Performance: split check deliver fast/slow paths
[lttng-modules.git] / lib / ringbuffer / ring_buffer_frontend.c
1 /*
2 * ring_buffer_frontend.c
3 *
4 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; only
9 * version 2.1 of the License.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *
21 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
22 * recorder (overwrite) modes. See thesis:
23 *
24 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
25 * dissertation, Ecole Polytechnique de Montreal.
26 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
27 *
28 * - Algorithm presentation in Chapter 5:
29 * "Lockless Multi-Core High-Throughput Buffering".
30 * - Algorithm formal verification in Section 8.6:
31 * "Formal verification of LTTng"
32 *
33 * Author:
34 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
35 *
36 * Inspired from LTT and RelayFS:
37 * Karim Yaghmour <karim@opersys.com>
38 * Tom Zanussi <zanussi@us.ibm.com>
39 * Bob Wisniewski <bob@watson.ibm.com>
40 * And from K42 :
41 * Bob Wisniewski <bob@watson.ibm.com>
42 *
43 * Buffer reader semantic :
44 *
45 * - get_subbuf_size
46 * while buffer is not finalized and empty
47 * - get_subbuf
48 * - if return value != 0, continue
49 * - splice one subbuffer worth of data to a pipe
50 * - splice the data from pipe to disk/network
51 * - put_subbuf
52 */
53
54 #include <linux/delay.h>
55 #include <linux/module.h>
56 #include <linux/percpu.h>
57
58 #include <wrapper/ringbuffer/config.h>
59 #include <wrapper/ringbuffer/backend.h>
60 #include <wrapper/ringbuffer/frontend.h>
61 #include <wrapper/ringbuffer/iterator.h>
62 #include <wrapper/ringbuffer/nohz.h>
63 #include <wrapper/atomic.h>
64 #include <wrapper/kref.h>
65 #include <wrapper/percpu-defs.h>
66 #include <wrapper/timer.h>
67
68 /*
69 * Internal structure representing offsets to use at a sub-buffer switch.
70 */
71 struct switch_offsets {
72 unsigned long begin, end, old;
73 size_t pre_header_padding, size;
74 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
75 switch_old_end:1;
76 };
77
78 #ifdef CONFIG_NO_HZ
79 enum tick_nohz_val {
80 TICK_NOHZ_STOP,
81 TICK_NOHZ_FLUSH,
82 TICK_NOHZ_RESTART,
83 };
84
85 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
86 #endif /* CONFIG_NO_HZ */
87
88 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
89
90 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
91 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
92
93 static
94 void lib_ring_buffer_print_errors(struct channel *chan,
95 struct lib_ring_buffer *buf, int cpu);
96 static
97 void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
98 enum switch_mode mode);
99
100 static
101 int lib_ring_buffer_poll_deliver(const struct lib_ring_buffer_config *config,
102 struct lib_ring_buffer *buf,
103 struct channel *chan)
104 {
105 unsigned long consumed_old, consumed_idx, commit_count, write_offset;
106
107 consumed_old = atomic_long_read(&buf->consumed);
108 consumed_idx = subbuf_index(consumed_old, chan);
109 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
110 /*
111 * No memory barrier here, since we are only interested
112 * in a statistically correct polling result. The next poll will
113 * get the data is we are racing. The mb() that ensures correct
114 * memory order is in get_subbuf.
115 */
116 write_offset = v_read(config, &buf->offset);
117
118 /*
119 * Check that the subbuffer we are trying to consume has been
120 * already fully committed.
121 */
122
123 if (((commit_count - chan->backend.subbuf_size)
124 & chan->commit_count_mask)
125 - (buf_trunc(consumed_old, chan)
126 >> chan->backend.num_subbuf_order)
127 != 0)
128 return 0;
129
130 /*
131 * Check that we are not about to read the same subbuffer in
132 * which the writer head is.
133 */
134 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_old, chan)
135 == 0)
136 return 0;
137
138 return 1;
139 }
140
141 /*
142 * Must be called under cpu hotplug protection.
143 */
144 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
145 {
146 struct channel *chan = buf->backend.chan;
147
148 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
149 kfree(buf->commit_hot);
150 kfree(buf->commit_cold);
151
152 lib_ring_buffer_backend_free(&buf->backend);
153 }
154
155 /**
156 * lib_ring_buffer_reset - Reset ring buffer to initial values.
157 * @buf: Ring buffer.
158 *
159 * Effectively empty the ring buffer. Should be called when the buffer is not
160 * used for writing. The ring buffer can be opened for reading, but the reader
161 * should not be using the iterator concurrently with reset. The previous
162 * current iterator record is reset.
163 */
164 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
165 {
166 struct channel *chan = buf->backend.chan;
167 const struct lib_ring_buffer_config *config = &chan->backend.config;
168 unsigned int i;
169
170 /*
171 * Reset iterator first. It will put the subbuffer if it currently holds
172 * it.
173 */
174 lib_ring_buffer_iterator_reset(buf);
175 v_set(config, &buf->offset, 0);
176 for (i = 0; i < chan->backend.num_subbuf; i++) {
177 v_set(config, &buf->commit_hot[i].cc, 0);
178 v_set(config, &buf->commit_hot[i].seq, 0);
179 v_set(config, &buf->commit_cold[i].cc_sb, 0);
180 }
181 atomic_long_set(&buf->consumed, 0);
182 atomic_set(&buf->record_disabled, 0);
183 v_set(config, &buf->last_tsc, 0);
184 lib_ring_buffer_backend_reset(&buf->backend);
185 /* Don't reset number of active readers */
186 v_set(config, &buf->records_lost_full, 0);
187 v_set(config, &buf->records_lost_wrap, 0);
188 v_set(config, &buf->records_lost_big, 0);
189 v_set(config, &buf->records_count, 0);
190 v_set(config, &buf->records_overrun, 0);
191 buf->finalized = 0;
192 }
193 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
194
195 /**
196 * channel_reset - Reset channel to initial values.
197 * @chan: Channel.
198 *
199 * Effectively empty the channel. Should be called when the channel is not used
200 * for writing. The channel can be opened for reading, but the reader should not
201 * be using the iterator concurrently with reset. The previous current iterator
202 * record is reset.
203 */
204 void channel_reset(struct channel *chan)
205 {
206 /*
207 * Reset iterators first. Will put the subbuffer if held for reading.
208 */
209 channel_iterator_reset(chan);
210 atomic_set(&chan->record_disabled, 0);
211 /* Don't reset commit_count_mask, still valid */
212 channel_backend_reset(&chan->backend);
213 /* Don't reset switch/read timer interval */
214 /* Don't reset notifiers and notifier enable bits */
215 /* Don't reset reader reference count */
216 }
217 EXPORT_SYMBOL_GPL(channel_reset);
218
219 /*
220 * Must be called under cpu hotplug protection.
221 */
222 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
223 struct channel_backend *chanb, int cpu)
224 {
225 const struct lib_ring_buffer_config *config = &chanb->config;
226 struct channel *chan = container_of(chanb, struct channel, backend);
227 void *priv = chanb->priv;
228 size_t subbuf_header_size;
229 u64 tsc;
230 int ret;
231
232 /* Test for cpu hotplug */
233 if (buf->backend.allocated)
234 return 0;
235
236 /*
237 * Paranoia: per cpu dynamic allocation is not officially documented as
238 * zeroing the memory, so let's do it here too, just in case.
239 */
240 memset(buf, 0, sizeof(*buf));
241
242 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
243 if (ret)
244 return ret;
245
246 buf->commit_hot =
247 kzalloc_node(ALIGN(sizeof(*buf->commit_hot)
248 * chan->backend.num_subbuf,
249 1 << INTERNODE_CACHE_SHIFT),
250 GFP_KERNEL, cpu_to_node(max(cpu, 0)));
251 if (!buf->commit_hot) {
252 ret = -ENOMEM;
253 goto free_chanbuf;
254 }
255
256 buf->commit_cold =
257 kzalloc_node(ALIGN(sizeof(*buf->commit_cold)
258 * chan->backend.num_subbuf,
259 1 << INTERNODE_CACHE_SHIFT),
260 GFP_KERNEL, cpu_to_node(max(cpu, 0)));
261 if (!buf->commit_cold) {
262 ret = -ENOMEM;
263 goto free_commit;
264 }
265
266 init_waitqueue_head(&buf->read_wait);
267 init_waitqueue_head(&buf->write_wait);
268 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
269
270 /*
271 * Write the subbuffer header for first subbuffer so we know the total
272 * duration of data gathering.
273 */
274 subbuf_header_size = config->cb.subbuffer_header_size();
275 v_set(config, &buf->offset, subbuf_header_size);
276 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
277 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
278 config->cb.buffer_begin(buf, tsc, 0);
279 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
280
281 if (config->cb.buffer_create) {
282 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
283 if (ret)
284 goto free_init;
285 }
286
287 /*
288 * Ensure the buffer is ready before setting it to allocated and setting
289 * the cpumask.
290 * Used for cpu hotplug vs cpumask iteration.
291 */
292 smp_wmb();
293 buf->backend.allocated = 1;
294
295 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
296 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
297 chan->backend.cpumask));
298 cpumask_set_cpu(cpu, chan->backend.cpumask);
299 }
300
301 return 0;
302
303 /* Error handling */
304 free_init:
305 kfree(buf->commit_cold);
306 free_commit:
307 kfree(buf->commit_hot);
308 free_chanbuf:
309 lib_ring_buffer_backend_free(&buf->backend);
310 return ret;
311 }
312
313 static void switch_buffer_timer(unsigned long data)
314 {
315 struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
316 struct channel *chan = buf->backend.chan;
317 const struct lib_ring_buffer_config *config = &chan->backend.config;
318
319 /*
320 * Only flush buffers periodically if readers are active.
321 */
322 if (atomic_long_read(&buf->active_readers))
323 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
324
325 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
326 lttng_mod_timer_pinned(&buf->switch_timer,
327 jiffies + chan->switch_timer_interval);
328 else
329 mod_timer(&buf->switch_timer,
330 jiffies + chan->switch_timer_interval);
331 }
332
333 /*
334 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
335 */
336 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
337 {
338 struct channel *chan = buf->backend.chan;
339 const struct lib_ring_buffer_config *config = &chan->backend.config;
340
341 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
342 return;
343
344 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
345 lttng_init_timer_pinned(&buf->switch_timer);
346 else
347 init_timer(&buf->switch_timer);
348
349 buf->switch_timer.function = switch_buffer_timer;
350 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
351 buf->switch_timer.data = (unsigned long)buf;
352 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
353 add_timer_on(&buf->switch_timer, buf->backend.cpu);
354 else
355 add_timer(&buf->switch_timer);
356 buf->switch_timer_enabled = 1;
357 }
358
359 /*
360 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
361 */
362 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
363 {
364 struct channel *chan = buf->backend.chan;
365
366 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
367 return;
368
369 del_timer_sync(&buf->switch_timer);
370 buf->switch_timer_enabled = 0;
371 }
372
373 /*
374 * Polling timer to check the channels for data.
375 */
376 static void read_buffer_timer(unsigned long data)
377 {
378 struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
379 struct channel *chan = buf->backend.chan;
380 const struct lib_ring_buffer_config *config = &chan->backend.config;
381
382 CHAN_WARN_ON(chan, !buf->backend.allocated);
383
384 if (atomic_long_read(&buf->active_readers)
385 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
386 wake_up_interruptible(&buf->read_wait);
387 wake_up_interruptible(&chan->read_wait);
388 }
389
390 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
391 lttng_mod_timer_pinned(&buf->read_timer,
392 jiffies + chan->read_timer_interval);
393 else
394 mod_timer(&buf->read_timer,
395 jiffies + chan->read_timer_interval);
396 }
397
398 /*
399 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
400 */
401 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
402 {
403 struct channel *chan = buf->backend.chan;
404 const struct lib_ring_buffer_config *config = &chan->backend.config;
405
406 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
407 || !chan->read_timer_interval
408 || buf->read_timer_enabled)
409 return;
410
411 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
412 lttng_init_timer_pinned(&buf->read_timer);
413 else
414 init_timer(&buf->read_timer);
415
416 buf->read_timer.function = read_buffer_timer;
417 buf->read_timer.expires = jiffies + chan->read_timer_interval;
418 buf->read_timer.data = (unsigned long)buf;
419
420 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
421 add_timer_on(&buf->read_timer, buf->backend.cpu);
422 else
423 add_timer(&buf->read_timer);
424 buf->read_timer_enabled = 1;
425 }
426
427 /*
428 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
429 */
430 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
431 {
432 struct channel *chan = buf->backend.chan;
433 const struct lib_ring_buffer_config *config = &chan->backend.config;
434
435 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
436 || !chan->read_timer_interval
437 || !buf->read_timer_enabled)
438 return;
439
440 del_timer_sync(&buf->read_timer);
441 /*
442 * do one more check to catch data that has been written in the last
443 * timer period.
444 */
445 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
446 wake_up_interruptible(&buf->read_wait);
447 wake_up_interruptible(&chan->read_wait);
448 }
449 buf->read_timer_enabled = 0;
450 }
451
452 #ifdef CONFIG_HOTPLUG_CPU
453 /**
454 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
455 * @nb: notifier block
456 * @action: hotplug action to take
457 * @hcpu: CPU number
458 *
459 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
460 */
461 static
462 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
463 unsigned long action,
464 void *hcpu)
465 {
466 unsigned int cpu = (unsigned long)hcpu;
467 struct channel *chan = container_of(nb, struct channel,
468 cpu_hp_notifier);
469 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
470 const struct lib_ring_buffer_config *config = &chan->backend.config;
471
472 if (!chan->cpu_hp_enable)
473 return NOTIFY_DONE;
474
475 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
476
477 switch (action) {
478 case CPU_DOWN_FAILED:
479 case CPU_DOWN_FAILED_FROZEN:
480 case CPU_ONLINE:
481 case CPU_ONLINE_FROZEN:
482 wake_up_interruptible(&chan->hp_wait);
483 lib_ring_buffer_start_switch_timer(buf);
484 lib_ring_buffer_start_read_timer(buf);
485 return NOTIFY_OK;
486
487 case CPU_DOWN_PREPARE:
488 case CPU_DOWN_PREPARE_FROZEN:
489 lib_ring_buffer_stop_switch_timer(buf);
490 lib_ring_buffer_stop_read_timer(buf);
491 return NOTIFY_OK;
492
493 case CPU_DEAD:
494 case CPU_DEAD_FROZEN:
495 /*
496 * Performing a buffer switch on a remote CPU. Performed by
497 * the CPU responsible for doing the hotunplug after the target
498 * CPU stopped running completely. Ensures that all data
499 * from that remote CPU is flushed.
500 */
501 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
502 return NOTIFY_OK;
503
504 default:
505 return NOTIFY_DONE;
506 }
507 }
508 #endif
509
510 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
511 /*
512 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
513 * that wake-up-tracing generated events are flushed before going idle (in
514 * tick_nohz). We test if the spinlock is locked to deal with the race where
515 * readers try to sample the ring buffer before we perform the switch. We let
516 * the readers retry in that case. If there is data in the buffer, the wake up
517 * is going to forbid the CPU running the reader thread from going idle.
518 */
519 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
520 unsigned long val,
521 void *data)
522 {
523 struct channel *chan = container_of(nb, struct channel,
524 tick_nohz_notifier);
525 const struct lib_ring_buffer_config *config = &chan->backend.config;
526 struct lib_ring_buffer *buf;
527 int cpu = smp_processor_id();
528
529 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
530 /*
531 * We don't support keeping the system idle with global buffers
532 * and streaming active. In order to do so, we would need to
533 * sample a non-nohz-cpumask racelessly with the nohz updates
534 * without adding synchronization overhead to nohz. Leave this
535 * use-case out for now.
536 */
537 return 0;
538 }
539
540 buf = channel_get_ring_buffer(config, chan, cpu);
541 switch (val) {
542 case TICK_NOHZ_FLUSH:
543 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
544 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
545 && chan->read_timer_interval
546 && atomic_long_read(&buf->active_readers)
547 && (lib_ring_buffer_poll_deliver(config, buf, chan)
548 || lib_ring_buffer_pending_data(config, buf, chan))) {
549 wake_up_interruptible(&buf->read_wait);
550 wake_up_interruptible(&chan->read_wait);
551 }
552 if (chan->switch_timer_interval)
553 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
554 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
555 break;
556 case TICK_NOHZ_STOP:
557 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
558 lib_ring_buffer_stop_switch_timer(buf);
559 lib_ring_buffer_stop_read_timer(buf);
560 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
561 break;
562 case TICK_NOHZ_RESTART:
563 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
564 lib_ring_buffer_start_read_timer(buf);
565 lib_ring_buffer_start_switch_timer(buf);
566 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
567 break;
568 }
569
570 return 0;
571 }
572
573 void notrace lib_ring_buffer_tick_nohz_flush(void)
574 {
575 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
576 NULL);
577 }
578
579 void notrace lib_ring_buffer_tick_nohz_stop(void)
580 {
581 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
582 NULL);
583 }
584
585 void notrace lib_ring_buffer_tick_nohz_restart(void)
586 {
587 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
588 NULL);
589 }
590 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
591
592 /*
593 * Holds CPU hotplug.
594 */
595 static void channel_unregister_notifiers(struct channel *chan)
596 {
597 const struct lib_ring_buffer_config *config = &chan->backend.config;
598 int cpu;
599
600 channel_iterator_unregister_notifiers(chan);
601 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
602 #ifdef CONFIG_NO_HZ
603 /*
604 * Remove the nohz notifier first, so we are certain we stop
605 * the timers.
606 */
607 atomic_notifier_chain_unregister(&tick_nohz_notifier,
608 &chan->tick_nohz_notifier);
609 /*
610 * ring_buffer_nohz_lock will not be needed below, because
611 * we just removed the notifiers, which were the only source of
612 * concurrency.
613 */
614 #endif /* CONFIG_NO_HZ */
615 #ifdef CONFIG_HOTPLUG_CPU
616 get_online_cpus();
617 chan->cpu_hp_enable = 0;
618 for_each_online_cpu(cpu) {
619 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
620 cpu);
621 lib_ring_buffer_stop_switch_timer(buf);
622 lib_ring_buffer_stop_read_timer(buf);
623 }
624 put_online_cpus();
625 unregister_cpu_notifier(&chan->cpu_hp_notifier);
626 #else
627 for_each_possible_cpu(cpu) {
628 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
629 cpu);
630 lib_ring_buffer_stop_switch_timer(buf);
631 lib_ring_buffer_stop_read_timer(buf);
632 }
633 #endif
634 } else {
635 struct lib_ring_buffer *buf = chan->backend.buf;
636
637 lib_ring_buffer_stop_switch_timer(buf);
638 lib_ring_buffer_stop_read_timer(buf);
639 }
640 channel_backend_unregister_notifiers(&chan->backend);
641 }
642
643 static void lib_ring_buffer_set_quiescent(struct lib_ring_buffer *buf)
644 {
645 if (!buf->quiescent) {
646 buf->quiescent = true;
647 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
648 }
649 }
650
651 static void lib_ring_buffer_clear_quiescent(struct lib_ring_buffer *buf)
652 {
653 buf->quiescent = false;
654 }
655
656 void lib_ring_buffer_set_quiescent_channel(struct channel *chan)
657 {
658 int cpu;
659 const struct lib_ring_buffer_config *config = &chan->backend.config;
660
661 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
662 get_online_cpus();
663 for_each_channel_cpu(cpu, chan) {
664 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
665 cpu);
666
667 lib_ring_buffer_set_quiescent(buf);
668 }
669 put_online_cpus();
670 } else {
671 struct lib_ring_buffer *buf = chan->backend.buf;
672
673 lib_ring_buffer_set_quiescent(buf);
674 }
675 }
676 EXPORT_SYMBOL_GPL(lib_ring_buffer_set_quiescent_channel);
677
678 void lib_ring_buffer_clear_quiescent_channel(struct channel *chan)
679 {
680 int cpu;
681 const struct lib_ring_buffer_config *config = &chan->backend.config;
682
683 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
684 get_online_cpus();
685 for_each_channel_cpu(cpu, chan) {
686 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
687 cpu);
688
689 lib_ring_buffer_clear_quiescent(buf);
690 }
691 put_online_cpus();
692 } else {
693 struct lib_ring_buffer *buf = chan->backend.buf;
694
695 lib_ring_buffer_clear_quiescent(buf);
696 }
697 }
698 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear_quiescent_channel);
699
700 static void channel_free(struct channel *chan)
701 {
702 if (chan->backend.release_priv_ops) {
703 chan->backend.release_priv_ops(chan->backend.priv_ops);
704 }
705 channel_iterator_free(chan);
706 channel_backend_free(&chan->backend);
707 kfree(chan);
708 }
709
710 /**
711 * channel_create - Create channel.
712 * @config: ring buffer instance configuration
713 * @name: name of the channel
714 * @priv: ring buffer client private data
715 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
716 * address mapping. It is used only by RING_BUFFER_STATIC
717 * configuration. It can be set to NULL for other backends.
718 * @subbuf_size: subbuffer size
719 * @num_subbuf: number of subbuffers
720 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
721 * padding to let readers get those sub-buffers.
722 * Used for live streaming.
723 * @read_timer_interval: Time interval (in us) to wake up pending readers.
724 *
725 * Holds cpu hotplug.
726 * Returns NULL on failure.
727 */
728 struct channel *channel_create(const struct lib_ring_buffer_config *config,
729 const char *name, void *priv, void *buf_addr,
730 size_t subbuf_size,
731 size_t num_subbuf, unsigned int switch_timer_interval,
732 unsigned int read_timer_interval)
733 {
734 int ret, cpu;
735 struct channel *chan;
736
737 if (lib_ring_buffer_check_config(config, switch_timer_interval,
738 read_timer_interval))
739 return NULL;
740
741 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
742 if (!chan)
743 return NULL;
744
745 ret = channel_backend_init(&chan->backend, name, config, priv,
746 subbuf_size, num_subbuf);
747 if (ret)
748 goto error;
749
750 ret = channel_iterator_init(chan);
751 if (ret)
752 goto error_free_backend;
753
754 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
755 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
756 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
757 kref_init(&chan->ref);
758 init_waitqueue_head(&chan->read_wait);
759 init_waitqueue_head(&chan->hp_wait);
760
761 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
762 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
763 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
764 chan->tick_nohz_notifier.notifier_call =
765 ring_buffer_tick_nohz_callback;
766 chan->tick_nohz_notifier.priority = ~0U;
767 atomic_notifier_chain_register(&tick_nohz_notifier,
768 &chan->tick_nohz_notifier);
769 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
770
771 /*
772 * In case of non-hotplug cpu, if the ring-buffer is allocated
773 * in early initcall, it will not be notified of secondary cpus.
774 * In that off case, we need to allocate for all possible cpus.
775 */
776 #ifdef CONFIG_HOTPLUG_CPU
777 chan->cpu_hp_notifier.notifier_call =
778 lib_ring_buffer_cpu_hp_callback;
779 chan->cpu_hp_notifier.priority = 6;
780 register_cpu_notifier(&chan->cpu_hp_notifier);
781
782 get_online_cpus();
783 for_each_online_cpu(cpu) {
784 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
785 cpu);
786 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
787 lib_ring_buffer_start_switch_timer(buf);
788 lib_ring_buffer_start_read_timer(buf);
789 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
790 }
791 chan->cpu_hp_enable = 1;
792 put_online_cpus();
793 #else
794 for_each_possible_cpu(cpu) {
795 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
796 cpu);
797 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
798 lib_ring_buffer_start_switch_timer(buf);
799 lib_ring_buffer_start_read_timer(buf);
800 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
801 }
802 #endif
803 } else {
804 struct lib_ring_buffer *buf = chan->backend.buf;
805
806 lib_ring_buffer_start_switch_timer(buf);
807 lib_ring_buffer_start_read_timer(buf);
808 }
809
810 return chan;
811
812 error_free_backend:
813 channel_backend_free(&chan->backend);
814 error:
815 kfree(chan);
816 return NULL;
817 }
818 EXPORT_SYMBOL_GPL(channel_create);
819
820 static
821 void channel_release(struct kref *kref)
822 {
823 struct channel *chan = container_of(kref, struct channel, ref);
824 channel_free(chan);
825 }
826
827 /**
828 * channel_destroy - Finalize, wait for q.s. and destroy channel.
829 * @chan: channel to destroy
830 *
831 * Holds cpu hotplug.
832 * Call "destroy" callback, finalize channels, and then decrement the
833 * channel reference count. Note that when readers have completed data
834 * consumption of finalized channels, get_subbuf() will return -ENODATA.
835 * They should release their handle at that point. Returns the private
836 * data pointer.
837 */
838 void *channel_destroy(struct channel *chan)
839 {
840 int cpu;
841 const struct lib_ring_buffer_config *config = &chan->backend.config;
842 void *priv;
843
844 channel_unregister_notifiers(chan);
845
846 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
847 /*
848 * No need to hold cpu hotplug, because all notifiers have been
849 * unregistered.
850 */
851 for_each_channel_cpu(cpu, chan) {
852 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
853 cpu);
854
855 if (config->cb.buffer_finalize)
856 config->cb.buffer_finalize(buf,
857 chan->backend.priv,
858 cpu);
859 if (buf->backend.allocated)
860 lib_ring_buffer_set_quiescent(buf);
861 /*
862 * Perform flush before writing to finalized.
863 */
864 smp_wmb();
865 ACCESS_ONCE(buf->finalized) = 1;
866 wake_up_interruptible(&buf->read_wait);
867 }
868 } else {
869 struct lib_ring_buffer *buf = chan->backend.buf;
870
871 if (config->cb.buffer_finalize)
872 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
873 if (buf->backend.allocated)
874 lib_ring_buffer_set_quiescent(buf);
875 /*
876 * Perform flush before writing to finalized.
877 */
878 smp_wmb();
879 ACCESS_ONCE(buf->finalized) = 1;
880 wake_up_interruptible(&buf->read_wait);
881 }
882 ACCESS_ONCE(chan->finalized) = 1;
883 wake_up_interruptible(&chan->hp_wait);
884 wake_up_interruptible(&chan->read_wait);
885 priv = chan->backend.priv;
886 kref_put(&chan->ref, channel_release);
887 return priv;
888 }
889 EXPORT_SYMBOL_GPL(channel_destroy);
890
891 struct lib_ring_buffer *channel_get_ring_buffer(
892 const struct lib_ring_buffer_config *config,
893 struct channel *chan, int cpu)
894 {
895 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
896 return chan->backend.buf;
897 else
898 return per_cpu_ptr(chan->backend.buf, cpu);
899 }
900 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
901
902 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
903 {
904 struct channel *chan = buf->backend.chan;
905
906 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
907 return -EBUSY;
908 if (!lttng_kref_get(&chan->ref)) {
909 atomic_long_dec(&buf->active_readers);
910 return -EOVERFLOW;
911 }
912 lttng_smp_mb__after_atomic();
913 return 0;
914 }
915 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
916
917 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
918 {
919 struct channel *chan = buf->backend.chan;
920
921 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
922 lttng_smp_mb__before_atomic();
923 atomic_long_dec(&buf->active_readers);
924 kref_put(&chan->ref, channel_release);
925 }
926 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
927
928 /*
929 * Promote compiler barrier to a smp_mb().
930 * For the specific ring buffer case, this IPI call should be removed if the
931 * architecture does not reorder writes. This should eventually be provided by
932 * a separate architecture-specific infrastructure.
933 */
934 static void remote_mb(void *info)
935 {
936 smp_mb();
937 }
938
939 /**
940 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
941 * @buf: ring buffer
942 * @consumed: consumed count indicating the position where to read
943 * @produced: produced count, indicates position when to stop reading
944 *
945 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
946 * data to read at consumed position, or 0 if the get operation succeeds.
947 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
948 */
949
950 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
951 unsigned long *consumed, unsigned long *produced)
952 {
953 struct channel *chan = buf->backend.chan;
954 const struct lib_ring_buffer_config *config = &chan->backend.config;
955 unsigned long consumed_cur, write_offset;
956 int finalized;
957
958 retry:
959 finalized = ACCESS_ONCE(buf->finalized);
960 /*
961 * Read finalized before counters.
962 */
963 smp_rmb();
964 consumed_cur = atomic_long_read(&buf->consumed);
965 /*
966 * No need to issue a memory barrier between consumed count read and
967 * write offset read, because consumed count can only change
968 * concurrently in overwrite mode, and we keep a sequence counter
969 * identifier derived from the write offset to check we are getting
970 * the same sub-buffer we are expecting (the sub-buffers are atomically
971 * "tagged" upon writes, tags are checked upon read).
972 */
973 write_offset = v_read(config, &buf->offset);
974
975 /*
976 * Check that we are not about to read the same subbuffer in
977 * which the writer head is.
978 */
979 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
980 == 0)
981 goto nodata;
982
983 *consumed = consumed_cur;
984 *produced = subbuf_trunc(write_offset, chan);
985
986 return 0;
987
988 nodata:
989 /*
990 * The memory barriers __wait_event()/wake_up_interruptible() take care
991 * of "raw_spin_is_locked" memory ordering.
992 */
993 if (finalized)
994 return -ENODATA;
995 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
996 goto retry;
997 else
998 return -EAGAIN;
999 }
1000 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
1001
1002 /**
1003 * lib_ring_buffer_put_snapshot - move consumed counter forward
1004 *
1005 * Should only be called from consumer context.
1006 * @buf: ring buffer
1007 * @consumed_new: new consumed count value
1008 */
1009 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
1010 unsigned long consumed_new)
1011 {
1012 struct lib_ring_buffer_backend *bufb = &buf->backend;
1013 struct channel *chan = bufb->chan;
1014 unsigned long consumed;
1015
1016 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1017
1018 /*
1019 * Only push the consumed value forward.
1020 * If the consumed cmpxchg fails, this is because we have been pushed by
1021 * the writer in flight recorder mode.
1022 */
1023 consumed = atomic_long_read(&buf->consumed);
1024 while ((long) consumed - (long) consumed_new < 0)
1025 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
1026 consumed_new);
1027 /* Wake-up the metadata producer */
1028 wake_up_interruptible(&buf->write_wait);
1029 }
1030 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
1031
1032 /**
1033 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
1034 * @buf: ring buffer
1035 * @consumed: consumed count indicating the position where to read
1036 *
1037 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1038 * data to read at consumed position, or 0 if the get operation succeeds.
1039 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1040 */
1041 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
1042 unsigned long consumed)
1043 {
1044 struct channel *chan = buf->backend.chan;
1045 const struct lib_ring_buffer_config *config = &chan->backend.config;
1046 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1047 int ret;
1048 int finalized;
1049
1050 if (buf->get_subbuf) {
1051 /*
1052 * Reader is trying to get a subbuffer twice.
1053 */
1054 CHAN_WARN_ON(chan, 1);
1055 return -EBUSY;
1056 }
1057 retry:
1058 finalized = ACCESS_ONCE(buf->finalized);
1059 /*
1060 * Read finalized before counters.
1061 */
1062 smp_rmb();
1063 consumed_cur = atomic_long_read(&buf->consumed);
1064 consumed_idx = subbuf_index(consumed, chan);
1065 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
1066 /*
1067 * Make sure we read the commit count before reading the buffer
1068 * data and the write offset. Correct consumed offset ordering
1069 * wrt commit count is insured by the use of cmpxchg to update
1070 * the consumed offset.
1071 * smp_call_function_single can fail if the remote CPU is offline,
1072 * this is OK because then there is no wmb to execute there.
1073 * If our thread is executing on the same CPU as the on the buffers
1074 * belongs to, we don't have to synchronize it at all. If we are
1075 * migrated, the scheduler will take care of the memory barriers.
1076 * Normally, smp_call_function_single() should ensure program order when
1077 * executing the remote function, which implies that it surrounds the
1078 * function execution with :
1079 * smp_mb()
1080 * send IPI
1081 * csd_lock_wait
1082 * recv IPI
1083 * smp_mb()
1084 * exec. function
1085 * smp_mb()
1086 * csd unlock
1087 * smp_mb()
1088 *
1089 * However, smp_call_function_single() does not seem to clearly execute
1090 * such barriers. It depends on spinlock semantic to provide the barrier
1091 * before executing the IPI and, when busy-looping, csd_lock_wait only
1092 * executes smp_mb() when it has to wait for the other CPU.
1093 *
1094 * I don't trust this code. Therefore, let's add the smp_mb() sequence
1095 * required ourself, even if duplicated. It has no performance impact
1096 * anyway.
1097 *
1098 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
1099 * read and write vs write. They do not ensure core synchronization. We
1100 * really have to ensure total order between the 3 barriers running on
1101 * the 2 CPUs.
1102 */
1103 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1104 if (config->sync == RING_BUFFER_SYNC_PER_CPU
1105 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
1106 if (raw_smp_processor_id() != buf->backend.cpu) {
1107 /* Total order with IPI handler smp_mb() */
1108 smp_mb();
1109 smp_call_function_single(buf->backend.cpu,
1110 remote_mb, NULL, 1);
1111 /* Total order with IPI handler smp_mb() */
1112 smp_mb();
1113 }
1114 } else {
1115 /* Total order with IPI handler smp_mb() */
1116 smp_mb();
1117 smp_call_function(remote_mb, NULL, 1);
1118 /* Total order with IPI handler smp_mb() */
1119 smp_mb();
1120 }
1121 } else {
1122 /*
1123 * Local rmb to match the remote wmb to read the commit count
1124 * before the buffer data and the write offset.
1125 */
1126 smp_rmb();
1127 }
1128
1129 write_offset = v_read(config, &buf->offset);
1130
1131 /*
1132 * Check that the buffer we are getting is after or at consumed_cur
1133 * position.
1134 */
1135 if ((long) subbuf_trunc(consumed, chan)
1136 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1137 goto nodata;
1138
1139 /*
1140 * Check that the subbuffer we are trying to consume has been
1141 * already fully committed.
1142 */
1143 if (((commit_count - chan->backend.subbuf_size)
1144 & chan->commit_count_mask)
1145 - (buf_trunc(consumed, chan)
1146 >> chan->backend.num_subbuf_order)
1147 != 0)
1148 goto nodata;
1149
1150 /*
1151 * Check that we are not about to read the same subbuffer in
1152 * which the writer head is.
1153 */
1154 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1155 == 0)
1156 goto nodata;
1157
1158 /*
1159 * Failure to get the subbuffer causes a busy-loop retry without going
1160 * to a wait queue. These are caused by short-lived race windows where
1161 * the writer is getting access to a subbuffer we were trying to get
1162 * access to. Also checks that the "consumed" buffer count we are
1163 * looking for matches the one contained in the subbuffer id.
1164 */
1165 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1166 consumed_idx, buf_trunc_val(consumed, chan));
1167 if (ret)
1168 goto retry;
1169 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1170
1171 buf->get_subbuf_consumed = consumed;
1172 buf->get_subbuf = 1;
1173
1174 return 0;
1175
1176 nodata:
1177 /*
1178 * The memory barriers __wait_event()/wake_up_interruptible() take care
1179 * of "raw_spin_is_locked" memory ordering.
1180 */
1181 if (finalized)
1182 return -ENODATA;
1183 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1184 goto retry;
1185 else
1186 return -EAGAIN;
1187 }
1188 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1189
1190 /**
1191 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1192 * @buf: ring buffer
1193 */
1194 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1195 {
1196 struct lib_ring_buffer_backend *bufb = &buf->backend;
1197 struct channel *chan = bufb->chan;
1198 const struct lib_ring_buffer_config *config = &chan->backend.config;
1199 unsigned long read_sb_bindex, consumed_idx, consumed;
1200
1201 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1202
1203 if (!buf->get_subbuf) {
1204 /*
1205 * Reader puts a subbuffer it did not get.
1206 */
1207 CHAN_WARN_ON(chan, 1);
1208 return;
1209 }
1210 consumed = buf->get_subbuf_consumed;
1211 buf->get_subbuf = 0;
1212
1213 /*
1214 * Clear the records_unread counter. (overruns counter)
1215 * Can still be non-zero if a file reader simply grabbed the data
1216 * without using iterators.
1217 * Can be below zero if an iterator is used on a snapshot more than
1218 * once.
1219 */
1220 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1221 v_add(config, v_read(config,
1222 &bufb->array[read_sb_bindex]->records_unread),
1223 &bufb->records_read);
1224 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1225 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1226 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1227 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1228
1229 /*
1230 * Exchange the reader subbuffer with the one we put in its place in the
1231 * writer subbuffer table. Expect the original consumed count. If
1232 * update_read_sb_index fails, this is because the writer updated the
1233 * subbuffer concurrently. We should therefore keep the subbuffer we
1234 * currently have: it has become invalid to try reading this sub-buffer
1235 * consumed count value anyway.
1236 */
1237 consumed_idx = subbuf_index(consumed, chan);
1238 update_read_sb_index(config, &buf->backend, &chan->backend,
1239 consumed_idx, buf_trunc_val(consumed, chan));
1240 /*
1241 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1242 * if the writer concurrently updated it.
1243 */
1244 }
1245 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1246
1247 /*
1248 * cons_offset is an iterator on all subbuffer offsets between the reader
1249 * position and the writer position. (inclusive)
1250 */
1251 static
1252 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1253 struct channel *chan,
1254 unsigned long cons_offset,
1255 int cpu)
1256 {
1257 const struct lib_ring_buffer_config *config = &chan->backend.config;
1258 unsigned long cons_idx, commit_count, commit_count_sb;
1259
1260 cons_idx = subbuf_index(cons_offset, chan);
1261 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1262 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1263
1264 if (subbuf_offset(commit_count, chan) != 0)
1265 printk(KERN_WARNING
1266 "ring buffer %s, cpu %d: "
1267 "commit count in subbuffer %lu,\n"
1268 "expecting multiples of %lu bytes\n"
1269 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1270 chan->backend.name, cpu, cons_idx,
1271 chan->backend.subbuf_size,
1272 commit_count, commit_count_sb);
1273
1274 printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1275 chan->backend.name, cpu, commit_count);
1276 }
1277
1278 static
1279 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1280 struct channel *chan,
1281 void *priv, int cpu)
1282 {
1283 const struct lib_ring_buffer_config *config = &chan->backend.config;
1284 unsigned long write_offset, cons_offset;
1285
1286 /*
1287 * No need to order commit_count, write_offset and cons_offset reads
1288 * because we execute at teardown when no more writer nor reader
1289 * references are left.
1290 */
1291 write_offset = v_read(config, &buf->offset);
1292 cons_offset = atomic_long_read(&buf->consumed);
1293 if (write_offset != cons_offset)
1294 printk(KERN_DEBUG
1295 "ring buffer %s, cpu %d: "
1296 "non-consumed data\n"
1297 " [ %lu bytes written, %lu bytes read ]\n",
1298 chan->backend.name, cpu, write_offset, cons_offset);
1299
1300 for (cons_offset = atomic_long_read(&buf->consumed);
1301 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1302 chan)
1303 - cons_offset) > 0;
1304 cons_offset = subbuf_align(cons_offset, chan))
1305 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1306 cpu);
1307 }
1308
1309 static
1310 void lib_ring_buffer_print_errors(struct channel *chan,
1311 struct lib_ring_buffer *buf, int cpu)
1312 {
1313 const struct lib_ring_buffer_config *config = &chan->backend.config;
1314 void *priv = chan->backend.priv;
1315
1316 if (!strcmp(chan->backend.name, "relay-metadata")) {
1317 printk(KERN_DEBUG "ring buffer %s: %lu records written, "
1318 "%lu records overrun\n",
1319 chan->backend.name,
1320 v_read(config, &buf->records_count),
1321 v_read(config, &buf->records_overrun));
1322 } else {
1323 printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1324 "%lu records overrun\n",
1325 chan->backend.name, cpu,
1326 v_read(config, &buf->records_count),
1327 v_read(config, &buf->records_overrun));
1328
1329 if (v_read(config, &buf->records_lost_full)
1330 || v_read(config, &buf->records_lost_wrap)
1331 || v_read(config, &buf->records_lost_big))
1332 printk(KERN_WARNING
1333 "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1334 " [ %lu buffer full, %lu nest buffer wrap-around, "
1335 "%lu event too big ]\n",
1336 chan->backend.name, cpu,
1337 v_read(config, &buf->records_lost_full),
1338 v_read(config, &buf->records_lost_wrap),
1339 v_read(config, &buf->records_lost_big));
1340 }
1341 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1342 }
1343
1344 /*
1345 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1346 *
1347 * Only executed by SWITCH_FLUSH, which can be issued while tracing is active
1348 * or at buffer finalization (destroy).
1349 */
1350 static
1351 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1352 struct channel *chan,
1353 struct switch_offsets *offsets,
1354 u64 tsc)
1355 {
1356 const struct lib_ring_buffer_config *config = &chan->backend.config;
1357 unsigned long oldidx = subbuf_index(offsets->old, chan);
1358 unsigned long commit_count;
1359
1360 config->cb.buffer_begin(buf, tsc, oldidx);
1361
1362 /*
1363 * Order all writes to buffer before the commit count update that will
1364 * determine that the subbuffer is full.
1365 */
1366 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1367 /*
1368 * Must write slot data before incrementing commit count. This
1369 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1370 * by get_subbuf().
1371 */
1372 barrier();
1373 } else
1374 smp_wmb();
1375 v_add(config, config->cb.subbuffer_header_size(),
1376 &buf->commit_hot[oldidx].cc);
1377 commit_count = v_read(config, &buf->commit_hot[oldidx].cc);
1378 /* Check if the written buffer has to be delivered */
1379 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1380 commit_count, oldidx, tsc);
1381 lib_ring_buffer_write_commit_counter(config, buf, chan, oldidx,
1382 offsets->old + config->cb.subbuffer_header_size(),
1383 commit_count);
1384 }
1385
1386 /*
1387 * lib_ring_buffer_switch_old_end: switch old subbuffer
1388 *
1389 * Note : offset_old should never be 0 here. It is ok, because we never perform
1390 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1391 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1392 * subbuffer.
1393 */
1394 static
1395 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1396 struct channel *chan,
1397 struct switch_offsets *offsets,
1398 u64 tsc)
1399 {
1400 const struct lib_ring_buffer_config *config = &chan->backend.config;
1401 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1402 unsigned long commit_count, padding_size, data_size;
1403
1404 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1405 padding_size = chan->backend.subbuf_size - data_size;
1406 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1407
1408 /*
1409 * Order all writes to buffer before the commit count update that will
1410 * determine that the subbuffer is full.
1411 */
1412 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1413 /*
1414 * Must write slot data before incrementing commit count. This
1415 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1416 * by get_subbuf().
1417 */
1418 barrier();
1419 } else
1420 smp_wmb();
1421 v_add(config, padding_size, &buf->commit_hot[oldidx].cc);
1422 commit_count = v_read(config, &buf->commit_hot[oldidx].cc);
1423 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1424 commit_count, oldidx, tsc);
1425 lib_ring_buffer_write_commit_counter(config, buf, chan, oldidx,
1426 offsets->old + padding_size, commit_count);
1427 }
1428
1429 /*
1430 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1431 *
1432 * This code can be executed unordered : writers may already have written to the
1433 * sub-buffer before this code gets executed, caution. The commit makes sure
1434 * that this code is executed before the deliver of this sub-buffer.
1435 */
1436 static
1437 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1438 struct channel *chan,
1439 struct switch_offsets *offsets,
1440 u64 tsc)
1441 {
1442 const struct lib_ring_buffer_config *config = &chan->backend.config;
1443 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1444 unsigned long commit_count;
1445
1446 config->cb.buffer_begin(buf, tsc, beginidx);
1447
1448 /*
1449 * Order all writes to buffer before the commit count update that will
1450 * determine that the subbuffer is full.
1451 */
1452 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1453 /*
1454 * Must write slot data before incrementing commit count. This
1455 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1456 * by get_subbuf().
1457 */
1458 barrier();
1459 } else
1460 smp_wmb();
1461 v_add(config, config->cb.subbuffer_header_size(),
1462 &buf->commit_hot[beginidx].cc);
1463 commit_count = v_read(config, &buf->commit_hot[beginidx].cc);
1464 /* Check if the written buffer has to be delivered */
1465 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1466 commit_count, beginidx, tsc);
1467 lib_ring_buffer_write_commit_counter(config, buf, chan, beginidx,
1468 offsets->begin + config->cb.subbuffer_header_size(),
1469 commit_count);
1470 }
1471
1472 /*
1473 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1474 *
1475 * Calls subbuffer_set_data_size() to set the data size of the current
1476 * sub-buffer. We do not need to perform check_deliver nor commit here,
1477 * since this task will be done by the "commit" of the event for which
1478 * we are currently doing the space reservation.
1479 */
1480 static
1481 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1482 struct channel *chan,
1483 struct switch_offsets *offsets,
1484 u64 tsc)
1485 {
1486 const struct lib_ring_buffer_config *config = &chan->backend.config;
1487 unsigned long endidx, data_size;
1488
1489 endidx = subbuf_index(offsets->end - 1, chan);
1490 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1491 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1492 }
1493
1494 /*
1495 * Returns :
1496 * 0 if ok
1497 * !0 if execution must be aborted.
1498 */
1499 static
1500 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1501 struct lib_ring_buffer *buf,
1502 struct channel *chan,
1503 struct switch_offsets *offsets,
1504 u64 *tsc)
1505 {
1506 const struct lib_ring_buffer_config *config = &chan->backend.config;
1507 unsigned long off, reserve_commit_diff;
1508
1509 offsets->begin = v_read(config, &buf->offset);
1510 offsets->old = offsets->begin;
1511 offsets->switch_old_start = 0;
1512 off = subbuf_offset(offsets->begin, chan);
1513
1514 *tsc = config->cb.ring_buffer_clock_read(chan);
1515
1516 /*
1517 * Ensure we flush the header of an empty subbuffer when doing the
1518 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1519 * total data gathering duration even if there were no records saved
1520 * after the last buffer switch.
1521 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1522 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1523 * subbuffer header as appropriate.
1524 * The next record that reserves space will be responsible for
1525 * populating the following subbuffer header. We choose not to populate
1526 * the next subbuffer header here because we want to be able to use
1527 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1528 * buffer flush, which must guarantee that all the buffer content
1529 * (records and header timestamps) are visible to the reader. This is
1530 * required for quiescence guarantees for the fusion merge.
1531 */
1532 if (mode != SWITCH_FLUSH && !off)
1533 return -1; /* we do not have to switch : buffer is empty */
1534
1535 if (unlikely(off == 0)) {
1536 unsigned long sb_index, commit_count;
1537
1538 /*
1539 * We are performing a SWITCH_FLUSH. There may be concurrent
1540 * writes into the buffer if e.g. invoked while performing a
1541 * snapshot on an active trace.
1542 *
1543 * If the client does not save any header information (sub-buffer
1544 * header size == 0), don't switch empty subbuffer on finalize,
1545 * because it is invalid to deliver a completely empty
1546 * subbuffer.
1547 */
1548 if (!config->cb.subbuffer_header_size())
1549 return -1;
1550
1551 /* Test new buffer integrity */
1552 sb_index = subbuf_index(offsets->begin, chan);
1553 commit_count = v_read(config,
1554 &buf->commit_cold[sb_index].cc_sb);
1555 reserve_commit_diff =
1556 (buf_trunc(offsets->begin, chan)
1557 >> chan->backend.num_subbuf_order)
1558 - (commit_count & chan->commit_count_mask);
1559 if (likely(reserve_commit_diff == 0)) {
1560 /* Next subbuffer not being written to. */
1561 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1562 subbuf_trunc(offsets->begin, chan)
1563 - subbuf_trunc((unsigned long)
1564 atomic_long_read(&buf->consumed), chan)
1565 >= chan->backend.buf_size)) {
1566 /*
1567 * We do not overwrite non consumed buffers
1568 * and we are full : don't switch.
1569 */
1570 return -1;
1571 } else {
1572 /*
1573 * Next subbuffer not being written to, and we
1574 * are either in overwrite mode or the buffer is
1575 * not full. It's safe to write in this new
1576 * subbuffer.
1577 */
1578 }
1579 } else {
1580 /*
1581 * Next subbuffer reserve offset does not match the
1582 * commit offset. Don't perform switch in
1583 * producer-consumer and overwrite mode. Caused by
1584 * either a writer OOPS or too many nested writes over a
1585 * reserve/commit pair.
1586 */
1587 return -1;
1588 }
1589
1590 /*
1591 * Need to write the subbuffer start header on finalize.
1592 */
1593 offsets->switch_old_start = 1;
1594 }
1595 offsets->begin = subbuf_align(offsets->begin, chan);
1596 /* Note: old points to the next subbuf at offset 0 */
1597 offsets->end = offsets->begin;
1598 return 0;
1599 }
1600
1601 /*
1602 * Force a sub-buffer switch. This operation is completely reentrant : can be
1603 * called while tracing is active with absolutely no lock held.
1604 *
1605 * Note, however, that as a v_cmpxchg is used for some atomic
1606 * operations, this function must be called from the CPU which owns the buffer
1607 * for a ACTIVE flush.
1608 */
1609 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1610 {
1611 struct channel *chan = buf->backend.chan;
1612 const struct lib_ring_buffer_config *config = &chan->backend.config;
1613 struct switch_offsets offsets;
1614 unsigned long oldidx;
1615 u64 tsc;
1616
1617 offsets.size = 0;
1618
1619 /*
1620 * Perform retryable operations.
1621 */
1622 do {
1623 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1624 &tsc))
1625 return; /* Switch not needed */
1626 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1627 != offsets.old);
1628
1629 /*
1630 * Atomically update last_tsc. This update races against concurrent
1631 * atomic updates, but the race will always cause supplementary full TSC
1632 * records, never the opposite (missing a full TSC record when it would
1633 * be needed).
1634 */
1635 save_last_tsc(config, buf, tsc);
1636
1637 /*
1638 * Push the reader if necessary
1639 */
1640 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1641
1642 oldidx = subbuf_index(offsets.old, chan);
1643 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1644
1645 /*
1646 * May need to populate header start on SWITCH_FLUSH.
1647 */
1648 if (offsets.switch_old_start) {
1649 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1650 offsets.old += config->cb.subbuffer_header_size();
1651 }
1652
1653 /*
1654 * Switch old subbuffer.
1655 */
1656 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1657 }
1658 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1659
1660 struct switch_param {
1661 struct lib_ring_buffer *buf;
1662 enum switch_mode mode;
1663 };
1664
1665 static void remote_switch(void *info)
1666 {
1667 struct switch_param *param = info;
1668 struct lib_ring_buffer *buf = param->buf;
1669
1670 lib_ring_buffer_switch_slow(buf, param->mode);
1671 }
1672
1673 static void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
1674 enum switch_mode mode)
1675 {
1676 struct channel *chan = buf->backend.chan;
1677 const struct lib_ring_buffer_config *config = &chan->backend.config;
1678 int ret;
1679 struct switch_param param;
1680
1681 /*
1682 * With global synchronization we don't need to use the IPI scheme.
1683 */
1684 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1685 lib_ring_buffer_switch_slow(buf, mode);
1686 return;
1687 }
1688
1689 /*
1690 * Taking lock on CPU hotplug to ensure two things: first, that the
1691 * target cpu is not taken concurrently offline while we are within
1692 * smp_call_function_single() (I don't trust that get_cpu() on the
1693 * _local_ CPU actually inhibit CPU hotplug for the _remote_ CPU (to be
1694 * confirmed)). Secondly, if it happens that the CPU is not online, our
1695 * own call to lib_ring_buffer_switch_slow() needs to be protected from
1696 * CPU hotplug handlers, which can also perform a remote subbuffer
1697 * switch.
1698 */
1699 get_online_cpus();
1700 param.buf = buf;
1701 param.mode = mode;
1702 ret = smp_call_function_single(buf->backend.cpu,
1703 remote_switch, &param, 1);
1704 if (ret) {
1705 /* Remote CPU is offline, do it ourself. */
1706 lib_ring_buffer_switch_slow(buf, mode);
1707 }
1708 put_online_cpus();
1709 }
1710
1711 void lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf)
1712 {
1713 _lib_ring_buffer_switch_remote(buf, SWITCH_ACTIVE);
1714 }
1715 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1716
1717 /* Switch sub-buffer even if current sub-buffer is empty. */
1718 void lib_ring_buffer_switch_remote_empty(struct lib_ring_buffer *buf)
1719 {
1720 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
1721 }
1722 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote_empty);
1723
1724 /*
1725 * Returns :
1726 * 0 if ok
1727 * -ENOSPC if event size is too large for packet.
1728 * -ENOBUFS if there is currently not enough space in buffer for the event.
1729 * -EIO if data cannot be written into the buffer for any other reason.
1730 */
1731 static
1732 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1733 struct channel *chan,
1734 struct switch_offsets *offsets,
1735 struct lib_ring_buffer_ctx *ctx)
1736 {
1737 const struct lib_ring_buffer_config *config = &chan->backend.config;
1738 unsigned long reserve_commit_diff, offset_cmp;
1739
1740 retry:
1741 offsets->begin = offset_cmp = v_read(config, &buf->offset);
1742 offsets->old = offsets->begin;
1743 offsets->switch_new_start = 0;
1744 offsets->switch_new_end = 0;
1745 offsets->switch_old_end = 0;
1746 offsets->pre_header_padding = 0;
1747
1748 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1749 if ((int64_t) ctx->tsc == -EIO)
1750 return -EIO;
1751
1752 if (last_tsc_overflow(config, buf, ctx->tsc))
1753 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
1754
1755 if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
1756 offsets->switch_new_start = 1; /* For offsets->begin */
1757 } else {
1758 offsets->size = config->cb.record_header_size(config, chan,
1759 offsets->begin,
1760 &offsets->pre_header_padding,
1761 ctx);
1762 offsets->size +=
1763 lib_ring_buffer_align(offsets->begin + offsets->size,
1764 ctx->largest_align)
1765 + ctx->data_size;
1766 if (unlikely(subbuf_offset(offsets->begin, chan) +
1767 offsets->size > chan->backend.subbuf_size)) {
1768 offsets->switch_old_end = 1; /* For offsets->old */
1769 offsets->switch_new_start = 1; /* For offsets->begin */
1770 }
1771 }
1772 if (unlikely(offsets->switch_new_start)) {
1773 unsigned long sb_index, commit_count;
1774
1775 /*
1776 * We are typically not filling the previous buffer completely.
1777 */
1778 if (likely(offsets->switch_old_end))
1779 offsets->begin = subbuf_align(offsets->begin, chan);
1780 offsets->begin = offsets->begin
1781 + config->cb.subbuffer_header_size();
1782 /* Test new buffer integrity */
1783 sb_index = subbuf_index(offsets->begin, chan);
1784 /*
1785 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
1786 * lib_ring_buffer_check_deliver() has the matching
1787 * memory barriers required around commit_cold cc_sb
1788 * updates to ensure reserve and commit counter updates
1789 * are not seen reordered when updated by another CPU.
1790 */
1791 smp_rmb();
1792 commit_count = v_read(config,
1793 &buf->commit_cold[sb_index].cc_sb);
1794 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
1795 smp_rmb();
1796 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
1797 /*
1798 * The reserve counter have been concurrently updated
1799 * while we read the commit counter. This means the
1800 * commit counter we read might not match buf->offset
1801 * due to concurrent update. We therefore need to retry.
1802 */
1803 goto retry;
1804 }
1805 reserve_commit_diff =
1806 (buf_trunc(offsets->begin, chan)
1807 >> chan->backend.num_subbuf_order)
1808 - (commit_count & chan->commit_count_mask);
1809 if (likely(reserve_commit_diff == 0)) {
1810 /* Next subbuffer not being written to. */
1811 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1812 subbuf_trunc(offsets->begin, chan)
1813 - subbuf_trunc((unsigned long)
1814 atomic_long_read(&buf->consumed), chan)
1815 >= chan->backend.buf_size)) {
1816 /*
1817 * We do not overwrite non consumed buffers
1818 * and we are full : record is lost.
1819 */
1820 v_inc(config, &buf->records_lost_full);
1821 return -ENOBUFS;
1822 } else {
1823 /*
1824 * Next subbuffer not being written to, and we
1825 * are either in overwrite mode or the buffer is
1826 * not full. It's safe to write in this new
1827 * subbuffer.
1828 */
1829 }
1830 } else {
1831 /*
1832 * Next subbuffer reserve offset does not match the
1833 * commit offset, and this did not involve update to the
1834 * reserve counter. Drop record in producer-consumer and
1835 * overwrite mode. Caused by either a writer OOPS or
1836 * too many nested writes over a reserve/commit pair.
1837 */
1838 v_inc(config, &buf->records_lost_wrap);
1839 return -EIO;
1840 }
1841 offsets->size =
1842 config->cb.record_header_size(config, chan,
1843 offsets->begin,
1844 &offsets->pre_header_padding,
1845 ctx);
1846 offsets->size +=
1847 lib_ring_buffer_align(offsets->begin + offsets->size,
1848 ctx->largest_align)
1849 + ctx->data_size;
1850 if (unlikely(subbuf_offset(offsets->begin, chan)
1851 + offsets->size > chan->backend.subbuf_size)) {
1852 /*
1853 * Record too big for subbuffers, report error, don't
1854 * complete the sub-buffer switch.
1855 */
1856 v_inc(config, &buf->records_lost_big);
1857 return -ENOSPC;
1858 } else {
1859 /*
1860 * We just made a successful buffer switch and the
1861 * record fits in the new subbuffer. Let's write.
1862 */
1863 }
1864 } else {
1865 /*
1866 * Record fits in the current buffer and we are not on a switch
1867 * boundary. It's safe to write.
1868 */
1869 }
1870 offsets->end = offsets->begin + offsets->size;
1871
1872 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
1873 /*
1874 * The offset_end will fall at the very beginning of the next
1875 * subbuffer.
1876 */
1877 offsets->switch_new_end = 1; /* For offsets->begin */
1878 }
1879 return 0;
1880 }
1881
1882 static struct lib_ring_buffer *get_current_buf(struct channel *chan, int cpu)
1883 {
1884 const struct lib_ring_buffer_config *config = &chan->backend.config;
1885
1886 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
1887 return per_cpu_ptr(chan->backend.buf, cpu);
1888 else
1889 return chan->backend.buf;
1890 }
1891
1892 void lib_ring_buffer_lost_event_too_big(struct channel *chan)
1893 {
1894 const struct lib_ring_buffer_config *config = &chan->backend.config;
1895 struct lib_ring_buffer *buf = get_current_buf(chan, smp_processor_id());
1896
1897 v_inc(config, &buf->records_lost_big);
1898 }
1899 EXPORT_SYMBOL_GPL(lib_ring_buffer_lost_event_too_big);
1900
1901 /**
1902 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
1903 * @ctx: ring buffer context.
1904 *
1905 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
1906 * -EIO for other errors, else returns 0.
1907 * It will take care of sub-buffer switching.
1908 */
1909 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx)
1910 {
1911 struct channel *chan = ctx->chan;
1912 const struct lib_ring_buffer_config *config = &chan->backend.config;
1913 struct lib_ring_buffer *buf;
1914 struct switch_offsets offsets;
1915 int ret;
1916
1917 ctx->buf = buf = get_current_buf(chan, ctx->cpu);
1918 offsets.size = 0;
1919
1920 do {
1921 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
1922 ctx);
1923 if (unlikely(ret))
1924 return ret;
1925 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
1926 offsets.end)
1927 != offsets.old));
1928
1929 /*
1930 * Atomically update last_tsc. This update races against concurrent
1931 * atomic updates, but the race will always cause supplementary full TSC
1932 * records, never the opposite (missing a full TSC record when it would
1933 * be needed).
1934 */
1935 save_last_tsc(config, buf, ctx->tsc);
1936
1937 /*
1938 * Push the reader if necessary
1939 */
1940 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
1941
1942 /*
1943 * Clear noref flag for this subbuffer.
1944 */
1945 lib_ring_buffer_clear_noref(config, &buf->backend,
1946 subbuf_index(offsets.end - 1, chan));
1947
1948 /*
1949 * Switch old subbuffer if needed.
1950 */
1951 if (unlikely(offsets.switch_old_end)) {
1952 lib_ring_buffer_clear_noref(config, &buf->backend,
1953 subbuf_index(offsets.old - 1, chan));
1954 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
1955 }
1956
1957 /*
1958 * Populate new subbuffer.
1959 */
1960 if (unlikely(offsets.switch_new_start))
1961 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
1962
1963 if (unlikely(offsets.switch_new_end))
1964 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
1965
1966 ctx->slot_size = offsets.size;
1967 ctx->pre_offset = offsets.begin;
1968 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
1969 return 0;
1970 }
1971 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
1972
1973 static
1974 void lib_ring_buffer_vmcore_check_deliver(const struct lib_ring_buffer_config *config,
1975 struct lib_ring_buffer *buf,
1976 unsigned long commit_count,
1977 unsigned long idx)
1978 {
1979 if (config->oops == RING_BUFFER_OOPS_CONSISTENCY)
1980 v_set(config, &buf->commit_hot[idx].seq, commit_count);
1981 }
1982
1983 void lib_ring_buffer_check_deliver_slow(const struct lib_ring_buffer_config *config,
1984 struct lib_ring_buffer *buf,
1985 struct channel *chan,
1986 unsigned long offset,
1987 unsigned long commit_count,
1988 unsigned long idx,
1989 u64 tsc)
1990 {
1991 unsigned long old_commit_count = commit_count
1992 - chan->backend.subbuf_size;
1993
1994 /*
1995 * If we succeeded at updating cc_sb below, we are the subbuffer
1996 * writer delivering the subbuffer. Deals with concurrent
1997 * updates of the "cc" value without adding a add_return atomic
1998 * operation to the fast path.
1999 *
2000 * We are doing the delivery in two steps:
2001 * - First, we cmpxchg() cc_sb to the new value
2002 * old_commit_count + 1. This ensures that we are the only
2003 * subbuffer user successfully filling the subbuffer, but we
2004 * do _not_ set the cc_sb value to "commit_count" yet.
2005 * Therefore, other writers that would wrap around the ring
2006 * buffer and try to start writing to our subbuffer would
2007 * have to drop records, because it would appear as
2008 * non-filled.
2009 * We therefore have exclusive access to the subbuffer control
2010 * structures. This mutual exclusion with other writers is
2011 * crucially important to perform record overruns count in
2012 * flight recorder mode locklessly.
2013 * - When we are ready to release the subbuffer (either for
2014 * reading or for overrun by other writers), we simply set the
2015 * cc_sb value to "commit_count" and perform delivery.
2016 *
2017 * The subbuffer size is least 2 bytes (minimum size: 1 page).
2018 * This guarantees that old_commit_count + 1 != commit_count.
2019 */
2020
2021 /*
2022 * Order prior updates to reserve count prior to the
2023 * commit_cold cc_sb update.
2024 */
2025 smp_wmb();
2026 if (likely(v_cmpxchg(config, &buf->commit_cold[idx].cc_sb,
2027 old_commit_count, old_commit_count + 1)
2028 == old_commit_count)) {
2029 /*
2030 * Start of exclusive subbuffer access. We are
2031 * guaranteed to be the last writer in this subbuffer
2032 * and any other writer trying to access this subbuffer
2033 * in this state is required to drop records.
2034 */
2035 v_add(config,
2036 subbuffer_get_records_count(config,
2037 &buf->backend, idx),
2038 &buf->records_count);
2039 v_add(config,
2040 subbuffer_count_records_overrun(config,
2041 &buf->backend,
2042 idx),
2043 &buf->records_overrun);
2044 config->cb.buffer_end(buf, tsc, idx,
2045 lib_ring_buffer_get_data_size(config,
2046 buf,
2047 idx));
2048
2049 /*
2050 * Increment the packet counter while we have exclusive
2051 * access.
2052 */
2053 subbuffer_inc_packet_count(config, &buf->backend, idx);
2054
2055 /*
2056 * Set noref flag and offset for this subbuffer id.
2057 * Contains a memory barrier that ensures counter stores
2058 * are ordered before set noref and offset.
2059 */
2060 lib_ring_buffer_set_noref_offset(config, &buf->backend, idx,
2061 buf_trunc_val(offset, chan));
2062
2063 /*
2064 * Order set_noref and record counter updates before the
2065 * end of subbuffer exclusive access. Orders with
2066 * respect to writers coming into the subbuffer after
2067 * wrap around, and also order wrt concurrent readers.
2068 */
2069 smp_mb();
2070 /* End of exclusive subbuffer access */
2071 v_set(config, &buf->commit_cold[idx].cc_sb,
2072 commit_count);
2073 /*
2074 * Order later updates to reserve count after
2075 * the commit_cold cc_sb update.
2076 */
2077 smp_wmb();
2078 lib_ring_buffer_vmcore_check_deliver(config, buf,
2079 commit_count, idx);
2080
2081 /*
2082 * RING_BUFFER_WAKEUP_BY_WRITER wakeup is not lock-free.
2083 */
2084 if (config->wakeup == RING_BUFFER_WAKEUP_BY_WRITER
2085 && atomic_long_read(&buf->active_readers)
2086 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
2087 wake_up_interruptible(&buf->read_wait);
2088 wake_up_interruptible(&chan->read_wait);
2089 }
2090
2091 }
2092 }
2093 EXPORT_SYMBOL_GPL(lib_ring_buffer_check_deliver_slow);
2094
2095 int __init init_lib_ring_buffer_frontend(void)
2096 {
2097 int cpu;
2098
2099 for_each_possible_cpu(cpu)
2100 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
2101 return 0;
2102 }
2103
2104 module_init(init_lib_ring_buffer_frontend);
2105
2106 void __exit exit_lib_ring_buffer_frontend(void)
2107 {
2108 }
2109
2110 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.11608 seconds and 5 git commands to generate.