60725f18e2dbd5c174ca86429dea10f7c138143d
[lttng-modules.git] / lib / ringbuffer / ring_buffer_frontend.c
1 /*
2 * ring_buffer_frontend.c
3 *
4 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; only
9 * version 2.1 of the License.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *
21 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
22 * recorder (overwrite) modes. See thesis:
23 *
24 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
25 * dissertation, Ecole Polytechnique de Montreal.
26 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
27 *
28 * - Algorithm presentation in Chapter 5:
29 * "Lockless Multi-Core High-Throughput Buffering".
30 * - Algorithm formal verification in Section 8.6:
31 * "Formal verification of LTTng"
32 *
33 * Author:
34 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
35 *
36 * Inspired from LTT and RelayFS:
37 * Karim Yaghmour <karim@opersys.com>
38 * Tom Zanussi <zanussi@us.ibm.com>
39 * Bob Wisniewski <bob@watson.ibm.com>
40 * And from K42 :
41 * Bob Wisniewski <bob@watson.ibm.com>
42 *
43 * Buffer reader semantic :
44 *
45 * - get_subbuf_size
46 * while buffer is not finalized and empty
47 * - get_subbuf
48 * - if return value != 0, continue
49 * - splice one subbuffer worth of data to a pipe
50 * - splice the data from pipe to disk/network
51 * - put_subbuf
52 */
53
54 #include <linux/delay.h>
55 #include <linux/module.h>
56 #include <linux/percpu.h>
57 #include <asm/cacheflush.h>
58
59 #include <wrapper/ringbuffer/config.h>
60 #include <wrapper/ringbuffer/backend.h>
61 #include <wrapper/ringbuffer/frontend.h>
62 #include <wrapper/ringbuffer/iterator.h>
63 #include <wrapper/ringbuffer/nohz.h>
64 #include <wrapper/atomic.h>
65 #include <wrapper/kref.h>
66 #include <wrapper/percpu-defs.h>
67 #include <wrapper/timer.h>
68 #include <wrapper/vmalloc.h>
69
70 /*
71 * Internal structure representing offsets to use at a sub-buffer switch.
72 */
73 struct switch_offsets {
74 unsigned long begin, end, old;
75 size_t pre_header_padding, size;
76 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
77 switch_old_end:1;
78 };
79
80 #ifdef CONFIG_NO_HZ
81 enum tick_nohz_val {
82 TICK_NOHZ_STOP,
83 TICK_NOHZ_FLUSH,
84 TICK_NOHZ_RESTART,
85 };
86
87 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
88 #endif /* CONFIG_NO_HZ */
89
90 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
91
92 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
93 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
94
95 static
96 void lib_ring_buffer_print_errors(struct channel *chan,
97 struct lib_ring_buffer *buf, int cpu);
98 static
99 void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
100 enum switch_mode mode);
101
102 static
103 int lib_ring_buffer_poll_deliver(const struct lib_ring_buffer_config *config,
104 struct lib_ring_buffer *buf,
105 struct channel *chan)
106 {
107 unsigned long consumed_old, consumed_idx, commit_count, write_offset;
108
109 consumed_old = atomic_long_read(&buf->consumed);
110 consumed_idx = subbuf_index(consumed_old, chan);
111 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
112 /*
113 * No memory barrier here, since we are only interested
114 * in a statistically correct polling result. The next poll will
115 * get the data is we are racing. The mb() that ensures correct
116 * memory order is in get_subbuf.
117 */
118 write_offset = v_read(config, &buf->offset);
119
120 /*
121 * Check that the subbuffer we are trying to consume has been
122 * already fully committed.
123 */
124
125 if (((commit_count - chan->backend.subbuf_size)
126 & chan->commit_count_mask)
127 - (buf_trunc(consumed_old, chan)
128 >> chan->backend.num_subbuf_order)
129 != 0)
130 return 0;
131
132 /*
133 * Check that we are not about to read the same subbuffer in
134 * which the writer head is.
135 */
136 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_old, chan)
137 == 0)
138 return 0;
139
140 return 1;
141 }
142
143 /*
144 * Must be called under cpu hotplug protection.
145 */
146 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
147 {
148 struct channel *chan = buf->backend.chan;
149
150 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
151 lttng_kvfree(buf->commit_hot);
152 lttng_kvfree(buf->commit_cold);
153 lttng_kvfree(buf->ts_end);
154
155 lib_ring_buffer_backend_free(&buf->backend);
156 }
157
158 /**
159 * lib_ring_buffer_reset - Reset ring buffer to initial values.
160 * @buf: Ring buffer.
161 *
162 * Effectively empty the ring buffer. Should be called when the buffer is not
163 * used for writing. The ring buffer can be opened for reading, but the reader
164 * should not be using the iterator concurrently with reset. The previous
165 * current iterator record is reset.
166 */
167 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
168 {
169 struct channel *chan = buf->backend.chan;
170 const struct lib_ring_buffer_config *config = &chan->backend.config;
171 unsigned int i;
172
173 /*
174 * Reset iterator first. It will put the subbuffer if it currently holds
175 * it.
176 */
177 lib_ring_buffer_iterator_reset(buf);
178 v_set(config, &buf->offset, 0);
179 for (i = 0; i < chan->backend.num_subbuf; i++) {
180 v_set(config, &buf->commit_hot[i].cc, 0);
181 v_set(config, &buf->commit_hot[i].seq, 0);
182 v_set(config, &buf->commit_cold[i].cc_sb, 0);
183 buf->ts_end[i] = 0;
184 }
185 atomic_long_set(&buf->consumed, 0);
186 atomic_set(&buf->record_disabled, 0);
187 v_set(config, &buf->last_tsc, 0);
188 lib_ring_buffer_backend_reset(&buf->backend);
189 /* Don't reset number of active readers */
190 v_set(config, &buf->records_lost_full, 0);
191 v_set(config, &buf->records_lost_wrap, 0);
192 v_set(config, &buf->records_lost_big, 0);
193 v_set(config, &buf->records_count, 0);
194 v_set(config, &buf->records_overrun, 0);
195 buf->finalized = 0;
196 }
197 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
198
199 /**
200 * channel_reset - Reset channel to initial values.
201 * @chan: Channel.
202 *
203 * Effectively empty the channel. Should be called when the channel is not used
204 * for writing. The channel can be opened for reading, but the reader should not
205 * be using the iterator concurrently with reset. The previous current iterator
206 * record is reset.
207 */
208 void channel_reset(struct channel *chan)
209 {
210 /*
211 * Reset iterators first. Will put the subbuffer if held for reading.
212 */
213 channel_iterator_reset(chan);
214 atomic_set(&chan->record_disabled, 0);
215 /* Don't reset commit_count_mask, still valid */
216 channel_backend_reset(&chan->backend);
217 /* Don't reset switch/read timer interval */
218 /* Don't reset notifiers and notifier enable bits */
219 /* Don't reset reader reference count */
220 }
221 EXPORT_SYMBOL_GPL(channel_reset);
222
223 /*
224 * Must be called under cpu hotplug protection.
225 */
226 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
227 struct channel_backend *chanb, int cpu)
228 {
229 const struct lib_ring_buffer_config *config = &chanb->config;
230 struct channel *chan = container_of(chanb, struct channel, backend);
231 void *priv = chanb->priv;
232 size_t subbuf_header_size;
233 u64 tsc;
234 int ret;
235
236 /* Test for cpu hotplug */
237 if (buf->backend.allocated)
238 return 0;
239
240 /*
241 * Paranoia: per cpu dynamic allocation is not officially documented as
242 * zeroing the memory, so let's do it here too, just in case.
243 */
244 memset(buf, 0, sizeof(*buf));
245
246 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
247 if (ret)
248 return ret;
249
250 buf->commit_hot =
251 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_hot)
252 * chan->backend.num_subbuf,
253 1 << INTERNODE_CACHE_SHIFT),
254 GFP_KERNEL | __GFP_NOWARN,
255 cpu_to_node(max(cpu, 0)));
256 if (!buf->commit_hot) {
257 ret = -ENOMEM;
258 goto free_chanbuf;
259 }
260
261 buf->commit_cold =
262 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_cold)
263 * chan->backend.num_subbuf,
264 1 << INTERNODE_CACHE_SHIFT),
265 GFP_KERNEL | __GFP_NOWARN,
266 cpu_to_node(max(cpu, 0)));
267 if (!buf->commit_cold) {
268 ret = -ENOMEM;
269 goto free_commit;
270 }
271
272 buf->ts_end =
273 lttng_kvzalloc_node(ALIGN(sizeof(*buf->ts_end)
274 * chan->backend.num_subbuf,
275 1 << INTERNODE_CACHE_SHIFT),
276 GFP_KERNEL | __GFP_NOWARN,
277 cpu_to_node(max(cpu, 0)));
278 if (!buf->ts_end) {
279 ret = -ENOMEM;
280 goto free_commit_cold;
281 }
282
283 init_waitqueue_head(&buf->read_wait);
284 init_waitqueue_head(&buf->write_wait);
285 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
286
287 /*
288 * Write the subbuffer header for first subbuffer so we know the total
289 * duration of data gathering.
290 */
291 subbuf_header_size = config->cb.subbuffer_header_size();
292 v_set(config, &buf->offset, subbuf_header_size);
293 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
294 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
295 config->cb.buffer_begin(buf, tsc, 0);
296 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
297
298 if (config->cb.buffer_create) {
299 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
300 if (ret)
301 goto free_init;
302 }
303
304 /*
305 * Ensure the buffer is ready before setting it to allocated and setting
306 * the cpumask.
307 * Used for cpu hotplug vs cpumask iteration.
308 */
309 smp_wmb();
310 buf->backend.allocated = 1;
311
312 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
313 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
314 chan->backend.cpumask));
315 cpumask_set_cpu(cpu, chan->backend.cpumask);
316 }
317
318 return 0;
319
320 /* Error handling */
321 free_init:
322 lttng_kvfree(buf->ts_end);
323 free_commit_cold:
324 lttng_kvfree(buf->commit_cold);
325 free_commit:
326 lttng_kvfree(buf->commit_hot);
327 free_chanbuf:
328 lib_ring_buffer_backend_free(&buf->backend);
329 return ret;
330 }
331
332 static void switch_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
333 {
334 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, switch_timer);
335 struct channel *chan = buf->backend.chan;
336 const struct lib_ring_buffer_config *config = &chan->backend.config;
337
338 /*
339 * Only flush buffers periodically if readers are active.
340 */
341 if (atomic_long_read(&buf->active_readers))
342 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
343
344 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
345 lttng_mod_timer_pinned(&buf->switch_timer,
346 jiffies + chan->switch_timer_interval);
347 else
348 mod_timer(&buf->switch_timer,
349 jiffies + chan->switch_timer_interval);
350 }
351
352 /*
353 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
354 */
355 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
356 {
357 struct channel *chan = buf->backend.chan;
358 const struct lib_ring_buffer_config *config = &chan->backend.config;
359 unsigned int flags = 0;
360
361 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
362 return;
363
364 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
365 flags = LTTNG_TIMER_PINNED;
366
367 lttng_timer_setup(&buf->switch_timer, switch_buffer_timer, flags, buf);
368 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
369
370 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
371 add_timer_on(&buf->switch_timer, buf->backend.cpu);
372 else
373 add_timer(&buf->switch_timer);
374
375 buf->switch_timer_enabled = 1;
376 }
377
378 /*
379 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
380 */
381 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
382 {
383 struct channel *chan = buf->backend.chan;
384
385 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
386 return;
387
388 del_timer_sync(&buf->switch_timer);
389 buf->switch_timer_enabled = 0;
390 }
391
392 /*
393 * Polling timer to check the channels for data.
394 */
395 static void read_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
396 {
397 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, read_timer);
398 struct channel *chan = buf->backend.chan;
399 const struct lib_ring_buffer_config *config = &chan->backend.config;
400
401 CHAN_WARN_ON(chan, !buf->backend.allocated);
402
403 if (atomic_long_read(&buf->active_readers)
404 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
405 wake_up_interruptible(&buf->read_wait);
406 wake_up_interruptible(&chan->read_wait);
407 }
408
409 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
410 lttng_mod_timer_pinned(&buf->read_timer,
411 jiffies + chan->read_timer_interval);
412 else
413 mod_timer(&buf->read_timer,
414 jiffies + chan->read_timer_interval);
415 }
416
417 /*
418 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
419 */
420 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
421 {
422 struct channel *chan = buf->backend.chan;
423 const struct lib_ring_buffer_config *config = &chan->backend.config;
424 unsigned int flags = 0;
425
426 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
427 || !chan->read_timer_interval
428 || buf->read_timer_enabled)
429 return;
430
431 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
432 flags = LTTNG_TIMER_PINNED;
433
434 lttng_timer_setup(&buf->read_timer, read_buffer_timer, flags, buf);
435 buf->read_timer.expires = jiffies + chan->read_timer_interval;
436
437 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
438 add_timer_on(&buf->read_timer, buf->backend.cpu);
439 else
440 add_timer(&buf->read_timer);
441
442 buf->read_timer_enabled = 1;
443 }
444
445 /*
446 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
447 */
448 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
449 {
450 struct channel *chan = buf->backend.chan;
451 const struct lib_ring_buffer_config *config = &chan->backend.config;
452
453 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
454 || !chan->read_timer_interval
455 || !buf->read_timer_enabled)
456 return;
457
458 del_timer_sync(&buf->read_timer);
459 /*
460 * do one more check to catch data that has been written in the last
461 * timer period.
462 */
463 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
464 wake_up_interruptible(&buf->read_wait);
465 wake_up_interruptible(&chan->read_wait);
466 }
467 buf->read_timer_enabled = 0;
468 }
469
470 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
471
472 enum cpuhp_state lttng_rb_hp_prepare;
473 enum cpuhp_state lttng_rb_hp_online;
474
475 void lttng_rb_set_hp_prepare(enum cpuhp_state val)
476 {
477 lttng_rb_hp_prepare = val;
478 }
479 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_prepare);
480
481 void lttng_rb_set_hp_online(enum cpuhp_state val)
482 {
483 lttng_rb_hp_online = val;
484 }
485 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_online);
486
487 int lttng_cpuhp_rb_frontend_dead(unsigned int cpu,
488 struct lttng_cpuhp_node *node)
489 {
490 struct channel *chan = container_of(node, struct channel,
491 cpuhp_prepare);
492 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
493 const struct lib_ring_buffer_config *config = &chan->backend.config;
494
495 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
496
497 /*
498 * Performing a buffer switch on a remote CPU. Performed by
499 * the CPU responsible for doing the hotunplug after the target
500 * CPU stopped running completely. Ensures that all data
501 * from that remote CPU is flushed.
502 */
503 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
504 return 0;
505 }
506 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_dead);
507
508 int lttng_cpuhp_rb_frontend_online(unsigned int cpu,
509 struct lttng_cpuhp_node *node)
510 {
511 struct channel *chan = container_of(node, struct channel,
512 cpuhp_online);
513 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
514 const struct lib_ring_buffer_config *config = &chan->backend.config;
515
516 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
517
518 wake_up_interruptible(&chan->hp_wait);
519 lib_ring_buffer_start_switch_timer(buf);
520 lib_ring_buffer_start_read_timer(buf);
521 return 0;
522 }
523 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_online);
524
525 int lttng_cpuhp_rb_frontend_offline(unsigned int cpu,
526 struct lttng_cpuhp_node *node)
527 {
528 struct channel *chan = container_of(node, struct channel,
529 cpuhp_online);
530 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
531 const struct lib_ring_buffer_config *config = &chan->backend.config;
532
533 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
534
535 lib_ring_buffer_stop_switch_timer(buf);
536 lib_ring_buffer_stop_read_timer(buf);
537 return 0;
538 }
539 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_offline);
540
541 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
542
543 #ifdef CONFIG_HOTPLUG_CPU
544
545 /**
546 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
547 * @nb: notifier block
548 * @action: hotplug action to take
549 * @hcpu: CPU number
550 *
551 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
552 */
553 static
554 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
555 unsigned long action,
556 void *hcpu)
557 {
558 unsigned int cpu = (unsigned long)hcpu;
559 struct channel *chan = container_of(nb, struct channel,
560 cpu_hp_notifier);
561 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
562 const struct lib_ring_buffer_config *config = &chan->backend.config;
563
564 if (!chan->cpu_hp_enable)
565 return NOTIFY_DONE;
566
567 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
568
569 switch (action) {
570 case CPU_DOWN_FAILED:
571 case CPU_DOWN_FAILED_FROZEN:
572 case CPU_ONLINE:
573 case CPU_ONLINE_FROZEN:
574 wake_up_interruptible(&chan->hp_wait);
575 lib_ring_buffer_start_switch_timer(buf);
576 lib_ring_buffer_start_read_timer(buf);
577 return NOTIFY_OK;
578
579 case CPU_DOWN_PREPARE:
580 case CPU_DOWN_PREPARE_FROZEN:
581 lib_ring_buffer_stop_switch_timer(buf);
582 lib_ring_buffer_stop_read_timer(buf);
583 return NOTIFY_OK;
584
585 case CPU_DEAD:
586 case CPU_DEAD_FROZEN:
587 /*
588 * Performing a buffer switch on a remote CPU. Performed by
589 * the CPU responsible for doing the hotunplug after the target
590 * CPU stopped running completely. Ensures that all data
591 * from that remote CPU is flushed.
592 */
593 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
594 return NOTIFY_OK;
595
596 default:
597 return NOTIFY_DONE;
598 }
599 }
600
601 #endif
602
603 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
604
605 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
606 /*
607 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
608 * that wake-up-tracing generated events are flushed before going idle (in
609 * tick_nohz). We test if the spinlock is locked to deal with the race where
610 * readers try to sample the ring buffer before we perform the switch. We let
611 * the readers retry in that case. If there is data in the buffer, the wake up
612 * is going to forbid the CPU running the reader thread from going idle.
613 */
614 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
615 unsigned long val,
616 void *data)
617 {
618 struct channel *chan = container_of(nb, struct channel,
619 tick_nohz_notifier);
620 const struct lib_ring_buffer_config *config = &chan->backend.config;
621 struct lib_ring_buffer *buf;
622 int cpu = smp_processor_id();
623
624 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
625 /*
626 * We don't support keeping the system idle with global buffers
627 * and streaming active. In order to do so, we would need to
628 * sample a non-nohz-cpumask racelessly with the nohz updates
629 * without adding synchronization overhead to nohz. Leave this
630 * use-case out for now.
631 */
632 return 0;
633 }
634
635 buf = channel_get_ring_buffer(config, chan, cpu);
636 switch (val) {
637 case TICK_NOHZ_FLUSH:
638 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
639 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
640 && chan->read_timer_interval
641 && atomic_long_read(&buf->active_readers)
642 && (lib_ring_buffer_poll_deliver(config, buf, chan)
643 || lib_ring_buffer_pending_data(config, buf, chan))) {
644 wake_up_interruptible(&buf->read_wait);
645 wake_up_interruptible(&chan->read_wait);
646 }
647 if (chan->switch_timer_interval)
648 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
649 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
650 break;
651 case TICK_NOHZ_STOP:
652 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
653 lib_ring_buffer_stop_switch_timer(buf);
654 lib_ring_buffer_stop_read_timer(buf);
655 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
656 break;
657 case TICK_NOHZ_RESTART:
658 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
659 lib_ring_buffer_start_read_timer(buf);
660 lib_ring_buffer_start_switch_timer(buf);
661 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
662 break;
663 }
664
665 return 0;
666 }
667
668 void notrace lib_ring_buffer_tick_nohz_flush(void)
669 {
670 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
671 NULL);
672 }
673
674 void notrace lib_ring_buffer_tick_nohz_stop(void)
675 {
676 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
677 NULL);
678 }
679
680 void notrace lib_ring_buffer_tick_nohz_restart(void)
681 {
682 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
683 NULL);
684 }
685 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
686
687 /*
688 * Holds CPU hotplug.
689 */
690 static void channel_unregister_notifiers(struct channel *chan)
691 {
692 const struct lib_ring_buffer_config *config = &chan->backend.config;
693
694 channel_iterator_unregister_notifiers(chan);
695 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
696 #ifdef CONFIG_NO_HZ
697 /*
698 * Remove the nohz notifier first, so we are certain we stop
699 * the timers.
700 */
701 atomic_notifier_chain_unregister(&tick_nohz_notifier,
702 &chan->tick_nohz_notifier);
703 /*
704 * ring_buffer_nohz_lock will not be needed below, because
705 * we just removed the notifiers, which were the only source of
706 * concurrency.
707 */
708 #endif /* CONFIG_NO_HZ */
709 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
710 {
711 int ret;
712
713 ret = cpuhp_state_remove_instance(lttng_rb_hp_online,
714 &chan->cpuhp_online.node);
715 WARN_ON(ret);
716 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
717 &chan->cpuhp_prepare.node);
718 WARN_ON(ret);
719 }
720 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
721 {
722 int cpu;
723
724 #ifdef CONFIG_HOTPLUG_CPU
725 get_online_cpus();
726 chan->cpu_hp_enable = 0;
727 for_each_online_cpu(cpu) {
728 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
729 cpu);
730 lib_ring_buffer_stop_switch_timer(buf);
731 lib_ring_buffer_stop_read_timer(buf);
732 }
733 put_online_cpus();
734 unregister_cpu_notifier(&chan->cpu_hp_notifier);
735 #else
736 for_each_possible_cpu(cpu) {
737 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
738 cpu);
739 lib_ring_buffer_stop_switch_timer(buf);
740 lib_ring_buffer_stop_read_timer(buf);
741 }
742 #endif
743 }
744 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
745 } else {
746 struct lib_ring_buffer *buf = chan->backend.buf;
747
748 lib_ring_buffer_stop_switch_timer(buf);
749 lib_ring_buffer_stop_read_timer(buf);
750 }
751 channel_backend_unregister_notifiers(&chan->backend);
752 }
753
754 static void lib_ring_buffer_set_quiescent(struct lib_ring_buffer *buf)
755 {
756 if (!buf->quiescent) {
757 buf->quiescent = true;
758 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
759 }
760 }
761
762 static void lib_ring_buffer_clear_quiescent(struct lib_ring_buffer *buf)
763 {
764 buf->quiescent = false;
765 }
766
767 void lib_ring_buffer_set_quiescent_channel(struct channel *chan)
768 {
769 int cpu;
770 const struct lib_ring_buffer_config *config = &chan->backend.config;
771
772 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
773 get_online_cpus();
774 for_each_channel_cpu(cpu, chan) {
775 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
776 cpu);
777
778 lib_ring_buffer_set_quiescent(buf);
779 }
780 put_online_cpus();
781 } else {
782 struct lib_ring_buffer *buf = chan->backend.buf;
783
784 lib_ring_buffer_set_quiescent(buf);
785 }
786 }
787 EXPORT_SYMBOL_GPL(lib_ring_buffer_set_quiescent_channel);
788
789 void lib_ring_buffer_clear_quiescent_channel(struct channel *chan)
790 {
791 int cpu;
792 const struct lib_ring_buffer_config *config = &chan->backend.config;
793
794 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
795 get_online_cpus();
796 for_each_channel_cpu(cpu, chan) {
797 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
798 cpu);
799
800 lib_ring_buffer_clear_quiescent(buf);
801 }
802 put_online_cpus();
803 } else {
804 struct lib_ring_buffer *buf = chan->backend.buf;
805
806 lib_ring_buffer_clear_quiescent(buf);
807 }
808 }
809 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear_quiescent_channel);
810
811 static void channel_free(struct channel *chan)
812 {
813 if (chan->backend.release_priv_ops) {
814 chan->backend.release_priv_ops(chan->backend.priv_ops);
815 }
816 channel_iterator_free(chan);
817 channel_backend_free(&chan->backend);
818 kfree(chan);
819 }
820
821 /**
822 * channel_create - Create channel.
823 * @config: ring buffer instance configuration
824 * @name: name of the channel
825 * @priv: ring buffer client private data
826 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
827 * address mapping. It is used only by RING_BUFFER_STATIC
828 * configuration. It can be set to NULL for other backends.
829 * @subbuf_size: subbuffer size
830 * @num_subbuf: number of subbuffers
831 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
832 * padding to let readers get those sub-buffers.
833 * Used for live streaming.
834 * @read_timer_interval: Time interval (in us) to wake up pending readers.
835 *
836 * Holds cpu hotplug.
837 * Returns NULL on failure.
838 */
839 struct channel *channel_create(const struct lib_ring_buffer_config *config,
840 const char *name, void *priv, void *buf_addr,
841 size_t subbuf_size,
842 size_t num_subbuf, unsigned int switch_timer_interval,
843 unsigned int read_timer_interval)
844 {
845 int ret;
846 struct channel *chan;
847
848 if (lib_ring_buffer_check_config(config, switch_timer_interval,
849 read_timer_interval))
850 return NULL;
851
852 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
853 if (!chan)
854 return NULL;
855
856 ret = channel_backend_init(&chan->backend, name, config, priv,
857 subbuf_size, num_subbuf);
858 if (ret)
859 goto error;
860
861 ret = channel_iterator_init(chan);
862 if (ret)
863 goto error_free_backend;
864
865 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
866 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
867 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
868 kref_init(&chan->ref);
869 init_waitqueue_head(&chan->read_wait);
870 init_waitqueue_head(&chan->hp_wait);
871
872 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
873 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
874 chan->cpuhp_prepare.component = LTTNG_RING_BUFFER_FRONTEND;
875 ret = cpuhp_state_add_instance_nocalls(lttng_rb_hp_prepare,
876 &chan->cpuhp_prepare.node);
877 if (ret)
878 goto cpuhp_prepare_error;
879
880 chan->cpuhp_online.component = LTTNG_RING_BUFFER_FRONTEND;
881 ret = cpuhp_state_add_instance(lttng_rb_hp_online,
882 &chan->cpuhp_online.node);
883 if (ret)
884 goto cpuhp_online_error;
885 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
886 {
887 int cpu;
888 /*
889 * In case of non-hotplug cpu, if the ring-buffer is allocated
890 * in early initcall, it will not be notified of secondary cpus.
891 * In that off case, we need to allocate for all possible cpus.
892 */
893 #ifdef CONFIG_HOTPLUG_CPU
894 chan->cpu_hp_notifier.notifier_call =
895 lib_ring_buffer_cpu_hp_callback;
896 chan->cpu_hp_notifier.priority = 6;
897 register_cpu_notifier(&chan->cpu_hp_notifier);
898
899 get_online_cpus();
900 for_each_online_cpu(cpu) {
901 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
902 cpu);
903 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
904 lib_ring_buffer_start_switch_timer(buf);
905 lib_ring_buffer_start_read_timer(buf);
906 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
907 }
908 chan->cpu_hp_enable = 1;
909 put_online_cpus();
910 #else
911 for_each_possible_cpu(cpu) {
912 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
913 cpu);
914 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
915 lib_ring_buffer_start_switch_timer(buf);
916 lib_ring_buffer_start_read_timer(buf);
917 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
918 }
919 #endif
920 }
921 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
922
923 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
924 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
925 chan->tick_nohz_notifier.notifier_call =
926 ring_buffer_tick_nohz_callback;
927 chan->tick_nohz_notifier.priority = ~0U;
928 atomic_notifier_chain_register(&tick_nohz_notifier,
929 &chan->tick_nohz_notifier);
930 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
931
932 } else {
933 struct lib_ring_buffer *buf = chan->backend.buf;
934
935 lib_ring_buffer_start_switch_timer(buf);
936 lib_ring_buffer_start_read_timer(buf);
937 }
938
939 return chan;
940
941 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
942 cpuhp_online_error:
943 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
944 &chan->cpuhp_prepare.node);
945 WARN_ON(ret);
946 cpuhp_prepare_error:
947 #endif /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
948 error_free_backend:
949 channel_backend_free(&chan->backend);
950 error:
951 kfree(chan);
952 return NULL;
953 }
954 EXPORT_SYMBOL_GPL(channel_create);
955
956 static
957 void channel_release(struct kref *kref)
958 {
959 struct channel *chan = container_of(kref, struct channel, ref);
960 channel_free(chan);
961 }
962
963 /**
964 * channel_destroy - Finalize, wait for q.s. and destroy channel.
965 * @chan: channel to destroy
966 *
967 * Holds cpu hotplug.
968 * Call "destroy" callback, finalize channels, and then decrement the
969 * channel reference count. Note that when readers have completed data
970 * consumption of finalized channels, get_subbuf() will return -ENODATA.
971 * They should release their handle at that point. Returns the private
972 * data pointer.
973 */
974 void *channel_destroy(struct channel *chan)
975 {
976 int cpu;
977 const struct lib_ring_buffer_config *config = &chan->backend.config;
978 void *priv;
979
980 channel_unregister_notifiers(chan);
981
982 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
983 /*
984 * No need to hold cpu hotplug, because all notifiers have been
985 * unregistered.
986 */
987 for_each_channel_cpu(cpu, chan) {
988 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
989 cpu);
990
991 if (config->cb.buffer_finalize)
992 config->cb.buffer_finalize(buf,
993 chan->backend.priv,
994 cpu);
995 if (buf->backend.allocated)
996 lib_ring_buffer_set_quiescent(buf);
997 /*
998 * Perform flush before writing to finalized.
999 */
1000 smp_wmb();
1001 WRITE_ONCE(buf->finalized, 1);
1002 wake_up_interruptible(&buf->read_wait);
1003 }
1004 } else {
1005 struct lib_ring_buffer *buf = chan->backend.buf;
1006
1007 if (config->cb.buffer_finalize)
1008 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
1009 if (buf->backend.allocated)
1010 lib_ring_buffer_set_quiescent(buf);
1011 /*
1012 * Perform flush before writing to finalized.
1013 */
1014 smp_wmb();
1015 WRITE_ONCE(buf->finalized, 1);
1016 wake_up_interruptible(&buf->read_wait);
1017 }
1018 WRITE_ONCE(chan->finalized, 1);
1019 wake_up_interruptible(&chan->hp_wait);
1020 wake_up_interruptible(&chan->read_wait);
1021 priv = chan->backend.priv;
1022 kref_put(&chan->ref, channel_release);
1023 return priv;
1024 }
1025 EXPORT_SYMBOL_GPL(channel_destroy);
1026
1027 struct lib_ring_buffer *channel_get_ring_buffer(
1028 const struct lib_ring_buffer_config *config,
1029 struct channel *chan, int cpu)
1030 {
1031 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
1032 return chan->backend.buf;
1033 else
1034 return per_cpu_ptr(chan->backend.buf, cpu);
1035 }
1036 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
1037
1038 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
1039 {
1040 struct channel *chan = buf->backend.chan;
1041
1042 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
1043 return -EBUSY;
1044 if (!lttng_kref_get(&chan->ref)) {
1045 atomic_long_dec(&buf->active_readers);
1046 return -EOVERFLOW;
1047 }
1048 lttng_smp_mb__after_atomic();
1049 return 0;
1050 }
1051 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
1052
1053 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
1054 {
1055 struct channel *chan = buf->backend.chan;
1056
1057 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1058 lttng_smp_mb__before_atomic();
1059 atomic_long_dec(&buf->active_readers);
1060 kref_put(&chan->ref, channel_release);
1061 }
1062 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
1063
1064 /*
1065 * Promote compiler barrier to a smp_mb().
1066 * For the specific ring buffer case, this IPI call should be removed if the
1067 * architecture does not reorder writes. This should eventually be provided by
1068 * a separate architecture-specific infrastructure.
1069 */
1070 static void remote_mb(void *info)
1071 {
1072 smp_mb();
1073 }
1074
1075 /**
1076 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
1077 * @buf: ring buffer
1078 * @consumed: consumed count indicating the position where to read
1079 * @produced: produced count, indicates position when to stop reading
1080 *
1081 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1082 * data to read at consumed position, or 0 if the get operation succeeds.
1083 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1084 */
1085
1086 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
1087 unsigned long *consumed, unsigned long *produced)
1088 {
1089 struct channel *chan = buf->backend.chan;
1090 const struct lib_ring_buffer_config *config = &chan->backend.config;
1091 unsigned long consumed_cur, write_offset;
1092 int finalized;
1093
1094 retry:
1095 finalized = READ_ONCE(buf->finalized);
1096 /*
1097 * Read finalized before counters.
1098 */
1099 smp_rmb();
1100 consumed_cur = atomic_long_read(&buf->consumed);
1101 /*
1102 * No need to issue a memory barrier between consumed count read and
1103 * write offset read, because consumed count can only change
1104 * concurrently in overwrite mode, and we keep a sequence counter
1105 * identifier derived from the write offset to check we are getting
1106 * the same sub-buffer we are expecting (the sub-buffers are atomically
1107 * "tagged" upon writes, tags are checked upon read).
1108 */
1109 write_offset = v_read(config, &buf->offset);
1110
1111 /*
1112 * Check that we are not about to read the same subbuffer in
1113 * which the writer head is.
1114 */
1115 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1116 == 0)
1117 goto nodata;
1118
1119 *consumed = consumed_cur;
1120 *produced = subbuf_trunc(write_offset, chan);
1121
1122 return 0;
1123
1124 nodata:
1125 /*
1126 * The memory barriers __wait_event()/wake_up_interruptible() take care
1127 * of "raw_spin_is_locked" memory ordering.
1128 */
1129 if (finalized)
1130 return -ENODATA;
1131 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1132 goto retry;
1133 else
1134 return -EAGAIN;
1135 }
1136 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
1137
1138 /**
1139 * Performs the same function as lib_ring_buffer_snapshot(), but the positions
1140 * are saved regardless of whether the consumed and produced positions are
1141 * in the same subbuffer.
1142 * @buf: ring buffer
1143 * @consumed: consumed byte count indicating the last position read
1144 * @produced: produced byte count indicating the last position written
1145 *
1146 * This function is meant to provide information on the exact producer and
1147 * consumer positions without regard for the "snapshot" feature.
1148 */
1149 int lib_ring_buffer_snapshot_sample_positions(struct lib_ring_buffer *buf,
1150 unsigned long *consumed, unsigned long *produced)
1151 {
1152 struct channel *chan = buf->backend.chan;
1153 const struct lib_ring_buffer_config *config = &chan->backend.config;
1154
1155 smp_rmb();
1156 *consumed = atomic_long_read(&buf->consumed);
1157 /*
1158 * No need to issue a memory barrier between consumed count read and
1159 * write offset read, because consumed count can only change
1160 * concurrently in overwrite mode, and we keep a sequence counter
1161 * identifier derived from the write offset to check we are getting
1162 * the same sub-buffer we are expecting (the sub-buffers are atomically
1163 * "tagged" upon writes, tags are checked upon read).
1164 */
1165 *produced = v_read(config, &buf->offset);
1166 return 0;
1167 }
1168
1169 /**
1170 * lib_ring_buffer_put_snapshot - move consumed counter forward
1171 *
1172 * Should only be called from consumer context.
1173 * @buf: ring buffer
1174 * @consumed_new: new consumed count value
1175 */
1176 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
1177 unsigned long consumed_new)
1178 {
1179 struct lib_ring_buffer_backend *bufb = &buf->backend;
1180 struct channel *chan = bufb->chan;
1181 unsigned long consumed;
1182
1183 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1184
1185 /*
1186 * Only push the consumed value forward.
1187 * If the consumed cmpxchg fails, this is because we have been pushed by
1188 * the writer in flight recorder mode.
1189 */
1190 consumed = atomic_long_read(&buf->consumed);
1191 while ((long) consumed - (long) consumed_new < 0)
1192 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
1193 consumed_new);
1194 /* Wake-up the metadata producer */
1195 wake_up_interruptible(&buf->write_wait);
1196 }
1197 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
1198
1199 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1200 static void lib_ring_buffer_flush_read_subbuf_dcache(
1201 const struct lib_ring_buffer_config *config,
1202 struct channel *chan,
1203 struct lib_ring_buffer *buf)
1204 {
1205 struct lib_ring_buffer_backend_pages *pages;
1206 unsigned long sb_bindex, id, i, nr_pages;
1207
1208 if (config->output != RING_BUFFER_MMAP)
1209 return;
1210
1211 /*
1212 * Architectures with caches aliased on virtual addresses may
1213 * use different cache lines for the linear mapping vs
1214 * user-space memory mapping. Given that the ring buffer is
1215 * based on the kernel linear mapping, aligning it with the
1216 * user-space mapping is not straightforward, and would require
1217 * extra TLB entries. Therefore, simply flush the dcache for the
1218 * entire sub-buffer before reading it.
1219 */
1220 id = buf->backend.buf_rsb.id;
1221 sb_bindex = subbuffer_id_get_index(config, id);
1222 pages = buf->backend.array[sb_bindex];
1223 nr_pages = buf->backend.num_pages_per_subbuf;
1224 for (i = 0; i < nr_pages; i++) {
1225 struct lib_ring_buffer_backend_page *backend_page;
1226
1227 backend_page = &pages->p[i];
1228 flush_dcache_page(pfn_to_page(backend_page->pfn));
1229 }
1230 }
1231 #else
1232 static void lib_ring_buffer_flush_read_subbuf_dcache(
1233 const struct lib_ring_buffer_config *config,
1234 struct channel *chan,
1235 struct lib_ring_buffer *buf)
1236 {
1237 }
1238 #endif
1239
1240 /**
1241 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
1242 * @buf: ring buffer
1243 * @consumed: consumed count indicating the position where to read
1244 *
1245 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1246 * data to read at consumed position, or 0 if the get operation succeeds.
1247 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1248 */
1249 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
1250 unsigned long consumed)
1251 {
1252 struct channel *chan = buf->backend.chan;
1253 const struct lib_ring_buffer_config *config = &chan->backend.config;
1254 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1255 int ret;
1256 int finalized;
1257
1258 if (buf->get_subbuf) {
1259 /*
1260 * Reader is trying to get a subbuffer twice.
1261 */
1262 CHAN_WARN_ON(chan, 1);
1263 return -EBUSY;
1264 }
1265 retry:
1266 finalized = READ_ONCE(buf->finalized);
1267 /*
1268 * Read finalized before counters.
1269 */
1270 smp_rmb();
1271 consumed_cur = atomic_long_read(&buf->consumed);
1272 consumed_idx = subbuf_index(consumed, chan);
1273 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
1274 /*
1275 * Make sure we read the commit count before reading the buffer
1276 * data and the write offset. Correct consumed offset ordering
1277 * wrt commit count is insured by the use of cmpxchg to update
1278 * the consumed offset.
1279 * smp_call_function_single can fail if the remote CPU is offline,
1280 * this is OK because then there is no wmb to execute there.
1281 * If our thread is executing on the same CPU as the on the buffers
1282 * belongs to, we don't have to synchronize it at all. If we are
1283 * migrated, the scheduler will take care of the memory barriers.
1284 * Normally, smp_call_function_single() should ensure program order when
1285 * executing the remote function, which implies that it surrounds the
1286 * function execution with :
1287 * smp_mb()
1288 * send IPI
1289 * csd_lock_wait
1290 * recv IPI
1291 * smp_mb()
1292 * exec. function
1293 * smp_mb()
1294 * csd unlock
1295 * smp_mb()
1296 *
1297 * However, smp_call_function_single() does not seem to clearly execute
1298 * such barriers. It depends on spinlock semantic to provide the barrier
1299 * before executing the IPI and, when busy-looping, csd_lock_wait only
1300 * executes smp_mb() when it has to wait for the other CPU.
1301 *
1302 * I don't trust this code. Therefore, let's add the smp_mb() sequence
1303 * required ourself, even if duplicated. It has no performance impact
1304 * anyway.
1305 *
1306 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
1307 * read and write vs write. They do not ensure core synchronization. We
1308 * really have to ensure total order between the 3 barriers running on
1309 * the 2 CPUs.
1310 */
1311 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1312 if (config->sync == RING_BUFFER_SYNC_PER_CPU
1313 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
1314 if (raw_smp_processor_id() != buf->backend.cpu) {
1315 /* Total order with IPI handler smp_mb() */
1316 smp_mb();
1317 smp_call_function_single(buf->backend.cpu,
1318 remote_mb, NULL, 1);
1319 /* Total order with IPI handler smp_mb() */
1320 smp_mb();
1321 }
1322 } else {
1323 /* Total order with IPI handler smp_mb() */
1324 smp_mb();
1325 smp_call_function(remote_mb, NULL, 1);
1326 /* Total order with IPI handler smp_mb() */
1327 smp_mb();
1328 }
1329 } else {
1330 /*
1331 * Local rmb to match the remote wmb to read the commit count
1332 * before the buffer data and the write offset.
1333 */
1334 smp_rmb();
1335 }
1336
1337 write_offset = v_read(config, &buf->offset);
1338
1339 /*
1340 * Check that the buffer we are getting is after or at consumed_cur
1341 * position.
1342 */
1343 if ((long) subbuf_trunc(consumed, chan)
1344 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1345 goto nodata;
1346
1347 /*
1348 * Check that the subbuffer we are trying to consume has been
1349 * already fully committed.
1350 */
1351 if (((commit_count - chan->backend.subbuf_size)
1352 & chan->commit_count_mask)
1353 - (buf_trunc(consumed, chan)
1354 >> chan->backend.num_subbuf_order)
1355 != 0)
1356 goto nodata;
1357
1358 /*
1359 * Check that we are not about to read the same subbuffer in
1360 * which the writer head is.
1361 */
1362 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1363 == 0)
1364 goto nodata;
1365
1366 /*
1367 * Failure to get the subbuffer causes a busy-loop retry without going
1368 * to a wait queue. These are caused by short-lived race windows where
1369 * the writer is getting access to a subbuffer we were trying to get
1370 * access to. Also checks that the "consumed" buffer count we are
1371 * looking for matches the one contained in the subbuffer id.
1372 */
1373 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1374 consumed_idx, buf_trunc_val(consumed, chan));
1375 if (ret)
1376 goto retry;
1377 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1378
1379 buf->get_subbuf_consumed = consumed;
1380 buf->get_subbuf = 1;
1381
1382 lib_ring_buffer_flush_read_subbuf_dcache(config, chan, buf);
1383
1384 return 0;
1385
1386 nodata:
1387 /*
1388 * The memory barriers __wait_event()/wake_up_interruptible() take care
1389 * of "raw_spin_is_locked" memory ordering.
1390 */
1391 if (finalized)
1392 return -ENODATA;
1393 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1394 goto retry;
1395 else
1396 return -EAGAIN;
1397 }
1398 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1399
1400 /**
1401 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1402 * @buf: ring buffer
1403 */
1404 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1405 {
1406 struct lib_ring_buffer_backend *bufb = &buf->backend;
1407 struct channel *chan = bufb->chan;
1408 const struct lib_ring_buffer_config *config = &chan->backend.config;
1409 unsigned long read_sb_bindex, consumed_idx, consumed;
1410
1411 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1412
1413 if (!buf->get_subbuf) {
1414 /*
1415 * Reader puts a subbuffer it did not get.
1416 */
1417 CHAN_WARN_ON(chan, 1);
1418 return;
1419 }
1420 consumed = buf->get_subbuf_consumed;
1421 buf->get_subbuf = 0;
1422
1423 /*
1424 * Clear the records_unread counter. (overruns counter)
1425 * Can still be non-zero if a file reader simply grabbed the data
1426 * without using iterators.
1427 * Can be below zero if an iterator is used on a snapshot more than
1428 * once.
1429 */
1430 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1431 v_add(config, v_read(config,
1432 &bufb->array[read_sb_bindex]->records_unread),
1433 &bufb->records_read);
1434 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1435 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1436 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1437 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1438
1439 /*
1440 * Exchange the reader subbuffer with the one we put in its place in the
1441 * writer subbuffer table. Expect the original consumed count. If
1442 * update_read_sb_index fails, this is because the writer updated the
1443 * subbuffer concurrently. We should therefore keep the subbuffer we
1444 * currently have: it has become invalid to try reading this sub-buffer
1445 * consumed count value anyway.
1446 */
1447 consumed_idx = subbuf_index(consumed, chan);
1448 update_read_sb_index(config, &buf->backend, &chan->backend,
1449 consumed_idx, buf_trunc_val(consumed, chan));
1450 /*
1451 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1452 * if the writer concurrently updated it.
1453 */
1454 }
1455 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1456
1457 /*
1458 * cons_offset is an iterator on all subbuffer offsets between the reader
1459 * position and the writer position. (inclusive)
1460 */
1461 static
1462 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1463 struct channel *chan,
1464 unsigned long cons_offset,
1465 int cpu)
1466 {
1467 const struct lib_ring_buffer_config *config = &chan->backend.config;
1468 unsigned long cons_idx, commit_count, commit_count_sb;
1469
1470 cons_idx = subbuf_index(cons_offset, chan);
1471 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1472 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1473
1474 if (subbuf_offset(commit_count, chan) != 0)
1475 printk(KERN_WARNING
1476 "ring buffer %s, cpu %d: "
1477 "commit count in subbuffer %lu,\n"
1478 "expecting multiples of %lu bytes\n"
1479 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1480 chan->backend.name, cpu, cons_idx,
1481 chan->backend.subbuf_size,
1482 commit_count, commit_count_sb);
1483
1484 printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1485 chan->backend.name, cpu, commit_count);
1486 }
1487
1488 static
1489 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1490 struct channel *chan,
1491 void *priv, int cpu)
1492 {
1493 const struct lib_ring_buffer_config *config = &chan->backend.config;
1494 unsigned long write_offset, cons_offset;
1495
1496 /*
1497 * No need to order commit_count, write_offset and cons_offset reads
1498 * because we execute at teardown when no more writer nor reader
1499 * references are left.
1500 */
1501 write_offset = v_read(config, &buf->offset);
1502 cons_offset = atomic_long_read(&buf->consumed);
1503 if (write_offset != cons_offset)
1504 printk(KERN_DEBUG
1505 "ring buffer %s, cpu %d: "
1506 "non-consumed data\n"
1507 " [ %lu bytes written, %lu bytes read ]\n",
1508 chan->backend.name, cpu, write_offset, cons_offset);
1509
1510 for (cons_offset = atomic_long_read(&buf->consumed);
1511 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1512 chan)
1513 - cons_offset) > 0;
1514 cons_offset = subbuf_align(cons_offset, chan))
1515 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1516 cpu);
1517 }
1518
1519 static
1520 void lib_ring_buffer_print_errors(struct channel *chan,
1521 struct lib_ring_buffer *buf, int cpu)
1522 {
1523 const struct lib_ring_buffer_config *config = &chan->backend.config;
1524 void *priv = chan->backend.priv;
1525
1526 if (!strcmp(chan->backend.name, "relay-metadata")) {
1527 printk(KERN_DEBUG "ring buffer %s: %lu records written, "
1528 "%lu records overrun\n",
1529 chan->backend.name,
1530 v_read(config, &buf->records_count),
1531 v_read(config, &buf->records_overrun));
1532 } else {
1533 printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1534 "%lu records overrun\n",
1535 chan->backend.name, cpu,
1536 v_read(config, &buf->records_count),
1537 v_read(config, &buf->records_overrun));
1538
1539 if (v_read(config, &buf->records_lost_full)
1540 || v_read(config, &buf->records_lost_wrap)
1541 || v_read(config, &buf->records_lost_big))
1542 printk(KERN_WARNING
1543 "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1544 " [ %lu buffer full, %lu nest buffer wrap-around, "
1545 "%lu event too big ]\n",
1546 chan->backend.name, cpu,
1547 v_read(config, &buf->records_lost_full),
1548 v_read(config, &buf->records_lost_wrap),
1549 v_read(config, &buf->records_lost_big));
1550 }
1551 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1552 }
1553
1554 /*
1555 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1556 *
1557 * Only executed when the buffer is finalized, in SWITCH_FLUSH.
1558 */
1559 static
1560 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1561 struct channel *chan,
1562 struct switch_offsets *offsets,
1563 u64 tsc)
1564 {
1565 const struct lib_ring_buffer_config *config = &chan->backend.config;
1566 unsigned long oldidx = subbuf_index(offsets->old, chan);
1567 unsigned long commit_count;
1568 struct commit_counters_hot *cc_hot;
1569
1570 config->cb.buffer_begin(buf, tsc, oldidx);
1571
1572 /*
1573 * Order all writes to buffer before the commit count update that will
1574 * determine that the subbuffer is full.
1575 */
1576 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1577 /*
1578 * Must write slot data before incrementing commit count. This
1579 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1580 * by get_subbuf().
1581 */
1582 barrier();
1583 } else
1584 smp_wmb();
1585 cc_hot = &buf->commit_hot[oldidx];
1586 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1587 commit_count = v_read(config, &cc_hot->cc);
1588 /* Check if the written buffer has to be delivered */
1589 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1590 commit_count, oldidx, tsc);
1591 lib_ring_buffer_write_commit_counter(config, buf, chan,
1592 offsets->old + config->cb.subbuffer_header_size(),
1593 commit_count, cc_hot);
1594 }
1595
1596 /*
1597 * lib_ring_buffer_switch_old_end: switch old subbuffer
1598 *
1599 * Note : offset_old should never be 0 here. It is ok, because we never perform
1600 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1601 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1602 * subbuffer.
1603 */
1604 static
1605 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1606 struct channel *chan,
1607 struct switch_offsets *offsets,
1608 u64 tsc)
1609 {
1610 const struct lib_ring_buffer_config *config = &chan->backend.config;
1611 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1612 unsigned long commit_count, padding_size, data_size;
1613 struct commit_counters_hot *cc_hot;
1614 u64 *ts_end;
1615
1616 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1617 padding_size = chan->backend.subbuf_size - data_size;
1618 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1619
1620 ts_end = &buf->ts_end[oldidx];
1621 /*
1622 * This is the last space reservation in that sub-buffer before
1623 * it gets delivered. This provides exclusive access to write to
1624 * this sub-buffer's ts_end. There are also no concurrent
1625 * readers of that ts_end because delivery of that sub-buffer is
1626 * postponed until the commit counter is incremented for the
1627 * current space reservation.
1628 */
1629 *ts_end = tsc;
1630
1631 /*
1632 * Order all writes to buffer and store to ts_end before the commit
1633 * count update that will determine that the subbuffer is full.
1634 */
1635 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1636 /*
1637 * Must write slot data before incrementing commit count. This
1638 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1639 * by get_subbuf().
1640 */
1641 barrier();
1642 } else
1643 smp_wmb();
1644 cc_hot = &buf->commit_hot[oldidx];
1645 v_add(config, padding_size, &cc_hot->cc);
1646 commit_count = v_read(config, &cc_hot->cc);
1647 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1648 commit_count, oldidx, tsc);
1649 lib_ring_buffer_write_commit_counter(config, buf, chan,
1650 offsets->old + padding_size, commit_count,
1651 cc_hot);
1652 }
1653
1654 /*
1655 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1656 *
1657 * This code can be executed unordered : writers may already have written to the
1658 * sub-buffer before this code gets executed, caution. The commit makes sure
1659 * that this code is executed before the deliver of this sub-buffer.
1660 */
1661 static
1662 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1663 struct channel *chan,
1664 struct switch_offsets *offsets,
1665 u64 tsc)
1666 {
1667 const struct lib_ring_buffer_config *config = &chan->backend.config;
1668 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1669 unsigned long commit_count;
1670 struct commit_counters_hot *cc_hot;
1671
1672 config->cb.buffer_begin(buf, tsc, beginidx);
1673
1674 /*
1675 * Order all writes to buffer before the commit count update that will
1676 * determine that the subbuffer is full.
1677 */
1678 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1679 /*
1680 * Must write slot data before incrementing commit count. This
1681 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1682 * by get_subbuf().
1683 */
1684 barrier();
1685 } else
1686 smp_wmb();
1687 cc_hot = &buf->commit_hot[beginidx];
1688 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1689 commit_count = v_read(config, &cc_hot->cc);
1690 /* Check if the written buffer has to be delivered */
1691 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1692 commit_count, beginidx, tsc);
1693 lib_ring_buffer_write_commit_counter(config, buf, chan,
1694 offsets->begin + config->cb.subbuffer_header_size(),
1695 commit_count, cc_hot);
1696 }
1697
1698 /*
1699 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1700 *
1701 * Calls subbuffer_set_data_size() to set the data size of the current
1702 * sub-buffer. We do not need to perform check_deliver nor commit here,
1703 * since this task will be done by the "commit" of the event for which
1704 * we are currently doing the space reservation.
1705 */
1706 static
1707 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1708 struct channel *chan,
1709 struct switch_offsets *offsets,
1710 u64 tsc)
1711 {
1712 const struct lib_ring_buffer_config *config = &chan->backend.config;
1713 unsigned long endidx, data_size;
1714 u64 *ts_end;
1715
1716 endidx = subbuf_index(offsets->end - 1, chan);
1717 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1718 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1719 ts_end = &buf->ts_end[endidx];
1720 /*
1721 * This is the last space reservation in that sub-buffer before
1722 * it gets delivered. This provides exclusive access to write to
1723 * this sub-buffer's ts_end. There are also no concurrent
1724 * readers of that ts_end because delivery of that sub-buffer is
1725 * postponed until the commit counter is incremented for the
1726 * current space reservation.
1727 */
1728 *ts_end = tsc;
1729 }
1730
1731 /*
1732 * Returns :
1733 * 0 if ok
1734 * !0 if execution must be aborted.
1735 */
1736 static
1737 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1738 struct lib_ring_buffer *buf,
1739 struct channel *chan,
1740 struct switch_offsets *offsets,
1741 u64 *tsc)
1742 {
1743 const struct lib_ring_buffer_config *config = &chan->backend.config;
1744 unsigned long off, reserve_commit_diff;
1745
1746 offsets->begin = v_read(config, &buf->offset);
1747 offsets->old = offsets->begin;
1748 offsets->switch_old_start = 0;
1749 off = subbuf_offset(offsets->begin, chan);
1750
1751 *tsc = config->cb.ring_buffer_clock_read(chan);
1752
1753 /*
1754 * Ensure we flush the header of an empty subbuffer when doing the
1755 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1756 * total data gathering duration even if there were no records saved
1757 * after the last buffer switch.
1758 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1759 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1760 * subbuffer header as appropriate.
1761 * The next record that reserves space will be responsible for
1762 * populating the following subbuffer header. We choose not to populate
1763 * the next subbuffer header here because we want to be able to use
1764 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1765 * buffer flush, which must guarantee that all the buffer content
1766 * (records and header timestamps) are visible to the reader. This is
1767 * required for quiescence guarantees for the fusion merge.
1768 */
1769 if (mode != SWITCH_FLUSH && !off)
1770 return -1; /* we do not have to switch : buffer is empty */
1771
1772 if (unlikely(off == 0)) {
1773 unsigned long sb_index, commit_count;
1774
1775 /*
1776 * We are performing a SWITCH_FLUSH. At this stage, there are no
1777 * concurrent writes into the buffer.
1778 *
1779 * The client does not save any header information. Don't
1780 * switch empty subbuffer on finalize, because it is invalid to
1781 * deliver a completely empty subbuffer.
1782 */
1783 if (!config->cb.subbuffer_header_size())
1784 return -1;
1785
1786 /* Test new buffer integrity */
1787 sb_index = subbuf_index(offsets->begin, chan);
1788 commit_count = v_read(config,
1789 &buf->commit_cold[sb_index].cc_sb);
1790 reserve_commit_diff =
1791 (buf_trunc(offsets->begin, chan)
1792 >> chan->backend.num_subbuf_order)
1793 - (commit_count & chan->commit_count_mask);
1794 if (likely(reserve_commit_diff == 0)) {
1795 /* Next subbuffer not being written to. */
1796 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1797 subbuf_trunc(offsets->begin, chan)
1798 - subbuf_trunc((unsigned long)
1799 atomic_long_read(&buf->consumed), chan)
1800 >= chan->backend.buf_size)) {
1801 /*
1802 * We do not overwrite non consumed buffers
1803 * and we are full : don't switch.
1804 */
1805 return -1;
1806 } else {
1807 /*
1808 * Next subbuffer not being written to, and we
1809 * are either in overwrite mode or the buffer is
1810 * not full. It's safe to write in this new
1811 * subbuffer.
1812 */
1813 }
1814 } else {
1815 /*
1816 * Next subbuffer reserve offset does not match the
1817 * commit offset. Don't perform switch in
1818 * producer-consumer and overwrite mode. Caused by
1819 * either a writer OOPS or too many nested writes over a
1820 * reserve/commit pair.
1821 */
1822 return -1;
1823 }
1824
1825 /*
1826 * Need to write the subbuffer start header on finalize.
1827 */
1828 offsets->switch_old_start = 1;
1829 }
1830 offsets->begin = subbuf_align(offsets->begin, chan);
1831 /* Note: old points to the next subbuf at offset 0 */
1832 offsets->end = offsets->begin;
1833 return 0;
1834 }
1835
1836 /*
1837 * Force a sub-buffer switch. This operation is completely reentrant : can be
1838 * called while tracing is active with absolutely no lock held.
1839 *
1840 * Note, however, that as a v_cmpxchg is used for some atomic
1841 * operations, this function must be called from the CPU which owns the buffer
1842 * for a ACTIVE flush.
1843 */
1844 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1845 {
1846 struct channel *chan = buf->backend.chan;
1847 const struct lib_ring_buffer_config *config = &chan->backend.config;
1848 struct switch_offsets offsets;
1849 unsigned long oldidx;
1850 u64 tsc;
1851
1852 offsets.size = 0;
1853
1854 /*
1855 * Perform retryable operations.
1856 */
1857 do {
1858 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1859 &tsc))
1860 return; /* Switch not needed */
1861 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1862 != offsets.old);
1863
1864 /*
1865 * Atomically update last_tsc. This update races against concurrent
1866 * atomic updates, but the race will always cause supplementary full TSC
1867 * records, never the opposite (missing a full TSC record when it would
1868 * be needed).
1869 */
1870 save_last_tsc(config, buf, tsc);
1871
1872 /*
1873 * Push the reader if necessary
1874 */
1875 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1876
1877 oldidx = subbuf_index(offsets.old, chan);
1878 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1879
1880 /*
1881 * May need to populate header start on SWITCH_FLUSH.
1882 */
1883 if (offsets.switch_old_start) {
1884 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1885 offsets.old += config->cb.subbuffer_header_size();
1886 }
1887
1888 /*
1889 * Switch old subbuffer.
1890 */
1891 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1892 }
1893 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1894
1895 struct switch_param {
1896 struct lib_ring_buffer *buf;
1897 enum switch_mode mode;
1898 };
1899
1900 static void remote_switch(void *info)
1901 {
1902 struct switch_param *param = info;
1903 struct lib_ring_buffer *buf = param->buf;
1904
1905 lib_ring_buffer_switch_slow(buf, param->mode);
1906 }
1907
1908 static void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
1909 enum switch_mode mode)
1910 {
1911 struct channel *chan = buf->backend.chan;
1912 const struct lib_ring_buffer_config *config = &chan->backend.config;
1913 int ret;
1914 struct switch_param param;
1915
1916 /*
1917 * With global synchronization we don't need to use the IPI scheme.
1918 */
1919 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1920 lib_ring_buffer_switch_slow(buf, mode);
1921 return;
1922 }
1923
1924 /*
1925 * Disabling preemption ensures two things: first, that the
1926 * target cpu is not taken concurrently offline while we are within
1927 * smp_call_function_single(). Secondly, if it happens that the
1928 * CPU is not online, our own call to lib_ring_buffer_switch_slow()
1929 * needs to be protected from CPU hotplug handlers, which can
1930 * also perform a remote subbuffer switch.
1931 */
1932 preempt_disable();
1933 param.buf = buf;
1934 param.mode = mode;
1935 ret = smp_call_function_single(buf->backend.cpu,
1936 remote_switch, &param, 1);
1937 if (ret) {
1938 /* Remote CPU is offline, do it ourself. */
1939 lib_ring_buffer_switch_slow(buf, mode);
1940 }
1941 preempt_enable();
1942 }
1943
1944 /* Switch sub-buffer if current sub-buffer is non-empty. */
1945 void lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf)
1946 {
1947 _lib_ring_buffer_switch_remote(buf, SWITCH_ACTIVE);
1948 }
1949 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1950
1951 /* Switch sub-buffer even if current sub-buffer is empty. */
1952 void lib_ring_buffer_switch_remote_empty(struct lib_ring_buffer *buf)
1953 {
1954 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
1955 }
1956 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote_empty);
1957
1958 /*
1959 * Returns :
1960 * 0 if ok
1961 * -ENOSPC if event size is too large for packet.
1962 * -ENOBUFS if there is currently not enough space in buffer for the event.
1963 * -EIO if data cannot be written into the buffer for any other reason.
1964 */
1965 static
1966 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1967 struct channel *chan,
1968 struct switch_offsets *offsets,
1969 struct lib_ring_buffer_ctx *ctx)
1970 {
1971 const struct lib_ring_buffer_config *config = &chan->backend.config;
1972 unsigned long reserve_commit_diff, offset_cmp;
1973
1974 retry:
1975 offsets->begin = offset_cmp = v_read(config, &buf->offset);
1976 offsets->old = offsets->begin;
1977 offsets->switch_new_start = 0;
1978 offsets->switch_new_end = 0;
1979 offsets->switch_old_end = 0;
1980 offsets->pre_header_padding = 0;
1981
1982 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1983 if ((int64_t) ctx->tsc == -EIO)
1984 return -EIO;
1985
1986 if (last_tsc_overflow(config, buf, ctx->tsc))
1987 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
1988
1989 if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
1990 offsets->switch_new_start = 1; /* For offsets->begin */
1991 } else {
1992 offsets->size = config->cb.record_header_size(config, chan,
1993 offsets->begin,
1994 &offsets->pre_header_padding,
1995 ctx);
1996 offsets->size +=
1997 lib_ring_buffer_align(offsets->begin + offsets->size,
1998 ctx->largest_align)
1999 + ctx->data_size;
2000 if (unlikely(subbuf_offset(offsets->begin, chan) +
2001 offsets->size > chan->backend.subbuf_size)) {
2002 offsets->switch_old_end = 1; /* For offsets->old */
2003 offsets->switch_new_start = 1; /* For offsets->begin */
2004 }
2005 }
2006 if (unlikely(offsets->switch_new_start)) {
2007 unsigned long sb_index, commit_count;
2008
2009 /*
2010 * We are typically not filling the previous buffer completely.
2011 */
2012 if (likely(offsets->switch_old_end))
2013 offsets->begin = subbuf_align(offsets->begin, chan);
2014 offsets->begin = offsets->begin
2015 + config->cb.subbuffer_header_size();
2016 /* Test new buffer integrity */
2017 sb_index = subbuf_index(offsets->begin, chan);
2018 /*
2019 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
2020 * lib_ring_buffer_check_deliver() has the matching
2021 * memory barriers required around commit_cold cc_sb
2022 * updates to ensure reserve and commit counter updates
2023 * are not seen reordered when updated by another CPU.
2024 */
2025 smp_rmb();
2026 commit_count = v_read(config,
2027 &buf->commit_cold[sb_index].cc_sb);
2028 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
2029 smp_rmb();
2030 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
2031 /*
2032 * The reserve counter have been concurrently updated
2033 * while we read the commit counter. This means the
2034 * commit counter we read might not match buf->offset
2035 * due to concurrent update. We therefore need to retry.
2036 */
2037 goto retry;
2038 }
2039 reserve_commit_diff =
2040 (buf_trunc(offsets->begin, chan)
2041 >> chan->backend.num_subbuf_order)
2042 - (commit_count & chan->commit_count_mask);
2043 if (likely(reserve_commit_diff == 0)) {
2044 /* Next subbuffer not being written to. */
2045 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
2046 subbuf_trunc(offsets->begin, chan)
2047 - subbuf_trunc((unsigned long)
2048 atomic_long_read(&buf->consumed), chan)
2049 >= chan->backend.buf_size)) {
2050 /*
2051 * We do not overwrite non consumed buffers
2052 * and we are full : record is lost.
2053 */
2054 v_inc(config, &buf->records_lost_full);
2055 return -ENOBUFS;
2056 } else {
2057 /*
2058 * Next subbuffer not being written to, and we
2059 * are either in overwrite mode or the buffer is
2060 * not full. It's safe to write in this new
2061 * subbuffer.
2062 */
2063 }
2064 } else {
2065 /*
2066 * Next subbuffer reserve offset does not match the
2067 * commit offset, and this did not involve update to the
2068 * reserve counter. Drop record in producer-consumer and
2069 * overwrite mode. Caused by either a writer OOPS or
2070 * too many nested writes over a reserve/commit pair.
2071 */
2072 v_inc(config, &buf->records_lost_wrap);
2073 return -EIO;
2074 }
2075 offsets->size =
2076 config->cb.record_header_size(config, chan,
2077 offsets->begin,
2078 &offsets->pre_header_padding,
2079 ctx);
2080 offsets->size +=
2081 lib_ring_buffer_align(offsets->begin + offsets->size,
2082 ctx->largest_align)
2083 + ctx->data_size;
2084 if (unlikely(subbuf_offset(offsets->begin, chan)
2085 + offsets->size > chan->backend.subbuf_size)) {
2086 /*
2087 * Record too big for subbuffers, report error, don't
2088 * complete the sub-buffer switch.
2089 */
2090 v_inc(config, &buf->records_lost_big);
2091 return -ENOSPC;
2092 } else {
2093 /*
2094 * We just made a successful buffer switch and the
2095 * record fits in the new subbuffer. Let's write.
2096 */
2097 }
2098 } else {
2099 /*
2100 * Record fits in the current buffer and we are not on a switch
2101 * boundary. It's safe to write.
2102 */
2103 }
2104 offsets->end = offsets->begin + offsets->size;
2105
2106 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
2107 /*
2108 * The offset_end will fall at the very beginning of the next
2109 * subbuffer.
2110 */
2111 offsets->switch_new_end = 1; /* For offsets->begin */
2112 }
2113 return 0;
2114 }
2115
2116 static struct lib_ring_buffer *get_current_buf(struct channel *chan, int cpu)
2117 {
2118 const struct lib_ring_buffer_config *config = &chan->backend.config;
2119
2120 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
2121 return per_cpu_ptr(chan->backend.buf, cpu);
2122 else
2123 return chan->backend.buf;
2124 }
2125
2126 void lib_ring_buffer_lost_event_too_big(struct channel *chan)
2127 {
2128 const struct lib_ring_buffer_config *config = &chan->backend.config;
2129 struct lib_ring_buffer *buf = get_current_buf(chan, smp_processor_id());
2130
2131 v_inc(config, &buf->records_lost_big);
2132 }
2133 EXPORT_SYMBOL_GPL(lib_ring_buffer_lost_event_too_big);
2134
2135 /**
2136 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
2137 * @ctx: ring buffer context.
2138 *
2139 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
2140 * -EIO for other errors, else returns 0.
2141 * It will take care of sub-buffer switching.
2142 */
2143 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx)
2144 {
2145 struct channel *chan = ctx->chan;
2146 const struct lib_ring_buffer_config *config = &chan->backend.config;
2147 struct lib_ring_buffer *buf;
2148 struct switch_offsets offsets;
2149 int ret;
2150
2151 ctx->buf = buf = get_current_buf(chan, ctx->cpu);
2152 offsets.size = 0;
2153
2154 do {
2155 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
2156 ctx);
2157 if (unlikely(ret))
2158 return ret;
2159 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
2160 offsets.end)
2161 != offsets.old));
2162
2163 /*
2164 * Atomically update last_tsc. This update races against concurrent
2165 * atomic updates, but the race will always cause supplementary full TSC
2166 * records, never the opposite (missing a full TSC record when it would
2167 * be needed).
2168 */
2169 save_last_tsc(config, buf, ctx->tsc);
2170
2171 /*
2172 * Push the reader if necessary
2173 */
2174 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
2175
2176 /*
2177 * Clear noref flag for this subbuffer.
2178 */
2179 lib_ring_buffer_clear_noref(config, &buf->backend,
2180 subbuf_index(offsets.end - 1, chan));
2181
2182 /*
2183 * Switch old subbuffer if needed.
2184 */
2185 if (unlikely(offsets.switch_old_end)) {
2186 lib_ring_buffer_clear_noref(config, &buf->backend,
2187 subbuf_index(offsets.old - 1, chan));
2188 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
2189 }
2190
2191 /*
2192 * Populate new subbuffer.
2193 */
2194 if (unlikely(offsets.switch_new_start))
2195 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
2196
2197 if (unlikely(offsets.switch_new_end))
2198 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
2199
2200 ctx->slot_size = offsets.size;
2201 ctx->pre_offset = offsets.begin;
2202 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
2203 return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
2206
2207 static
2208 void lib_ring_buffer_vmcore_check_deliver(const struct lib_ring_buffer_config *config,
2209 struct lib_ring_buffer *buf,
2210 unsigned long commit_count,
2211 unsigned long idx)
2212 {
2213 if (config->oops == RING_BUFFER_OOPS_CONSISTENCY)
2214 v_set(config, &buf->commit_hot[idx].seq, commit_count);
2215 }
2216
2217 /*
2218 * The ring buffer can count events recorded and overwritten per buffer,
2219 * but it is disabled by default due to its performance overhead.
2220 */
2221 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
2222 static
2223 void deliver_count_events(const struct lib_ring_buffer_config *config,
2224 struct lib_ring_buffer *buf,
2225 unsigned long idx)
2226 {
2227 v_add(config, subbuffer_get_records_count(config,
2228 &buf->backend, idx),
2229 &buf->records_count);
2230 v_add(config, subbuffer_count_records_overrun(config,
2231 &buf->backend, idx),
2232 &buf->records_overrun);
2233 }
2234 #else /* LTTNG_RING_BUFFER_COUNT_EVENTS */
2235 static
2236 void deliver_count_events(const struct lib_ring_buffer_config *config,
2237 struct lib_ring_buffer *buf,
2238 unsigned long idx)
2239 {
2240 }
2241 #endif /* #else LTTNG_RING_BUFFER_COUNT_EVENTS */
2242
2243
2244 void lib_ring_buffer_check_deliver_slow(const struct lib_ring_buffer_config *config,
2245 struct lib_ring_buffer *buf,
2246 struct channel *chan,
2247 unsigned long offset,
2248 unsigned long commit_count,
2249 unsigned long idx,
2250 u64 tsc)
2251 {
2252 unsigned long old_commit_count = commit_count
2253 - chan->backend.subbuf_size;
2254
2255 /*
2256 * If we succeeded at updating cc_sb below, we are the subbuffer
2257 * writer delivering the subbuffer. Deals with concurrent
2258 * updates of the "cc" value without adding a add_return atomic
2259 * operation to the fast path.
2260 *
2261 * We are doing the delivery in two steps:
2262 * - First, we cmpxchg() cc_sb to the new value
2263 * old_commit_count + 1. This ensures that we are the only
2264 * subbuffer user successfully filling the subbuffer, but we
2265 * do _not_ set the cc_sb value to "commit_count" yet.
2266 * Therefore, other writers that would wrap around the ring
2267 * buffer and try to start writing to our subbuffer would
2268 * have to drop records, because it would appear as
2269 * non-filled.
2270 * We therefore have exclusive access to the subbuffer control
2271 * structures. This mutual exclusion with other writers is
2272 * crucially important to perform record overruns count in
2273 * flight recorder mode locklessly.
2274 * - When we are ready to release the subbuffer (either for
2275 * reading or for overrun by other writers), we simply set the
2276 * cc_sb value to "commit_count" and perform delivery.
2277 *
2278 * The subbuffer size is least 2 bytes (minimum size: 1 page).
2279 * This guarantees that old_commit_count + 1 != commit_count.
2280 */
2281
2282 /*
2283 * Order prior updates to reserve count prior to the
2284 * commit_cold cc_sb update.
2285 */
2286 smp_wmb();
2287 if (likely(v_cmpxchg(config, &buf->commit_cold[idx].cc_sb,
2288 old_commit_count, old_commit_count + 1)
2289 == old_commit_count)) {
2290 u64 *ts_end;
2291
2292 /*
2293 * Start of exclusive subbuffer access. We are
2294 * guaranteed to be the last writer in this subbuffer
2295 * and any other writer trying to access this subbuffer
2296 * in this state is required to drop records.
2297 *
2298 * We can read the ts_end for the current sub-buffer
2299 * which has been saved by the very last space
2300 * reservation for the current sub-buffer.
2301 *
2302 * Order increment of commit counter before reading ts_end.
2303 */
2304 smp_mb();
2305 ts_end = &buf->ts_end[idx];
2306 deliver_count_events(config, buf, idx);
2307 config->cb.buffer_end(buf, *ts_end, idx,
2308 lib_ring_buffer_get_data_size(config,
2309 buf,
2310 idx));
2311
2312 /*
2313 * Increment the packet counter while we have exclusive
2314 * access.
2315 */
2316 subbuffer_inc_packet_count(config, &buf->backend, idx);
2317
2318 /*
2319 * Set noref flag and offset for this subbuffer id.
2320 * Contains a memory barrier that ensures counter stores
2321 * are ordered before set noref and offset.
2322 */
2323 lib_ring_buffer_set_noref_offset(config, &buf->backend, idx,
2324 buf_trunc_val(offset, chan));
2325
2326 /*
2327 * Order set_noref and record counter updates before the
2328 * end of subbuffer exclusive access. Orders with
2329 * respect to writers coming into the subbuffer after
2330 * wrap around, and also order wrt concurrent readers.
2331 */
2332 smp_mb();
2333 /* End of exclusive subbuffer access */
2334 v_set(config, &buf->commit_cold[idx].cc_sb,
2335 commit_count);
2336 /*
2337 * Order later updates to reserve count after
2338 * the commit_cold cc_sb update.
2339 */
2340 smp_wmb();
2341 lib_ring_buffer_vmcore_check_deliver(config, buf,
2342 commit_count, idx);
2343
2344 /*
2345 * RING_BUFFER_WAKEUP_BY_WRITER wakeup is not lock-free.
2346 */
2347 if (config->wakeup == RING_BUFFER_WAKEUP_BY_WRITER
2348 && atomic_long_read(&buf->active_readers)
2349 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
2350 wake_up_interruptible(&buf->read_wait);
2351 wake_up_interruptible(&chan->read_wait);
2352 }
2353
2354 }
2355 }
2356 EXPORT_SYMBOL_GPL(lib_ring_buffer_check_deliver_slow);
2357
2358 int __init init_lib_ring_buffer_frontend(void)
2359 {
2360 int cpu;
2361
2362 for_each_possible_cpu(cpu)
2363 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
2364 return 0;
2365 }
2366
2367 module_init(init_lib_ring_buffer_frontend);
2368
2369 void __exit exit_lib_ring_buffer_frontend(void)
2370 {
2371 }
2372
2373 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.117465 seconds and 3 git commands to generate.