Fix: ring buffer: honor switch parameter type in remote switch
[lttng-modules.git] / lib / ringbuffer / ring_buffer_frontend.c
1 /*
2 * ring_buffer_frontend.c
3 *
4 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; only
9 * version 2.1 of the License.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *
21 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
22 * recorder (overwrite) modes. See thesis:
23 *
24 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
25 * dissertation, Ecole Polytechnique de Montreal.
26 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
27 *
28 * - Algorithm presentation in Chapter 5:
29 * "Lockless Multi-Core High-Throughput Buffering".
30 * - Algorithm formal verification in Section 8.6:
31 * "Formal verification of LTTng"
32 *
33 * Author:
34 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
35 *
36 * Inspired from LTT and RelayFS:
37 * Karim Yaghmour <karim@opersys.com>
38 * Tom Zanussi <zanussi@us.ibm.com>
39 * Bob Wisniewski <bob@watson.ibm.com>
40 * And from K42 :
41 * Bob Wisniewski <bob@watson.ibm.com>
42 *
43 * Buffer reader semantic :
44 *
45 * - get_subbuf_size
46 * while buffer is not finalized and empty
47 * - get_subbuf
48 * - if return value != 0, continue
49 * - splice one subbuffer worth of data to a pipe
50 * - splice the data from pipe to disk/network
51 * - put_subbuf
52 */
53
54 #include <linux/delay.h>
55 #include <linux/module.h>
56 #include <linux/percpu.h>
57
58 #include "../../wrapper/ringbuffer/config.h"
59 #include "../../wrapper/ringbuffer/backend.h"
60 #include "../../wrapper/ringbuffer/frontend.h"
61 #include "../../wrapper/ringbuffer/iterator.h"
62 #include "../../wrapper/ringbuffer/nohz.h"
63 #include "../../wrapper/atomic.h"
64 #include "../../wrapper/percpu-defs.h"
65
66 /*
67 * Internal structure representing offsets to use at a sub-buffer switch.
68 */
69 struct switch_offsets {
70 unsigned long begin, end, old;
71 size_t pre_header_padding, size;
72 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
73 switch_old_end:1;
74 };
75
76 #ifdef CONFIG_NO_HZ
77 enum tick_nohz_val {
78 TICK_NOHZ_STOP,
79 TICK_NOHZ_FLUSH,
80 TICK_NOHZ_RESTART,
81 };
82
83 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
84 #endif /* CONFIG_NO_HZ */
85
86 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
87
88 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
89 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
90
91 static
92 void lib_ring_buffer_print_errors(struct channel *chan,
93 struct lib_ring_buffer *buf, int cpu);
94 static
95 void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
96 enum switch_mode mode);
97
98 /*
99 * Must be called under cpu hotplug protection.
100 */
101 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
102 {
103 struct channel *chan = buf->backend.chan;
104
105 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
106 kfree(buf->commit_hot);
107 kfree(buf->commit_cold);
108
109 lib_ring_buffer_backend_free(&buf->backend);
110 }
111
112 /**
113 * lib_ring_buffer_reset - Reset ring buffer to initial values.
114 * @buf: Ring buffer.
115 *
116 * Effectively empty the ring buffer. Should be called when the buffer is not
117 * used for writing. The ring buffer can be opened for reading, but the reader
118 * should not be using the iterator concurrently with reset. The previous
119 * current iterator record is reset.
120 */
121 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
122 {
123 struct channel *chan = buf->backend.chan;
124 const struct lib_ring_buffer_config *config = &chan->backend.config;
125 unsigned int i;
126
127 /*
128 * Reset iterator first. It will put the subbuffer if it currently holds
129 * it.
130 */
131 lib_ring_buffer_iterator_reset(buf);
132 v_set(config, &buf->offset, 0);
133 for (i = 0; i < chan->backend.num_subbuf; i++) {
134 v_set(config, &buf->commit_hot[i].cc, 0);
135 v_set(config, &buf->commit_hot[i].seq, 0);
136 v_set(config, &buf->commit_cold[i].cc_sb, 0);
137 }
138 atomic_long_set(&buf->consumed, 0);
139 atomic_set(&buf->record_disabled, 0);
140 v_set(config, &buf->last_tsc, 0);
141 lib_ring_buffer_backend_reset(&buf->backend);
142 /* Don't reset number of active readers */
143 v_set(config, &buf->records_lost_full, 0);
144 v_set(config, &buf->records_lost_wrap, 0);
145 v_set(config, &buf->records_lost_big, 0);
146 v_set(config, &buf->records_count, 0);
147 v_set(config, &buf->records_overrun, 0);
148 buf->finalized = 0;
149 }
150 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
151
152 /**
153 * channel_reset - Reset channel to initial values.
154 * @chan: Channel.
155 *
156 * Effectively empty the channel. Should be called when the channel is not used
157 * for writing. The channel can be opened for reading, but the reader should not
158 * be using the iterator concurrently with reset. The previous current iterator
159 * record is reset.
160 */
161 void channel_reset(struct channel *chan)
162 {
163 /*
164 * Reset iterators first. Will put the subbuffer if held for reading.
165 */
166 channel_iterator_reset(chan);
167 atomic_set(&chan->record_disabled, 0);
168 /* Don't reset commit_count_mask, still valid */
169 channel_backend_reset(&chan->backend);
170 /* Don't reset switch/read timer interval */
171 /* Don't reset notifiers and notifier enable bits */
172 /* Don't reset reader reference count */
173 }
174 EXPORT_SYMBOL_GPL(channel_reset);
175
176 /*
177 * Must be called under cpu hotplug protection.
178 */
179 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
180 struct channel_backend *chanb, int cpu)
181 {
182 const struct lib_ring_buffer_config *config = &chanb->config;
183 struct channel *chan = container_of(chanb, struct channel, backend);
184 void *priv = chanb->priv;
185 size_t subbuf_header_size;
186 u64 tsc;
187 int ret;
188
189 /* Test for cpu hotplug */
190 if (buf->backend.allocated)
191 return 0;
192
193 /*
194 * Paranoia: per cpu dynamic allocation is not officially documented as
195 * zeroing the memory, so let's do it here too, just in case.
196 */
197 memset(buf, 0, sizeof(*buf));
198
199 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
200 if (ret)
201 return ret;
202
203 buf->commit_hot =
204 kzalloc_node(ALIGN(sizeof(*buf->commit_hot)
205 * chan->backend.num_subbuf,
206 1 << INTERNODE_CACHE_SHIFT),
207 GFP_KERNEL, cpu_to_node(max(cpu, 0)));
208 if (!buf->commit_hot) {
209 ret = -ENOMEM;
210 goto free_chanbuf;
211 }
212
213 buf->commit_cold =
214 kzalloc_node(ALIGN(sizeof(*buf->commit_cold)
215 * chan->backend.num_subbuf,
216 1 << INTERNODE_CACHE_SHIFT),
217 GFP_KERNEL, cpu_to_node(max(cpu, 0)));
218 if (!buf->commit_cold) {
219 ret = -ENOMEM;
220 goto free_commit;
221 }
222
223 init_waitqueue_head(&buf->read_wait);
224 init_waitqueue_head(&buf->write_wait);
225 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
226
227 /*
228 * Write the subbuffer header for first subbuffer so we know the total
229 * duration of data gathering.
230 */
231 subbuf_header_size = config->cb.subbuffer_header_size();
232 v_set(config, &buf->offset, subbuf_header_size);
233 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
234 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
235 config->cb.buffer_begin(buf, tsc, 0);
236 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
237
238 if (config->cb.buffer_create) {
239 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
240 if (ret)
241 goto free_init;
242 }
243
244 /*
245 * Ensure the buffer is ready before setting it to allocated and setting
246 * the cpumask.
247 * Used for cpu hotplug vs cpumask iteration.
248 */
249 smp_wmb();
250 buf->backend.allocated = 1;
251
252 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
253 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
254 chan->backend.cpumask));
255 cpumask_set_cpu(cpu, chan->backend.cpumask);
256 }
257
258 return 0;
259
260 /* Error handling */
261 free_init:
262 kfree(buf->commit_cold);
263 free_commit:
264 kfree(buf->commit_hot);
265 free_chanbuf:
266 lib_ring_buffer_backend_free(&buf->backend);
267 return ret;
268 }
269
270 static void switch_buffer_timer(unsigned long data)
271 {
272 struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
273 struct channel *chan = buf->backend.chan;
274 const struct lib_ring_buffer_config *config = &chan->backend.config;
275
276 /*
277 * Only flush buffers periodically if readers are active.
278 */
279 if (atomic_long_read(&buf->active_readers))
280 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
281
282 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
283 mod_timer_pinned(&buf->switch_timer,
284 jiffies + chan->switch_timer_interval);
285 else
286 mod_timer(&buf->switch_timer,
287 jiffies + chan->switch_timer_interval);
288 }
289
290 /*
291 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
292 */
293 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
294 {
295 struct channel *chan = buf->backend.chan;
296 const struct lib_ring_buffer_config *config = &chan->backend.config;
297
298 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
299 return;
300 init_timer(&buf->switch_timer);
301 buf->switch_timer.function = switch_buffer_timer;
302 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
303 buf->switch_timer.data = (unsigned long)buf;
304 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
305 add_timer_on(&buf->switch_timer, buf->backend.cpu);
306 else
307 add_timer(&buf->switch_timer);
308 buf->switch_timer_enabled = 1;
309 }
310
311 /*
312 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
313 */
314 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
315 {
316 struct channel *chan = buf->backend.chan;
317
318 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
319 return;
320
321 del_timer_sync(&buf->switch_timer);
322 buf->switch_timer_enabled = 0;
323 }
324
325 /*
326 * Polling timer to check the channels for data.
327 */
328 static void read_buffer_timer(unsigned long data)
329 {
330 struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
331 struct channel *chan = buf->backend.chan;
332 const struct lib_ring_buffer_config *config = &chan->backend.config;
333
334 CHAN_WARN_ON(chan, !buf->backend.allocated);
335
336 if (atomic_long_read(&buf->active_readers)
337 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
338 wake_up_interruptible(&buf->read_wait);
339 wake_up_interruptible(&chan->read_wait);
340 }
341
342 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
343 mod_timer_pinned(&buf->read_timer,
344 jiffies + chan->read_timer_interval);
345 else
346 mod_timer(&buf->read_timer,
347 jiffies + chan->read_timer_interval);
348 }
349
350 /*
351 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
352 */
353 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
354 {
355 struct channel *chan = buf->backend.chan;
356 const struct lib_ring_buffer_config *config = &chan->backend.config;
357
358 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
359 || !chan->read_timer_interval
360 || buf->read_timer_enabled)
361 return;
362
363 init_timer(&buf->read_timer);
364 buf->read_timer.function = read_buffer_timer;
365 buf->read_timer.expires = jiffies + chan->read_timer_interval;
366 buf->read_timer.data = (unsigned long)buf;
367
368 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
369 add_timer_on(&buf->read_timer, buf->backend.cpu);
370 else
371 add_timer(&buf->read_timer);
372 buf->read_timer_enabled = 1;
373 }
374
375 /*
376 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
377 */
378 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
379 {
380 struct channel *chan = buf->backend.chan;
381 const struct lib_ring_buffer_config *config = &chan->backend.config;
382
383 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
384 || !chan->read_timer_interval
385 || !buf->read_timer_enabled)
386 return;
387
388 del_timer_sync(&buf->read_timer);
389 /*
390 * do one more check to catch data that has been written in the last
391 * timer period.
392 */
393 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
394 wake_up_interruptible(&buf->read_wait);
395 wake_up_interruptible(&chan->read_wait);
396 }
397 buf->read_timer_enabled = 0;
398 }
399
400 #ifdef CONFIG_HOTPLUG_CPU
401 /**
402 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
403 * @nb: notifier block
404 * @action: hotplug action to take
405 * @hcpu: CPU number
406 *
407 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
408 */
409 static
410 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
411 unsigned long action,
412 void *hcpu)
413 {
414 unsigned int cpu = (unsigned long)hcpu;
415 struct channel *chan = container_of(nb, struct channel,
416 cpu_hp_notifier);
417 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
418 const struct lib_ring_buffer_config *config = &chan->backend.config;
419
420 if (!chan->cpu_hp_enable)
421 return NOTIFY_DONE;
422
423 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
424
425 switch (action) {
426 case CPU_DOWN_FAILED:
427 case CPU_DOWN_FAILED_FROZEN:
428 case CPU_ONLINE:
429 case CPU_ONLINE_FROZEN:
430 wake_up_interruptible(&chan->hp_wait);
431 lib_ring_buffer_start_switch_timer(buf);
432 lib_ring_buffer_start_read_timer(buf);
433 return NOTIFY_OK;
434
435 case CPU_DOWN_PREPARE:
436 case CPU_DOWN_PREPARE_FROZEN:
437 lib_ring_buffer_stop_switch_timer(buf);
438 lib_ring_buffer_stop_read_timer(buf);
439 return NOTIFY_OK;
440
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
443 /*
444 * Performing a buffer switch on a remote CPU. Performed by
445 * the CPU responsible for doing the hotunplug after the target
446 * CPU stopped running completely. Ensures that all data
447 * from that remote CPU is flushed.
448 */
449 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
450 return NOTIFY_OK;
451
452 default:
453 return NOTIFY_DONE;
454 }
455 }
456 #endif
457
458 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
459 /*
460 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
461 * that wake-up-tracing generated events are flushed before going idle (in
462 * tick_nohz). We test if the spinlock is locked to deal with the race where
463 * readers try to sample the ring buffer before we perform the switch. We let
464 * the readers retry in that case. If there is data in the buffer, the wake up
465 * is going to forbid the CPU running the reader thread from going idle.
466 */
467 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
468 unsigned long val,
469 void *data)
470 {
471 struct channel *chan = container_of(nb, struct channel,
472 tick_nohz_notifier);
473 const struct lib_ring_buffer_config *config = &chan->backend.config;
474 struct lib_ring_buffer *buf;
475 int cpu = smp_processor_id();
476
477 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
478 /*
479 * We don't support keeping the system idle with global buffers
480 * and streaming active. In order to do so, we would need to
481 * sample a non-nohz-cpumask racelessly with the nohz updates
482 * without adding synchronization overhead to nohz. Leave this
483 * use-case out for now.
484 */
485 return 0;
486 }
487
488 buf = channel_get_ring_buffer(config, chan, cpu);
489 switch (val) {
490 case TICK_NOHZ_FLUSH:
491 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
492 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
493 && chan->read_timer_interval
494 && atomic_long_read(&buf->active_readers)
495 && (lib_ring_buffer_poll_deliver(config, buf, chan)
496 || lib_ring_buffer_pending_data(config, buf, chan))) {
497 wake_up_interruptible(&buf->read_wait);
498 wake_up_interruptible(&chan->read_wait);
499 }
500 if (chan->switch_timer_interval)
501 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
502 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
503 break;
504 case TICK_NOHZ_STOP:
505 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
506 lib_ring_buffer_stop_switch_timer(buf);
507 lib_ring_buffer_stop_read_timer(buf);
508 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
509 break;
510 case TICK_NOHZ_RESTART:
511 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
512 lib_ring_buffer_start_read_timer(buf);
513 lib_ring_buffer_start_switch_timer(buf);
514 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
515 break;
516 }
517
518 return 0;
519 }
520
521 void notrace lib_ring_buffer_tick_nohz_flush(void)
522 {
523 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
524 NULL);
525 }
526
527 void notrace lib_ring_buffer_tick_nohz_stop(void)
528 {
529 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
530 NULL);
531 }
532
533 void notrace lib_ring_buffer_tick_nohz_restart(void)
534 {
535 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
536 NULL);
537 }
538 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
539
540 /*
541 * Holds CPU hotplug.
542 */
543 static void channel_unregister_notifiers(struct channel *chan)
544 {
545 const struct lib_ring_buffer_config *config = &chan->backend.config;
546 int cpu;
547
548 channel_iterator_unregister_notifiers(chan);
549 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
550 #ifdef CONFIG_NO_HZ
551 /*
552 * Remove the nohz notifier first, so we are certain we stop
553 * the timers.
554 */
555 atomic_notifier_chain_unregister(&tick_nohz_notifier,
556 &chan->tick_nohz_notifier);
557 /*
558 * ring_buffer_nohz_lock will not be needed below, because
559 * we just removed the notifiers, which were the only source of
560 * concurrency.
561 */
562 #endif /* CONFIG_NO_HZ */
563 #ifdef CONFIG_HOTPLUG_CPU
564 get_online_cpus();
565 chan->cpu_hp_enable = 0;
566 for_each_online_cpu(cpu) {
567 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
568 cpu);
569 lib_ring_buffer_stop_switch_timer(buf);
570 lib_ring_buffer_stop_read_timer(buf);
571 }
572 put_online_cpus();
573 unregister_cpu_notifier(&chan->cpu_hp_notifier);
574 #else
575 for_each_possible_cpu(cpu) {
576 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
577 cpu);
578 lib_ring_buffer_stop_switch_timer(buf);
579 lib_ring_buffer_stop_read_timer(buf);
580 }
581 #endif
582 } else {
583 struct lib_ring_buffer *buf = chan->backend.buf;
584
585 lib_ring_buffer_stop_switch_timer(buf);
586 lib_ring_buffer_stop_read_timer(buf);
587 }
588 channel_backend_unregister_notifiers(&chan->backend);
589 }
590
591 static void lib_ring_buffer_set_quiescent(struct lib_ring_buffer *buf)
592 {
593 if (!buf->quiescent) {
594 buf->quiescent = true;
595 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
596 }
597 }
598
599 static void lib_ring_buffer_clear_quiescent(struct lib_ring_buffer *buf)
600 {
601 buf->quiescent = false;
602 }
603
604 void lib_ring_buffer_set_quiescent_channel(struct channel *chan)
605 {
606 int cpu;
607 const struct lib_ring_buffer_config *config = &chan->backend.config;
608
609 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
610 get_online_cpus();
611 for_each_channel_cpu(cpu, chan) {
612 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
613 cpu);
614
615 lib_ring_buffer_set_quiescent(buf);
616 }
617 put_online_cpus();
618 } else {
619 struct lib_ring_buffer *buf = chan->backend.buf;
620
621 lib_ring_buffer_set_quiescent(buf);
622 }
623 }
624 EXPORT_SYMBOL_GPL(lib_ring_buffer_set_quiescent_channel);
625
626 void lib_ring_buffer_clear_quiescent_channel(struct channel *chan)
627 {
628 int cpu;
629 const struct lib_ring_buffer_config *config = &chan->backend.config;
630
631 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
632 get_online_cpus();
633 for_each_channel_cpu(cpu, chan) {
634 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
635 cpu);
636
637 lib_ring_buffer_clear_quiescent(buf);
638 }
639 put_online_cpus();
640 } else {
641 struct lib_ring_buffer *buf = chan->backend.buf;
642
643 lib_ring_buffer_clear_quiescent(buf);
644 }
645 }
646 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear_quiescent_channel);
647
648 static void channel_free(struct channel *chan)
649 {
650 if (chan->backend.release_priv_ops) {
651 chan->backend.release_priv_ops(chan->backend.priv_ops);
652 }
653 channel_iterator_free(chan);
654 channel_backend_free(&chan->backend);
655 kfree(chan);
656 }
657
658 /**
659 * channel_create - Create channel.
660 * @config: ring buffer instance configuration
661 * @name: name of the channel
662 * @priv: ring buffer client private data
663 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
664 * address mapping. It is used only by RING_BUFFER_STATIC
665 * configuration. It can be set to NULL for other backends.
666 * @subbuf_size: subbuffer size
667 * @num_subbuf: number of subbuffers
668 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
669 * padding to let readers get those sub-buffers.
670 * Used for live streaming.
671 * @read_timer_interval: Time interval (in us) to wake up pending readers.
672 *
673 * Holds cpu hotplug.
674 * Returns NULL on failure.
675 */
676 struct channel *channel_create(const struct lib_ring_buffer_config *config,
677 const char *name, void *priv, void *buf_addr,
678 size_t subbuf_size,
679 size_t num_subbuf, unsigned int switch_timer_interval,
680 unsigned int read_timer_interval)
681 {
682 int ret, cpu;
683 struct channel *chan;
684
685 if (lib_ring_buffer_check_config(config, switch_timer_interval,
686 read_timer_interval))
687 return NULL;
688
689 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
690 if (!chan)
691 return NULL;
692
693 ret = channel_backend_init(&chan->backend, name, config, priv,
694 subbuf_size, num_subbuf);
695 if (ret)
696 goto error;
697
698 ret = channel_iterator_init(chan);
699 if (ret)
700 goto error_free_backend;
701
702 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
703 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
704 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
705 kref_init(&chan->ref);
706 init_waitqueue_head(&chan->read_wait);
707 init_waitqueue_head(&chan->hp_wait);
708
709 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
710 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
711 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
712 chan->tick_nohz_notifier.notifier_call =
713 ring_buffer_tick_nohz_callback;
714 chan->tick_nohz_notifier.priority = ~0U;
715 atomic_notifier_chain_register(&tick_nohz_notifier,
716 &chan->tick_nohz_notifier);
717 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
718
719 /*
720 * In case of non-hotplug cpu, if the ring-buffer is allocated
721 * in early initcall, it will not be notified of secondary cpus.
722 * In that off case, we need to allocate for all possible cpus.
723 */
724 #ifdef CONFIG_HOTPLUG_CPU
725 chan->cpu_hp_notifier.notifier_call =
726 lib_ring_buffer_cpu_hp_callback;
727 chan->cpu_hp_notifier.priority = 6;
728 register_cpu_notifier(&chan->cpu_hp_notifier);
729
730 get_online_cpus();
731 for_each_online_cpu(cpu) {
732 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
733 cpu);
734 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
735 lib_ring_buffer_start_switch_timer(buf);
736 lib_ring_buffer_start_read_timer(buf);
737 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
738 }
739 chan->cpu_hp_enable = 1;
740 put_online_cpus();
741 #else
742 for_each_possible_cpu(cpu) {
743 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
744 cpu);
745 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
746 lib_ring_buffer_start_switch_timer(buf);
747 lib_ring_buffer_start_read_timer(buf);
748 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
749 }
750 #endif
751 } else {
752 struct lib_ring_buffer *buf = chan->backend.buf;
753
754 lib_ring_buffer_start_switch_timer(buf);
755 lib_ring_buffer_start_read_timer(buf);
756 }
757
758 return chan;
759
760 error_free_backend:
761 channel_backend_free(&chan->backend);
762 error:
763 kfree(chan);
764 return NULL;
765 }
766 EXPORT_SYMBOL_GPL(channel_create);
767
768 static
769 void channel_release(struct kref *kref)
770 {
771 struct channel *chan = container_of(kref, struct channel, ref);
772 channel_free(chan);
773 }
774
775 /**
776 * channel_destroy - Finalize, wait for q.s. and destroy channel.
777 * @chan: channel to destroy
778 *
779 * Holds cpu hotplug.
780 * Call "destroy" callback, finalize channels, and then decrement the
781 * channel reference count. Note that when readers have completed data
782 * consumption of finalized channels, get_subbuf() will return -ENODATA.
783 * They should release their handle at that point. Returns the private
784 * data pointer.
785 */
786 void *channel_destroy(struct channel *chan)
787 {
788 int cpu;
789 const struct lib_ring_buffer_config *config = &chan->backend.config;
790 void *priv;
791
792 channel_unregister_notifiers(chan);
793
794 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
795 /*
796 * No need to hold cpu hotplug, because all notifiers have been
797 * unregistered.
798 */
799 for_each_channel_cpu(cpu, chan) {
800 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
801 cpu);
802
803 if (config->cb.buffer_finalize)
804 config->cb.buffer_finalize(buf,
805 chan->backend.priv,
806 cpu);
807 if (buf->backend.allocated)
808 lib_ring_buffer_set_quiescent(buf);
809 /*
810 * Perform flush before writing to finalized.
811 */
812 smp_wmb();
813 ACCESS_ONCE(buf->finalized) = 1;
814 wake_up_interruptible(&buf->read_wait);
815 }
816 } else {
817 struct lib_ring_buffer *buf = chan->backend.buf;
818
819 if (config->cb.buffer_finalize)
820 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
821 if (buf->backend.allocated)
822 lib_ring_buffer_set_quiescent(buf);
823 /*
824 * Perform flush before writing to finalized.
825 */
826 smp_wmb();
827 ACCESS_ONCE(buf->finalized) = 1;
828 wake_up_interruptible(&buf->read_wait);
829 }
830 ACCESS_ONCE(chan->finalized) = 1;
831 wake_up_interruptible(&chan->hp_wait);
832 wake_up_interruptible(&chan->read_wait);
833 priv = chan->backend.priv;
834 kref_put(&chan->ref, channel_release);
835 return priv;
836 }
837 EXPORT_SYMBOL_GPL(channel_destroy);
838
839 struct lib_ring_buffer *channel_get_ring_buffer(
840 const struct lib_ring_buffer_config *config,
841 struct channel *chan, int cpu)
842 {
843 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
844 return chan->backend.buf;
845 else
846 return per_cpu_ptr(chan->backend.buf, cpu);
847 }
848 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
849
850 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
851 {
852 struct channel *chan = buf->backend.chan;
853
854 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
855 return -EBUSY;
856 kref_get(&chan->ref);
857 lttng_smp_mb__after_atomic();
858 return 0;
859 }
860 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
861
862 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
863 {
864 struct channel *chan = buf->backend.chan;
865
866 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
867 lttng_smp_mb__before_atomic();
868 atomic_long_dec(&buf->active_readers);
869 kref_put(&chan->ref, channel_release);
870 }
871 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
872
873 /*
874 * Promote compiler barrier to a smp_mb().
875 * For the specific ring buffer case, this IPI call should be removed if the
876 * architecture does not reorder writes. This should eventually be provided by
877 * a separate architecture-specific infrastructure.
878 */
879 static void remote_mb(void *info)
880 {
881 smp_mb();
882 }
883
884 /**
885 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
886 * @buf: ring buffer
887 * @consumed: consumed count indicating the position where to read
888 * @produced: produced count, indicates position when to stop reading
889 *
890 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
891 * data to read at consumed position, or 0 if the get operation succeeds.
892 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
893 */
894
895 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
896 unsigned long *consumed, unsigned long *produced)
897 {
898 struct channel *chan = buf->backend.chan;
899 const struct lib_ring_buffer_config *config = &chan->backend.config;
900 unsigned long consumed_cur, write_offset;
901 int finalized;
902
903 retry:
904 finalized = ACCESS_ONCE(buf->finalized);
905 /*
906 * Read finalized before counters.
907 */
908 smp_rmb();
909 consumed_cur = atomic_long_read(&buf->consumed);
910 /*
911 * No need to issue a memory barrier between consumed count read and
912 * write offset read, because consumed count can only change
913 * concurrently in overwrite mode, and we keep a sequence counter
914 * identifier derived from the write offset to check we are getting
915 * the same sub-buffer we are expecting (the sub-buffers are atomically
916 * "tagged" upon writes, tags are checked upon read).
917 */
918 write_offset = v_read(config, &buf->offset);
919
920 /*
921 * Check that we are not about to read the same subbuffer in
922 * which the writer head is.
923 */
924 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
925 == 0)
926 goto nodata;
927
928 *consumed = consumed_cur;
929 *produced = subbuf_trunc(write_offset, chan);
930
931 return 0;
932
933 nodata:
934 /*
935 * The memory barriers __wait_event()/wake_up_interruptible() take care
936 * of "raw_spin_is_locked" memory ordering.
937 */
938 if (finalized)
939 return -ENODATA;
940 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
941 goto retry;
942 else
943 return -EAGAIN;
944 }
945 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
946
947 /**
948 * lib_ring_buffer_put_snapshot - move consumed counter forward
949 *
950 * Should only be called from consumer context.
951 * @buf: ring buffer
952 * @consumed_new: new consumed count value
953 */
954 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
955 unsigned long consumed_new)
956 {
957 struct lib_ring_buffer_backend *bufb = &buf->backend;
958 struct channel *chan = bufb->chan;
959 unsigned long consumed;
960
961 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
962
963 /*
964 * Only push the consumed value forward.
965 * If the consumed cmpxchg fails, this is because we have been pushed by
966 * the writer in flight recorder mode.
967 */
968 consumed = atomic_long_read(&buf->consumed);
969 while ((long) consumed - (long) consumed_new < 0)
970 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
971 consumed_new);
972 /* Wake-up the metadata producer */
973 wake_up_interruptible(&buf->write_wait);
974 }
975 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
976
977 /**
978 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
979 * @buf: ring buffer
980 * @consumed: consumed count indicating the position where to read
981 *
982 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
983 * data to read at consumed position, or 0 if the get operation succeeds.
984 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
985 */
986 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
987 unsigned long consumed)
988 {
989 struct channel *chan = buf->backend.chan;
990 const struct lib_ring_buffer_config *config = &chan->backend.config;
991 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
992 int ret;
993 int finalized;
994
995 if (buf->get_subbuf) {
996 /*
997 * Reader is trying to get a subbuffer twice.
998 */
999 CHAN_WARN_ON(chan, 1);
1000 return -EBUSY;
1001 }
1002 retry:
1003 finalized = ACCESS_ONCE(buf->finalized);
1004 /*
1005 * Read finalized before counters.
1006 */
1007 smp_rmb();
1008 consumed_cur = atomic_long_read(&buf->consumed);
1009 consumed_idx = subbuf_index(consumed, chan);
1010 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
1011 /*
1012 * Make sure we read the commit count before reading the buffer
1013 * data and the write offset. Correct consumed offset ordering
1014 * wrt commit count is insured by the use of cmpxchg to update
1015 * the consumed offset.
1016 * smp_call_function_single can fail if the remote CPU is offline,
1017 * this is OK because then there is no wmb to execute there.
1018 * If our thread is executing on the same CPU as the on the buffers
1019 * belongs to, we don't have to synchronize it at all. If we are
1020 * migrated, the scheduler will take care of the memory barriers.
1021 * Normally, smp_call_function_single() should ensure program order when
1022 * executing the remote function, which implies that it surrounds the
1023 * function execution with :
1024 * smp_mb()
1025 * send IPI
1026 * csd_lock_wait
1027 * recv IPI
1028 * smp_mb()
1029 * exec. function
1030 * smp_mb()
1031 * csd unlock
1032 * smp_mb()
1033 *
1034 * However, smp_call_function_single() does not seem to clearly execute
1035 * such barriers. It depends on spinlock semantic to provide the barrier
1036 * before executing the IPI and, when busy-looping, csd_lock_wait only
1037 * executes smp_mb() when it has to wait for the other CPU.
1038 *
1039 * I don't trust this code. Therefore, let's add the smp_mb() sequence
1040 * required ourself, even if duplicated. It has no performance impact
1041 * anyway.
1042 *
1043 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
1044 * read and write vs write. They do not ensure core synchronization. We
1045 * really have to ensure total order between the 3 barriers running on
1046 * the 2 CPUs.
1047 */
1048 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1049 if (config->sync == RING_BUFFER_SYNC_PER_CPU
1050 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
1051 if (raw_smp_processor_id() != buf->backend.cpu) {
1052 /* Total order with IPI handler smp_mb() */
1053 smp_mb();
1054 smp_call_function_single(buf->backend.cpu,
1055 remote_mb, NULL, 1);
1056 /* Total order with IPI handler smp_mb() */
1057 smp_mb();
1058 }
1059 } else {
1060 /* Total order with IPI handler smp_mb() */
1061 smp_mb();
1062 smp_call_function(remote_mb, NULL, 1);
1063 /* Total order with IPI handler smp_mb() */
1064 smp_mb();
1065 }
1066 } else {
1067 /*
1068 * Local rmb to match the remote wmb to read the commit count
1069 * before the buffer data and the write offset.
1070 */
1071 smp_rmb();
1072 }
1073
1074 write_offset = v_read(config, &buf->offset);
1075
1076 /*
1077 * Check that the buffer we are getting is after or at consumed_cur
1078 * position.
1079 */
1080 if ((long) subbuf_trunc(consumed, chan)
1081 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1082 goto nodata;
1083
1084 /*
1085 * Check that the subbuffer we are trying to consume has been
1086 * already fully committed.
1087 */
1088 if (((commit_count - chan->backend.subbuf_size)
1089 & chan->commit_count_mask)
1090 - (buf_trunc(consumed, chan)
1091 >> chan->backend.num_subbuf_order)
1092 != 0)
1093 goto nodata;
1094
1095 /*
1096 * Check that we are not about to read the same subbuffer in
1097 * which the writer head is.
1098 */
1099 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1100 == 0)
1101 goto nodata;
1102
1103 /*
1104 * Failure to get the subbuffer causes a busy-loop retry without going
1105 * to a wait queue. These are caused by short-lived race windows where
1106 * the writer is getting access to a subbuffer we were trying to get
1107 * access to. Also checks that the "consumed" buffer count we are
1108 * looking for matches the one contained in the subbuffer id.
1109 */
1110 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1111 consumed_idx, buf_trunc_val(consumed, chan));
1112 if (ret)
1113 goto retry;
1114 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1115
1116 buf->get_subbuf_consumed = consumed;
1117 buf->get_subbuf = 1;
1118
1119 return 0;
1120
1121 nodata:
1122 /*
1123 * The memory barriers __wait_event()/wake_up_interruptible() take care
1124 * of "raw_spin_is_locked" memory ordering.
1125 */
1126 if (finalized)
1127 return -ENODATA;
1128 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1129 goto retry;
1130 else
1131 return -EAGAIN;
1132 }
1133 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1134
1135 /**
1136 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1137 * @buf: ring buffer
1138 */
1139 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1140 {
1141 struct lib_ring_buffer_backend *bufb = &buf->backend;
1142 struct channel *chan = bufb->chan;
1143 const struct lib_ring_buffer_config *config = &chan->backend.config;
1144 unsigned long read_sb_bindex, consumed_idx, consumed;
1145
1146 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1147
1148 if (!buf->get_subbuf) {
1149 /*
1150 * Reader puts a subbuffer it did not get.
1151 */
1152 CHAN_WARN_ON(chan, 1);
1153 return;
1154 }
1155 consumed = buf->get_subbuf_consumed;
1156 buf->get_subbuf = 0;
1157
1158 /*
1159 * Clear the records_unread counter. (overruns counter)
1160 * Can still be non-zero if a file reader simply grabbed the data
1161 * without using iterators.
1162 * Can be below zero if an iterator is used on a snapshot more than
1163 * once.
1164 */
1165 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1166 v_add(config, v_read(config,
1167 &bufb->array[read_sb_bindex]->records_unread),
1168 &bufb->records_read);
1169 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1170 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1171 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1172 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1173
1174 /*
1175 * Exchange the reader subbuffer with the one we put in its place in the
1176 * writer subbuffer table. Expect the original consumed count. If
1177 * update_read_sb_index fails, this is because the writer updated the
1178 * subbuffer concurrently. We should therefore keep the subbuffer we
1179 * currently have: it has become invalid to try reading this sub-buffer
1180 * consumed count value anyway.
1181 */
1182 consumed_idx = subbuf_index(consumed, chan);
1183 update_read_sb_index(config, &buf->backend, &chan->backend,
1184 consumed_idx, buf_trunc_val(consumed, chan));
1185 /*
1186 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1187 * if the writer concurrently updated it.
1188 */
1189 }
1190 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1191
1192 /*
1193 * cons_offset is an iterator on all subbuffer offsets between the reader
1194 * position and the writer position. (inclusive)
1195 */
1196 static
1197 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1198 struct channel *chan,
1199 unsigned long cons_offset,
1200 int cpu)
1201 {
1202 const struct lib_ring_buffer_config *config = &chan->backend.config;
1203 unsigned long cons_idx, commit_count, commit_count_sb;
1204
1205 cons_idx = subbuf_index(cons_offset, chan);
1206 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1207 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1208
1209 if (subbuf_offset(commit_count, chan) != 0)
1210 printk(KERN_WARNING
1211 "ring buffer %s, cpu %d: "
1212 "commit count in subbuffer %lu,\n"
1213 "expecting multiples of %lu bytes\n"
1214 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1215 chan->backend.name, cpu, cons_idx,
1216 chan->backend.subbuf_size,
1217 commit_count, commit_count_sb);
1218
1219 printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1220 chan->backend.name, cpu, commit_count);
1221 }
1222
1223 static
1224 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1225 struct channel *chan,
1226 void *priv, int cpu)
1227 {
1228 const struct lib_ring_buffer_config *config = &chan->backend.config;
1229 unsigned long write_offset, cons_offset;
1230
1231 /*
1232 * No need to order commit_count, write_offset and cons_offset reads
1233 * because we execute at teardown when no more writer nor reader
1234 * references are left.
1235 */
1236 write_offset = v_read(config, &buf->offset);
1237 cons_offset = atomic_long_read(&buf->consumed);
1238 if (write_offset != cons_offset)
1239 printk(KERN_DEBUG
1240 "ring buffer %s, cpu %d: "
1241 "non-consumed data\n"
1242 " [ %lu bytes written, %lu bytes read ]\n",
1243 chan->backend.name, cpu, write_offset, cons_offset);
1244
1245 for (cons_offset = atomic_long_read(&buf->consumed);
1246 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1247 chan)
1248 - cons_offset) > 0;
1249 cons_offset = subbuf_align(cons_offset, chan))
1250 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1251 cpu);
1252 }
1253
1254 static
1255 void lib_ring_buffer_print_errors(struct channel *chan,
1256 struct lib_ring_buffer *buf, int cpu)
1257 {
1258 const struct lib_ring_buffer_config *config = &chan->backend.config;
1259 void *priv = chan->backend.priv;
1260
1261 if (!strcmp(chan->backend.name, "relay-metadata")) {
1262 printk(KERN_DEBUG "ring buffer %s: %lu records written, "
1263 "%lu records overrun\n",
1264 chan->backend.name,
1265 v_read(config, &buf->records_count),
1266 v_read(config, &buf->records_overrun));
1267 } else {
1268 printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1269 "%lu records overrun\n",
1270 chan->backend.name, cpu,
1271 v_read(config, &buf->records_count),
1272 v_read(config, &buf->records_overrun));
1273
1274 if (v_read(config, &buf->records_lost_full)
1275 || v_read(config, &buf->records_lost_wrap)
1276 || v_read(config, &buf->records_lost_big))
1277 printk(KERN_WARNING
1278 "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1279 " [ %lu buffer full, %lu nest buffer wrap-around, "
1280 "%lu event too big ]\n",
1281 chan->backend.name, cpu,
1282 v_read(config, &buf->records_lost_full),
1283 v_read(config, &buf->records_lost_wrap),
1284 v_read(config, &buf->records_lost_big));
1285 }
1286 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1287 }
1288
1289 /*
1290 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1291 *
1292 * Only executed by SWITCH_FLUSH, which can be issued while tracing is active
1293 * or at buffer finalization (destroy).
1294 */
1295 static
1296 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1297 struct channel *chan,
1298 struct switch_offsets *offsets,
1299 u64 tsc)
1300 {
1301 const struct lib_ring_buffer_config *config = &chan->backend.config;
1302 unsigned long oldidx = subbuf_index(offsets->old, chan);
1303 unsigned long commit_count;
1304
1305 config->cb.buffer_begin(buf, tsc, oldidx);
1306
1307 /*
1308 * Order all writes to buffer before the commit count update that will
1309 * determine that the subbuffer is full.
1310 */
1311 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1312 /*
1313 * Must write slot data before incrementing commit count. This
1314 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1315 * by get_subbuf().
1316 */
1317 barrier();
1318 } else
1319 smp_wmb();
1320 v_add(config, config->cb.subbuffer_header_size(),
1321 &buf->commit_hot[oldidx].cc);
1322 commit_count = v_read(config, &buf->commit_hot[oldidx].cc);
1323 /* Check if the written buffer has to be delivered */
1324 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1325 commit_count, oldidx, tsc);
1326 lib_ring_buffer_write_commit_counter(config, buf, chan, oldidx,
1327 offsets->old + config->cb.subbuffer_header_size(),
1328 commit_count);
1329 }
1330
1331 /*
1332 * lib_ring_buffer_switch_old_end: switch old subbuffer
1333 *
1334 * Note : offset_old should never be 0 here. It is ok, because we never perform
1335 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1336 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1337 * subbuffer.
1338 */
1339 static
1340 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1341 struct channel *chan,
1342 struct switch_offsets *offsets,
1343 u64 tsc)
1344 {
1345 const struct lib_ring_buffer_config *config = &chan->backend.config;
1346 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1347 unsigned long commit_count, padding_size, data_size;
1348
1349 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1350 padding_size = chan->backend.subbuf_size - data_size;
1351 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1352
1353 /*
1354 * Order all writes to buffer before the commit count update that will
1355 * determine that the subbuffer is full.
1356 */
1357 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1358 /*
1359 * Must write slot data before incrementing commit count. This
1360 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1361 * by get_subbuf().
1362 */
1363 barrier();
1364 } else
1365 smp_wmb();
1366 v_add(config, padding_size, &buf->commit_hot[oldidx].cc);
1367 commit_count = v_read(config, &buf->commit_hot[oldidx].cc);
1368 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1369 commit_count, oldidx, tsc);
1370 lib_ring_buffer_write_commit_counter(config, buf, chan, oldidx,
1371 offsets->old + padding_size, commit_count);
1372 }
1373
1374 /*
1375 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1376 *
1377 * This code can be executed unordered : writers may already have written to the
1378 * sub-buffer before this code gets executed, caution. The commit makes sure
1379 * that this code is executed before the deliver of this sub-buffer.
1380 */
1381 static
1382 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1383 struct channel *chan,
1384 struct switch_offsets *offsets,
1385 u64 tsc)
1386 {
1387 const struct lib_ring_buffer_config *config = &chan->backend.config;
1388 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1389 unsigned long commit_count;
1390
1391 config->cb.buffer_begin(buf, tsc, beginidx);
1392
1393 /*
1394 * Order all writes to buffer before the commit count update that will
1395 * determine that the subbuffer is full.
1396 */
1397 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1398 /*
1399 * Must write slot data before incrementing commit count. This
1400 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1401 * by get_subbuf().
1402 */
1403 barrier();
1404 } else
1405 smp_wmb();
1406 v_add(config, config->cb.subbuffer_header_size(),
1407 &buf->commit_hot[beginidx].cc);
1408 commit_count = v_read(config, &buf->commit_hot[beginidx].cc);
1409 /* Check if the written buffer has to be delivered */
1410 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1411 commit_count, beginidx, tsc);
1412 lib_ring_buffer_write_commit_counter(config, buf, chan, beginidx,
1413 offsets->begin + config->cb.subbuffer_header_size(),
1414 commit_count);
1415 }
1416
1417 /*
1418 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1419 *
1420 * Calls subbuffer_set_data_size() to set the data size of the current
1421 * sub-buffer. We do not need to perform check_deliver nor commit here,
1422 * since this task will be done by the "commit" of the event for which
1423 * we are currently doing the space reservation.
1424 */
1425 static
1426 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1427 struct channel *chan,
1428 struct switch_offsets *offsets,
1429 u64 tsc)
1430 {
1431 const struct lib_ring_buffer_config *config = &chan->backend.config;
1432 unsigned long endidx, data_size;
1433
1434 endidx = subbuf_index(offsets->end - 1, chan);
1435 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1436 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1437 }
1438
1439 /*
1440 * Returns :
1441 * 0 if ok
1442 * !0 if execution must be aborted.
1443 */
1444 static
1445 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1446 struct lib_ring_buffer *buf,
1447 struct channel *chan,
1448 struct switch_offsets *offsets,
1449 u64 *tsc)
1450 {
1451 const struct lib_ring_buffer_config *config = &chan->backend.config;
1452 unsigned long off, reserve_commit_diff;
1453
1454 offsets->begin = v_read(config, &buf->offset);
1455 offsets->old = offsets->begin;
1456 offsets->switch_old_start = 0;
1457 off = subbuf_offset(offsets->begin, chan);
1458
1459 *tsc = config->cb.ring_buffer_clock_read(chan);
1460
1461 /*
1462 * Ensure we flush the header of an empty subbuffer when doing the
1463 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1464 * total data gathering duration even if there were no records saved
1465 * after the last buffer switch.
1466 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1467 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1468 * subbuffer header as appropriate.
1469 * The next record that reserves space will be responsible for
1470 * populating the following subbuffer header. We choose not to populate
1471 * the next subbuffer header here because we want to be able to use
1472 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1473 * buffer flush, which must guarantee that all the buffer content
1474 * (records and header timestamps) are visible to the reader. This is
1475 * required for quiescence guarantees for the fusion merge.
1476 */
1477 if (mode != SWITCH_FLUSH && !off)
1478 return -1; /* we do not have to switch : buffer is empty */
1479
1480 if (unlikely(off == 0)) {
1481 unsigned long sb_index, commit_count;
1482
1483 /*
1484 * We are performing a SWITCH_FLUSH. There may be concurrent
1485 * writes into the buffer if e.g. invoked while performing a
1486 * snapshot on an active trace.
1487 *
1488 * If the client does not save any header information (sub-buffer
1489 * header size == 0), don't switch empty subbuffer on finalize,
1490 * because it is invalid to deliver a completely empty
1491 * subbuffer.
1492 */
1493 if (!config->cb.subbuffer_header_size())
1494 return -1;
1495
1496 /* Test new buffer integrity */
1497 sb_index = subbuf_index(offsets->begin, chan);
1498 commit_count = v_read(config,
1499 &buf->commit_cold[sb_index].cc_sb);
1500 reserve_commit_diff =
1501 (buf_trunc(offsets->begin, chan)
1502 >> chan->backend.num_subbuf_order)
1503 - (commit_count & chan->commit_count_mask);
1504 if (likely(reserve_commit_diff == 0)) {
1505 /* Next subbuffer not being written to. */
1506 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1507 subbuf_trunc(offsets->begin, chan)
1508 - subbuf_trunc((unsigned long)
1509 atomic_long_read(&buf->consumed), chan)
1510 >= chan->backend.buf_size)) {
1511 /*
1512 * We do not overwrite non consumed buffers
1513 * and we are full : don't switch.
1514 */
1515 return -1;
1516 } else {
1517 /*
1518 * Next subbuffer not being written to, and we
1519 * are either in overwrite mode or the buffer is
1520 * not full. It's safe to write in this new
1521 * subbuffer.
1522 */
1523 }
1524 } else {
1525 /*
1526 * Next subbuffer reserve offset does not match the
1527 * commit offset. Don't perform switch in
1528 * producer-consumer and overwrite mode. Caused by
1529 * either a writer OOPS or too many nested writes over a
1530 * reserve/commit pair.
1531 */
1532 return -1;
1533 }
1534
1535 /*
1536 * Need to write the subbuffer start header on finalize.
1537 */
1538 offsets->switch_old_start = 1;
1539 }
1540 offsets->begin = subbuf_align(offsets->begin, chan);
1541 /* Note: old points to the next subbuf at offset 0 */
1542 offsets->end = offsets->begin;
1543 return 0;
1544 }
1545
1546 /*
1547 * Force a sub-buffer switch. This operation is completely reentrant : can be
1548 * called while tracing is active with absolutely no lock held.
1549 *
1550 * Note, however, that as a v_cmpxchg is used for some atomic
1551 * operations, this function must be called from the CPU which owns the buffer
1552 * for a ACTIVE flush.
1553 */
1554 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1555 {
1556 struct channel *chan = buf->backend.chan;
1557 const struct lib_ring_buffer_config *config = &chan->backend.config;
1558 struct switch_offsets offsets;
1559 unsigned long oldidx;
1560 u64 tsc;
1561
1562 offsets.size = 0;
1563
1564 /*
1565 * Perform retryable operations.
1566 */
1567 do {
1568 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1569 &tsc))
1570 return; /* Switch not needed */
1571 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1572 != offsets.old);
1573
1574 /*
1575 * Atomically update last_tsc. This update races against concurrent
1576 * atomic updates, but the race will always cause supplementary full TSC
1577 * records, never the opposite (missing a full TSC record when it would
1578 * be needed).
1579 */
1580 save_last_tsc(config, buf, tsc);
1581
1582 /*
1583 * Push the reader if necessary
1584 */
1585 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1586
1587 oldidx = subbuf_index(offsets.old, chan);
1588 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1589
1590 /*
1591 * May need to populate header start on SWITCH_FLUSH.
1592 */
1593 if (offsets.switch_old_start) {
1594 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1595 offsets.old += config->cb.subbuffer_header_size();
1596 }
1597
1598 /*
1599 * Switch old subbuffer.
1600 */
1601 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1602 }
1603 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1604
1605 struct switch_param {
1606 struct lib_ring_buffer *buf;
1607 enum switch_mode mode;
1608 };
1609
1610 static void remote_switch(void *info)
1611 {
1612 struct switch_param *param = info;
1613 struct lib_ring_buffer *buf = param->buf;
1614
1615 lib_ring_buffer_switch_slow(buf, param->mode);
1616 }
1617
1618 static void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
1619 enum switch_mode mode)
1620 {
1621 struct channel *chan = buf->backend.chan;
1622 const struct lib_ring_buffer_config *config = &chan->backend.config;
1623 int ret;
1624 struct switch_param param;
1625
1626 /*
1627 * With global synchronization we don't need to use the IPI scheme.
1628 */
1629 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1630 lib_ring_buffer_switch_slow(buf, mode);
1631 return;
1632 }
1633
1634 /*
1635 * Taking lock on CPU hotplug to ensure two things: first, that the
1636 * target cpu is not taken concurrently offline while we are within
1637 * smp_call_function_single() (I don't trust that get_cpu() on the
1638 * _local_ CPU actually inhibit CPU hotplug for the _remote_ CPU (to be
1639 * confirmed)). Secondly, if it happens that the CPU is not online, our
1640 * own call to lib_ring_buffer_switch_slow() needs to be protected from
1641 * CPU hotplug handlers, which can also perform a remote subbuffer
1642 * switch.
1643 */
1644 get_online_cpus();
1645 param.buf = buf;
1646 param.mode = mode;
1647 ret = smp_call_function_single(buf->backend.cpu,
1648 remote_switch, &param, 1);
1649 if (ret) {
1650 /* Remote CPU is offline, do it ourself. */
1651 lib_ring_buffer_switch_slow(buf, mode);
1652 }
1653 put_online_cpus();
1654 }
1655
1656 void lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf)
1657 {
1658 _lib_ring_buffer_switch_remote(buf, SWITCH_ACTIVE);
1659 }
1660 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1661
1662 /* Switch sub-buffer even if current sub-buffer is empty. */
1663 void lib_ring_buffer_switch_remote_empty(struct lib_ring_buffer *buf)
1664 {
1665 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
1666 }
1667 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote_empty);
1668
1669 /*
1670 * Returns :
1671 * 0 if ok
1672 * -ENOSPC if event size is too large for packet.
1673 * -ENOBUFS if there is currently not enough space in buffer for the event.
1674 * -EIO if data cannot be written into the buffer for any other reason.
1675 */
1676 static
1677 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1678 struct channel *chan,
1679 struct switch_offsets *offsets,
1680 struct lib_ring_buffer_ctx *ctx)
1681 {
1682 const struct lib_ring_buffer_config *config = &chan->backend.config;
1683 unsigned long reserve_commit_diff, offset_cmp;
1684
1685 retry:
1686 offsets->begin = offset_cmp = v_read(config, &buf->offset);
1687 offsets->old = offsets->begin;
1688 offsets->switch_new_start = 0;
1689 offsets->switch_new_end = 0;
1690 offsets->switch_old_end = 0;
1691 offsets->pre_header_padding = 0;
1692
1693 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1694 if ((int64_t) ctx->tsc == -EIO)
1695 return -EIO;
1696
1697 if (last_tsc_overflow(config, buf, ctx->tsc))
1698 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
1699
1700 if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
1701 offsets->switch_new_start = 1; /* For offsets->begin */
1702 } else {
1703 offsets->size = config->cb.record_header_size(config, chan,
1704 offsets->begin,
1705 &offsets->pre_header_padding,
1706 ctx);
1707 offsets->size +=
1708 lib_ring_buffer_align(offsets->begin + offsets->size,
1709 ctx->largest_align)
1710 + ctx->data_size;
1711 if (unlikely(subbuf_offset(offsets->begin, chan) +
1712 offsets->size > chan->backend.subbuf_size)) {
1713 offsets->switch_old_end = 1; /* For offsets->old */
1714 offsets->switch_new_start = 1; /* For offsets->begin */
1715 }
1716 }
1717 if (unlikely(offsets->switch_new_start)) {
1718 unsigned long sb_index, commit_count;
1719
1720 /*
1721 * We are typically not filling the previous buffer completely.
1722 */
1723 if (likely(offsets->switch_old_end))
1724 offsets->begin = subbuf_align(offsets->begin, chan);
1725 offsets->begin = offsets->begin
1726 + config->cb.subbuffer_header_size();
1727 /* Test new buffer integrity */
1728 sb_index = subbuf_index(offsets->begin, chan);
1729 /*
1730 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
1731 * lib_ring_buffer_check_deliver() has the matching
1732 * memory barriers required around commit_cold cc_sb
1733 * updates to ensure reserve and commit counter updates
1734 * are not seen reordered when updated by another CPU.
1735 */
1736 smp_rmb();
1737 commit_count = v_read(config,
1738 &buf->commit_cold[sb_index].cc_sb);
1739 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
1740 smp_rmb();
1741 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
1742 /*
1743 * The reserve counter have been concurrently updated
1744 * while we read the commit counter. This means the
1745 * commit counter we read might not match buf->offset
1746 * due to concurrent update. We therefore need to retry.
1747 */
1748 goto retry;
1749 }
1750 reserve_commit_diff =
1751 (buf_trunc(offsets->begin, chan)
1752 >> chan->backend.num_subbuf_order)
1753 - (commit_count & chan->commit_count_mask);
1754 if (likely(reserve_commit_diff == 0)) {
1755 /* Next subbuffer not being written to. */
1756 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1757 subbuf_trunc(offsets->begin, chan)
1758 - subbuf_trunc((unsigned long)
1759 atomic_long_read(&buf->consumed), chan)
1760 >= chan->backend.buf_size)) {
1761 /*
1762 * We do not overwrite non consumed buffers
1763 * and we are full : record is lost.
1764 */
1765 v_inc(config, &buf->records_lost_full);
1766 return -ENOBUFS;
1767 } else {
1768 /*
1769 * Next subbuffer not being written to, and we
1770 * are either in overwrite mode or the buffer is
1771 * not full. It's safe to write in this new
1772 * subbuffer.
1773 */
1774 }
1775 } else {
1776 /*
1777 * Next subbuffer reserve offset does not match the
1778 * commit offset, and this did not involve update to the
1779 * reserve counter. Drop record in producer-consumer and
1780 * overwrite mode. Caused by either a writer OOPS or
1781 * too many nested writes over a reserve/commit pair.
1782 */
1783 v_inc(config, &buf->records_lost_wrap);
1784 return -EIO;
1785 }
1786 offsets->size =
1787 config->cb.record_header_size(config, chan,
1788 offsets->begin,
1789 &offsets->pre_header_padding,
1790 ctx);
1791 offsets->size +=
1792 lib_ring_buffer_align(offsets->begin + offsets->size,
1793 ctx->largest_align)
1794 + ctx->data_size;
1795 if (unlikely(subbuf_offset(offsets->begin, chan)
1796 + offsets->size > chan->backend.subbuf_size)) {
1797 /*
1798 * Record too big for subbuffers, report error, don't
1799 * complete the sub-buffer switch.
1800 */
1801 v_inc(config, &buf->records_lost_big);
1802 return -ENOSPC;
1803 } else {
1804 /*
1805 * We just made a successful buffer switch and the
1806 * record fits in the new subbuffer. Let's write.
1807 */
1808 }
1809 } else {
1810 /*
1811 * Record fits in the current buffer and we are not on a switch
1812 * boundary. It's safe to write.
1813 */
1814 }
1815 offsets->end = offsets->begin + offsets->size;
1816
1817 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
1818 /*
1819 * The offset_end will fall at the very beginning of the next
1820 * subbuffer.
1821 */
1822 offsets->switch_new_end = 1; /* For offsets->begin */
1823 }
1824 return 0;
1825 }
1826
1827 /**
1828 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
1829 * @ctx: ring buffer context.
1830 *
1831 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
1832 * -EIO for other errors, else returns 0.
1833 * It will take care of sub-buffer switching.
1834 */
1835 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx)
1836 {
1837 struct channel *chan = ctx->chan;
1838 const struct lib_ring_buffer_config *config = &chan->backend.config;
1839 struct lib_ring_buffer *buf;
1840 struct switch_offsets offsets;
1841 int ret;
1842
1843 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
1844 buf = per_cpu_ptr(chan->backend.buf, ctx->cpu);
1845 else
1846 buf = chan->backend.buf;
1847 ctx->buf = buf;
1848
1849 offsets.size = 0;
1850
1851 do {
1852 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
1853 ctx);
1854 if (unlikely(ret))
1855 return ret;
1856 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
1857 offsets.end)
1858 != offsets.old));
1859
1860 /*
1861 * Atomically update last_tsc. This update races against concurrent
1862 * atomic updates, but the race will always cause supplementary full TSC
1863 * records, never the opposite (missing a full TSC record when it would
1864 * be needed).
1865 */
1866 save_last_tsc(config, buf, ctx->tsc);
1867
1868 /*
1869 * Push the reader if necessary
1870 */
1871 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
1872
1873 /*
1874 * Clear noref flag for this subbuffer.
1875 */
1876 lib_ring_buffer_clear_noref(config, &buf->backend,
1877 subbuf_index(offsets.end - 1, chan));
1878
1879 /*
1880 * Switch old subbuffer if needed.
1881 */
1882 if (unlikely(offsets.switch_old_end)) {
1883 lib_ring_buffer_clear_noref(config, &buf->backend,
1884 subbuf_index(offsets.old - 1, chan));
1885 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
1886 }
1887
1888 /*
1889 * Populate new subbuffer.
1890 */
1891 if (unlikely(offsets.switch_new_start))
1892 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
1893
1894 if (unlikely(offsets.switch_new_end))
1895 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
1896
1897 ctx->slot_size = offsets.size;
1898 ctx->pre_offset = offsets.begin;
1899 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
1900 return 0;
1901 }
1902 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
1903
1904 int __init init_lib_ring_buffer_frontend(void)
1905 {
1906 int cpu;
1907
1908 for_each_possible_cpu(cpu)
1909 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
1910 return 0;
1911 }
1912
1913 module_init(init_lib_ring_buffer_frontend);
1914
1915 void __exit exit_lib_ring_buffer_frontend(void)
1916 {
1917 }
1918
1919 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.106084 seconds and 4 git commands to generate.