Fix: use after free in ring buffer clients
[lttng-modules.git] / lib / ringbuffer / ring_buffer_frontend.c
1 /*
2 * ring_buffer_frontend.c
3 *
4 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; only
9 * version 2.1 of the License.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *
21 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
22 * recorder (overwrite) modes. See thesis:
23 *
24 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
25 * dissertation, Ecole Polytechnique de Montreal.
26 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
27 *
28 * - Algorithm presentation in Chapter 5:
29 * "Lockless Multi-Core High-Throughput Buffering".
30 * - Algorithm formal verification in Section 8.6:
31 * "Formal verification of LTTng"
32 *
33 * Author:
34 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
35 *
36 * Inspired from LTT and RelayFS:
37 * Karim Yaghmour <karim@opersys.com>
38 * Tom Zanussi <zanussi@us.ibm.com>
39 * Bob Wisniewski <bob@watson.ibm.com>
40 * And from K42 :
41 * Bob Wisniewski <bob@watson.ibm.com>
42 *
43 * Buffer reader semantic :
44 *
45 * - get_subbuf_size
46 * while buffer is not finalized and empty
47 * - get_subbuf
48 * - if return value != 0, continue
49 * - splice one subbuffer worth of data to a pipe
50 * - splice the data from pipe to disk/network
51 * - put_subbuf
52 */
53
54 #include <linux/delay.h>
55 #include <linux/module.h>
56 #include <linux/percpu.h>
57
58 #include "../../wrapper/ringbuffer/config.h"
59 #include "../../wrapper/ringbuffer/backend.h"
60 #include "../../wrapper/ringbuffer/frontend.h"
61 #include "../../wrapper/ringbuffer/iterator.h"
62 #include "../../wrapper/ringbuffer/nohz.h"
63
64 /*
65 * Internal structure representing offsets to use at a sub-buffer switch.
66 */
67 struct switch_offsets {
68 unsigned long begin, end, old;
69 size_t pre_header_padding, size;
70 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
71 switch_old_end:1;
72 };
73
74 #ifdef CONFIG_NO_HZ
75 enum tick_nohz_val {
76 TICK_NOHZ_STOP,
77 TICK_NOHZ_FLUSH,
78 TICK_NOHZ_RESTART,
79 };
80
81 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
82 #endif /* CONFIG_NO_HZ */
83
84 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
85
86 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
87 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
88
89 static
90 void lib_ring_buffer_print_errors(struct channel *chan,
91 struct lib_ring_buffer *buf, int cpu);
92
93 /*
94 * Must be called under cpu hotplug protection.
95 */
96 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
97 {
98 struct channel *chan = buf->backend.chan;
99
100 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
101 kfree(buf->commit_hot);
102 kfree(buf->commit_cold);
103
104 lib_ring_buffer_backend_free(&buf->backend);
105 }
106
107 /**
108 * lib_ring_buffer_reset - Reset ring buffer to initial values.
109 * @buf: Ring buffer.
110 *
111 * Effectively empty the ring buffer. Should be called when the buffer is not
112 * used for writing. The ring buffer can be opened for reading, but the reader
113 * should not be using the iterator concurrently with reset. The previous
114 * current iterator record is reset.
115 */
116 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
117 {
118 struct channel *chan = buf->backend.chan;
119 const struct lib_ring_buffer_config *config = &chan->backend.config;
120 unsigned int i;
121
122 /*
123 * Reset iterator first. It will put the subbuffer if it currently holds
124 * it.
125 */
126 lib_ring_buffer_iterator_reset(buf);
127 v_set(config, &buf->offset, 0);
128 for (i = 0; i < chan->backend.num_subbuf; i++) {
129 v_set(config, &buf->commit_hot[i].cc, 0);
130 v_set(config, &buf->commit_hot[i].seq, 0);
131 v_set(config, &buf->commit_cold[i].cc_sb, 0);
132 }
133 atomic_long_set(&buf->consumed, 0);
134 atomic_set(&buf->record_disabled, 0);
135 v_set(config, &buf->last_tsc, 0);
136 lib_ring_buffer_backend_reset(&buf->backend);
137 /* Don't reset number of active readers */
138 v_set(config, &buf->records_lost_full, 0);
139 v_set(config, &buf->records_lost_wrap, 0);
140 v_set(config, &buf->records_lost_big, 0);
141 v_set(config, &buf->records_count, 0);
142 v_set(config, &buf->records_overrun, 0);
143 buf->finalized = 0;
144 }
145 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
146
147 /**
148 * channel_reset - Reset channel to initial values.
149 * @chan: Channel.
150 *
151 * Effectively empty the channel. Should be called when the channel is not used
152 * for writing. The channel can be opened for reading, but the reader should not
153 * be using the iterator concurrently with reset. The previous current iterator
154 * record is reset.
155 */
156 void channel_reset(struct channel *chan)
157 {
158 /*
159 * Reset iterators first. Will put the subbuffer if held for reading.
160 */
161 channel_iterator_reset(chan);
162 atomic_set(&chan->record_disabled, 0);
163 /* Don't reset commit_count_mask, still valid */
164 channel_backend_reset(&chan->backend);
165 /* Don't reset switch/read timer interval */
166 /* Don't reset notifiers and notifier enable bits */
167 /* Don't reset reader reference count */
168 }
169 EXPORT_SYMBOL_GPL(channel_reset);
170
171 /*
172 * Must be called under cpu hotplug protection.
173 */
174 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
175 struct channel_backend *chanb, int cpu)
176 {
177 const struct lib_ring_buffer_config *config = &chanb->config;
178 struct channel *chan = container_of(chanb, struct channel, backend);
179 void *priv = chanb->priv;
180 size_t subbuf_header_size;
181 u64 tsc;
182 int ret;
183
184 /* Test for cpu hotplug */
185 if (buf->backend.allocated)
186 return 0;
187
188 /*
189 * Paranoia: per cpu dynamic allocation is not officially documented as
190 * zeroing the memory, so let's do it here too, just in case.
191 */
192 memset(buf, 0, sizeof(*buf));
193
194 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
195 if (ret)
196 return ret;
197
198 buf->commit_hot =
199 kzalloc_node(ALIGN(sizeof(*buf->commit_hot)
200 * chan->backend.num_subbuf,
201 1 << INTERNODE_CACHE_SHIFT),
202 GFP_KERNEL, cpu_to_node(max(cpu, 0)));
203 if (!buf->commit_hot) {
204 ret = -ENOMEM;
205 goto free_chanbuf;
206 }
207
208 buf->commit_cold =
209 kzalloc_node(ALIGN(sizeof(*buf->commit_cold)
210 * chan->backend.num_subbuf,
211 1 << INTERNODE_CACHE_SHIFT),
212 GFP_KERNEL, cpu_to_node(max(cpu, 0)));
213 if (!buf->commit_cold) {
214 ret = -ENOMEM;
215 goto free_commit;
216 }
217
218 init_waitqueue_head(&buf->read_wait);
219 init_waitqueue_head(&buf->write_wait);
220 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
221
222 /*
223 * Write the subbuffer header for first subbuffer so we know the total
224 * duration of data gathering.
225 */
226 subbuf_header_size = config->cb.subbuffer_header_size();
227 v_set(config, &buf->offset, subbuf_header_size);
228 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
229 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
230 config->cb.buffer_begin(buf, tsc, 0);
231 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
232
233 if (config->cb.buffer_create) {
234 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
235 if (ret)
236 goto free_init;
237 }
238
239 /*
240 * Ensure the buffer is ready before setting it to allocated and setting
241 * the cpumask.
242 * Used for cpu hotplug vs cpumask iteration.
243 */
244 smp_wmb();
245 buf->backend.allocated = 1;
246
247 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
248 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
249 chan->backend.cpumask));
250 cpumask_set_cpu(cpu, chan->backend.cpumask);
251 }
252
253 return 0;
254
255 /* Error handling */
256 free_init:
257 kfree(buf->commit_cold);
258 free_commit:
259 kfree(buf->commit_hot);
260 free_chanbuf:
261 lib_ring_buffer_backend_free(&buf->backend);
262 return ret;
263 }
264
265 static void switch_buffer_timer(unsigned long data)
266 {
267 struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
268 struct channel *chan = buf->backend.chan;
269 const struct lib_ring_buffer_config *config = &chan->backend.config;
270
271 /*
272 * Only flush buffers periodically if readers are active.
273 */
274 if (atomic_long_read(&buf->active_readers))
275 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
276
277 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
278 mod_timer_pinned(&buf->switch_timer,
279 jiffies + chan->switch_timer_interval);
280 else
281 mod_timer(&buf->switch_timer,
282 jiffies + chan->switch_timer_interval);
283 }
284
285 /*
286 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
287 */
288 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
289 {
290 struct channel *chan = buf->backend.chan;
291 const struct lib_ring_buffer_config *config = &chan->backend.config;
292
293 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
294 return;
295 init_timer(&buf->switch_timer);
296 buf->switch_timer.function = switch_buffer_timer;
297 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
298 buf->switch_timer.data = (unsigned long)buf;
299 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
300 add_timer_on(&buf->switch_timer, buf->backend.cpu);
301 else
302 add_timer(&buf->switch_timer);
303 buf->switch_timer_enabled = 1;
304 }
305
306 /*
307 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
308 */
309 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
310 {
311 struct channel *chan = buf->backend.chan;
312
313 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
314 return;
315
316 del_timer_sync(&buf->switch_timer);
317 buf->switch_timer_enabled = 0;
318 }
319
320 /*
321 * Polling timer to check the channels for data.
322 */
323 static void read_buffer_timer(unsigned long data)
324 {
325 struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
326 struct channel *chan = buf->backend.chan;
327 const struct lib_ring_buffer_config *config = &chan->backend.config;
328
329 CHAN_WARN_ON(chan, !buf->backend.allocated);
330
331 if (atomic_long_read(&buf->active_readers)
332 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
333 wake_up_interruptible(&buf->read_wait);
334 wake_up_interruptible(&chan->read_wait);
335 }
336
337 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
338 mod_timer_pinned(&buf->read_timer,
339 jiffies + chan->read_timer_interval);
340 else
341 mod_timer(&buf->read_timer,
342 jiffies + chan->read_timer_interval);
343 }
344
345 /*
346 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
347 */
348 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
349 {
350 struct channel *chan = buf->backend.chan;
351 const struct lib_ring_buffer_config *config = &chan->backend.config;
352
353 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
354 || !chan->read_timer_interval
355 || buf->read_timer_enabled)
356 return;
357
358 init_timer(&buf->read_timer);
359 buf->read_timer.function = read_buffer_timer;
360 buf->read_timer.expires = jiffies + chan->read_timer_interval;
361 buf->read_timer.data = (unsigned long)buf;
362
363 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
364 add_timer_on(&buf->read_timer, buf->backend.cpu);
365 else
366 add_timer(&buf->read_timer);
367 buf->read_timer_enabled = 1;
368 }
369
370 /*
371 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
372 */
373 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
374 {
375 struct channel *chan = buf->backend.chan;
376 const struct lib_ring_buffer_config *config = &chan->backend.config;
377
378 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
379 || !chan->read_timer_interval
380 || !buf->read_timer_enabled)
381 return;
382
383 del_timer_sync(&buf->read_timer);
384 /*
385 * do one more check to catch data that has been written in the last
386 * timer period.
387 */
388 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
389 wake_up_interruptible(&buf->read_wait);
390 wake_up_interruptible(&chan->read_wait);
391 }
392 buf->read_timer_enabled = 0;
393 }
394
395 #ifdef CONFIG_HOTPLUG_CPU
396 /**
397 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
398 * @nb: notifier block
399 * @action: hotplug action to take
400 * @hcpu: CPU number
401 *
402 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
403 */
404 static
405 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
406 unsigned long action,
407 void *hcpu)
408 {
409 unsigned int cpu = (unsigned long)hcpu;
410 struct channel *chan = container_of(nb, struct channel,
411 cpu_hp_notifier);
412 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
413 const struct lib_ring_buffer_config *config = &chan->backend.config;
414
415 if (!chan->cpu_hp_enable)
416 return NOTIFY_DONE;
417
418 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
419
420 switch (action) {
421 case CPU_DOWN_FAILED:
422 case CPU_DOWN_FAILED_FROZEN:
423 case CPU_ONLINE:
424 case CPU_ONLINE_FROZEN:
425 wake_up_interruptible(&chan->hp_wait);
426 lib_ring_buffer_start_switch_timer(buf);
427 lib_ring_buffer_start_read_timer(buf);
428 return NOTIFY_OK;
429
430 case CPU_DOWN_PREPARE:
431 case CPU_DOWN_PREPARE_FROZEN:
432 lib_ring_buffer_stop_switch_timer(buf);
433 lib_ring_buffer_stop_read_timer(buf);
434 return NOTIFY_OK;
435
436 case CPU_DEAD:
437 case CPU_DEAD_FROZEN:
438 /*
439 * Performing a buffer switch on a remote CPU. Performed by
440 * the CPU responsible for doing the hotunplug after the target
441 * CPU stopped running completely. Ensures that all data
442 * from that remote CPU is flushed.
443 */
444 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
445 return NOTIFY_OK;
446
447 default:
448 return NOTIFY_DONE;
449 }
450 }
451 #endif
452
453 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
454 /*
455 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
456 * that wake-up-tracing generated events are flushed before going idle (in
457 * tick_nohz). We test if the spinlock is locked to deal with the race where
458 * readers try to sample the ring buffer before we perform the switch. We let
459 * the readers retry in that case. If there is data in the buffer, the wake up
460 * is going to forbid the CPU running the reader thread from going idle.
461 */
462 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
463 unsigned long val,
464 void *data)
465 {
466 struct channel *chan = container_of(nb, struct channel,
467 tick_nohz_notifier);
468 const struct lib_ring_buffer_config *config = &chan->backend.config;
469 struct lib_ring_buffer *buf;
470 int cpu = smp_processor_id();
471
472 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
473 /*
474 * We don't support keeping the system idle with global buffers
475 * and streaming active. In order to do so, we would need to
476 * sample a non-nohz-cpumask racelessly with the nohz updates
477 * without adding synchronization overhead to nohz. Leave this
478 * use-case out for now.
479 */
480 return 0;
481 }
482
483 buf = channel_get_ring_buffer(config, chan, cpu);
484 switch (val) {
485 case TICK_NOHZ_FLUSH:
486 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
487 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
488 && chan->read_timer_interval
489 && atomic_long_read(&buf->active_readers)
490 && (lib_ring_buffer_poll_deliver(config, buf, chan)
491 || lib_ring_buffer_pending_data(config, buf, chan))) {
492 wake_up_interruptible(&buf->read_wait);
493 wake_up_interruptible(&chan->read_wait);
494 }
495 if (chan->switch_timer_interval)
496 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
497 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
498 break;
499 case TICK_NOHZ_STOP:
500 spin_lock(&__get_cpu_var(ring_buffer_nohz_lock));
501 lib_ring_buffer_stop_switch_timer(buf);
502 lib_ring_buffer_stop_read_timer(buf);
503 spin_unlock(&__get_cpu_var(ring_buffer_nohz_lock));
504 break;
505 case TICK_NOHZ_RESTART:
506 spin_lock(&__get_cpu_var(ring_buffer_nohz_lock));
507 lib_ring_buffer_start_read_timer(buf);
508 lib_ring_buffer_start_switch_timer(buf);
509 spin_unlock(&__get_cpu_var(ring_buffer_nohz_lock));
510 break;
511 }
512
513 return 0;
514 }
515
516 void notrace lib_ring_buffer_tick_nohz_flush(void)
517 {
518 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
519 NULL);
520 }
521
522 void notrace lib_ring_buffer_tick_nohz_stop(void)
523 {
524 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
525 NULL);
526 }
527
528 void notrace lib_ring_buffer_tick_nohz_restart(void)
529 {
530 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
531 NULL);
532 }
533 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
534
535 /*
536 * Holds CPU hotplug.
537 */
538 static void channel_unregister_notifiers(struct channel *chan)
539 {
540 const struct lib_ring_buffer_config *config = &chan->backend.config;
541 int cpu;
542
543 channel_iterator_unregister_notifiers(chan);
544 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
545 #ifdef CONFIG_NO_HZ
546 /*
547 * Remove the nohz notifier first, so we are certain we stop
548 * the timers.
549 */
550 atomic_notifier_chain_unregister(&tick_nohz_notifier,
551 &chan->tick_nohz_notifier);
552 /*
553 * ring_buffer_nohz_lock will not be needed below, because
554 * we just removed the notifiers, which were the only source of
555 * concurrency.
556 */
557 #endif /* CONFIG_NO_HZ */
558 #ifdef CONFIG_HOTPLUG_CPU
559 get_online_cpus();
560 chan->cpu_hp_enable = 0;
561 for_each_online_cpu(cpu) {
562 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
563 cpu);
564 lib_ring_buffer_stop_switch_timer(buf);
565 lib_ring_buffer_stop_read_timer(buf);
566 }
567 put_online_cpus();
568 unregister_cpu_notifier(&chan->cpu_hp_notifier);
569 #else
570 for_each_possible_cpu(cpu) {
571 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
572 cpu);
573 lib_ring_buffer_stop_switch_timer(buf);
574 lib_ring_buffer_stop_read_timer(buf);
575 }
576 #endif
577 } else {
578 struct lib_ring_buffer *buf = chan->backend.buf;
579
580 lib_ring_buffer_stop_switch_timer(buf);
581 lib_ring_buffer_stop_read_timer(buf);
582 }
583 channel_backend_unregister_notifiers(&chan->backend);
584 }
585
586 static void channel_free(struct channel *chan)
587 {
588 if (chan->backend.release_priv_ops) {
589 chan->backend.release_priv_ops(chan->backend.priv_ops);
590 }
591 channel_iterator_free(chan);
592 channel_backend_free(&chan->backend);
593 kfree(chan);
594 }
595
596 /**
597 * channel_create - Create channel.
598 * @config: ring buffer instance configuration
599 * @name: name of the channel
600 * @priv: ring buffer client private data
601 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
602 * address mapping. It is used only by RING_BUFFER_STATIC
603 * configuration. It can be set to NULL for other backends.
604 * @subbuf_size: subbuffer size
605 * @num_subbuf: number of subbuffers
606 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
607 * padding to let readers get those sub-buffers.
608 * Used for live streaming.
609 * @read_timer_interval: Time interval (in us) to wake up pending readers.
610 *
611 * Holds cpu hotplug.
612 * Returns NULL on failure.
613 */
614 struct channel *channel_create(const struct lib_ring_buffer_config *config,
615 const char *name, void *priv, void *buf_addr,
616 size_t subbuf_size,
617 size_t num_subbuf, unsigned int switch_timer_interval,
618 unsigned int read_timer_interval)
619 {
620 int ret, cpu;
621 struct channel *chan;
622
623 if (lib_ring_buffer_check_config(config, switch_timer_interval,
624 read_timer_interval))
625 return NULL;
626
627 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
628 if (!chan)
629 return NULL;
630
631 ret = channel_backend_init(&chan->backend, name, config, priv,
632 subbuf_size, num_subbuf);
633 if (ret)
634 goto error;
635
636 ret = channel_iterator_init(chan);
637 if (ret)
638 goto error_free_backend;
639
640 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
641 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
642 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
643 kref_init(&chan->ref);
644 init_waitqueue_head(&chan->read_wait);
645 init_waitqueue_head(&chan->hp_wait);
646
647 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
648 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
649 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
650 chan->tick_nohz_notifier.notifier_call =
651 ring_buffer_tick_nohz_callback;
652 chan->tick_nohz_notifier.priority = ~0U;
653 atomic_notifier_chain_register(&tick_nohz_notifier,
654 &chan->tick_nohz_notifier);
655 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
656
657 /*
658 * In case of non-hotplug cpu, if the ring-buffer is allocated
659 * in early initcall, it will not be notified of secondary cpus.
660 * In that off case, we need to allocate for all possible cpus.
661 */
662 #ifdef CONFIG_HOTPLUG_CPU
663 chan->cpu_hp_notifier.notifier_call =
664 lib_ring_buffer_cpu_hp_callback;
665 chan->cpu_hp_notifier.priority = 6;
666 register_cpu_notifier(&chan->cpu_hp_notifier);
667
668 get_online_cpus();
669 for_each_online_cpu(cpu) {
670 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
671 cpu);
672 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
673 lib_ring_buffer_start_switch_timer(buf);
674 lib_ring_buffer_start_read_timer(buf);
675 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
676 }
677 chan->cpu_hp_enable = 1;
678 put_online_cpus();
679 #else
680 for_each_possible_cpu(cpu) {
681 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
682 cpu);
683 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
684 lib_ring_buffer_start_switch_timer(buf);
685 lib_ring_buffer_start_read_timer(buf);
686 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
687 }
688 #endif
689 } else {
690 struct lib_ring_buffer *buf = chan->backend.buf;
691
692 lib_ring_buffer_start_switch_timer(buf);
693 lib_ring_buffer_start_read_timer(buf);
694 }
695
696 return chan;
697
698 error_free_backend:
699 channel_backend_free(&chan->backend);
700 error:
701 kfree(chan);
702 return NULL;
703 }
704 EXPORT_SYMBOL_GPL(channel_create);
705
706 static
707 void channel_release(struct kref *kref)
708 {
709 struct channel *chan = container_of(kref, struct channel, ref);
710 channel_free(chan);
711 }
712
713 /**
714 * channel_destroy - Finalize, wait for q.s. and destroy channel.
715 * @chan: channel to destroy
716 *
717 * Holds cpu hotplug.
718 * Call "destroy" callback, finalize channels, and then decrement the
719 * channel reference count. Note that when readers have completed data
720 * consumption of finalized channels, get_subbuf() will return -ENODATA.
721 * They should release their handle at that point. Returns the private
722 * data pointer.
723 */
724 void *channel_destroy(struct channel *chan)
725 {
726 int cpu;
727 const struct lib_ring_buffer_config *config = &chan->backend.config;
728 void *priv;
729
730 channel_unregister_notifiers(chan);
731
732 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
733 /*
734 * No need to hold cpu hotplug, because all notifiers have been
735 * unregistered.
736 */
737 for_each_channel_cpu(cpu, chan) {
738 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
739 cpu);
740
741 if (config->cb.buffer_finalize)
742 config->cb.buffer_finalize(buf,
743 chan->backend.priv,
744 cpu);
745 if (buf->backend.allocated)
746 lib_ring_buffer_switch_slow(buf, SWITCH_FLUSH);
747 /*
748 * Perform flush before writing to finalized.
749 */
750 smp_wmb();
751 ACCESS_ONCE(buf->finalized) = 1;
752 wake_up_interruptible(&buf->read_wait);
753 }
754 } else {
755 struct lib_ring_buffer *buf = chan->backend.buf;
756
757 if (config->cb.buffer_finalize)
758 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
759 if (buf->backend.allocated)
760 lib_ring_buffer_switch_slow(buf, SWITCH_FLUSH);
761 /*
762 * Perform flush before writing to finalized.
763 */
764 smp_wmb();
765 ACCESS_ONCE(buf->finalized) = 1;
766 wake_up_interruptible(&buf->read_wait);
767 }
768 ACCESS_ONCE(chan->finalized) = 1;
769 wake_up_interruptible(&chan->hp_wait);
770 wake_up_interruptible(&chan->read_wait);
771 priv = chan->backend.priv;
772 kref_put(&chan->ref, channel_release);
773 return priv;
774 }
775 EXPORT_SYMBOL_GPL(channel_destroy);
776
777 struct lib_ring_buffer *channel_get_ring_buffer(
778 const struct lib_ring_buffer_config *config,
779 struct channel *chan, int cpu)
780 {
781 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
782 return chan->backend.buf;
783 else
784 return per_cpu_ptr(chan->backend.buf, cpu);
785 }
786 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
787
788 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
789 {
790 struct channel *chan = buf->backend.chan;
791
792 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
793 return -EBUSY;
794 kref_get(&chan->ref);
795 smp_mb__after_atomic_inc();
796 return 0;
797 }
798 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
799
800 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
801 {
802 struct channel *chan = buf->backend.chan;
803
804 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
805 smp_mb__before_atomic_dec();
806 atomic_long_dec(&buf->active_readers);
807 kref_put(&chan->ref, channel_release);
808 }
809 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
810
811 /*
812 * Promote compiler barrier to a smp_mb().
813 * For the specific ring buffer case, this IPI call should be removed if the
814 * architecture does not reorder writes. This should eventually be provided by
815 * a separate architecture-specific infrastructure.
816 */
817 static void remote_mb(void *info)
818 {
819 smp_mb();
820 }
821
822 /**
823 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
824 * @buf: ring buffer
825 * @consumed: consumed count indicating the position where to read
826 * @produced: produced count, indicates position when to stop reading
827 *
828 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
829 * data to read at consumed position, or 0 if the get operation succeeds.
830 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
831 */
832
833 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
834 unsigned long *consumed, unsigned long *produced)
835 {
836 struct channel *chan = buf->backend.chan;
837 const struct lib_ring_buffer_config *config = &chan->backend.config;
838 unsigned long consumed_cur, write_offset;
839 int finalized;
840
841 retry:
842 finalized = ACCESS_ONCE(buf->finalized);
843 /*
844 * Read finalized before counters.
845 */
846 smp_rmb();
847 consumed_cur = atomic_long_read(&buf->consumed);
848 /*
849 * No need to issue a memory barrier between consumed count read and
850 * write offset read, because consumed count can only change
851 * concurrently in overwrite mode, and we keep a sequence counter
852 * identifier derived from the write offset to check we are getting
853 * the same sub-buffer we are expecting (the sub-buffers are atomically
854 * "tagged" upon writes, tags are checked upon read).
855 */
856 write_offset = v_read(config, &buf->offset);
857
858 /*
859 * Check that we are not about to read the same subbuffer in
860 * which the writer head is.
861 */
862 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
863 == 0)
864 goto nodata;
865
866 *consumed = consumed_cur;
867 *produced = subbuf_trunc(write_offset, chan);
868
869 return 0;
870
871 nodata:
872 /*
873 * The memory barriers __wait_event()/wake_up_interruptible() take care
874 * of "raw_spin_is_locked" memory ordering.
875 */
876 if (finalized)
877 return -ENODATA;
878 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
879 goto retry;
880 else
881 return -EAGAIN;
882 }
883 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
884
885 /**
886 * lib_ring_buffer_put_snapshot - move consumed counter forward
887 *
888 * Should only be called from consumer context.
889 * @buf: ring buffer
890 * @consumed_new: new consumed count value
891 */
892 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
893 unsigned long consumed_new)
894 {
895 struct lib_ring_buffer_backend *bufb = &buf->backend;
896 struct channel *chan = bufb->chan;
897 unsigned long consumed;
898
899 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
900
901 /*
902 * Only push the consumed value forward.
903 * If the consumed cmpxchg fails, this is because we have been pushed by
904 * the writer in flight recorder mode.
905 */
906 consumed = atomic_long_read(&buf->consumed);
907 while ((long) consumed - (long) consumed_new < 0)
908 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
909 consumed_new);
910 /* Wake-up the metadata producer */
911 wake_up_interruptible(&buf->write_wait);
912 }
913 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
914
915 /**
916 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
917 * @buf: ring buffer
918 * @consumed: consumed count indicating the position where to read
919 *
920 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
921 * data to read at consumed position, or 0 if the get operation succeeds.
922 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
923 */
924 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
925 unsigned long consumed)
926 {
927 struct channel *chan = buf->backend.chan;
928 const struct lib_ring_buffer_config *config = &chan->backend.config;
929 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
930 int ret;
931 int finalized;
932
933 if (buf->get_subbuf) {
934 /*
935 * Reader is trying to get a subbuffer twice.
936 */
937 CHAN_WARN_ON(chan, 1);
938 return -EBUSY;
939 }
940 retry:
941 finalized = ACCESS_ONCE(buf->finalized);
942 /*
943 * Read finalized before counters.
944 */
945 smp_rmb();
946 consumed_cur = atomic_long_read(&buf->consumed);
947 consumed_idx = subbuf_index(consumed, chan);
948 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
949 /*
950 * Make sure we read the commit count before reading the buffer
951 * data and the write offset. Correct consumed offset ordering
952 * wrt commit count is insured by the use of cmpxchg to update
953 * the consumed offset.
954 * smp_call_function_single can fail if the remote CPU is offline,
955 * this is OK because then there is no wmb to execute there.
956 * If our thread is executing on the same CPU as the on the buffers
957 * belongs to, we don't have to synchronize it at all. If we are
958 * migrated, the scheduler will take care of the memory barriers.
959 * Normally, smp_call_function_single() should ensure program order when
960 * executing the remote function, which implies that it surrounds the
961 * function execution with :
962 * smp_mb()
963 * send IPI
964 * csd_lock_wait
965 * recv IPI
966 * smp_mb()
967 * exec. function
968 * smp_mb()
969 * csd unlock
970 * smp_mb()
971 *
972 * However, smp_call_function_single() does not seem to clearly execute
973 * such barriers. It depends on spinlock semantic to provide the barrier
974 * before executing the IPI and, when busy-looping, csd_lock_wait only
975 * executes smp_mb() when it has to wait for the other CPU.
976 *
977 * I don't trust this code. Therefore, let's add the smp_mb() sequence
978 * required ourself, even if duplicated. It has no performance impact
979 * anyway.
980 *
981 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
982 * read and write vs write. They do not ensure core synchronization. We
983 * really have to ensure total order between the 3 barriers running on
984 * the 2 CPUs.
985 */
986 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
987 if (config->sync == RING_BUFFER_SYNC_PER_CPU
988 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
989 if (raw_smp_processor_id() != buf->backend.cpu) {
990 /* Total order with IPI handler smp_mb() */
991 smp_mb();
992 smp_call_function_single(buf->backend.cpu,
993 remote_mb, NULL, 1);
994 /* Total order with IPI handler smp_mb() */
995 smp_mb();
996 }
997 } else {
998 /* Total order with IPI handler smp_mb() */
999 smp_mb();
1000 smp_call_function(remote_mb, NULL, 1);
1001 /* Total order with IPI handler smp_mb() */
1002 smp_mb();
1003 }
1004 } else {
1005 /*
1006 * Local rmb to match the remote wmb to read the commit count
1007 * before the buffer data and the write offset.
1008 */
1009 smp_rmb();
1010 }
1011
1012 write_offset = v_read(config, &buf->offset);
1013
1014 /*
1015 * Check that the buffer we are getting is after or at consumed_cur
1016 * position.
1017 */
1018 if ((long) subbuf_trunc(consumed, chan)
1019 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1020 goto nodata;
1021
1022 /*
1023 * Check that the subbuffer we are trying to consume has been
1024 * already fully committed.
1025 */
1026 if (((commit_count - chan->backend.subbuf_size)
1027 & chan->commit_count_mask)
1028 - (buf_trunc(consumed, chan)
1029 >> chan->backend.num_subbuf_order)
1030 != 0)
1031 goto nodata;
1032
1033 /*
1034 * Check that we are not about to read the same subbuffer in
1035 * which the writer head is.
1036 */
1037 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1038 == 0)
1039 goto nodata;
1040
1041 /*
1042 * Failure to get the subbuffer causes a busy-loop retry without going
1043 * to a wait queue. These are caused by short-lived race windows where
1044 * the writer is getting access to a subbuffer we were trying to get
1045 * access to. Also checks that the "consumed" buffer count we are
1046 * looking for matches the one contained in the subbuffer id.
1047 */
1048 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1049 consumed_idx, buf_trunc_val(consumed, chan));
1050 if (ret)
1051 goto retry;
1052 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1053
1054 buf->get_subbuf_consumed = consumed;
1055 buf->get_subbuf = 1;
1056
1057 return 0;
1058
1059 nodata:
1060 /*
1061 * The memory barriers __wait_event()/wake_up_interruptible() take care
1062 * of "raw_spin_is_locked" memory ordering.
1063 */
1064 if (finalized)
1065 return -ENODATA;
1066 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1067 goto retry;
1068 else
1069 return -EAGAIN;
1070 }
1071 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1072
1073 /**
1074 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1075 * @buf: ring buffer
1076 */
1077 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1078 {
1079 struct lib_ring_buffer_backend *bufb = &buf->backend;
1080 struct channel *chan = bufb->chan;
1081 const struct lib_ring_buffer_config *config = &chan->backend.config;
1082 unsigned long read_sb_bindex, consumed_idx, consumed;
1083
1084 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1085
1086 if (!buf->get_subbuf) {
1087 /*
1088 * Reader puts a subbuffer it did not get.
1089 */
1090 CHAN_WARN_ON(chan, 1);
1091 return;
1092 }
1093 consumed = buf->get_subbuf_consumed;
1094 buf->get_subbuf = 0;
1095
1096 /*
1097 * Clear the records_unread counter. (overruns counter)
1098 * Can still be non-zero if a file reader simply grabbed the data
1099 * without using iterators.
1100 * Can be below zero if an iterator is used on a snapshot more than
1101 * once.
1102 */
1103 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1104 v_add(config, v_read(config,
1105 &bufb->array[read_sb_bindex]->records_unread),
1106 &bufb->records_read);
1107 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1108 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1109 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1110 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1111
1112 /*
1113 * Exchange the reader subbuffer with the one we put in its place in the
1114 * writer subbuffer table. Expect the original consumed count. If
1115 * update_read_sb_index fails, this is because the writer updated the
1116 * subbuffer concurrently. We should therefore keep the subbuffer we
1117 * currently have: it has become invalid to try reading this sub-buffer
1118 * consumed count value anyway.
1119 */
1120 consumed_idx = subbuf_index(consumed, chan);
1121 update_read_sb_index(config, &buf->backend, &chan->backend,
1122 consumed_idx, buf_trunc_val(consumed, chan));
1123 /*
1124 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1125 * if the writer concurrently updated it.
1126 */
1127 }
1128 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1129
1130 /*
1131 * cons_offset is an iterator on all subbuffer offsets between the reader
1132 * position and the writer position. (inclusive)
1133 */
1134 static
1135 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1136 struct channel *chan,
1137 unsigned long cons_offset,
1138 int cpu)
1139 {
1140 const struct lib_ring_buffer_config *config = &chan->backend.config;
1141 unsigned long cons_idx, commit_count, commit_count_sb;
1142
1143 cons_idx = subbuf_index(cons_offset, chan);
1144 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1145 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1146
1147 if (subbuf_offset(commit_count, chan) != 0)
1148 printk(KERN_WARNING
1149 "ring buffer %s, cpu %d: "
1150 "commit count in subbuffer %lu,\n"
1151 "expecting multiples of %lu bytes\n"
1152 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1153 chan->backend.name, cpu, cons_idx,
1154 chan->backend.subbuf_size,
1155 commit_count, commit_count_sb);
1156
1157 printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1158 chan->backend.name, cpu, commit_count);
1159 }
1160
1161 static
1162 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1163 struct channel *chan,
1164 void *priv, int cpu)
1165 {
1166 const struct lib_ring_buffer_config *config = &chan->backend.config;
1167 unsigned long write_offset, cons_offset;
1168
1169 /*
1170 * No need to order commit_count, write_offset and cons_offset reads
1171 * because we execute at teardown when no more writer nor reader
1172 * references are left.
1173 */
1174 write_offset = v_read(config, &buf->offset);
1175 cons_offset = atomic_long_read(&buf->consumed);
1176 if (write_offset != cons_offset)
1177 printk(KERN_DEBUG
1178 "ring buffer %s, cpu %d: "
1179 "non-consumed data\n"
1180 " [ %lu bytes written, %lu bytes read ]\n",
1181 chan->backend.name, cpu, write_offset, cons_offset);
1182
1183 for (cons_offset = atomic_long_read(&buf->consumed);
1184 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1185 chan)
1186 - cons_offset) > 0;
1187 cons_offset = subbuf_align(cons_offset, chan))
1188 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1189 cpu);
1190 }
1191
1192 static
1193 void lib_ring_buffer_print_errors(struct channel *chan,
1194 struct lib_ring_buffer *buf, int cpu)
1195 {
1196 const struct lib_ring_buffer_config *config = &chan->backend.config;
1197 void *priv = chan->backend.priv;
1198
1199 if (!strcmp(chan->backend.name, "relay-metadata")) {
1200 printk(KERN_DEBUG "ring buffer %s: %lu records written, "
1201 "%lu records overrun\n",
1202 chan->backend.name,
1203 v_read(config, &buf->records_count),
1204 v_read(config, &buf->records_overrun));
1205 } else {
1206 printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1207 "%lu records overrun\n",
1208 chan->backend.name, cpu,
1209 v_read(config, &buf->records_count),
1210 v_read(config, &buf->records_overrun));
1211
1212 if (v_read(config, &buf->records_lost_full)
1213 || v_read(config, &buf->records_lost_wrap)
1214 || v_read(config, &buf->records_lost_big))
1215 printk(KERN_WARNING
1216 "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1217 " [ %lu buffer full, %lu nest buffer wrap-around, "
1218 "%lu event too big ]\n",
1219 chan->backend.name, cpu,
1220 v_read(config, &buf->records_lost_full),
1221 v_read(config, &buf->records_lost_wrap),
1222 v_read(config, &buf->records_lost_big));
1223 }
1224 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1225 }
1226
1227 /*
1228 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1229 *
1230 * Only executed when the buffer is finalized, in SWITCH_FLUSH.
1231 */
1232 static
1233 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1234 struct channel *chan,
1235 struct switch_offsets *offsets,
1236 u64 tsc)
1237 {
1238 const struct lib_ring_buffer_config *config = &chan->backend.config;
1239 unsigned long oldidx = subbuf_index(offsets->old, chan);
1240 unsigned long commit_count;
1241
1242 config->cb.buffer_begin(buf, tsc, oldidx);
1243
1244 /*
1245 * Order all writes to buffer before the commit count update that will
1246 * determine that the subbuffer is full.
1247 */
1248 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1249 /*
1250 * Must write slot data before incrementing commit count. This
1251 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1252 * by get_subbuf().
1253 */
1254 barrier();
1255 } else
1256 smp_wmb();
1257 v_add(config, config->cb.subbuffer_header_size(),
1258 &buf->commit_hot[oldidx].cc);
1259 commit_count = v_read(config, &buf->commit_hot[oldidx].cc);
1260 /* Check if the written buffer has to be delivered */
1261 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1262 commit_count, oldidx, tsc);
1263 lib_ring_buffer_write_commit_counter(config, buf, chan, oldidx,
1264 offsets->old, commit_count,
1265 config->cb.subbuffer_header_size());
1266 }
1267
1268 /*
1269 * lib_ring_buffer_switch_old_end: switch old subbuffer
1270 *
1271 * Note : offset_old should never be 0 here. It is ok, because we never perform
1272 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1273 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1274 * subbuffer.
1275 */
1276 static
1277 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1278 struct channel *chan,
1279 struct switch_offsets *offsets,
1280 u64 tsc)
1281 {
1282 const struct lib_ring_buffer_config *config = &chan->backend.config;
1283 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1284 unsigned long commit_count, padding_size, data_size;
1285
1286 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1287 padding_size = chan->backend.subbuf_size - data_size;
1288 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1289
1290 /*
1291 * Order all writes to buffer before the commit count update that will
1292 * determine that the subbuffer is full.
1293 */
1294 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1295 /*
1296 * Must write slot data before incrementing commit count. This
1297 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1298 * by get_subbuf().
1299 */
1300 barrier();
1301 } else
1302 smp_wmb();
1303 v_add(config, padding_size, &buf->commit_hot[oldidx].cc);
1304 commit_count = v_read(config, &buf->commit_hot[oldidx].cc);
1305 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1306 commit_count, oldidx, tsc);
1307 lib_ring_buffer_write_commit_counter(config, buf, chan, oldidx,
1308 offsets->old, commit_count,
1309 padding_size);
1310 }
1311
1312 /*
1313 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1314 *
1315 * This code can be executed unordered : writers may already have written to the
1316 * sub-buffer before this code gets executed, caution. The commit makes sure
1317 * that this code is executed before the deliver of this sub-buffer.
1318 */
1319 static
1320 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1321 struct channel *chan,
1322 struct switch_offsets *offsets,
1323 u64 tsc)
1324 {
1325 const struct lib_ring_buffer_config *config = &chan->backend.config;
1326 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1327 unsigned long commit_count;
1328
1329 config->cb.buffer_begin(buf, tsc, beginidx);
1330
1331 /*
1332 * Order all writes to buffer before the commit count update that will
1333 * determine that the subbuffer is full.
1334 */
1335 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1336 /*
1337 * Must write slot data before incrementing commit count. This
1338 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1339 * by get_subbuf().
1340 */
1341 barrier();
1342 } else
1343 smp_wmb();
1344 v_add(config, config->cb.subbuffer_header_size(),
1345 &buf->commit_hot[beginidx].cc);
1346 commit_count = v_read(config, &buf->commit_hot[beginidx].cc);
1347 /* Check if the written buffer has to be delivered */
1348 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1349 commit_count, beginidx, tsc);
1350 lib_ring_buffer_write_commit_counter(config, buf, chan, beginidx,
1351 offsets->begin, commit_count,
1352 config->cb.subbuffer_header_size());
1353 }
1354
1355 /*
1356 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1357 *
1358 * Calls subbuffer_set_data_size() to set the data size of the current
1359 * sub-buffer. We do not need to perform check_deliver nor commit here,
1360 * since this task will be done by the "commit" of the event for which
1361 * we are currently doing the space reservation.
1362 */
1363 static
1364 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1365 struct channel *chan,
1366 struct switch_offsets *offsets,
1367 u64 tsc)
1368 {
1369 const struct lib_ring_buffer_config *config = &chan->backend.config;
1370 unsigned long endidx, data_size;
1371
1372 endidx = subbuf_index(offsets->end - 1, chan);
1373 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1374 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1375 }
1376
1377 /*
1378 * Returns :
1379 * 0 if ok
1380 * !0 if execution must be aborted.
1381 */
1382 static
1383 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1384 struct lib_ring_buffer *buf,
1385 struct channel *chan,
1386 struct switch_offsets *offsets,
1387 u64 *tsc)
1388 {
1389 const struct lib_ring_buffer_config *config = &chan->backend.config;
1390 unsigned long off, reserve_commit_diff;
1391
1392 offsets->begin = v_read(config, &buf->offset);
1393 offsets->old = offsets->begin;
1394 offsets->switch_old_start = 0;
1395 off = subbuf_offset(offsets->begin, chan);
1396
1397 *tsc = config->cb.ring_buffer_clock_read(chan);
1398
1399 /*
1400 * Ensure we flush the header of an empty subbuffer when doing the
1401 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1402 * total data gathering duration even if there were no records saved
1403 * after the last buffer switch.
1404 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1405 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1406 * subbuffer header as appropriate.
1407 * The next record that reserves space will be responsible for
1408 * populating the following subbuffer header. We choose not to populate
1409 * the next subbuffer header here because we want to be able to use
1410 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1411 * buffer flush, which must guarantee that all the buffer content
1412 * (records and header timestamps) are visible to the reader. This is
1413 * required for quiescence guarantees for the fusion merge.
1414 */
1415 if (mode != SWITCH_FLUSH && !off)
1416 return -1; /* we do not have to switch : buffer is empty */
1417
1418 if (unlikely(off == 0)) {
1419 unsigned long sb_index, commit_count;
1420
1421 /*
1422 * We are performing a SWITCH_FLUSH. At this stage, there are no
1423 * concurrent writes into the buffer.
1424 *
1425 * The client does not save any header information. Don't
1426 * switch empty subbuffer on finalize, because it is invalid to
1427 * deliver a completely empty subbuffer.
1428 */
1429 if (!config->cb.subbuffer_header_size())
1430 return -1;
1431
1432 /* Test new buffer integrity */
1433 sb_index = subbuf_index(offsets->begin, chan);
1434 commit_count = v_read(config,
1435 &buf->commit_cold[sb_index].cc_sb);
1436 reserve_commit_diff =
1437 (buf_trunc(offsets->begin, chan)
1438 >> chan->backend.num_subbuf_order)
1439 - (commit_count & chan->commit_count_mask);
1440 if (likely(reserve_commit_diff == 0)) {
1441 /* Next subbuffer not being written to. */
1442 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1443 subbuf_trunc(offsets->begin, chan)
1444 - subbuf_trunc((unsigned long)
1445 atomic_long_read(&buf->consumed), chan)
1446 >= chan->backend.buf_size)) {
1447 /*
1448 * We do not overwrite non consumed buffers
1449 * and we are full : don't switch.
1450 */
1451 return -1;
1452 } else {
1453 /*
1454 * Next subbuffer not being written to, and we
1455 * are either in overwrite mode or the buffer is
1456 * not full. It's safe to write in this new
1457 * subbuffer.
1458 */
1459 }
1460 } else {
1461 /*
1462 * Next subbuffer reserve offset does not match the
1463 * commit offset. Don't perform switch in
1464 * producer-consumer and overwrite mode. Caused by
1465 * either a writer OOPS or too many nested writes over a
1466 * reserve/commit pair.
1467 */
1468 return -1;
1469 }
1470
1471 /*
1472 * Need to write the subbuffer start header on finalize.
1473 */
1474 offsets->switch_old_start = 1;
1475 }
1476 offsets->begin = subbuf_align(offsets->begin, chan);
1477 /* Note: old points to the next subbuf at offset 0 */
1478 offsets->end = offsets->begin;
1479 return 0;
1480 }
1481
1482 /*
1483 * Force a sub-buffer switch. This operation is completely reentrant : can be
1484 * called while tracing is active with absolutely no lock held.
1485 *
1486 * Note, however, that as a v_cmpxchg is used for some atomic
1487 * operations, this function must be called from the CPU which owns the buffer
1488 * for a ACTIVE flush.
1489 */
1490 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1491 {
1492 struct channel *chan = buf->backend.chan;
1493 const struct lib_ring_buffer_config *config = &chan->backend.config;
1494 struct switch_offsets offsets;
1495 unsigned long oldidx;
1496 u64 tsc;
1497
1498 offsets.size = 0;
1499
1500 /*
1501 * Perform retryable operations.
1502 */
1503 do {
1504 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1505 &tsc))
1506 return; /* Switch not needed */
1507 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1508 != offsets.old);
1509
1510 /*
1511 * Atomically update last_tsc. This update races against concurrent
1512 * atomic updates, but the race will always cause supplementary full TSC
1513 * records, never the opposite (missing a full TSC record when it would
1514 * be needed).
1515 */
1516 save_last_tsc(config, buf, tsc);
1517
1518 /*
1519 * Push the reader if necessary
1520 */
1521 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1522
1523 oldidx = subbuf_index(offsets.old, chan);
1524 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1525
1526 /*
1527 * May need to populate header start on SWITCH_FLUSH.
1528 */
1529 if (offsets.switch_old_start) {
1530 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1531 offsets.old += config->cb.subbuffer_header_size();
1532 }
1533
1534 /*
1535 * Switch old subbuffer.
1536 */
1537 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1538 }
1539 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1540
1541 static void remote_switch(void *info)
1542 {
1543 struct lib_ring_buffer *buf = info;
1544
1545 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
1546 }
1547
1548 void lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf)
1549 {
1550 struct channel *chan = buf->backend.chan;
1551 const struct lib_ring_buffer_config *config = &chan->backend.config;
1552 int ret;
1553
1554 /*
1555 * With global synchronization we don't need to use the IPI scheme.
1556 */
1557 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1558 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
1559 return;
1560 }
1561
1562 /*
1563 * Taking lock on CPU hotplug to ensure two things: first, that the
1564 * target cpu is not taken concurrently offline while we are within
1565 * smp_call_function_single() (I don't trust that get_cpu() on the
1566 * _local_ CPU actually inhibit CPU hotplug for the _remote_ CPU (to be
1567 * confirmed)). Secondly, if it happens that the CPU is not online, our
1568 * own call to lib_ring_buffer_switch_slow() needs to be protected from
1569 * CPU hotplug handlers, which can also perform a remote subbuffer
1570 * switch.
1571 */
1572 get_online_cpus();
1573 ret = smp_call_function_single(buf->backend.cpu,
1574 remote_switch, buf, 1);
1575 if (ret) {
1576 /* Remote CPU is offline, do it ourself. */
1577 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
1578 }
1579 put_online_cpus();
1580 }
1581 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1582
1583 /*
1584 * Returns :
1585 * 0 if ok
1586 * -ENOSPC if event size is too large for packet.
1587 * -ENOBUFS if there is currently not enough space in buffer for the event.
1588 * -EIO if data cannot be written into the buffer for any other reason.
1589 */
1590 static
1591 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1592 struct channel *chan,
1593 struct switch_offsets *offsets,
1594 struct lib_ring_buffer_ctx *ctx)
1595 {
1596 const struct lib_ring_buffer_config *config = &chan->backend.config;
1597 unsigned long reserve_commit_diff, offset_cmp;
1598
1599 retry:
1600 offsets->begin = offset_cmp = v_read(config, &buf->offset);
1601 offsets->old = offsets->begin;
1602 offsets->switch_new_start = 0;
1603 offsets->switch_new_end = 0;
1604 offsets->switch_old_end = 0;
1605 offsets->pre_header_padding = 0;
1606
1607 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1608 if ((int64_t) ctx->tsc == -EIO)
1609 return -EIO;
1610
1611 if (last_tsc_overflow(config, buf, ctx->tsc))
1612 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
1613
1614 if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
1615 offsets->switch_new_start = 1; /* For offsets->begin */
1616 } else {
1617 offsets->size = config->cb.record_header_size(config, chan,
1618 offsets->begin,
1619 &offsets->pre_header_padding,
1620 ctx);
1621 offsets->size +=
1622 lib_ring_buffer_align(offsets->begin + offsets->size,
1623 ctx->largest_align)
1624 + ctx->data_size;
1625 if (unlikely(subbuf_offset(offsets->begin, chan) +
1626 offsets->size > chan->backend.subbuf_size)) {
1627 offsets->switch_old_end = 1; /* For offsets->old */
1628 offsets->switch_new_start = 1; /* For offsets->begin */
1629 }
1630 }
1631 if (unlikely(offsets->switch_new_start)) {
1632 unsigned long sb_index, commit_count;
1633
1634 /*
1635 * We are typically not filling the previous buffer completely.
1636 */
1637 if (likely(offsets->switch_old_end))
1638 offsets->begin = subbuf_align(offsets->begin, chan);
1639 offsets->begin = offsets->begin
1640 + config->cb.subbuffer_header_size();
1641 /* Test new buffer integrity */
1642 sb_index = subbuf_index(offsets->begin, chan);
1643 /*
1644 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
1645 * lib_ring_buffer_check_deliver() has the matching
1646 * memory barriers required around commit_cold cc_sb
1647 * updates to ensure reserve and commit counter updates
1648 * are not seen reordered when updated by another CPU.
1649 */
1650 smp_rmb();
1651 commit_count = v_read(config,
1652 &buf->commit_cold[sb_index].cc_sb);
1653 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
1654 smp_rmb();
1655 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
1656 /*
1657 * The reserve counter have been concurrently updated
1658 * while we read the commit counter. This means the
1659 * commit counter we read might not match buf->offset
1660 * due to concurrent update. We therefore need to retry.
1661 */
1662 goto retry;
1663 }
1664 reserve_commit_diff =
1665 (buf_trunc(offsets->begin, chan)
1666 >> chan->backend.num_subbuf_order)
1667 - (commit_count & chan->commit_count_mask);
1668 if (likely(reserve_commit_diff == 0)) {
1669 /* Next subbuffer not being written to. */
1670 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1671 subbuf_trunc(offsets->begin, chan)
1672 - subbuf_trunc((unsigned long)
1673 atomic_long_read(&buf->consumed), chan)
1674 >= chan->backend.buf_size)) {
1675 /*
1676 * We do not overwrite non consumed buffers
1677 * and we are full : record is lost.
1678 */
1679 v_inc(config, &buf->records_lost_full);
1680 return -ENOBUFS;
1681 } else {
1682 /*
1683 * Next subbuffer not being written to, and we
1684 * are either in overwrite mode or the buffer is
1685 * not full. It's safe to write in this new
1686 * subbuffer.
1687 */
1688 }
1689 } else {
1690 /*
1691 * Next subbuffer reserve offset does not match the
1692 * commit offset, and this did not involve update to the
1693 * reserve counter. Drop record in producer-consumer and
1694 * overwrite mode. Caused by either a writer OOPS or
1695 * too many nested writes over a reserve/commit pair.
1696 */
1697 v_inc(config, &buf->records_lost_wrap);
1698 return -EIO;
1699 }
1700 offsets->size =
1701 config->cb.record_header_size(config, chan,
1702 offsets->begin,
1703 &offsets->pre_header_padding,
1704 ctx);
1705 offsets->size +=
1706 lib_ring_buffer_align(offsets->begin + offsets->size,
1707 ctx->largest_align)
1708 + ctx->data_size;
1709 if (unlikely(subbuf_offset(offsets->begin, chan)
1710 + offsets->size > chan->backend.subbuf_size)) {
1711 /*
1712 * Record too big for subbuffers, report error, don't
1713 * complete the sub-buffer switch.
1714 */
1715 v_inc(config, &buf->records_lost_big);
1716 return -ENOSPC;
1717 } else {
1718 /*
1719 * We just made a successful buffer switch and the
1720 * record fits in the new subbuffer. Let's write.
1721 */
1722 }
1723 } else {
1724 /*
1725 * Record fits in the current buffer and we are not on a switch
1726 * boundary. It's safe to write.
1727 */
1728 }
1729 offsets->end = offsets->begin + offsets->size;
1730
1731 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
1732 /*
1733 * The offset_end will fall at the very beginning of the next
1734 * subbuffer.
1735 */
1736 offsets->switch_new_end = 1; /* For offsets->begin */
1737 }
1738 return 0;
1739 }
1740
1741 /**
1742 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
1743 * @ctx: ring buffer context.
1744 *
1745 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
1746 * -EIO for other errors, else returns 0.
1747 * It will take care of sub-buffer switching.
1748 */
1749 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx)
1750 {
1751 struct channel *chan = ctx->chan;
1752 const struct lib_ring_buffer_config *config = &chan->backend.config;
1753 struct lib_ring_buffer *buf;
1754 struct switch_offsets offsets;
1755 int ret;
1756
1757 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
1758 buf = per_cpu_ptr(chan->backend.buf, ctx->cpu);
1759 else
1760 buf = chan->backend.buf;
1761 ctx->buf = buf;
1762
1763 offsets.size = 0;
1764
1765 do {
1766 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
1767 ctx);
1768 if (unlikely(ret))
1769 return ret;
1770 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
1771 offsets.end)
1772 != offsets.old));
1773
1774 /*
1775 * Atomically update last_tsc. This update races against concurrent
1776 * atomic updates, but the race will always cause supplementary full TSC
1777 * records, never the opposite (missing a full TSC record when it would
1778 * be needed).
1779 */
1780 save_last_tsc(config, buf, ctx->tsc);
1781
1782 /*
1783 * Push the reader if necessary
1784 */
1785 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
1786
1787 /*
1788 * Clear noref flag for this subbuffer.
1789 */
1790 lib_ring_buffer_clear_noref(config, &buf->backend,
1791 subbuf_index(offsets.end - 1, chan));
1792
1793 /*
1794 * Switch old subbuffer if needed.
1795 */
1796 if (unlikely(offsets.switch_old_end)) {
1797 lib_ring_buffer_clear_noref(config, &buf->backend,
1798 subbuf_index(offsets.old - 1, chan));
1799 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
1800 }
1801
1802 /*
1803 * Populate new subbuffer.
1804 */
1805 if (unlikely(offsets.switch_new_start))
1806 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
1807
1808 if (unlikely(offsets.switch_new_end))
1809 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
1810
1811 ctx->slot_size = offsets.size;
1812 ctx->pre_offset = offsets.begin;
1813 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
1814 return 0;
1815 }
1816 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
1817
1818 int __init init_lib_ring_buffer_frontend(void)
1819 {
1820 int cpu;
1821
1822 for_each_possible_cpu(cpu)
1823 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
1824 return 0;
1825 }
1826
1827 module_init(init_lib_ring_buffer_frontend);
1828
1829 void __exit exit_lib_ring_buffer_frontend(void)
1830 {
1831 }
1832
1833 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.1086 seconds and 5 git commands to generate.