);
102 kfree(buf->commit_cold);
103
104 lib_ring_buffer_backend_free(&buf->backend);
105 }
106
107 /**
108 * lib_ring_buffer_reset - Reset ring buffer to initial values.
109 * @buf: Ring buffer.
110 *
111 * Effectively empty the ring buffer. Should be called when the buffer is not
112 * used for writing. The ring buffer can be opened for reading, but the reader
113 * should not be using the iterator concurrently with reset. The previous
114 * current iterator record is reset.
115 */
116 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
117 {
118 struct channel *chan = buf->backend.chan;
119 const struct lib_ring_buffer_config *config = &chan->backend.config;
120 unsigned int i;
121
122 /*
123 * Reset iterator first. It will put the subbuffer if it currently holds
124 * it.
125 */
126 lib_ring_buffer_iterator_reset(buf);
127 v_set(config, &buf->offset, 0);
128 for (i = 0; i < chan->backend.num_subbuf; i++) {
129 v_set(config, &buf->commit_hot[i].cc, 0);
130 v_set(config, &buf->commit_hot[i].seq, 0);
131 v_set(config, &buf->commit_cold[i].cc_sb, 0);
132 }
133 atomic_long_set(&buf->consumed, 0);
134 atomic_set(&buf->record_disabled, 0);
135 v_set(config, &buf->last_tsc, 0);
136 lib_ring_buffer_backend_reset(&buf->backend);
137 /* Don't reset number of active readers */
138 v_set(config, &buf->records_lost_full, 0);
139 v_set(config, &buf->records_lost_wrap, 0);
140 v_set(config, &buf->records_lost_big, 0);
141 v_set(config, &buf->records_count, 0);
142 v_set(config, &buf->records_overrun, 0);
143 buf->finalized = 0;
144 }
145 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
146
147 /**
148 * channel_reset - Reset channel to initial values.
149 * @chan: Channel.
150 *
151 * Effectively empty the channel. Should be called when the channel is not used
152 * for writing. The channel can be opened for reading, but the reader should not
153 * be using the iterator concurrently with reset. The previous current iterator
154 * record is reset.
155 */
156 void channel_reset(struct channel *chan)
157 {
158 /*
159 * Reset iterators first. Will put the subbuffer if held for reading.
160 */
161 channel_iterator_reset(chan);
162 atomic_set(&chan->record_disabled, 0);
163 /* Don't reset commit_count_mask, still valid */
164 channel_backend_reset(&chan->backend);
165 /* Don't reset switch/read timer interval */
166 /* Don't reset notifiers and notifier enable bits */
167 /* Don't reset reader reference count */
168 }
169 EXPORT_SYMBOL_GPL(channel_reset);
170
171 /*
172 * Must be called under cpu hotplug protection.
173 */
174 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
175 struct channel_backend *chanb, int cpu)
176 {
177 const struct lib_ring_buffer_config *config = &chanb->config;
178 struct channel *chan = container_of(chanb, struct channel, backend);
179 void *priv = chanb->priv;
180 size_t subbuf_header_size;
181 u64 tsc;
182 int ret;
183
184 /* Test for cpu hotplug */
185 if (buf->backend.allocated)
186 return 0;
187
188 /*
189 * Paranoia: per cpu dynamic allocation is not officially documented as
190 * zeroing the memory, so let's do it here too, just in case.
191 */
192 memset(buf, 0, sizeof(*buf));
193
194 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
195 if (ret)
196 return ret;
197
198 buf->commit_hot =
199 kzalloc_node(ALIGN(sizeof(*buf->commit_hot)
200 * chan->backend.num_subbuf,
201 1 << INTERNODE_CACHE_SHIFT),
202 GFP_KERNEL, cpu_to_node(max(cpu, 0)));
203 if (!buf->commit_hot) {
204 ret = -ENOMEM;
205 goto free_chanbuf;
206 }
207
208 buf->commit_cold =
209 kzalloc_node(ALIGN(sizeof(*buf->commit_cold)
210 * chan->backend.num_subbuf,
211 1 << INTERNODE_CACHE_SHIFT),
212 GFP_KERNEL, cpu_to_node(max(cpu, 0)));
213 if (!buf->commit_cold) {
214 ret = -ENOMEM;
215 goto free_commit;
216 }
217
218 init_waitqueue_head(&buf->read_wait);
219 init_waitqueue_head(&buf->write_wait);
220 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
221
222 /*
223 * Write the subbuffer header for first subbuffer so we know the total
224 * duration of data gathering.
225 */
226 subbuf_header_size = config->cb.subbuffer_header_size();
227 v_set(config, &buf->offset, subbuf_header_size);
228 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
229 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
230 config->cb.buffer_begin(buf, tsc, 0);
231 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
232
233 if (config->cb.buffer_create) {
234 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
235 if (ret)
236 goto free_init;
237 }
238
239 /*
240 * Ensure the buffer is ready before setting it to allocated and setting
241 * the cpumask.
242 * Used for cpu hotplug vs cpumask iteration.
243 */
244 smp_wmb();
245 buf->backend.allocated = 1;
246
247 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
248 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
249 chan->backend.cpumask));
250 cpumask_set_cpu(cpu, chan->backend.cpumask);
251 }
252
253 return 0;
254
255 /* Error handling */
256 free_init:
257 kfree(buf->commit_cold);
258 free_commit:
259 kfree(buf->commit_hot);
260 free_chanbuf:
261 lib_ring_buffer_backend_free(&buf->backend);
262 return ret;
263 }
264
265 static void switch_buffer_timer(unsigned long data)
266 {
267 struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
268 struct channel *chan = buf->backend.chan;
269 const struct lib_ring_buffer_config *config = &chan->backend.config;
270
271 /*
272 * Only flush buffers periodically if readers are active.
273 */
274 if (atomic_long_read(&buf->active_readers))
275 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
276
277 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
278 mod_timer_pinned(&buf->switch_timer,
279 jiffies + chan->switch_timer_interval);
280 else
281 mod_timer(&buf->switch_timer,
282 jiffies + chan->switch_timer_interval);
283 }
284
285 /*
286 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
287 */
288 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
289 {
290 struct channel *chan = buf->backend.chan;
291 const struct lib_ring_buffer_config *config = &chan->backend.config;
292
293 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
294 return;
295 init_timer(&buf->switch_timer);
296 buf->switch_timer.function = switch_buffer_timer;
297 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
298 buf->switch_timer.data = (unsigned long)buf;
299 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
300 add_timer_on(&buf->switch_timer, buf->backend.cpu);
301 else
302 add_timer(&buf->switch_timer);
303 buf->switch_timer_enabled = 1;
304 }
305
306 /*
307 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
308 */
309 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
310 {
311 struct channel *chan = buf->backend.chan;
312
313 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
314 return;
315
316 del_timer_sync(&buf->switch_timer);
317 buf->switch_timer_enabled = 0;
318 }
319
320 /*
321 * Polling timer to check the channels for data.
322 */
323 static void read_buffer_timer(unsigned long data)
324 {
325 struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
326 struct channel *chan = buf->backend.chan;
327 const struct lib_ring_buffer_config *config = &chan->backend.config;
328
329 CHAN_WARN_ON(chan, !buf->backend.allocated);
330
331 if (atomic_long_read(&buf->active_readers)
332 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
333 wake_up_interruptible(&buf->read_wait);
334 wake_up_interruptible(&chan->read_wait);
335 }
336
337 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
338 mod_timer_pinned(&buf->read_timer,
339 jiffies + chan->read_timer_interval);
340 else
341 mod_timer(&buf->read_timer,
342 jiffies + chan->read_timer_interval);
343 }
344
345 /*
346 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
347 */
348 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
349 {
350 struct channel *chan = buf->backend.chan;
351 const struct lib_ring_buffer_config *config = &chan->backend.config;
352
353 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
354 || !chan->read_timer_interval
355 || buf->read_timer_enabled)
356 return;
357
358 init_timer(&buf->read_timer);
359 buf->read_timer.function = read_buffer_timer;
360 buf->read_timer.expires = jiffies + chan->read_timer_interval;
361 buf->read_timer.data = (unsigned long)buf;
362
363 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
364 add_timer_on(&buf->read_timer, buf->backend.cpu);
365 else
366 add_timer(&buf->read_timer);
367 buf->read_timer_enabled = 1;
368 }
369
370 /*
371 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
372 */
373 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
374 {
375 struct channel *chan = buf->backend.chan;
376 const struct lib_ring_buffer_config *config = &chan->backend.config;
377
378 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
379 || !chan->read_timer_interval
380 || !buf->read_timer_enabled)
381 return;
382
383 del_timer_sync(&buf->read_timer);
384 /*
385 * do one more check to catch data that has been written in the last
386 * timer period.
387 */
388 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
389 wake_up_interruptible(&buf->read_wait);
390 wake_up_interruptible(&chan->read_wait);
391 }
392 buf->read_timer_enabled = 0;
393 }
394
395 #ifdef CONFIG_HOTPLUG_CPU
396 /**
397 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
398 * @nb: notifier block
399 * @action: hotplug action to take
400 * @hcpu: CPU number
401 *
402 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
403 */
404 static
405 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
406 unsigned long action,
407 void *hcpu)
408 {
409 unsigned int cpu = (unsigned long)hcpu;
410 struct channel *chan = container_of(nb, struct channel,
411 cpu_hp_notifier);
412 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
413 const struct lib_ring_buffer_config *config = &chan->backend.config;
414
415 if (!chan->cpu_hp_enable)
416 return NOTIFY_DONE;
417
418 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
419
420 switch (action) {
421 case CPU_DOWN_FAILED:
422 case CPU_DOWN_FAILED_FROZEN:
423 case CPU_ONLINE:
424 case CPU_ONLINE_FROZEN:
425 wake_up_interruptible(&chan->hp_wait);
426 lib_ring_buffer_start_switch_timer(buf);
427 lib_ring_buffer_start_read_timer(buf);
428 return NOTIFY_OK;
429
430 case CPU_DOWN_PREPARE:
431 case CPU_DOWN_PREPARE_FROZEN:
432 lib_ring_buffer_stop_switch_timer(buf);
433 lib_ring_buffer_stop_read_timer(buf);
434 return NOTIFY_OK;
435
436 case CPU_DEAD:
437 case CPU_DEAD_FROZEN:
438 /*
439 * Performing a buffer switch on a remote CPU. Performed by
440 * the CPU responsible for doing the hotunplug after the target
441 * CPU stopped running completely. Ensures that all data
442 * from that remote CPU is flushed.
443 */
444 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
445 return NOTIFY_OK;
446
447 default:
448 return NOTIFY_DONE;
449 }
450 }
451 #endif
452
453 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
454 /*
455 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
456 * that wake-up-tracing generated events are flushed before going idle (in
457 * tick_nohz). We test if the spinlock is locked to deal with the race where
458 * readers try to sample the ring buffer before we perform the switch. We let
459 * the readers retry in that case. If there is data in the buffer, the wake up
460 * is going to forbid the CPU running the reader thread from going idle.
461 */
462 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
463 unsigned long val,
464 void *data)
465 {
466 struct channel *chan = container_of(nb, struct channel,
467 tick_nohz_notifier);
468 const struct lib_ring_buffer_config *config = &chan->backend.config;
469 struct lib_ring_buffer *buf;
470 int cpu = smp_processor_id();
471
472 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
473 /*
474 * We don't support keeping the system idle with global buffers
475 * and streaming active. In order to do so, we would need to
476 * sample a non-nohz-cpumask racelessly with the nohz updates
477 * without adding synchronization overhead to nohz. Leave this
478 * use-case out for now.
479 */
480 return 0;
481 }
482
483 buf = channel_get_ring_buffer(config, chan, cpu);
484 switch (val) {
485 case TICK_NOHZ_FLUSH:
486 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
487 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
488 && chan->read_timer_interval
489 && atomic_long_read(&buf->active_readers)
490 && (lib_ring_buffer_poll_deliver(config, buf, chan)
491 || lib_ring_buffer_pending_data(config, buf, chan))) {
492 wake_up_interruptible(&buf->read_wait);
493 wake_up_interruptible(&chan->read_wait);
494 }
495 if (chan->switch_timer_interval)
496 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
497 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
498 break;
499 case TICK_NOHZ_STOP:
500 spin_lock(&__get_cpu_var(ring_buffer_nohz_lock));
501 lib_ring_buffer_stop_switch_timer(buf);
502 lib_ring_buffer_stop_read_timer(buf);
503 spin_unlock(&__get_cpu_var(ring_buffer_nohz_lock));
504 break;
505 case TICK_NOHZ_RESTART:
506 spin_lock(&__get_cpu_var(ring_buffer_nohz_lock));
507 lib_ring_buffer_start_read_timer(buf);
508 lib_ring_buffer_start_switch_timer(buf);
509 spin_unlock(&__get_cpu_var(ring_buffer_nohz_lock));
510 break;
511 }
512
513 return 0;
514 }
515
516 void notrace lib_ring_buffer_tick_nohz_flush(void)
517 {
518 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
519 NULL);
520 }
521
522 void notrace lib_ring_buffer_tick_nohz_stop(void)
523 {
524 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
525 NULL);
526 }
527
528 void notrace lib_ring_buffer_tick_nohz_restart(void)
529 {
530 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
531 NULL);
532 }
533 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
534
535 /*
536 * Holds CPU hotplug.
537 */
538 static void channel_unregister_notifiers(struct channel *chan)
539 {
540 const struct lib_ring_buffer_config *config = &chan->backend.config;
541 int cpu;
542
543 channel_iterator_unregister_notifiers(chan);
544 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
545 #ifdef CONFIG_NO_HZ
546 /*
547 * Remove the nohz notifier first, so we are certain we stop
548 * the timers.
549 */
550 atomic_notifier_chain_unregister(&tick_nohz_notifier,
551 &chan->tick_nohz_notifier);
552 /*
553 * ring_buffer_nohz_lock will not be needed below, because
554 * we just removed the notifiers, which were the only source of
555 * concurrency.
556 */
557 #endif /* CONFIG_NO_HZ */
558 #ifdef CONFIG_HOTPLUG_CPU
559 get_online_cpus();
560 chan->cpu_hp_enable = 0;
561 for_each_online_cpu(cpu) {
562 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
563 cpu);
564 lib_ring_buffer_stop_switch_timer(buf);
565 lib_ring_buffer_stop_read_timer(buf);
566 }
567 put_online_cpus();
568 unregister_cpu_notifier(&chan->cpu_hp_notifier);
569 #else
570 for_each_possible_cpu(cpu) {
571 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
572 cpu);
573 lib_ring_buffer_stop_switch_timer(buf);
574 lib_ring_buffer_stop_read_timer(buf);
575 }
576 #endif
577 } else {
578 struct lib_ring_buffer *buf = chan->backend.buf;
579
580 lib_ring_buffer_stop_switch_timer(buf);
581 lib_ring_buffer_stop_read_timer(buf);
582 }
583 channel_backend_unregister_notifiers(&chan->backend);
584 }
585
586 static void channel_free(struct channel *chan)
587 {
588 channel_iterator_free(chan);
589 channel_backend_free(&chan->backend);
590 kfree(chan);
591 }
592
593 /**
594 * channel_create - Create channel.
595 * @config: ring buffer instance configuration
596 * @name: name of the channel
597 * @priv: ring buffer client private data
598 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
599 * address mapping. It is used only by RING_BUFFER_STATIC
600 * configuration. It can be set to NULL for other backends.
601 * @subbuf_size: subbuffer size
602 * @num_subbuf: number of subbuffers
603 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
604 * padding to let readers get those sub-buffers.
605 * Used for live streaming.
606 * @read_timer_interval: Time interval (in us) to wake up pending readers.
607 *
608 * Holds cpu hotplug.
609 * Returns NULL on failure.
610 */
611 struct channel *channel_create(const struct lib_ring_buffer_config *config,
612 const char *name, void *priv, void *buf_addr,
613 size_t subbuf_size,
614 size_t num_subbuf, unsigned int switch_timer_interval,
615 unsigned int read_timer_interval)
616 {
617 int ret, cpu;
618 struct channel *chan;
619
620 if (lib_ring_buffer_check_config(config, switch_timer_interval,
621 read_timer_interval))
622 return NULL;
623
624 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
625 if (!chan)
626 return NULL;
627
628 ret = channel_backend_init(&chan->backend, name, config, priv,
629 subbuf_size, num_subbuf);
630 if (ret)
631 goto error;
632
633 ret = channel_iterator_init(chan);
634 if (ret)
635 goto error_free_backend;
636
637 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
638 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
639 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
640 kref_init(&chan->ref);
641 init_waitqueue_head(&chan->read_wait);
642 init_waitqueue_head(&chan->hp_wait);
643
644 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
645 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
646 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
647 chan->tick_nohz_notifier.notifier_call =
648 ring_buffer_tick_nohz_callback;
649 chan->tick_nohz_notifier.priority = ~0U;
650 atomic_notifier_chain_register(&tick_nohz_notifier,
651 &chan->tick_nohz_notifier);
652 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
653
654 /*
655 * In case of non-hotplug cpu, if the ring-buffer is allocated
656 * in early initcall, it will not be notified of secondary cpus.
657 * In that off case, we need to allocate for all possible cpus.
658 */
659 #ifdef CONFIG_HOTPLUG_CPU
660 chan->cpu_hp_notifier.notifier_call =
661 lib_ring_buffer_cpu_hp_callback;
662 chan->cpu_hp_notifier.priority = 6;
663 register_cpu_notifier(&chan->cpu_hp_notifier);
664
665 get_online_cpus();
666 for_each_online_cpu(cpu) {
667 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
668 cpu);
669 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
670 lib_ring_buffer_start_switch_timer(buf);
671 lib_ring_buffer_start_read_timer(buf);
672 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
673 }
674 chan->cpu_hp_enable = 1;
675 put_online_cpus();
676 #else
677 for_each_possible_cpu(cpu) {
678 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
679 cpu);
680 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
681 lib_ring_buffer_start_switch_timer(buf);
682 lib_ring_buffer_start_read_timer(buf);
683 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
684 }
685 #endif
686 } else {
687 struct lib_ring_buffer *buf = chan->backend.buf;
688
689 lib_ring_buffer_start_switch_timer(buf);
690 lib_ring_buffer_start_read_timer(buf);
691 }
692
693 return chan;
694
695 error_free_backend:
696 channel_backend_free(&chan->backend);
697 error:
698 kfree(chan);
699 return NULL;
700 }
701 EXPORT_SYMBOL_GPL(channel_create);
702
703 static
704 void channel_release(struct kref *kref)
705 {
706 struct channel *chan = container_of(kref, struct channel, ref);
707 channel_free(chan);
708 }
709
710 /**
711 * channel_destroy - Finalize, wait for q.s. and destroy channel.
712 * @chan: channel to destroy
713 *
714 * Holds cpu hotplug.
715 * Call "destroy" callback, finalize channels, and then decrement the
716 * channel reference count. Note that when readers have completed data
717 * consumption of finalized channels, get_subbuf() will return -ENODATA.
718 * They should release their handle at that point. Returns the private
719 * data pointer.
720 */
721 void *channel_destroy(struct channel *chan)
722 {
723 int cpu;
724 const struct lib_ring_buffer_config *config = &chan->backend.config;
725 void *priv;
726
727 channel_unregister_notifiers(chan);
728
729 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
730 /*
731 * No need to hold cpu hotplug, because all notifiers have been
732 * unregistered.
733 */
734 for_each_channel_cpu(cpu, chan) {
735 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
736 cpu);
737
738 if (config->cb.buffer_finalize)
739 config->cb.buffer_finalize(buf,
740 chan->backend.priv,
741 cpu);
742 if (buf->backend.allocated)
743 lib_ring_buffer_switch_slow(buf, SWITCH_FLUSH);
744 /*
745 * Perform flush before writing to finalized.
746 */
747 smp_wmb();
748 ACCESS_ONCE(buf->finalized) = 1;
749 wake_up_interruptible(&buf->read_wait);
750 }
751 } else {
752 struct lib_ring_buffer *buf = chan->backend.buf;
753
754 if (config->cb.buffer_finalize)
755 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
756 if (buf->backend.allocated)
757 lib_ring_buffer_switch_slow(buf, SWITCH_FLUSH);
758 /*
759 * Perform flush before writing to finalized.
760 */
761 smp_wmb();
762 ACCESS_ONCE(buf->finalized) = 1;
763 wake_up_interruptible(&buf->read_wait);
764 }
765 ACCESS_ONCE(chan->finalized) = 1;
766 wake_up_interruptible(&chan->hp_wait);
767 wake_up_interruptible(&chan->read_wait);
768 priv = chan->backend.priv;
769 kref_put(&chan->ref, channel_release);
770 return priv;
771 }
772 EXPORT_SYMBOL_GPL(channel_destroy);
773
774 struct lib_ring_buffer *channel_get_ring_buffer(
775 const struct lib_ring_buffer_config *config,
776 struct channel *chan, int cpu)
777 {
778 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
779 return chan->backend.buf;
780 else
781 return per_cpu_ptr(chan->backend.buf, cpu);
782 }
783 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
784
785 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
786 {
787 struct channel *chan = buf->backend.chan;
788
789 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
790 return -EBUSY;
791 kref_get(&chan->ref);
792 smp_mb__after_atomic_inc();
793 return 0;
794 }
795 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
796
797 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
798 {
799 struct channel *chan = buf->backend.chan;
800
801 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
802 smp_mb__before_atomic_dec();
803 atomic_long_dec(&buf->active_readers);
804 kref_put(&chan->ref, channel_release);
805 }
806 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
807
808 /*
809 * Promote compiler barrier to a smp_mb().
810 * For the specific ring buffer case, this IPI call should be removed if the
811 * architecture does not reorder writes. This should eventually be provided by
812 * a separate architecture-specific infrastructure.
813 */
814 static void remote_mb(void *info)
815 {
816 smp_mb();
817 }
818
819 /**
820 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
821 * @buf: ring buffer
822 * @consumed: consumed count indicating the position where to read
823 * @produced: produced count, indicates position when to stop reading
824 *
825 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
826 * data to read at consumed position, or 0 if the get operation succeeds.
827 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
828 */
829
830 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
831 unsigned long *consumed, unsigned long *produced)
832 {
833 struct channel *chan = buf->backend.chan;
834 const struct lib_ring_buffer_config *config = &chan->backend.config;
835 unsigned long consumed_cur, write_offset;
836 int finalized;
837
838 retry:
839 finalized = ACCESS_ONCE(buf->finalized);
840 /*
841 * Read finalized before counters.
842 */
843 smp_rmb();
844 consumed_cur = atomic_long_read(&buf->consumed);
845 /*
846 * No need to issue a memory barrier between consumed count read and
847 * write offset read, because consumed count can only change
848 * concurrently in overwrite mode, and we keep a sequence counter
849 * identifier derived from the write offset to check we are getting
850 * the same sub-buffer we are expecting (the sub-buffers are atomically
851 * "tagged" upon writes, tags are checked upon read).
852 */
853 write_offset = v_read(config, &buf->offset);
854
855 /*
856 * Check that we are not about to read the same subbuffer in
857 * which the writer head is.
858 */
859 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
860 == 0)
861 goto nodata;
862
863 *consumed = consumed_cur;
864 *produced = subbuf_trunc(write_offset, chan);
865
866 return 0;
867
868 nodata:
869 /*
870 * The memory barriers __wait_event()/wake_up_interruptible() take care
871 * of "raw_spin_is_locked" memory ordering.
872 */
873 if (finalized)
874 return -ENODATA;
875 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
876 goto retry;
877 else
878 return -EAGAIN;
879 }
880 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
881
882 /**
883 * lib_ring_buffer_put_snapshot - move consumed counter forward
884 *
885 * Should only be called from consumer context.
886 * @buf: ring buffer
887 * @consumed_new: new consumed count value
888 */
889 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
890 unsigned long consumed_new)
891 {
892 struct lib_ring_buffer_backend *bufb = &buf->backend;
893 struct channel *chan = bufb->chan;
894 unsigned long consumed;
895
896 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
897
898 /*
899 * Only push the consumed value forward.
900 * If the consumed cmpxchg fails, this is because we have been pushed by
901 * the writer in flight recorder mode.
902 */
903 consumed = atomic_long_read(&buf->consumed);
904 while ((long) consumed - (long) consumed_new < 0)
905 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
906 consumed_new);
907 /* Wake-up the metadata producer */
908 wake_up_interruptible(&buf->write_wait);
909 }
910 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
911
912 /**
913 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
914 * @buf: ring buffer
915 * @consumed: consumed count indicating the position where to read
916 *
917 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
918 * data to read at consumed position, or 0 if the get operation succeeds.
919 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
920 */
921 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
922 unsigned long consumed)
923 {
924 struct channel *chan = buf->backend.chan;
925 const struct lib_ring_buffer_config *config = &chan->backend.config;
926 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
927 int ret;
928 int finalized;
929
930 retry:
931 finalized = ACCESS_ONCE(buf->finalized);
932 /*
933 * Read finalized before counters.
934 */
935 smp_rmb();
936 consumed_cur = atomic_long_read(&buf->consumed);
937 consumed_idx = subbuf_index(consumed, chan);
938 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
939 /*
940 * Make sure we read the commit count before reading the buffer
941 * data and the write offset. Correct consumed offset ordering
942 * wrt commit count is insured by the use of cmpxchg to update
943 * the consumed offset.
944 * smp_call_function_single can fail if the remote CPU is offline,
945 * this is OK because then there is no wmb to execute there.
946 * If our thread is executing on the same CPU as the on the buffers
947 * belongs to, we don't have to synchronize it at all. If we are
948 * migrated, the scheduler will take care of the memory barriers.
949 * Normally, smp_call_function_single() should ensure program order when
950 * executing the remote function, which implies that it surrounds the
951 * function execution with :
952 * smp_mb()
953 * send IPI
954 * csd_lock_wait
955 * recv IPI
956 * smp_mb()
957 * exec. function
958 * smp_mb()
959 * csd unlock
960 * smp_mb()
961 *
962 * However, smp_call_function_single() does not seem to clearly execute
963 * such barriers. It depends on spinlock semantic to provide the barrier
964 * before executing the IPI and, when busy-looping, csd_lock_wait only
965 * executes smp_mb() when it has to wait for the other CPU.
966 *
967 * I don't trust this code. Therefore, let's add the smp_mb() sequence
968 * required ourself, even if duplicated. It has no performance impact
969 * anyway.
970 *
971 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
972 * read and write vs write. They do not ensure core synchronization. We
973 * really have to ensure total order between the 3 barriers running on
974 * the 2 CPUs.
975 */
976 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
977 if (config->sync == RING_BUFFER_SYNC_PER_CPU
978 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
979 if (raw_smp_processor_id() != buf->backend.cpu) {
980 /* Total order with IPI handler smp_mb() */
981 smp_mb();
982 smp_call_function_single(buf->backend.cpu,
983 remote_mb, NULL, 1);
984 /* Total order with IPI handler smp_mb() */
985 smp_mb();
986 }
987 } else {
988 /* Total order with IPI handler smp_mb() */
989 smp_mb();
990 smp_call_function(remote_mb, NULL, 1);
991 /* Total order with IPI handler smp_mb() */
992 smp_mb();
993 }
994 } else {
995 /*
996 * Local rmb to match the remote wmb to read the commit count
997 * before the buffer data and the write offset.
998 */
999 smp_rmb();
1000 }
1001
1002 write_offset = v_read(config, &buf->offset);
1003
1004 /*
1005 * Check that the buffer we are getting is after or at consumed_cur
1006 * position.
1007 */
1008 if ((long) subbuf_trunc(consumed, chan)
1009 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1010 goto nodata;
1011
1012 /*
1013 * Check that the subbuffer we are trying to consume has been
1014 * already fully committed.
1015 */
1016 if (((commit_count - chan->backend.subbuf_size)
1017 & chan->commit_count_mask)
1018 - (buf_trunc(consumed_cur, chan)
1019 >> chan->backend.num_subbuf_order)
1020 != 0)
1021 goto nodata;
1022
1023 /*
1024 * Check that we are not about to read the same subbuffer in
1025 * which the writer head is.
1026 */
1027 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1028 == 0)
1029 goto nodata;
1030
1031 /*
1032 * Failure to get the subbuffer causes a busy-loop retry without going
1033 * to a wait queue. These are caused by short-lived race windows where
1034 * the writer is getting access to a subbuffer we were trying to get
1035 * access to. Also checks that the "consumed" buffer count we are
1036 * looking for matches the one contained in the subbuffer id.
1037 */
1038 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1039 consumed_idx, buf_trunc_val(consumed, chan));
1040 if (ret)
1041 goto retry;
1042 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1043
1044 buf->get_subbuf_consumed = consumed;
1045 buf->get_subbuf = 1;
1046
1047 return 0;
1048
1049 nodata:
1050 /*
1051 * The memory barriers __wait_event()/wake_up_interruptible() take care
1052 * of "raw_spin_is_locked" memory ordering.
1053 */
1054 if (finalized)
1055 return -ENODATA;
1056 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1057 goto retry;
1058 else
1059 return -EAGAIN;
1060 }
1061 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1062
1063 /**
1064 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1065 * @buf: ring buffer
1066 */
1067 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1068 {
1069 struct lib_ring_buffer_backend *bufb = &buf->backend;
1070 struct channel *chan = bufb->chan;
1071 const struct lib_ring_buffer_config *config = &chan->backend.config;
1072 unsigned long read_sb_bindex, consumed_idx, consumed;
1073
1074 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1075
1076 if (!buf->get_subbuf) {
1077 /*
1078 * Reader puts a subbuffer it did not get.
1079 */
1080 CHAN_WARN_ON(chan, 1);
1081 return;
1082 }
1083 consumed = buf->get_subbuf_consumed;
1084 buf->get_subbuf = 0;
1085
1086 /*
1087 * Clear the records_unread counter. (overruns counter)
1088 * Can still be non-zero if a file reader simply grabbed the data
1089 * without using iterators.
1090 * Can be below zero if an iterator is used on a snapshot more than
1091 * once.
1092 */
1093 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1094 v_add(config, v_read(config,
1095 &bufb->array[read_sb_bindex]->records_unread),
1096 &bufb->records_read);
1097 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1098 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1099 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1100 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1101
1102 /*
1103 * Exchange the reader subbuffer with the one we put in its place in the
1104 * writer subbuffer table. Expect the original consumed count. If
1105 * update_read_sb_index fails, this is because the writer updated the
1106 * subbuffer concurrently. We should therefore keep the subbuffer we
1107 * currently have: it has become invalid to try reading this sub-buffer
1108 * consumed count value anyway.
1109 */
1110 consumed_idx = subbuf_index(consumed, chan);
1111 update_read_sb_index(config, &buf->backend, &chan->backend,
1112 consumed_idx, buf_trunc_val(consumed, chan));
1113 /*
1114 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1115 * if the writer concurrently updated it.
1116 */
1117 }
1118 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1119
1120 /*
1121 * cons_offset is an iterator on all subbuffer offsets between the reader
1122 * position and the writer position. (inclusive)
1123 */
1124 static
1125 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1126 struct channel *chan,
1127 unsigned long cons_offset,
1128 int cpu)
1129 {
1130 const struct lib_ring_buffer_config *config = &chan->backend.config;
1131 unsigned long cons_idx, commit_count, commit_count_sb;
1132
1133 cons_idx = subbuf_index(cons_offset, chan);
1134 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1135 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1136
1137 if (subbuf_offset(commit_count, chan) != 0)
1138 printk(KERN_WARNING
1139 "ring buffer %s, cpu %d: "
1140 "commit count in subbuffer %lu,\n"
1141 "expecting multiples of %lu bytes\n"
1142 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1143 chan->backend.name, cpu, cons_idx,
1144 chan->backend.subbuf_size,
1145 commit_count, commit_count_sb);
1146
1147 printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1148 chan->backend.name, cpu, commit_count);
1149 }
1150
1151 static
1152 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1153 struct channel *chan,
1154 void *priv, int cpu)
1155 {
1156 const struct lib_ring_buffer_config *config = &chan->backend.config;
1157 unsigned long write_offset, cons_offset;
1158
1159 /*
1160 * No need to order commit_count, write_offset and cons_offset reads
1161 * because we execute at teardown when no more writer nor reader
1162 * references are left.
1163 */
1164 write_offset = v_read(config, &buf->offset);
1165 cons_offset = atomic_long_read(&buf->consumed);
1166 if (write_offset != cons_offset)
1167 printk(KERN_DEBUG
1168 "ring buffer %s, cpu %d: "
1169 "non-consumed data\n"
1170 " [ %lu bytes written, %lu bytes read ]\n",
1171 chan->backend.name, cpu, write_offset, cons_offset);
1172
1173 for (cons_offset = atomic_long_read(&buf->consumed);
1174 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1175 chan)
1176 - cons_offset) > 0;
1177 cons_offset = subbuf_align(cons_offset, chan))
1178 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1179 cpu);
1180 }
1181
1182 static
1183 void lib_ring_buffer_print_errors(struct channel *chan,
1184 struct lib_ring_buffer *buf, int cpu)
1185 {
1186 const struct lib_ring_buffer_config *config = &chan->backend.config;
1187 void *priv = chan->backend.priv;
1188
1189 if (!strcmp(chan->backend.name, "relay-metadata")) {
1190 printk(KERN_DEBUG "ring buffer %s: %lu records written, "
1191 "%lu records overrun\n",
1192 chan->backend.name,
1193 v_read(config, &buf->records_count),
1194 v_read(config, &buf->records_overrun));
1195 } else {
1196 printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1197 "%lu records overrun\n",
1198 chan->backend.name, cpu,
1199 v_read(config, &buf->records_count),
1200 v_read(config, &buf->records_overrun));
1201
1202 if (v_read(config, &buf->records_lost_full)
1203 || v_read(config, &buf->records_lost_wrap)
1204 || v_read(config, &buf->records_lost_big))
1205 printk(KERN_WARNING
1206 "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1207 " [ %lu buffer full, %lu nest buffer wrap-around, "
1208 "%lu event too big ]\n",
1209 chan->backend.name, cpu,
1210 v_read(config, &buf->records_lost_full),
1211 v_read(config, &buf->records_lost_wrap),
1212 v_read(config, &buf->records_lost_big));
1213 }
1214 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1215 }
1216
1217 /*
1218 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1219 *
1220 * Only executed when the buffer is finalized, in SWITCH_FLUSH.
1221 */
1222 static
1223 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1224 struct channel *chan,
1225 struct switch_offsets *offsets,
1226 u64 tsc)
1227 {
1228 const struct lib_ring_buffer_config *config = &chan->backend.config;
1229 unsigned long oldidx = subbuf_index(offsets->old, chan);
1230 unsigned long commit_count;
1231
1232 config->cb.buffer_begin(buf, tsc, oldidx);
1233
1234 /*
1235 * Order all writes to buffer before the commit count update that will
1236 * determine that the subbuffer is full.
1237 */
1238 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1239 /*
1240 * Must write slot data before incrementing commit count. This
1241 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1242 * by get_subbuf().
1243 */
1244 barrier();
1245 } else
1246 smp_wmb();
1247 v_add(config, config->cb.subbuffer_header_size(),
1248 &buf->commit_hot[oldidx].cc);
1249 commit_count = v_read(config, &buf->commit_hot[oldidx].cc);
1250 /* Check if the written buffer has to be delivered */
1251 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1252 commit_count, oldidx);
1253 lib_ring_buffer_write_commit_counter(config, buf, chan, oldidx,
1254 offsets->old, commit_count,
1255 config->cb.subbuffer_header_size());
1256 }
1257
1258 /*
1259 * lib_ring_buffer_switch_old_end: switch old subbuffer
1260 *
1261 * Note : offset_old should never be 0 here. It is ok, because we never perform
1262 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1263 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1264 * subbuffer.
1265 */
1266 static
1267 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1268 struct channel *chan,
1269 struct switch_offsets *offsets,
1270 u64 tsc)
1271 {
1272 const struct lib_ring_buffer_config *config = &chan->backend.config;
1273 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1274 unsigned long commit_count, padding_size, data_size;
1275
1276 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1277 padding_size = chan->backend.subbuf_size - data_size;
1278 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1279
1280 /*
1281 * Order all writes to buffer before the commit count update that will
1282 * determine that the subbuffer is full.
1283 */
1284 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1285 /*
1286 * Must write slot data before incrementing commit count. This
1287 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1288 * by get_subbuf().
1289 */
1290 barrier();
1291 } else
1292 smp_wmb();
1293 v_add(config, padding_size, &buf->commit_hot[oldidx].cc);
1294 commit_count = v_read(config, &buf->commit_hot[oldidx].cc);
1295 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1296 commit_count, oldidx);
1297 lib_ring_buffer_write_commit_counter(config, buf, chan, oldidx,
1298 offsets->old, commit_count,
1299 padding_size);
1300 }
1301
1302 /*
1303 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1304 *
1305 * This code can be executed unordered : writers may already have written to the
1306 * sub-buffer before this code gets executed, caution. The commit makes sure
1307 * that this code is executed before the deliver of this sub-buffer.
1308 */
1309 static
1310 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1311 struct channel *chan,
1312 struct switch_offsets *offsets,
1313 u64 tsc)
1314 {
1315 const struct lib_ring_buffer_config *config = &chan->backend.config;
1316 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1317 unsigned long commit_count;
1318
1319 config->cb.buffer_begin(buf, tsc, beginidx);
1320
1321 /*
1322 * Order all writes to buffer before the commit count update that will
1323 * determine that the subbuffer is full.
1324 */
1325 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1326 /*
1327 * Must write slot data before incrementing commit count. This
1328 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1329 * by get_subbuf().
1330 */
1331 barrier();
1332 } else
1333 smp_wmb();
1334 v_add(config, config->cb.subbuffer_header_size(),
1335 &buf->commit_hot[beginidx].cc);
1336 commit_count = v_read(config, &buf->commit_hot[beginidx].cc);
1337 /* Check if the written buffer has to be delivered */
1338 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1339 commit_count, beginidx);
1340 lib_ring_buffer_write_commit_counter(config, buf, chan, beginidx,
1341 offsets->begin, commit_count,
1342 config->cb.subbuffer_header_size());
1343 }
1344
1345 /*
1346 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1347 *
1348 * The only remaining threads could be the ones with pending commits. They will
1349 * have to do the deliver themselves.
1350 */
1351 static
1352 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1353 struct channel *chan,
1354 struct switch_offsets *offsets,
1355 u64 tsc)
1356 {
1357 const struct lib_ring_buffer_config *config = &chan->backend.config;
1358 unsigned long endidx = subbuf_index(offsets->end - 1, chan);
1359 unsigned long commit_count, padding_size, data_size;
1360
1361 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1362 padding_size = chan->backend.subbuf_size - data_size;
1363 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1364
1365 /*
1366 * Order all writes to buffer before the commit count update that will
1367 * determine that the subbuffer is full.
1368 */
1369 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1370 /*
1371 * Must write slot data before incrementing commit count. This
1372 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1373 * by get_subbuf().
1374 */
1375 barrier();
1376 } else
1377 smp_wmb();
1378 v_add(config, padding_size, &buf->commit_hot[endidx].cc);
1379 commit_count = v_read(config, &buf->commit_hot[endidx].cc);
1380 lib_ring_buffer_check_deliver(config, buf, chan, offsets->end - 1,
1381 commit_count, endidx);
1382 lib_ring_buffer_write_commit_counter(config, buf, chan, endidx,
1383 offsets->end, commit_count,
1384 padding_size);
1385 }
1386
1387 /*
1388 * Returns :
1389 * 0 if ok
1390 * !0 if execution must be aborted.
1391 */
1392 static
1393 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1394 struct lib_ring_buffer *buf,
1395 struct channel *chan,
1396 struct switch_offsets *offsets,
1397 u64 *tsc)
1398 {
1399 const struct lib_ring_buffer_config *config = &chan->backend.config;
1400 unsigned long off;
1401
1402 offsets->begin = v_read(config, &buf->offset);
1403 offsets->old = offsets->begin;
1404 offsets->switch_old_start = 0;
1405 off = subbuf_offset(offsets->begin, chan);
1406
1407 *tsc = config->cb.ring_buffer_clock_read(chan);
1408
1409 /*
1410 * Ensure we flush the header of an empty subbuffer when doing the
1411 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1412 * total data gathering duration even if there were no records saved
1413 * after the last buffer switch.
1414 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1415 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1416 * subbuffer header as appropriate.
1417 * The next record that reserves space will be responsible for
1418 * populating the following subbuffer header. We choose not to populate
1419 * the next subbuffer header here because we want to be able to use
1420 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1421 * buffer flush, which must guarantee that all the buffer content
1422 * (records and header timestamps) are visible to the reader. This is
1423 * required for quiescence guarantees for the fusion merge.
1424 */
1425 if (mode == SWITCH_FLUSH || off > 0) {
1426 if (unlikely(off == 0)) {
1427 /*
1428 * A final flush that encounters an empty
1429 * sub-buffer cannot switch buffer if a
1430 * reader is located within this sub-buffer.
1431 * Anyway, the purpose of final flushing of a
1432 * sub-buffer at offset 0 is to handle the case
1433 * of entirely empty stream.
1434 */
1435 if (unlikely(subbuf_trunc(offsets->begin, chan)
1436 - subbuf_trunc((unsigned long)
1437 atomic_long_read(&buf->consumed), chan)
1438 >= chan->backend.buf_size))
1439 return -1;
1440 /*
1441 * The client does not save any header information.
1442 * Don't switch empty subbuffer on finalize, because it
1443 * is invalid to deliver a completely empty subbuffer.
1444 */
1445 if (!config->cb.subbuffer_header_size())
1446 return -1;
1447 /*
1448 * Need to write the subbuffer start header on finalize.
1449 */
1450 offsets->switch_old_start = 1;
1451 }
1452 offsets->begin = subbuf_align(offsets->begin, chan);
1453 } else
1454 return -1; /* we do not have to switch : buffer is empty */
1455 /* Note: old points to the next subbuf at offset 0 */
1456 offsets->end = offsets->begin;
1457 return 0;
1458 }
1459
1460 /*
1461 * Force a sub-buffer switch. This operation is completely reentrant : can be
1462 * called while tracing is active with absolutely no lock held.
1463 *
1464 * Note, however, that as a v_cmpxchg is used for some atomic
1465 * operations, this function must be called from the CPU which owns the buffer
1466 * for a ACTIVE flush.
1467 */
1468 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1469 {
1470 struct channel *chan = buf->backend.chan;
1471 const struct lib_ring_buffer_config *config = &chan->backend.config;
1472 struct switch_offsets offsets;
1473 unsigned long oldidx;
1474 u64 tsc;
1475
1476 offsets.size = 0;
1477
1478 /*
1479 * Perform retryable operations.
1480 */
1481 do {
1482 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1483 &tsc))
1484 return; /* Switch not needed */
1485 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1486 != offsets.old);
1487
1488 /*
1489 * Atomically update last_tsc. This update races against concurrent
1490 * atomic updates, but the race will always cause supplementary full TSC
1491 * records, never the opposite (missing a full TSC record when it would
1492 * be needed).
1493 */
1494 save_last_tsc(config, buf, tsc);
1495
1496 /*
1497 * Push the reader if necessary
1498 */
1499 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1500
1501 oldidx = subbuf_index(offsets.old, chan);
1502 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1503
1504 /*
1505 * May need to populate header start on SWITCH_FLUSH.
1506 */
1507 if (offsets.switch_old_start) {
1508 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1509 offsets.old += config->cb.subbuffer_header_size();
1510 }
1511
1512 /*
1513 * Switch old subbuffer.
1514 */
1515 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1516 }
1517 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1518
1519 /*
1520 * Returns :
1521 * 0 if ok
1522 * -ENOSPC if event size is too large for packet.
1523 * -ENOBUFS if there is currently not enough space in buffer for the event.
1524 * -EIO if data cannot be written into the buffer for any other reason.
1525 */
1526 static
1527 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1528 struct channel *chan,
1529 struct switch_offsets *offsets,
1530 struct lib_ring_buffer_ctx *ctx)
1531 {
1532 const struct lib_ring_buffer_config *config = &chan->backend.config;
1533 unsigned long reserve_commit_diff;
1534
1535 offsets->begin = v_read(config, &buf->offset);
1536 offsets->old = offsets->begin;
1537 offsets->switch_new_start = 0;
1538 offsets->switch_new_end = 0;
1539 offsets->switch_old_end = 0;
1540 offsets->pre_header_padding = 0;
1541
1542 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1543 if ((int64_t) ctx->tsc == -EIO)
1544 return -EIO;
1545
1546 if (last_tsc_overflow(config, buf, ctx->tsc))
1547 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
1548
1549 if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
1550 offsets->switch_new_start = 1; /* For offsets->begin */
1551 } else {
1552 offsets->size = config->cb.record_header_size(config, chan,
1553 offsets->begin,
1554 &offsets->pre_header_padding,
1555 ctx);
1556 offsets->size +=
1557 lib_ring_buffer_align(offsets->begin + offsets->size,
1558 ctx->largest_align)
1559 + ctx->data_size;
1560 if (unlikely(subbuf_offset(offsets->begin, chan) +
1561 offsets->size > chan->backend.subbuf_size)) {
1562 offsets->switch_old_end = 1; /* For offsets->old */
1563 offsets->switch_new_start = 1; /* For offsets->begin */
1564 }
1565 }
1566 if (unlikely(offsets->switch_new_start)) {
1567 unsigned long sb_index;
1568
1569 /*
1570 * We are typically not filling the previous buffer completely.
1571 */
1572 if (likely(offsets->switch_old_end))
1573 offsets->begin = subbuf_align(offsets->begin, chan);
1574 offsets->begin = offsets->begin
1575 + config->cb.subbuffer_header_size();
1576 /* Test new buffer integrity */
1577 sb_index = subbuf_index(offsets->begin, chan);
1578 reserve_commit_diff =
1579 (buf_trunc(offsets->begin, chan)
1580 >> chan->backend.num_subbuf_order)
1581 - ((unsigned long) v_read(config,
1582 &buf->commit_cold[sb_index].cc_sb)
1583 & chan->commit_count_mask);
1584 if (likely(reserve_commit_diff == 0)) {
1585 /* Next subbuffer not being written to. */
1586 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1587 subbuf_trunc(offsets->begin, chan)
1588 - subbuf_trunc((unsigned long)
1589 atomic_long_read(&buf->consumed), chan)
1590 >= chan->backend.buf_size)) {
1591 /*
1592 * We do not overwrite non consumed buffers
1593 * and we are full : record is lost.
1594 */
1595 v_inc(config, &buf->records_lost_full);
1596 return -ENOBUFS;
1597 } else {
1598 /*
1599 * Next subbuffer not being written to, and we
1600 * are either in overwrite mode or the buffer is
1601 * not full. It's safe to write in this new
1602 * subbuffer.
1603 */
1604 }
1605 } else {
1606 /*
1607 * Next subbuffer reserve offset does not match the
1608 * commit offset. Drop record in producer-consumer and
1609 * overwrite mode. Caused by either a writer OOPS or too
1610 * many nested writes over a reserve/commit pair.
1611 */
1612 v_inc(config, &buf->records_lost_wrap);
1613 return -EIO;
1614 }
1615 offsets->size =
1616 config->cb.record_header_size(config, chan,
1617 offsets->begin,
1618 &offsets->pre_header_padding,
1619 ctx);
1620 offsets->size +=
1621 lib_ring_buffer_align(offsets->begin + offsets->size,
1622 ctx->largest_align)
1623 + ctx->data_size;
1624 if (unlikely(subbuf_offset(offsets->begin, chan)
1625 + offsets->size > chan->backend.subbuf_size)) {
1626 /*
1627 * Record too big for subbuffers, report error, don't
1628 * complete the sub-buffer switch.
1629 */
1630 v_inc(config, &buf->records_lost_big);
1631 return -ENOSPC;
1632 } else {
1633 /*
1634 * We just made a successful buffer switch and the
1635 * record fits in the new subbuffer. Let's write.
1636 */
1637 }
1638 } else {
1639 /*
1640 * Record fits in the current buffer and we are not on a switch
1641 * boundary. It's safe to write.
1642 */
1643 }
1644 offsets->end = offsets->begin + offsets->size;
1645
1646 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
1647 /*
1648 * The offset_end will fall at the very beginning of the next
1649 * subbuffer.
1650 */
1651 offsets->switch_new_end = 1; /* For offsets->begin */
1652 }
1653 return 0;
1654 }
1655
1656 /**
1657 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
1658 * @ctx: ring buffer context.
1659 *
1660 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
1661 * -EIO for other errors, else returns 0.
1662 * It will take care of sub-buffer switching.
1663 */
1664 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx)
1665 {
1666 struct channel *chan = ctx->chan;
1667 const struct lib_ring_buffer_config *config = &chan->backend.config;
1668 struct lib_ring_buffer *buf;
1669 struct switch_offsets offsets;
1670 int ret;
1671
1672 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
1673 buf = per_cpu_ptr(chan->backend.buf, ctx->cpu);
1674 else
1675 buf = chan->backend.buf;
1676 ctx->buf = buf;
1677
1678 offsets.size = 0;
1679
1680 do {
1681 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
1682 ctx);
1683 if (unlikely(ret))
1684 return ret;
1685 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
1686 offsets.end)
1687 != offsets.old));
1688
1689 /*
1690 * Atomically update last_tsc. This update races against concurrent
1691 * atomic updates, but the race will always cause supplementary full TSC
1692 * records, never the opposite (missing a full TSC record when it would
1693 * be needed).
1694 */
1695 save_last_tsc(config, buf, ctx->tsc);
1696
1697 /*
1698 * Push the reader if necessary
1699 */
1700 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
1701
1702 /*
1703 * Clear noref flag for this subbuffer.
1704 */
1705 lib_ring_buffer_clear_noref(config, &buf->backend,
1706 subbuf_index(offsets.end - 1, chan));
1707
1708 /*
1709 * Switch old subbuffer if needed.
1710 */
1711 if (unlikely(offsets.switch_old_end)) {
1712 lib_ring_buffer_clear_noref(config, &buf->backend,
1713 subbuf_index(offsets.old - 1, chan));
1714 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
1715 }
1716
1717 /*
1718 * Populate new subbuffer.
1719 */
1720 if (unlikely(offsets.switch_new_start))
1721 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
1722
1723 if (unlikely(offsets.switch_new_end))
1724 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
1725
1726 ctx->slot_size = offsets.size;
1727 ctx->pre_offset = offsets.begin;
1728 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
1729 return 0;
1730 }
1731 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
1732
1733 int __init init_lib_ring_buffer_frontend(void)
1734 {
1735 int cpu;
1736
1737 for_each_possible_cpu(cpu)
1738 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
1739 return 0;
1740 }
1741
1742 module_init(init_lib_ring_buffer_frontend);
1743
1744 void __exit exit_lib_ring_buffer_frontend(void)
1745 {
1746 }
1747
1748 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.093071 seconds and 5 git commands to generate.