Cleanup: Move lib/ringbuffer/ headers to include/ringbuffer/
[lttng-modules.git] / lib / ringbuffer / ring_buffer_frontend.c
1 /* SPDX-License-Identifier: (GPL-2.0-only OR LGPL-2.1-only)
2 *
3 * ring_buffer_frontend.c
4 *
5 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
6 *
7 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
8 * recorder (overwrite) modes. See thesis:
9 *
10 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
11 * dissertation, Ecole Polytechnique de Montreal.
12 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
13 *
14 * - Algorithm presentation in Chapter 5:
15 * "Lockless Multi-Core High-Throughput Buffering".
16 * - Algorithm formal verification in Section 8.6:
17 * "Formal verification of LTTng"
18 *
19 * Author:
20 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
21 *
22 * Inspired from LTT and RelayFS:
23 * Karim Yaghmour <karim@opersys.com>
24 * Tom Zanussi <zanussi@us.ibm.com>
25 * Bob Wisniewski <bob@watson.ibm.com>
26 * And from K42 :
27 * Bob Wisniewski <bob@watson.ibm.com>
28 *
29 * Buffer reader semantic :
30 *
31 * - get_subbuf_size
32 * while buffer is not finalized and empty
33 * - get_subbuf
34 * - if return value != 0, continue
35 * - splice one subbuffer worth of data to a pipe
36 * - splice the data from pipe to disk/network
37 * - put_subbuf
38 */
39
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/percpu.h>
43 #include <asm/cacheflush.h>
44
45 #include <ringbuffer/config.h>
46 #include <ringbuffer/backend.h>
47 #include <ringbuffer/frontend.h>
48 #include <ringbuffer/iterator.h>
49 #include <ringbuffer/nohz.h>
50 #include <wrapper/atomic.h>
51 #include <wrapper/kref.h>
52 #include <wrapper/percpu-defs.h>
53 #include <wrapper/timer.h>
54 #include <wrapper/vmalloc.h>
55
56 /*
57 * Internal structure representing offsets to use at a sub-buffer switch.
58 */
59 struct switch_offsets {
60 unsigned long begin, end, old;
61 size_t pre_header_padding, size;
62 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
63 switch_old_end:1;
64 };
65
66 #ifdef CONFIG_NO_HZ
67 enum tick_nohz_val {
68 TICK_NOHZ_STOP,
69 TICK_NOHZ_FLUSH,
70 TICK_NOHZ_RESTART,
71 };
72
73 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
74 #endif /* CONFIG_NO_HZ */
75
76 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
77
78 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
79 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
80
81 static
82 void lib_ring_buffer_print_errors(struct channel *chan,
83 struct lib_ring_buffer *buf, int cpu);
84 static
85 void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
86 enum switch_mode mode);
87
88 static
89 int lib_ring_buffer_poll_deliver(const struct lib_ring_buffer_config *config,
90 struct lib_ring_buffer *buf,
91 struct channel *chan)
92 {
93 unsigned long consumed_old, consumed_idx, commit_count, write_offset;
94
95 consumed_old = atomic_long_read(&buf->consumed);
96 consumed_idx = subbuf_index(consumed_old, chan);
97 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
98 /*
99 * No memory barrier here, since we are only interested
100 * in a statistically correct polling result. The next poll will
101 * get the data is we are racing. The mb() that ensures correct
102 * memory order is in get_subbuf.
103 */
104 write_offset = v_read(config, &buf->offset);
105
106 /*
107 * Check that the subbuffer we are trying to consume has been
108 * already fully committed.
109 */
110
111 if (((commit_count - chan->backend.subbuf_size)
112 & chan->commit_count_mask)
113 - (buf_trunc(consumed_old, chan)
114 >> chan->backend.num_subbuf_order)
115 != 0)
116 return 0;
117
118 /*
119 * Check that we are not about to read the same subbuffer in
120 * which the writer head is.
121 */
122 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_old, chan)
123 == 0)
124 return 0;
125
126 return 1;
127 }
128
129 /*
130 * Must be called under cpu hotplug protection.
131 */
132 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
133 {
134 struct channel *chan = buf->backend.chan;
135
136 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
137 lttng_kvfree(buf->commit_hot);
138 lttng_kvfree(buf->commit_cold);
139 lttng_kvfree(buf->ts_end);
140
141 lib_ring_buffer_backend_free(&buf->backend);
142 }
143
144 /**
145 * lib_ring_buffer_reset - Reset ring buffer to initial values.
146 * @buf: Ring buffer.
147 *
148 * Effectively empty the ring buffer. Should be called when the buffer is not
149 * used for writing. The ring buffer can be opened for reading, but the reader
150 * should not be using the iterator concurrently with reset. The previous
151 * current iterator record is reset.
152 */
153 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
154 {
155 struct channel *chan = buf->backend.chan;
156 const struct lib_ring_buffer_config *config = &chan->backend.config;
157 unsigned int i;
158
159 /*
160 * Reset iterator first. It will put the subbuffer if it currently holds
161 * it.
162 */
163 lib_ring_buffer_iterator_reset(buf);
164 v_set(config, &buf->offset, 0);
165 for (i = 0; i < chan->backend.num_subbuf; i++) {
166 v_set(config, &buf->commit_hot[i].cc, 0);
167 v_set(config, &buf->commit_hot[i].seq, 0);
168 v_set(config, &buf->commit_cold[i].cc_sb, 0);
169 buf->ts_end[i] = 0;
170 }
171 atomic_long_set(&buf->consumed, 0);
172 atomic_set(&buf->record_disabled, 0);
173 v_set(config, &buf->last_tsc, 0);
174 lib_ring_buffer_backend_reset(&buf->backend);
175 /* Don't reset number of active readers */
176 v_set(config, &buf->records_lost_full, 0);
177 v_set(config, &buf->records_lost_wrap, 0);
178 v_set(config, &buf->records_lost_big, 0);
179 v_set(config, &buf->records_count, 0);
180 v_set(config, &buf->records_overrun, 0);
181 buf->finalized = 0;
182 }
183 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
184
185 /**
186 * channel_reset - Reset channel to initial values.
187 * @chan: Channel.
188 *
189 * Effectively empty the channel. Should be called when the channel is not used
190 * for writing. The channel can be opened for reading, but the reader should not
191 * be using the iterator concurrently with reset. The previous current iterator
192 * record is reset.
193 */
194 void channel_reset(struct channel *chan)
195 {
196 /*
197 * Reset iterators first. Will put the subbuffer if held for reading.
198 */
199 channel_iterator_reset(chan);
200 atomic_set(&chan->record_disabled, 0);
201 /* Don't reset commit_count_mask, still valid */
202 channel_backend_reset(&chan->backend);
203 /* Don't reset switch/read timer interval */
204 /* Don't reset notifiers and notifier enable bits */
205 /* Don't reset reader reference count */
206 }
207 EXPORT_SYMBOL_GPL(channel_reset);
208
209 /*
210 * Must be called under cpu hotplug protection.
211 */
212 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
213 struct channel_backend *chanb, int cpu)
214 {
215 const struct lib_ring_buffer_config *config = &chanb->config;
216 struct channel *chan = container_of(chanb, struct channel, backend);
217 void *priv = chanb->priv;
218 size_t subbuf_header_size;
219 u64 tsc;
220 int ret;
221
222 /* Test for cpu hotplug */
223 if (buf->backend.allocated)
224 return 0;
225
226 /*
227 * Paranoia: per cpu dynamic allocation is not officially documented as
228 * zeroing the memory, so let's do it here too, just in case.
229 */
230 memset(buf, 0, sizeof(*buf));
231
232 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
233 if (ret)
234 return ret;
235
236 buf->commit_hot =
237 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_hot)
238 * chan->backend.num_subbuf,
239 1 << INTERNODE_CACHE_SHIFT),
240 GFP_KERNEL | __GFP_NOWARN,
241 cpu_to_node(max(cpu, 0)));
242 if (!buf->commit_hot) {
243 ret = -ENOMEM;
244 goto free_chanbuf;
245 }
246
247 buf->commit_cold =
248 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_cold)
249 * chan->backend.num_subbuf,
250 1 << INTERNODE_CACHE_SHIFT),
251 GFP_KERNEL | __GFP_NOWARN,
252 cpu_to_node(max(cpu, 0)));
253 if (!buf->commit_cold) {
254 ret = -ENOMEM;
255 goto free_commit;
256 }
257
258 buf->ts_end =
259 lttng_kvzalloc_node(ALIGN(sizeof(*buf->ts_end)
260 * chan->backend.num_subbuf,
261 1 << INTERNODE_CACHE_SHIFT),
262 GFP_KERNEL | __GFP_NOWARN,
263 cpu_to_node(max(cpu, 0)));
264 if (!buf->ts_end) {
265 ret = -ENOMEM;
266 goto free_commit_cold;
267 }
268
269 init_waitqueue_head(&buf->read_wait);
270 init_waitqueue_head(&buf->write_wait);
271 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
272
273 /*
274 * Write the subbuffer header for first subbuffer so we know the total
275 * duration of data gathering.
276 */
277 subbuf_header_size = config->cb.subbuffer_header_size();
278 v_set(config, &buf->offset, subbuf_header_size);
279 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
280 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
281 config->cb.buffer_begin(buf, tsc, 0);
282 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
283
284 if (config->cb.buffer_create) {
285 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
286 if (ret)
287 goto free_init;
288 }
289
290 /*
291 * Ensure the buffer is ready before setting it to allocated and setting
292 * the cpumask.
293 * Used for cpu hotplug vs cpumask iteration.
294 */
295 smp_wmb();
296 buf->backend.allocated = 1;
297
298 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
299 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
300 chan->backend.cpumask));
301 cpumask_set_cpu(cpu, chan->backend.cpumask);
302 }
303
304 return 0;
305
306 /* Error handling */
307 free_init:
308 lttng_kvfree(buf->ts_end);
309 free_commit_cold:
310 lttng_kvfree(buf->commit_cold);
311 free_commit:
312 lttng_kvfree(buf->commit_hot);
313 free_chanbuf:
314 lib_ring_buffer_backend_free(&buf->backend);
315 return ret;
316 }
317
318 static void switch_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
319 {
320 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, switch_timer);
321 struct channel *chan = buf->backend.chan;
322 const struct lib_ring_buffer_config *config = &chan->backend.config;
323
324 /*
325 * Only flush buffers periodically if readers are active.
326 */
327 if (atomic_long_read(&buf->active_readers))
328 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
329
330 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
331 lttng_mod_timer_pinned(&buf->switch_timer,
332 jiffies + chan->switch_timer_interval);
333 else
334 mod_timer(&buf->switch_timer,
335 jiffies + chan->switch_timer_interval);
336 }
337
338 /*
339 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
340 */
341 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
342 {
343 struct channel *chan = buf->backend.chan;
344 const struct lib_ring_buffer_config *config = &chan->backend.config;
345 unsigned int flags = 0;
346
347 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
348 return;
349
350 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
351 flags = LTTNG_TIMER_PINNED;
352
353 lttng_timer_setup(&buf->switch_timer, switch_buffer_timer, flags, buf);
354 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
355
356 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
357 add_timer_on(&buf->switch_timer, buf->backend.cpu);
358 else
359 add_timer(&buf->switch_timer);
360
361 buf->switch_timer_enabled = 1;
362 }
363
364 /*
365 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
366 */
367 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
368 {
369 struct channel *chan = buf->backend.chan;
370
371 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
372 return;
373
374 del_timer_sync(&buf->switch_timer);
375 buf->switch_timer_enabled = 0;
376 }
377
378 /*
379 * Polling timer to check the channels for data.
380 */
381 static void read_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
382 {
383 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, read_timer);
384 struct channel *chan = buf->backend.chan;
385 const struct lib_ring_buffer_config *config = &chan->backend.config;
386
387 CHAN_WARN_ON(chan, !buf->backend.allocated);
388
389 if (atomic_long_read(&buf->active_readers)
390 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
391 wake_up_interruptible(&buf->read_wait);
392 wake_up_interruptible(&chan->read_wait);
393 }
394
395 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
396 lttng_mod_timer_pinned(&buf->read_timer,
397 jiffies + chan->read_timer_interval);
398 else
399 mod_timer(&buf->read_timer,
400 jiffies + chan->read_timer_interval);
401 }
402
403 /*
404 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
405 */
406 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
407 {
408 struct channel *chan = buf->backend.chan;
409 const struct lib_ring_buffer_config *config = &chan->backend.config;
410 unsigned int flags = 0;
411
412 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
413 || !chan->read_timer_interval
414 || buf->read_timer_enabled)
415 return;
416
417 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
418 flags = LTTNG_TIMER_PINNED;
419
420 lttng_timer_setup(&buf->read_timer, read_buffer_timer, flags, buf);
421 buf->read_timer.expires = jiffies + chan->read_timer_interval;
422
423 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
424 add_timer_on(&buf->read_timer, buf->backend.cpu);
425 else
426 add_timer(&buf->read_timer);
427
428 buf->read_timer_enabled = 1;
429 }
430
431 /*
432 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
433 */
434 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
435 {
436 struct channel *chan = buf->backend.chan;
437 const struct lib_ring_buffer_config *config = &chan->backend.config;
438
439 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
440 || !chan->read_timer_interval
441 || !buf->read_timer_enabled)
442 return;
443
444 del_timer_sync(&buf->read_timer);
445 /*
446 * do one more check to catch data that has been written in the last
447 * timer period.
448 */
449 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
450 wake_up_interruptible(&buf->read_wait);
451 wake_up_interruptible(&chan->read_wait);
452 }
453 buf->read_timer_enabled = 0;
454 }
455
456 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
457
458 enum cpuhp_state lttng_rb_hp_prepare;
459 enum cpuhp_state lttng_rb_hp_online;
460
461 void lttng_rb_set_hp_prepare(enum cpuhp_state val)
462 {
463 lttng_rb_hp_prepare = val;
464 }
465 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_prepare);
466
467 void lttng_rb_set_hp_online(enum cpuhp_state val)
468 {
469 lttng_rb_hp_online = val;
470 }
471 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_online);
472
473 int lttng_cpuhp_rb_frontend_dead(unsigned int cpu,
474 struct lttng_cpuhp_node *node)
475 {
476 struct channel *chan = container_of(node, struct channel,
477 cpuhp_prepare);
478 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
479 const struct lib_ring_buffer_config *config = &chan->backend.config;
480
481 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
482
483 /*
484 * Performing a buffer switch on a remote CPU. Performed by
485 * the CPU responsible for doing the hotunplug after the target
486 * CPU stopped running completely. Ensures that all data
487 * from that remote CPU is flushed.
488 */
489 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
490 return 0;
491 }
492 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_dead);
493
494 int lttng_cpuhp_rb_frontend_online(unsigned int cpu,
495 struct lttng_cpuhp_node *node)
496 {
497 struct channel *chan = container_of(node, struct channel,
498 cpuhp_online);
499 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
500 const struct lib_ring_buffer_config *config = &chan->backend.config;
501
502 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
503
504 wake_up_interruptible(&chan->hp_wait);
505 lib_ring_buffer_start_switch_timer(buf);
506 lib_ring_buffer_start_read_timer(buf);
507 return 0;
508 }
509 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_online);
510
511 int lttng_cpuhp_rb_frontend_offline(unsigned int cpu,
512 struct lttng_cpuhp_node *node)
513 {
514 struct channel *chan = container_of(node, struct channel,
515 cpuhp_online);
516 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
517 const struct lib_ring_buffer_config *config = &chan->backend.config;
518
519 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
520
521 lib_ring_buffer_stop_switch_timer(buf);
522 lib_ring_buffer_stop_read_timer(buf);
523 return 0;
524 }
525 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_offline);
526
527 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
528
529 #ifdef CONFIG_HOTPLUG_CPU
530
531 /**
532 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
533 * @nb: notifier block
534 * @action: hotplug action to take
535 * @hcpu: CPU number
536 *
537 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
538 */
539 static
540 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
541 unsigned long action,
542 void *hcpu)
543 {
544 unsigned int cpu = (unsigned long)hcpu;
545 struct channel *chan = container_of(nb, struct channel,
546 cpu_hp_notifier);
547 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
548 const struct lib_ring_buffer_config *config = &chan->backend.config;
549
550 if (!chan->cpu_hp_enable)
551 return NOTIFY_DONE;
552
553 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
554
555 switch (action) {
556 case CPU_DOWN_FAILED:
557 case CPU_DOWN_FAILED_FROZEN:
558 case CPU_ONLINE:
559 case CPU_ONLINE_FROZEN:
560 wake_up_interruptible(&chan->hp_wait);
561 lib_ring_buffer_start_switch_timer(buf);
562 lib_ring_buffer_start_read_timer(buf);
563 return NOTIFY_OK;
564
565 case CPU_DOWN_PREPARE:
566 case CPU_DOWN_PREPARE_FROZEN:
567 lib_ring_buffer_stop_switch_timer(buf);
568 lib_ring_buffer_stop_read_timer(buf);
569 return NOTIFY_OK;
570
571 case CPU_DEAD:
572 case CPU_DEAD_FROZEN:
573 /*
574 * Performing a buffer switch on a remote CPU. Performed by
575 * the CPU responsible for doing the hotunplug after the target
576 * CPU stopped running completely. Ensures that all data
577 * from that remote CPU is flushed.
578 */
579 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
580 return NOTIFY_OK;
581
582 default:
583 return NOTIFY_DONE;
584 }
585 }
586
587 #endif
588
589 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
590
591 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
592 /*
593 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
594 * that wake-up-tracing generated events are flushed before going idle (in
595 * tick_nohz). We test if the spinlock is locked to deal with the race where
596 * readers try to sample the ring buffer before we perform the switch. We let
597 * the readers retry in that case. If there is data in the buffer, the wake up
598 * is going to forbid the CPU running the reader thread from going idle.
599 */
600 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
601 unsigned long val,
602 void *data)
603 {
604 struct channel *chan = container_of(nb, struct channel,
605 tick_nohz_notifier);
606 const struct lib_ring_buffer_config *config = &chan->backend.config;
607 struct lib_ring_buffer *buf;
608 int cpu = smp_processor_id();
609
610 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
611 /*
612 * We don't support keeping the system idle with global buffers
613 * and streaming active. In order to do so, we would need to
614 * sample a non-nohz-cpumask racelessly with the nohz updates
615 * without adding synchronization overhead to nohz. Leave this
616 * use-case out for now.
617 */
618 return 0;
619 }
620
621 buf = channel_get_ring_buffer(config, chan, cpu);
622 switch (val) {
623 case TICK_NOHZ_FLUSH:
624 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
625 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
626 && chan->read_timer_interval
627 && atomic_long_read(&buf->active_readers)
628 && (lib_ring_buffer_poll_deliver(config, buf, chan)
629 || lib_ring_buffer_pending_data(config, buf, chan))) {
630 wake_up_interruptible(&buf->read_wait);
631 wake_up_interruptible(&chan->read_wait);
632 }
633 if (chan->switch_timer_interval)
634 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
635 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
636 break;
637 case TICK_NOHZ_STOP:
638 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
639 lib_ring_buffer_stop_switch_timer(buf);
640 lib_ring_buffer_stop_read_timer(buf);
641 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
642 break;
643 case TICK_NOHZ_RESTART:
644 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
645 lib_ring_buffer_start_read_timer(buf);
646 lib_ring_buffer_start_switch_timer(buf);
647 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
648 break;
649 }
650
651 return 0;
652 }
653
654 void notrace lib_ring_buffer_tick_nohz_flush(void)
655 {
656 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
657 NULL);
658 }
659
660 void notrace lib_ring_buffer_tick_nohz_stop(void)
661 {
662 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
663 NULL);
664 }
665
666 void notrace lib_ring_buffer_tick_nohz_restart(void)
667 {
668 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
669 NULL);
670 }
671 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
672
673 /*
674 * Holds CPU hotplug.
675 */
676 static void channel_unregister_notifiers(struct channel *chan)
677 {
678 const struct lib_ring_buffer_config *config = &chan->backend.config;
679
680 channel_iterator_unregister_notifiers(chan);
681 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
682 #ifdef CONFIG_NO_HZ
683 /*
684 * Remove the nohz notifier first, so we are certain we stop
685 * the timers.
686 */
687 atomic_notifier_chain_unregister(&tick_nohz_notifier,
688 &chan->tick_nohz_notifier);
689 /*
690 * ring_buffer_nohz_lock will not be needed below, because
691 * we just removed the notifiers, which were the only source of
692 * concurrency.
693 */
694 #endif /* CONFIG_NO_HZ */
695 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
696 {
697 int ret;
698
699 ret = cpuhp_state_remove_instance(lttng_rb_hp_online,
700 &chan->cpuhp_online.node);
701 WARN_ON(ret);
702 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
703 &chan->cpuhp_prepare.node);
704 WARN_ON(ret);
705 }
706 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
707 {
708 int cpu;
709
710 #ifdef CONFIG_HOTPLUG_CPU
711 get_online_cpus();
712 chan->cpu_hp_enable = 0;
713 for_each_online_cpu(cpu) {
714 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
715 cpu);
716 lib_ring_buffer_stop_switch_timer(buf);
717 lib_ring_buffer_stop_read_timer(buf);
718 }
719 put_online_cpus();
720 unregister_cpu_notifier(&chan->cpu_hp_notifier);
721 #else
722 for_each_possible_cpu(cpu) {
723 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
724 cpu);
725 lib_ring_buffer_stop_switch_timer(buf);
726 lib_ring_buffer_stop_read_timer(buf);
727 }
728 #endif
729 }
730 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
731 } else {
732 struct lib_ring_buffer *buf = chan->backend.buf;
733
734 lib_ring_buffer_stop_switch_timer(buf);
735 lib_ring_buffer_stop_read_timer(buf);
736 }
737 channel_backend_unregister_notifiers(&chan->backend);
738 }
739
740 static void lib_ring_buffer_set_quiescent(struct lib_ring_buffer *buf)
741 {
742 if (!buf->quiescent) {
743 buf->quiescent = true;
744 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
745 }
746 }
747
748 static void lib_ring_buffer_clear_quiescent(struct lib_ring_buffer *buf)
749 {
750 buf->quiescent = false;
751 }
752
753 void lib_ring_buffer_set_quiescent_channel(struct channel *chan)
754 {
755 int cpu;
756 const struct lib_ring_buffer_config *config = &chan->backend.config;
757
758 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
759 get_online_cpus();
760 for_each_channel_cpu(cpu, chan) {
761 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
762 cpu);
763
764 lib_ring_buffer_set_quiescent(buf);
765 }
766 put_online_cpus();
767 } else {
768 struct lib_ring_buffer *buf = chan->backend.buf;
769
770 lib_ring_buffer_set_quiescent(buf);
771 }
772 }
773 EXPORT_SYMBOL_GPL(lib_ring_buffer_set_quiescent_channel);
774
775 void lib_ring_buffer_clear_quiescent_channel(struct channel *chan)
776 {
777 int cpu;
778 const struct lib_ring_buffer_config *config = &chan->backend.config;
779
780 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
781 get_online_cpus();
782 for_each_channel_cpu(cpu, chan) {
783 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
784 cpu);
785
786 lib_ring_buffer_clear_quiescent(buf);
787 }
788 put_online_cpus();
789 } else {
790 struct lib_ring_buffer *buf = chan->backend.buf;
791
792 lib_ring_buffer_clear_quiescent(buf);
793 }
794 }
795 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear_quiescent_channel);
796
797 static void channel_free(struct channel *chan)
798 {
799 if (chan->backend.release_priv_ops) {
800 chan->backend.release_priv_ops(chan->backend.priv_ops);
801 }
802 channel_iterator_free(chan);
803 channel_backend_free(&chan->backend);
804 kfree(chan);
805 }
806
807 /**
808 * channel_create - Create channel.
809 * @config: ring buffer instance configuration
810 * @name: name of the channel
811 * @priv: ring buffer client private data
812 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
813 * address mapping. It is used only by RING_BUFFER_STATIC
814 * configuration. It can be set to NULL for other backends.
815 * @subbuf_size: subbuffer size
816 * @num_subbuf: number of subbuffers
817 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
818 * padding to let readers get those sub-buffers.
819 * Used for live streaming.
820 * @read_timer_interval: Time interval (in us) to wake up pending readers.
821 *
822 * Holds cpu hotplug.
823 * Returns NULL on failure.
824 */
825 struct channel *channel_create(const struct lib_ring_buffer_config *config,
826 const char *name, void *priv, void *buf_addr,
827 size_t subbuf_size,
828 size_t num_subbuf, unsigned int switch_timer_interval,
829 unsigned int read_timer_interval)
830 {
831 int ret;
832 struct channel *chan;
833
834 if (lib_ring_buffer_check_config(config, switch_timer_interval,
835 read_timer_interval))
836 return NULL;
837
838 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
839 if (!chan)
840 return NULL;
841
842 ret = channel_backend_init(&chan->backend, name, config, priv,
843 subbuf_size, num_subbuf);
844 if (ret)
845 goto error;
846
847 ret = channel_iterator_init(chan);
848 if (ret)
849 goto error_free_backend;
850
851 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
852 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
853 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
854 kref_init(&chan->ref);
855 init_waitqueue_head(&chan->read_wait);
856 init_waitqueue_head(&chan->hp_wait);
857
858 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
859 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
860 chan->cpuhp_prepare.component = LTTNG_RING_BUFFER_FRONTEND;
861 ret = cpuhp_state_add_instance_nocalls(lttng_rb_hp_prepare,
862 &chan->cpuhp_prepare.node);
863 if (ret)
864 goto cpuhp_prepare_error;
865
866 chan->cpuhp_online.component = LTTNG_RING_BUFFER_FRONTEND;
867 ret = cpuhp_state_add_instance(lttng_rb_hp_online,
868 &chan->cpuhp_online.node);
869 if (ret)
870 goto cpuhp_online_error;
871 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
872 {
873 int cpu;
874 /*
875 * In case of non-hotplug cpu, if the ring-buffer is allocated
876 * in early initcall, it will not be notified of secondary cpus.
877 * In that off case, we need to allocate for all possible cpus.
878 */
879 #ifdef CONFIG_HOTPLUG_CPU
880 chan->cpu_hp_notifier.notifier_call =
881 lib_ring_buffer_cpu_hp_callback;
882 chan->cpu_hp_notifier.priority = 6;
883 register_cpu_notifier(&chan->cpu_hp_notifier);
884
885 get_online_cpus();
886 for_each_online_cpu(cpu) {
887 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
888 cpu);
889 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
890 lib_ring_buffer_start_switch_timer(buf);
891 lib_ring_buffer_start_read_timer(buf);
892 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
893 }
894 chan->cpu_hp_enable = 1;
895 put_online_cpus();
896 #else
897 for_each_possible_cpu(cpu) {
898 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
899 cpu);
900 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
901 lib_ring_buffer_start_switch_timer(buf);
902 lib_ring_buffer_start_read_timer(buf);
903 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
904 }
905 #endif
906 }
907 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
908
909 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
910 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
911 chan->tick_nohz_notifier.notifier_call =
912 ring_buffer_tick_nohz_callback;
913 chan->tick_nohz_notifier.priority = ~0U;
914 atomic_notifier_chain_register(&tick_nohz_notifier,
915 &chan->tick_nohz_notifier);
916 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
917
918 } else {
919 struct lib_ring_buffer *buf = chan->backend.buf;
920
921 lib_ring_buffer_start_switch_timer(buf);
922 lib_ring_buffer_start_read_timer(buf);
923 }
924
925 return chan;
926
927 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
928 cpuhp_online_error:
929 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
930 &chan->cpuhp_prepare.node);
931 WARN_ON(ret);
932 cpuhp_prepare_error:
933 #endif /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
934 error_free_backend:
935 channel_backend_free(&chan->backend);
936 error:
937 kfree(chan);
938 return NULL;
939 }
940 EXPORT_SYMBOL_GPL(channel_create);
941
942 static
943 void channel_release(struct kref *kref)
944 {
945 struct channel *chan = container_of(kref, struct channel, ref);
946 channel_free(chan);
947 }
948
949 /**
950 * channel_destroy - Finalize, wait for q.s. and destroy channel.
951 * @chan: channel to destroy
952 *
953 * Holds cpu hotplug.
954 * Call "destroy" callback, finalize channels, and then decrement the
955 * channel reference count. Note that when readers have completed data
956 * consumption of finalized channels, get_subbuf() will return -ENODATA.
957 * They should release their handle at that point. Returns the private
958 * data pointer.
959 */
960 void *channel_destroy(struct channel *chan)
961 {
962 int cpu;
963 const struct lib_ring_buffer_config *config = &chan->backend.config;
964 void *priv;
965
966 channel_unregister_notifiers(chan);
967
968 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
969 /*
970 * No need to hold cpu hotplug, because all notifiers have been
971 * unregistered.
972 */
973 for_each_channel_cpu(cpu, chan) {
974 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
975 cpu);
976
977 if (config->cb.buffer_finalize)
978 config->cb.buffer_finalize(buf,
979 chan->backend.priv,
980 cpu);
981 /*
982 * Perform flush before writing to finalized.
983 */
984 smp_wmb();
985 WRITE_ONCE(buf->finalized, 1);
986 wake_up_interruptible(&buf->read_wait);
987 }
988 } else {
989 struct lib_ring_buffer *buf = chan->backend.buf;
990
991 if (config->cb.buffer_finalize)
992 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
993 /*
994 * Perform flush before writing to finalized.
995 */
996 smp_wmb();
997 WRITE_ONCE(buf->finalized, 1);
998 wake_up_interruptible(&buf->read_wait);
999 }
1000 WRITE_ONCE(chan->finalized, 1);
1001 wake_up_interruptible(&chan->hp_wait);
1002 wake_up_interruptible(&chan->read_wait);
1003 priv = chan->backend.priv;
1004 kref_put(&chan->ref, channel_release);
1005 return priv;
1006 }
1007 EXPORT_SYMBOL_GPL(channel_destroy);
1008
1009 struct lib_ring_buffer *channel_get_ring_buffer(
1010 const struct lib_ring_buffer_config *config,
1011 struct channel *chan, int cpu)
1012 {
1013 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
1014 return chan->backend.buf;
1015 else
1016 return per_cpu_ptr(chan->backend.buf, cpu);
1017 }
1018 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
1019
1020 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
1021 {
1022 struct channel *chan = buf->backend.chan;
1023
1024 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
1025 return -EBUSY;
1026 if (!lttng_kref_get(&chan->ref)) {
1027 atomic_long_dec(&buf->active_readers);
1028 return -EOVERFLOW;
1029 }
1030 lttng_smp_mb__after_atomic();
1031 return 0;
1032 }
1033 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
1034
1035 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
1036 {
1037 struct channel *chan = buf->backend.chan;
1038
1039 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1040 lttng_smp_mb__before_atomic();
1041 atomic_long_dec(&buf->active_readers);
1042 kref_put(&chan->ref, channel_release);
1043 }
1044 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
1045
1046 /*
1047 * Promote compiler barrier to a smp_mb().
1048 * For the specific ring buffer case, this IPI call should be removed if the
1049 * architecture does not reorder writes. This should eventually be provided by
1050 * a separate architecture-specific infrastructure.
1051 */
1052 static void remote_mb(void *info)
1053 {
1054 smp_mb();
1055 }
1056
1057 /**
1058 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
1059 * @buf: ring buffer
1060 * @consumed: consumed count indicating the position where to read
1061 * @produced: produced count, indicates position when to stop reading
1062 *
1063 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1064 * data to read at consumed position, or 0 if the get operation succeeds.
1065 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1066 */
1067
1068 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
1069 unsigned long *consumed, unsigned long *produced)
1070 {
1071 struct channel *chan = buf->backend.chan;
1072 const struct lib_ring_buffer_config *config = &chan->backend.config;
1073 unsigned long consumed_cur, write_offset;
1074 int finalized;
1075
1076 retry:
1077 finalized = READ_ONCE(buf->finalized);
1078 /*
1079 * Read finalized before counters.
1080 */
1081 smp_rmb();
1082 consumed_cur = atomic_long_read(&buf->consumed);
1083 /*
1084 * No need to issue a memory barrier between consumed count read and
1085 * write offset read, because consumed count can only change
1086 * concurrently in overwrite mode, and we keep a sequence counter
1087 * identifier derived from the write offset to check we are getting
1088 * the same sub-buffer we are expecting (the sub-buffers are atomically
1089 * "tagged" upon writes, tags are checked upon read).
1090 */
1091 write_offset = v_read(config, &buf->offset);
1092
1093 /*
1094 * Check that we are not about to read the same subbuffer in
1095 * which the writer head is.
1096 */
1097 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1098 == 0)
1099 goto nodata;
1100
1101 *consumed = consumed_cur;
1102 *produced = subbuf_trunc(write_offset, chan);
1103
1104 return 0;
1105
1106 nodata:
1107 /*
1108 * The memory barriers __wait_event()/wake_up_interruptible() take care
1109 * of "raw_spin_is_locked" memory ordering.
1110 */
1111 if (finalized)
1112 return -ENODATA;
1113 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1114 goto retry;
1115 else
1116 return -EAGAIN;
1117 }
1118 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
1119
1120 /**
1121 * Performs the same function as lib_ring_buffer_snapshot(), but the positions
1122 * are saved regardless of whether the consumed and produced positions are
1123 * in the same subbuffer.
1124 * @buf: ring buffer
1125 * @consumed: consumed byte count indicating the last position read
1126 * @produced: produced byte count indicating the last position written
1127 *
1128 * This function is meant to provide information on the exact producer and
1129 * consumer positions without regard for the "snapshot" feature.
1130 */
1131 int lib_ring_buffer_snapshot_sample_positions(struct lib_ring_buffer *buf,
1132 unsigned long *consumed, unsigned long *produced)
1133 {
1134 struct channel *chan = buf->backend.chan;
1135 const struct lib_ring_buffer_config *config = &chan->backend.config;
1136
1137 smp_rmb();
1138 *consumed = atomic_long_read(&buf->consumed);
1139 /*
1140 * No need to issue a memory barrier between consumed count read and
1141 * write offset read, because consumed count can only change
1142 * concurrently in overwrite mode, and we keep a sequence counter
1143 * identifier derived from the write offset to check we are getting
1144 * the same sub-buffer we are expecting (the sub-buffers are atomically
1145 * "tagged" upon writes, tags are checked upon read).
1146 */
1147 *produced = v_read(config, &buf->offset);
1148 return 0;
1149 }
1150
1151 /**
1152 * lib_ring_buffer_put_snapshot - move consumed counter forward
1153 *
1154 * Should only be called from consumer context.
1155 * @buf: ring buffer
1156 * @consumed_new: new consumed count value
1157 */
1158 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
1159 unsigned long consumed_new)
1160 {
1161 struct lib_ring_buffer_backend *bufb = &buf->backend;
1162 struct channel *chan = bufb->chan;
1163 unsigned long consumed;
1164
1165 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1166
1167 /*
1168 * Only push the consumed value forward.
1169 * If the consumed cmpxchg fails, this is because we have been pushed by
1170 * the writer in flight recorder mode.
1171 */
1172 consumed = atomic_long_read(&buf->consumed);
1173 while ((long) consumed - (long) consumed_new < 0)
1174 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
1175 consumed_new);
1176 /* Wake-up the metadata producer */
1177 wake_up_interruptible(&buf->write_wait);
1178 }
1179 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
1180
1181 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1182 static void lib_ring_buffer_flush_read_subbuf_dcache(
1183 const struct lib_ring_buffer_config *config,
1184 struct channel *chan,
1185 struct lib_ring_buffer *buf)
1186 {
1187 struct lib_ring_buffer_backend_pages *pages;
1188 unsigned long sb_bindex, id, i, nr_pages;
1189
1190 if (config->output != RING_BUFFER_MMAP)
1191 return;
1192
1193 /*
1194 * Architectures with caches aliased on virtual addresses may
1195 * use different cache lines for the linear mapping vs
1196 * user-space memory mapping. Given that the ring buffer is
1197 * based on the kernel linear mapping, aligning it with the
1198 * user-space mapping is not straightforward, and would require
1199 * extra TLB entries. Therefore, simply flush the dcache for the
1200 * entire sub-buffer before reading it.
1201 */
1202 id = buf->backend.buf_rsb.id;
1203 sb_bindex = subbuffer_id_get_index(config, id);
1204 pages = buf->backend.array[sb_bindex];
1205 nr_pages = buf->backend.num_pages_per_subbuf;
1206 for (i = 0; i < nr_pages; i++) {
1207 struct lib_ring_buffer_backend_page *backend_page;
1208
1209 backend_page = &pages->p[i];
1210 flush_dcache_page(pfn_to_page(backend_page->pfn));
1211 }
1212 }
1213 #else
1214 static void lib_ring_buffer_flush_read_subbuf_dcache(
1215 const struct lib_ring_buffer_config *config,
1216 struct channel *chan,
1217 struct lib_ring_buffer *buf)
1218 {
1219 }
1220 #endif
1221
1222 /**
1223 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
1224 * @buf: ring buffer
1225 * @consumed: consumed count indicating the position where to read
1226 *
1227 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1228 * data to read at consumed position, or 0 if the get operation succeeds.
1229 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1230 */
1231 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
1232 unsigned long consumed)
1233 {
1234 struct channel *chan = buf->backend.chan;
1235 const struct lib_ring_buffer_config *config = &chan->backend.config;
1236 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1237 int ret;
1238 int finalized;
1239
1240 if (buf->get_subbuf) {
1241 /*
1242 * Reader is trying to get a subbuffer twice.
1243 */
1244 CHAN_WARN_ON(chan, 1);
1245 return -EBUSY;
1246 }
1247 retry:
1248 finalized = READ_ONCE(buf->finalized);
1249 /*
1250 * Read finalized before counters.
1251 */
1252 smp_rmb();
1253 consumed_cur = atomic_long_read(&buf->consumed);
1254 consumed_idx = subbuf_index(consumed, chan);
1255 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
1256 /*
1257 * Make sure we read the commit count before reading the buffer
1258 * data and the write offset. Correct consumed offset ordering
1259 * wrt commit count is insured by the use of cmpxchg to update
1260 * the consumed offset.
1261 * smp_call_function_single can fail if the remote CPU is offline,
1262 * this is OK because then there is no wmb to execute there.
1263 * If our thread is executing on the same CPU as the on the buffers
1264 * belongs to, we don't have to synchronize it at all. If we are
1265 * migrated, the scheduler will take care of the memory barriers.
1266 * Normally, smp_call_function_single() should ensure program order when
1267 * executing the remote function, which implies that it surrounds the
1268 * function execution with :
1269 * smp_mb()
1270 * send IPI
1271 * csd_lock_wait
1272 * recv IPI
1273 * smp_mb()
1274 * exec. function
1275 * smp_mb()
1276 * csd unlock
1277 * smp_mb()
1278 *
1279 * However, smp_call_function_single() does not seem to clearly execute
1280 * such barriers. It depends on spinlock semantic to provide the barrier
1281 * before executing the IPI and, when busy-looping, csd_lock_wait only
1282 * executes smp_mb() when it has to wait for the other CPU.
1283 *
1284 * I don't trust this code. Therefore, let's add the smp_mb() sequence
1285 * required ourself, even if duplicated. It has no performance impact
1286 * anyway.
1287 *
1288 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
1289 * read and write vs write. They do not ensure core synchronization. We
1290 * really have to ensure total order between the 3 barriers running on
1291 * the 2 CPUs.
1292 */
1293 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1294 if (config->sync == RING_BUFFER_SYNC_PER_CPU
1295 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
1296 if (raw_smp_processor_id() != buf->backend.cpu) {
1297 /* Total order with IPI handler smp_mb() */
1298 smp_mb();
1299 smp_call_function_single(buf->backend.cpu,
1300 remote_mb, NULL, 1);
1301 /* Total order with IPI handler smp_mb() */
1302 smp_mb();
1303 }
1304 } else {
1305 /* Total order with IPI handler smp_mb() */
1306 smp_mb();
1307 smp_call_function(remote_mb, NULL, 1);
1308 /* Total order with IPI handler smp_mb() */
1309 smp_mb();
1310 }
1311 } else {
1312 /*
1313 * Local rmb to match the remote wmb to read the commit count
1314 * before the buffer data and the write offset.
1315 */
1316 smp_rmb();
1317 }
1318
1319 write_offset = v_read(config, &buf->offset);
1320
1321 /*
1322 * Check that the buffer we are getting is after or at consumed_cur
1323 * position.
1324 */
1325 if ((long) subbuf_trunc(consumed, chan)
1326 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1327 goto nodata;
1328
1329 /*
1330 * Check that the subbuffer we are trying to consume has been
1331 * already fully committed.
1332 */
1333 if (((commit_count - chan->backend.subbuf_size)
1334 & chan->commit_count_mask)
1335 - (buf_trunc(consumed, chan)
1336 >> chan->backend.num_subbuf_order)
1337 != 0)
1338 goto nodata;
1339
1340 /*
1341 * Check that we are not about to read the same subbuffer in
1342 * which the writer head is.
1343 */
1344 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1345 == 0)
1346 goto nodata;
1347
1348 /*
1349 * Failure to get the subbuffer causes a busy-loop retry without going
1350 * to a wait queue. These are caused by short-lived race windows where
1351 * the writer is getting access to a subbuffer we were trying to get
1352 * access to. Also checks that the "consumed" buffer count we are
1353 * looking for matches the one contained in the subbuffer id.
1354 */
1355 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1356 consumed_idx, buf_trunc_val(consumed, chan));
1357 if (ret)
1358 goto retry;
1359 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1360
1361 buf->get_subbuf_consumed = consumed;
1362 buf->get_subbuf = 1;
1363
1364 lib_ring_buffer_flush_read_subbuf_dcache(config, chan, buf);
1365
1366 return 0;
1367
1368 nodata:
1369 /*
1370 * The memory barriers __wait_event()/wake_up_interruptible() take care
1371 * of "raw_spin_is_locked" memory ordering.
1372 */
1373 if (finalized)
1374 return -ENODATA;
1375 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1376 goto retry;
1377 else
1378 return -EAGAIN;
1379 }
1380 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1381
1382 /**
1383 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1384 * @buf: ring buffer
1385 */
1386 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1387 {
1388 struct lib_ring_buffer_backend *bufb = &buf->backend;
1389 struct channel *chan = bufb->chan;
1390 const struct lib_ring_buffer_config *config = &chan->backend.config;
1391 unsigned long read_sb_bindex, consumed_idx, consumed;
1392
1393 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1394
1395 if (!buf->get_subbuf) {
1396 /*
1397 * Reader puts a subbuffer it did not get.
1398 */
1399 CHAN_WARN_ON(chan, 1);
1400 return;
1401 }
1402 consumed = buf->get_subbuf_consumed;
1403 buf->get_subbuf = 0;
1404
1405 /*
1406 * Clear the records_unread counter. (overruns counter)
1407 * Can still be non-zero if a file reader simply grabbed the data
1408 * without using iterators.
1409 * Can be below zero if an iterator is used on a snapshot more than
1410 * once.
1411 */
1412 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1413 v_add(config, v_read(config,
1414 &bufb->array[read_sb_bindex]->records_unread),
1415 &bufb->records_read);
1416 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1417 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1418 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1419 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1420
1421 /*
1422 * Exchange the reader subbuffer with the one we put in its place in the
1423 * writer subbuffer table. Expect the original consumed count. If
1424 * update_read_sb_index fails, this is because the writer updated the
1425 * subbuffer concurrently. We should therefore keep the subbuffer we
1426 * currently have: it has become invalid to try reading this sub-buffer
1427 * consumed count value anyway.
1428 */
1429 consumed_idx = subbuf_index(consumed, chan);
1430 update_read_sb_index(config, &buf->backend, &chan->backend,
1431 consumed_idx, buf_trunc_val(consumed, chan));
1432 /*
1433 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1434 * if the writer concurrently updated it.
1435 */
1436 }
1437 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1438
1439 /*
1440 * cons_offset is an iterator on all subbuffer offsets between the reader
1441 * position and the writer position. (inclusive)
1442 */
1443 static
1444 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1445 struct channel *chan,
1446 unsigned long cons_offset,
1447 int cpu)
1448 {
1449 const struct lib_ring_buffer_config *config = &chan->backend.config;
1450 unsigned long cons_idx, commit_count, commit_count_sb;
1451
1452 cons_idx = subbuf_index(cons_offset, chan);
1453 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1454 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1455
1456 if (subbuf_offset(commit_count, chan) != 0)
1457 printk(KERN_WARNING
1458 "ring buffer %s, cpu %d: "
1459 "commit count in subbuffer %lu,\n"
1460 "expecting multiples of %lu bytes\n"
1461 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1462 chan->backend.name, cpu, cons_idx,
1463 chan->backend.subbuf_size,
1464 commit_count, commit_count_sb);
1465
1466 printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1467 chan->backend.name, cpu, commit_count);
1468 }
1469
1470 static
1471 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1472 struct channel *chan,
1473 void *priv, int cpu)
1474 {
1475 const struct lib_ring_buffer_config *config = &chan->backend.config;
1476 unsigned long write_offset, cons_offset;
1477
1478 /*
1479 * No need to order commit_count, write_offset and cons_offset reads
1480 * because we execute at teardown when no more writer nor reader
1481 * references are left.
1482 */
1483 write_offset = v_read(config, &buf->offset);
1484 cons_offset = atomic_long_read(&buf->consumed);
1485 if (write_offset != cons_offset)
1486 printk(KERN_DEBUG
1487 "ring buffer %s, cpu %d: "
1488 "non-consumed data\n"
1489 " [ %lu bytes written, %lu bytes read ]\n",
1490 chan->backend.name, cpu, write_offset, cons_offset);
1491
1492 for (cons_offset = atomic_long_read(&buf->consumed);
1493 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1494 chan)
1495 - cons_offset) > 0;
1496 cons_offset = subbuf_align(cons_offset, chan))
1497 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1498 cpu);
1499 }
1500
1501 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
1502 static
1503 void lib_ring_buffer_print_records_count(struct channel *chan,
1504 struct lib_ring_buffer *buf,
1505 int cpu)
1506 {
1507 const struct lib_ring_buffer_config *config = &chan->backend.config;
1508
1509 if (!strcmp(chan->backend.name, "relay-metadata")) {
1510 printk(KERN_DEBUG "ring buffer %s: %lu records written, "
1511 "%lu records overrun\n",
1512 chan->backend.name,
1513 v_read(config, &buf->records_count),
1514 v_read(config, &buf->records_overrun));
1515 } else {
1516 printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1517 "%lu records overrun\n",
1518 chan->backend.name, cpu,
1519 v_read(config, &buf->records_count),
1520 v_read(config, &buf->records_overrun));
1521 }
1522 }
1523 #else
1524 static
1525 void lib_ring_buffer_print_records_count(struct channel *chan,
1526 struct lib_ring_buffer *buf,
1527 int cpu)
1528 {
1529 }
1530 #endif
1531
1532 static
1533 void lib_ring_buffer_print_errors(struct channel *chan,
1534 struct lib_ring_buffer *buf, int cpu)
1535 {
1536 const struct lib_ring_buffer_config *config = &chan->backend.config;
1537 void *priv = chan->backend.priv;
1538
1539 lib_ring_buffer_print_records_count(chan, buf, cpu);
1540 if (strcmp(chan->backend.name, "relay-metadata")) {
1541 if (v_read(config, &buf->records_lost_full)
1542 || v_read(config, &buf->records_lost_wrap)
1543 || v_read(config, &buf->records_lost_big))
1544 printk(KERN_WARNING
1545 "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1546 " [ %lu buffer full, %lu nest buffer wrap-around, "
1547 "%lu event too big ]\n",
1548 chan->backend.name, cpu,
1549 v_read(config, &buf->records_lost_full),
1550 v_read(config, &buf->records_lost_wrap),
1551 v_read(config, &buf->records_lost_big));
1552 }
1553 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1554 }
1555
1556 /*
1557 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1558 *
1559 * Only executed when the buffer is finalized, in SWITCH_FLUSH.
1560 */
1561 static
1562 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1563 struct channel *chan,
1564 struct switch_offsets *offsets,
1565 u64 tsc)
1566 {
1567 const struct lib_ring_buffer_config *config = &chan->backend.config;
1568 unsigned long oldidx = subbuf_index(offsets->old, chan);
1569 unsigned long commit_count;
1570 struct commit_counters_hot *cc_hot;
1571
1572 config->cb.buffer_begin(buf, tsc, oldidx);
1573
1574 /*
1575 * Order all writes to buffer before the commit count update that will
1576 * determine that the subbuffer is full.
1577 */
1578 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1579 /*
1580 * Must write slot data before incrementing commit count. This
1581 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1582 * by get_subbuf().
1583 */
1584 barrier();
1585 } else
1586 smp_wmb();
1587 cc_hot = &buf->commit_hot[oldidx];
1588 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1589 commit_count = v_read(config, &cc_hot->cc);
1590 /* Check if the written buffer has to be delivered */
1591 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1592 commit_count, oldidx, tsc);
1593 lib_ring_buffer_write_commit_counter(config, buf, chan,
1594 offsets->old + config->cb.subbuffer_header_size(),
1595 commit_count, cc_hot);
1596 }
1597
1598 /*
1599 * lib_ring_buffer_switch_old_end: switch old subbuffer
1600 *
1601 * Note : offset_old should never be 0 here. It is ok, because we never perform
1602 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1603 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1604 * subbuffer.
1605 */
1606 static
1607 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1608 struct channel *chan,
1609 struct switch_offsets *offsets,
1610 u64 tsc)
1611 {
1612 const struct lib_ring_buffer_config *config = &chan->backend.config;
1613 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1614 unsigned long commit_count, padding_size, data_size;
1615 struct commit_counters_hot *cc_hot;
1616 u64 *ts_end;
1617
1618 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1619 padding_size = chan->backend.subbuf_size - data_size;
1620 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1621
1622 ts_end = &buf->ts_end[oldidx];
1623 /*
1624 * This is the last space reservation in that sub-buffer before
1625 * it gets delivered. This provides exclusive access to write to
1626 * this sub-buffer's ts_end. There are also no concurrent
1627 * readers of that ts_end because delivery of that sub-buffer is
1628 * postponed until the commit counter is incremented for the
1629 * current space reservation.
1630 */
1631 *ts_end = tsc;
1632
1633 /*
1634 * Order all writes to buffer and store to ts_end before the commit
1635 * count update that will determine that the subbuffer is full.
1636 */
1637 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1638 /*
1639 * Must write slot data before incrementing commit count. This
1640 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1641 * by get_subbuf().
1642 */
1643 barrier();
1644 } else
1645 smp_wmb();
1646 cc_hot = &buf->commit_hot[oldidx];
1647 v_add(config, padding_size, &cc_hot->cc);
1648 commit_count = v_read(config, &cc_hot->cc);
1649 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1650 commit_count, oldidx, tsc);
1651 lib_ring_buffer_write_commit_counter(config, buf, chan,
1652 offsets->old + padding_size, commit_count,
1653 cc_hot);
1654 }
1655
1656 /*
1657 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1658 *
1659 * This code can be executed unordered : writers may already have written to the
1660 * sub-buffer before this code gets executed, caution. The commit makes sure
1661 * that this code is executed before the deliver of this sub-buffer.
1662 */
1663 static
1664 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1665 struct channel *chan,
1666 struct switch_offsets *offsets,
1667 u64 tsc)
1668 {
1669 const struct lib_ring_buffer_config *config = &chan->backend.config;
1670 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1671 unsigned long commit_count;
1672 struct commit_counters_hot *cc_hot;
1673
1674 config->cb.buffer_begin(buf, tsc, beginidx);
1675
1676 /*
1677 * Order all writes to buffer before the commit count update that will
1678 * determine that the subbuffer is full.
1679 */
1680 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1681 /*
1682 * Must write slot data before incrementing commit count. This
1683 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1684 * by get_subbuf().
1685 */
1686 barrier();
1687 } else
1688 smp_wmb();
1689 cc_hot = &buf->commit_hot[beginidx];
1690 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1691 commit_count = v_read(config, &cc_hot->cc);
1692 /* Check if the written buffer has to be delivered */
1693 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1694 commit_count, beginidx, tsc);
1695 lib_ring_buffer_write_commit_counter(config, buf, chan,
1696 offsets->begin + config->cb.subbuffer_header_size(),
1697 commit_count, cc_hot);
1698 }
1699
1700 /*
1701 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1702 *
1703 * Calls subbuffer_set_data_size() to set the data size of the current
1704 * sub-buffer. We do not need to perform check_deliver nor commit here,
1705 * since this task will be done by the "commit" of the event for which
1706 * we are currently doing the space reservation.
1707 */
1708 static
1709 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1710 struct channel *chan,
1711 struct switch_offsets *offsets,
1712 u64 tsc)
1713 {
1714 const struct lib_ring_buffer_config *config = &chan->backend.config;
1715 unsigned long endidx, data_size;
1716 u64 *ts_end;
1717
1718 endidx = subbuf_index(offsets->end - 1, chan);
1719 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1720 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1721 ts_end = &buf->ts_end[endidx];
1722 /*
1723 * This is the last space reservation in that sub-buffer before
1724 * it gets delivered. This provides exclusive access to write to
1725 * this sub-buffer's ts_end. There are also no concurrent
1726 * readers of that ts_end because delivery of that sub-buffer is
1727 * postponed until the commit counter is incremented for the
1728 * current space reservation.
1729 */
1730 *ts_end = tsc;
1731 }
1732
1733 /*
1734 * Returns :
1735 * 0 if ok
1736 * !0 if execution must be aborted.
1737 */
1738 static
1739 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1740 struct lib_ring_buffer *buf,
1741 struct channel *chan,
1742 struct switch_offsets *offsets,
1743 u64 *tsc)
1744 {
1745 const struct lib_ring_buffer_config *config = &chan->backend.config;
1746 unsigned long off, reserve_commit_diff;
1747
1748 offsets->begin = v_read(config, &buf->offset);
1749 offsets->old = offsets->begin;
1750 offsets->switch_old_start = 0;
1751 off = subbuf_offset(offsets->begin, chan);
1752
1753 *tsc = config->cb.ring_buffer_clock_read(chan);
1754
1755 /*
1756 * Ensure we flush the header of an empty subbuffer when doing the
1757 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1758 * total data gathering duration even if there were no records saved
1759 * after the last buffer switch.
1760 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1761 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1762 * subbuffer header as appropriate.
1763 * The next record that reserves space will be responsible for
1764 * populating the following subbuffer header. We choose not to populate
1765 * the next subbuffer header here because we want to be able to use
1766 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1767 * buffer flush, which must guarantee that all the buffer content
1768 * (records and header timestamps) are visible to the reader. This is
1769 * required for quiescence guarantees for the fusion merge.
1770 */
1771 if (mode != SWITCH_FLUSH && !off)
1772 return -1; /* we do not have to switch : buffer is empty */
1773
1774 if (unlikely(off == 0)) {
1775 unsigned long sb_index, commit_count;
1776
1777 /*
1778 * We are performing a SWITCH_FLUSH. At this stage, there are no
1779 * concurrent writes into the buffer.
1780 *
1781 * The client does not save any header information. Don't
1782 * switch empty subbuffer on finalize, because it is invalid to
1783 * deliver a completely empty subbuffer.
1784 */
1785 if (!config->cb.subbuffer_header_size())
1786 return -1;
1787
1788 /* Test new buffer integrity */
1789 sb_index = subbuf_index(offsets->begin, chan);
1790 commit_count = v_read(config,
1791 &buf->commit_cold[sb_index].cc_sb);
1792 reserve_commit_diff =
1793 (buf_trunc(offsets->begin, chan)
1794 >> chan->backend.num_subbuf_order)
1795 - (commit_count & chan->commit_count_mask);
1796 if (likely(reserve_commit_diff == 0)) {
1797 /* Next subbuffer not being written to. */
1798 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1799 subbuf_trunc(offsets->begin, chan)
1800 - subbuf_trunc((unsigned long)
1801 atomic_long_read(&buf->consumed), chan)
1802 >= chan->backend.buf_size)) {
1803 /*
1804 * We do not overwrite non consumed buffers
1805 * and we are full : don't switch.
1806 */
1807 return -1;
1808 } else {
1809 /*
1810 * Next subbuffer not being written to, and we
1811 * are either in overwrite mode or the buffer is
1812 * not full. It's safe to write in this new
1813 * subbuffer.
1814 */
1815 }
1816 } else {
1817 /*
1818 * Next subbuffer reserve offset does not match the
1819 * commit offset. Don't perform switch in
1820 * producer-consumer and overwrite mode. Caused by
1821 * either a writer OOPS or too many nested writes over a
1822 * reserve/commit pair.
1823 */
1824 return -1;
1825 }
1826
1827 /*
1828 * Need to write the subbuffer start header on finalize.
1829 */
1830 offsets->switch_old_start = 1;
1831 }
1832 offsets->begin = subbuf_align(offsets->begin, chan);
1833 /* Note: old points to the next subbuf at offset 0 */
1834 offsets->end = offsets->begin;
1835 return 0;
1836 }
1837
1838 /*
1839 * Force a sub-buffer switch. This operation is completely reentrant : can be
1840 * called while tracing is active with absolutely no lock held.
1841 *
1842 * Note, however, that as a v_cmpxchg is used for some atomic
1843 * operations, this function must be called from the CPU which owns the buffer
1844 * for a ACTIVE flush.
1845 */
1846 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1847 {
1848 struct channel *chan = buf->backend.chan;
1849 const struct lib_ring_buffer_config *config = &chan->backend.config;
1850 struct switch_offsets offsets;
1851 unsigned long oldidx;
1852 u64 tsc;
1853
1854 offsets.size = 0;
1855
1856 /*
1857 * Perform retryable operations.
1858 */
1859 do {
1860 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1861 &tsc))
1862 return; /* Switch not needed */
1863 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1864 != offsets.old);
1865
1866 /*
1867 * Atomically update last_tsc. This update races against concurrent
1868 * atomic updates, but the race will always cause supplementary full TSC
1869 * records, never the opposite (missing a full TSC record when it would
1870 * be needed).
1871 */
1872 save_last_tsc(config, buf, tsc);
1873
1874 /*
1875 * Push the reader if necessary
1876 */
1877 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1878
1879 oldidx = subbuf_index(offsets.old, chan);
1880 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1881
1882 /*
1883 * May need to populate header start on SWITCH_FLUSH.
1884 */
1885 if (offsets.switch_old_start) {
1886 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1887 offsets.old += config->cb.subbuffer_header_size();
1888 }
1889
1890 /*
1891 * Switch old subbuffer.
1892 */
1893 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1894 }
1895 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1896
1897 struct switch_param {
1898 struct lib_ring_buffer *buf;
1899 enum switch_mode mode;
1900 };
1901
1902 static void remote_switch(void *info)
1903 {
1904 struct switch_param *param = info;
1905 struct lib_ring_buffer *buf = param->buf;
1906
1907 lib_ring_buffer_switch_slow(buf, param->mode);
1908 }
1909
1910 static void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
1911 enum switch_mode mode)
1912 {
1913 struct channel *chan = buf->backend.chan;
1914 const struct lib_ring_buffer_config *config = &chan->backend.config;
1915 int ret;
1916 struct switch_param param;
1917
1918 /*
1919 * With global synchronization we don't need to use the IPI scheme.
1920 */
1921 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1922 lib_ring_buffer_switch_slow(buf, mode);
1923 return;
1924 }
1925
1926 /*
1927 * Disabling preemption ensures two things: first, that the
1928 * target cpu is not taken concurrently offline while we are within
1929 * smp_call_function_single(). Secondly, if it happens that the
1930 * CPU is not online, our own call to lib_ring_buffer_switch_slow()
1931 * needs to be protected from CPU hotplug handlers, which can
1932 * also perform a remote subbuffer switch.
1933 */
1934 preempt_disable();
1935 param.buf = buf;
1936 param.mode = mode;
1937 ret = smp_call_function_single(buf->backend.cpu,
1938 remote_switch, &param, 1);
1939 if (ret) {
1940 /* Remote CPU is offline, do it ourself. */
1941 lib_ring_buffer_switch_slow(buf, mode);
1942 }
1943 preempt_enable();
1944 }
1945
1946 /* Switch sub-buffer if current sub-buffer is non-empty. */
1947 void lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf)
1948 {
1949 _lib_ring_buffer_switch_remote(buf, SWITCH_ACTIVE);
1950 }
1951 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1952
1953 /* Switch sub-buffer even if current sub-buffer is empty. */
1954 void lib_ring_buffer_switch_remote_empty(struct lib_ring_buffer *buf)
1955 {
1956 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
1957 }
1958 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote_empty);
1959
1960 void lib_ring_buffer_clear(struct lib_ring_buffer *buf)
1961 {
1962 struct lib_ring_buffer_backend *bufb = &buf->backend;
1963 struct channel *chan = bufb->chan;
1964
1965 lib_ring_buffer_switch_remote(buf);
1966 lib_ring_buffer_clear_reader(buf, chan);
1967 }
1968 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear);
1969
1970 /*
1971 * Returns :
1972 * 0 if ok
1973 * -ENOSPC if event size is too large for packet.
1974 * -ENOBUFS if there is currently not enough space in buffer for the event.
1975 * -EIO if data cannot be written into the buffer for any other reason.
1976 */
1977 static
1978 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1979 struct channel *chan,
1980 struct switch_offsets *offsets,
1981 struct lib_ring_buffer_ctx *ctx,
1982 void *client_ctx)
1983 {
1984 const struct lib_ring_buffer_config *config = &chan->backend.config;
1985 unsigned long reserve_commit_diff, offset_cmp;
1986
1987 retry:
1988 offsets->begin = offset_cmp = v_read(config, &buf->offset);
1989 offsets->old = offsets->begin;
1990 offsets->switch_new_start = 0;
1991 offsets->switch_new_end = 0;
1992 offsets->switch_old_end = 0;
1993 offsets->pre_header_padding = 0;
1994
1995 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1996 if ((int64_t) ctx->tsc == -EIO)
1997 return -EIO;
1998
1999 if (last_tsc_overflow(config, buf, ctx->tsc))
2000 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
2001
2002 if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
2003 offsets->switch_new_start = 1; /* For offsets->begin */
2004 } else {
2005 offsets->size = config->cb.record_header_size(config, chan,
2006 offsets->begin,
2007 &offsets->pre_header_padding,
2008 ctx, client_ctx);
2009 offsets->size +=
2010 lib_ring_buffer_align(offsets->begin + offsets->size,
2011 ctx->largest_align)
2012 + ctx->data_size;
2013 if (unlikely(subbuf_offset(offsets->begin, chan) +
2014 offsets->size > chan->backend.subbuf_size)) {
2015 offsets->switch_old_end = 1; /* For offsets->old */
2016 offsets->switch_new_start = 1; /* For offsets->begin */
2017 }
2018 }
2019 if (unlikely(offsets->switch_new_start)) {
2020 unsigned long sb_index, commit_count;
2021
2022 /*
2023 * We are typically not filling the previous buffer completely.
2024 */
2025 if (likely(offsets->switch_old_end))
2026 offsets->begin = subbuf_align(offsets->begin, chan);
2027 offsets->begin = offsets->begin
2028 + config->cb.subbuffer_header_size();
2029 /* Test new buffer integrity */
2030 sb_index = subbuf_index(offsets->begin, chan);
2031 /*
2032 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
2033 * lib_ring_buffer_check_deliver() has the matching
2034 * memory barriers required around commit_cold cc_sb
2035 * updates to ensure reserve and commit counter updates
2036 * are not seen reordered when updated by another CPU.
2037 */
2038 smp_rmb();
2039 commit_count = v_read(config,
2040 &buf->commit_cold[sb_index].cc_sb);
2041 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
2042 smp_rmb();
2043 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
2044 /*
2045 * The reserve counter have been concurrently updated
2046 * while we read the commit counter. This means the
2047 * commit counter we read might not match buf->offset
2048 * due to concurrent update. We therefore need to retry.
2049 */
2050 goto retry;
2051 }
2052 reserve_commit_diff =
2053 (buf_trunc(offsets->begin, chan)
2054 >> chan->backend.num_subbuf_order)
2055 - (commit_count & chan->commit_count_mask);
2056 if (likely(reserve_commit_diff == 0)) {
2057 /* Next subbuffer not being written to. */
2058 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
2059 subbuf_trunc(offsets->begin, chan)
2060 - subbuf_trunc((unsigned long)
2061 atomic_long_read(&buf->consumed), chan)
2062 >= chan->backend.buf_size)) {
2063 /*
2064 * We do not overwrite non consumed buffers
2065 * and we are full : record is lost.
2066 */
2067 v_inc(config, &buf->records_lost_full);
2068 return -ENOBUFS;
2069 } else {
2070 /*
2071 * Next subbuffer not being written to, and we
2072 * are either in overwrite mode or the buffer is
2073 * not full. It's safe to write in this new
2074 * subbuffer.
2075 */
2076 }
2077 } else {
2078 /*
2079 * Next subbuffer reserve offset does not match the
2080 * commit offset, and this did not involve update to the
2081 * reserve counter. Drop record in producer-consumer and
2082 * overwrite mode. Caused by either a writer OOPS or
2083 * too many nested writes over a reserve/commit pair.
2084 */
2085 v_inc(config, &buf->records_lost_wrap);
2086 return -EIO;
2087 }
2088 offsets->size =
2089 config->cb.record_header_size(config, chan,
2090 offsets->begin,
2091 &offsets->pre_header_padding,
2092 ctx, client_ctx);
2093 offsets->size +=
2094 lib_ring_buffer_align(offsets->begin + offsets->size,
2095 ctx->largest_align)
2096 + ctx->data_size;
2097 if (unlikely(subbuf_offset(offsets->begin, chan)
2098 + offsets->size > chan->backend.subbuf_size)) {
2099 /*
2100 * Record too big for subbuffers, report error, don't
2101 * complete the sub-buffer switch.
2102 */
2103 v_inc(config, &buf->records_lost_big);
2104 return -ENOSPC;
2105 } else {
2106 /*
2107 * We just made a successful buffer switch and the
2108 * record fits in the new subbuffer. Let's write.
2109 */
2110 }
2111 } else {
2112 /*
2113 * Record fits in the current buffer and we are not on a switch
2114 * boundary. It's safe to write.
2115 */
2116 }
2117 offsets->end = offsets->begin + offsets->size;
2118
2119 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
2120 /*
2121 * The offset_end will fall at the very beginning of the next
2122 * subbuffer.
2123 */
2124 offsets->switch_new_end = 1; /* For offsets->begin */
2125 }
2126 return 0;
2127 }
2128
2129 static struct lib_ring_buffer *get_current_buf(struct channel *chan, int cpu)
2130 {
2131 const struct lib_ring_buffer_config *config = &chan->backend.config;
2132
2133 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
2134 return per_cpu_ptr(chan->backend.buf, cpu);
2135 else
2136 return chan->backend.buf;
2137 }
2138
2139 void lib_ring_buffer_lost_event_too_big(struct channel *chan)
2140 {
2141 const struct lib_ring_buffer_config *config = &chan->backend.config;
2142 struct lib_ring_buffer *buf = get_current_buf(chan, smp_processor_id());
2143
2144 v_inc(config, &buf->records_lost_big);
2145 }
2146 EXPORT_SYMBOL_GPL(lib_ring_buffer_lost_event_too_big);
2147
2148 /**
2149 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
2150 * @ctx: ring buffer context.
2151 *
2152 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
2153 * -EIO for other errors, else returns 0.
2154 * It will take care of sub-buffer switching.
2155 */
2156 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx,
2157 void *client_ctx)
2158 {
2159 struct channel *chan = ctx->chan;
2160 const struct lib_ring_buffer_config *config = &chan->backend.config;
2161 struct lib_ring_buffer *buf;
2162 struct switch_offsets offsets;
2163 int ret;
2164
2165 ctx->buf = buf = get_current_buf(chan, ctx->cpu);
2166 offsets.size = 0;
2167
2168 do {
2169 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
2170 ctx, client_ctx);
2171 if (unlikely(ret))
2172 return ret;
2173 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
2174 offsets.end)
2175 != offsets.old));
2176
2177 /*
2178 * Atomically update last_tsc. This update races against concurrent
2179 * atomic updates, but the race will always cause supplementary full TSC
2180 * records, never the opposite (missing a full TSC record when it would
2181 * be needed).
2182 */
2183 save_last_tsc(config, buf, ctx->tsc);
2184
2185 /*
2186 * Push the reader if necessary
2187 */
2188 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
2189
2190 /*
2191 * Clear noref flag for this subbuffer.
2192 */
2193 lib_ring_buffer_clear_noref(config, &buf->backend,
2194 subbuf_index(offsets.end - 1, chan));
2195
2196 /*
2197 * Switch old subbuffer if needed.
2198 */
2199 if (unlikely(offsets.switch_old_end)) {
2200 lib_ring_buffer_clear_noref(config, &buf->backend,
2201 subbuf_index(offsets.old - 1, chan));
2202 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
2203 }
2204
2205 /*
2206 * Populate new subbuffer.
2207 */
2208 if (unlikely(offsets.switch_new_start))
2209 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
2210
2211 if (unlikely(offsets.switch_new_end))
2212 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
2213
2214 ctx->slot_size = offsets.size;
2215 ctx->pre_offset = offsets.begin;
2216 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
2217 return 0;
2218 }
2219 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
2220
2221 static
2222 void lib_ring_buffer_vmcore_check_deliver(const struct lib_ring_buffer_config *config,
2223 struct lib_ring_buffer *buf,
2224 unsigned long commit_count,
2225 unsigned long idx)
2226 {
2227 if (config->oops == RING_BUFFER_OOPS_CONSISTENCY)
2228 v_set(config, &buf->commit_hot[idx].seq, commit_count);
2229 }
2230
2231 /*
2232 * The ring buffer can count events recorded and overwritten per buffer,
2233 * but it is disabled by default due to its performance overhead.
2234 */
2235 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
2236 static
2237 void deliver_count_events(const struct lib_ring_buffer_config *config,
2238 struct lib_ring_buffer *buf,
2239 unsigned long idx)
2240 {
2241 v_add(config, subbuffer_get_records_count(config,
2242 &buf->backend, idx),
2243 &buf->records_count);
2244 v_add(config, subbuffer_count_records_overrun(config,
2245 &buf->backend, idx),
2246 &buf->records_overrun);
2247 }
2248 #else /* LTTNG_RING_BUFFER_COUNT_EVENTS */
2249 static
2250 void deliver_count_events(const struct lib_ring_buffer_config *config,
2251 struct lib_ring_buffer *buf,
2252 unsigned long idx)
2253 {
2254 }
2255 #endif /* #else LTTNG_RING_BUFFER_COUNT_EVENTS */
2256
2257
2258 void lib_ring_buffer_check_deliver_slow(const struct lib_ring_buffer_config *config,
2259 struct lib_ring_buffer *buf,
2260 struct channel *chan,
2261 unsigned long offset,
2262 unsigned long commit_count,
2263 unsigned long idx,
2264 u64 tsc)
2265 {
2266 unsigned long old_commit_count = commit_count
2267 - chan->backend.subbuf_size;
2268
2269 /*
2270 * If we succeeded at updating cc_sb below, we are the subbuffer
2271 * writer delivering the subbuffer. Deals with concurrent
2272 * updates of the "cc" value without adding a add_return atomic
2273 * operation to the fast path.
2274 *
2275 * We are doing the delivery in two steps:
2276 * - First, we cmpxchg() cc_sb to the new value
2277 * old_commit_count + 1. This ensures that we are the only
2278 * subbuffer user successfully filling the subbuffer, but we
2279 * do _not_ set the cc_sb value to "commit_count" yet.
2280 * Therefore, other writers that would wrap around the ring
2281 * buffer and try to start writing to our subbuffer would
2282 * have to drop records, because it would appear as
2283 * non-filled.
2284 * We therefore have exclusive access to the subbuffer control
2285 * structures. This mutual exclusion with other writers is
2286 * crucially important to perform record overruns count in
2287 * flight recorder mode locklessly.
2288 * - When we are ready to release the subbuffer (either for
2289 * reading or for overrun by other writers), we simply set the
2290 * cc_sb value to "commit_count" and perform delivery.
2291 *
2292 * The subbuffer size is least 2 bytes (minimum size: 1 page).
2293 * This guarantees that old_commit_count + 1 != commit_count.
2294 */
2295
2296 /*
2297 * Order prior updates to reserve count prior to the
2298 * commit_cold cc_sb update.
2299 */
2300 smp_wmb();
2301 if (likely(v_cmpxchg(config, &buf->commit_cold[idx].cc_sb,
2302 old_commit_count, old_commit_count + 1)
2303 == old_commit_count)) {
2304 u64 *ts_end;
2305
2306 /*
2307 * Start of exclusive subbuffer access. We are
2308 * guaranteed to be the last writer in this subbuffer
2309 * and any other writer trying to access this subbuffer
2310 * in this state is required to drop records.
2311 *
2312 * We can read the ts_end for the current sub-buffer
2313 * which has been saved by the very last space
2314 * reservation for the current sub-buffer.
2315 *
2316 * Order increment of commit counter before reading ts_end.
2317 */
2318 smp_mb();
2319 ts_end = &buf->ts_end[idx];
2320 deliver_count_events(config, buf, idx);
2321 config->cb.buffer_end(buf, *ts_end, idx,
2322 lib_ring_buffer_get_data_size(config,
2323 buf,
2324 idx));
2325
2326 /*
2327 * Increment the packet counter while we have exclusive
2328 * access.
2329 */
2330 subbuffer_inc_packet_count(config, &buf->backend, idx);
2331
2332 /*
2333 * Set noref flag and offset for this subbuffer id.
2334 * Contains a memory barrier that ensures counter stores
2335 * are ordered before set noref and offset.
2336 */
2337 lib_ring_buffer_set_noref_offset(config, &buf->backend, idx,
2338 buf_trunc_val(offset, chan));
2339
2340 /*
2341 * Order set_noref and record counter updates before the
2342 * end of subbuffer exclusive access. Orders with
2343 * respect to writers coming into the subbuffer after
2344 * wrap around, and also order wrt concurrent readers.
2345 */
2346 smp_mb();
2347 /* End of exclusive subbuffer access */
2348 v_set(config, &buf->commit_cold[idx].cc_sb,
2349 commit_count);
2350 /*
2351 * Order later updates to reserve count after
2352 * the commit_cold cc_sb update.
2353 */
2354 smp_wmb();
2355 lib_ring_buffer_vmcore_check_deliver(config, buf,
2356 commit_count, idx);
2357
2358 /*
2359 * RING_BUFFER_WAKEUP_BY_WRITER wakeup is not lock-free.
2360 */
2361 if (config->wakeup == RING_BUFFER_WAKEUP_BY_WRITER
2362 && atomic_long_read(&buf->active_readers)
2363 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
2364 wake_up_interruptible(&buf->read_wait);
2365 wake_up_interruptible(&chan->read_wait);
2366 }
2367
2368 }
2369 }
2370 EXPORT_SYMBOL_GPL(lib_ring_buffer_check_deliver_slow);
2371
2372 int __init init_lib_ring_buffer_frontend(void)
2373 {
2374 int cpu;
2375
2376 for_each_possible_cpu(cpu)
2377 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
2378 return 0;
2379 }
2380
2381 module_init(init_lib_ring_buffer_frontend);
2382
2383 void __exit exit_lib_ring_buffer_frontend(void)
2384 {
2385 }
2386
2387 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.102867 seconds and 4 git commands to generate.