Fix: ring_buffer_frontend.c: init read timer with uninitialized flags
[lttng-modules.git] / lib / ringbuffer / ring_buffer_frontend.c
1 /* SPDX-License-Identifier: (GPL-2.0 OR LGPL-2.1)
2 *
3 * ring_buffer_frontend.c
4 *
5 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
6 *
7 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
8 * recorder (overwrite) modes. See thesis:
9 *
10 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
11 * dissertation, Ecole Polytechnique de Montreal.
12 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
13 *
14 * - Algorithm presentation in Chapter 5:
15 * "Lockless Multi-Core High-Throughput Buffering".
16 * - Algorithm formal verification in Section 8.6:
17 * "Formal verification of LTTng"
18 *
19 * Author:
20 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
21 *
22 * Inspired from LTT and RelayFS:
23 * Karim Yaghmour <karim@opersys.com>
24 * Tom Zanussi <zanussi@us.ibm.com>
25 * Bob Wisniewski <bob@watson.ibm.com>
26 * And from K42 :
27 * Bob Wisniewski <bob@watson.ibm.com>
28 *
29 * Buffer reader semantic :
30 *
31 * - get_subbuf_size
32 * while buffer is not finalized and empty
33 * - get_subbuf
34 * - if return value != 0, continue
35 * - splice one subbuffer worth of data to a pipe
36 * - splice the data from pipe to disk/network
37 * - put_subbuf
38 */
39
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/percpu.h>
43 #include <asm/cacheflush.h>
44
45 #include <wrapper/ringbuffer/config.h>
46 #include <wrapper/ringbuffer/backend.h>
47 #include <wrapper/ringbuffer/frontend.h>
48 #include <wrapper/ringbuffer/iterator.h>
49 #include <wrapper/ringbuffer/nohz.h>
50 #include <wrapper/atomic.h>
51 #include <wrapper/kref.h>
52 #include <wrapper/percpu-defs.h>
53 #include <wrapper/timer.h>
54 #include <wrapper/vmalloc.h>
55
56 /*
57 * Internal structure representing offsets to use at a sub-buffer switch.
58 */
59 struct switch_offsets {
60 unsigned long begin, end, old;
61 size_t pre_header_padding, size;
62 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
63 switch_old_end:1;
64 };
65
66 #ifdef CONFIG_NO_HZ
67 enum tick_nohz_val {
68 TICK_NOHZ_STOP,
69 TICK_NOHZ_FLUSH,
70 TICK_NOHZ_RESTART,
71 };
72
73 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
74 #endif /* CONFIG_NO_HZ */
75
76 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
77
78 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
79 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
80
81 static
82 void lib_ring_buffer_print_errors(struct channel *chan,
83 struct lib_ring_buffer *buf, int cpu);
84 static
85 void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
86 enum switch_mode mode);
87
88 static
89 int lib_ring_buffer_poll_deliver(const struct lib_ring_buffer_config *config,
90 struct lib_ring_buffer *buf,
91 struct channel *chan)
92 {
93 unsigned long consumed_old, consumed_idx, commit_count, write_offset;
94
95 consumed_old = atomic_long_read(&buf->consumed);
96 consumed_idx = subbuf_index(consumed_old, chan);
97 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
98 /*
99 * No memory barrier here, since we are only interested
100 * in a statistically correct polling result. The next poll will
101 * get the data is we are racing. The mb() that ensures correct
102 * memory order is in get_subbuf.
103 */
104 write_offset = v_read(config, &buf->offset);
105
106 /*
107 * Check that the subbuffer we are trying to consume has been
108 * already fully committed.
109 */
110
111 if (((commit_count - chan->backend.subbuf_size)
112 & chan->commit_count_mask)
113 - (buf_trunc(consumed_old, chan)
114 >> chan->backend.num_subbuf_order)
115 != 0)
116 return 0;
117
118 /*
119 * Check that we are not about to read the same subbuffer in
120 * which the writer head is.
121 */
122 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_old, chan)
123 == 0)
124 return 0;
125
126 return 1;
127 }
128
129 /*
130 * Must be called under cpu hotplug protection.
131 */
132 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
133 {
134 struct channel *chan = buf->backend.chan;
135
136 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
137 lttng_kvfree(buf->commit_hot);
138 lttng_kvfree(buf->commit_cold);
139 lttng_kvfree(buf->ts_end);
140
141 lib_ring_buffer_backend_free(&buf->backend);
142 }
143
144 /**
145 * lib_ring_buffer_reset - Reset ring buffer to initial values.
146 * @buf: Ring buffer.
147 *
148 * Effectively empty the ring buffer. Should be called when the buffer is not
149 * used for writing. The ring buffer can be opened for reading, but the reader
150 * should not be using the iterator concurrently with reset. The previous
151 * current iterator record is reset.
152 */
153 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
154 {
155 struct channel *chan = buf->backend.chan;
156 const struct lib_ring_buffer_config *config = &chan->backend.config;
157 unsigned int i;
158
159 /*
160 * Reset iterator first. It will put the subbuffer if it currently holds
161 * it.
162 */
163 lib_ring_buffer_iterator_reset(buf);
164 v_set(config, &buf->offset, 0);
165 for (i = 0; i < chan->backend.num_subbuf; i++) {
166 v_set(config, &buf->commit_hot[i].cc, 0);
167 v_set(config, &buf->commit_hot[i].seq, 0);
168 v_set(config, &buf->commit_cold[i].cc_sb, 0);
169 buf->ts_end[i] = 0;
170 }
171 atomic_long_set(&buf->consumed, 0);
172 atomic_set(&buf->record_disabled, 0);
173 v_set(config, &buf->last_tsc, 0);
174 lib_ring_buffer_backend_reset(&buf->backend);
175 /* Don't reset number of active readers */
176 v_set(config, &buf->records_lost_full, 0);
177 v_set(config, &buf->records_lost_wrap, 0);
178 v_set(config, &buf->records_lost_big, 0);
179 v_set(config, &buf->records_count, 0);
180 v_set(config, &buf->records_overrun, 0);
181 buf->finalized = 0;
182 }
183 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
184
185 /**
186 * channel_reset - Reset channel to initial values.
187 * @chan: Channel.
188 *
189 * Effectively empty the channel. Should be called when the channel is not used
190 * for writing. The channel can be opened for reading, but the reader should not
191 * be using the iterator concurrently with reset. The previous current iterator
192 * record is reset.
193 */
194 void channel_reset(struct channel *chan)
195 {
196 /*
197 * Reset iterators first. Will put the subbuffer if held for reading.
198 */
199 channel_iterator_reset(chan);
200 atomic_set(&chan->record_disabled, 0);
201 /* Don't reset commit_count_mask, still valid */
202 channel_backend_reset(&chan->backend);
203 /* Don't reset switch/read timer interval */
204 /* Don't reset notifiers and notifier enable bits */
205 /* Don't reset reader reference count */
206 }
207 EXPORT_SYMBOL_GPL(channel_reset);
208
209 /*
210 * Must be called under cpu hotplug protection.
211 */
212 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
213 struct channel_backend *chanb, int cpu)
214 {
215 const struct lib_ring_buffer_config *config = &chanb->config;
216 struct channel *chan = container_of(chanb, struct channel, backend);
217 void *priv = chanb->priv;
218 size_t subbuf_header_size;
219 u64 tsc;
220 int ret;
221
222 /* Test for cpu hotplug */
223 if (buf->backend.allocated)
224 return 0;
225
226 /*
227 * Paranoia: per cpu dynamic allocation is not officially documented as
228 * zeroing the memory, so let's do it here too, just in case.
229 */
230 memset(buf, 0, sizeof(*buf));
231
232 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
233 if (ret)
234 return ret;
235
236 buf->commit_hot =
237 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_hot)
238 * chan->backend.num_subbuf,
239 1 << INTERNODE_CACHE_SHIFT),
240 GFP_KERNEL | __GFP_NOWARN,
241 cpu_to_node(max(cpu, 0)));
242 if (!buf->commit_hot) {
243 ret = -ENOMEM;
244 goto free_chanbuf;
245 }
246
247 buf->commit_cold =
248 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_cold)
249 * chan->backend.num_subbuf,
250 1 << INTERNODE_CACHE_SHIFT),
251 GFP_KERNEL | __GFP_NOWARN,
252 cpu_to_node(max(cpu, 0)));
253 if (!buf->commit_cold) {
254 ret = -ENOMEM;
255 goto free_commit;
256 }
257
258 buf->ts_end =
259 lttng_kvzalloc_node(ALIGN(sizeof(*buf->ts_end)
260 * chan->backend.num_subbuf,
261 1 << INTERNODE_CACHE_SHIFT),
262 GFP_KERNEL | __GFP_NOWARN,
263 cpu_to_node(max(cpu, 0)));
264 if (!buf->ts_end) {
265 ret = -ENOMEM;
266 goto free_commit_cold;
267 }
268
269 init_waitqueue_head(&buf->read_wait);
270 init_waitqueue_head(&buf->write_wait);
271 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
272
273 /*
274 * Write the subbuffer header for first subbuffer so we know the total
275 * duration of data gathering.
276 */
277 subbuf_header_size = config->cb.subbuffer_header_size();
278 v_set(config, &buf->offset, subbuf_header_size);
279 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
280 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
281 config->cb.buffer_begin(buf, tsc, 0);
282 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
283
284 if (config->cb.buffer_create) {
285 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
286 if (ret)
287 goto free_init;
288 }
289
290 /*
291 * Ensure the buffer is ready before setting it to allocated and setting
292 * the cpumask.
293 * Used for cpu hotplug vs cpumask iteration.
294 */
295 smp_wmb();
296 buf->backend.allocated = 1;
297
298 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
299 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
300 chan->backend.cpumask));
301 cpumask_set_cpu(cpu, chan->backend.cpumask);
302 }
303
304 return 0;
305
306 /* Error handling */
307 free_init:
308 lttng_kvfree(buf->ts_end);
309 free_commit_cold:
310 lttng_kvfree(buf->commit_cold);
311 free_commit:
312 lttng_kvfree(buf->commit_hot);
313 free_chanbuf:
314 lib_ring_buffer_backend_free(&buf->backend);
315 return ret;
316 }
317
318 static void switch_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
319 {
320 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, switch_timer);
321 struct channel *chan = buf->backend.chan;
322 const struct lib_ring_buffer_config *config = &chan->backend.config;
323
324 /*
325 * Only flush buffers periodically if readers are active.
326 */
327 if (atomic_long_read(&buf->active_readers))
328 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
329
330 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
331 lttng_mod_timer_pinned(&buf->switch_timer,
332 jiffies + chan->switch_timer_interval);
333 else
334 mod_timer(&buf->switch_timer,
335 jiffies + chan->switch_timer_interval);
336 }
337
338 /*
339 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
340 */
341 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
342 {
343 struct channel *chan = buf->backend.chan;
344 const struct lib_ring_buffer_config *config = &chan->backend.config;
345 unsigned int flags = 0;
346
347 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
348 return;
349
350 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
351 flags = LTTNG_TIMER_PINNED;
352
353 lttng_timer_setup(&buf->switch_timer, switch_buffer_timer, flags, buf);
354 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
355
356 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
357 add_timer_on(&buf->switch_timer, buf->backend.cpu);
358 else
359 add_timer(&buf->switch_timer);
360
361 buf->switch_timer_enabled = 1;
362 }
363
364 /*
365 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
366 */
367 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
368 {
369 struct channel *chan = buf->backend.chan;
370
371 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
372 return;
373
374 del_timer_sync(&buf->switch_timer);
375 buf->switch_timer_enabled = 0;
376 }
377
378 /*
379 * Polling timer to check the channels for data.
380 */
381 static void read_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
382 {
383 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, read_timer);
384 struct channel *chan = buf->backend.chan;
385 const struct lib_ring_buffer_config *config = &chan->backend.config;
386
387 CHAN_WARN_ON(chan, !buf->backend.allocated);
388
389 if (atomic_long_read(&buf->active_readers)
390 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
391 wake_up_interruptible(&buf->read_wait);
392 wake_up_interruptible(&chan->read_wait);
393 }
394
395 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
396 lttng_mod_timer_pinned(&buf->read_timer,
397 jiffies + chan->read_timer_interval);
398 else
399 mod_timer(&buf->read_timer,
400 jiffies + chan->read_timer_interval);
401 }
402
403 /*
404 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
405 */
406 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
407 {
408 struct channel *chan = buf->backend.chan;
409 const struct lib_ring_buffer_config *config = &chan->backend.config;
410 unsigned int flags = 0;
411
412 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
413 || !chan->read_timer_interval
414 || buf->read_timer_enabled)
415 return;
416
417 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
418 flags = LTTNG_TIMER_PINNED;
419
420 lttng_timer_setup(&buf->read_timer, read_buffer_timer, flags, buf);
421 buf->read_timer.expires = jiffies + chan->read_timer_interval;
422
423 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
424 add_timer_on(&buf->read_timer, buf->backend.cpu);
425 else
426 add_timer(&buf->read_timer);
427
428 buf->read_timer_enabled = 1;
429 }
430
431 /*
432 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
433 */
434 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
435 {
436 struct channel *chan = buf->backend.chan;
437 const struct lib_ring_buffer_config *config = &chan->backend.config;
438
439 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
440 || !chan->read_timer_interval
441 || !buf->read_timer_enabled)
442 return;
443
444 del_timer_sync(&buf->read_timer);
445 /*
446 * do one more check to catch data that has been written in the last
447 * timer period.
448 */
449 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
450 wake_up_interruptible(&buf->read_wait);
451 wake_up_interruptible(&chan->read_wait);
452 }
453 buf->read_timer_enabled = 0;
454 }
455
456 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
457
458 enum cpuhp_state lttng_rb_hp_prepare;
459 enum cpuhp_state lttng_rb_hp_online;
460
461 void lttng_rb_set_hp_prepare(enum cpuhp_state val)
462 {
463 lttng_rb_hp_prepare = val;
464 }
465 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_prepare);
466
467 void lttng_rb_set_hp_online(enum cpuhp_state val)
468 {
469 lttng_rb_hp_online = val;
470 }
471 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_online);
472
473 int lttng_cpuhp_rb_frontend_dead(unsigned int cpu,
474 struct lttng_cpuhp_node *node)
475 {
476 struct channel *chan = container_of(node, struct channel,
477 cpuhp_prepare);
478 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
479 const struct lib_ring_buffer_config *config = &chan->backend.config;
480
481 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
482
483 /*
484 * Performing a buffer switch on a remote CPU. Performed by
485 * the CPU responsible for doing the hotunplug after the target
486 * CPU stopped running completely. Ensures that all data
487 * from that remote CPU is flushed.
488 */
489 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
490 return 0;
491 }
492 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_dead);
493
494 int lttng_cpuhp_rb_frontend_online(unsigned int cpu,
495 struct lttng_cpuhp_node *node)
496 {
497 struct channel *chan = container_of(node, struct channel,
498 cpuhp_online);
499 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
500 const struct lib_ring_buffer_config *config = &chan->backend.config;
501
502 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
503
504 wake_up_interruptible(&chan->hp_wait);
505 lib_ring_buffer_start_switch_timer(buf);
506 lib_ring_buffer_start_read_timer(buf);
507 return 0;
508 }
509 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_online);
510
511 int lttng_cpuhp_rb_frontend_offline(unsigned int cpu,
512 struct lttng_cpuhp_node *node)
513 {
514 struct channel *chan = container_of(node, struct channel,
515 cpuhp_online);
516 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
517 const struct lib_ring_buffer_config *config = &chan->backend.config;
518
519 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
520
521 lib_ring_buffer_stop_switch_timer(buf);
522 lib_ring_buffer_stop_read_timer(buf);
523 return 0;
524 }
525 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_offline);
526
527 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
528
529 #ifdef CONFIG_HOTPLUG_CPU
530
531 /**
532 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
533 * @nb: notifier block
534 * @action: hotplug action to take
535 * @hcpu: CPU number
536 *
537 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
538 */
539 static
540 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
541 unsigned long action,
542 void *hcpu)
543 {
544 unsigned int cpu = (unsigned long)hcpu;
545 struct channel *chan = container_of(nb, struct channel,
546 cpu_hp_notifier);
547 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
548 const struct lib_ring_buffer_config *config = &chan->backend.config;
549
550 if (!chan->cpu_hp_enable)
551 return NOTIFY_DONE;
552
553 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
554
555 switch (action) {
556 case CPU_DOWN_FAILED:
557 case CPU_DOWN_FAILED_FROZEN:
558 case CPU_ONLINE:
559 case CPU_ONLINE_FROZEN:
560 wake_up_interruptible(&chan->hp_wait);
561 lib_ring_buffer_start_switch_timer(buf);
562 lib_ring_buffer_start_read_timer(buf);
563 return NOTIFY_OK;
564
565 case CPU_DOWN_PREPARE:
566 case CPU_DOWN_PREPARE_FROZEN:
567 lib_ring_buffer_stop_switch_timer(buf);
568 lib_ring_buffer_stop_read_timer(buf);
569 return NOTIFY_OK;
570
571 case CPU_DEAD:
572 case CPU_DEAD_FROZEN:
573 /*
574 * Performing a buffer switch on a remote CPU. Performed by
575 * the CPU responsible for doing the hotunplug after the target
576 * CPU stopped running completely. Ensures that all data
577 * from that remote CPU is flushed.
578 */
579 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
580 return NOTIFY_OK;
581
582 default:
583 return NOTIFY_DONE;
584 }
585 }
586
587 #endif
588
589 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
590
591 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
592 /*
593 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
594 * that wake-up-tracing generated events are flushed before going idle (in
595 * tick_nohz). We test if the spinlock is locked to deal with the race where
596 * readers try to sample the ring buffer before we perform the switch. We let
597 * the readers retry in that case. If there is data in the buffer, the wake up
598 * is going to forbid the CPU running the reader thread from going idle.
599 */
600 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
601 unsigned long val,
602 void *data)
603 {
604 struct channel *chan = container_of(nb, struct channel,
605 tick_nohz_notifier);
606 const struct lib_ring_buffer_config *config = &chan->backend.config;
607 struct lib_ring_buffer *buf;
608 int cpu = smp_processor_id();
609
610 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
611 /*
612 * We don't support keeping the system idle with global buffers
613 * and streaming active. In order to do so, we would need to
614 * sample a non-nohz-cpumask racelessly with the nohz updates
615 * without adding synchronization overhead to nohz. Leave this
616 * use-case out for now.
617 */
618 return 0;
619 }
620
621 buf = channel_get_ring_buffer(config, chan, cpu);
622 switch (val) {
623 case TICK_NOHZ_FLUSH:
624 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
625 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
626 && chan->read_timer_interval
627 && atomic_long_read(&buf->active_readers)
628 && (lib_ring_buffer_poll_deliver(config, buf, chan)
629 || lib_ring_buffer_pending_data(config, buf, chan))) {
630 wake_up_interruptible(&buf->read_wait);
631 wake_up_interruptible(&chan->read_wait);
632 }
633 if (chan->switch_timer_interval)
634 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
635 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
636 break;
637 case TICK_NOHZ_STOP:
638 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
639 lib_ring_buffer_stop_switch_timer(buf);
640 lib_ring_buffer_stop_read_timer(buf);
641 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
642 break;
643 case TICK_NOHZ_RESTART:
644 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
645 lib_ring_buffer_start_read_timer(buf);
646 lib_ring_buffer_start_switch_timer(buf);
647 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
648 break;
649 }
650
651 return 0;
652 }
653
654 void notrace lib_ring_buffer_tick_nohz_flush(void)
655 {
656 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
657 NULL);
658 }
659
660 void notrace lib_ring_buffer_tick_nohz_stop(void)
661 {
662 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
663 NULL);
664 }
665
666 void notrace lib_ring_buffer_tick_nohz_restart(void)
667 {
668 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
669 NULL);
670 }
671 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
672
673 /*
674 * Holds CPU hotplug.
675 */
676 static void channel_unregister_notifiers(struct channel *chan)
677 {
678 const struct lib_ring_buffer_config *config = &chan->backend.config;
679
680 channel_iterator_unregister_notifiers(chan);
681 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
682 #ifdef CONFIG_NO_HZ
683 /*
684 * Remove the nohz notifier first, so we are certain we stop
685 * the timers.
686 */
687 atomic_notifier_chain_unregister(&tick_nohz_notifier,
688 &chan->tick_nohz_notifier);
689 /*
690 * ring_buffer_nohz_lock will not be needed below, because
691 * we just removed the notifiers, which were the only source of
692 * concurrency.
693 */
694 #endif /* CONFIG_NO_HZ */
695 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
696 {
697 int ret;
698
699 ret = cpuhp_state_remove_instance(lttng_rb_hp_online,
700 &chan->cpuhp_online.node);
701 WARN_ON(ret);
702 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
703 &chan->cpuhp_prepare.node);
704 WARN_ON(ret);
705 }
706 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
707 {
708 int cpu;
709
710 #ifdef CONFIG_HOTPLUG_CPU
711 get_online_cpus();
712 chan->cpu_hp_enable = 0;
713 for_each_online_cpu(cpu) {
714 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
715 cpu);
716 lib_ring_buffer_stop_switch_timer(buf);
717 lib_ring_buffer_stop_read_timer(buf);
718 }
719 put_online_cpus();
720 unregister_cpu_notifier(&chan->cpu_hp_notifier);
721 #else
722 for_each_possible_cpu(cpu) {
723 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
724 cpu);
725 lib_ring_buffer_stop_switch_timer(buf);
726 lib_ring_buffer_stop_read_timer(buf);
727 }
728 #endif
729 }
730 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
731 } else {
732 struct lib_ring_buffer *buf = chan->backend.buf;
733
734 lib_ring_buffer_stop_switch_timer(buf);
735 lib_ring_buffer_stop_read_timer(buf);
736 }
737 channel_backend_unregister_notifiers(&chan->backend);
738 }
739
740 static void lib_ring_buffer_set_quiescent(struct lib_ring_buffer *buf)
741 {
742 if (!buf->quiescent) {
743 buf->quiescent = true;
744 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
745 }
746 }
747
748 static void lib_ring_buffer_clear_quiescent(struct lib_ring_buffer *buf)
749 {
750 buf->quiescent = false;
751 }
752
753 void lib_ring_buffer_set_quiescent_channel(struct channel *chan)
754 {
755 int cpu;
756 const struct lib_ring_buffer_config *config = &chan->backend.config;
757
758 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
759 get_online_cpus();
760 for_each_channel_cpu(cpu, chan) {
761 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
762 cpu);
763
764 lib_ring_buffer_set_quiescent(buf);
765 }
766 put_online_cpus();
767 } else {
768 struct lib_ring_buffer *buf = chan->backend.buf;
769
770 lib_ring_buffer_set_quiescent(buf);
771 }
772 }
773 EXPORT_SYMBOL_GPL(lib_ring_buffer_set_quiescent_channel);
774
775 void lib_ring_buffer_clear_quiescent_channel(struct channel *chan)
776 {
777 int cpu;
778 const struct lib_ring_buffer_config *config = &chan->backend.config;
779
780 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
781 get_online_cpus();
782 for_each_channel_cpu(cpu, chan) {
783 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
784 cpu);
785
786 lib_ring_buffer_clear_quiescent(buf);
787 }
788 put_online_cpus();
789 } else {
790 struct lib_ring_buffer *buf = chan->backend.buf;
791
792 lib_ring_buffer_clear_quiescent(buf);
793 }
794 }
795 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear_quiescent_channel);
796
797 static void channel_free(struct channel *chan)
798 {
799 if (chan->backend.release_priv_ops) {
800 chan->backend.release_priv_ops(chan->backend.priv_ops);
801 }
802 channel_iterator_free(chan);
803 channel_backend_free(&chan->backend);
804 kfree(chan);
805 }
806
807 /**
808 * channel_create - Create channel.
809 * @config: ring buffer instance configuration
810 * @name: name of the channel
811 * @priv: ring buffer client private data
812 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
813 * address mapping. It is used only by RING_BUFFER_STATIC
814 * configuration. It can be set to NULL for other backends.
815 * @subbuf_size: subbuffer size
816 * @num_subbuf: number of subbuffers
817 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
818 * padding to let readers get those sub-buffers.
819 * Used for live streaming.
820 * @read_timer_interval: Time interval (in us) to wake up pending readers.
821 *
822 * Holds cpu hotplug.
823 * Returns NULL on failure.
824 */
825 struct channel *channel_create(const struct lib_ring_buffer_config *config,
826 const char *name, void *priv, void *buf_addr,
827 size_t subbuf_size,
828 size_t num_subbuf, unsigned int switch_timer_interval,
829 unsigned int read_timer_interval)
830 {
831 int ret;
832 struct channel *chan;
833
834 if (lib_ring_buffer_check_config(config, switch_timer_interval,
835 read_timer_interval))
836 return NULL;
837
838 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
839 if (!chan)
840 return NULL;
841
842 ret = channel_backend_init(&chan->backend, name, config, priv,
843 subbuf_size, num_subbuf);
844 if (ret)
845 goto error;
846
847 ret = channel_iterator_init(chan);
848 if (ret)
849 goto error_free_backend;
850
851 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
852 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
853 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
854 kref_init(&chan->ref);
855 init_waitqueue_head(&chan->read_wait);
856 init_waitqueue_head(&chan->hp_wait);
857
858 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
859 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
860 chan->cpuhp_prepare.component = LTTNG_RING_BUFFER_FRONTEND;
861 ret = cpuhp_state_add_instance_nocalls(lttng_rb_hp_prepare,
862 &chan->cpuhp_prepare.node);
863 if (ret)
864 goto cpuhp_prepare_error;
865
866 chan->cpuhp_online.component = LTTNG_RING_BUFFER_FRONTEND;
867 ret = cpuhp_state_add_instance(lttng_rb_hp_online,
868 &chan->cpuhp_online.node);
869 if (ret)
870 goto cpuhp_online_error;
871 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
872 {
873 int cpu;
874 /*
875 * In case of non-hotplug cpu, if the ring-buffer is allocated
876 * in early initcall, it will not be notified of secondary cpus.
877 * In that off case, we need to allocate for all possible cpus.
878 */
879 #ifdef CONFIG_HOTPLUG_CPU
880 chan->cpu_hp_notifier.notifier_call =
881 lib_ring_buffer_cpu_hp_callback;
882 chan->cpu_hp_notifier.priority = 6;
883 register_cpu_notifier(&chan->cpu_hp_notifier);
884
885 get_online_cpus();
886 for_each_online_cpu(cpu) {
887 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
888 cpu);
889 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
890 lib_ring_buffer_start_switch_timer(buf);
891 lib_ring_buffer_start_read_timer(buf);
892 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
893 }
894 chan->cpu_hp_enable = 1;
895 put_online_cpus();
896 #else
897 for_each_possible_cpu(cpu) {
898 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
899 cpu);
900 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
901 lib_ring_buffer_start_switch_timer(buf);
902 lib_ring_buffer_start_read_timer(buf);
903 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
904 }
905 #endif
906 }
907 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
908
909 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
910 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
911 chan->tick_nohz_notifier.notifier_call =
912 ring_buffer_tick_nohz_callback;
913 chan->tick_nohz_notifier.priority = ~0U;
914 atomic_notifier_chain_register(&tick_nohz_notifier,
915 &chan->tick_nohz_notifier);
916 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
917
918 } else {
919 struct lib_ring_buffer *buf = chan->backend.buf;
920
921 lib_ring_buffer_start_switch_timer(buf);
922 lib_ring_buffer_start_read_timer(buf);
923 }
924
925 return chan;
926
927 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
928 cpuhp_online_error:
929 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
930 &chan->cpuhp_prepare.node);
931 WARN_ON(ret);
932 cpuhp_prepare_error:
933 #endif /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
934 error_free_backend:
935 channel_backend_free(&chan->backend);
936 error:
937 kfree(chan);
938 return NULL;
939 }
940 EXPORT_SYMBOL_GPL(channel_create);
941
942 static
943 void channel_release(struct kref *kref)
944 {
945 struct channel *chan = container_of(kref, struct channel, ref);
946 channel_free(chan);
947 }
948
949 /**
950 * channel_destroy - Finalize, wait for q.s. and destroy channel.
951 * @chan: channel to destroy
952 *
953 * Holds cpu hotplug.
954 * Call "destroy" callback, finalize channels, and then decrement the
955 * channel reference count. Note that when readers have completed data
956 * consumption of finalized channels, get_subbuf() will return -ENODATA.
957 * They should release their handle at that point. Returns the private
958 * data pointer.
959 */
960 void *channel_destroy(struct channel *chan)
961 {
962 int cpu;
963 const struct lib_ring_buffer_config *config = &chan->backend.config;
964 void *priv;
965
966 channel_unregister_notifiers(chan);
967
968 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
969 /*
970 * No need to hold cpu hotplug, because all notifiers have been
971 * unregistered.
972 */
973 for_each_channel_cpu(cpu, chan) {
974 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
975 cpu);
976
977 if (config->cb.buffer_finalize)
978 config->cb.buffer_finalize(buf,
979 chan->backend.priv,
980 cpu);
981 if (buf->backend.allocated)
982 lib_ring_buffer_set_quiescent(buf);
983 /*
984 * Perform flush before writing to finalized.
985 */
986 smp_wmb();
987 WRITE_ONCE(buf->finalized, 1);
988 wake_up_interruptible(&buf->read_wait);
989 }
990 } else {
991 struct lib_ring_buffer *buf = chan->backend.buf;
992
993 if (config->cb.buffer_finalize)
994 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
995 if (buf->backend.allocated)
996 lib_ring_buffer_set_quiescent(buf);
997 /*
998 * Perform flush before writing to finalized.
999 */
1000 smp_wmb();
1001 WRITE_ONCE(buf->finalized, 1);
1002 wake_up_interruptible(&buf->read_wait);
1003 }
1004 WRITE_ONCE(chan->finalized, 1);
1005 wake_up_interruptible(&chan->hp_wait);
1006 wake_up_interruptible(&chan->read_wait);
1007 priv = chan->backend.priv;
1008 kref_put(&chan->ref, channel_release);
1009 return priv;
1010 }
1011 EXPORT_SYMBOL_GPL(channel_destroy);
1012
1013 struct lib_ring_buffer *channel_get_ring_buffer(
1014 const struct lib_ring_buffer_config *config,
1015 struct channel *chan, int cpu)
1016 {
1017 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
1018 return chan->backend.buf;
1019 else
1020 return per_cpu_ptr(chan->backend.buf, cpu);
1021 }
1022 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
1023
1024 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
1025 {
1026 struct channel *chan = buf->backend.chan;
1027
1028 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
1029 return -EBUSY;
1030 if (!lttng_kref_get(&chan->ref)) {
1031 atomic_long_dec(&buf->active_readers);
1032 return -EOVERFLOW;
1033 }
1034 lttng_smp_mb__after_atomic();
1035 return 0;
1036 }
1037 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
1038
1039 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
1040 {
1041 struct channel *chan = buf->backend.chan;
1042
1043 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1044 lttng_smp_mb__before_atomic();
1045 atomic_long_dec(&buf->active_readers);
1046 kref_put(&chan->ref, channel_release);
1047 }
1048 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
1049
1050 /*
1051 * Promote compiler barrier to a smp_mb().
1052 * For the specific ring buffer case, this IPI call should be removed if the
1053 * architecture does not reorder writes. This should eventually be provided by
1054 * a separate architecture-specific infrastructure.
1055 */
1056 static void remote_mb(void *info)
1057 {
1058 smp_mb();
1059 }
1060
1061 /**
1062 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
1063 * @buf: ring buffer
1064 * @consumed: consumed count indicating the position where to read
1065 * @produced: produced count, indicates position when to stop reading
1066 *
1067 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1068 * data to read at consumed position, or 0 if the get operation succeeds.
1069 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1070 */
1071
1072 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
1073 unsigned long *consumed, unsigned long *produced)
1074 {
1075 struct channel *chan = buf->backend.chan;
1076 const struct lib_ring_buffer_config *config = &chan->backend.config;
1077 unsigned long consumed_cur, write_offset;
1078 int finalized;
1079
1080 retry:
1081 finalized = READ_ONCE(buf->finalized);
1082 /*
1083 * Read finalized before counters.
1084 */
1085 smp_rmb();
1086 consumed_cur = atomic_long_read(&buf->consumed);
1087 /*
1088 * No need to issue a memory barrier between consumed count read and
1089 * write offset read, because consumed count can only change
1090 * concurrently in overwrite mode, and we keep a sequence counter
1091 * identifier derived from the write offset to check we are getting
1092 * the same sub-buffer we are expecting (the sub-buffers are atomically
1093 * "tagged" upon writes, tags are checked upon read).
1094 */
1095 write_offset = v_read(config, &buf->offset);
1096
1097 /*
1098 * Check that we are not about to read the same subbuffer in
1099 * which the writer head is.
1100 */
1101 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1102 == 0)
1103 goto nodata;
1104
1105 *consumed = consumed_cur;
1106 *produced = subbuf_trunc(write_offset, chan);
1107
1108 return 0;
1109
1110 nodata:
1111 /*
1112 * The memory barriers __wait_event()/wake_up_interruptible() take care
1113 * of "raw_spin_is_locked" memory ordering.
1114 */
1115 if (finalized)
1116 return -ENODATA;
1117 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1118 goto retry;
1119 else
1120 return -EAGAIN;
1121 }
1122 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
1123
1124 /**
1125 * Performs the same function as lib_ring_buffer_snapshot(), but the positions
1126 * are saved regardless of whether the consumed and produced positions are
1127 * in the same subbuffer.
1128 * @buf: ring buffer
1129 * @consumed: consumed byte count indicating the last position read
1130 * @produced: produced byte count indicating the last position written
1131 *
1132 * This function is meant to provide information on the exact producer and
1133 * consumer positions without regard for the "snapshot" feature.
1134 */
1135 int lib_ring_buffer_snapshot_sample_positions(struct lib_ring_buffer *buf,
1136 unsigned long *consumed, unsigned long *produced)
1137 {
1138 struct channel *chan = buf->backend.chan;
1139 const struct lib_ring_buffer_config *config = &chan->backend.config;
1140
1141 smp_rmb();
1142 *consumed = atomic_long_read(&buf->consumed);
1143 /*
1144 * No need to issue a memory barrier between consumed count read and
1145 * write offset read, because consumed count can only change
1146 * concurrently in overwrite mode, and we keep a sequence counter
1147 * identifier derived from the write offset to check we are getting
1148 * the same sub-buffer we are expecting (the sub-buffers are atomically
1149 * "tagged" upon writes, tags are checked upon read).
1150 */
1151 *produced = v_read(config, &buf->offset);
1152 return 0;
1153 }
1154
1155 /**
1156 * lib_ring_buffer_put_snapshot - move consumed counter forward
1157 *
1158 * Should only be called from consumer context.
1159 * @buf: ring buffer
1160 * @consumed_new: new consumed count value
1161 */
1162 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
1163 unsigned long consumed_new)
1164 {
1165 struct lib_ring_buffer_backend *bufb = &buf->backend;
1166 struct channel *chan = bufb->chan;
1167 unsigned long consumed;
1168
1169 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1170
1171 /*
1172 * Only push the consumed value forward.
1173 * If the consumed cmpxchg fails, this is because we have been pushed by
1174 * the writer in flight recorder mode.
1175 */
1176 consumed = atomic_long_read(&buf->consumed);
1177 while ((long) consumed - (long) consumed_new < 0)
1178 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
1179 consumed_new);
1180 /* Wake-up the metadata producer */
1181 wake_up_interruptible(&buf->write_wait);
1182 }
1183 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
1184
1185 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1186 static void lib_ring_buffer_flush_read_subbuf_dcache(
1187 const struct lib_ring_buffer_config *config,
1188 struct channel *chan,
1189 struct lib_ring_buffer *buf)
1190 {
1191 struct lib_ring_buffer_backend_pages *pages;
1192 unsigned long sb_bindex, id, i, nr_pages;
1193
1194 if (config->output != RING_BUFFER_MMAP)
1195 return;
1196
1197 /*
1198 * Architectures with caches aliased on virtual addresses may
1199 * use different cache lines for the linear mapping vs
1200 * user-space memory mapping. Given that the ring buffer is
1201 * based on the kernel linear mapping, aligning it with the
1202 * user-space mapping is not straightforward, and would require
1203 * extra TLB entries. Therefore, simply flush the dcache for the
1204 * entire sub-buffer before reading it.
1205 */
1206 id = buf->backend.buf_rsb.id;
1207 sb_bindex = subbuffer_id_get_index(config, id);
1208 pages = buf->backend.array[sb_bindex];
1209 nr_pages = buf->backend.num_pages_per_subbuf;
1210 for (i = 0; i < nr_pages; i++) {
1211 struct lib_ring_buffer_backend_page *backend_page;
1212
1213 backend_page = &pages->p[i];
1214 flush_dcache_page(pfn_to_page(backend_page->pfn));
1215 }
1216 }
1217 #else
1218 static void lib_ring_buffer_flush_read_subbuf_dcache(
1219 const struct lib_ring_buffer_config *config,
1220 struct channel *chan,
1221 struct lib_ring_buffer *buf)
1222 {
1223 }
1224 #endif
1225
1226 /**
1227 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
1228 * @buf: ring buffer
1229 * @consumed: consumed count indicating the position where to read
1230 *
1231 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1232 * data to read at consumed position, or 0 if the get operation succeeds.
1233 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1234 */
1235 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
1236 unsigned long consumed)
1237 {
1238 struct channel *chan = buf->backend.chan;
1239 const struct lib_ring_buffer_config *config = &chan->backend.config;
1240 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1241 int ret;
1242 int finalized;
1243
1244 if (buf->get_subbuf) {
1245 /*
1246 * Reader is trying to get a subbuffer twice.
1247 */
1248 CHAN_WARN_ON(chan, 1);
1249 return -EBUSY;
1250 }
1251 retry:
1252 finalized = READ_ONCE(buf->finalized);
1253 /*
1254 * Read finalized before counters.
1255 */
1256 smp_rmb();
1257 consumed_cur = atomic_long_read(&buf->consumed);
1258 consumed_idx = subbuf_index(consumed, chan);
1259 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
1260 /*
1261 * Make sure we read the commit count before reading the buffer
1262 * data and the write offset. Correct consumed offset ordering
1263 * wrt commit count is insured by the use of cmpxchg to update
1264 * the consumed offset.
1265 * smp_call_function_single can fail if the remote CPU is offline,
1266 * this is OK because then there is no wmb to execute there.
1267 * If our thread is executing on the same CPU as the on the buffers
1268 * belongs to, we don't have to synchronize it at all. If we are
1269 * migrated, the scheduler will take care of the memory barriers.
1270 * Normally, smp_call_function_single() should ensure program order when
1271 * executing the remote function, which implies that it surrounds the
1272 * function execution with :
1273 * smp_mb()
1274 * send IPI
1275 * csd_lock_wait
1276 * recv IPI
1277 * smp_mb()
1278 * exec. function
1279 * smp_mb()
1280 * csd unlock
1281 * smp_mb()
1282 *
1283 * However, smp_call_function_single() does not seem to clearly execute
1284 * such barriers. It depends on spinlock semantic to provide the barrier
1285 * before executing the IPI and, when busy-looping, csd_lock_wait only
1286 * executes smp_mb() when it has to wait for the other CPU.
1287 *
1288 * I don't trust this code. Therefore, let's add the smp_mb() sequence
1289 * required ourself, even if duplicated. It has no performance impact
1290 * anyway.
1291 *
1292 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
1293 * read and write vs write. They do not ensure core synchronization. We
1294 * really have to ensure total order between the 3 barriers running on
1295 * the 2 CPUs.
1296 */
1297 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1298 if (config->sync == RING_BUFFER_SYNC_PER_CPU
1299 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
1300 if (raw_smp_processor_id() != buf->backend.cpu) {
1301 /* Total order with IPI handler smp_mb() */
1302 smp_mb();
1303 smp_call_function_single(buf->backend.cpu,
1304 remote_mb, NULL, 1);
1305 /* Total order with IPI handler smp_mb() */
1306 smp_mb();
1307 }
1308 } else {
1309 /* Total order with IPI handler smp_mb() */
1310 smp_mb();
1311 smp_call_function(remote_mb, NULL, 1);
1312 /* Total order with IPI handler smp_mb() */
1313 smp_mb();
1314 }
1315 } else {
1316 /*
1317 * Local rmb to match the remote wmb to read the commit count
1318 * before the buffer data and the write offset.
1319 */
1320 smp_rmb();
1321 }
1322
1323 write_offset = v_read(config, &buf->offset);
1324
1325 /*
1326 * Check that the buffer we are getting is after or at consumed_cur
1327 * position.
1328 */
1329 if ((long) subbuf_trunc(consumed, chan)
1330 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1331 goto nodata;
1332
1333 /*
1334 * Check that the subbuffer we are trying to consume has been
1335 * already fully committed.
1336 */
1337 if (((commit_count - chan->backend.subbuf_size)
1338 & chan->commit_count_mask)
1339 - (buf_trunc(consumed, chan)
1340 >> chan->backend.num_subbuf_order)
1341 != 0)
1342 goto nodata;
1343
1344 /*
1345 * Check that we are not about to read the same subbuffer in
1346 * which the writer head is.
1347 */
1348 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1349 == 0)
1350 goto nodata;
1351
1352 /*
1353 * Failure to get the subbuffer causes a busy-loop retry without going
1354 * to a wait queue. These are caused by short-lived race windows where
1355 * the writer is getting access to a subbuffer we were trying to get
1356 * access to. Also checks that the "consumed" buffer count we are
1357 * looking for matches the one contained in the subbuffer id.
1358 */
1359 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1360 consumed_idx, buf_trunc_val(consumed, chan));
1361 if (ret)
1362 goto retry;
1363 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1364
1365 buf->get_subbuf_consumed = consumed;
1366 buf->get_subbuf = 1;
1367
1368 lib_ring_buffer_flush_read_subbuf_dcache(config, chan, buf);
1369
1370 return 0;
1371
1372 nodata:
1373 /*
1374 * The memory barriers __wait_event()/wake_up_interruptible() take care
1375 * of "raw_spin_is_locked" memory ordering.
1376 */
1377 if (finalized)
1378 return -ENODATA;
1379 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1380 goto retry;
1381 else
1382 return -EAGAIN;
1383 }
1384 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1385
1386 /**
1387 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1388 * @buf: ring buffer
1389 */
1390 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1391 {
1392 struct lib_ring_buffer_backend *bufb = &buf->backend;
1393 struct channel *chan = bufb->chan;
1394 const struct lib_ring_buffer_config *config = &chan->backend.config;
1395 unsigned long read_sb_bindex, consumed_idx, consumed;
1396
1397 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1398
1399 if (!buf->get_subbuf) {
1400 /*
1401 * Reader puts a subbuffer it did not get.
1402 */
1403 CHAN_WARN_ON(chan, 1);
1404 return;
1405 }
1406 consumed = buf->get_subbuf_consumed;
1407 buf->get_subbuf = 0;
1408
1409 /*
1410 * Clear the records_unread counter. (overruns counter)
1411 * Can still be non-zero if a file reader simply grabbed the data
1412 * without using iterators.
1413 * Can be below zero if an iterator is used on a snapshot more than
1414 * once.
1415 */
1416 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1417 v_add(config, v_read(config,
1418 &bufb->array[read_sb_bindex]->records_unread),
1419 &bufb->records_read);
1420 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1421 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1422 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1423 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1424
1425 /*
1426 * Exchange the reader subbuffer with the one we put in its place in the
1427 * writer subbuffer table. Expect the original consumed count. If
1428 * update_read_sb_index fails, this is because the writer updated the
1429 * subbuffer concurrently. We should therefore keep the subbuffer we
1430 * currently have: it has become invalid to try reading this sub-buffer
1431 * consumed count value anyway.
1432 */
1433 consumed_idx = subbuf_index(consumed, chan);
1434 update_read_sb_index(config, &buf->backend, &chan->backend,
1435 consumed_idx, buf_trunc_val(consumed, chan));
1436 /*
1437 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1438 * if the writer concurrently updated it.
1439 */
1440 }
1441 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1442
1443 /*
1444 * cons_offset is an iterator on all subbuffer offsets between the reader
1445 * position and the writer position. (inclusive)
1446 */
1447 static
1448 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1449 struct channel *chan,
1450 unsigned long cons_offset,
1451 int cpu)
1452 {
1453 const struct lib_ring_buffer_config *config = &chan->backend.config;
1454 unsigned long cons_idx, commit_count, commit_count_sb;
1455
1456 cons_idx = subbuf_index(cons_offset, chan);
1457 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1458 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1459
1460 if (subbuf_offset(commit_count, chan) != 0)
1461 printk(KERN_WARNING
1462 "ring buffer %s, cpu %d: "
1463 "commit count in subbuffer %lu,\n"
1464 "expecting multiples of %lu bytes\n"
1465 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1466 chan->backend.name, cpu, cons_idx,
1467 chan->backend.subbuf_size,
1468 commit_count, commit_count_sb);
1469
1470 printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1471 chan->backend.name, cpu, commit_count);
1472 }
1473
1474 static
1475 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1476 struct channel *chan,
1477 void *priv, int cpu)
1478 {
1479 const struct lib_ring_buffer_config *config = &chan->backend.config;
1480 unsigned long write_offset, cons_offset;
1481
1482 /*
1483 * No need to order commit_count, write_offset and cons_offset reads
1484 * because we execute at teardown when no more writer nor reader
1485 * references are left.
1486 */
1487 write_offset = v_read(config, &buf->offset);
1488 cons_offset = atomic_long_read(&buf->consumed);
1489 if (write_offset != cons_offset)
1490 printk(KERN_DEBUG
1491 "ring buffer %s, cpu %d: "
1492 "non-consumed data\n"
1493 " [ %lu bytes written, %lu bytes read ]\n",
1494 chan->backend.name, cpu, write_offset, cons_offset);
1495
1496 for (cons_offset = atomic_long_read(&buf->consumed);
1497 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1498 chan)
1499 - cons_offset) > 0;
1500 cons_offset = subbuf_align(cons_offset, chan))
1501 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1502 cpu);
1503 }
1504
1505 static
1506 void lib_ring_buffer_print_errors(struct channel *chan,
1507 struct lib_ring_buffer *buf, int cpu)
1508 {
1509 const struct lib_ring_buffer_config *config = &chan->backend.config;
1510 void *priv = chan->backend.priv;
1511
1512 if (!strcmp(chan->backend.name, "relay-metadata")) {
1513 printk(KERN_DEBUG "ring buffer %s: %lu records written, "
1514 "%lu records overrun\n",
1515 chan->backend.name,
1516 v_read(config, &buf->records_count),
1517 v_read(config, &buf->records_overrun));
1518 } else {
1519 printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1520 "%lu records overrun\n",
1521 chan->backend.name, cpu,
1522 v_read(config, &buf->records_count),
1523 v_read(config, &buf->records_overrun));
1524
1525 if (v_read(config, &buf->records_lost_full)
1526 || v_read(config, &buf->records_lost_wrap)
1527 || v_read(config, &buf->records_lost_big))
1528 printk(KERN_WARNING
1529 "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1530 " [ %lu buffer full, %lu nest buffer wrap-around, "
1531 "%lu event too big ]\n",
1532 chan->backend.name, cpu,
1533 v_read(config, &buf->records_lost_full),
1534 v_read(config, &buf->records_lost_wrap),
1535 v_read(config, &buf->records_lost_big));
1536 }
1537 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1538 }
1539
1540 /*
1541 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1542 *
1543 * Only executed when the buffer is finalized, in SWITCH_FLUSH.
1544 */
1545 static
1546 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1547 struct channel *chan,
1548 struct switch_offsets *offsets,
1549 u64 tsc)
1550 {
1551 const struct lib_ring_buffer_config *config = &chan->backend.config;
1552 unsigned long oldidx = subbuf_index(offsets->old, chan);
1553 unsigned long commit_count;
1554 struct commit_counters_hot *cc_hot;
1555
1556 config->cb.buffer_begin(buf, tsc, oldidx);
1557
1558 /*
1559 * Order all writes to buffer before the commit count update that will
1560 * determine that the subbuffer is full.
1561 */
1562 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1563 /*
1564 * Must write slot data before incrementing commit count. This
1565 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1566 * by get_subbuf().
1567 */
1568 barrier();
1569 } else
1570 smp_wmb();
1571 cc_hot = &buf->commit_hot[oldidx];
1572 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1573 commit_count = v_read(config, &cc_hot->cc);
1574 /* Check if the written buffer has to be delivered */
1575 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1576 commit_count, oldidx, tsc);
1577 lib_ring_buffer_write_commit_counter(config, buf, chan,
1578 offsets->old + config->cb.subbuffer_header_size(),
1579 commit_count, cc_hot);
1580 }
1581
1582 /*
1583 * lib_ring_buffer_switch_old_end: switch old subbuffer
1584 *
1585 * Note : offset_old should never be 0 here. It is ok, because we never perform
1586 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1587 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1588 * subbuffer.
1589 */
1590 static
1591 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1592 struct channel *chan,
1593 struct switch_offsets *offsets,
1594 u64 tsc)
1595 {
1596 const struct lib_ring_buffer_config *config = &chan->backend.config;
1597 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1598 unsigned long commit_count, padding_size, data_size;
1599 struct commit_counters_hot *cc_hot;
1600 u64 *ts_end;
1601
1602 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1603 padding_size = chan->backend.subbuf_size - data_size;
1604 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1605
1606 ts_end = &buf->ts_end[oldidx];
1607 /*
1608 * This is the last space reservation in that sub-buffer before
1609 * it gets delivered. This provides exclusive access to write to
1610 * this sub-buffer's ts_end. There are also no concurrent
1611 * readers of that ts_end because delivery of that sub-buffer is
1612 * postponed until the commit counter is incremented for the
1613 * current space reservation.
1614 */
1615 *ts_end = tsc;
1616
1617 /*
1618 * Order all writes to buffer and store to ts_end before the commit
1619 * count update that will determine that the subbuffer is full.
1620 */
1621 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1622 /*
1623 * Must write slot data before incrementing commit count. This
1624 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1625 * by get_subbuf().
1626 */
1627 barrier();
1628 } else
1629 smp_wmb();
1630 cc_hot = &buf->commit_hot[oldidx];
1631 v_add(config, padding_size, &cc_hot->cc);
1632 commit_count = v_read(config, &cc_hot->cc);
1633 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1634 commit_count, oldidx, tsc);
1635 lib_ring_buffer_write_commit_counter(config, buf, chan,
1636 offsets->old + padding_size, commit_count,
1637 cc_hot);
1638 }
1639
1640 /*
1641 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1642 *
1643 * This code can be executed unordered : writers may already have written to the
1644 * sub-buffer before this code gets executed, caution. The commit makes sure
1645 * that this code is executed before the deliver of this sub-buffer.
1646 */
1647 static
1648 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1649 struct channel *chan,
1650 struct switch_offsets *offsets,
1651 u64 tsc)
1652 {
1653 const struct lib_ring_buffer_config *config = &chan->backend.config;
1654 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1655 unsigned long commit_count;
1656 struct commit_counters_hot *cc_hot;
1657
1658 config->cb.buffer_begin(buf, tsc, beginidx);
1659
1660 /*
1661 * Order all writes to buffer before the commit count update that will
1662 * determine that the subbuffer is full.
1663 */
1664 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1665 /*
1666 * Must write slot data before incrementing commit count. This
1667 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1668 * by get_subbuf().
1669 */
1670 barrier();
1671 } else
1672 smp_wmb();
1673 cc_hot = &buf->commit_hot[beginidx];
1674 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1675 commit_count = v_read(config, &cc_hot->cc);
1676 /* Check if the written buffer has to be delivered */
1677 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1678 commit_count, beginidx, tsc);
1679 lib_ring_buffer_write_commit_counter(config, buf, chan,
1680 offsets->begin + config->cb.subbuffer_header_size(),
1681 commit_count, cc_hot);
1682 }
1683
1684 /*
1685 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1686 *
1687 * Calls subbuffer_set_data_size() to set the data size of the current
1688 * sub-buffer. We do not need to perform check_deliver nor commit here,
1689 * since this task will be done by the "commit" of the event for which
1690 * we are currently doing the space reservation.
1691 */
1692 static
1693 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1694 struct channel *chan,
1695 struct switch_offsets *offsets,
1696 u64 tsc)
1697 {
1698 const struct lib_ring_buffer_config *config = &chan->backend.config;
1699 unsigned long endidx, data_size;
1700 u64 *ts_end;
1701
1702 endidx = subbuf_index(offsets->end - 1, chan);
1703 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1704 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1705 ts_end = &buf->ts_end[endidx];
1706 /*
1707 * This is the last space reservation in that sub-buffer before
1708 * it gets delivered. This provides exclusive access to write to
1709 * this sub-buffer's ts_end. There are also no concurrent
1710 * readers of that ts_end because delivery of that sub-buffer is
1711 * postponed until the commit counter is incremented for the
1712 * current space reservation.
1713 */
1714 *ts_end = tsc;
1715 }
1716
1717 /*
1718 * Returns :
1719 * 0 if ok
1720 * !0 if execution must be aborted.
1721 */
1722 static
1723 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1724 struct lib_ring_buffer *buf,
1725 struct channel *chan,
1726 struct switch_offsets *offsets,
1727 u64 *tsc)
1728 {
1729 const struct lib_ring_buffer_config *config = &chan->backend.config;
1730 unsigned long off, reserve_commit_diff;
1731
1732 offsets->begin = v_read(config, &buf->offset);
1733 offsets->old = offsets->begin;
1734 offsets->switch_old_start = 0;
1735 off = subbuf_offset(offsets->begin, chan);
1736
1737 *tsc = config->cb.ring_buffer_clock_read(chan);
1738
1739 /*
1740 * Ensure we flush the header of an empty subbuffer when doing the
1741 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1742 * total data gathering duration even if there were no records saved
1743 * after the last buffer switch.
1744 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1745 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1746 * subbuffer header as appropriate.
1747 * The next record that reserves space will be responsible for
1748 * populating the following subbuffer header. We choose not to populate
1749 * the next subbuffer header here because we want to be able to use
1750 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1751 * buffer flush, which must guarantee that all the buffer content
1752 * (records and header timestamps) are visible to the reader. This is
1753 * required for quiescence guarantees for the fusion merge.
1754 */
1755 if (mode != SWITCH_FLUSH && !off)
1756 return -1; /* we do not have to switch : buffer is empty */
1757
1758 if (unlikely(off == 0)) {
1759 unsigned long sb_index, commit_count;
1760
1761 /*
1762 * We are performing a SWITCH_FLUSH. At this stage, there are no
1763 * concurrent writes into the buffer.
1764 *
1765 * The client does not save any header information. Don't
1766 * switch empty subbuffer on finalize, because it is invalid to
1767 * deliver a completely empty subbuffer.
1768 */
1769 if (!config->cb.subbuffer_header_size())
1770 return -1;
1771
1772 /* Test new buffer integrity */
1773 sb_index = subbuf_index(offsets->begin, chan);
1774 commit_count = v_read(config,
1775 &buf->commit_cold[sb_index].cc_sb);
1776 reserve_commit_diff =
1777 (buf_trunc(offsets->begin, chan)
1778 >> chan->backend.num_subbuf_order)
1779 - (commit_count & chan->commit_count_mask);
1780 if (likely(reserve_commit_diff == 0)) {
1781 /* Next subbuffer not being written to. */
1782 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1783 subbuf_trunc(offsets->begin, chan)
1784 - subbuf_trunc((unsigned long)
1785 atomic_long_read(&buf->consumed), chan)
1786 >= chan->backend.buf_size)) {
1787 /*
1788 * We do not overwrite non consumed buffers
1789 * and we are full : don't switch.
1790 */
1791 return -1;
1792 } else {
1793 /*
1794 * Next subbuffer not being written to, and we
1795 * are either in overwrite mode or the buffer is
1796 * not full. It's safe to write in this new
1797 * subbuffer.
1798 */
1799 }
1800 } else {
1801 /*
1802 * Next subbuffer reserve offset does not match the
1803 * commit offset. Don't perform switch in
1804 * producer-consumer and overwrite mode. Caused by
1805 * either a writer OOPS or too many nested writes over a
1806 * reserve/commit pair.
1807 */
1808 return -1;
1809 }
1810
1811 /*
1812 * Need to write the subbuffer start header on finalize.
1813 */
1814 offsets->switch_old_start = 1;
1815 }
1816 offsets->begin = subbuf_align(offsets->begin, chan);
1817 /* Note: old points to the next subbuf at offset 0 */
1818 offsets->end = offsets->begin;
1819 return 0;
1820 }
1821
1822 /*
1823 * Force a sub-buffer switch. This operation is completely reentrant : can be
1824 * called while tracing is active with absolutely no lock held.
1825 *
1826 * Note, however, that as a v_cmpxchg is used for some atomic
1827 * operations, this function must be called from the CPU which owns the buffer
1828 * for a ACTIVE flush.
1829 */
1830 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1831 {
1832 struct channel *chan = buf->backend.chan;
1833 const struct lib_ring_buffer_config *config = &chan->backend.config;
1834 struct switch_offsets offsets;
1835 unsigned long oldidx;
1836 u64 tsc;
1837
1838 offsets.size = 0;
1839
1840 /*
1841 * Perform retryable operations.
1842 */
1843 do {
1844 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1845 &tsc))
1846 return; /* Switch not needed */
1847 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1848 != offsets.old);
1849
1850 /*
1851 * Atomically update last_tsc. This update races against concurrent
1852 * atomic updates, but the race will always cause supplementary full TSC
1853 * records, never the opposite (missing a full TSC record when it would
1854 * be needed).
1855 */
1856 save_last_tsc(config, buf, tsc);
1857
1858 /*
1859 * Push the reader if necessary
1860 */
1861 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1862
1863 oldidx = subbuf_index(offsets.old, chan);
1864 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1865
1866 /*
1867 * May need to populate header start on SWITCH_FLUSH.
1868 */
1869 if (offsets.switch_old_start) {
1870 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1871 offsets.old += config->cb.subbuffer_header_size();
1872 }
1873
1874 /*
1875 * Switch old subbuffer.
1876 */
1877 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1878 }
1879 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1880
1881 struct switch_param {
1882 struct lib_ring_buffer *buf;
1883 enum switch_mode mode;
1884 };
1885
1886 static void remote_switch(void *info)
1887 {
1888 struct switch_param *param = info;
1889 struct lib_ring_buffer *buf = param->buf;
1890
1891 lib_ring_buffer_switch_slow(buf, param->mode);
1892 }
1893
1894 static void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
1895 enum switch_mode mode)
1896 {
1897 struct channel *chan = buf->backend.chan;
1898 const struct lib_ring_buffer_config *config = &chan->backend.config;
1899 int ret;
1900 struct switch_param param;
1901
1902 /*
1903 * With global synchronization we don't need to use the IPI scheme.
1904 */
1905 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1906 lib_ring_buffer_switch_slow(buf, mode);
1907 return;
1908 }
1909
1910 /*
1911 * Disabling preemption ensures two things: first, that the
1912 * target cpu is not taken concurrently offline while we are within
1913 * smp_call_function_single(). Secondly, if it happens that the
1914 * CPU is not online, our own call to lib_ring_buffer_switch_slow()
1915 * needs to be protected from CPU hotplug handlers, which can
1916 * also perform a remote subbuffer switch.
1917 */
1918 preempt_disable();
1919 param.buf = buf;
1920 param.mode = mode;
1921 ret = smp_call_function_single(buf->backend.cpu,
1922 remote_switch, &param, 1);
1923 if (ret) {
1924 /* Remote CPU is offline, do it ourself. */
1925 lib_ring_buffer_switch_slow(buf, mode);
1926 }
1927 preempt_enable();
1928 }
1929
1930 /* Switch sub-buffer if current sub-buffer is non-empty. */
1931 void lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf)
1932 {
1933 _lib_ring_buffer_switch_remote(buf, SWITCH_ACTIVE);
1934 }
1935 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1936
1937 /* Switch sub-buffer even if current sub-buffer is empty. */
1938 void lib_ring_buffer_switch_remote_empty(struct lib_ring_buffer *buf)
1939 {
1940 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
1941 }
1942 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote_empty);
1943
1944 /*
1945 * Returns :
1946 * 0 if ok
1947 * -ENOSPC if event size is too large for packet.
1948 * -ENOBUFS if there is currently not enough space in buffer for the event.
1949 * -EIO if data cannot be written into the buffer for any other reason.
1950 */
1951 static
1952 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1953 struct channel *chan,
1954 struct switch_offsets *offsets,
1955 struct lib_ring_buffer_ctx *ctx,
1956 void *client_ctx)
1957 {
1958 const struct lib_ring_buffer_config *config = &chan->backend.config;
1959 unsigned long reserve_commit_diff, offset_cmp;
1960
1961 retry:
1962 offsets->begin = offset_cmp = v_read(config, &buf->offset);
1963 offsets->old = offsets->begin;
1964 offsets->switch_new_start = 0;
1965 offsets->switch_new_end = 0;
1966 offsets->switch_old_end = 0;
1967 offsets->pre_header_padding = 0;
1968
1969 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1970 if ((int64_t) ctx->tsc == -EIO)
1971 return -EIO;
1972
1973 if (last_tsc_overflow(config, buf, ctx->tsc))
1974 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
1975
1976 if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
1977 offsets->switch_new_start = 1; /* For offsets->begin */
1978 } else {
1979 offsets->size = config->cb.record_header_size(config, chan,
1980 offsets->begin,
1981 &offsets->pre_header_padding,
1982 ctx, client_ctx);
1983 offsets->size +=
1984 lib_ring_buffer_align(offsets->begin + offsets->size,
1985 ctx->largest_align)
1986 + ctx->data_size;
1987 if (unlikely(subbuf_offset(offsets->begin, chan) +
1988 offsets->size > chan->backend.subbuf_size)) {
1989 offsets->switch_old_end = 1; /* For offsets->old */
1990 offsets->switch_new_start = 1; /* For offsets->begin */
1991 }
1992 }
1993 if (unlikely(offsets->switch_new_start)) {
1994 unsigned long sb_index, commit_count;
1995
1996 /*
1997 * We are typically not filling the previous buffer completely.
1998 */
1999 if (likely(offsets->switch_old_end))
2000 offsets->begin = subbuf_align(offsets->begin, chan);
2001 offsets->begin = offsets->begin
2002 + config->cb.subbuffer_header_size();
2003 /* Test new buffer integrity */
2004 sb_index = subbuf_index(offsets->begin, chan);
2005 /*
2006 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
2007 * lib_ring_buffer_check_deliver() has the matching
2008 * memory barriers required around commit_cold cc_sb
2009 * updates to ensure reserve and commit counter updates
2010 * are not seen reordered when updated by another CPU.
2011 */
2012 smp_rmb();
2013 commit_count = v_read(config,
2014 &buf->commit_cold[sb_index].cc_sb);
2015 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
2016 smp_rmb();
2017 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
2018 /*
2019 * The reserve counter have been concurrently updated
2020 * while we read the commit counter. This means the
2021 * commit counter we read might not match buf->offset
2022 * due to concurrent update. We therefore need to retry.
2023 */
2024 goto retry;
2025 }
2026 reserve_commit_diff =
2027 (buf_trunc(offsets->begin, chan)
2028 >> chan->backend.num_subbuf_order)
2029 - (commit_count & chan->commit_count_mask);
2030 if (likely(reserve_commit_diff == 0)) {
2031 /* Next subbuffer not being written to. */
2032 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
2033 subbuf_trunc(offsets->begin, chan)
2034 - subbuf_trunc((unsigned long)
2035 atomic_long_read(&buf->consumed), chan)
2036 >= chan->backend.buf_size)) {
2037 /*
2038 * We do not overwrite non consumed buffers
2039 * and we are full : record is lost.
2040 */
2041 v_inc(config, &buf->records_lost_full);
2042 return -ENOBUFS;
2043 } else {
2044 /*
2045 * Next subbuffer not being written to, and we
2046 * are either in overwrite mode or the buffer is
2047 * not full. It's safe to write in this new
2048 * subbuffer.
2049 */
2050 }
2051 } else {
2052 /*
2053 * Next subbuffer reserve offset does not match the
2054 * commit offset, and this did not involve update to the
2055 * reserve counter. Drop record in producer-consumer and
2056 * overwrite mode. Caused by either a writer OOPS or
2057 * too many nested writes over a reserve/commit pair.
2058 */
2059 v_inc(config, &buf->records_lost_wrap);
2060 return -EIO;
2061 }
2062 offsets->size =
2063 config->cb.record_header_size(config, chan,
2064 offsets->begin,
2065 &offsets->pre_header_padding,
2066 ctx, client_ctx);
2067 offsets->size +=
2068 lib_ring_buffer_align(offsets->begin + offsets->size,
2069 ctx->largest_align)
2070 + ctx->data_size;
2071 if (unlikely(subbuf_offset(offsets->begin, chan)
2072 + offsets->size > chan->backend.subbuf_size)) {
2073 /*
2074 * Record too big for subbuffers, report error, don't
2075 * complete the sub-buffer switch.
2076 */
2077 v_inc(config, &buf->records_lost_big);
2078 return -ENOSPC;
2079 } else {
2080 /*
2081 * We just made a successful buffer switch and the
2082 * record fits in the new subbuffer. Let's write.
2083 */
2084 }
2085 } else {
2086 /*
2087 * Record fits in the current buffer and we are not on a switch
2088 * boundary. It's safe to write.
2089 */
2090 }
2091 offsets->end = offsets->begin + offsets->size;
2092
2093 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
2094 /*
2095 * The offset_end will fall at the very beginning of the next
2096 * subbuffer.
2097 */
2098 offsets->switch_new_end = 1; /* For offsets->begin */
2099 }
2100 return 0;
2101 }
2102
2103 static struct lib_ring_buffer *get_current_buf(struct channel *chan, int cpu)
2104 {
2105 const struct lib_ring_buffer_config *config = &chan->backend.config;
2106
2107 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
2108 return per_cpu_ptr(chan->backend.buf, cpu);
2109 else
2110 return chan->backend.buf;
2111 }
2112
2113 void lib_ring_buffer_lost_event_too_big(struct channel *chan)
2114 {
2115 const struct lib_ring_buffer_config *config = &chan->backend.config;
2116 struct lib_ring_buffer *buf = get_current_buf(chan, smp_processor_id());
2117
2118 v_inc(config, &buf->records_lost_big);
2119 }
2120 EXPORT_SYMBOL_GPL(lib_ring_buffer_lost_event_too_big);
2121
2122 /**
2123 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
2124 * @ctx: ring buffer context.
2125 *
2126 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
2127 * -EIO for other errors, else returns 0.
2128 * It will take care of sub-buffer switching.
2129 */
2130 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx,
2131 void *client_ctx)
2132 {
2133 struct channel *chan = ctx->chan;
2134 const struct lib_ring_buffer_config *config = &chan->backend.config;
2135 struct lib_ring_buffer *buf;
2136 struct switch_offsets offsets;
2137 int ret;
2138
2139 ctx->buf = buf = get_current_buf(chan, ctx->cpu);
2140 offsets.size = 0;
2141
2142 do {
2143 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
2144 ctx, client_ctx);
2145 if (unlikely(ret))
2146 return ret;
2147 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
2148 offsets.end)
2149 != offsets.old));
2150
2151 /*
2152 * Atomically update last_tsc. This update races against concurrent
2153 * atomic updates, but the race will always cause supplementary full TSC
2154 * records, never the opposite (missing a full TSC record when it would
2155 * be needed).
2156 */
2157 save_last_tsc(config, buf, ctx->tsc);
2158
2159 /*
2160 * Push the reader if necessary
2161 */
2162 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
2163
2164 /*
2165 * Clear noref flag for this subbuffer.
2166 */
2167 lib_ring_buffer_clear_noref(config, &buf->backend,
2168 subbuf_index(offsets.end - 1, chan));
2169
2170 /*
2171 * Switch old subbuffer if needed.
2172 */
2173 if (unlikely(offsets.switch_old_end)) {
2174 lib_ring_buffer_clear_noref(config, &buf->backend,
2175 subbuf_index(offsets.old - 1, chan));
2176 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
2177 }
2178
2179 /*
2180 * Populate new subbuffer.
2181 */
2182 if (unlikely(offsets.switch_new_start))
2183 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
2184
2185 if (unlikely(offsets.switch_new_end))
2186 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
2187
2188 ctx->slot_size = offsets.size;
2189 ctx->pre_offset = offsets.begin;
2190 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
2191 return 0;
2192 }
2193 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
2194
2195 static
2196 void lib_ring_buffer_vmcore_check_deliver(const struct lib_ring_buffer_config *config,
2197 struct lib_ring_buffer *buf,
2198 unsigned long commit_count,
2199 unsigned long idx)
2200 {
2201 if (config->oops == RING_BUFFER_OOPS_CONSISTENCY)
2202 v_set(config, &buf->commit_hot[idx].seq, commit_count);
2203 }
2204
2205 /*
2206 * The ring buffer can count events recorded and overwritten per buffer,
2207 * but it is disabled by default due to its performance overhead.
2208 */
2209 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
2210 static
2211 void deliver_count_events(const struct lib_ring_buffer_config *config,
2212 struct lib_ring_buffer *buf,
2213 unsigned long idx)
2214 {
2215 v_add(config, subbuffer_get_records_count(config,
2216 &buf->backend, idx),
2217 &buf->records_count);
2218 v_add(config, subbuffer_count_records_overrun(config,
2219 &buf->backend, idx),
2220 &buf->records_overrun);
2221 }
2222 #else /* LTTNG_RING_BUFFER_COUNT_EVENTS */
2223 static
2224 void deliver_count_events(const struct lib_ring_buffer_config *config,
2225 struct lib_ring_buffer *buf,
2226 unsigned long idx)
2227 {
2228 }
2229 #endif /* #else LTTNG_RING_BUFFER_COUNT_EVENTS */
2230
2231
2232 void lib_ring_buffer_check_deliver_slow(const struct lib_ring_buffer_config *config,
2233 struct lib_ring_buffer *buf,
2234 struct channel *chan,
2235 unsigned long offset,
2236 unsigned long commit_count,
2237 unsigned long idx,
2238 u64 tsc)
2239 {
2240 unsigned long old_commit_count = commit_count
2241 - chan->backend.subbuf_size;
2242
2243 /*
2244 * If we succeeded at updating cc_sb below, we are the subbuffer
2245 * writer delivering the subbuffer. Deals with concurrent
2246 * updates of the "cc" value without adding a add_return atomic
2247 * operation to the fast path.
2248 *
2249 * We are doing the delivery in two steps:
2250 * - First, we cmpxchg() cc_sb to the new value
2251 * old_commit_count + 1. This ensures that we are the only
2252 * subbuffer user successfully filling the subbuffer, but we
2253 * do _not_ set the cc_sb value to "commit_count" yet.
2254 * Therefore, other writers that would wrap around the ring
2255 * buffer and try to start writing to our subbuffer would
2256 * have to drop records, because it would appear as
2257 * non-filled.
2258 * We therefore have exclusive access to the subbuffer control
2259 * structures. This mutual exclusion with other writers is
2260 * crucially important to perform record overruns count in
2261 * flight recorder mode locklessly.
2262 * - When we are ready to release the subbuffer (either for
2263 * reading or for overrun by other writers), we simply set the
2264 * cc_sb value to "commit_count" and perform delivery.
2265 *
2266 * The subbuffer size is least 2 bytes (minimum size: 1 page).
2267 * This guarantees that old_commit_count + 1 != commit_count.
2268 */
2269
2270 /*
2271 * Order prior updates to reserve count prior to the
2272 * commit_cold cc_sb update.
2273 */
2274 smp_wmb();
2275 if (likely(v_cmpxchg(config, &buf->commit_cold[idx].cc_sb,
2276 old_commit_count, old_commit_count + 1)
2277 == old_commit_count)) {
2278 u64 *ts_end;
2279
2280 /*
2281 * Start of exclusive subbuffer access. We are
2282 * guaranteed to be the last writer in this subbuffer
2283 * and any other writer trying to access this subbuffer
2284 * in this state is required to drop records.
2285 *
2286 * We can read the ts_end for the current sub-buffer
2287 * which has been saved by the very last space
2288 * reservation for the current sub-buffer.
2289 *
2290 * Order increment of commit counter before reading ts_end.
2291 */
2292 smp_mb();
2293 ts_end = &buf->ts_end[idx];
2294 deliver_count_events(config, buf, idx);
2295 config->cb.buffer_end(buf, *ts_end, idx,
2296 lib_ring_buffer_get_data_size(config,
2297 buf,
2298 idx));
2299
2300 /*
2301 * Increment the packet counter while we have exclusive
2302 * access.
2303 */
2304 subbuffer_inc_packet_count(config, &buf->backend, idx);
2305
2306 /*
2307 * Set noref flag and offset for this subbuffer id.
2308 * Contains a memory barrier that ensures counter stores
2309 * are ordered before set noref and offset.
2310 */
2311 lib_ring_buffer_set_noref_offset(config, &buf->backend, idx,
2312 buf_trunc_val(offset, chan));
2313
2314 /*
2315 * Order set_noref and record counter updates before the
2316 * end of subbuffer exclusive access. Orders with
2317 * respect to writers coming into the subbuffer after
2318 * wrap around, and also order wrt concurrent readers.
2319 */
2320 smp_mb();
2321 /* End of exclusive subbuffer access */
2322 v_set(config, &buf->commit_cold[idx].cc_sb,
2323 commit_count);
2324 /*
2325 * Order later updates to reserve count after
2326 * the commit_cold cc_sb update.
2327 */
2328 smp_wmb();
2329 lib_ring_buffer_vmcore_check_deliver(config, buf,
2330 commit_count, idx);
2331
2332 /*
2333 * RING_BUFFER_WAKEUP_BY_WRITER wakeup is not lock-free.
2334 */
2335 if (config->wakeup == RING_BUFFER_WAKEUP_BY_WRITER
2336 && atomic_long_read(&buf->active_readers)
2337 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
2338 wake_up_interruptible(&buf->read_wait);
2339 wake_up_interruptible(&chan->read_wait);
2340 }
2341
2342 }
2343 }
2344 EXPORT_SYMBOL_GPL(lib_ring_buffer_check_deliver_slow);
2345
2346 int __init init_lib_ring_buffer_frontend(void)
2347 {
2348 int cpu;
2349
2350 for_each_possible_cpu(cpu)
2351 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
2352 return 0;
2353 }
2354
2355 module_init(init_lib_ring_buffer_frontend);
2356
2357 void __exit exit_lib_ring_buffer_frontend(void)
2358 {
2359 }
2360
2361 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.144413 seconds and 4 git commands to generate.