52afa8b0b3a7d76a59e4324b56671e50972a2bb8
[lttng-modules.git] / lib / ringbuffer / ring_buffer_frontend.c
1 /* SPDX-License-Identifier: (GPL-2.0 OR LGPL-2.1)
2 *
3 * ring_buffer_frontend.c
4 *
5 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
6 *
7 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
8 * recorder (overwrite) modes. See thesis:
9 *
10 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
11 * dissertation, Ecole Polytechnique de Montreal.
12 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
13 *
14 * - Algorithm presentation in Chapter 5:
15 * "Lockless Multi-Core High-Throughput Buffering".
16 * - Algorithm formal verification in Section 8.6:
17 * "Formal verification of LTTng"
18 *
19 * Author:
20 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
21 *
22 * Inspired from LTT and RelayFS:
23 * Karim Yaghmour <karim@opersys.com>
24 * Tom Zanussi <zanussi@us.ibm.com>
25 * Bob Wisniewski <bob@watson.ibm.com>
26 * And from K42 :
27 * Bob Wisniewski <bob@watson.ibm.com>
28 *
29 * Buffer reader semantic :
30 *
31 * - get_subbuf_size
32 * while buffer is not finalized and empty
33 * - get_subbuf
34 * - if return value != 0, continue
35 * - splice one subbuffer worth of data to a pipe
36 * - splice the data from pipe to disk/network
37 * - put_subbuf
38 */
39
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/percpu.h>
43 #include <asm/cacheflush.h>
44
45 #include <wrapper/ringbuffer/config.h>
46 #include <wrapper/ringbuffer/backend.h>
47 #include <wrapper/ringbuffer/frontend.h>
48 #include <wrapper/ringbuffer/iterator.h>
49 #include <wrapper/ringbuffer/nohz.h>
50 #include <wrapper/atomic.h>
51 #include <wrapper/kref.h>
52 #include <wrapper/percpu-defs.h>
53 #include <wrapper/timer.h>
54 #include <wrapper/vmalloc.h>
55
56 /*
57 * Internal structure representing offsets to use at a sub-buffer switch.
58 */
59 struct switch_offsets {
60 unsigned long begin, end, old;
61 size_t pre_header_padding, size;
62 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
63 switch_old_end:1;
64 };
65
66 #ifdef CONFIG_NO_HZ
67 enum tick_nohz_val {
68 TICK_NOHZ_STOP,
69 TICK_NOHZ_FLUSH,
70 TICK_NOHZ_RESTART,
71 };
72
73 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
74 #endif /* CONFIG_NO_HZ */
75
76 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
77
78 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
79 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
80
81 static
82 void lib_ring_buffer_print_errors(struct channel *chan,
83 struct lib_ring_buffer *buf, int cpu);
84 static
85 void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
86 enum switch_mode mode);
87
88 static
89 int lib_ring_buffer_poll_deliver(const struct lib_ring_buffer_config *config,
90 struct lib_ring_buffer *buf,
91 struct channel *chan)
92 {
93 unsigned long consumed_old, consumed_idx, commit_count, write_offset;
94
95 consumed_old = atomic_long_read(&buf->consumed);
96 consumed_idx = subbuf_index(consumed_old, chan);
97 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
98 /*
99 * No memory barrier here, since we are only interested
100 * in a statistically correct polling result. The next poll will
101 * get the data is we are racing. The mb() that ensures correct
102 * memory order is in get_subbuf.
103 */
104 write_offset = v_read(config, &buf->offset);
105
106 /*
107 * Check that the subbuffer we are trying to consume has been
108 * already fully committed.
109 */
110
111 if (((commit_count - chan->backend.subbuf_size)
112 & chan->commit_count_mask)
113 - (buf_trunc(consumed_old, chan)
114 >> chan->backend.num_subbuf_order)
115 != 0)
116 return 0;
117
118 /*
119 * Check that we are not about to read the same subbuffer in
120 * which the writer head is.
121 */
122 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_old, chan)
123 == 0)
124 return 0;
125
126 return 1;
127 }
128
129 /*
130 * Must be called under cpu hotplug protection.
131 */
132 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
133 {
134 struct channel *chan = buf->backend.chan;
135
136 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
137 lttng_kvfree(buf->commit_hot);
138 lttng_kvfree(buf->commit_cold);
139
140 lib_ring_buffer_backend_free(&buf->backend);
141 }
142
143 /**
144 * lib_ring_buffer_reset - Reset ring buffer to initial values.
145 * @buf: Ring buffer.
146 *
147 * Effectively empty the ring buffer. Should be called when the buffer is not
148 * used for writing. The ring buffer can be opened for reading, but the reader
149 * should not be using the iterator concurrently with reset. The previous
150 * current iterator record is reset.
151 */
152 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
153 {
154 struct channel *chan = buf->backend.chan;
155 const struct lib_ring_buffer_config *config = &chan->backend.config;
156 unsigned int i;
157
158 /*
159 * Reset iterator first. It will put the subbuffer if it currently holds
160 * it.
161 */
162 lib_ring_buffer_iterator_reset(buf);
163 v_set(config, &buf->offset, 0);
164 for (i = 0; i < chan->backend.num_subbuf; i++) {
165 v_set(config, &buf->commit_hot[i].cc, 0);
166 v_set(config, &buf->commit_hot[i].seq, 0);
167 v_set(config, &buf->commit_cold[i].cc_sb, 0);
168 }
169 atomic_long_set(&buf->consumed, 0);
170 atomic_set(&buf->record_disabled, 0);
171 v_set(config, &buf->last_tsc, 0);
172 lib_ring_buffer_backend_reset(&buf->backend);
173 /* Don't reset number of active readers */
174 v_set(config, &buf->records_lost_full, 0);
175 v_set(config, &buf->records_lost_wrap, 0);
176 v_set(config, &buf->records_lost_big, 0);
177 v_set(config, &buf->records_count, 0);
178 v_set(config, &buf->records_overrun, 0);
179 buf->finalized = 0;
180 }
181 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
182
183 /**
184 * channel_reset - Reset channel to initial values.
185 * @chan: Channel.
186 *
187 * Effectively empty the channel. Should be called when the channel is not used
188 * for writing. The channel can be opened for reading, but the reader should not
189 * be using the iterator concurrently with reset. The previous current iterator
190 * record is reset.
191 */
192 void channel_reset(struct channel *chan)
193 {
194 /*
195 * Reset iterators first. Will put the subbuffer if held for reading.
196 */
197 channel_iterator_reset(chan);
198 atomic_set(&chan->record_disabled, 0);
199 /* Don't reset commit_count_mask, still valid */
200 channel_backend_reset(&chan->backend);
201 /* Don't reset switch/read timer interval */
202 /* Don't reset notifiers and notifier enable bits */
203 /* Don't reset reader reference count */
204 }
205 EXPORT_SYMBOL_GPL(channel_reset);
206
207 /*
208 * Must be called under cpu hotplug protection.
209 */
210 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
211 struct channel_backend *chanb, int cpu)
212 {
213 const struct lib_ring_buffer_config *config = &chanb->config;
214 struct channel *chan = container_of(chanb, struct channel, backend);
215 void *priv = chanb->priv;
216 size_t subbuf_header_size;
217 u64 tsc;
218 int ret;
219
220 /* Test for cpu hotplug */
221 if (buf->backend.allocated)
222 return 0;
223
224 /*
225 * Paranoia: per cpu dynamic allocation is not officially documented as
226 * zeroing the memory, so let's do it here too, just in case.
227 */
228 memset(buf, 0, sizeof(*buf));
229
230 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
231 if (ret)
232 return ret;
233
234 buf->commit_hot =
235 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_hot)
236 * chan->backend.num_subbuf,
237 1 << INTERNODE_CACHE_SHIFT),
238 GFP_KERNEL | __GFP_NOWARN,
239 cpu_to_node(max(cpu, 0)));
240 if (!buf->commit_hot) {
241 ret = -ENOMEM;
242 goto free_chanbuf;
243 }
244
245 buf->commit_cold =
246 lttng_kvzalloc_node(ALIGN(sizeof(*buf->commit_cold)
247 * chan->backend.num_subbuf,
248 1 << INTERNODE_CACHE_SHIFT),
249 GFP_KERNEL | __GFP_NOWARN,
250 cpu_to_node(max(cpu, 0)));
251 if (!buf->commit_cold) {
252 ret = -ENOMEM;
253 goto free_commit;
254 }
255
256 init_waitqueue_head(&buf->read_wait);
257 init_waitqueue_head(&buf->write_wait);
258 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
259
260 /*
261 * Write the subbuffer header for first subbuffer so we know the total
262 * duration of data gathering.
263 */
264 subbuf_header_size = config->cb.subbuffer_header_size();
265 v_set(config, &buf->offset, subbuf_header_size);
266 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
267 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
268 config->cb.buffer_begin(buf, tsc, 0);
269 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
270
271 if (config->cb.buffer_create) {
272 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
273 if (ret)
274 goto free_init;
275 }
276
277 /*
278 * Ensure the buffer is ready before setting it to allocated and setting
279 * the cpumask.
280 * Used for cpu hotplug vs cpumask iteration.
281 */
282 smp_wmb();
283 buf->backend.allocated = 1;
284
285 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
286 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
287 chan->backend.cpumask));
288 cpumask_set_cpu(cpu, chan->backend.cpumask);
289 }
290
291 return 0;
292
293 /* Error handling */
294 free_init:
295 lttng_kvfree(buf->commit_cold);
296 free_commit:
297 lttng_kvfree(buf->commit_hot);
298 free_chanbuf:
299 lib_ring_buffer_backend_free(&buf->backend);
300 return ret;
301 }
302
303 static void switch_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
304 {
305 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, switch_timer);
306 struct channel *chan = buf->backend.chan;
307 const struct lib_ring_buffer_config *config = &chan->backend.config;
308
309 /*
310 * Only flush buffers periodically if readers are active.
311 */
312 if (atomic_long_read(&buf->active_readers))
313 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
314
315 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
316 lttng_mod_timer_pinned(&buf->switch_timer,
317 jiffies + chan->switch_timer_interval);
318 else
319 mod_timer(&buf->switch_timer,
320 jiffies + chan->switch_timer_interval);
321 }
322
323 /*
324 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
325 */
326 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
327 {
328 struct channel *chan = buf->backend.chan;
329 const struct lib_ring_buffer_config *config = &chan->backend.config;
330 unsigned int flags = 0;
331
332 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
333 return;
334
335 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
336 flags = LTTNG_TIMER_PINNED;
337
338 lttng_timer_setup(&buf->switch_timer, switch_buffer_timer, flags, buf);
339 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
340
341 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
342 add_timer_on(&buf->switch_timer, buf->backend.cpu);
343 else
344 add_timer(&buf->switch_timer);
345
346 buf->switch_timer_enabled = 1;
347 }
348
349 /*
350 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
351 */
352 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
353 {
354 struct channel *chan = buf->backend.chan;
355
356 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
357 return;
358
359 del_timer_sync(&buf->switch_timer);
360 buf->switch_timer_enabled = 0;
361 }
362
363 /*
364 * Polling timer to check the channels for data.
365 */
366 static void read_buffer_timer(LTTNG_TIMER_FUNC_ARG_TYPE t)
367 {
368 struct lib_ring_buffer *buf = lttng_from_timer(buf, t, read_timer);
369 struct channel *chan = buf->backend.chan;
370 const struct lib_ring_buffer_config *config = &chan->backend.config;
371
372 CHAN_WARN_ON(chan, !buf->backend.allocated);
373
374 if (atomic_long_read(&buf->active_readers)
375 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
376 wake_up_interruptible(&buf->read_wait);
377 wake_up_interruptible(&chan->read_wait);
378 }
379
380 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
381 lttng_mod_timer_pinned(&buf->read_timer,
382 jiffies + chan->read_timer_interval);
383 else
384 mod_timer(&buf->read_timer,
385 jiffies + chan->read_timer_interval);
386 }
387
388 /*
389 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
390 */
391 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
392 {
393 struct channel *chan = buf->backend.chan;
394 const struct lib_ring_buffer_config *config = &chan->backend.config;
395 unsigned int flags;
396
397 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
398 || !chan->read_timer_interval
399 || buf->read_timer_enabled)
400 return;
401
402 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
403 flags = LTTNG_TIMER_PINNED;
404
405 lttng_timer_setup(&buf->read_timer, read_buffer_timer, flags, buf);
406 buf->read_timer.expires = jiffies + chan->read_timer_interval;
407
408 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
409 add_timer_on(&buf->read_timer, buf->backend.cpu);
410 else
411 add_timer(&buf->read_timer);
412
413 buf->read_timer_enabled = 1;
414 }
415
416 /*
417 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
418 */
419 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
420 {
421 struct channel *chan = buf->backend.chan;
422 const struct lib_ring_buffer_config *config = &chan->backend.config;
423
424 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
425 || !chan->read_timer_interval
426 || !buf->read_timer_enabled)
427 return;
428
429 del_timer_sync(&buf->read_timer);
430 /*
431 * do one more check to catch data that has been written in the last
432 * timer period.
433 */
434 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
435 wake_up_interruptible(&buf->read_wait);
436 wake_up_interruptible(&chan->read_wait);
437 }
438 buf->read_timer_enabled = 0;
439 }
440
441 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
442
443 enum cpuhp_state lttng_rb_hp_prepare;
444 enum cpuhp_state lttng_rb_hp_online;
445
446 void lttng_rb_set_hp_prepare(enum cpuhp_state val)
447 {
448 lttng_rb_hp_prepare = val;
449 }
450 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_prepare);
451
452 void lttng_rb_set_hp_online(enum cpuhp_state val)
453 {
454 lttng_rb_hp_online = val;
455 }
456 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_online);
457
458 int lttng_cpuhp_rb_frontend_dead(unsigned int cpu,
459 struct lttng_cpuhp_node *node)
460 {
461 struct channel *chan = container_of(node, struct channel,
462 cpuhp_prepare);
463 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
464 const struct lib_ring_buffer_config *config = &chan->backend.config;
465
466 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
467
468 /*
469 * Performing a buffer switch on a remote CPU. Performed by
470 * the CPU responsible for doing the hotunplug after the target
471 * CPU stopped running completely. Ensures that all data
472 * from that remote CPU is flushed.
473 */
474 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
475 return 0;
476 }
477 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_dead);
478
479 int lttng_cpuhp_rb_frontend_online(unsigned int cpu,
480 struct lttng_cpuhp_node *node)
481 {
482 struct channel *chan = container_of(node, struct channel,
483 cpuhp_online);
484 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
485 const struct lib_ring_buffer_config *config = &chan->backend.config;
486
487 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
488
489 wake_up_interruptible(&chan->hp_wait);
490 lib_ring_buffer_start_switch_timer(buf);
491 lib_ring_buffer_start_read_timer(buf);
492 return 0;
493 }
494 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_online);
495
496 int lttng_cpuhp_rb_frontend_offline(unsigned int cpu,
497 struct lttng_cpuhp_node *node)
498 {
499 struct channel *chan = container_of(node, struct channel,
500 cpuhp_online);
501 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
502 const struct lib_ring_buffer_config *config = &chan->backend.config;
503
504 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
505
506 lib_ring_buffer_stop_switch_timer(buf);
507 lib_ring_buffer_stop_read_timer(buf);
508 return 0;
509 }
510 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_offline);
511
512 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
513
514 #ifdef CONFIG_HOTPLUG_CPU
515
516 /**
517 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
518 * @nb: notifier block
519 * @action: hotplug action to take
520 * @hcpu: CPU number
521 *
522 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
523 */
524 static
525 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
526 unsigned long action,
527 void *hcpu)
528 {
529 unsigned int cpu = (unsigned long)hcpu;
530 struct channel *chan = container_of(nb, struct channel,
531 cpu_hp_notifier);
532 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
533 const struct lib_ring_buffer_config *config = &chan->backend.config;
534
535 if (!chan->cpu_hp_enable)
536 return NOTIFY_DONE;
537
538 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
539
540 switch (action) {
541 case CPU_DOWN_FAILED:
542 case CPU_DOWN_FAILED_FROZEN:
543 case CPU_ONLINE:
544 case CPU_ONLINE_FROZEN:
545 wake_up_interruptible(&chan->hp_wait);
546 lib_ring_buffer_start_switch_timer(buf);
547 lib_ring_buffer_start_read_timer(buf);
548 return NOTIFY_OK;
549
550 case CPU_DOWN_PREPARE:
551 case CPU_DOWN_PREPARE_FROZEN:
552 lib_ring_buffer_stop_switch_timer(buf);
553 lib_ring_buffer_stop_read_timer(buf);
554 return NOTIFY_OK;
555
556 case CPU_DEAD:
557 case CPU_DEAD_FROZEN:
558 /*
559 * Performing a buffer switch on a remote CPU. Performed by
560 * the CPU responsible for doing the hotunplug after the target
561 * CPU stopped running completely. Ensures that all data
562 * from that remote CPU is flushed.
563 */
564 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
565 return NOTIFY_OK;
566
567 default:
568 return NOTIFY_DONE;
569 }
570 }
571
572 #endif
573
574 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
575
576 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
577 /*
578 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
579 * that wake-up-tracing generated events are flushed before going idle (in
580 * tick_nohz). We test if the spinlock is locked to deal with the race where
581 * readers try to sample the ring buffer before we perform the switch. We let
582 * the readers retry in that case. If there is data in the buffer, the wake up
583 * is going to forbid the CPU running the reader thread from going idle.
584 */
585 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
586 unsigned long val,
587 void *data)
588 {
589 struct channel *chan = container_of(nb, struct channel,
590 tick_nohz_notifier);
591 const struct lib_ring_buffer_config *config = &chan->backend.config;
592 struct lib_ring_buffer *buf;
593 int cpu = smp_processor_id();
594
595 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
596 /*
597 * We don't support keeping the system idle with global buffers
598 * and streaming active. In order to do so, we would need to
599 * sample a non-nohz-cpumask racelessly with the nohz updates
600 * without adding synchronization overhead to nohz. Leave this
601 * use-case out for now.
602 */
603 return 0;
604 }
605
606 buf = channel_get_ring_buffer(config, chan, cpu);
607 switch (val) {
608 case TICK_NOHZ_FLUSH:
609 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
610 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
611 && chan->read_timer_interval
612 && atomic_long_read(&buf->active_readers)
613 && (lib_ring_buffer_poll_deliver(config, buf, chan)
614 || lib_ring_buffer_pending_data(config, buf, chan))) {
615 wake_up_interruptible(&buf->read_wait);
616 wake_up_interruptible(&chan->read_wait);
617 }
618 if (chan->switch_timer_interval)
619 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
620 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
621 break;
622 case TICK_NOHZ_STOP:
623 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
624 lib_ring_buffer_stop_switch_timer(buf);
625 lib_ring_buffer_stop_read_timer(buf);
626 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
627 break;
628 case TICK_NOHZ_RESTART:
629 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
630 lib_ring_buffer_start_read_timer(buf);
631 lib_ring_buffer_start_switch_timer(buf);
632 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
633 break;
634 }
635
636 return 0;
637 }
638
639 void notrace lib_ring_buffer_tick_nohz_flush(void)
640 {
641 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
642 NULL);
643 }
644
645 void notrace lib_ring_buffer_tick_nohz_stop(void)
646 {
647 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
648 NULL);
649 }
650
651 void notrace lib_ring_buffer_tick_nohz_restart(void)
652 {
653 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
654 NULL);
655 }
656 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
657
658 /*
659 * Holds CPU hotplug.
660 */
661 static void channel_unregister_notifiers(struct channel *chan)
662 {
663 const struct lib_ring_buffer_config *config = &chan->backend.config;
664
665 channel_iterator_unregister_notifiers(chan);
666 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
667 #ifdef CONFIG_NO_HZ
668 /*
669 * Remove the nohz notifier first, so we are certain we stop
670 * the timers.
671 */
672 atomic_notifier_chain_unregister(&tick_nohz_notifier,
673 &chan->tick_nohz_notifier);
674 /*
675 * ring_buffer_nohz_lock will not be needed below, because
676 * we just removed the notifiers, which were the only source of
677 * concurrency.
678 */
679 #endif /* CONFIG_NO_HZ */
680 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
681 {
682 int ret;
683
684 ret = cpuhp_state_remove_instance(lttng_rb_hp_online,
685 &chan->cpuhp_online.node);
686 WARN_ON(ret);
687 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
688 &chan->cpuhp_prepare.node);
689 WARN_ON(ret);
690 }
691 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
692 {
693 int cpu;
694
695 #ifdef CONFIG_HOTPLUG_CPU
696 get_online_cpus();
697 chan->cpu_hp_enable = 0;
698 for_each_online_cpu(cpu) {
699 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
700 cpu);
701 lib_ring_buffer_stop_switch_timer(buf);
702 lib_ring_buffer_stop_read_timer(buf);
703 }
704 put_online_cpus();
705 unregister_cpu_notifier(&chan->cpu_hp_notifier);
706 #else
707 for_each_possible_cpu(cpu) {
708 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
709 cpu);
710 lib_ring_buffer_stop_switch_timer(buf);
711 lib_ring_buffer_stop_read_timer(buf);
712 }
713 #endif
714 }
715 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
716 } else {
717 struct lib_ring_buffer *buf = chan->backend.buf;
718
719 lib_ring_buffer_stop_switch_timer(buf);
720 lib_ring_buffer_stop_read_timer(buf);
721 }
722 channel_backend_unregister_notifiers(&chan->backend);
723 }
724
725 static void lib_ring_buffer_set_quiescent(struct lib_ring_buffer *buf)
726 {
727 if (!buf->quiescent) {
728 buf->quiescent = true;
729 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
730 }
731 }
732
733 static void lib_ring_buffer_clear_quiescent(struct lib_ring_buffer *buf)
734 {
735 buf->quiescent = false;
736 }
737
738 void lib_ring_buffer_set_quiescent_channel(struct channel *chan)
739 {
740 int cpu;
741 const struct lib_ring_buffer_config *config = &chan->backend.config;
742
743 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
744 get_online_cpus();
745 for_each_channel_cpu(cpu, chan) {
746 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
747 cpu);
748
749 lib_ring_buffer_set_quiescent(buf);
750 }
751 put_online_cpus();
752 } else {
753 struct lib_ring_buffer *buf = chan->backend.buf;
754
755 lib_ring_buffer_set_quiescent(buf);
756 }
757 }
758 EXPORT_SYMBOL_GPL(lib_ring_buffer_set_quiescent_channel);
759
760 void lib_ring_buffer_clear_quiescent_channel(struct channel *chan)
761 {
762 int cpu;
763 const struct lib_ring_buffer_config *config = &chan->backend.config;
764
765 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
766 get_online_cpus();
767 for_each_channel_cpu(cpu, chan) {
768 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
769 cpu);
770
771 lib_ring_buffer_clear_quiescent(buf);
772 }
773 put_online_cpus();
774 } else {
775 struct lib_ring_buffer *buf = chan->backend.buf;
776
777 lib_ring_buffer_clear_quiescent(buf);
778 }
779 }
780 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear_quiescent_channel);
781
782 static void channel_free(struct channel *chan)
783 {
784 if (chan->backend.release_priv_ops) {
785 chan->backend.release_priv_ops(chan->backend.priv_ops);
786 }
787 channel_iterator_free(chan);
788 channel_backend_free(&chan->backend);
789 kfree(chan);
790 }
791
792 /**
793 * channel_create - Create channel.
794 * @config: ring buffer instance configuration
795 * @name: name of the channel
796 * @priv: ring buffer client private data
797 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
798 * address mapping. It is used only by RING_BUFFER_STATIC
799 * configuration. It can be set to NULL for other backends.
800 * @subbuf_size: subbuffer size
801 * @num_subbuf: number of subbuffers
802 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
803 * padding to let readers get those sub-buffers.
804 * Used for live streaming.
805 * @read_timer_interval: Time interval (in us) to wake up pending readers.
806 *
807 * Holds cpu hotplug.
808 * Returns NULL on failure.
809 */
810 struct channel *channel_create(const struct lib_ring_buffer_config *config,
811 const char *name, void *priv, void *buf_addr,
812 size_t subbuf_size,
813 size_t num_subbuf, unsigned int switch_timer_interval,
814 unsigned int read_timer_interval)
815 {
816 int ret;
817 struct channel *chan;
818
819 if (lib_ring_buffer_check_config(config, switch_timer_interval,
820 read_timer_interval))
821 return NULL;
822
823 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
824 if (!chan)
825 return NULL;
826
827 ret = channel_backend_init(&chan->backend, name, config, priv,
828 subbuf_size, num_subbuf);
829 if (ret)
830 goto error;
831
832 ret = channel_iterator_init(chan);
833 if (ret)
834 goto error_free_backend;
835
836 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
837 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
838 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
839 kref_init(&chan->ref);
840 init_waitqueue_head(&chan->read_wait);
841 init_waitqueue_head(&chan->hp_wait);
842
843 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
844 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
845 chan->cpuhp_prepare.component = LTTNG_RING_BUFFER_FRONTEND;
846 ret = cpuhp_state_add_instance_nocalls(lttng_rb_hp_prepare,
847 &chan->cpuhp_prepare.node);
848 if (ret)
849 goto cpuhp_prepare_error;
850
851 chan->cpuhp_online.component = LTTNG_RING_BUFFER_FRONTEND;
852 ret = cpuhp_state_add_instance(lttng_rb_hp_online,
853 &chan->cpuhp_online.node);
854 if (ret)
855 goto cpuhp_online_error;
856 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
857 {
858 int cpu;
859 /*
860 * In case of non-hotplug cpu, if the ring-buffer is allocated
861 * in early initcall, it will not be notified of secondary cpus.
862 * In that off case, we need to allocate for all possible cpus.
863 */
864 #ifdef CONFIG_HOTPLUG_CPU
865 chan->cpu_hp_notifier.notifier_call =
866 lib_ring_buffer_cpu_hp_callback;
867 chan->cpu_hp_notifier.priority = 6;
868 register_cpu_notifier(&chan->cpu_hp_notifier);
869
870 get_online_cpus();
871 for_each_online_cpu(cpu) {
872 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
873 cpu);
874 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
875 lib_ring_buffer_start_switch_timer(buf);
876 lib_ring_buffer_start_read_timer(buf);
877 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
878 }
879 chan->cpu_hp_enable = 1;
880 put_online_cpus();
881 #else
882 for_each_possible_cpu(cpu) {
883 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
884 cpu);
885 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
886 lib_ring_buffer_start_switch_timer(buf);
887 lib_ring_buffer_start_read_timer(buf);
888 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
889 }
890 #endif
891 }
892 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
893
894 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
895 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
896 chan->tick_nohz_notifier.notifier_call =
897 ring_buffer_tick_nohz_callback;
898 chan->tick_nohz_notifier.priority = ~0U;
899 atomic_notifier_chain_register(&tick_nohz_notifier,
900 &chan->tick_nohz_notifier);
901 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
902
903 } else {
904 struct lib_ring_buffer *buf = chan->backend.buf;
905
906 lib_ring_buffer_start_switch_timer(buf);
907 lib_ring_buffer_start_read_timer(buf);
908 }
909
910 return chan;
911
912 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
913 cpuhp_online_error:
914 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
915 &chan->cpuhp_prepare.node);
916 WARN_ON(ret);
917 cpuhp_prepare_error:
918 #endif /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
919 error_free_backend:
920 channel_backend_free(&chan->backend);
921 error:
922 kfree(chan);
923 return NULL;
924 }
925 EXPORT_SYMBOL_GPL(channel_create);
926
927 static
928 void channel_release(struct kref *kref)
929 {
930 struct channel *chan = container_of(kref, struct channel, ref);
931 channel_free(chan);
932 }
933
934 /**
935 * channel_destroy - Finalize, wait for q.s. and destroy channel.
936 * @chan: channel to destroy
937 *
938 * Holds cpu hotplug.
939 * Call "destroy" callback, finalize channels, and then decrement the
940 * channel reference count. Note that when readers have completed data
941 * consumption of finalized channels, get_subbuf() will return -ENODATA.
942 * They should release their handle at that point. Returns the private
943 * data pointer.
944 */
945 void *channel_destroy(struct channel *chan)
946 {
947 int cpu;
948 const struct lib_ring_buffer_config *config = &chan->backend.config;
949 void *priv;
950
951 channel_unregister_notifiers(chan);
952
953 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
954 /*
955 * No need to hold cpu hotplug, because all notifiers have been
956 * unregistered.
957 */
958 for_each_channel_cpu(cpu, chan) {
959 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
960 cpu);
961
962 if (config->cb.buffer_finalize)
963 config->cb.buffer_finalize(buf,
964 chan->backend.priv,
965 cpu);
966 if (buf->backend.allocated)
967 lib_ring_buffer_set_quiescent(buf);
968 /*
969 * Perform flush before writing to finalized.
970 */
971 smp_wmb();
972 WRITE_ONCE(buf->finalized, 1);
973 wake_up_interruptible(&buf->read_wait);
974 }
975 } else {
976 struct lib_ring_buffer *buf = chan->backend.buf;
977
978 if (config->cb.buffer_finalize)
979 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
980 if (buf->backend.allocated)
981 lib_ring_buffer_set_quiescent(buf);
982 /*
983 * Perform flush before writing to finalized.
984 */
985 smp_wmb();
986 WRITE_ONCE(buf->finalized, 1);
987 wake_up_interruptible(&buf->read_wait);
988 }
989 WRITE_ONCE(chan->finalized, 1);
990 wake_up_interruptible(&chan->hp_wait);
991 wake_up_interruptible(&chan->read_wait);
992 priv = chan->backend.priv;
993 kref_put(&chan->ref, channel_release);
994 return priv;
995 }
996 EXPORT_SYMBOL_GPL(channel_destroy);
997
998 struct lib_ring_buffer *channel_get_ring_buffer(
999 const struct lib_ring_buffer_config *config,
1000 struct channel *chan, int cpu)
1001 {
1002 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
1003 return chan->backend.buf;
1004 else
1005 return per_cpu_ptr(chan->backend.buf, cpu);
1006 }
1007 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
1008
1009 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
1010 {
1011 struct channel *chan = buf->backend.chan;
1012
1013 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
1014 return -EBUSY;
1015 if (!lttng_kref_get(&chan->ref)) {
1016 atomic_long_dec(&buf->active_readers);
1017 return -EOVERFLOW;
1018 }
1019 lttng_smp_mb__after_atomic();
1020 return 0;
1021 }
1022 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
1023
1024 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
1025 {
1026 struct channel *chan = buf->backend.chan;
1027
1028 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1029 lttng_smp_mb__before_atomic();
1030 atomic_long_dec(&buf->active_readers);
1031 kref_put(&chan->ref, channel_release);
1032 }
1033 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
1034
1035 /*
1036 * Promote compiler barrier to a smp_mb().
1037 * For the specific ring buffer case, this IPI call should be removed if the
1038 * architecture does not reorder writes. This should eventually be provided by
1039 * a separate architecture-specific infrastructure.
1040 */
1041 static void remote_mb(void *info)
1042 {
1043 smp_mb();
1044 }
1045
1046 /**
1047 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
1048 * @buf: ring buffer
1049 * @consumed: consumed count indicating the position where to read
1050 * @produced: produced count, indicates position when to stop reading
1051 *
1052 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1053 * data to read at consumed position, or 0 if the get operation succeeds.
1054 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1055 */
1056
1057 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
1058 unsigned long *consumed, unsigned long *produced)
1059 {
1060 struct channel *chan = buf->backend.chan;
1061 const struct lib_ring_buffer_config *config = &chan->backend.config;
1062 unsigned long consumed_cur, write_offset;
1063 int finalized;
1064
1065 retry:
1066 finalized = READ_ONCE(buf->finalized);
1067 /*
1068 * Read finalized before counters.
1069 */
1070 smp_rmb();
1071 consumed_cur = atomic_long_read(&buf->consumed);
1072 /*
1073 * No need to issue a memory barrier between consumed count read and
1074 * write offset read, because consumed count can only change
1075 * concurrently in overwrite mode, and we keep a sequence counter
1076 * identifier derived from the write offset to check we are getting
1077 * the same sub-buffer we are expecting (the sub-buffers are atomically
1078 * "tagged" upon writes, tags are checked upon read).
1079 */
1080 write_offset = v_read(config, &buf->offset);
1081
1082 /*
1083 * Check that we are not about to read the same subbuffer in
1084 * which the writer head is.
1085 */
1086 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1087 == 0)
1088 goto nodata;
1089
1090 *consumed = consumed_cur;
1091 *produced = subbuf_trunc(write_offset, chan);
1092
1093 return 0;
1094
1095 nodata:
1096 /*
1097 * The memory barriers __wait_event()/wake_up_interruptible() take care
1098 * of "raw_spin_is_locked" memory ordering.
1099 */
1100 if (finalized)
1101 return -ENODATA;
1102 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1103 goto retry;
1104 else
1105 return -EAGAIN;
1106 }
1107 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
1108
1109 /**
1110 * Performs the same function as lib_ring_buffer_snapshot(), but the positions
1111 * are saved regardless of whether the consumed and produced positions are
1112 * in the same subbuffer.
1113 * @buf: ring buffer
1114 * @consumed: consumed byte count indicating the last position read
1115 * @produced: produced byte count indicating the last position written
1116 *
1117 * This function is meant to provide information on the exact producer and
1118 * consumer positions without regard for the "snapshot" feature.
1119 */
1120 int lib_ring_buffer_snapshot_sample_positions(struct lib_ring_buffer *buf,
1121 unsigned long *consumed, unsigned long *produced)
1122 {
1123 struct channel *chan = buf->backend.chan;
1124 const struct lib_ring_buffer_config *config = &chan->backend.config;
1125
1126 smp_rmb();
1127 *consumed = atomic_long_read(&buf->consumed);
1128 /*
1129 * No need to issue a memory barrier between consumed count read and
1130 * write offset read, because consumed count can only change
1131 * concurrently in overwrite mode, and we keep a sequence counter
1132 * identifier derived from the write offset to check we are getting
1133 * the same sub-buffer we are expecting (the sub-buffers are atomically
1134 * "tagged" upon writes, tags are checked upon read).
1135 */
1136 *produced = v_read(config, &buf->offset);
1137 return 0;
1138 }
1139
1140 /**
1141 * lib_ring_buffer_put_snapshot - move consumed counter forward
1142 *
1143 * Should only be called from consumer context.
1144 * @buf: ring buffer
1145 * @consumed_new: new consumed count value
1146 */
1147 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
1148 unsigned long consumed_new)
1149 {
1150 struct lib_ring_buffer_backend *bufb = &buf->backend;
1151 struct channel *chan = bufb->chan;
1152 unsigned long consumed;
1153
1154 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1155
1156 /*
1157 * Only push the consumed value forward.
1158 * If the consumed cmpxchg fails, this is because we have been pushed by
1159 * the writer in flight recorder mode.
1160 */
1161 consumed = atomic_long_read(&buf->consumed);
1162 while ((long) consumed - (long) consumed_new < 0)
1163 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
1164 consumed_new);
1165 /* Wake-up the metadata producer */
1166 wake_up_interruptible(&buf->write_wait);
1167 }
1168 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
1169
1170 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1171 static void lib_ring_buffer_flush_read_subbuf_dcache(
1172 const struct lib_ring_buffer_config *config,
1173 struct channel *chan,
1174 struct lib_ring_buffer *buf)
1175 {
1176 struct lib_ring_buffer_backend_pages *pages;
1177 unsigned long sb_bindex, id, i, nr_pages;
1178
1179 if (config->output != RING_BUFFER_MMAP)
1180 return;
1181
1182 /*
1183 * Architectures with caches aliased on virtual addresses may
1184 * use different cache lines for the linear mapping vs
1185 * user-space memory mapping. Given that the ring buffer is
1186 * based on the kernel linear mapping, aligning it with the
1187 * user-space mapping is not straightforward, and would require
1188 * extra TLB entries. Therefore, simply flush the dcache for the
1189 * entire sub-buffer before reading it.
1190 */
1191 id = buf->backend.buf_rsb.id;
1192 sb_bindex = subbuffer_id_get_index(config, id);
1193 pages = buf->backend.array[sb_bindex];
1194 nr_pages = buf->backend.num_pages_per_subbuf;
1195 for (i = 0; i < nr_pages; i++) {
1196 struct lib_ring_buffer_backend_page *backend_page;
1197
1198 backend_page = &pages->p[i];
1199 flush_dcache_page(pfn_to_page(backend_page->pfn));
1200 }
1201 }
1202 #else
1203 static void lib_ring_buffer_flush_read_subbuf_dcache(
1204 const struct lib_ring_buffer_config *config,
1205 struct channel *chan,
1206 struct lib_ring_buffer *buf)
1207 {
1208 }
1209 #endif
1210
1211 /**
1212 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
1213 * @buf: ring buffer
1214 * @consumed: consumed count indicating the position where to read
1215 *
1216 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1217 * data to read at consumed position, or 0 if the get operation succeeds.
1218 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1219 */
1220 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
1221 unsigned long consumed)
1222 {
1223 struct channel *chan = buf->backend.chan;
1224 const struct lib_ring_buffer_config *config = &chan->backend.config;
1225 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1226 int ret;
1227 int finalized;
1228
1229 if (buf->get_subbuf) {
1230 /*
1231 * Reader is trying to get a subbuffer twice.
1232 */
1233 CHAN_WARN_ON(chan, 1);
1234 return -EBUSY;
1235 }
1236 retry:
1237 finalized = READ_ONCE(buf->finalized);
1238 /*
1239 * Read finalized before counters.
1240 */
1241 smp_rmb();
1242 consumed_cur = atomic_long_read(&buf->consumed);
1243 consumed_idx = subbuf_index(consumed, chan);
1244 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
1245 /*
1246 * Make sure we read the commit count before reading the buffer
1247 * data and the write offset. Correct consumed offset ordering
1248 * wrt commit count is insured by the use of cmpxchg to update
1249 * the consumed offset.
1250 * smp_call_function_single can fail if the remote CPU is offline,
1251 * this is OK because then there is no wmb to execute there.
1252 * If our thread is executing on the same CPU as the on the buffers
1253 * belongs to, we don't have to synchronize it at all. If we are
1254 * migrated, the scheduler will take care of the memory barriers.
1255 * Normally, smp_call_function_single() should ensure program order when
1256 * executing the remote function, which implies that it surrounds the
1257 * function execution with :
1258 * smp_mb()
1259 * send IPI
1260 * csd_lock_wait
1261 * recv IPI
1262 * smp_mb()
1263 * exec. function
1264 * smp_mb()
1265 * csd unlock
1266 * smp_mb()
1267 *
1268 * However, smp_call_function_single() does not seem to clearly execute
1269 * such barriers. It depends on spinlock semantic to provide the barrier
1270 * before executing the IPI and, when busy-looping, csd_lock_wait only
1271 * executes smp_mb() when it has to wait for the other CPU.
1272 *
1273 * I don't trust this code. Therefore, let's add the smp_mb() sequence
1274 * required ourself, even if duplicated. It has no performance impact
1275 * anyway.
1276 *
1277 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
1278 * read and write vs write. They do not ensure core synchronization. We
1279 * really have to ensure total order between the 3 barriers running on
1280 * the 2 CPUs.
1281 */
1282 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1283 if (config->sync == RING_BUFFER_SYNC_PER_CPU
1284 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
1285 if (raw_smp_processor_id() != buf->backend.cpu) {
1286 /* Total order with IPI handler smp_mb() */
1287 smp_mb();
1288 smp_call_function_single(buf->backend.cpu,
1289 remote_mb, NULL, 1);
1290 /* Total order with IPI handler smp_mb() */
1291 smp_mb();
1292 }
1293 } else {
1294 /* Total order with IPI handler smp_mb() */
1295 smp_mb();
1296 smp_call_function(remote_mb, NULL, 1);
1297 /* Total order with IPI handler smp_mb() */
1298 smp_mb();
1299 }
1300 } else {
1301 /*
1302 * Local rmb to match the remote wmb to read the commit count
1303 * before the buffer data and the write offset.
1304 */
1305 smp_rmb();
1306 }
1307
1308 write_offset = v_read(config, &buf->offset);
1309
1310 /*
1311 * Check that the buffer we are getting is after or at consumed_cur
1312 * position.
1313 */
1314 if ((long) subbuf_trunc(consumed, chan)
1315 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1316 goto nodata;
1317
1318 /*
1319 * Check that the subbuffer we are trying to consume has been
1320 * already fully committed.
1321 */
1322 if (((commit_count - chan->backend.subbuf_size)
1323 & chan->commit_count_mask)
1324 - (buf_trunc(consumed, chan)
1325 >> chan->backend.num_subbuf_order)
1326 != 0)
1327 goto nodata;
1328
1329 /*
1330 * Check that we are not about to read the same subbuffer in
1331 * which the writer head is.
1332 */
1333 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1334 == 0)
1335 goto nodata;
1336
1337 /*
1338 * Failure to get the subbuffer causes a busy-loop retry without going
1339 * to a wait queue. These are caused by short-lived race windows where
1340 * the writer is getting access to a subbuffer we were trying to get
1341 * access to. Also checks that the "consumed" buffer count we are
1342 * looking for matches the one contained in the subbuffer id.
1343 */
1344 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1345 consumed_idx, buf_trunc_val(consumed, chan));
1346 if (ret)
1347 goto retry;
1348 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1349
1350 buf->get_subbuf_consumed = consumed;
1351 buf->get_subbuf = 1;
1352
1353 lib_ring_buffer_flush_read_subbuf_dcache(config, chan, buf);
1354
1355 return 0;
1356
1357 nodata:
1358 /*
1359 * The memory barriers __wait_event()/wake_up_interruptible() take care
1360 * of "raw_spin_is_locked" memory ordering.
1361 */
1362 if (finalized)
1363 return -ENODATA;
1364 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1365 goto retry;
1366 else
1367 return -EAGAIN;
1368 }
1369 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1370
1371 /**
1372 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1373 * @buf: ring buffer
1374 */
1375 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1376 {
1377 struct lib_ring_buffer_backend *bufb = &buf->backend;
1378 struct channel *chan = bufb->chan;
1379 const struct lib_ring_buffer_config *config = &chan->backend.config;
1380 unsigned long read_sb_bindex, consumed_idx, consumed;
1381
1382 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1383
1384 if (!buf->get_subbuf) {
1385 /*
1386 * Reader puts a subbuffer it did not get.
1387 */
1388 CHAN_WARN_ON(chan, 1);
1389 return;
1390 }
1391 consumed = buf->get_subbuf_consumed;
1392 buf->get_subbuf = 0;
1393
1394 /*
1395 * Clear the records_unread counter. (overruns counter)
1396 * Can still be non-zero if a file reader simply grabbed the data
1397 * without using iterators.
1398 * Can be below zero if an iterator is used on a snapshot more than
1399 * once.
1400 */
1401 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1402 v_add(config, v_read(config,
1403 &bufb->array[read_sb_bindex]->records_unread),
1404 &bufb->records_read);
1405 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1406 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1407 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1408 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1409
1410 /*
1411 * Exchange the reader subbuffer with the one we put in its place in the
1412 * writer subbuffer table. Expect the original consumed count. If
1413 * update_read_sb_index fails, this is because the writer updated the
1414 * subbuffer concurrently. We should therefore keep the subbuffer we
1415 * currently have: it has become invalid to try reading this sub-buffer
1416 * consumed count value anyway.
1417 */
1418 consumed_idx = subbuf_index(consumed, chan);
1419 update_read_sb_index(config, &buf->backend, &chan->backend,
1420 consumed_idx, buf_trunc_val(consumed, chan));
1421 /*
1422 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1423 * if the writer concurrently updated it.
1424 */
1425 }
1426 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1427
1428 /*
1429 * cons_offset is an iterator on all subbuffer offsets between the reader
1430 * position and the writer position. (inclusive)
1431 */
1432 static
1433 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1434 struct channel *chan,
1435 unsigned long cons_offset,
1436 int cpu)
1437 {
1438 const struct lib_ring_buffer_config *config = &chan->backend.config;
1439 unsigned long cons_idx, commit_count, commit_count_sb;
1440
1441 cons_idx = subbuf_index(cons_offset, chan);
1442 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1443 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1444
1445 if (subbuf_offset(commit_count, chan) != 0)
1446 printk(KERN_WARNING
1447 "ring buffer %s, cpu %d: "
1448 "commit count in subbuffer %lu,\n"
1449 "expecting multiples of %lu bytes\n"
1450 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1451 chan->backend.name, cpu, cons_idx,
1452 chan->backend.subbuf_size,
1453 commit_count, commit_count_sb);
1454
1455 printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1456 chan->backend.name, cpu, commit_count);
1457 }
1458
1459 static
1460 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1461 struct channel *chan,
1462 void *priv, int cpu)
1463 {
1464 const struct lib_ring_buffer_config *config = &chan->backend.config;
1465 unsigned long write_offset, cons_offset;
1466
1467 /*
1468 * No need to order commit_count, write_offset and cons_offset reads
1469 * because we execute at teardown when no more writer nor reader
1470 * references are left.
1471 */
1472 write_offset = v_read(config, &buf->offset);
1473 cons_offset = atomic_long_read(&buf->consumed);
1474 if (write_offset != cons_offset)
1475 printk(KERN_DEBUG
1476 "ring buffer %s, cpu %d: "
1477 "non-consumed data\n"
1478 " [ %lu bytes written, %lu bytes read ]\n",
1479 chan->backend.name, cpu, write_offset, cons_offset);
1480
1481 for (cons_offset = atomic_long_read(&buf->consumed);
1482 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1483 chan)
1484 - cons_offset) > 0;
1485 cons_offset = subbuf_align(cons_offset, chan))
1486 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1487 cpu);
1488 }
1489
1490 static
1491 void lib_ring_buffer_print_errors(struct channel *chan,
1492 struct lib_ring_buffer *buf, int cpu)
1493 {
1494 const struct lib_ring_buffer_config *config = &chan->backend.config;
1495 void *priv = chan->backend.priv;
1496
1497 if (!strcmp(chan->backend.name, "relay-metadata")) {
1498 printk(KERN_DEBUG "ring buffer %s: %lu records written, "
1499 "%lu records overrun\n",
1500 chan->backend.name,
1501 v_read(config, &buf->records_count),
1502 v_read(config, &buf->records_overrun));
1503 } else {
1504 printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1505 "%lu records overrun\n",
1506 chan->backend.name, cpu,
1507 v_read(config, &buf->records_count),
1508 v_read(config, &buf->records_overrun));
1509
1510 if (v_read(config, &buf->records_lost_full)
1511 || v_read(config, &buf->records_lost_wrap)
1512 || v_read(config, &buf->records_lost_big))
1513 printk(KERN_WARNING
1514 "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1515 " [ %lu buffer full, %lu nest buffer wrap-around, "
1516 "%lu event too big ]\n",
1517 chan->backend.name, cpu,
1518 v_read(config, &buf->records_lost_full),
1519 v_read(config, &buf->records_lost_wrap),
1520 v_read(config, &buf->records_lost_big));
1521 }
1522 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1523 }
1524
1525 /*
1526 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1527 *
1528 * Only executed when the buffer is finalized, in SWITCH_FLUSH.
1529 */
1530 static
1531 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1532 struct channel *chan,
1533 struct switch_offsets *offsets,
1534 u64 tsc)
1535 {
1536 const struct lib_ring_buffer_config *config = &chan->backend.config;
1537 unsigned long oldidx = subbuf_index(offsets->old, chan);
1538 unsigned long commit_count;
1539 struct commit_counters_hot *cc_hot;
1540
1541 config->cb.buffer_begin(buf, tsc, oldidx);
1542
1543 /*
1544 * Order all writes to buffer before the commit count update that will
1545 * determine that the subbuffer is full.
1546 */
1547 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1548 /*
1549 * Must write slot data before incrementing commit count. This
1550 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1551 * by get_subbuf().
1552 */
1553 barrier();
1554 } else
1555 smp_wmb();
1556 cc_hot = &buf->commit_hot[oldidx];
1557 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1558 commit_count = v_read(config, &cc_hot->cc);
1559 /* Check if the written buffer has to be delivered */
1560 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1561 commit_count, oldidx, tsc);
1562 lib_ring_buffer_write_commit_counter(config, buf, chan,
1563 offsets->old + config->cb.subbuffer_header_size(),
1564 commit_count, cc_hot);
1565 }
1566
1567 /*
1568 * lib_ring_buffer_switch_old_end: switch old subbuffer
1569 *
1570 * Note : offset_old should never be 0 here. It is ok, because we never perform
1571 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1572 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1573 * subbuffer.
1574 */
1575 static
1576 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1577 struct channel *chan,
1578 struct switch_offsets *offsets,
1579 u64 tsc)
1580 {
1581 const struct lib_ring_buffer_config *config = &chan->backend.config;
1582 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1583 unsigned long commit_count, padding_size, data_size;
1584 struct commit_counters_hot *cc_hot;
1585
1586 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1587 padding_size = chan->backend.subbuf_size - data_size;
1588 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1589
1590 /*
1591 * Order all writes to buffer before the commit count update that will
1592 * determine that the subbuffer is full.
1593 */
1594 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1595 /*
1596 * Must write slot data before incrementing commit count. This
1597 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1598 * by get_subbuf().
1599 */
1600 barrier();
1601 } else
1602 smp_wmb();
1603 cc_hot = &buf->commit_hot[oldidx];
1604 v_add(config, padding_size, &cc_hot->cc);
1605 commit_count = v_read(config, &cc_hot->cc);
1606 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1607 commit_count, oldidx, tsc);
1608 lib_ring_buffer_write_commit_counter(config, buf, chan,
1609 offsets->old + padding_size, commit_count,
1610 cc_hot);
1611 }
1612
1613 /*
1614 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1615 *
1616 * This code can be executed unordered : writers may already have written to the
1617 * sub-buffer before this code gets executed, caution. The commit makes sure
1618 * that this code is executed before the deliver of this sub-buffer.
1619 */
1620 static
1621 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1622 struct channel *chan,
1623 struct switch_offsets *offsets,
1624 u64 tsc)
1625 {
1626 const struct lib_ring_buffer_config *config = &chan->backend.config;
1627 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1628 unsigned long commit_count;
1629 struct commit_counters_hot *cc_hot;
1630
1631 config->cb.buffer_begin(buf, tsc, beginidx);
1632
1633 /*
1634 * Order all writes to buffer before the commit count update that will
1635 * determine that the subbuffer is full.
1636 */
1637 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1638 /*
1639 * Must write slot data before incrementing commit count. This
1640 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1641 * by get_subbuf().
1642 */
1643 barrier();
1644 } else
1645 smp_wmb();
1646 cc_hot = &buf->commit_hot[beginidx];
1647 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1648 commit_count = v_read(config, &cc_hot->cc);
1649 /* Check if the written buffer has to be delivered */
1650 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1651 commit_count, beginidx, tsc);
1652 lib_ring_buffer_write_commit_counter(config, buf, chan,
1653 offsets->begin + config->cb.subbuffer_header_size(),
1654 commit_count, cc_hot);
1655 }
1656
1657 /*
1658 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1659 *
1660 * Calls subbuffer_set_data_size() to set the data size of the current
1661 * sub-buffer. We do not need to perform check_deliver nor commit here,
1662 * since this task will be done by the "commit" of the event for which
1663 * we are currently doing the space reservation.
1664 */
1665 static
1666 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1667 struct channel *chan,
1668 struct switch_offsets *offsets,
1669 u64 tsc)
1670 {
1671 const struct lib_ring_buffer_config *config = &chan->backend.config;
1672 unsigned long endidx, data_size;
1673
1674 endidx = subbuf_index(offsets->end - 1, chan);
1675 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1676 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1677 }
1678
1679 /*
1680 * Returns :
1681 * 0 if ok
1682 * !0 if execution must be aborted.
1683 */
1684 static
1685 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1686 struct lib_ring_buffer *buf,
1687 struct channel *chan,
1688 struct switch_offsets *offsets,
1689 u64 *tsc)
1690 {
1691 const struct lib_ring_buffer_config *config = &chan->backend.config;
1692 unsigned long off, reserve_commit_diff;
1693
1694 offsets->begin = v_read(config, &buf->offset);
1695 offsets->old = offsets->begin;
1696 offsets->switch_old_start = 0;
1697 off = subbuf_offset(offsets->begin, chan);
1698
1699 *tsc = config->cb.ring_buffer_clock_read(chan);
1700
1701 /*
1702 * Ensure we flush the header of an empty subbuffer when doing the
1703 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1704 * total data gathering duration even if there were no records saved
1705 * after the last buffer switch.
1706 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1707 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1708 * subbuffer header as appropriate.
1709 * The next record that reserves space will be responsible for
1710 * populating the following subbuffer header. We choose not to populate
1711 * the next subbuffer header here because we want to be able to use
1712 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1713 * buffer flush, which must guarantee that all the buffer content
1714 * (records and header timestamps) are visible to the reader. This is
1715 * required for quiescence guarantees for the fusion merge.
1716 */
1717 if (mode != SWITCH_FLUSH && !off)
1718 return -1; /* we do not have to switch : buffer is empty */
1719
1720 if (unlikely(off == 0)) {
1721 unsigned long sb_index, commit_count;
1722
1723 /*
1724 * We are performing a SWITCH_FLUSH. At this stage, there are no
1725 * concurrent writes into the buffer.
1726 *
1727 * The client does not save any header information. Don't
1728 * switch empty subbuffer on finalize, because it is invalid to
1729 * deliver a completely empty subbuffer.
1730 */
1731 if (!config->cb.subbuffer_header_size())
1732 return -1;
1733
1734 /* Test new buffer integrity */
1735 sb_index = subbuf_index(offsets->begin, chan);
1736 commit_count = v_read(config,
1737 &buf->commit_cold[sb_index].cc_sb);
1738 reserve_commit_diff =
1739 (buf_trunc(offsets->begin, chan)
1740 >> chan->backend.num_subbuf_order)
1741 - (commit_count & chan->commit_count_mask);
1742 if (likely(reserve_commit_diff == 0)) {
1743 /* Next subbuffer not being written to. */
1744 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1745 subbuf_trunc(offsets->begin, chan)
1746 - subbuf_trunc((unsigned long)
1747 atomic_long_read(&buf->consumed), chan)
1748 >= chan->backend.buf_size)) {
1749 /*
1750 * We do not overwrite non consumed buffers
1751 * and we are full : don't switch.
1752 */
1753 return -1;
1754 } else {
1755 /*
1756 * Next subbuffer not being written to, and we
1757 * are either in overwrite mode or the buffer is
1758 * not full. It's safe to write in this new
1759 * subbuffer.
1760 */
1761 }
1762 } else {
1763 /*
1764 * Next subbuffer reserve offset does not match the
1765 * commit offset. Don't perform switch in
1766 * producer-consumer and overwrite mode. Caused by
1767 * either a writer OOPS or too many nested writes over a
1768 * reserve/commit pair.
1769 */
1770 return -1;
1771 }
1772
1773 /*
1774 * Need to write the subbuffer start header on finalize.
1775 */
1776 offsets->switch_old_start = 1;
1777 }
1778 offsets->begin = subbuf_align(offsets->begin, chan);
1779 /* Note: old points to the next subbuf at offset 0 */
1780 offsets->end = offsets->begin;
1781 return 0;
1782 }
1783
1784 /*
1785 * Force a sub-buffer switch. This operation is completely reentrant : can be
1786 * called while tracing is active with absolutely no lock held.
1787 *
1788 * Note, however, that as a v_cmpxchg is used for some atomic
1789 * operations, this function must be called from the CPU which owns the buffer
1790 * for a ACTIVE flush.
1791 */
1792 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1793 {
1794 struct channel *chan = buf->backend.chan;
1795 const struct lib_ring_buffer_config *config = &chan->backend.config;
1796 struct switch_offsets offsets;
1797 unsigned long oldidx;
1798 u64 tsc;
1799
1800 offsets.size = 0;
1801
1802 /*
1803 * Perform retryable operations.
1804 */
1805 do {
1806 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1807 &tsc))
1808 return; /* Switch not needed */
1809 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1810 != offsets.old);
1811
1812 /*
1813 * Atomically update last_tsc. This update races against concurrent
1814 * atomic updates, but the race will always cause supplementary full TSC
1815 * records, never the opposite (missing a full TSC record when it would
1816 * be needed).
1817 */
1818 save_last_tsc(config, buf, tsc);
1819
1820 /*
1821 * Push the reader if necessary
1822 */
1823 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1824
1825 oldidx = subbuf_index(offsets.old, chan);
1826 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1827
1828 /*
1829 * May need to populate header start on SWITCH_FLUSH.
1830 */
1831 if (offsets.switch_old_start) {
1832 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1833 offsets.old += config->cb.subbuffer_header_size();
1834 }
1835
1836 /*
1837 * Switch old subbuffer.
1838 */
1839 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1840 }
1841 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1842
1843 struct switch_param {
1844 struct lib_ring_buffer *buf;
1845 enum switch_mode mode;
1846 };
1847
1848 static void remote_switch(void *info)
1849 {
1850 struct switch_param *param = info;
1851 struct lib_ring_buffer *buf = param->buf;
1852
1853 lib_ring_buffer_switch_slow(buf, param->mode);
1854 }
1855
1856 static void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
1857 enum switch_mode mode)
1858 {
1859 struct channel *chan = buf->backend.chan;
1860 const struct lib_ring_buffer_config *config = &chan->backend.config;
1861 int ret;
1862 struct switch_param param;
1863
1864 /*
1865 * With global synchronization we don't need to use the IPI scheme.
1866 */
1867 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1868 lib_ring_buffer_switch_slow(buf, mode);
1869 return;
1870 }
1871
1872 /*
1873 * Disabling preemption ensures two things: first, that the
1874 * target cpu is not taken concurrently offline while we are within
1875 * smp_call_function_single(). Secondly, if it happens that the
1876 * CPU is not online, our own call to lib_ring_buffer_switch_slow()
1877 * needs to be protected from CPU hotplug handlers, which can
1878 * also perform a remote subbuffer switch.
1879 */
1880 preempt_disable();
1881 param.buf = buf;
1882 param.mode = mode;
1883 ret = smp_call_function_single(buf->backend.cpu,
1884 remote_switch, &param, 1);
1885 if (ret) {
1886 /* Remote CPU is offline, do it ourself. */
1887 lib_ring_buffer_switch_slow(buf, mode);
1888 }
1889 preempt_enable();
1890 }
1891
1892 /* Switch sub-buffer if current sub-buffer is non-empty. */
1893 void lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf)
1894 {
1895 _lib_ring_buffer_switch_remote(buf, SWITCH_ACTIVE);
1896 }
1897 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1898
1899 /* Switch sub-buffer even if current sub-buffer is empty. */
1900 void lib_ring_buffer_switch_remote_empty(struct lib_ring_buffer *buf)
1901 {
1902 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
1903 }
1904 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote_empty);
1905
1906 /*
1907 * Returns :
1908 * 0 if ok
1909 * -ENOSPC if event size is too large for packet.
1910 * -ENOBUFS if there is currently not enough space in buffer for the event.
1911 * -EIO if data cannot be written into the buffer for any other reason.
1912 */
1913 static
1914 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1915 struct channel *chan,
1916 struct switch_offsets *offsets,
1917 struct lib_ring_buffer_ctx *ctx,
1918 void *client_ctx)
1919 {
1920 const struct lib_ring_buffer_config *config = &chan->backend.config;
1921 unsigned long reserve_commit_diff, offset_cmp;
1922
1923 retry:
1924 offsets->begin = offset_cmp = v_read(config, &buf->offset);
1925 offsets->old = offsets->begin;
1926 offsets->switch_new_start = 0;
1927 offsets->switch_new_end = 0;
1928 offsets->switch_old_end = 0;
1929 offsets->pre_header_padding = 0;
1930
1931 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1932 if ((int64_t) ctx->tsc == -EIO)
1933 return -EIO;
1934
1935 if (last_tsc_overflow(config, buf, ctx->tsc))
1936 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
1937
1938 if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
1939 offsets->switch_new_start = 1; /* For offsets->begin */
1940 } else {
1941 offsets->size = config->cb.record_header_size(config, chan,
1942 offsets->begin,
1943 &offsets->pre_header_padding,
1944 ctx, client_ctx);
1945 offsets->size +=
1946 lib_ring_buffer_align(offsets->begin + offsets->size,
1947 ctx->largest_align)
1948 + ctx->data_size;
1949 if (unlikely(subbuf_offset(offsets->begin, chan) +
1950 offsets->size > chan->backend.subbuf_size)) {
1951 offsets->switch_old_end = 1; /* For offsets->old */
1952 offsets->switch_new_start = 1; /* For offsets->begin */
1953 }
1954 }
1955 if (unlikely(offsets->switch_new_start)) {
1956 unsigned long sb_index, commit_count;
1957
1958 /*
1959 * We are typically not filling the previous buffer completely.
1960 */
1961 if (likely(offsets->switch_old_end))
1962 offsets->begin = subbuf_align(offsets->begin, chan);
1963 offsets->begin = offsets->begin
1964 + config->cb.subbuffer_header_size();
1965 /* Test new buffer integrity */
1966 sb_index = subbuf_index(offsets->begin, chan);
1967 /*
1968 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
1969 * lib_ring_buffer_check_deliver() has the matching
1970 * memory barriers required around commit_cold cc_sb
1971 * updates to ensure reserve and commit counter updates
1972 * are not seen reordered when updated by another CPU.
1973 */
1974 smp_rmb();
1975 commit_count = v_read(config,
1976 &buf->commit_cold[sb_index].cc_sb);
1977 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
1978 smp_rmb();
1979 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
1980 /*
1981 * The reserve counter have been concurrently updated
1982 * while we read the commit counter. This means the
1983 * commit counter we read might not match buf->offset
1984 * due to concurrent update. We therefore need to retry.
1985 */
1986 goto retry;
1987 }
1988 reserve_commit_diff =
1989 (buf_trunc(offsets->begin, chan)
1990 >> chan->backend.num_subbuf_order)
1991 - (commit_count & chan->commit_count_mask);
1992 if (likely(reserve_commit_diff == 0)) {
1993 /* Next subbuffer not being written to. */
1994 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1995 subbuf_trunc(offsets->begin, chan)
1996 - subbuf_trunc((unsigned long)
1997 atomic_long_read(&buf->consumed), chan)
1998 >= chan->backend.buf_size)) {
1999 /*
2000 * We do not overwrite non consumed buffers
2001 * and we are full : record is lost.
2002 */
2003 v_inc(config, &buf->records_lost_full);
2004 return -ENOBUFS;
2005 } else {
2006 /*
2007 * Next subbuffer not being written to, and we
2008 * are either in overwrite mode or the buffer is
2009 * not full. It's safe to write in this new
2010 * subbuffer.
2011 */
2012 }
2013 } else {
2014 /*
2015 * Next subbuffer reserve offset does not match the
2016 * commit offset, and this did not involve update to the
2017 * reserve counter. Drop record in producer-consumer and
2018 * overwrite mode. Caused by either a writer OOPS or
2019 * too many nested writes over a reserve/commit pair.
2020 */
2021 v_inc(config, &buf->records_lost_wrap);
2022 return -EIO;
2023 }
2024 offsets->size =
2025 config->cb.record_header_size(config, chan,
2026 offsets->begin,
2027 &offsets->pre_header_padding,
2028 ctx, client_ctx);
2029 offsets->size +=
2030 lib_ring_buffer_align(offsets->begin + offsets->size,
2031 ctx->largest_align)
2032 + ctx->data_size;
2033 if (unlikely(subbuf_offset(offsets->begin, chan)
2034 + offsets->size > chan->backend.subbuf_size)) {
2035 /*
2036 * Record too big for subbuffers, report error, don't
2037 * complete the sub-buffer switch.
2038 */
2039 v_inc(config, &buf->records_lost_big);
2040 return -ENOSPC;
2041 } else {
2042 /*
2043 * We just made a successful buffer switch and the
2044 * record fits in the new subbuffer. Let's write.
2045 */
2046 }
2047 } else {
2048 /*
2049 * Record fits in the current buffer and we are not on a switch
2050 * boundary. It's safe to write.
2051 */
2052 }
2053 offsets->end = offsets->begin + offsets->size;
2054
2055 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
2056 /*
2057 * The offset_end will fall at the very beginning of the next
2058 * subbuffer.
2059 */
2060 offsets->switch_new_end = 1; /* For offsets->begin */
2061 }
2062 return 0;
2063 }
2064
2065 static struct lib_ring_buffer *get_current_buf(struct channel *chan, int cpu)
2066 {
2067 const struct lib_ring_buffer_config *config = &chan->backend.config;
2068
2069 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
2070 return per_cpu_ptr(chan->backend.buf, cpu);
2071 else
2072 return chan->backend.buf;
2073 }
2074
2075 void lib_ring_buffer_lost_event_too_big(struct channel *chan)
2076 {
2077 const struct lib_ring_buffer_config *config = &chan->backend.config;
2078 struct lib_ring_buffer *buf = get_current_buf(chan, smp_processor_id());
2079
2080 v_inc(config, &buf->records_lost_big);
2081 }
2082 EXPORT_SYMBOL_GPL(lib_ring_buffer_lost_event_too_big);
2083
2084 /**
2085 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
2086 * @ctx: ring buffer context.
2087 *
2088 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
2089 * -EIO for other errors, else returns 0.
2090 * It will take care of sub-buffer switching.
2091 */
2092 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx,
2093 void *client_ctx)
2094 {
2095 struct channel *chan = ctx->chan;
2096 const struct lib_ring_buffer_config *config = &chan->backend.config;
2097 struct lib_ring_buffer *buf;
2098 struct switch_offsets offsets;
2099 int ret;
2100
2101 ctx->buf = buf = get_current_buf(chan, ctx->cpu);
2102 offsets.size = 0;
2103
2104 do {
2105 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
2106 ctx, client_ctx);
2107 if (unlikely(ret))
2108 return ret;
2109 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
2110 offsets.end)
2111 != offsets.old));
2112
2113 /*
2114 * Atomically update last_tsc. This update races against concurrent
2115 * atomic updates, but the race will always cause supplementary full TSC
2116 * records, never the opposite (missing a full TSC record when it would
2117 * be needed).
2118 */
2119 save_last_tsc(config, buf, ctx->tsc);
2120
2121 /*
2122 * Push the reader if necessary
2123 */
2124 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
2125
2126 /*
2127 * Clear noref flag for this subbuffer.
2128 */
2129 lib_ring_buffer_clear_noref(config, &buf->backend,
2130 subbuf_index(offsets.end - 1, chan));
2131
2132 /*
2133 * Switch old subbuffer if needed.
2134 */
2135 if (unlikely(offsets.switch_old_end)) {
2136 lib_ring_buffer_clear_noref(config, &buf->backend,
2137 subbuf_index(offsets.old - 1, chan));
2138 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
2139 }
2140
2141 /*
2142 * Populate new subbuffer.
2143 */
2144 if (unlikely(offsets.switch_new_start))
2145 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
2146
2147 if (unlikely(offsets.switch_new_end))
2148 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
2149
2150 ctx->slot_size = offsets.size;
2151 ctx->pre_offset = offsets.begin;
2152 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
2153 return 0;
2154 }
2155 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
2156
2157 static
2158 void lib_ring_buffer_vmcore_check_deliver(const struct lib_ring_buffer_config *config,
2159 struct lib_ring_buffer *buf,
2160 unsigned long commit_count,
2161 unsigned long idx)
2162 {
2163 if (config->oops == RING_BUFFER_OOPS_CONSISTENCY)
2164 v_set(config, &buf->commit_hot[idx].seq, commit_count);
2165 }
2166
2167 /*
2168 * The ring buffer can count events recorded and overwritten per buffer,
2169 * but it is disabled by default due to its performance overhead.
2170 */
2171 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
2172 static
2173 void deliver_count_events(const struct lib_ring_buffer_config *config,
2174 struct lib_ring_buffer *buf,
2175 unsigned long idx)
2176 {
2177 v_add(config, subbuffer_get_records_count(config,
2178 &buf->backend, idx),
2179 &buf->records_count);
2180 v_add(config, subbuffer_count_records_overrun(config,
2181 &buf->backend, idx),
2182 &buf->records_overrun);
2183 }
2184 #else /* LTTNG_RING_BUFFER_COUNT_EVENTS */
2185 static
2186 void deliver_count_events(const struct lib_ring_buffer_config *config,
2187 struct lib_ring_buffer *buf,
2188 unsigned long idx)
2189 {
2190 }
2191 #endif /* #else LTTNG_RING_BUFFER_COUNT_EVENTS */
2192
2193
2194 void lib_ring_buffer_check_deliver_slow(const struct lib_ring_buffer_config *config,
2195 struct lib_ring_buffer *buf,
2196 struct channel *chan,
2197 unsigned long offset,
2198 unsigned long commit_count,
2199 unsigned long idx,
2200 u64 tsc)
2201 {
2202 unsigned long old_commit_count = commit_count
2203 - chan->backend.subbuf_size;
2204
2205 /*
2206 * If we succeeded at updating cc_sb below, we are the subbuffer
2207 * writer delivering the subbuffer. Deals with concurrent
2208 * updates of the "cc" value without adding a add_return atomic
2209 * operation to the fast path.
2210 *
2211 * We are doing the delivery in two steps:
2212 * - First, we cmpxchg() cc_sb to the new value
2213 * old_commit_count + 1. This ensures that we are the only
2214 * subbuffer user successfully filling the subbuffer, but we
2215 * do _not_ set the cc_sb value to "commit_count" yet.
2216 * Therefore, other writers that would wrap around the ring
2217 * buffer and try to start writing to our subbuffer would
2218 * have to drop records, because it would appear as
2219 * non-filled.
2220 * We therefore have exclusive access to the subbuffer control
2221 * structures. This mutual exclusion with other writers is
2222 * crucially important to perform record overruns count in
2223 * flight recorder mode locklessly.
2224 * - When we are ready to release the subbuffer (either for
2225 * reading or for overrun by other writers), we simply set the
2226 * cc_sb value to "commit_count" and perform delivery.
2227 *
2228 * The subbuffer size is least 2 bytes (minimum size: 1 page).
2229 * This guarantees that old_commit_count + 1 != commit_count.
2230 */
2231
2232 /*
2233 * Order prior updates to reserve count prior to the
2234 * commit_cold cc_sb update.
2235 */
2236 smp_wmb();
2237 if (likely(v_cmpxchg(config, &buf->commit_cold[idx].cc_sb,
2238 old_commit_count, old_commit_count + 1)
2239 == old_commit_count)) {
2240 /*
2241 * Start of exclusive subbuffer access. We are
2242 * guaranteed to be the last writer in this subbuffer
2243 * and any other writer trying to access this subbuffer
2244 * in this state is required to drop records.
2245 */
2246 deliver_count_events(config, buf, idx);
2247 config->cb.buffer_end(buf, tsc, idx,
2248 lib_ring_buffer_get_data_size(config,
2249 buf,
2250 idx));
2251
2252 /*
2253 * Increment the packet counter while we have exclusive
2254 * access.
2255 */
2256 subbuffer_inc_packet_count(config, &buf->backend, idx);
2257
2258 /*
2259 * Set noref flag and offset for this subbuffer id.
2260 * Contains a memory barrier that ensures counter stores
2261 * are ordered before set noref and offset.
2262 */
2263 lib_ring_buffer_set_noref_offset(config, &buf->backend, idx,
2264 buf_trunc_val(offset, chan));
2265
2266 /*
2267 * Order set_noref and record counter updates before the
2268 * end of subbuffer exclusive access. Orders with
2269 * respect to writers coming into the subbuffer after
2270 * wrap around, and also order wrt concurrent readers.
2271 */
2272 smp_mb();
2273 /* End of exclusive subbuffer access */
2274 v_set(config, &buf->commit_cold[idx].cc_sb,
2275 commit_count);
2276 /*
2277 * Order later updates to reserve count after
2278 * the commit_cold cc_sb update.
2279 */
2280 smp_wmb();
2281 lib_ring_buffer_vmcore_check_deliver(config, buf,
2282 commit_count, idx);
2283
2284 /*
2285 * RING_BUFFER_WAKEUP_BY_WRITER wakeup is not lock-free.
2286 */
2287 if (config->wakeup == RING_BUFFER_WAKEUP_BY_WRITER
2288 && atomic_long_read(&buf->active_readers)
2289 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
2290 wake_up_interruptible(&buf->read_wait);
2291 wake_up_interruptible(&chan->read_wait);
2292 }
2293
2294 }
2295 }
2296 EXPORT_SYMBOL_GPL(lib_ring_buffer_check_deliver_slow);
2297
2298 int __init init_lib_ring_buffer_frontend(void)
2299 {
2300 int cpu;
2301
2302 for_each_possible_cpu(cpu)
2303 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
2304 return 0;
2305 }
2306
2307 module_init(init_lib_ring_buffer_frontend);
2308
2309 void __exit exit_lib_ring_buffer_frontend(void)
2310 {
2311 }
2312
2313 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.120198 seconds and 3 git commands to generate.