664e8652012fece589dac16b1ca3338113a8f9ed
[lttng-modules.git] / lib / ringbuffer / ring_buffer_frontend.c
1 /* SPDX-License-Identifier: (GPL-2.0-only OR LGPL-2.1-only)
2 *
3 * ring_buffer_frontend.c
4 *
5 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
6 *
7 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
8 * recorder (overwrite) modes. See thesis:
9 *
10 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
11 * dissertation, Ecole Polytechnique de Montreal.
12 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
13 *
14 * - Algorithm presentation in Chapter 5:
15 * "Lockless Multi-Core High-Throughput Buffering".
16 * - Algorithm formal verification in Section 8.6:
17 * "Formal verification of LTTng"
18 *
19 * Author:
20 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
21 *
22 * Inspired from LTT and RelayFS:
23 * Karim Yaghmour <karim@opersys.com>
24 * Tom Zanussi <zanussi@us.ibm.com>
25 * Bob Wisniewski <bob@watson.ibm.com>
26 * And from K42 :
27 * Bob Wisniewski <bob@watson.ibm.com>
28 *
29 * Buffer reader semantic :
30 *
31 * - get_subbuf_size
32 * while buffer is not finalized and empty
33 * - get_subbuf
34 * - if return value != 0, continue
35 * - splice one subbuffer worth of data to a pipe
36 * - splice the data from pipe to disk/network
37 * - put_subbuf
38 */
39
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/percpu.h>
43 #include <linux/kref.h>
44 #include <asm/cacheflush.h>
45
46 #include <wrapper/ringbuffer/config.h>
47 #include <wrapper/ringbuffer/backend.h>
48 #include <wrapper/ringbuffer/frontend.h>
49 #include <wrapper/ringbuffer/iterator.h>
50 #include <wrapper/ringbuffer/nohz.h>
51 #include <wrapper/atomic.h>
52 #include <wrapper/percpu-defs.h>
53 #include <wrapper/timer.h>
54
55 /*
56 * Internal structure representing offsets to use at a sub-buffer switch.
57 */
58 struct switch_offsets {
59 unsigned long begin, end, old;
60 size_t pre_header_padding, size;
61 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
62 switch_old_end:1;
63 };
64
65 #ifdef CONFIG_NO_HZ
66 enum tick_nohz_val {
67 TICK_NOHZ_STOP,
68 TICK_NOHZ_FLUSH,
69 TICK_NOHZ_RESTART,
70 };
71
72 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
73 #endif /* CONFIG_NO_HZ */
74
75 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
76
77 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
78 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
79
80 static
81 void lib_ring_buffer_print_errors(struct channel *chan,
82 struct lib_ring_buffer *buf, int cpu);
83 static
84 void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
85 enum switch_mode mode);
86
87 static
88 int lib_ring_buffer_poll_deliver(const struct lib_ring_buffer_config *config,
89 struct lib_ring_buffer *buf,
90 struct channel *chan)
91 {
92 unsigned long consumed_old, consumed_idx, commit_count, write_offset;
93
94 consumed_old = atomic_long_read(&buf->consumed);
95 consumed_idx = subbuf_index(consumed_old, chan);
96 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
97 /*
98 * No memory barrier here, since we are only interested
99 * in a statistically correct polling result. The next poll will
100 * get the data is we are racing. The mb() that ensures correct
101 * memory order is in get_subbuf.
102 */
103 write_offset = v_read(config, &buf->offset);
104
105 /*
106 * Check that the subbuffer we are trying to consume has been
107 * already fully committed.
108 */
109
110 if (((commit_count - chan->backend.subbuf_size)
111 & chan->commit_count_mask)
112 - (buf_trunc(consumed_old, chan)
113 >> chan->backend.num_subbuf_order)
114 != 0)
115 return 0;
116
117 /*
118 * Check that we are not about to read the same subbuffer in
119 * which the writer head is.
120 */
121 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_old, chan)
122 == 0)
123 return 0;
124
125 return 1;
126 }
127
128 /*
129 * Must be called under cpu hotplug protection.
130 */
131 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
132 {
133 struct channel *chan = buf->backend.chan;
134
135 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
136 kvfree(buf->commit_hot);
137 kvfree(buf->commit_cold);
138 kvfree(buf->ts_end);
139
140 lib_ring_buffer_backend_free(&buf->backend);
141 }
142
143 /**
144 * lib_ring_buffer_reset - Reset ring buffer to initial values.
145 * @buf: Ring buffer.
146 *
147 * Effectively empty the ring buffer. Should be called when the buffer is not
148 * used for writing. The ring buffer can be opened for reading, but the reader
149 * should not be using the iterator concurrently with reset. The previous
150 * current iterator record is reset.
151 */
152 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
153 {
154 struct channel *chan = buf->backend.chan;
155 const struct lib_ring_buffer_config *config = &chan->backend.config;
156 unsigned int i;
157
158 /*
159 * Reset iterator first. It will put the subbuffer if it currently holds
160 * it.
161 */
162 lib_ring_buffer_iterator_reset(buf);
163 v_set(config, &buf->offset, 0);
164 for (i = 0; i < chan->backend.num_subbuf; i++) {
165 v_set(config, &buf->commit_hot[i].cc, 0);
166 v_set(config, &buf->commit_hot[i].seq, 0);
167 v_set(config, &buf->commit_cold[i].cc_sb, 0);
168 buf->ts_end[i] = 0;
169 }
170 atomic_long_set(&buf->consumed, 0);
171 atomic_set(&buf->record_disabled, 0);
172 v_set(config, &buf->last_tsc, 0);
173 lib_ring_buffer_backend_reset(&buf->backend);
174 /* Don't reset number of active readers */
175 v_set(config, &buf->records_lost_full, 0);
176 v_set(config, &buf->records_lost_wrap, 0);
177 v_set(config, &buf->records_lost_big, 0);
178 v_set(config, &buf->records_count, 0);
179 v_set(config, &buf->records_overrun, 0);
180 buf->finalized = 0;
181 }
182 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
183
184 /**
185 * channel_reset - Reset channel to initial values.
186 * @chan: Channel.
187 *
188 * Effectively empty the channel. Should be called when the channel is not used
189 * for writing. The channel can be opened for reading, but the reader should not
190 * be using the iterator concurrently with reset. The previous current iterator
191 * record is reset.
192 */
193 void channel_reset(struct channel *chan)
194 {
195 /*
196 * Reset iterators first. Will put the subbuffer if held for reading.
197 */
198 channel_iterator_reset(chan);
199 atomic_set(&chan->record_disabled, 0);
200 /* Don't reset commit_count_mask, still valid */
201 channel_backend_reset(&chan->backend);
202 /* Don't reset switch/read timer interval */
203 /* Don't reset notifiers and notifier enable bits */
204 /* Don't reset reader reference count */
205 }
206 EXPORT_SYMBOL_GPL(channel_reset);
207
208 /*
209 * Must be called under cpu hotplug protection.
210 */
211 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
212 struct channel_backend *chanb, int cpu)
213 {
214 const struct lib_ring_buffer_config *config = &chanb->config;
215 struct channel *chan = container_of(chanb, struct channel, backend);
216 void *priv = chanb->priv;
217 size_t subbuf_header_size;
218 u64 tsc;
219 int ret;
220
221 /* Test for cpu hotplug */
222 if (buf->backend.allocated)
223 return 0;
224
225 /*
226 * Paranoia: per cpu dynamic allocation is not officially documented as
227 * zeroing the memory, so let's do it here too, just in case.
228 */
229 memset(buf, 0, sizeof(*buf));
230
231 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
232 if (ret)
233 return ret;
234
235 buf->commit_hot =
236 kvzalloc_node(ALIGN(sizeof(*buf->commit_hot)
237 * chan->backend.num_subbuf,
238 1 << INTERNODE_CACHE_SHIFT),
239 GFP_KERNEL | __GFP_NOWARN,
240 cpu_to_node(max(cpu, 0)));
241 if (!buf->commit_hot) {
242 ret = -ENOMEM;
243 goto free_chanbuf;
244 }
245
246 buf->commit_cold =
247 kvzalloc_node(ALIGN(sizeof(*buf->commit_cold)
248 * chan->backend.num_subbuf,
249 1 << INTERNODE_CACHE_SHIFT),
250 GFP_KERNEL | __GFP_NOWARN,
251 cpu_to_node(max(cpu, 0)));
252 if (!buf->commit_cold) {
253 ret = -ENOMEM;
254 goto free_commit;
255 }
256
257 buf->ts_end =
258 kvzalloc_node(ALIGN(sizeof(*buf->ts_end)
259 * chan->backend.num_subbuf,
260 1 << INTERNODE_CACHE_SHIFT),
261 GFP_KERNEL | __GFP_NOWARN,
262 cpu_to_node(max(cpu, 0)));
263 if (!buf->ts_end) {
264 ret = -ENOMEM;
265 goto free_commit_cold;
266 }
267
268 init_waitqueue_head(&buf->read_wait);
269 init_waitqueue_head(&buf->write_wait);
270 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
271
272 /*
273 * Write the subbuffer header for first subbuffer so we know the total
274 * duration of data gathering.
275 */
276 subbuf_header_size = config->cb.subbuffer_header_size();
277 v_set(config, &buf->offset, subbuf_header_size);
278 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
279 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
280 config->cb.buffer_begin(buf, tsc, 0);
281 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
282
283 if (config->cb.buffer_create) {
284 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
285 if (ret)
286 goto free_init;
287 }
288
289 /*
290 * Ensure the buffer is ready before setting it to allocated and setting
291 * the cpumask.
292 * Used for cpu hotplug vs cpumask iteration.
293 */
294 smp_wmb();
295 buf->backend.allocated = 1;
296
297 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
298 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
299 chan->backend.cpumask));
300 cpumask_set_cpu(cpu, chan->backend.cpumask);
301 }
302 return 0;
303
304 /* Error handling */
305 free_init:
306 kvfree(buf->ts_end);
307 free_commit_cold:
308 kvfree(buf->commit_cold);
309 free_commit:
310 kvfree(buf->commit_hot);
311 free_chanbuf:
312 lib_ring_buffer_backend_free(&buf->backend);
313 return ret;
314 }
315
316 static void switch_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
317 {
318 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, switch_timer);
319 struct channel *chan = buf->backend.chan;
320 const struct lib_ring_buffer_config *config = &chan->backend.config;
321
322 /*
323 * Only flush buffers periodically if readers are active.
324 */
325 if (atomic_long_read(&buf->active_readers))
326 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
327
328 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
329 lttng_mod_timer_pinned(&buf->switch_timer,
330 jiffies + chan->switch_timer_interval);
331 else
332 mod_timer(&buf->switch_timer,
333 jiffies + chan->switch_timer_interval);
334 }
335
336 /*
337 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
338 */
339 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
340 {
341 struct channel *chan = buf->backend.chan;
342 const struct lib_ring_buffer_config *config = &chan->backend.config;
343 unsigned int flags = 0;
344
345 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
346 return;
347
348 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
349 flags = LTTNG_TIMER_PINNED;
350
351 lttng_timer_setup(&buf->switch_timer, switch_buffer_timer, flags, buf);
352 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
353
354 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
355 add_timer_on(&buf->switch_timer, buf->backend.cpu);
356 else
357 add_timer(&buf->switch_timer);
358
359 buf->switch_timer_enabled = 1;
360 }
361
362 /*
363 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
364 */
365 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
366 {
367 struct channel *chan = buf->backend.chan;
368
369 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
370 return;
371
372 del_timer_sync(&buf->switch_timer);
373 buf->switch_timer_enabled = 0;
374 }
375
376 /*
377 * Polling timer to check the channels for data.
378 */
379 static void read_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
380 {
381 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, read_timer);
382 struct channel *chan = buf->backend.chan;
383 const struct lib_ring_buffer_config *config = &chan->backend.config;
384
385 CHAN_WARN_ON(chan, !buf->backend.allocated);
386
387 if (atomic_long_read(&buf->active_readers)
388 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
389 wake_up_interruptible(&buf->read_wait);
390 wake_up_interruptible(&chan->read_wait);
391 }
392
393 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
394 lttng_mod_timer_pinned(&buf->read_timer,
395 jiffies + chan->read_timer_interval);
396 else
397 mod_timer(&buf->read_timer,
398 jiffies + chan->read_timer_interval);
399 }
400
401 /*
402 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
403 */
404 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
405 {
406 struct channel *chan = buf->backend.chan;
407 const struct lib_ring_buffer_config *config = &chan->backend.config;
408 unsigned int flags = 0;
409
410 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
411 || !chan->read_timer_interval
412 || buf->read_timer_enabled)
413 return;
414
415 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
416 flags = LTTNG_TIMER_PINNED;
417
418 lttng_timer_setup(&buf->read_timer, read_buffer_timer, flags, buf);
419 buf->read_timer.expires = jiffies + chan->read_timer_interval;
420
421 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
422 add_timer_on(&buf->read_timer, buf->backend.cpu);
423 else
424 add_timer(&buf->read_timer);
425
426 buf->read_timer_enabled = 1;
427 }
428
429 /*
430 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
431 */
432 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
433 {
434 struct channel *chan = buf->backend.chan;
435 const struct lib_ring_buffer_config *config = &chan->backend.config;
436
437 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
438 || !chan->read_timer_interval
439 || !buf->read_timer_enabled)
440 return;
441
442 del_timer_sync(&buf->read_timer);
443 /*
444 * do one more check to catch data that has been written in the last
445 * timer period.
446 */
447 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
448 wake_up_interruptible(&buf->read_wait);
449 wake_up_interruptible(&chan->read_wait);
450 }
451 buf->read_timer_enabled = 0;
452 }
453
454 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
455
456 enum cpuhp_state lttng_rb_hp_prepare;
457 enum cpuhp_state lttng_rb_hp_online;
458
459 void lttng_rb_set_hp_prepare(enum cpuhp_state val)
460 {
461 lttng_rb_hp_prepare = val;
462 }
463 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_prepare);
464
465 void lttng_rb_set_hp_online(enum cpuhp_state val)
466 {
467 lttng_rb_hp_online = val;
468 }
469 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_online);
470
471 int lttng_cpuhp_rb_frontend_dead(unsigned int cpu,
472 struct lttng_cpuhp_node *node)
473 {
474 struct channel *chan = container_of(node, struct channel,
475 cpuhp_prepare);
476 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
477 const struct lib_ring_buffer_config *config = &chan->backend.config;
478
479 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
480
481 /*
482 * Performing a buffer switch on a remote CPU. Performed by
483 * the CPU responsible for doing the hotunplug after the target
484 * CPU stopped running completely. Ensures that all data
485 * from that remote CPU is flushed.
486 */
487 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
488 return 0;
489 }
490 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_dead);
491
492 int lttng_cpuhp_rb_frontend_online(unsigned int cpu,
493 struct lttng_cpuhp_node *node)
494 {
495 struct channel *chan = container_of(node, struct channel,
496 cpuhp_online);
497 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
498 const struct lib_ring_buffer_config *config = &chan->backend.config;
499
500 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
501
502 wake_up_interruptible(&chan->hp_wait);
503 lib_ring_buffer_start_switch_timer(buf);
504 lib_ring_buffer_start_read_timer(buf);
505 return 0;
506 }
507 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_online);
508
509 int lttng_cpuhp_rb_frontend_offline(unsigned int cpu,
510 struct lttng_cpuhp_node *node)
511 {
512 struct channel *chan = container_of(node, struct channel,
513 cpuhp_online);
514 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
515 const struct lib_ring_buffer_config *config = &chan->backend.config;
516
517 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
518
519 lib_ring_buffer_stop_switch_timer(buf);
520 lib_ring_buffer_stop_read_timer(buf);
521 return 0;
522 }
523 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_offline);
524
525 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
526
527 #ifdef CONFIG_HOTPLUG_CPU
528
529 /**
530 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
531 * @nb: notifier block
532 * @action: hotplug action to take
533 * @hcpu: CPU number
534 *
535 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
536 */
537 static
538 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
539 unsigned long action,
540 void *hcpu)
541 {
542 unsigned int cpu = (unsigned long)hcpu;
543 struct channel *chan = container_of(nb, struct channel,
544 cpu_hp_notifier);
545 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
546 const struct lib_ring_buffer_config *config = &chan->backend.config;
547
548 if (!chan->cpu_hp_enable)
549 return NOTIFY_DONE;
550
551 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
552
553 switch (action) {
554 case CPU_DOWN_FAILED:
555 case CPU_DOWN_FAILED_FROZEN:
556 case CPU_ONLINE:
557 case CPU_ONLINE_FROZEN:
558 wake_up_interruptible(&chan->hp_wait);
559 lib_ring_buffer_start_switch_timer(buf);
560 lib_ring_buffer_start_read_timer(buf);
561 return NOTIFY_OK;
562
563 case CPU_DOWN_PREPARE:
564 case CPU_DOWN_PREPARE_FROZEN:
565 lib_ring_buffer_stop_switch_timer(buf);
566 lib_ring_buffer_stop_read_timer(buf);
567 return NOTIFY_OK;
568
569 case CPU_DEAD:
570 case CPU_DEAD_FROZEN:
571 /*
572 * Performing a buffer switch on a remote CPU. Performed by
573 * the CPU responsible for doing the hotunplug after the target
574 * CPU stopped running completely. Ensures that all data
575 * from that remote CPU is flushed.
576 */
577 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
578 return NOTIFY_OK;
579
580 default:
581 return NOTIFY_DONE;
582 }
583 }
584
585 #endif
586
587 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
588
589 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
590 /*
591 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
592 * that wake-up-tracing generated events are flushed before going idle (in
593 * tick_nohz). We test if the spinlock is locked to deal with the race where
594 * readers try to sample the ring buffer before we perform the switch. We let
595 * the readers retry in that case. If there is data in the buffer, the wake up
596 * is going to forbid the CPU running the reader thread from going idle.
597 */
598 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
599 unsigned long val,
600 void *data)
601 {
602 struct channel *chan = container_of(nb, struct channel,
603 tick_nohz_notifier);
604 const struct lib_ring_buffer_config *config = &chan->backend.config;
605 struct lib_ring_buffer *buf;
606 int cpu = smp_processor_id();
607
608 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
609 /*
610 * We don't support keeping the system idle with global buffers
611 * and streaming active. In order to do so, we would need to
612 * sample a non-nohz-cpumask racelessly with the nohz updates
613 * without adding synchronization overhead to nohz. Leave this
614 * use-case out for now.
615 */
616 return 0;
617 }
618
619 buf = channel_get_ring_buffer(config, chan, cpu);
620 switch (val) {
621 case TICK_NOHZ_FLUSH:
622 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
623 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
624 && chan->read_timer_interval
625 && atomic_long_read(&buf->active_readers)
626 && (lib_ring_buffer_poll_deliver(config, buf, chan)
627 || lib_ring_buffer_pending_data(config, buf, chan))) {
628 wake_up_interruptible(&buf->read_wait);
629 wake_up_interruptible(&chan->read_wait);
630 }
631 if (chan->switch_timer_interval)
632 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
633 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
634 break;
635 case TICK_NOHZ_STOP:
636 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
637 lib_ring_buffer_stop_switch_timer(buf);
638 lib_ring_buffer_stop_read_timer(buf);
639 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
640 break;
641 case TICK_NOHZ_RESTART:
642 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
643 lib_ring_buffer_start_read_timer(buf);
644 lib_ring_buffer_start_switch_timer(buf);
645 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
646 break;
647 }
648
649 return 0;
650 }
651
652 void notrace lib_ring_buffer_tick_nohz_flush(void)
653 {
654 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
655 NULL);
656 }
657
658 void notrace lib_ring_buffer_tick_nohz_stop(void)
659 {
660 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
661 NULL);
662 }
663
664 void notrace lib_ring_buffer_tick_nohz_restart(void)
665 {
666 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
667 NULL);
668 }
669 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
670
671 /*
672 * Holds CPU hotplug.
673 */
674 static void channel_unregister_notifiers(struct channel *chan)
675 {
676 const struct lib_ring_buffer_config *config = &chan->backend.config;
677
678 channel_iterator_unregister_notifiers(chan);
679 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
680 #ifdef CONFIG_NO_HZ
681 /*
682 * Remove the nohz notifier first, so we are certain we stop
683 * the timers.
684 */
685 atomic_notifier_chain_unregister(&tick_nohz_notifier,
686 &chan->tick_nohz_notifier);
687 /*
688 * ring_buffer_nohz_lock will not be needed below, because
689 * we just removed the notifiers, which were the only source of
690 * concurrency.
691 */
692 #endif /* CONFIG_NO_HZ */
693 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
694 {
695 int ret;
696
697 ret = cpuhp_state_remove_instance(lttng_rb_hp_online,
698 &chan->cpuhp_online.node);
699 WARN_ON(ret);
700 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
701 &chan->cpuhp_prepare.node);
702 WARN_ON(ret);
703 }
704 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
705 {
706 int cpu;
707
708 #ifdef CONFIG_HOTPLUG_CPU
709 get_online_cpus();
710 chan->cpu_hp_enable = 0;
711 for_each_online_cpu(cpu) {
712 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
713 cpu);
714 lib_ring_buffer_stop_switch_timer(buf);
715 lib_ring_buffer_stop_read_timer(buf);
716 }
717 put_online_cpus();
718 unregister_cpu_notifier(&chan->cpu_hp_notifier);
719 #else
720 for_each_possible_cpu(cpu) {
721 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
722 cpu);
723 lib_ring_buffer_stop_switch_timer(buf);
724 lib_ring_buffer_stop_read_timer(buf);
725 }
726 #endif
727 }
728 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
729 } else {
730 struct lib_ring_buffer *buf = chan->backend.buf;
731
732 lib_ring_buffer_stop_switch_timer(buf);
733 lib_ring_buffer_stop_read_timer(buf);
734 }
735 channel_backend_unregister_notifiers(&chan->backend);
736 }
737
738 static void lib_ring_buffer_set_quiescent(struct lib_ring_buffer *buf)
739 {
740 if (!buf->quiescent) {
741 buf->quiescent = true;
742 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
743 }
744 }
745
746 static void lib_ring_buffer_clear_quiescent(struct lib_ring_buffer *buf)
747 {
748 buf->quiescent = false;
749 }
750
751 void lib_ring_buffer_set_quiescent_channel(struct channel *chan)
752 {
753 int cpu;
754 const struct lib_ring_buffer_config *config = &chan->backend.config;
755
756 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
757 get_online_cpus();
758 for_each_channel_cpu(cpu, chan) {
759 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
760 cpu);
761
762 lib_ring_buffer_set_quiescent(buf);
763 }
764 put_online_cpus();
765 } else {
766 struct lib_ring_buffer *buf = chan->backend.buf;
767
768 lib_ring_buffer_set_quiescent(buf);
769 }
770 }
771 EXPORT_SYMBOL_GPL(lib_ring_buffer_set_quiescent_channel);
772
773 void lib_ring_buffer_clear_quiescent_channel(struct channel *chan)
774 {
775 int cpu;
776 const struct lib_ring_buffer_config *config = &chan->backend.config;
777
778 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
779 get_online_cpus();
780 for_each_channel_cpu(cpu, chan) {
781 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
782 cpu);
783
784 lib_ring_buffer_clear_quiescent(buf);
785 }
786 put_online_cpus();
787 } else {
788 struct lib_ring_buffer *buf = chan->backend.buf;
789
790 lib_ring_buffer_clear_quiescent(buf);
791 }
792 }
793 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear_quiescent_channel);
794
795 static void channel_free(struct channel *chan)
796 {
797 if (chan->backend.release_priv_ops) {
798 chan->backend.release_priv_ops(chan->backend.priv_ops);
799 }
800 channel_iterator_free(chan);
801 channel_backend_free(&chan->backend);
802 kfree(chan);
803 }
804
805 /**
806 * channel_create - Create channel.
807 * @config: ring buffer instance configuration
808 * @name: name of the channel
809 * @priv: ring buffer client private data
810 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
811 * address mapping. It is used only by RING_BUFFER_STATIC
812 * configuration. It can be set to NULL for other backends.
813 * @subbuf_size: subbuffer size
814 * @num_subbuf: number of subbuffers
815 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
816 * padding to let readers get those sub-buffers.
817 * Used for live streaming.
818 * @read_timer_interval: Time interval (in us) to wake up pending readers.
819 *
820 * Holds cpu hotplug.
821 * Returns NULL on failure.
822 */
823 struct channel *channel_create(const struct lib_ring_buffer_config *config,
824 const char *name, void *priv, void *buf_addr,
825 size_t subbuf_size,
826 size_t num_subbuf, unsigned int switch_timer_interval,
827 unsigned int read_timer_interval)
828 {
829 int ret;
830 struct channel *chan;
831
832 if (lib_ring_buffer_check_config(config, switch_timer_interval,
833 read_timer_interval))
834 return NULL;
835
836 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
837 if (!chan)
838 return NULL;
839
840 ret = channel_backend_init(&chan->backend, name, config, priv,
841 subbuf_size, num_subbuf);
842 if (ret)
843 goto error;
844
845 ret = channel_iterator_init(chan);
846 if (ret)
847 goto error_free_backend;
848
849 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
850 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
851 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
852 kref_init(&chan->ref);
853 init_waitqueue_head(&chan->read_wait);
854 init_waitqueue_head(&chan->hp_wait);
855
856 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
857 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
858 chan->cpuhp_prepare.component = LTTNG_RING_BUFFER_FRONTEND;
859 ret = cpuhp_state_add_instance_nocalls(lttng_rb_hp_prepare,
860 &chan->cpuhp_prepare.node);
861 if (ret)
862 goto cpuhp_prepare_error;
863
864 chan->cpuhp_online.component = LTTNG_RING_BUFFER_FRONTEND;
865 ret = cpuhp_state_add_instance(lttng_rb_hp_online,
866 &chan->cpuhp_online.node);
867 if (ret)
868 goto cpuhp_online_error;
869 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
870 {
871 int cpu;
872 /*
873 * In case of non-hotplug cpu, if the ring-buffer is allocated
874 * in early initcall, it will not be notified of secondary cpus.
875 * In that off case, we need to allocate for all possible cpus.
876 */
877 #ifdef CONFIG_HOTPLUG_CPU
878 chan->cpu_hp_notifier.notifier_call =
879 lib_ring_buffer_cpu_hp_callback;
880 chan->cpu_hp_notifier.priority = 6;
881 register_cpu_notifier(&chan->cpu_hp_notifier);
882
883 get_online_cpus();
884 for_each_online_cpu(cpu) {
885 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
886 cpu);
887 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
888 lib_ring_buffer_start_switch_timer(buf);
889 lib_ring_buffer_start_read_timer(buf);
890 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
891 }
892 chan->cpu_hp_enable = 1;
893 put_online_cpus();
894 #else
895 for_each_possible_cpu(cpu) {
896 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
897 cpu);
898 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
899 lib_ring_buffer_start_switch_timer(buf);
900 lib_ring_buffer_start_read_timer(buf);
901 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
902 }
903 #endif
904 }
905 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
906
907 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
908 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
909 chan->tick_nohz_notifier.notifier_call =
910 ring_buffer_tick_nohz_callback;
911 chan->tick_nohz_notifier.priority = ~0U;
912 atomic_notifier_chain_register(&tick_nohz_notifier,
913 &chan->tick_nohz_notifier);
914 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
915
916 } else {
917 struct lib_ring_buffer *buf = chan->backend.buf;
918
919 lib_ring_buffer_start_switch_timer(buf);
920 lib_ring_buffer_start_read_timer(buf);
921 }
922
923 return chan;
924
925 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
926 cpuhp_online_error:
927 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
928 &chan->cpuhp_prepare.node);
929 WARN_ON(ret);
930 cpuhp_prepare_error:
931 #endif /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
932 error_free_backend:
933 channel_backend_free(&chan->backend);
934 error:
935 kfree(chan);
936 return NULL;
937 }
938 EXPORT_SYMBOL_GPL(channel_create);
939
940 static
941 void channel_release(struct kref *kref)
942 {
943 struct channel *chan = container_of(kref, struct channel, ref);
944 channel_free(chan);
945 }
946
947 /**
948 * channel_destroy - Finalize, wait for q.s. and destroy channel.
949 * @chan: channel to destroy
950 *
951 * Holds cpu hotplug.
952 * Call "destroy" callback, finalize channels, and then decrement the
953 * channel reference count. Note that when readers have completed data
954 * consumption of finalized channels, get_subbuf() will return -ENODATA.
955 * They should release their handle at that point. Returns the private
956 * data pointer.
957 */
958 void *channel_destroy(struct channel *chan)
959 {
960 int cpu;
961 const struct lib_ring_buffer_config *config = &chan->backend.config;
962 void *priv;
963
964 channel_unregister_notifiers(chan);
965
966 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
967 /*
968 * No need to hold cpu hotplug, because all notifiers have been
969 * unregistered.
970 */
971 for_each_channel_cpu(cpu, chan) {
972 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
973 cpu);
974
975 if (config->cb.buffer_finalize)
976 config->cb.buffer_finalize(buf,
977 chan->backend.priv,
978 cpu);
979 /*
980 * Perform flush before writing to finalized.
981 */
982 smp_wmb();
983 WRITE_ONCE(buf->finalized, 1);
984 wake_up_interruptible(&buf->read_wait);
985 }
986 } else {
987 struct lib_ring_buffer *buf = chan->backend.buf;
988
989 if (config->cb.buffer_finalize)
990 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
991 /*
992 * Perform flush before writing to finalized.
993 */
994 smp_wmb();
995 WRITE_ONCE(buf->finalized, 1);
996 wake_up_interruptible(&buf->read_wait);
997 }
998 WRITE_ONCE(chan->finalized, 1);
999 wake_up_interruptible(&chan->hp_wait);
1000 wake_up_interruptible(&chan->read_wait);
1001 priv = chan->backend.priv;
1002 kref_put(&chan->ref, channel_release);
1003 return priv;
1004 }
1005 EXPORT_SYMBOL_GPL(channel_destroy);
1006
1007 struct lib_ring_buffer *channel_get_ring_buffer(
1008 const struct lib_ring_buffer_config *config,
1009 struct channel *chan, int cpu)
1010 {
1011 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
1012 return chan->backend.buf;
1013 else
1014 return per_cpu_ptr(chan->backend.buf, cpu);
1015 }
1016 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
1017
1018 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
1019 {
1020 struct channel *chan = buf->backend.chan;
1021
1022 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
1023 return -EBUSY;
1024 kref_get(&chan->ref);
1025 lttng_smp_mb__after_atomic();
1026 return 0;
1027 }
1028 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
1029
1030 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
1031 {
1032 struct channel *chan = buf->backend.chan;
1033
1034 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1035 lttng_smp_mb__before_atomic();
1036 atomic_long_dec(&buf->active_readers);
1037 kref_put(&chan->ref, channel_release);
1038 }
1039 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
1040
1041 /*
1042 * Promote compiler barrier to a smp_mb().
1043 * For the specific ring buffer case, this IPI call should be removed if the
1044 * architecture does not reorder writes. This should eventually be provided by
1045 * a separate architecture-specific infrastructure.
1046 */
1047 static void remote_mb(void *info)
1048 {
1049 smp_mb();
1050 }
1051
1052 /**
1053 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
1054 * @buf: ring buffer
1055 * @consumed: consumed count indicating the position where to read
1056 * @produced: produced count, indicates position when to stop reading
1057 *
1058 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1059 * data to read at consumed position, or 0 if the get operation succeeds.
1060 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1061 */
1062
1063 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
1064 unsigned long *consumed, unsigned long *produced)
1065 {
1066 struct channel *chan = buf->backend.chan;
1067 const struct lib_ring_buffer_config *config = &chan->backend.config;
1068 unsigned long consumed_cur, write_offset;
1069 int finalized;
1070
1071 retry:
1072 finalized = READ_ONCE(buf->finalized);
1073 /*
1074 * Read finalized before counters.
1075 */
1076 smp_rmb();
1077 consumed_cur = atomic_long_read(&buf->consumed);
1078 /*
1079 * No need to issue a memory barrier between consumed count read and
1080 * write offset read, because consumed count can only change
1081 * concurrently in overwrite mode, and we keep a sequence counter
1082 * identifier derived from the write offset to check we are getting
1083 * the same sub-buffer we are expecting (the sub-buffers are atomically
1084 * "tagged" upon writes, tags are checked upon read).
1085 */
1086 write_offset = v_read(config, &buf->offset);
1087
1088 /*
1089 * Check that we are not about to read the same subbuffer in
1090 * which the writer head is.
1091 */
1092 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1093 == 0)
1094 goto nodata;
1095
1096 *consumed = consumed_cur;
1097 *produced = subbuf_trunc(write_offset, chan);
1098
1099 return 0;
1100
1101 nodata:
1102 /*
1103 * The memory barriers __wait_event()/wake_up_interruptible() take care
1104 * of "raw_spin_is_locked" memory ordering.
1105 */
1106 if (finalized)
1107 return -ENODATA;
1108 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1109 goto retry;
1110 else
1111 return -EAGAIN;
1112 }
1113 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
1114
1115 /**
1116 * Performs the same function as lib_ring_buffer_snapshot(), but the positions
1117 * are saved regardless of whether the consumed and produced positions are
1118 * in the same subbuffer.
1119 * @buf: ring buffer
1120 * @consumed: consumed byte count indicating the last position read
1121 * @produced: produced byte count indicating the last position written
1122 *
1123 * This function is meant to provide information on the exact producer and
1124 * consumer positions without regard for the "snapshot" feature.
1125 */
1126 int lib_ring_buffer_snapshot_sample_positions(struct lib_ring_buffer *buf,
1127 unsigned long *consumed, unsigned long *produced)
1128 {
1129 struct channel *chan = buf->backend.chan;
1130 const struct lib_ring_buffer_config *config = &chan->backend.config;
1131
1132 smp_rmb();
1133 *consumed = atomic_long_read(&buf->consumed);
1134 /*
1135 * No need to issue a memory barrier between consumed count read and
1136 * write offset read, because consumed count can only change
1137 * concurrently in overwrite mode, and we keep a sequence counter
1138 * identifier derived from the write offset to check we are getting
1139 * the same sub-buffer we are expecting (the sub-buffers are atomically
1140 * "tagged" upon writes, tags are checked upon read).
1141 */
1142 *produced = v_read(config, &buf->offset);
1143 return 0;
1144 }
1145
1146 /**
1147 * lib_ring_buffer_put_snapshot - move consumed counter forward
1148 *
1149 * Should only be called from consumer context.
1150 * @buf: ring buffer
1151 * @consumed_new: new consumed count value
1152 */
1153 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
1154 unsigned long consumed_new)
1155 {
1156 struct lib_ring_buffer_backend *bufb = &buf->backend;
1157 struct channel *chan = bufb->chan;
1158 unsigned long consumed;
1159
1160 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1161
1162 /*
1163 * Only push the consumed value forward.
1164 * If the consumed cmpxchg fails, this is because we have been pushed by
1165 * the writer in flight recorder mode.
1166 */
1167 consumed = atomic_long_read(&buf->consumed);
1168 while ((long) consumed - (long) consumed_new < 0)
1169 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
1170 consumed_new);
1171 /* Wake-up the metadata producer */
1172 wake_up_interruptible(&buf->write_wait);
1173 }
1174 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
1175
1176 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1177 static void lib_ring_buffer_flush_read_subbuf_dcache(
1178 const struct lib_ring_buffer_config *config,
1179 struct channel *chan,
1180 struct lib_ring_buffer *buf)
1181 {
1182 struct lib_ring_buffer_backend_pages *pages;
1183 unsigned long sb_bindex, id, i, nr_pages;
1184
1185 if (config->output != RING_BUFFER_MMAP)
1186 return;
1187
1188 /*
1189 * Architectures with caches aliased on virtual addresses may
1190 * use different cache lines for the linear mapping vs
1191 * user-space memory mapping. Given that the ring buffer is
1192 * based on the kernel linear mapping, aligning it with the
1193 * user-space mapping is not straightforward, and would require
1194 * extra TLB entries. Therefore, simply flush the dcache for the
1195 * entire sub-buffer before reading it.
1196 */
1197 id = buf->backend.buf_rsb.id;
1198 sb_bindex = subbuffer_id_get_index(config, id);
1199 pages = buf->backend.array[sb_bindex];
1200 nr_pages = buf->backend.num_pages_per_subbuf;
1201 for (i = 0; i < nr_pages; i++) {
1202 struct lib_ring_buffer_backend_page *backend_page;
1203
1204 backend_page = &pages->p[i];
1205 flush_dcache_page(pfn_to_page(backend_page->pfn));
1206 }
1207 }
1208 #else
1209 static void lib_ring_buffer_flush_read_subbuf_dcache(
1210 const struct lib_ring_buffer_config *config,
1211 struct channel *chan,
1212 struct lib_ring_buffer *buf)
1213 {
1214 }
1215 #endif
1216
1217 /**
1218 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
1219 * @buf: ring buffer
1220 * @consumed: consumed count indicating the position where to read
1221 *
1222 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1223 * data to read at consumed position, or 0 if the get operation succeeds.
1224 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1225 */
1226 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
1227 unsigned long consumed)
1228 {
1229 struct channel *chan = buf->backend.chan;
1230 const struct lib_ring_buffer_config *config = &chan->backend.config;
1231 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1232 int ret;
1233 int finalized;
1234
1235 if (buf->get_subbuf) {
1236 /*
1237 * Reader is trying to get a subbuffer twice.
1238 */
1239 CHAN_WARN_ON(chan, 1);
1240 return -EBUSY;
1241 }
1242 retry:
1243 finalized = READ_ONCE(buf->finalized);
1244 /*
1245 * Read finalized before counters.
1246 */
1247 smp_rmb();
1248 consumed_cur = atomic_long_read(&buf->consumed);
1249 consumed_idx = subbuf_index(consumed, chan);
1250 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
1251 /*
1252 * Make sure we read the commit count before reading the buffer
1253 * data and the write offset. Correct consumed offset ordering
1254 * wrt commit count is insured by the use of cmpxchg to update
1255 * the consumed offset.
1256 * smp_call_function_single can fail if the remote CPU is offline,
1257 * this is OK because then there is no wmb to execute there.
1258 * If our thread is executing on the same CPU as the on the buffers
1259 * belongs to, we don't have to synchronize it at all. If we are
1260 * migrated, the scheduler will take care of the memory barriers.
1261 * Normally, smp_call_function_single() should ensure program order when
1262 * executing the remote function, which implies that it surrounds the
1263 * function execution with :
1264 * smp_mb()
1265 * send IPI
1266 * csd_lock_wait
1267 * recv IPI
1268 * smp_mb()
1269 * exec. function
1270 * smp_mb()
1271 * csd unlock
1272 * smp_mb()
1273 *
1274 * However, smp_call_function_single() does not seem to clearly execute
1275 * such barriers. It depends on spinlock semantic to provide the barrier
1276 * before executing the IPI and, when busy-looping, csd_lock_wait only
1277 * executes smp_mb() when it has to wait for the other CPU.
1278 *
1279 * I don't trust this code. Therefore, let's add the smp_mb() sequence
1280 * required ourself, even if duplicated. It has no performance impact
1281 * anyway.
1282 *
1283 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
1284 * read and write vs write. They do not ensure core synchronization. We
1285 * really have to ensure total order between the 3 barriers running on
1286 * the 2 CPUs.
1287 */
1288 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1289 if (config->sync == RING_BUFFER_SYNC_PER_CPU
1290 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
1291 if (raw_smp_processor_id() != buf->backend.cpu) {
1292 /* Total order with IPI handler smp_mb() */
1293 smp_mb();
1294 smp_call_function_single(buf->backend.cpu,
1295 remote_mb, NULL, 1);
1296 /* Total order with IPI handler smp_mb() */
1297 smp_mb();
1298 }
1299 } else {
1300 /* Total order with IPI handler smp_mb() */
1301 smp_mb();
1302 smp_call_function(remote_mb, NULL, 1);
1303 /* Total order with IPI handler smp_mb() */
1304 smp_mb();
1305 }
1306 } else {
1307 /*
1308 * Local rmb to match the remote wmb to read the commit count
1309 * before the buffer data and the write offset.
1310 */
1311 smp_rmb();
1312 }
1313
1314 write_offset = v_read(config, &buf->offset);
1315
1316 /*
1317 * Check that the buffer we are getting is after or at consumed_cur
1318 * position.
1319 */
1320 if ((long) subbuf_trunc(consumed, chan)
1321 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1322 goto nodata;
1323
1324 /*
1325 * Check that the subbuffer we are trying to consume has been
1326 * already fully committed.
1327 */
1328 if (((commit_count - chan->backend.subbuf_size)
1329 & chan->commit_count_mask)
1330 - (buf_trunc(consumed, chan)
1331 >> chan->backend.num_subbuf_order)
1332 != 0)
1333 goto nodata;
1334
1335 /*
1336 * Check that we are not about to read the same subbuffer in
1337 * which the writer head is.
1338 */
1339 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1340 == 0)
1341 goto nodata;
1342
1343 /*
1344 * Failure to get the subbuffer causes a busy-loop retry without going
1345 * to a wait queue. These are caused by short-lived race windows where
1346 * the writer is getting access to a subbuffer we were trying to get
1347 * access to. Also checks that the "consumed" buffer count we are
1348 * looking for matches the one contained in the subbuffer id.
1349 */
1350 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1351 consumed_idx, buf_trunc_val(consumed, chan));
1352 if (ret)
1353 goto retry;
1354 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1355
1356 buf->get_subbuf_consumed = consumed;
1357 buf->get_subbuf = 1;
1358
1359 lib_ring_buffer_flush_read_subbuf_dcache(config, chan, buf);
1360
1361 return 0;
1362
1363 nodata:
1364 /*
1365 * The memory barriers __wait_event()/wake_up_interruptible() take care
1366 * of "raw_spin_is_locked" memory ordering.
1367 */
1368 if (finalized)
1369 return -ENODATA;
1370 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1371 goto retry;
1372 else
1373 return -EAGAIN;
1374 }
1375 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1376
1377 /**
1378 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1379 * @buf: ring buffer
1380 */
1381 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1382 {
1383 struct lib_ring_buffer_backend *bufb = &buf->backend;
1384 struct channel *chan = bufb->chan;
1385 const struct lib_ring_buffer_config *config = &chan->backend.config;
1386 unsigned long read_sb_bindex, consumed_idx, consumed;
1387
1388 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1389
1390 if (!buf->get_subbuf) {
1391 /*
1392 * Reader puts a subbuffer it did not get.
1393 */
1394 CHAN_WARN_ON(chan, 1);
1395 return;
1396 }
1397 consumed = buf->get_subbuf_consumed;
1398 buf->get_subbuf = 0;
1399
1400 /*
1401 * Clear the records_unread counter. (overruns counter)
1402 * Can still be non-zero if a file reader simply grabbed the data
1403 * without using iterators.
1404 * Can be below zero if an iterator is used on a snapshot more than
1405 * once.
1406 */
1407 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1408 v_add(config, v_read(config,
1409 &bufb->array[read_sb_bindex]->records_unread),
1410 &bufb->records_read);
1411 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1412 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1413 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1414 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1415
1416 /*
1417 * Exchange the reader subbuffer with the one we put in its place in the
1418 * writer subbuffer table. Expect the original consumed count. If
1419 * update_read_sb_index fails, this is because the writer updated the
1420 * subbuffer concurrently. We should therefore keep the subbuffer we
1421 * currently have: it has become invalid to try reading this sub-buffer
1422 * consumed count value anyway.
1423 */
1424 consumed_idx = subbuf_index(consumed, chan);
1425 update_read_sb_index(config, &buf->backend, &chan->backend,
1426 consumed_idx, buf_trunc_val(consumed, chan));
1427 /*
1428 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1429 * if the writer concurrently updated it.
1430 */
1431 }
1432 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1433
1434 /*
1435 * cons_offset is an iterator on all subbuffer offsets between the reader
1436 * position and the writer position. (inclusive)
1437 */
1438 static
1439 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1440 struct channel *chan,
1441 unsigned long cons_offset,
1442 int cpu)
1443 {
1444 const struct lib_ring_buffer_config *config = &chan->backend.config;
1445 unsigned long cons_idx, commit_count, commit_count_sb;
1446
1447 cons_idx = subbuf_index(cons_offset, chan);
1448 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1449 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1450
1451 if (subbuf_offset(commit_count, chan) != 0)
1452 printk(KERN_WARNING
1453 "ring buffer %s, cpu %d: "
1454 "commit count in subbuffer %lu,\n"
1455 "expecting multiples of %lu bytes\n"
1456 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1457 chan->backend.name, cpu, cons_idx,
1458 chan->backend.subbuf_size,
1459 commit_count, commit_count_sb);
1460
1461 printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1462 chan->backend.name, cpu, commit_count);
1463 }
1464
1465 static
1466 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1467 struct channel *chan,
1468 void *priv, int cpu)
1469 {
1470 const struct lib_ring_buffer_config *config = &chan->backend.config;
1471 unsigned long write_offset, cons_offset;
1472
1473 /*
1474 * No need to order commit_count, write_offset and cons_offset reads
1475 * because we execute at teardown when no more writer nor reader
1476 * references are left.
1477 */
1478 write_offset = v_read(config, &buf->offset);
1479 cons_offset = atomic_long_read(&buf->consumed);
1480 if (write_offset != cons_offset)
1481 printk(KERN_DEBUG
1482 "ring buffer %s, cpu %d: "
1483 "non-consumed data\n"
1484 " [ %lu bytes written, %lu bytes read ]\n",
1485 chan->backend.name, cpu, write_offset, cons_offset);
1486
1487 for (cons_offset = atomic_long_read(&buf->consumed);
1488 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1489 chan)
1490 - cons_offset) > 0;
1491 cons_offset = subbuf_align(cons_offset, chan))
1492 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1493 cpu);
1494 }
1495
1496 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
1497 static
1498 void lib_ring_buffer_print_records_count(struct channel *chan,
1499 struct lib_ring_buffer *buf,
1500 int cpu)
1501 {
1502 const struct lib_ring_buffer_config *config = &chan->backend.config;
1503
1504 if (!strcmp(chan->backend.name, "relay-metadata")) {
1505 printk(KERN_DEBUG "ring buffer %s: %lu records written, "
1506 "%lu records overrun\n",
1507 chan->backend.name,
1508 v_read(config, &buf->records_count),
1509 v_read(config, &buf->records_overrun));
1510 } else {
1511 printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1512 "%lu records overrun\n",
1513 chan->backend.name, cpu,
1514 v_read(config, &buf->records_count),
1515 v_read(config, &buf->records_overrun));
1516 }
1517 }
1518 #else
1519 static
1520 void lib_ring_buffer_print_records_count(struct channel *chan,
1521 struct lib_ring_buffer *buf,
1522 int cpu)
1523 {
1524 }
1525 #endif
1526
1527 static
1528 void lib_ring_buffer_print_errors(struct channel *chan,
1529 struct lib_ring_buffer *buf, int cpu)
1530 {
1531 const struct lib_ring_buffer_config *config = &chan->backend.config;
1532 void *priv = chan->backend.priv;
1533
1534 lib_ring_buffer_print_records_count(chan, buf, cpu);
1535 if (strcmp(chan->backend.name, "relay-metadata")) {
1536 if (v_read(config, &buf->records_lost_full)
1537 || v_read(config, &buf->records_lost_wrap)
1538 || v_read(config, &buf->records_lost_big))
1539 printk(KERN_WARNING
1540 "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1541 " [ %lu buffer full, %lu nest buffer wrap-around, "
1542 "%lu event too big ]\n",
1543 chan->backend.name, cpu,
1544 v_read(config, &buf->records_lost_full),
1545 v_read(config, &buf->records_lost_wrap),
1546 v_read(config, &buf->records_lost_big));
1547 }
1548 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1549 }
1550
1551 /*
1552 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1553 *
1554 * Only executed when the buffer is finalized, in SWITCH_FLUSH.
1555 */
1556 static
1557 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1558 struct channel *chan,
1559 struct switch_offsets *offsets,
1560 u64 tsc)
1561 {
1562 const struct lib_ring_buffer_config *config = &chan->backend.config;
1563 unsigned long oldidx = subbuf_index(offsets->old, chan);
1564 unsigned long commit_count;
1565 struct commit_counters_hot *cc_hot;
1566
1567 config->cb.buffer_begin(buf, tsc, oldidx);
1568
1569 /*
1570 * Order all writes to buffer before the commit count update that will
1571 * determine that the subbuffer is full.
1572 */
1573 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1574 /*
1575 * Must write slot data before incrementing commit count. This
1576 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1577 * by get_subbuf().
1578 */
1579 barrier();
1580 } else
1581 smp_wmb();
1582 cc_hot = &buf->commit_hot[oldidx];
1583 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1584 commit_count = v_read(config, &cc_hot->cc);
1585 /* Check if the written buffer has to be delivered */
1586 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1587 commit_count, oldidx, tsc);
1588 lib_ring_buffer_write_commit_counter(config, buf, chan,
1589 offsets->old + config->cb.subbuffer_header_size(),
1590 commit_count, cc_hot);
1591 }
1592
1593 /*
1594 * lib_ring_buffer_switch_old_end: switch old subbuffer
1595 *
1596 * Note : offset_old should never be 0 here. It is ok, because we never perform
1597 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1598 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1599 * subbuffer.
1600 */
1601 static
1602 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1603 struct channel *chan,
1604 struct switch_offsets *offsets,
1605 u64 tsc)
1606 {
1607 const struct lib_ring_buffer_config *config = &chan->backend.config;
1608 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1609 unsigned long commit_count, padding_size, data_size;
1610 struct commit_counters_hot *cc_hot;
1611 u64 *ts_end;
1612
1613 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1614 padding_size = chan->backend.subbuf_size - data_size;
1615 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1616
1617 ts_end = &buf->ts_end[oldidx];
1618 /*
1619 * This is the last space reservation in that sub-buffer before
1620 * it gets delivered. This provides exclusive access to write to
1621 * this sub-buffer's ts_end. There are also no concurrent
1622 * readers of that ts_end because delivery of that sub-buffer is
1623 * postponed until the commit counter is incremented for the
1624 * current space reservation.
1625 */
1626 *ts_end = tsc;
1627
1628 /*
1629 * Order all writes to buffer and store to ts_end before the commit
1630 * count update that will determine that the subbuffer is full.
1631 */
1632 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1633 /*
1634 * Must write slot data before incrementing commit count. This
1635 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1636 * by get_subbuf().
1637 */
1638 barrier();
1639 } else
1640 smp_wmb();
1641 cc_hot = &buf->commit_hot[oldidx];
1642 v_add(config, padding_size, &cc_hot->cc);
1643 commit_count = v_read(config, &cc_hot->cc);
1644 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1645 commit_count, oldidx, tsc);
1646 lib_ring_buffer_write_commit_counter(config, buf, chan,
1647 offsets->old + padding_size, commit_count,
1648 cc_hot);
1649 }
1650
1651 /*
1652 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1653 *
1654 * This code can be executed unordered : writers may already have written to the
1655 * sub-buffer before this code gets executed, caution. The commit makes sure
1656 * that this code is executed before the deliver of this sub-buffer.
1657 */
1658 static
1659 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1660 struct channel *chan,
1661 struct switch_offsets *offsets,
1662 u64 tsc)
1663 {
1664 const struct lib_ring_buffer_config *config = &chan->backend.config;
1665 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1666 unsigned long commit_count;
1667 struct commit_counters_hot *cc_hot;
1668
1669 config->cb.buffer_begin(buf, tsc, beginidx);
1670
1671 /*
1672 * Order all writes to buffer before the commit count update that will
1673 * determine that the subbuffer is full.
1674 */
1675 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1676 /*
1677 * Must write slot data before incrementing commit count. This
1678 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1679 * by get_subbuf().
1680 */
1681 barrier();
1682 } else
1683 smp_wmb();
1684 cc_hot = &buf->commit_hot[beginidx];
1685 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1686 commit_count = v_read(config, &cc_hot->cc);
1687 /* Check if the written buffer has to be delivered */
1688 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1689 commit_count, beginidx, tsc);
1690 lib_ring_buffer_write_commit_counter(config, buf, chan,
1691 offsets->begin + config->cb.subbuffer_header_size(),
1692 commit_count, cc_hot);
1693 }
1694
1695 /*
1696 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1697 *
1698 * Calls subbuffer_set_data_size() to set the data size of the current
1699 * sub-buffer. We do not need to perform check_deliver nor commit here,
1700 * since this task will be done by the "commit" of the event for which
1701 * we are currently doing the space reservation.
1702 */
1703 static
1704 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1705 struct channel *chan,
1706 struct switch_offsets *offsets,
1707 u64 tsc)
1708 {
1709 const struct lib_ring_buffer_config *config = &chan->backend.config;
1710 unsigned long endidx, data_size;
1711 u64 *ts_end;
1712
1713 endidx = subbuf_index(offsets->end - 1, chan);
1714 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1715 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1716 ts_end = &buf->ts_end[endidx];
1717 /*
1718 * This is the last space reservation in that sub-buffer before
1719 * it gets delivered. This provides exclusive access to write to
1720 * this sub-buffer's ts_end. There are also no concurrent
1721 * readers of that ts_end because delivery of that sub-buffer is
1722 * postponed until the commit counter is incremented for the
1723 * current space reservation.
1724 */
1725 *ts_end = tsc;
1726 }
1727
1728 /*
1729 * Returns :
1730 * 0 if ok
1731 * !0 if execution must be aborted.
1732 */
1733 static
1734 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1735 struct lib_ring_buffer *buf,
1736 struct channel *chan,
1737 struct switch_offsets *offsets,
1738 u64 *tsc)
1739 {
1740 const struct lib_ring_buffer_config *config = &chan->backend.config;
1741 unsigned long off, reserve_commit_diff;
1742
1743 offsets->begin = v_read(config, &buf->offset);
1744 offsets->old = offsets->begin;
1745 offsets->switch_old_start = 0;
1746 off = subbuf_offset(offsets->begin, chan);
1747
1748 *tsc = config->cb.ring_buffer_clock_read(chan);
1749
1750 /*
1751 * Ensure we flush the header of an empty subbuffer when doing the
1752 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1753 * total data gathering duration even if there were no records saved
1754 * after the last buffer switch.
1755 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1756 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1757 * subbuffer header as appropriate.
1758 * The next record that reserves space will be responsible for
1759 * populating the following subbuffer header. We choose not to populate
1760 * the next subbuffer header here because we want to be able to use
1761 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1762 * buffer flush, which must guarantee that all the buffer content
1763 * (records and header timestamps) are visible to the reader. This is
1764 * required for quiescence guarantees for the fusion merge.
1765 */
1766 if (mode != SWITCH_FLUSH && !off)
1767 return -1; /* we do not have to switch : buffer is empty */
1768
1769 if (unlikely(off == 0)) {
1770 unsigned long sb_index, commit_count;
1771
1772 /*
1773 * We are performing a SWITCH_FLUSH. At this stage, there are no
1774 * concurrent writes into the buffer.
1775 *
1776 * The client does not save any header information. Don't
1777 * switch empty subbuffer on finalize, because it is invalid to
1778 * deliver a completely empty subbuffer.
1779 */
1780 if (!config->cb.subbuffer_header_size())
1781 return -1;
1782
1783 /* Test new buffer integrity */
1784 sb_index = subbuf_index(offsets->begin, chan);
1785 commit_count = v_read(config,
1786 &buf->commit_cold[sb_index].cc_sb);
1787 reserve_commit_diff =
1788 (buf_trunc(offsets->begin, chan)
1789 >> chan->backend.num_subbuf_order)
1790 - (commit_count & chan->commit_count_mask);
1791 if (likely(reserve_commit_diff == 0)) {
1792 /* Next subbuffer not being written to. */
1793 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1794 subbuf_trunc(offsets->begin, chan)
1795 - subbuf_trunc((unsigned long)
1796 atomic_long_read(&buf->consumed), chan)
1797 >= chan->backend.buf_size)) {
1798 /*
1799 * We do not overwrite non consumed buffers
1800 * and we are full : don't switch.
1801 */
1802 return -1;
1803 } else {
1804 /*
1805 * Next subbuffer not being written to, and we
1806 * are either in overwrite mode or the buffer is
1807 * not full. It's safe to write in this new
1808 * subbuffer.
1809 */
1810 }
1811 } else {
1812 /*
1813 * Next subbuffer reserve offset does not match the
1814 * commit offset. Don't perform switch in
1815 * producer-consumer and overwrite mode. Caused by
1816 * either a writer OOPS or too many nested writes over a
1817 * reserve/commit pair.
1818 */
1819 return -1;
1820 }
1821
1822 /*
1823 * Need to write the subbuffer start header on finalize.
1824 */
1825 offsets->switch_old_start = 1;
1826 }
1827 offsets->begin = subbuf_align(offsets->begin, chan);
1828 /* Note: old points to the next subbuf at offset 0 */
1829 offsets->end = offsets->begin;
1830 return 0;
1831 }
1832
1833 /*
1834 * Force a sub-buffer switch. This operation is completely reentrant : can be
1835 * called while tracing is active with absolutely no lock held.
1836 *
1837 * Note, however, that as a v_cmpxchg is used for some atomic
1838 * operations, this function must be called from the CPU which owns the buffer
1839 * for a ACTIVE flush.
1840 */
1841 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1842 {
1843 struct channel *chan = buf->backend.chan;
1844 const struct lib_ring_buffer_config *config = &chan->backend.config;
1845 struct switch_offsets offsets;
1846 unsigned long oldidx;
1847 u64 tsc;
1848
1849 offsets.size = 0;
1850
1851 /*
1852 * Perform retryable operations.
1853 */
1854 do {
1855 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1856 &tsc))
1857 return; /* Switch not needed */
1858 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1859 != offsets.old);
1860
1861 /*
1862 * Atomically update last_tsc. This update races against concurrent
1863 * atomic updates, but the race will always cause supplementary full TSC
1864 * records, never the opposite (missing a full TSC record when it would
1865 * be needed).
1866 */
1867 save_last_tsc(config, buf, tsc);
1868
1869 /*
1870 * Push the reader if necessary
1871 */
1872 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1873
1874 oldidx = subbuf_index(offsets.old, chan);
1875 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1876
1877 /*
1878 * May need to populate header start on SWITCH_FLUSH.
1879 */
1880 if (offsets.switch_old_start) {
1881 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1882 offsets.old += config->cb.subbuffer_header_size();
1883 }
1884
1885 /*
1886 * Switch old subbuffer.
1887 */
1888 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1889 }
1890 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1891
1892 struct switch_param {
1893 struct lib_ring_buffer *buf;
1894 enum switch_mode mode;
1895 };
1896
1897 static void remote_switch(void *info)
1898 {
1899 struct switch_param *param = info;
1900 struct lib_ring_buffer *buf = param->buf;
1901
1902 lib_ring_buffer_switch_slow(buf, param->mode);
1903 }
1904
1905 static void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
1906 enum switch_mode mode)
1907 {
1908 struct channel *chan = buf->backend.chan;
1909 const struct lib_ring_buffer_config *config = &chan->backend.config;
1910 int ret;
1911 struct switch_param param;
1912
1913 /*
1914 * With global synchronization we don't need to use the IPI scheme.
1915 */
1916 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1917 lib_ring_buffer_switch_slow(buf, mode);
1918 return;
1919 }
1920
1921 /*
1922 * Disabling preemption ensures two things: first, that the
1923 * target cpu is not taken concurrently offline while we are within
1924 * smp_call_function_single(). Secondly, if it happens that the
1925 * CPU is not online, our own call to lib_ring_buffer_switch_slow()
1926 * needs to be protected from CPU hotplug handlers, which can
1927 * also perform a remote subbuffer switch.
1928 */
1929 preempt_disable();
1930 param.buf = buf;
1931 param.mode = mode;
1932 ret = smp_call_function_single(buf->backend.cpu,
1933 remote_switch, &param, 1);
1934 if (ret) {
1935 /* Remote CPU is offline, do it ourself. */
1936 lib_ring_buffer_switch_slow(buf, mode);
1937 }
1938 preempt_enable();
1939 }
1940
1941 /* Switch sub-buffer if current sub-buffer is non-empty. */
1942 void lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf)
1943 {
1944 _lib_ring_buffer_switch_remote(buf, SWITCH_ACTIVE);
1945 }
1946 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1947
1948 /* Switch sub-buffer even if current sub-buffer is empty. */
1949 void lib_ring_buffer_switch_remote_empty(struct lib_ring_buffer *buf)
1950 {
1951 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
1952 }
1953 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote_empty);
1954
1955 void lib_ring_buffer_clear(struct lib_ring_buffer *buf)
1956 {
1957 struct lib_ring_buffer_backend *bufb = &buf->backend;
1958 struct channel *chan = bufb->chan;
1959
1960 lib_ring_buffer_switch_remote(buf);
1961 lib_ring_buffer_clear_reader(buf, chan);
1962 }
1963 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear);
1964
1965 /*
1966 * Returns :
1967 * 0 if ok
1968 * -ENOSPC if event size is too large for packet.
1969 * -ENOBUFS if there is currently not enough space in buffer for the event.
1970 * -EIO if data cannot be written into the buffer for any other reason.
1971 */
1972 static
1973 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1974 struct channel *chan,
1975 struct switch_offsets *offsets,
1976 struct lib_ring_buffer_ctx *ctx,
1977 void *client_ctx)
1978 {
1979 const struct lib_ring_buffer_config *config = &chan->backend.config;
1980 unsigned long reserve_commit_diff, offset_cmp;
1981
1982 retry:
1983 offsets->begin = offset_cmp = v_read(config, &buf->offset);
1984 offsets->old = offsets->begin;
1985 offsets->switch_new_start = 0;
1986 offsets->switch_new_end = 0;
1987 offsets->switch_old_end = 0;
1988 offsets->pre_header_padding = 0;
1989
1990 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1991 if ((int64_t) ctx->tsc == -EIO)
1992 return -EIO;
1993
1994 if (last_tsc_overflow(config, buf, ctx->tsc))
1995 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
1996
1997 if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
1998 offsets->switch_new_start = 1; /* For offsets->begin */
1999 } else {
2000 offsets->size = config->cb.record_header_size(config, chan,
2001 offsets->begin,
2002 &offsets->pre_header_padding,
2003 ctx, client_ctx);
2004 offsets->size +=
2005 lib_ring_buffer_align(offsets->begin + offsets->size,
2006 ctx->largest_align)
2007 + ctx->data_size;
2008 if (unlikely(subbuf_offset(offsets->begin, chan) +
2009 offsets->size > chan->backend.subbuf_size)) {
2010 offsets->switch_old_end = 1; /* For offsets->old */
2011 offsets->switch_new_start = 1; /* For offsets->begin */
2012 }
2013 }
2014 if (unlikely(offsets->switch_new_start)) {
2015 unsigned long sb_index, commit_count;
2016
2017 /*
2018 * We are typically not filling the previous buffer completely.
2019 */
2020 if (likely(offsets->switch_old_end))
2021 offsets->begin = subbuf_align(offsets->begin, chan);
2022 offsets->begin = offsets->begin
2023 + config->cb.subbuffer_header_size();
2024 /* Test new buffer integrity */
2025 sb_index = subbuf_index(offsets->begin, chan);
2026 /*
2027 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
2028 * lib_ring_buffer_check_deliver() has the matching
2029 * memory barriers required around commit_cold cc_sb
2030 * updates to ensure reserve and commit counter updates
2031 * are not seen reordered when updated by another CPU.
2032 */
2033 smp_rmb();
2034 commit_count = v_read(config,
2035 &buf->commit_cold[sb_index].cc_sb);
2036 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
2037 smp_rmb();
2038 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
2039 /*
2040 * The reserve counter have been concurrently updated
2041 * while we read the commit counter. This means the
2042 * commit counter we read might not match buf->offset
2043 * due to concurrent update. We therefore need to retry.
2044 */
2045 goto retry;
2046 }
2047 reserve_commit_diff =
2048 (buf_trunc(offsets->begin, chan)
2049 >> chan->backend.num_subbuf_order)
2050 - (commit_count & chan->commit_count_mask);
2051 if (likely(reserve_commit_diff == 0)) {
2052 /* Next subbuffer not being written to. */
2053 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
2054 subbuf_trunc(offsets->begin, chan)
2055 - subbuf_trunc((unsigned long)
2056 atomic_long_read(&buf->consumed), chan)
2057 >= chan->backend.buf_size)) {
2058 /*
2059 * We do not overwrite non consumed buffers
2060 * and we are full : record is lost.
2061 */
2062 v_inc(config, &buf->records_lost_full);
2063 return -ENOBUFS;
2064 } else {
2065 /*
2066 * Next subbuffer not being written to, and we
2067 * are either in overwrite mode or the buffer is
2068 * not full. It's safe to write in this new
2069 * subbuffer.
2070 */
2071 }
2072 } else {
2073 /*
2074 * Next subbuffer reserve offset does not match the
2075 * commit offset, and this did not involve update to the
2076 * reserve counter. Drop record in producer-consumer and
2077 * overwrite mode. Caused by either a writer OOPS or
2078 * too many nested writes over a reserve/commit pair.
2079 */
2080 v_inc(config, &buf->records_lost_wrap);
2081 return -EIO;
2082 }
2083 offsets->size =
2084 config->cb.record_header_size(config, chan,
2085 offsets->begin,
2086 &offsets->pre_header_padding,
2087 ctx, client_ctx);
2088 offsets->size +=
2089 lib_ring_buffer_align(offsets->begin + offsets->size,
2090 ctx->largest_align)
2091 + ctx->data_size;
2092 if (unlikely(subbuf_offset(offsets->begin, chan)
2093 + offsets->size > chan->backend.subbuf_size)) {
2094 /*
2095 * Record too big for subbuffers, report error, don't
2096 * complete the sub-buffer switch.
2097 */
2098 v_inc(config, &buf->records_lost_big);
2099 return -ENOSPC;
2100 } else {
2101 /*
2102 * We just made a successful buffer switch and the
2103 * record fits in the new subbuffer. Let's write.
2104 */
2105 }
2106 } else {
2107 /*
2108 * Record fits in the current buffer and we are not on a switch
2109 * boundary. It's safe to write.
2110 */
2111 }
2112 offsets->end = offsets->begin + offsets->size;
2113
2114 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
2115 /*
2116 * The offset_end will fall at the very beginning of the next
2117 * subbuffer.
2118 */
2119 offsets->switch_new_end = 1; /* For offsets->begin */
2120 }
2121 return 0;
2122 }
2123
2124 static struct lib_ring_buffer *get_current_buf(struct channel *chan, int cpu)
2125 {
2126 const struct lib_ring_buffer_config *config = &chan->backend.config;
2127
2128 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
2129 return per_cpu_ptr(chan->backend.buf, cpu);
2130 else
2131 return chan->backend.buf;
2132 }
2133
2134 void lib_ring_buffer_lost_event_too_big(struct channel *chan)
2135 {
2136 const struct lib_ring_buffer_config *config = &chan->backend.config;
2137 struct lib_ring_buffer *buf = get_current_buf(chan, smp_processor_id());
2138
2139 v_inc(config, &buf->records_lost_big);
2140 }
2141 EXPORT_SYMBOL_GPL(lib_ring_buffer_lost_event_too_big);
2142
2143 /**
2144 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
2145 * @ctx: ring buffer context.
2146 *
2147 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
2148 * -EIO for other errors, else returns 0.
2149 * It will take care of sub-buffer switching.
2150 */
2151 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx,
2152 void *client_ctx)
2153 {
2154 struct channel *chan = ctx->chan;
2155 const struct lib_ring_buffer_config *config = &chan->backend.config;
2156 struct lib_ring_buffer *buf;
2157 struct switch_offsets offsets;
2158 int ret;
2159
2160 ctx->buf = buf = get_current_buf(chan, ctx->cpu);
2161 offsets.size = 0;
2162
2163 do {
2164 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
2165 ctx, client_ctx);
2166 if (unlikely(ret))
2167 return ret;
2168 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
2169 offsets.end)
2170 != offsets.old));
2171
2172 /*
2173 * Atomically update last_tsc. This update races against concurrent
2174 * atomic updates, but the race will always cause supplementary full TSC
2175 * records, never the opposite (missing a full TSC record when it would
2176 * be needed).
2177 */
2178 save_last_tsc(config, buf, ctx->tsc);
2179
2180 /*
2181 * Push the reader if necessary
2182 */
2183 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
2184
2185 /*
2186 * Clear noref flag for this subbuffer.
2187 */
2188 lib_ring_buffer_clear_noref(config, &buf->backend,
2189 subbuf_index(offsets.end - 1, chan));
2190
2191 /*
2192 * Switch old subbuffer if needed.
2193 */
2194 if (unlikely(offsets.switch_old_end)) {
2195 lib_ring_buffer_clear_noref(config, &buf->backend,
2196 subbuf_index(offsets.old - 1, chan));
2197 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
2198 }
2199
2200 /*
2201 * Populate new subbuffer.
2202 */
2203 if (unlikely(offsets.switch_new_start))
2204 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
2205
2206 if (unlikely(offsets.switch_new_end))
2207 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
2208
2209 ctx->slot_size = offsets.size;
2210 ctx->pre_offset = offsets.begin;
2211 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
2212 return 0;
2213 }
2214 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
2215
2216 static
2217 void lib_ring_buffer_vmcore_check_deliver(const struct lib_ring_buffer_config *config,
2218 struct lib_ring_buffer *buf,
2219 unsigned long commit_count,
2220 unsigned long idx)
2221 {
2222 if (config->oops == RING_BUFFER_OOPS_CONSISTENCY)
2223 v_set(config, &buf->commit_hot[idx].seq, commit_count);
2224 }
2225
2226 /*
2227 * The ring buffer can count events recorded and overwritten per buffer,
2228 * but it is disabled by default due to its performance overhead.
2229 */
2230 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
2231 static
2232 void deliver_count_events(const struct lib_ring_buffer_config *config,
2233 struct lib_ring_buffer *buf,
2234 unsigned long idx)
2235 {
2236 v_add(config, subbuffer_get_records_count(config,
2237 &buf->backend, idx),
2238 &buf->records_count);
2239 v_add(config, subbuffer_count_records_overrun(config,
2240 &buf->backend, idx),
2241 &buf->records_overrun);
2242 }
2243 #else /* LTTNG_RING_BUFFER_COUNT_EVENTS */
2244 static
2245 void deliver_count_events(const struct lib_ring_buffer_config *config,
2246 struct lib_ring_buffer *buf,
2247 unsigned long idx)
2248 {
2249 }
2250 #endif /* #else LTTNG_RING_BUFFER_COUNT_EVENTS */
2251
2252
2253 void lib_ring_buffer_check_deliver_slow(const struct lib_ring_buffer_config *config,
2254 struct lib_ring_buffer *buf,
2255 struct channel *chan,
2256 unsigned long offset,
2257 unsigned long commit_count,
2258 unsigned long idx,
2259 u64 tsc)
2260 {
2261 unsigned long old_commit_count = commit_count
2262 - chan->backend.subbuf_size;
2263
2264 /*
2265 * If we succeeded at updating cc_sb below, we are the subbuffer
2266 * writer delivering the subbuffer. Deals with concurrent
2267 * updates of the "cc" value without adding a add_return atomic
2268 * operation to the fast path.
2269 *
2270 * We are doing the delivery in two steps:
2271 * - First, we cmpxchg() cc_sb to the new value
2272 * old_commit_count + 1. This ensures that we are the only
2273 * subbuffer user successfully filling the subbuffer, but we
2274 * do _not_ set the cc_sb value to "commit_count" yet.
2275 * Therefore, other writers that would wrap around the ring
2276 * buffer and try to start writing to our subbuffer would
2277 * have to drop records, because it would appear as
2278 * non-filled.
2279 * We therefore have exclusive access to the subbuffer control
2280 * structures. This mutual exclusion with other writers is
2281 * crucially important to perform record overruns count in
2282 * flight recorder mode locklessly.
2283 * - When we are ready to release the subbuffer (either for
2284 * reading or for overrun by other writers), we simply set the
2285 * cc_sb value to "commit_count" and perform delivery.
2286 *
2287 * The subbuffer size is least 2 bytes (minimum size: 1 page).
2288 * This guarantees that old_commit_count + 1 != commit_count.
2289 */
2290
2291 /*
2292 * Order prior updates to reserve count prior to the
2293 * commit_cold cc_sb update.
2294 */
2295 smp_wmb();
2296 if (likely(v_cmpxchg(config, &buf->commit_cold[idx].cc_sb,
2297 old_commit_count, old_commit_count + 1)
2298 == old_commit_count)) {
2299 u64 *ts_end;
2300
2301 /*
2302 * Start of exclusive subbuffer access. We are
2303 * guaranteed to be the last writer in this subbuffer
2304 * and any other writer trying to access this subbuffer
2305 * in this state is required to drop records.
2306 *
2307 * We can read the ts_end for the current sub-buffer
2308 * which has been saved by the very last space
2309 * reservation for the current sub-buffer.
2310 *
2311 * Order increment of commit counter before reading ts_end.
2312 */
2313 smp_mb();
2314 ts_end = &buf->ts_end[idx];
2315 deliver_count_events(config, buf, idx);
2316 config->cb.buffer_end(buf, *ts_end, idx,
2317 lib_ring_buffer_get_data_size(config,
2318 buf,
2319 idx));
2320
2321 /*
2322 * Increment the packet counter while we have exclusive
2323 * access.
2324 */
2325 subbuffer_inc_packet_count(config, &buf->backend, idx);
2326
2327 /*
2328 * Set noref flag and offset for this subbuffer id.
2329 * Contains a memory barrier that ensures counter stores
2330 * are ordered before set noref and offset.
2331 */
2332 lib_ring_buffer_set_noref_offset(config, &buf->backend, idx,
2333 buf_trunc_val(offset, chan));
2334
2335 /*
2336 * Order set_noref and record counter updates before the
2337 * end of subbuffer exclusive access. Orders with
2338 * respect to writers coming into the subbuffer after
2339 * wrap around, and also order wrt concurrent readers.
2340 */
2341 smp_mb();
2342 /* End of exclusive subbuffer access */
2343 v_set(config, &buf->commit_cold[idx].cc_sb,
2344 commit_count);
2345 /*
2346 * Order later updates to reserve count after
2347 * the commit_cold cc_sb update.
2348 */
2349 smp_wmb();
2350 lib_ring_buffer_vmcore_check_deliver(config, buf,
2351 commit_count, idx);
2352
2353 /*
2354 * RING_BUFFER_WAKEUP_BY_WRITER wakeup is not lock-free.
2355 */
2356 if (config->wakeup == RING_BUFFER_WAKEUP_BY_WRITER
2357 && atomic_long_read(&buf->active_readers)
2358 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
2359 wake_up_interruptible(&buf->read_wait);
2360 wake_up_interruptible(&chan->read_wait);
2361 }
2362
2363 }
2364 }
2365 EXPORT_SYMBOL_GPL(lib_ring_buffer_check_deliver_slow);
2366
2367 int __init init_lib_ring_buffer_frontend(void)
2368 {
2369 int cpu;
2370
2371 for_each_possible_cpu(cpu)
2372 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
2373 return 0;
2374 }
2375
2376 module_init(init_lib_ring_buffer_frontend);
2377
2378 void __exit exit_lib_ring_buffer_frontend(void)
2379 {
2380 }
2381
2382 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.0827 seconds and 3 git commands to generate.