b7406482899b85529c5d8bc12fb06e03e0b246d7
[lttng-docs.git] / 2.11 / lttng-docs-2.11.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.11, 22 October 2019
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/welcome.txt[]
11
12
13 include::../common/audience.txt[]
14
15
16 [[chapters]]
17 === What's in this documentation?
18
19 The LTTng Documentation is divided into the following sections:
20
21 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
22 rudiments of software tracing and the rationale behind the
23 LTTng project.
24 +
25 You can skip this section if you’re familiar with software tracing and
26 with the LTTng project.
27
28 * **<<installing-lttng,Installation>>** describes the steps to
29 install the LTTng packages on common Linux distributions and from
30 their sources.
31 +
32 You can skip this section if you already properly installed LTTng on
33 your target system.
34
35 * **<<getting-started,Quick start>>** is a concise guide to
36 getting started quickly with LTTng kernel and user space tracing.
37 +
38 We recommend this section if you're new to LTTng or to software tracing
39 in general.
40 +
41 You can skip this section if you're not new to LTTng.
42
43 * **<<core-concepts,Core concepts>>** explains the concepts at
44 the heart of LTTng.
45 +
46 It's a good idea to become familiar with the core concepts
47 before attempting to use the toolkit.
48
49 * **<<plumbing,Components of LTTng>>** describes the various components
50 of the LTTng machinery, like the daemons, the libraries, and the
51 command-line interface.
52 * **<<instrumenting,Instrumentation>>** shows different ways to
53 instrument user applications and the Linux kernel.
54 +
55 Instrumenting source code is essential to provide a meaningful
56 source of events.
57 +
58 You can skip this section if you do not have a programming background.
59
60 * **<<controlling-tracing,Tracing control>>** is divided into topics
61 which demonstrate how to use the vast array of features that
62 LTTng{nbsp}{revision} offers.
63 * **<<reference,Reference>>** contains reference tables.
64 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
65 to LTTng or to the field of software tracing.
66
67
68 include::../common/convention.txt[]
69
70
71 include::../common/acknowledgements.txt[]
72
73
74 [[whats-new]]
75 == What's new in LTTng{nbsp}{revision}?
76
77 LTTng{nbsp}{revision} bears the name _Lafontaine_. This modern
78 https://en.wikipedia.org/wiki/saison[saison] from the
79 https://oshlag.com/[Oshlag] microbrewery is a refreshing--zesty--rice
80 beer with hints of fruit and spices. Some even say it makes for a great
81 https://en.wikipedia.org/wiki/Somaek[Somaek] when mixed with
82 Chamisul Soju, not that we've tried!
83
84 New features and changes in LTTng{nbsp}{revision}:
85
86 * Just like you can typically perform
87 https://en.wikipedia.org/wiki/Log_rotation[log rotation], you can
88 now <<session-rotation,_rotate_ a tracing session>>, that
89 is, according to man:lttng-rotate(1), archive the current trace
90 chunk (all the tracing session's trace data since the last rotation
91 or since its inception) so that LTTng does not manage it anymore.
92 +
93 Once LTTng archives a trace chunk, you are free to read it, modify it,
94 move it, or remove it.
95 +
96 You can rotate a tracing session immediately or set a rotation schedule
97 to automate rotations.
98
99 * When you <<enabling-disabling-events,create an event rule>>, the
100 filter expression syntax now supports the following new operators:
101 +
102 --
103 ** `~` (bitwise not)
104 ** `<<` (bitwise left shift)
105 ** `>>` (bitwise right shift)
106 ** `&` (bitwise AND)
107 ** `^` (bitwise XOR)
108 ** `|` (bitwise OR)
109 --
110 +
111 The syntax also supports array indexing with the usual square brackets:
112 +
113 ----
114 regs[3][1] & 0xff7 == 0x240
115 ----
116 +
117 There are peculiarities for both the new operators and the array
118 indexing brackets, like a custom precedence table and implicit casting.
119 See man:lttng-enable-event(1) to get all the details about the filter
120 expression syntax.
121
122 * You can now dynamically instrument any application's or library's
123 function entry by symbol name thanks to the new
124 opt:lttng-enable-event(1):--userspace-probe option of
125 the `lttng enable-event` command:
126 +
127 [role="term"]
128 ----
129 $ lttng enable-event --kernel \
130 --userspace-probe=/usr/lib/libc.so.6:malloc libc_malloc
131 ----
132 +
133 The option also supports tracing existing
134 https://www.sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps[SystemTap
135 Statically Defined Tracing] (USDT) probe (DTrace-style marker). For
136 example, given the following probe:
137 +
138 [source,c]
139 ----
140 DTRACE_PROBE2("server", "accept-request", request_id, ip_addr);
141 ----
142 +
143 You can trace this probe with:
144 +
145 ----
146 $ lttng enable-event --kernel \
147 --userspace-probe=sdt:/path/to/server:server:accept-request \
148 server_accept_request
149 ----
150 +
151 This feature makes use of Linux's
152 https://www.kernel.org/doc/Documentation/trace/uprobetracer.txt[uprobe]
153 mechanism, therefore you must use the `--userspace-probe`
154 instrumentation option with the opt:lttng-enable-event(1):--kernel
155 domain option.
156 +
157 NOTE: As of LTTng{nbsp}{revision}, LTTng does not record function
158 parameters with the opt:lttng-enable-event(1):--userspace-probe option.
159
160 * Two new <<adding-context,context>> fields are available for Linux
161 kernel <<channel,channels>>:
162 +
163 --
164 ** `callstack-kernel`
165 ** `callstack-user`
166 --
167 +
168 Thanks to those, you can record the Linux kernel and user call stacks
169 when a kernel event occurs. For example:
170 +
171 [role="term"]
172 ----
173 $ lttng enable-event --kernel --syscall open
174 $ lttng add-context --kernel --type=callstack-kernel --type=callstack-user
175 ----
176 +
177 When an man:open(2) system call occurs, LTTng attaches the kernel and
178 user call stacks to the recorded event.
179 +
180 NOTE: LTTng cannot always sample the user space call stack reliably.
181 For instance, LTTng cannot sample the call stack of user applications
182 and libraries compiled with the
183 https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html[`-fomit-frame-pointer`]
184 option. In such a case, the tracing is not affected, but the sampled
185 user space call stack may only contain the user call stack's topmost
186 address.
187
188 * User applications and libraries instrumented with
189 <<lttng-ust,LTTng-UST>> can now safely unload (man:dlclose(3)) a
190 dynamically loaded
191 <<building-tracepoint-providers-and-user-application,tracepoint
192 provider package>>.
193
194 * The <<lttng-relayd,relay daemon>> is more efficient and presents fewer
195 connectivity issues, especially when a large number of targets send
196 trace data to a given relay daemon.
197
198 * LTTng-UST uses https://github.com/numactl/numactl[libnuma]
199 when available to allocate <<def-sub-buffer,sub-buffers>>, making them
200 local to each
201 https://en.wikipedia.org/wiki/Non-uniform_memory_access[NUMA] node.
202 +
203 This change makes the tracer more efficient on NUMA systems.
204
205
206 [[nuts-and-bolts]]
207 == Nuts and bolts
208
209 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
210 generation_ is a modern toolkit for tracing Linux systems and
211 applications. So your first question might be:
212 **what is tracing?**
213
214
215 [[what-is-tracing]]
216 === What is tracing?
217
218 As the history of software engineering progressed and led to what
219 we now take for granted--complex, numerous and
220 interdependent software applications running in parallel on
221 sophisticated operating systems like Linux--the authors of such
222 components, software developers, began feeling a natural
223 urge to have tools that would ensure the robustness and good performance
224 of their masterpieces.
225
226 One major achievement in this field is, inarguably, the
227 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
228 an essential tool for developers to find and fix bugs. But even the best
229 debugger won't help make your software run faster, and nowadays, faster
230 software means either more work done by the same hardware, or cheaper
231 hardware for the same work.
232
233 A _profiler_ is often the tool of choice to identify performance
234 bottlenecks. Profiling is suitable to identify _where_ performance is
235 lost in a given software. The profiler outputs a profile, a statistical
236 summary of observed events, which you may use to discover which
237 functions took the most time to execute. However, a profiler won't
238 report _why_ some identified functions are the bottleneck. Bottlenecks
239 might only occur when specific conditions are met, conditions that are
240 sometimes impossible to capture by a statistical profiler, or impossible
241 to reproduce with an application altered by the overhead of an
242 event-based profiler. For a thorough investigation of software
243 performance issues, a history of execution is essential, with the
244 recorded values of variables and context fields you choose, and
245 with as little influence as possible on the instrumented software. This
246 is where tracing comes in handy.
247
248 _Tracing_ is a technique used to understand what goes on in a running
249 software system. The software used for tracing is called a _tracer_,
250 which is conceptually similar to a tape recorder. When recording,
251 specific instrumentation points placed in the software source code
252 generate events that are saved on a giant tape: a _trace_ file. You
253 can trace user applications and the operating system at the same time,
254 opening the possibility of resolving a wide range of problems that would
255 otherwise be extremely challenging.
256
257 Tracing is often compared to _logging_. However, tracers and loggers are
258 two different tools, serving two different purposes. Tracers are
259 designed to record much lower-level events that occur much more
260 frequently than log messages, often in the range of thousands per
261 second, with very little execution overhead. Logging is more appropriate
262 for a very high-level analysis of less frequent events: user accesses,
263 exceptional conditions (errors and warnings, for example), database
264 transactions, instant messaging communications, and such. Simply put,
265 logging is one of the many use cases that can be satisfied with tracing.
266
267 The list of recorded events inside a trace file can be read manually
268 like a log file for the maximum level of detail, but it is generally
269 much more interesting to perform application-specific analyses to
270 produce reduced statistics and graphs that are useful to resolve a
271 given problem. Trace viewers and analyzers are specialized tools
272 designed to do this.
273
274 In the end, this is what LTTng is: a powerful, open source set of
275 tools to trace the Linux kernel and user applications at the same time.
276 LTTng is composed of several components actively maintained and
277 developed by its link:/community/#where[community].
278
279
280 [[lttng-alternatives]]
281 === Alternatives to noch:{LTTng}
282
283 Excluding proprietary solutions, a few competing software tracers
284 exist for Linux:
285
286 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
287 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
288 user scripts and is responsible for loading code into the
289 Linux kernel for further execution and collecting the outputted data.
290 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
291 subsystem in the Linux kernel in which a virtual machine can execute
292 programs passed from the user space to the kernel. You can attach
293 such programs to tracepoints and kprobes thanks to a system call, and
294 they can output data to the user space when executed thanks to
295 different mechanisms (pipe, VM register values, and eBPF maps, to name
296 a few).
297 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
298 is the de facto function tracer of the Linux kernel. Its user
299 interface is a set of special files in sysfs.
300 * https://perf.wiki.kernel.org/[perf] is
301 a performance analysis tool for Linux which supports hardware
302 performance counters, tracepoints, as well as other counters and
303 types of probes. perf's controlling utility is the cmd:perf command
304 line/curses tool.
305 * http://linux.die.net/man/1/strace[strace]
306 is a command-line utility which records system calls made by a
307 user process, as well as signal deliveries and changes of process
308 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
309 to fulfill its function.
310 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
311 analyze Linux kernel events. You write scripts, or _chisels_ in
312 sysdig's jargon, in Lua and sysdig executes them while it traces the
313 system or afterwards. sysdig's interface is the cmd:sysdig
314 command-line tool as well as the curses-based cmd:csysdig tool.
315 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
316 user space tracer which uses custom user scripts to produce plain text
317 traces. SystemTap converts the scripts to the C language, and then
318 compiles them as Linux kernel modules which are loaded to produce
319 trace data. SystemTap's primary user interface is the cmd:stap
320 command-line tool.
321
322 The main distinctive features of LTTng is that it produces correlated
323 kernel and user space traces, as well as doing so with the lowest
324 overhead amongst other solutions. It produces trace files in the
325 http://diamon.org/ctf[CTF] format, a file format optimized
326 for the production and analyses of multi-gigabyte data.
327
328 LTTng is the result of more than 10{nbsp}years of active open source
329 development by a community of passionate developers.
330 LTTng{nbsp}{revision} is currently available on major desktop and server
331 Linux distributions.
332
333 The main interface for tracing control is a single command-line tool
334 named cmd:lttng. The latter can create several tracing sessions, enable
335 and disable events on the fly, filter events efficiently with custom
336 user expressions, start and stop tracing, and much more. LTTng can
337 record the traces on the file system or send them over the network, and
338 keep them totally or partially. You can view the traces once tracing
339 becomes inactive or in real-time.
340
341 <<installing-lttng,Install LTTng now>> and
342 <<getting-started,start tracing>>!
343
344
345 [[installing-lttng]]
346 == Installation
347
348 **LTTng** is a set of software <<plumbing,components>> which interact to
349 <<instrumenting,instrument>> the Linux kernel and user applications, and
350 to <<controlling-tracing,control tracing>> (start and stop
351 tracing, enable and disable event rules, and the rest). Those
352 components are bundled into the following packages:
353
354 LTTng-tools::
355 Libraries and command-line interface to control tracing.
356
357 LTTng-modules::
358 Linux kernel modules to instrument and trace the kernel.
359
360 LTTng-UST::
361 Libraries and Java/Python packages to instrument and trace user
362 applications.
363
364 Most distributions mark the LTTng-modules and LTTng-UST packages as
365 optional when installing LTTng-tools (which is always required). In the
366 following sections, we always provide the steps to install all three,
367 but note that:
368
369 * You only need to install LTTng-modules if you intend to trace the
370 Linux kernel.
371 * You only need to install LTTng-UST if you intend to trace user
372 applications.
373
374 [IMPORTANT]
375 ====
376 As of 22 October 2019, LTTng{nbsp}{revision} is not available
377 as distribution packages, except for <<arch-linux,Arch Linux>>.
378
379 You can <<building-from-source,build LTTng{nbsp}{revision} from source>>
380 to install and use it.
381 ====
382
383
384 [[arch-linux]]
385 === Arch Linux
386
387 LTTng-UST{nbsp}{revision} is available in Arch Linux's _community_
388 repository, while LTTng-tools{nbsp}{revision} and
389 LTTng-modules{nbsp}{revision} are available in the
390 https://aur.archlinux.org/[AUR].
391
392 To install LTTng{nbsp}{revision} on Arch Linux, using
393 https://github.com/actionless/pikaur[pikaur] for the AUR packages:
394
395 . Install the main LTTng{nbsp}{revision} packages:
396 +
397 --
398 [role="term"]
399 ----
400 # pacman -Sy lttng-ust
401 $ pikaur -Sy lttng-tools
402 $ pikaur -Sy lttng-modules
403 ----
404 --
405
406 . **If you need to instrument and trace <<python-application,Python
407 applications>>**, install the LTTng-UST Python agent:
408 +
409 --
410 [role="term"]
411 ----
412 # pacman -Sy python-lttngust
413 # pacman -Sy python2-lttngust
414 ----
415 --
416
417
418 [[building-from-source]]
419 === Build from source
420
421 To build and install LTTng{nbsp}{revision} from source:
422
423 . Using your distribution's package manager, or from source, install
424 the following dependencies of LTTng-tools and LTTng-UST:
425 +
426 --
427 * https://sourceforge.net/projects/libuuid/[libuuid]
428 * http://directory.fsf.org/wiki/Popt[popt]
429 * http://liburcu.org/[Userspace RCU]
430 * http://www.xmlsoft.org/[libxml2]
431 * **Optional**: https://github.com/numactl/numactl[numactl]
432 --
433
434 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
435 +
436 --
437 [role="term"]
438 ----
439 $ cd $(mktemp -d) &&
440 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.11.tar.bz2 &&
441 tar -xf lttng-modules-latest-2.11.tar.bz2 &&
442 cd lttng-modules-2.11.* &&
443 make &&
444 sudo make modules_install &&
445 sudo depmod -a
446 ----
447 --
448
449 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
450 +
451 --
452 [role="term"]
453 ----
454 $ cd $(mktemp -d) &&
455 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.11.tar.bz2 &&
456 tar -xf lttng-ust-latest-2.11.tar.bz2 &&
457 cd lttng-ust-2.11.* &&
458 ./configure &&
459 make &&
460 sudo make install &&
461 sudo ldconfig
462 ----
463 --
464 +
465 Add `--disable-numa` to `./configure` if you don't have
466 https://github.com/numactl/numactl[numactl].
467 +
468 --
469 [IMPORTANT]
470 .Java and Python application tracing
471 ====
472 If you need to instrument and trace <<java-application,Java
473 applications>>, pass the `--enable-java-agent-jul`,
474 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
475 `configure` script, depending on which Java logging framework you use.
476
477 If you need to instrument and trace <<python-application,Python
478 applications>>, pass the `--enable-python-agent` option to the
479 `configure` script. You can set the `PYTHON` environment variable to the
480 path to the Python interpreter for which to install the LTTng-UST Python
481 agent package.
482 ====
483 --
484 +
485 --
486 [NOTE]
487 ====
488 By default, LTTng-UST libraries are installed to
489 dir:{/usr/local/lib}, which is the de facto directory in which to
490 keep self-compiled and third-party libraries.
491
492 When <<building-tracepoint-providers-and-user-application,linking an
493 instrumented user application with `liblttng-ust`>>:
494
495 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
496 variable.
497 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
498 man:gcc(1), man:g++(1), or man:clang(1).
499 ====
500 --
501
502 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
503 +
504 --
505 [role="term"]
506 ----
507 $ cd $(mktemp -d) &&
508 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.11.tar.bz2 &&
509 tar -xf lttng-tools-latest-2.11.tar.bz2 &&
510 cd lttng-tools-2.11.* &&
511 ./configure &&
512 make &&
513 sudo make install &&
514 sudo ldconfig
515 ----
516 --
517
518 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
519 previous steps automatically for a given version of LTTng and confine
520 the installed files in a specific directory. This can be useful to test
521 LTTng without installing it on your system.
522
523
524 [[getting-started]]
525 == Quick start
526
527 This is a short guide to get started quickly with LTTng kernel and user
528 space tracing.
529
530 Before you follow this guide, make sure to <<installing-lttng,install>>
531 LTTng.
532
533 This tutorial walks you through the steps to:
534
535 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
536 . <<tracing-your-own-user-application,Trace a user application>> written
537 in C.
538 . <<viewing-and-analyzing-your-traces,View and analyze the
539 recorded events>>.
540
541
542 [[tracing-the-linux-kernel]]
543 === Trace the Linux kernel
544
545 The following command lines start with the `#` prompt because you need
546 root privileges to trace the Linux kernel. You can also trace the kernel
547 as a regular user if your Unix user is a member of the
548 <<tracing-group,tracing group>>.
549
550 . Create a <<tracing-session,tracing session>> which writes its traces
551 to dir:{/tmp/my-kernel-trace}:
552 +
553 --
554 [role="term"]
555 ----
556 # lttng create my-kernel-session --output=/tmp/my-kernel-trace
557 ----
558 --
559
560 . List the available kernel tracepoints and system calls:
561 +
562 --
563 [role="term"]
564 ----
565 # lttng list --kernel
566 # lttng list --kernel --syscall
567 ----
568 --
569
570 . Create <<event,event rules>> which match the desired instrumentation
571 point names, for example the `sched_switch` and `sched_process_fork`
572 tracepoints, and the man:open(2) and man:close(2) system calls:
573 +
574 --
575 [role="term"]
576 ----
577 # lttng enable-event --kernel sched_switch,sched_process_fork
578 # lttng enable-event --kernel --syscall open,close
579 ----
580 --
581 +
582 You can also create an event rule which matches _all_ the Linux kernel
583 tracepoints (this will generate a lot of data when tracing):
584 +
585 --
586 [role="term"]
587 ----
588 # lttng enable-event --kernel --all
589 ----
590 --
591
592 . <<basic-tracing-session-control,Start tracing>>:
593 +
594 --
595 [role="term"]
596 ----
597 # lttng start
598 ----
599 --
600
601 . Do some operation on your system for a few seconds. For example,
602 load a website, or list the files of a directory.
603 . <<creating-destroying-tracing-sessions,Destroy>> the current
604 tracing session:
605 +
606 --
607 [role="term"]
608 ----
609 # lttng destroy
610 ----
611 --
612 +
613 The man:lttng-destroy(1) command does not destroy the trace data; it
614 only destroys the state of the tracing session.
615 +
616 The man:lttng-destroy(1) command also runs the man:lttng-stop(1) command
617 implicitly (see <<basic-tracing-session-control,Start and stop a tracing
618 session>>). You need to stop tracing to make LTTng flush the remaining
619 trace data and make the trace readable.
620
621 . For the sake of this example, make the recorded trace accessible to
622 the non-root users:
623 +
624 --
625 [role="term"]
626 ----
627 # chown -R $(whoami) /tmp/my-kernel-trace
628 ----
629 --
630
631 See <<viewing-and-analyzing-your-traces,View and analyze the
632 recorded events>> to view the recorded events.
633
634
635 [[tracing-your-own-user-application]]
636 === Trace a user application
637
638 This section steps you through a simple example to trace a
639 _Hello world_ program written in C.
640
641 To create the traceable user application:
642
643 . Create the tracepoint provider header file, which defines the
644 tracepoints and the events they can generate:
645 +
646 --
647 [source,c]
648 .path:{hello-tp.h}
649 ----
650 #undef TRACEPOINT_PROVIDER
651 #define TRACEPOINT_PROVIDER hello_world
652
653 #undef TRACEPOINT_INCLUDE
654 #define TRACEPOINT_INCLUDE "./hello-tp.h"
655
656 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
657 #define _HELLO_TP_H
658
659 #include <lttng/tracepoint.h>
660
661 TRACEPOINT_EVENT(
662 hello_world,
663 my_first_tracepoint,
664 TP_ARGS(
665 int, my_integer_arg,
666 char*, my_string_arg
667 ),
668 TP_FIELDS(
669 ctf_string(my_string_field, my_string_arg)
670 ctf_integer(int, my_integer_field, my_integer_arg)
671 )
672 )
673
674 #endif /* _HELLO_TP_H */
675
676 #include <lttng/tracepoint-event.h>
677 ----
678 --
679
680 . Create the tracepoint provider package source file:
681 +
682 --
683 [source,c]
684 .path:{hello-tp.c}
685 ----
686 #define TRACEPOINT_CREATE_PROBES
687 #define TRACEPOINT_DEFINE
688
689 #include "hello-tp.h"
690 ----
691 --
692
693 . Build the tracepoint provider package:
694 +
695 --
696 [role="term"]
697 ----
698 $ gcc -c -I. hello-tp.c
699 ----
700 --
701
702 . Create the _Hello World_ application source file:
703 +
704 --
705 [source,c]
706 .path:{hello.c}
707 ----
708 #include <stdio.h>
709 #include "hello-tp.h"
710
711 int main(int argc, char *argv[])
712 {
713 int x;
714
715 puts("Hello, World!\nPress Enter to continue...");
716
717 /*
718 * The following getchar() call is only placed here for the purpose
719 * of this demonstration, to pause the application in order for
720 * you to have time to list its tracepoints. It is not
721 * needed otherwise.
722 */
723 getchar();
724
725 /*
726 * A tracepoint() call.
727 *
728 * Arguments, as defined in hello-tp.h:
729 *
730 * 1. Tracepoint provider name (required)
731 * 2. Tracepoint name (required)
732 * 3. my_integer_arg (first user-defined argument)
733 * 4. my_string_arg (second user-defined argument)
734 *
735 * Notice the tracepoint provider and tracepoint names are
736 * NOT strings: they are in fact parts of variables that the
737 * macros in hello-tp.h create.
738 */
739 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
740
741 for (x = 0; x < argc; ++x) {
742 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
743 }
744
745 puts("Quitting now!");
746 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
747
748 return 0;
749 }
750 ----
751 --
752
753 . Build the application:
754 +
755 --
756 [role="term"]
757 ----
758 $ gcc -c hello.c
759 ----
760 --
761
762 . Link the application with the tracepoint provider package,
763 `liblttng-ust`, and `libdl`:
764 +
765 --
766 [role="term"]
767 ----
768 $ gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
769 ----
770 --
771
772 Here's the whole build process:
773
774 [role="img-100"]
775 .User space tracing tutorial's build steps.
776 image::ust-flow.png[]
777
778 To trace the user application:
779
780 . Run the application with a few arguments:
781 +
782 --
783 [role="term"]
784 ----
785 $ ./hello world and beyond
786 ----
787 --
788 +
789 You see:
790 +
791 --
792 ----
793 Hello, World!
794 Press Enter to continue...
795 ----
796 --
797
798 . Start an LTTng <<lttng-sessiond,session daemon>>:
799 +
800 --
801 [role="term"]
802 ----
803 $ lttng-sessiond --daemonize
804 ----
805 --
806 +
807 Note that a session daemon might already be running, for example as
808 a service that the distribution's service manager started.
809
810 . List the available user space tracepoints:
811 +
812 --
813 [role="term"]
814 ----
815 $ lttng list --userspace
816 ----
817 --
818 +
819 You see the `hello_world:my_first_tracepoint` tracepoint listed
820 under the `./hello` process.
821
822 . Create a <<tracing-session,tracing session>>:
823 +
824 --
825 [role="term"]
826 ----
827 $ lttng create my-user-space-session
828 ----
829 --
830
831 . Create an <<event,event rule>> which matches the
832 `hello_world:my_first_tracepoint` event name:
833 +
834 --
835 [role="term"]
836 ----
837 $ lttng enable-event --userspace hello_world:my_first_tracepoint
838 ----
839 --
840
841 . <<basic-tracing-session-control,Start tracing>>:
842 +
843 --
844 [role="term"]
845 ----
846 $ lttng start
847 ----
848 --
849
850 . Go back to the running `hello` application and press Enter. The
851 program executes all `tracepoint()` instrumentation points and exits.
852 . <<creating-destroying-tracing-sessions,Destroy>> the current
853 tracing session:
854 +
855 --
856 [role="term"]
857 ----
858 $ lttng destroy
859 ----
860 --
861 +
862 The man:lttng-destroy(1) command does not destroy the trace data; it
863 only destroys the state of the tracing session.
864 +
865 The man:lttng-destroy(1) command also runs the man:lttng-stop(1) command
866 implicitly (see <<basic-tracing-session-control,Start and stop a tracing
867 session>>). You need to stop tracing to make LTTng flush the remaining
868 trace data and make the trace readable.
869
870 By default, LTTng saves the traces in
871 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
872 where +__name__+ is the tracing session name. The
873 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
874
875 See <<viewing-and-analyzing-your-traces,View and analyze the
876 recorded events>> to view the recorded events.
877
878
879 [[viewing-and-analyzing-your-traces]]
880 === View and analyze the recorded events
881
882 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
883 kernel>> and <<tracing-your-own-user-application,Trace a user
884 application>> tutorials, you can inspect the recorded events.
885
886 There are many tools you can use to read LTTng traces:
887
888 * **cmd:babeltrace** is a command-line utility which converts trace
889 formats; it supports the format that LTTng produces, CTF, as well as a
890 basic text output which can be ++grep++ed. The cmd:babeltrace command
891 is part of the http://diamon.org/babeltrace[Babeltrace] project.
892 * Babeltrace also includes
893 **https://www.python.org/[Python{nbsp}3] bindings** so
894 that you can easily open and read an LTTng trace with your own script,
895 benefiting from the power of Python.
896 * http://tracecompass.org/[**Trace Compass**]
897 is a graphical user interface for viewing and analyzing any type of
898 logs or traces, including LTTng's.
899 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
900 project which includes many high-level analyses of LTTng kernel
901 traces, like scheduling statistics, interrupt frequency distribution,
902 top CPU usage, and more.
903
904 NOTE: This section assumes that LTTng saved the traces it recorded
905 during the previous tutorials to their default location, in the
906 dir:{$LTTNG_HOME/lttng-traces} directory. The env:LTTNG_HOME
907 environment variable defaults to `$HOME` if not set.
908
909
910 [[viewing-and-analyzing-your-traces-bt]]
911 ==== Use the cmd:babeltrace command-line tool
912
913 The simplest way to list all the recorded events of a trace is to pass
914 its path to cmd:babeltrace with no options:
915
916 [role="term"]
917 ----
918 $ babeltrace ~/lttng-traces/my-user-space-session*
919 ----
920
921 cmd:babeltrace finds all traces recursively within the given path and
922 prints all their events, merging them in chronological order.
923
924 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
925 further filtering:
926
927 [role="term"]
928 ----
929 $ babeltrace /tmp/my-kernel-trace | grep _switch
930 ----
931
932 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
933 count the recorded events:
934
935 [role="term"]
936 ----
937 $ babeltrace /tmp/my-kernel-trace | grep _open | wc --lines
938 ----
939
940
941 [[viewing-and-analyzing-your-traces-bt-python]]
942 ==== Use the Babeltrace{nbsp}1 Python bindings
943
944 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
945 is useful to isolate events by simple matching using man:grep(1) and
946 similar utilities. However, more elaborate filters, such as keeping only
947 event records with a field value falling within a specific range, are
948 not trivial to write using a shell. Moreover, reductions and even the
949 most basic computations involving multiple event records are virtually
950 impossible to implement.
951
952 Fortunately, Babeltrace{nbsp}1 ships with Python{nbsp}3 bindings which
953 makes it easy to read the event records of an LTTng trace sequentially
954 and compute the desired information.
955
956 The following script accepts an LTTng Linux kernel trace path as its
957 first argument and prints the short names of the top five running
958 processes on CPU{nbsp}0 during the whole trace:
959
960 [source,python]
961 .path:{top5proc.py}
962 ----
963 from collections import Counter
964 import babeltrace
965 import sys
966
967
968 def top5proc():
969 if len(sys.argv) != 2:
970 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
971 print(msg, file=sys.stderr)
972 return False
973
974 # A trace collection contains one or more traces
975 col = babeltrace.TraceCollection()
976
977 # Add the trace provided by the user (LTTng traces always have
978 # the 'ctf' format)
979 if col.add_trace(sys.argv[1], 'ctf') is None:
980 raise RuntimeError('Cannot add trace')
981
982 # This counter dict contains execution times:
983 #
984 # task command name -> total execution time (ns)
985 exec_times = Counter()
986
987 # This contains the last `sched_switch` timestamp
988 last_ts = None
989
990 # Iterate on events
991 for event in col.events:
992 # Keep only `sched_switch` events
993 if event.name != 'sched_switch':
994 continue
995
996 # Keep only events which happened on CPU 0
997 if event['cpu_id'] != 0:
998 continue
999
1000 # Event timestamp
1001 cur_ts = event.timestamp
1002
1003 if last_ts is None:
1004 # We start here
1005 last_ts = cur_ts
1006
1007 # Previous task command (short) name
1008 prev_comm = event['prev_comm']
1009
1010 # Initialize entry in our dict if not yet done
1011 if prev_comm not in exec_times:
1012 exec_times[prev_comm] = 0
1013
1014 # Compute previous command execution time
1015 diff = cur_ts - last_ts
1016
1017 # Update execution time of this command
1018 exec_times[prev_comm] += diff
1019
1020 # Update last timestamp
1021 last_ts = cur_ts
1022
1023 # Display top 5
1024 for name, ns in exec_times.most_common(5):
1025 s = ns / 1000000000
1026 print('{:20}{} s'.format(name, s))
1027
1028 return True
1029
1030
1031 if __name__ == '__main__':
1032 sys.exit(0 if top5proc() else 1)
1033 ----
1034
1035 Run this script:
1036
1037 [role="term"]
1038 ----
1039 $ python3 top5proc.py /tmp/my-kernel-trace/kernel
1040 ----
1041
1042 Output example:
1043
1044 ----
1045 swapper/0 48.607245889 s
1046 chromium 7.192738188 s
1047 pavucontrol 0.709894415 s
1048 Compositor 0.660867933 s
1049 Xorg.bin 0.616753786 s
1050 ----
1051
1052 Note that `swapper/0` is the "idle" process of CPU{nbsp}0 on Linux;
1053 since we weren't using the CPU that much when tracing, its first
1054 position in the list makes sense.
1055
1056
1057 [[core-concepts]]
1058 == [[understanding-lttng]]Core concepts
1059
1060 From a user's perspective, the LTTng system is built on a few concepts,
1061 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1062 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1063 Understanding how those objects relate to eachother is key in mastering
1064 the toolkit.
1065
1066 The core concepts are:
1067
1068 * <<tracing-session,Tracing session>>
1069 * <<domain,Tracing domain>>
1070 * <<channel,Channel and ring buffer>>
1071 * <<"event","Instrumentation point, event rule, event, and event record">>
1072
1073
1074 [[tracing-session]]
1075 === Tracing session
1076
1077 A _tracing session_ is a stateful dialogue between you and
1078 a <<lttng-sessiond,session daemon>>. You can
1079 <<creating-destroying-tracing-sessions,create a new tracing
1080 session>> with the `lttng create` command.
1081
1082 Anything that you do when you control LTTng tracers happens within a
1083 tracing session. In particular, a tracing session:
1084
1085 * Has its own name.
1086 * Has its own set of trace files.
1087 * Has its own state of activity (started or stopped).
1088 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1089 snapshot, or live).
1090 * Has its own <<channel,channels>> to which are associated their own
1091 <<event,event rules>>.
1092
1093 [role="img-100"]
1094 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1095 image::concepts.png[]
1096
1097 Those attributes and objects are completely isolated between different
1098 tracing sessions.
1099
1100 A tracing session is analogous to a cash machine session:
1101 the operations you do on the banking system through the cash machine do
1102 not alter the data of other users of the same system. In the case of
1103 the cash machine, a session lasts as long as your bank card is inside.
1104 In the case of LTTng, a tracing session lasts from the `lttng create`
1105 command to the `lttng destroy` command.
1106
1107 [role="img-100"]
1108 .Each Unix user has its own set of tracing sessions.
1109 image::many-sessions.png[]
1110
1111
1112 [[tracing-session-mode]]
1113 ==== Tracing session mode
1114
1115 LTTng can send the generated trace data to different locations. The
1116 _tracing session mode_ dictates where to send it. The following modes
1117 are available in LTTng{nbsp}{revision}:
1118
1119 Local mode::
1120 LTTng writes the traces to the file system of the machine it traces
1121 (target system).
1122
1123 Network streaming mode::
1124 LTTng sends the traces over the network to a
1125 <<lttng-relayd,relay daemon>> running on a remote system.
1126
1127 Snapshot mode::
1128 LTTng does not write the traces by default. Instead, you can request
1129 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1130 tracing session's current sub-buffers, and to write it to the
1131 target's file system or to send it over the network to a
1132 <<lttng-relayd,relay daemon>> running on a remote system.
1133
1134 Live mode::
1135 This mode is similar to the network streaming mode, but a live
1136 trace viewer can connect to the distant relay daemon to
1137 <<lttng-live,view event records as LTTng generates them>>.
1138
1139
1140 [[domain]]
1141 === Tracing domain
1142
1143 A _tracing domain_ is a namespace for event sources. A tracing domain
1144 has its own properties and features.
1145
1146 There are currently five available tracing domains:
1147
1148 * Linux kernel
1149 * User space
1150 * `java.util.logging` (JUL)
1151 * log4j
1152 * Python
1153
1154 You must specify a tracing domain when using some commands to avoid
1155 ambiguity. For example, since all the domains support named tracepoints
1156 as event sources (instrumentation points that you manually insert in the
1157 source code), you need to specify a tracing domain when
1158 <<enabling-disabling-events,creating an event rule>> because all the
1159 tracing domains could have tracepoints with the same names.
1160
1161 You can create <<channel,channels>> in the Linux kernel and user space
1162 tracing domains. The other tracing domains have a single default
1163 channel.
1164
1165
1166 [[channel]]
1167 === Channel and ring buffer
1168
1169 A _channel_ is an object which is responsible for a set of ring buffers.
1170 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1171 tracer emits an event, it can record it to one or more
1172 sub-buffers. The attributes of a channel determine what to do when
1173 there's no space left for a new event record because all sub-buffers
1174 are full, where to send a full sub-buffer, and other behaviours.
1175
1176 A channel is always associated to a <<domain,tracing domain>>. The
1177 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1178 a default channel which you cannot configure.
1179
1180 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1181 an event, it records it to the sub-buffers of all
1182 the enabled channels with a satisfied event rule, as long as those
1183 channels are part of active <<tracing-session,tracing sessions>>.
1184
1185
1186 [[channel-buffering-schemes]]
1187 ==== Per-user vs. per-process buffering schemes
1188
1189 A channel has at least one ring buffer _per CPU_. LTTng always
1190 records an event to the ring buffer associated to the CPU on which it
1191 occurs.
1192
1193 Two _buffering schemes_ are available when you
1194 <<enabling-disabling-channels,create a channel>> in the
1195 user space <<domain,tracing domain>>:
1196
1197 Per-user buffering::
1198 Allocate one set of ring buffers--one per CPU--shared by all the
1199 instrumented processes of each Unix user.
1200 +
1201 --
1202 [role="img-100"]
1203 .Per-user buffering scheme.
1204 image::per-user-buffering.png[]
1205 --
1206
1207 Per-process buffering::
1208 Allocate one set of ring buffers--one per CPU--for each
1209 instrumented process.
1210 +
1211 --
1212 [role="img-100"]
1213 .Per-process buffering scheme.
1214 image::per-process-buffering.png[]
1215 --
1216 +
1217 The per-process buffering scheme tends to consume more memory than the
1218 per-user option because systems generally have more instrumented
1219 processes than Unix users running instrumented processes. However, the
1220 per-process buffering scheme ensures that one process having a high
1221 event throughput won't fill all the shared sub-buffers of the same
1222 user, only its own.
1223
1224 The Linux kernel tracing domain has only one available buffering scheme
1225 which is to allocate a single set of ring buffers for the whole system.
1226 This scheme is similar to the per-user option, but with a single, global
1227 user "running" the kernel.
1228
1229
1230 [[channel-overwrite-mode-vs-discard-mode]]
1231 ==== Overwrite vs. discard event record loss modes
1232
1233 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1234 arc in the following animations) of a specific channel's ring buffer.
1235 When there's no space left in a sub-buffer, the tracer marks it as
1236 consumable (red) and another, empty sub-buffer starts receiving the
1237 following event records. A <<lttng-consumerd,consumer daemon>>
1238 eventually consumes the marked sub-buffer (returns to white).
1239
1240 [NOTE]
1241 [role="docsvg-channel-subbuf-anim"]
1242 ====
1243 {note-no-anim}
1244 ====
1245
1246 In an ideal world, sub-buffers are consumed faster than they are filled,
1247 as it is the case in the previous animation. In the real world,
1248 however, all sub-buffers can be full at some point, leaving no space to
1249 record the following events.
1250
1251 By default, LTTng-modules and LTTng-UST are _non-blocking_ tracers: when
1252 no empty sub-buffer is available, it is acceptable to lose event records
1253 when the alternative would be to cause substantial delays in the
1254 instrumented application's execution. LTTng privileges performance over
1255 integrity; it aims at perturbing the target system as little as possible
1256 in order to make tracing of subtle race conditions and rare interrupt
1257 cascades possible.
1258
1259 Since LTTng{nbsp}2.10, the LTTng user space tracer, LTTng-UST, supports
1260 a _blocking mode_. See the <<blocking-timeout-example,blocking timeout
1261 example>> to learn how to use the blocking mode.
1262
1263 When it comes to losing event records because no empty sub-buffer is
1264 available, or because the <<opt-blocking-timeout,blocking timeout>> is
1265 reached, the channel's _event record loss mode_ determines what to do.
1266 The available event record loss modes are:
1267
1268 Discard mode::
1269 Drop the newest event records until the tracer releases a sub-buffer.
1270 +
1271 This is the only available mode when you specify a
1272 <<opt-blocking-timeout,blocking timeout>>.
1273
1274 Overwrite mode::
1275 Clear the sub-buffer containing the oldest event records and start
1276 writing the newest event records there.
1277 +
1278 This mode is sometimes called _flight recorder mode_ because it's
1279 similar to a
1280 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1281 always keep a fixed amount of the latest data.
1282
1283 Which mechanism you should choose depends on your context: prioritize
1284 the newest or the oldest event records in the ring buffer?
1285
1286 Beware that, in overwrite mode, the tracer abandons a _whole sub-buffer_
1287 as soon as a there's no space left for a new event record, whereas in
1288 discard mode, the tracer only discards the event record that doesn't
1289 fit.
1290
1291 In discard mode, LTTng increments a count of lost event records when an
1292 event record is lost and saves this count to the trace. In overwrite
1293 mode, since LTTng{nbsp}2.8, LTTng increments a count of lost sub-buffers
1294 when a sub-buffer is lost and saves this count to the trace. In this
1295 mode, LTTng does not write to the trace the exact number of lost event
1296 records in those lost sub-buffers. Trace analyses can use the trace's
1297 saved discarded event record and sub-buffer counts to decide whether or
1298 not to perform the analyses even if trace data is known to be missing.
1299
1300 There are a few ways to decrease your probability of losing event
1301 records.
1302 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1303 how you can fine-tune the sub-buffer count and size of a channel to
1304 virtually stop losing event records, though at the cost of greater
1305 memory usage.
1306
1307
1308 [[channel-subbuf-size-vs-subbuf-count]]
1309 ==== Sub-buffer count and size
1310
1311 When you <<enabling-disabling-channels,create a channel>>, you can
1312 set its number of sub-buffers and their size.
1313
1314 Note that there is noticeable CPU overhead introduced when
1315 switching sub-buffers (marking a full one as consumable and switching
1316 to an empty one for the following events to be recorded). Knowing this,
1317 the following list presents a few practical situations along with how
1318 to configure the sub-buffer count and size for them:
1319
1320 * **High event throughput**: In general, prefer bigger sub-buffers to
1321 lower the risk of losing event records.
1322 +
1323 Having bigger sub-buffers also ensures a lower
1324 <<channel-switch-timer,sub-buffer switching frequency>>.
1325 +
1326 The number of sub-buffers is only meaningful if you create the channel
1327 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1328 other sub-buffers are left unaltered.
1329
1330 * **Low event throughput**: In general, prefer smaller sub-buffers
1331 since the risk of losing event records is low.
1332 +
1333 Because events occur less frequently, the sub-buffer switching frequency
1334 should remain low and thus the tracer's overhead should not be a
1335 problem.
1336
1337 * **Low memory system**: If your target system has a low memory
1338 limit, prefer fewer first, then smaller sub-buffers.
1339 +
1340 Even if the system is limited in memory, you want to keep the
1341 sub-buffers as big as possible to avoid a high sub-buffer switching
1342 frequency.
1343
1344 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1345 which means event data is very compact. For example, the average
1346 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1347 sub-buffer size of 1{nbsp}MiB is considered big.
1348
1349 The previous situations highlight the major trade-off between a few big
1350 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1351 frequency vs. how much data is lost in overwrite mode. Assuming a
1352 constant event throughput and using the overwrite mode, the two
1353 following configurations have the same ring buffer total size:
1354
1355 [NOTE]
1356 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1357 ====
1358 {note-no-anim}
1359 ====
1360
1361 * **Two sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1362 switching frequency, but if a sub-buffer overwrite happens, half of
1363 the event records so far (4{nbsp}MiB) are definitely lost.
1364 * **Eight sub-buffers of 1{nbsp}MiB each**: Expect four times the tracer's
1365 overhead as the previous configuration, but if a sub-buffer
1366 overwrite happens, only the eighth of event records so far are
1367 definitely lost.
1368
1369 In discard mode, the sub-buffers count parameter is pointless: use two
1370 sub-buffers and set their size according to the requirements of your
1371 situation.
1372
1373
1374 [[channel-switch-timer]]
1375 ==== Switch timer period
1376
1377 The _switch timer period_ is an important configurable attribute of
1378 a channel to ensure periodic sub-buffer flushing.
1379
1380 When the _switch timer_ expires, a sub-buffer switch happens. You can
1381 set the switch timer period attribute when you
1382 <<enabling-disabling-channels,create a channel>> to ensure that LTTng
1383 consumes and commits trace data to trace files or to a distant relay
1384 daemon periodically in case of a low event throughput.
1385
1386 [NOTE]
1387 [role="docsvg-channel-switch-timer"]
1388 ====
1389 {note-no-anim}
1390 ====
1391
1392 This attribute is also convenient when you use big sub-buffers to cope
1393 with a sporadic high event throughput, even if the throughput is
1394 normally low.
1395
1396
1397 [[channel-read-timer]]
1398 ==== Read timer period
1399
1400 By default, the LTTng tracers use a notification mechanism to signal a
1401 full sub-buffer so that a consumer daemon can consume it. When such
1402 notifications must be avoided, for example in real-time applications,
1403 you can use the channel's _read timer_ instead. When the read timer
1404 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1405 consumable sub-buffers.
1406
1407
1408 [[tracefile-rotation]]
1409 ==== Trace file count and size
1410
1411 By default, trace files can grow as large as needed. You can set the
1412 maximum size of each trace file that a channel writes when you
1413 <<enabling-disabling-channels,create a channel>>. When the size of
1414 a trace file reaches the channel's fixed maximum size, LTTng creates
1415 another file to contain the next event records. LTTng appends a file
1416 count to each trace file name in this case.
1417
1418 If you set the trace file size attribute when you create a channel, the
1419 maximum number of trace files that LTTng creates is _unlimited_ by
1420 default. To limit them, you can also set a maximum number of trace
1421 files. When the number of trace files reaches the channel's fixed
1422 maximum count, the oldest trace file is overwritten. This mechanism is
1423 called _trace file rotation_.
1424
1425 [IMPORTANT]
1426 ====
1427 Even if you don't limit the trace file count, you cannot assume that
1428 LTTng doesn't manage any trace file.
1429
1430 In other words, there is no safe way to know if LTTng still holds a
1431 given trace file open with the trace file rotation feature.
1432
1433 The only way to obtain an unmanaged, self-contained LTTng trace before
1434 you <<creating-destroying-tracing-sessions,destroy>> the tracing session
1435 is with the <<session-rotation,tracing session rotation>> feature
1436 (available since LTTng{nbsp}2.11).
1437 ====
1438
1439
1440 [[event]]
1441 === Instrumentation point, event rule, event, and event record
1442
1443 An _event rule_ is a set of conditions which must be **all** satisfied
1444 for LTTng to record an occuring event.
1445
1446 You set the conditions when you <<enabling-disabling-events,create
1447 an event rule>>.
1448
1449 You always attach an event rule to a <<channel,channel>> when you create
1450 it.
1451
1452 When an event passes the conditions of an event rule, LTTng records it
1453 in one of the attached channel's sub-buffers.
1454
1455 The available conditions, as of LTTng{nbsp}{revision}, are:
1456
1457 * The event rule _is enabled_.
1458 * The instrumentation point's type _is{nbsp}T_.
1459 * The instrumentation point's name (sometimes called _event name_)
1460 _matches{nbsp}N_, but _is not{nbsp}E_.
1461 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1462 _is exactly{nbsp}L_.
1463 * The fields of the event's payload _satisfy_ a filter
1464 expression{nbsp}__F__.
1465
1466 As you can see, all the conditions but the dynamic filter are related to
1467 the event rule's status or to the instrumentation point, not to the
1468 occurring events. This is why, without a filter, checking if an event
1469 passes an event rule is not a dynamic task: when you create or modify an
1470 event rule, all the tracers of its tracing domain enable or disable the
1471 instrumentation points themselves once. This is possible because the
1472 attributes of an instrumentation point (type, name, and log level) are
1473 defined statically. In other words, without a dynamic filter, the tracer
1474 _does not evaluate_ the arguments of an instrumentation point unless it
1475 matches an enabled event rule.
1476
1477 Note that, for LTTng to record an event, the <<channel,channel>> to
1478 which a matching event rule is attached must also be enabled, and the
1479 <<tracing-session,tracing session>> owning this channel must be active
1480 (started).
1481
1482 [role="img-100"]
1483 .Logical path from an instrumentation point to an event record.
1484 image::event-rule.png[]
1485
1486 .Event, event record, or event rule?
1487 ****
1488 With so many similar terms, it's easy to get confused.
1489
1490 An **event** is the consequence of the execution of an _instrumentation
1491 point_, like a tracepoint that you manually place in some source code,
1492 or a Linux kernel kprobe. An event is said to _occur_ at a specific
1493 time. Different actions can be taken upon the occurrence of an event,
1494 like record the event's payload to a buffer.
1495
1496 An **event record** is the representation of an event in a sub-buffer. A
1497 tracer is responsible for capturing the payload of an event, current
1498 context variables, the event's ID, and the event's timestamp. LTTng
1499 can append this sub-buffer to a trace file.
1500
1501 An **event rule** is a set of conditions which must _all_ be satisfied
1502 for LTTng to record an occuring event. Events still occur without
1503 satisfying event rules, but LTTng does not record them.
1504 ****
1505
1506
1507 [[plumbing]]
1508 == Components of noch:{LTTng}
1509
1510 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1511 to call LTTng a simple _tool_ since it is composed of multiple
1512 interacting components. This section describes those components,
1513 explains their respective roles, and shows how they connect together to
1514 form the LTTng ecosystem.
1515
1516 The following diagram shows how the most important components of LTTng
1517 interact with user applications, the Linux kernel, and you:
1518
1519 [role="img-100"]
1520 .Control and trace data paths between LTTng components.
1521 image::plumbing.png[]
1522
1523 The LTTng project incorporates:
1524
1525 * **LTTng-tools**: Libraries and command-line interface to
1526 control tracing sessions.
1527 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1528 ** <<lttng-consumerd,Consumer daemon>> (cmd:lttng-consumerd).
1529 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1530 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1531 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1532 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1533 applications.
1534 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1535 headers to instrument and trace any native user application.
1536 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1537 *** `liblttng-ust-libc-wrapper`
1538 *** `liblttng-ust-pthread-wrapper`
1539 *** `liblttng-ust-cyg-profile`
1540 *** `liblttng-ust-cyg-profile-fast`
1541 *** `liblttng-ust-dl`
1542 ** User space tracepoint provider source files generator command-line
1543 tool (man:lttng-gen-tp(1)).
1544 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1545 Java applications using `java.util.logging` or
1546 Apache log4j{nbsp}1.2 logging.
1547 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1548 Python applications using the standard `logging` package.
1549 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1550 the kernel.
1551 ** LTTng kernel tracer module.
1552 ** Tracing ring buffer kernel modules.
1553 ** Probe kernel modules.
1554 ** LTTng logger kernel module.
1555
1556
1557 [[lttng-cli]]
1558 === Tracing control command-line interface
1559
1560 [role="img-100"]
1561 .The tracing control command-line interface.
1562 image::plumbing-lttng-cli.png[]
1563
1564 The _man:lttng(1) command-line tool_ is the standard user interface to
1565 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1566 is part of LTTng-tools.
1567
1568 The cmd:lttng tool is linked with
1569 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1570 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1571
1572 The cmd:lttng tool has a Git-like interface:
1573
1574 [role="term"]
1575 ----
1576 $ lttng <GENERAL OPTIONS> <COMMAND> <COMMAND OPTIONS>
1577 ----
1578
1579 The <<controlling-tracing,Tracing control>> section explores the
1580 available features of LTTng using the cmd:lttng tool.
1581
1582
1583 [[liblttng-ctl-lttng]]
1584 === Tracing control library
1585
1586 [role="img-100"]
1587 .The tracing control library.
1588 image::plumbing-liblttng-ctl.png[]
1589
1590 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1591 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1592 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1593
1594 The <<lttng-cli,cmd:lttng command-line tool>>
1595 is linked with `liblttng-ctl`.
1596
1597 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1598 "master" header:
1599
1600 [source,c]
1601 ----
1602 #include <lttng/lttng.h>
1603 ----
1604
1605 Some objects are referenced by name (C string), such as tracing
1606 sessions, but most of them require to create a handle first using
1607 `lttng_create_handle()`.
1608
1609 As of LTTng{nbsp}{revision}, the best available developer documentation for
1610 `liblttng-ctl` is its installed header files. Every function and structure is
1611 thoroughly documented.
1612
1613
1614 [[lttng-ust]]
1615 === User space tracing library
1616
1617 [role="img-100"]
1618 .The user space tracing library.
1619 image::plumbing-liblttng-ust.png[]
1620
1621 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1622 is the LTTng user space tracer. It receives commands from a
1623 <<lttng-sessiond,session daemon>>, for example to
1624 enable and disable specific instrumentation points, and writes event
1625 records to ring buffers shared with a
1626 <<lttng-consumerd,consumer daemon>>.
1627 `liblttng-ust` is part of LTTng-UST.
1628
1629 Public C header files are installed beside `liblttng-ust` to
1630 instrument any <<c-application,C or $$C++$$ application>>.
1631
1632 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1633 packages, use their own library providing tracepoints which is
1634 linked with `liblttng-ust`.
1635
1636 An application or library does not have to initialize `liblttng-ust`
1637 manually: its constructor does the necessary tasks to properly register
1638 to a session daemon. The initialization phase also enables the
1639 instrumentation points matching the <<event,event rules>> that you
1640 already created.
1641
1642
1643 [[lttng-ust-agents]]
1644 === User space tracing agents
1645
1646 [role="img-100"]
1647 .The user space tracing agents.
1648 image::plumbing-lttng-ust-agents.png[]
1649
1650 The _LTTng-UST Java and Python agents_ are regular Java and Python
1651 packages which add LTTng tracing capabilities to the
1652 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1653
1654 In the case of Java, the
1655 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1656 core logging facilities] and
1657 https://logging.apache.org/log4j/1.2/[Apache log4j{nbsp}1.2] are supported.
1658 Note that Apache Log4{nbsp}2 is not supported.
1659
1660 In the case of Python, the standard
1661 https://docs.python.org/3/library/logging.html[`logging`] package
1662 is supported. Both Python{nbsp}2 and Python{nbsp}3 modules can import the
1663 LTTng-UST Python agent package.
1664
1665 The applications using the LTTng-UST agents are in the
1666 `java.util.logging` (JUL),
1667 log4j, and Python <<domain,tracing domains>>.
1668
1669 Both agents use the same mechanism to trace the log statements. When an
1670 agent initializes, it creates a log handler that attaches to the root
1671 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1672 When the application executes a log statement, the root logger passes it
1673 to the agent's log handler. The agent's log handler calls a native
1674 function in a tracepoint provider package shared library linked with
1675 <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1676 other fields, like its logger name and its log level. This native
1677 function contains a user space instrumentation point, hence tracing the
1678 log statement.
1679
1680 The log level condition of an
1681 <<event,event rule>> is considered when tracing
1682 a Java or a Python application, and it's compatible with the standard
1683 JUL, log4j, and Python log levels.
1684
1685
1686 [[lttng-modules]]
1687 === LTTng kernel modules
1688
1689 [role="img-100"]
1690 .The LTTng kernel modules.
1691 image::plumbing-lttng-modules.png[]
1692
1693 The _LTTng kernel modules_ are a set of Linux kernel modules
1694 which implement the kernel tracer of the LTTng project. The LTTng
1695 kernel modules are part of LTTng-modules.
1696
1697 The LTTng kernel modules include:
1698
1699 * A set of _probe_ modules.
1700 +
1701 Each module attaches to a specific subsystem
1702 of the Linux kernel using its tracepoint instrument points. There are
1703 also modules to attach to the entry and return points of the Linux
1704 system call functions.
1705
1706 * _Ring buffer_ modules.
1707 +
1708 A ring buffer implementation is provided as kernel modules. The LTTng
1709 kernel tracer writes to the ring buffer; a
1710 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1711
1712 * The _LTTng kernel tracer_ module.
1713 * The _LTTng logger_ module.
1714 +
1715 The LTTng logger module implements the special path:{/proc/lttng-logger}
1716 file so that any executable can generate LTTng events by opening and
1717 writing to this file.
1718 +
1719 See <<proc-lttng-logger-abi,LTTng logger>>.
1720
1721 Generally, you do not have to load the LTTng kernel modules manually
1722 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1723 daemon>> loads the necessary modules when starting. If you have extra
1724 probe modules, you can specify to load them to the session daemon on
1725 the command line.
1726
1727 The LTTng kernel modules are installed in
1728 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1729 the kernel release (see `uname --kernel-release`).
1730
1731
1732 [[lttng-sessiond]]
1733 === Session daemon
1734
1735 [role="img-100"]
1736 .The session daemon.
1737 image::plumbing-sessiond.png[]
1738
1739 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1740 managing tracing sessions and for controlling the various components of
1741 LTTng. The session daemon is part of LTTng-tools.
1742
1743 The session daemon sends control requests to and receives control
1744 responses from:
1745
1746 * The <<lttng-ust,user space tracing library>>.
1747 +
1748 Any instance of the user space tracing library first registers to
1749 a session daemon. Then, the session daemon can send requests to
1750 this instance, such as:
1751 +
1752 --
1753 ** Get the list of tracepoints.
1754 ** Share an <<event,event rule>> so that the user space tracing library
1755 can enable or disable tracepoints. Amongst the possible conditions
1756 of an event rule is a filter expression which `liblttng-ust` evalutes
1757 when an event occurs.
1758 ** Share <<channel,channel>> attributes and ring buffer locations.
1759 --
1760 +
1761 The session daemon and the user space tracing library use a Unix
1762 domain socket for their communication.
1763
1764 * The <<lttng-ust-agents,user space tracing agents>>.
1765 +
1766 Any instance of a user space tracing agent first registers to
1767 a session daemon. Then, the session daemon can send requests to
1768 this instance, such as:
1769 +
1770 --
1771 ** Get the list of loggers.
1772 ** Enable or disable a specific logger.
1773 --
1774 +
1775 The session daemon and the user space tracing agent use a TCP connection
1776 for their communication.
1777
1778 * The <<lttng-modules,LTTng kernel tracer>>.
1779 * The <<lttng-consumerd,consumer daemon>>.
1780 +
1781 The session daemon sends requests to the consumer daemon to instruct
1782 it where to send the trace data streams, amongst other information.
1783
1784 * The <<lttng-relayd,relay daemon>>.
1785
1786 The session daemon receives commands from the
1787 <<liblttng-ctl-lttng,tracing control library>>.
1788
1789 The root session daemon loads the appropriate
1790 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
1791 a <<lttng-consumerd,consumer daemon>> as soon as you create
1792 an <<event,event rule>>.
1793
1794 The session daemon does not send and receive trace data: this is the
1795 role of the <<lttng-consumerd,consumer daemon>> and
1796 <<lttng-relayd,relay daemon>>. It does, however, generate the
1797 http://diamon.org/ctf/[CTF] metadata stream.
1798
1799 Each Unix user can have its own session daemon instance. The
1800 tracing sessions which different session daemons manage are completely
1801 independent.
1802
1803 The root user's session daemon is the only one which is
1804 allowed to control the LTTng kernel tracer, and its spawned consumer
1805 daemon is the only one which is allowed to consume trace data from the
1806 LTTng kernel tracer. Note, however, that any Unix user which is a member
1807 of the <<tracing-group,tracing group>> is allowed
1808 to create <<channel,channels>> in the
1809 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
1810 kernel.
1811
1812 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
1813 session daemon when using its `create` command if none is currently
1814 running. You can also start the session daemon manually.
1815
1816
1817 [[lttng-consumerd]]
1818 === Consumer daemon
1819
1820 [role="img-100"]
1821 .The consumer daemon.
1822 image::plumbing-consumerd.png[]
1823
1824 The _consumer daemon_, cmd:lttng-consumerd, is a daemon which shares
1825 ring buffers with user applications or with the LTTng kernel modules to
1826 collect trace data and send it to some location (on disk or to a
1827 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
1828 is part of LTTng-tools.
1829
1830 You do not start a consumer daemon manually: a consumer daemon is always
1831 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
1832 <<event,event rule>>, that is, before you start tracing. When you kill
1833 its owner session daemon, the consumer daemon also exits because it is
1834 the session daemon's child process. Command-line options of
1835 man:lttng-sessiond(8) target the consumer daemon process.
1836
1837 There are up to two running consumer daemons per Unix user, whereas only
1838 one session daemon can run per user. This is because each process can be
1839 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
1840 and 64-bit processes, it is more efficient to have separate
1841 corresponding 32-bit and 64-bit consumer daemons. The root user is an
1842 exception: it can have up to _three_ running consumer daemons: 32-bit
1843 and 64-bit instances for its user applications, and one more
1844 reserved for collecting kernel trace data.
1845
1846
1847 [[lttng-relayd]]
1848 === Relay daemon
1849
1850 [role="img-100"]
1851 .The relay daemon.
1852 image::plumbing-relayd.png[]
1853
1854 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
1855 between remote session and consumer daemons, local trace files, and a
1856 remote live trace viewer. The relay daemon is part of LTTng-tools.
1857
1858 The main purpose of the relay daemon is to implement a receiver of
1859 <<sending-trace-data-over-the-network,trace data over the network>>.
1860 This is useful when the target system does not have much file system
1861 space to record trace files locally.
1862
1863 The relay daemon is also a server to which a
1864 <<lttng-live,live trace viewer>> can
1865 connect. The live trace viewer sends requests to the relay daemon to
1866 receive trace data as the target system emits events. The
1867 communication protocol is named _LTTng live_; it is used over TCP
1868 connections.
1869
1870 Note that you can start the relay daemon on the target system directly.
1871 This is the setup of choice when the use case is to view events as
1872 the target system emits them without the need of a remote system.
1873
1874
1875 [[instrumenting]]
1876 == [[using-lttng]]Instrumentation
1877
1878 There are many examples of tracing and monitoring in our everyday life:
1879
1880 * You have access to real-time and historical weather reports and
1881 forecasts thanks to weather stations installed around the country.
1882 * You know your heart is safe thanks to an electrocardiogram.
1883 * You make sure not to drive your car too fast and to have enough fuel
1884 to reach your destination thanks to gauges visible on your dashboard.
1885
1886 All the previous examples have something in common: they rely on
1887 **instruments**. Without the electrodes attached to the surface of your
1888 body's skin, cardiac monitoring is futile.
1889
1890 LTTng, as a tracer, is no different from those real life examples. If
1891 you're about to trace a software system or, in other words, record its
1892 history of execution, you better have **instrumentation points** in the
1893 subject you're tracing, that is, the actual software.
1894
1895 Various ways were developed to instrument a piece of software for LTTng
1896 tracing. The most straightforward one is to manually place
1897 instrumentation points, called _tracepoints_, in the software's source
1898 code. It is also possible to add instrumentation points dynamically in
1899 the Linux kernel <<domain,tracing domain>>.
1900
1901 If you're only interested in tracing the Linux kernel, your
1902 instrumentation needs are probably already covered by LTTng's built-in
1903 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
1904 user application which is already instrumented for LTTng tracing.
1905 In such cases, you can skip this whole section and read the topics of
1906 the <<controlling-tracing,Tracing control>> section.
1907
1908 Many methods are available to instrument a piece of software for LTTng
1909 tracing. They are:
1910
1911 * <<c-application,User space instrumentation for C and $$C++$$
1912 applications>>.
1913 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
1914 * <<java-application,User space Java agent>>.
1915 * <<python-application,User space Python agent>>.
1916 * <<proc-lttng-logger-abi,LTTng logger>>.
1917 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
1918
1919
1920 [[c-application]]
1921 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
1922
1923 The procedure to instrument a C or $$C++$$ user application with
1924 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
1925
1926 . <<tracepoint-provider,Create the source files of a tracepoint provider
1927 package>>.
1928 . <<probing-the-application-source-code,Add tracepoints to
1929 the application's source code>>.
1930 . <<building-tracepoint-providers-and-user-application,Build and link
1931 a tracepoint provider package and the user application>>.
1932
1933 If you need quick, man:printf(3)-like instrumentation, you can skip
1934 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
1935 instead.
1936
1937 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
1938 instrument a user application with `liblttng-ust`.
1939
1940
1941 [[tracepoint-provider]]
1942 ==== Create the source files of a tracepoint provider package
1943
1944 A _tracepoint provider_ is a set of compiled functions which provide
1945 **tracepoints** to an application, the type of instrumentation point
1946 supported by LTTng-UST. Those functions can emit events with
1947 user-defined fields and serialize those events as event records to one
1948 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
1949 macro, which you <<probing-the-application-source-code,insert in a user
1950 application's source code>>, calls those functions.
1951
1952 A _tracepoint provider package_ is an object file (`.o`) or a shared
1953 library (`.so`) which contains one or more tracepoint providers.
1954 Its source files are:
1955
1956 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
1957 * A <<tpp-source,tracepoint provider package source>> (`.c`).
1958
1959 A tracepoint provider package is dynamically linked with `liblttng-ust`,
1960 the LTTng user space tracer, at run time.
1961
1962 [role="img-100"]
1963 .User application linked with `liblttng-ust` and containing a tracepoint provider.
1964 image::ust-app.png[]
1965
1966 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
1967 skip creating and using a tracepoint provider and use
1968 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
1969
1970
1971 [[tpp-header]]
1972 ===== Create a tracepoint provider header file template
1973
1974 A _tracepoint provider header file_ contains the tracepoint
1975 definitions of a tracepoint provider.
1976
1977 To create a tracepoint provider header file:
1978
1979 . Start from this template:
1980 +
1981 --
1982 [source,c]
1983 .Tracepoint provider header file template (`.h` file extension).
1984 ----
1985 #undef TRACEPOINT_PROVIDER
1986 #define TRACEPOINT_PROVIDER provider_name
1987
1988 #undef TRACEPOINT_INCLUDE
1989 #define TRACEPOINT_INCLUDE "./tp.h"
1990
1991 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
1992 #define _TP_H
1993
1994 #include <lttng/tracepoint.h>
1995
1996 /*
1997 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
1998 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
1999 */
2000
2001 #endif /* _TP_H */
2002
2003 #include <lttng/tracepoint-event.h>
2004 ----
2005 --
2006
2007 . Replace:
2008 +
2009 * `provider_name` with the name of your tracepoint provider.
2010 * `"tp.h"` with the name of your tracepoint provider header file.
2011
2012 . Below the `#include <lttng/tracepoint.h>` line, put your
2013 <<defining-tracepoints,tracepoint definitions>>.
2014
2015 Your tracepoint provider name must be unique amongst all the possible
2016 tracepoint provider names used on the same target system. We
2017 suggest to include the name of your project or company in the name,
2018 for example, `org_lttng_my_project_tpp`.
2019
2020 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2021 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2022 write are the <<defining-tracepoints,tracepoint definitions>>.
2023
2024
2025 [[defining-tracepoints]]
2026 ===== Create a tracepoint definition
2027
2028 A _tracepoint definition_ defines, for a given tracepoint:
2029
2030 * Its **input arguments**. They are the macro parameters that the
2031 `tracepoint()` macro accepts for this particular tracepoint
2032 in the user application's source code.
2033 * Its **output event fields**. They are the sources of event fields
2034 that form the payload of any event that the execution of the
2035 `tracepoint()` macro emits for this particular tracepoint.
2036
2037 You can create a tracepoint definition by using the
2038 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2039 line in the
2040 <<tpp-header,tracepoint provider header file template>>.
2041
2042 The syntax of the `TRACEPOINT_EVENT()` macro is:
2043
2044 [source,c]
2045 .`TRACEPOINT_EVENT()` macro syntax.
2046 ----
2047 TRACEPOINT_EVENT(
2048 /* Tracepoint provider name */
2049 provider_name,
2050
2051 /* Tracepoint name */
2052 tracepoint_name,
2053
2054 /* Input arguments */
2055 TP_ARGS(
2056 arguments
2057 ),
2058
2059 /* Output event fields */
2060 TP_FIELDS(
2061 fields
2062 )
2063 )
2064 ----
2065
2066 Replace:
2067
2068 * `provider_name` with your tracepoint provider name.
2069 * `tracepoint_name` with your tracepoint name.
2070 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2071 * `fields` with the <<tpp-def-output-fields,output event field>>
2072 definitions.
2073
2074 This tracepoint emits events named `provider_name:tracepoint_name`.
2075
2076 [IMPORTANT]
2077 .Event name's length limitation
2078 ====
2079 The concatenation of the tracepoint provider name and the
2080 tracepoint name must not exceed **254{nbsp}characters**. If it does, the
2081 instrumented application compiles and runs, but LTTng throws multiple
2082 warnings and you could experience serious issues.
2083 ====
2084
2085 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2086
2087 [source,c]
2088 .`TP_ARGS()` macro syntax.
2089 ----
2090 TP_ARGS(
2091 type, arg_name
2092 )
2093 ----
2094
2095 Replace:
2096
2097 * `type` with the C type of the argument.
2098 * `arg_name` with the argument name.
2099
2100 You can repeat `type` and `arg_name` up to 10{nbsp}times to have
2101 more than one argument.
2102
2103 .`TP_ARGS()` usage with three arguments.
2104 ====
2105 [source,c]
2106 ----
2107 TP_ARGS(
2108 int, count,
2109 float, ratio,
2110 const char*, query
2111 )
2112 ----
2113 ====
2114
2115 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2116 tracepoint definition with no input arguments.
2117
2118 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2119 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2120 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2121 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2122 one event field.
2123
2124 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2125 C expression that the tracer evalutes at the `tracepoint()` macro site
2126 in the application's source code. This expression provides a field's
2127 source of data. The argument expression can include input argument names
2128 listed in the `TP_ARGS()` macro.
2129
2130 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2131 must be unique within a given tracepoint definition.
2132
2133 Here's a complete tracepoint definition example:
2134
2135 .Tracepoint definition.
2136 ====
2137 The following tracepoint definition defines a tracepoint which takes
2138 three input arguments and has four output event fields.
2139
2140 [source,c]
2141 ----
2142 #include "my-custom-structure.h"
2143
2144 TRACEPOINT_EVENT(
2145 my_provider,
2146 my_tracepoint,
2147 TP_ARGS(
2148 const struct my_custom_structure*, my_custom_structure,
2149 float, ratio,
2150 const char*, query
2151 ),
2152 TP_FIELDS(
2153 ctf_string(query_field, query)
2154 ctf_float(double, ratio_field, ratio)
2155 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2156 ctf_integer(int, send_size, my_custom_structure->send_size)
2157 )
2158 )
2159 ----
2160
2161 You can refer to this tracepoint definition with the `tracepoint()`
2162 macro in your application's source code like this:
2163
2164 [source,c]
2165 ----
2166 tracepoint(my_provider, my_tracepoint,
2167 my_structure, some_ratio, the_query);
2168 ----
2169 ====
2170
2171 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2172 if they satisfy an enabled <<event,event rule>>.
2173
2174
2175 [[using-tracepoint-classes]]
2176 ===== Use a tracepoint class
2177
2178 A _tracepoint class_ is a class of tracepoints which share the same
2179 output event field definitions. A _tracepoint instance_ is one
2180 instance of such a defined tracepoint class, with its own tracepoint
2181 name.
2182
2183 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2184 shorthand which defines both a tracepoint class and a tracepoint
2185 instance at the same time.
2186
2187 When you build a tracepoint provider package, the C or $$C++$$ compiler
2188 creates one serialization function for each **tracepoint class**. A
2189 serialization function is responsible for serializing the event fields
2190 of a tracepoint to a sub-buffer when tracing.
2191
2192 For various performance reasons, when your situation requires multiple
2193 tracepoint definitions with different names, but with the same event
2194 fields, we recommend that you manually create a tracepoint class
2195 and instantiate as many tracepoint instances as needed. One positive
2196 effect of such a design, amongst other advantages, is that all
2197 tracepoint instances of the same tracepoint class reuse the same
2198 serialization function, thus reducing
2199 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2200
2201 .Use a tracepoint class and tracepoint instances.
2202 ====
2203 Consider the following three tracepoint definitions:
2204
2205 [source,c]
2206 ----
2207 TRACEPOINT_EVENT(
2208 my_app,
2209 get_account,
2210 TP_ARGS(
2211 int, userid,
2212 size_t, len
2213 ),
2214 TP_FIELDS(
2215 ctf_integer(int, userid, userid)
2216 ctf_integer(size_t, len, len)
2217 )
2218 )
2219
2220 TRACEPOINT_EVENT(
2221 my_app,
2222 get_settings,
2223 TP_ARGS(
2224 int, userid,
2225 size_t, len
2226 ),
2227 TP_FIELDS(
2228 ctf_integer(int, userid, userid)
2229 ctf_integer(size_t, len, len)
2230 )
2231 )
2232
2233 TRACEPOINT_EVENT(
2234 my_app,
2235 get_transaction,
2236 TP_ARGS(
2237 int, userid,
2238 size_t, len
2239 ),
2240 TP_FIELDS(
2241 ctf_integer(int, userid, userid)
2242 ctf_integer(size_t, len, len)
2243 )
2244 )
2245 ----
2246
2247 In this case, we create three tracepoint classes, with one implicit
2248 tracepoint instance for each of them: `get_account`, `get_settings`, and
2249 `get_transaction`. However, they all share the same event field names
2250 and types. Hence three identical, yet independent serialization
2251 functions are created when you build the tracepoint provider package.
2252
2253 A better design choice is to define a single tracepoint class and three
2254 tracepoint instances:
2255
2256 [source,c]
2257 ----
2258 /* The tracepoint class */
2259 TRACEPOINT_EVENT_CLASS(
2260 /* Tracepoint provider name */
2261 my_app,
2262
2263 /* Tracepoint class name */
2264 my_class,
2265
2266 /* Input arguments */
2267 TP_ARGS(
2268 int, userid,
2269 size_t, len
2270 ),
2271
2272 /* Output event fields */
2273 TP_FIELDS(
2274 ctf_integer(int, userid, userid)
2275 ctf_integer(size_t, len, len)
2276 )
2277 )
2278
2279 /* The tracepoint instances */
2280 TRACEPOINT_EVENT_INSTANCE(
2281 /* Tracepoint provider name */
2282 my_app,
2283
2284 /* Tracepoint class name */
2285 my_class,
2286
2287 /* Tracepoint name */
2288 get_account,
2289
2290 /* Input arguments */
2291 TP_ARGS(
2292 int, userid,
2293 size_t, len
2294 )
2295 )
2296 TRACEPOINT_EVENT_INSTANCE(
2297 my_app,
2298 my_class,
2299 get_settings,
2300 TP_ARGS(
2301 int, userid,
2302 size_t, len
2303 )
2304 )
2305 TRACEPOINT_EVENT_INSTANCE(
2306 my_app,
2307 my_class,
2308 get_transaction,
2309 TP_ARGS(
2310 int, userid,
2311 size_t, len
2312 )
2313 )
2314 ----
2315 ====
2316
2317
2318 [[assigning-log-levels]]
2319 ===== Assign a log level to a tracepoint definition
2320
2321 You can assign an optional _log level_ to a
2322 <<defining-tracepoints,tracepoint definition>>.
2323
2324 Assigning different levels of severity to tracepoint definitions can
2325 be useful: when you <<enabling-disabling-events,create an event rule>>,
2326 you can target tracepoints having a log level as severe as a specific
2327 value.
2328
2329 The concept of LTTng-UST log levels is similar to the levels found
2330 in typical logging frameworks:
2331
2332 * In a logging framework, the log level is given by the function
2333 or method name you use at the log statement site: `debug()`,
2334 `info()`, `warn()`, `error()`, and so on.
2335 * In LTTng-UST, you statically assign the log level to a tracepoint
2336 definition; any `tracepoint()` macro invocation which refers to
2337 this definition has this log level.
2338
2339 You can assign a log level to a tracepoint definition with the
2340 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2341 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2342 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2343 tracepoint.
2344
2345 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2346
2347 [source,c]
2348 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2349 ----
2350 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2351 ----
2352
2353 Replace:
2354
2355 * `provider_name` with the tracepoint provider name.
2356 * `tracepoint_name` with the tracepoint name.
2357 * `log_level` with the log level to assign to the tracepoint
2358 definition named `tracepoint_name` in the `provider_name`
2359 tracepoint provider.
2360 +
2361 See man:lttng-ust(3) for a list of available log level names.
2362
2363 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2364 ====
2365 [source,c]
2366 ----
2367 /* Tracepoint definition */
2368 TRACEPOINT_EVENT(
2369 my_app,
2370 get_transaction,
2371 TP_ARGS(
2372 int, userid,
2373 size_t, len
2374 ),
2375 TP_FIELDS(
2376 ctf_integer(int, userid, userid)
2377 ctf_integer(size_t, len, len)
2378 )
2379 )
2380
2381 /* Log level assignment */
2382 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2383 ----
2384 ====
2385
2386
2387 [[tpp-source]]
2388 ===== Create a tracepoint provider package source file
2389
2390 A _tracepoint provider package source file_ is a C source file which
2391 includes a <<tpp-header,tracepoint provider header file>> to expand its
2392 macros into event serialization and other functions.
2393
2394 You can always use the following tracepoint provider package source
2395 file template:
2396
2397 [source,c]
2398 .Tracepoint provider package source file template.
2399 ----
2400 #define TRACEPOINT_CREATE_PROBES
2401
2402 #include "tp.h"
2403 ----
2404
2405 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2406 header file>> name. You may also include more than one tracepoint
2407 provider header file here to create a tracepoint provider package
2408 holding more than one tracepoint providers.
2409
2410
2411 [[probing-the-application-source-code]]
2412 ==== Add tracepoints to an application's source code
2413
2414 Once you <<tpp-header,create a tracepoint provider header file>>, you
2415 can use the `tracepoint()` macro in your application's
2416 source code to insert the tracepoints that this header
2417 <<defining-tracepoints,defines>>.
2418
2419 The `tracepoint()` macro takes at least two parameters: the tracepoint
2420 provider name and the tracepoint name. The corresponding tracepoint
2421 definition defines the other parameters.
2422
2423 .`tracepoint()` usage.
2424 ====
2425 The following <<defining-tracepoints,tracepoint definition>> defines a
2426 tracepoint which takes two input arguments and has two output event
2427 fields.
2428
2429 [source,c]
2430 .Tracepoint provider header file.
2431 ----
2432 #include "my-custom-structure.h"
2433
2434 TRACEPOINT_EVENT(
2435 my_provider,
2436 my_tracepoint,
2437 TP_ARGS(
2438 int, argc,
2439 const char*, cmd_name
2440 ),
2441 TP_FIELDS(
2442 ctf_string(cmd_name, cmd_name)
2443 ctf_integer(int, number_of_args, argc)
2444 )
2445 )
2446 ----
2447
2448 You can refer to this tracepoint definition with the `tracepoint()`
2449 macro in your application's source code like this:
2450
2451 [source,c]
2452 .Application's source file.
2453 ----
2454 #include "tp.h"
2455
2456 int main(int argc, char* argv[])
2457 {
2458 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2459
2460 return 0;
2461 }
2462 ----
2463
2464 Note how the application's source code includes
2465 the tracepoint provider header file containing the tracepoint
2466 definitions to use, path:{tp.h}.
2467 ====
2468
2469 .`tracepoint()` usage with a complex tracepoint definition.
2470 ====
2471 Consider this complex tracepoint definition, where multiple event
2472 fields refer to the same input arguments in their argument expression
2473 parameter:
2474
2475 [source,c]
2476 .Tracepoint provider header file.
2477 ----
2478 /* For `struct stat` */
2479 #include <sys/types.h>
2480 #include <sys/stat.h>
2481 #include <unistd.h>
2482
2483 TRACEPOINT_EVENT(
2484 my_provider,
2485 my_tracepoint,
2486 TP_ARGS(
2487 int, my_int_arg,
2488 char*, my_str_arg,
2489 struct stat*, st
2490 ),
2491 TP_FIELDS(
2492 ctf_integer(int, my_constant_field, 23 + 17)
2493 ctf_integer(int, my_int_arg_field, my_int_arg)
2494 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2495 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2496 my_str_arg[2] + my_str_arg[3])
2497 ctf_string(my_str_arg_field, my_str_arg)
2498 ctf_integer_hex(off_t, size_field, st->st_size)
2499 ctf_float(double, size_dbl_field, (double) st->st_size)
2500 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2501 size_t, strlen(my_str_arg) / 2)
2502 )
2503 )
2504 ----
2505
2506 You can refer to this tracepoint definition with the `tracepoint()`
2507 macro in your application's source code like this:
2508
2509 [source,c]
2510 .Application's source file.
2511 ----
2512 #define TRACEPOINT_DEFINE
2513 #include "tp.h"
2514
2515 int main(void)
2516 {
2517 struct stat s;
2518
2519 stat("/etc/fstab", &s);
2520 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2521
2522 return 0;
2523 }
2524 ----
2525
2526 If you look at the event record that LTTng writes when tracing this
2527 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2528 it should look like this:
2529
2530 .Event record fields
2531 |====
2532 |Field's name |Field's value
2533 |`my_constant_field` |40
2534 |`my_int_arg_field` |23
2535 |`my_int_arg_field2` |529
2536 |`sum4_field` |389
2537 |`my_str_arg_field` |`Hello, World!`
2538 |`size_field` |0x12d
2539 |`size_dbl_field` |301.0
2540 |`half_my_str_arg_field` |`Hello,`
2541 |====
2542 ====
2543
2544 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2545 compute--they use the call stack, for example. To avoid this
2546 computation when the tracepoint is disabled, you can use the
2547 `tracepoint_enabled()` and `do_tracepoint()` macros.
2548
2549 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2550 is:
2551
2552 [source,c]
2553 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2554 ----
2555 tracepoint_enabled(provider_name, tracepoint_name)
2556 do_tracepoint(provider_name, tracepoint_name, ...)
2557 ----
2558
2559 Replace:
2560
2561 * `provider_name` with the tracepoint provider name.
2562 * `tracepoint_name` with the tracepoint name.
2563
2564 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2565 `tracepoint_name` from the provider named `provider_name` is enabled
2566 **at run time**.
2567
2568 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2569 if the tracepoint is enabled. Using `tracepoint()` with
2570 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2571 the `tracepoint_enabled()` check, thus a race condition is
2572 possible in this situation:
2573
2574 [source,c]
2575 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2576 ----
2577 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2578 stuff = prepare_stuff();
2579 }
2580
2581 tracepoint(my_provider, my_tracepoint, stuff);
2582 ----
2583
2584 If the tracepoint is enabled after the condition, then `stuff` is not
2585 prepared: the emitted event will either contain wrong data, or the whole
2586 application could crash (segmentation fault, for example).
2587
2588 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2589 `STAP_PROBEV()` call. If you need it, you must emit
2590 this call yourself.
2591
2592
2593 [[building-tracepoint-providers-and-user-application]]
2594 ==== Build and link a tracepoint provider package and an application
2595
2596 Once you have one or more <<tpp-header,tracepoint provider header
2597 files>> and a <<tpp-source,tracepoint provider package source file>>,
2598 you can create the tracepoint provider package by compiling its source
2599 file. From here, multiple build and run scenarios are possible. The
2600 following table shows common application and library configurations
2601 along with the required command lines to achieve them.
2602
2603 In the following diagrams, we use the following file names:
2604
2605 `app`::
2606 Executable application.
2607
2608 `app.o`::
2609 Application's object file.
2610
2611 `tpp.o`::
2612 Tracepoint provider package object file.
2613
2614 `tpp.a`::
2615 Tracepoint provider package archive file.
2616
2617 `libtpp.so`::
2618 Tracepoint provider package shared object file.
2619
2620 `emon.o`::
2621 User library object file.
2622
2623 `libemon.so`::
2624 User library shared object file.
2625
2626 We use the following symbols in the diagrams of table below:
2627
2628 [role="img-100"]
2629 .Symbols used in the build scenario diagrams.
2630 image::ust-sit-symbols.png[]
2631
2632 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2633 variable in the following instructions.
2634
2635 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2636 .Common tracepoint provider package scenarios.
2637 |====
2638 |Scenario |Instructions
2639
2640 |
2641 The instrumented application is statically linked with
2642 the tracepoint provider package object.
2643
2644 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2645
2646 |
2647 include::../common/ust-sit-step-tp-o.txt[]
2648
2649 To build the instrumented application:
2650
2651 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2652 +
2653 --
2654 [source,c]
2655 ----
2656 #define TRACEPOINT_DEFINE
2657 ----
2658 --
2659
2660 . Compile the application source file:
2661 +
2662 --
2663 [role="term"]
2664 ----
2665 $ gcc -c app.c
2666 ----
2667 --
2668
2669 . Build the application:
2670 +
2671 --
2672 [role="term"]
2673 ----
2674 $ gcc -o app app.o tpp.o -llttng-ust -ldl
2675 ----
2676 --
2677
2678 To run the instrumented application:
2679
2680 * Start the application:
2681 +
2682 --
2683 [role="term"]
2684 ----
2685 $ ./app
2686 ----
2687 --
2688
2689 |
2690 The instrumented application is statically linked with the
2691 tracepoint provider package archive file.
2692
2693 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2694
2695 |
2696 To create the tracepoint provider package archive file:
2697
2698 . Compile the <<tpp-source,tracepoint provider package source file>>:
2699 +
2700 --
2701 [role="term"]
2702 ----
2703 $ gcc -I. -c tpp.c
2704 ----
2705 --
2706
2707 . Create the tracepoint provider package archive file:
2708 +
2709 --
2710 [role="term"]
2711 ----
2712 $ ar rcs tpp.a tpp.o
2713 ----
2714 --
2715
2716 To build the instrumented application:
2717
2718 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2719 +
2720 --
2721 [source,c]
2722 ----
2723 #define TRACEPOINT_DEFINE
2724 ----
2725 --
2726
2727 . Compile the application source file:
2728 +
2729 --
2730 [role="term"]
2731 ----
2732 $ gcc -c app.c
2733 ----
2734 --
2735
2736 . Build the application:
2737 +
2738 --
2739 [role="term"]
2740 ----
2741 $ gcc -o app app.o tpp.a -llttng-ust -ldl
2742 ----
2743 --
2744
2745 To run the instrumented application:
2746
2747 * Start the application:
2748 +
2749 --
2750 [role="term"]
2751 ----
2752 $ ./app
2753 ----
2754 --
2755
2756 |
2757 The instrumented application is linked with the tracepoint provider
2758 package shared object.
2759
2760 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2761
2762 |
2763 include::../common/ust-sit-step-tp-so.txt[]
2764
2765 To build the instrumented application:
2766
2767 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2768 +
2769 --
2770 [source,c]
2771 ----
2772 #define TRACEPOINT_DEFINE
2773 ----
2774 --
2775
2776 . Compile the application source file:
2777 +
2778 --
2779 [role="term"]
2780 ----
2781 $ gcc -c app.c
2782 ----
2783 --
2784
2785 . Build the application:
2786 +
2787 --
2788 [role="term"]
2789 ----
2790 $ gcc -o app app.o -ldl -L. -ltpp
2791 ----
2792 --
2793
2794 To run the instrumented application:
2795
2796 * Start the application:
2797 +
2798 --
2799 [role="term"]
2800 ----
2801 $ ./app
2802 ----
2803 --
2804
2805 |
2806 The tracepoint provider package shared object is preloaded before the
2807 instrumented application starts.
2808
2809 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
2810
2811 |
2812 include::../common/ust-sit-step-tp-so.txt[]
2813
2814 To build the instrumented application:
2815
2816 . In path:{app.c}, before including path:{tpp.h}, add the
2817 following lines:
2818 +
2819 --
2820 [source,c]
2821 ----
2822 #define TRACEPOINT_DEFINE
2823 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2824 ----
2825 --
2826
2827 . Compile the application source file:
2828 +
2829 --
2830 [role="term"]
2831 ----
2832 $ gcc -c app.c
2833 ----
2834 --
2835
2836 . Build the application:
2837 +
2838 --
2839 [role="term"]
2840 ----
2841 $ gcc -o app app.o -ldl
2842 ----
2843 --
2844
2845 To run the instrumented application with tracing support:
2846
2847 * Preload the tracepoint provider package shared object and
2848 start the application:
2849 +
2850 --
2851 [role="term"]
2852 ----
2853 $ LD_PRELOAD=./libtpp.so ./app
2854 ----
2855 --
2856
2857 To run the instrumented application without tracing support:
2858
2859 * Start the application:
2860 +
2861 --
2862 [role="term"]
2863 ----
2864 $ ./app
2865 ----
2866 --
2867
2868 |
2869 The instrumented application dynamically loads the tracepoint provider
2870 package shared object.
2871
2872 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
2873
2874 |
2875 include::../common/ust-sit-step-tp-so.txt[]
2876
2877 To build the instrumented application:
2878
2879 . In path:{app.c}, before including path:{tpp.h}, add the
2880 following lines:
2881 +
2882 --
2883 [source,c]
2884 ----
2885 #define TRACEPOINT_DEFINE
2886 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2887 ----
2888 --
2889
2890 . Compile the application source file:
2891 +
2892 --
2893 [role="term"]
2894 ----
2895 $ gcc -c app.c
2896 ----
2897 --
2898
2899 . Build the application:
2900 +
2901 --
2902 [role="term"]
2903 ----
2904 $ gcc -o app app.o -ldl
2905 ----
2906 --
2907
2908 To run the instrumented application:
2909
2910 * Start the application:
2911 +
2912 --
2913 [role="term"]
2914 ----
2915 $ ./app
2916 ----
2917 --
2918
2919 |
2920 The application is linked with the instrumented user library.
2921
2922 The instrumented user library is statically linked with the tracepoint
2923 provider package object file.
2924
2925 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
2926
2927 |
2928 include::../common/ust-sit-step-tp-o-fpic.txt[]
2929
2930 To build the instrumented user library:
2931
2932 . In path:{emon.c}, before including path:{tpp.h}, add the
2933 following line:
2934 +
2935 --
2936 [source,c]
2937 ----
2938 #define TRACEPOINT_DEFINE
2939 ----
2940 --
2941
2942 . Compile the user library source file:
2943 +
2944 --
2945 [role="term"]
2946 ----
2947 $ gcc -I. -fpic -c emon.c
2948 ----
2949 --
2950
2951 . Build the user library shared object:
2952 +
2953 --
2954 [role="term"]
2955 ----
2956 $ gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
2957 ----
2958 --
2959
2960 To build the application:
2961
2962 . Compile the application source file:
2963 +
2964 --
2965 [role="term"]
2966 ----
2967 $ gcc -c app.c
2968 ----
2969 --
2970
2971 . Build the application:
2972 +
2973 --
2974 [role="term"]
2975 ----
2976 $ gcc -o app app.o -L. -lemon
2977 ----
2978 --
2979
2980 To run the application:
2981
2982 * Start the application:
2983 +
2984 --
2985 [role="term"]
2986 ----
2987 $ ./app
2988 ----
2989 --
2990
2991 |
2992 The application is linked with the instrumented user library.
2993
2994 The instrumented user library is linked with the tracepoint provider
2995 package shared object.
2996
2997 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
2998
2999 |
3000 include::../common/ust-sit-step-tp-so.txt[]
3001
3002 To build the instrumented user library:
3003
3004 . In path:{emon.c}, before including path:{tpp.h}, add the
3005 following line:
3006 +
3007 --
3008 [source,c]
3009 ----
3010 #define TRACEPOINT_DEFINE
3011 ----
3012 --
3013
3014 . Compile the user library source file:
3015 +
3016 --
3017 [role="term"]
3018 ----
3019 $ gcc -I. -fpic -c emon.c
3020 ----
3021 --
3022
3023 . Build the user library shared object:
3024 +
3025 --
3026 [role="term"]
3027 ----
3028 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3029 ----
3030 --
3031
3032 To build the application:
3033
3034 . Compile the application source file:
3035 +
3036 --
3037 [role="term"]
3038 ----
3039 $ gcc -c app.c
3040 ----
3041 --
3042
3043 . Build the application:
3044 +
3045 --
3046 [role="term"]
3047 ----
3048 $ gcc -o app app.o -L. -lemon
3049 ----
3050 --
3051
3052 To run the application:
3053
3054 * Start the application:
3055 +
3056 --
3057 [role="term"]
3058 ----
3059 $ ./app
3060 ----
3061 --
3062
3063 |
3064 The tracepoint provider package shared object is preloaded before the
3065 application starts.
3066
3067 The application is linked with the instrumented user library.
3068
3069 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3070
3071 |
3072 include::../common/ust-sit-step-tp-so.txt[]
3073
3074 To build the instrumented user library:
3075
3076 . In path:{emon.c}, before including path:{tpp.h}, add the
3077 following lines:
3078 +
3079 --
3080 [source,c]
3081 ----
3082 #define TRACEPOINT_DEFINE
3083 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3084 ----
3085 --
3086
3087 . Compile the user library source file:
3088 +
3089 --
3090 [role="term"]
3091 ----
3092 $ gcc -I. -fpic -c emon.c
3093 ----
3094 --
3095
3096 . Build the user library shared object:
3097 +
3098 --
3099 [role="term"]
3100 ----
3101 $ gcc -shared -o libemon.so emon.o -ldl
3102 ----
3103 --
3104
3105 To build the application:
3106
3107 . Compile the application source file:
3108 +
3109 --
3110 [role="term"]
3111 ----
3112 $ gcc -c app.c
3113 ----
3114 --
3115
3116 . Build the application:
3117 +
3118 --
3119 [role="term"]
3120 ----
3121 $ gcc -o app app.o -L. -lemon
3122 ----
3123 --
3124
3125 To run the application with tracing support:
3126
3127 * Preload the tracepoint provider package shared object and
3128 start the application:
3129 +
3130 --
3131 [role="term"]
3132 ----
3133 $ LD_PRELOAD=./libtpp.so ./app
3134 ----
3135 --
3136
3137 To run the application without tracing support:
3138
3139 * Start the application:
3140 +
3141 --
3142 [role="term"]
3143 ----
3144 $ ./app
3145 ----
3146 --
3147
3148 |
3149 The application is linked with the instrumented user library.
3150
3151 The instrumented user library dynamically loads the tracepoint provider
3152 package shared object.
3153
3154 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3155
3156 |
3157 include::../common/ust-sit-step-tp-so.txt[]
3158
3159 To build the instrumented user library:
3160
3161 . In path:{emon.c}, before including path:{tpp.h}, add the
3162 following lines:
3163 +
3164 --
3165 [source,c]
3166 ----
3167 #define TRACEPOINT_DEFINE
3168 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3169 ----
3170 --
3171
3172 . Compile the user library source file:
3173 +
3174 --
3175 [role="term"]
3176 ----
3177 $ gcc -I. -fpic -c emon.c
3178 ----
3179 --
3180
3181 . Build the user library shared object:
3182 +
3183 --
3184 [role="term"]
3185 ----
3186 $ gcc -shared -o libemon.so emon.o -ldl
3187 ----
3188 --
3189
3190 To build the application:
3191
3192 . Compile the application source file:
3193 +
3194 --
3195 [role="term"]
3196 ----
3197 $ gcc -c app.c
3198 ----
3199 --
3200
3201 . Build the application:
3202 +
3203 --
3204 [role="term"]
3205 ----
3206 $ gcc -o app app.o -L. -lemon
3207 ----
3208 --
3209
3210 To run the application:
3211
3212 * Start the application:
3213 +
3214 --
3215 [role="term"]
3216 ----
3217 $ ./app
3218 ----
3219 --
3220
3221 |
3222 The application dynamically loads the instrumented user library.
3223
3224 The instrumented user library is linked with the tracepoint provider
3225 package shared object.
3226
3227 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3228
3229 |
3230 include::../common/ust-sit-step-tp-so.txt[]
3231
3232 To build the instrumented user library:
3233
3234 . In path:{emon.c}, before including path:{tpp.h}, add the
3235 following line:
3236 +
3237 --
3238 [source,c]
3239 ----
3240 #define TRACEPOINT_DEFINE
3241 ----
3242 --
3243
3244 . Compile the user library source file:
3245 +
3246 --
3247 [role="term"]
3248 ----
3249 $ gcc -I. -fpic -c emon.c
3250 ----
3251 --
3252
3253 . Build the user library shared object:
3254 +
3255 --
3256 [role="term"]
3257 ----
3258 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3259 ----
3260 --
3261
3262 To build the application:
3263
3264 . Compile the application source file:
3265 +
3266 --
3267 [role="term"]
3268 ----
3269 $ gcc -c app.c
3270 ----
3271 --
3272
3273 . Build the application:
3274 +
3275 --
3276 [role="term"]
3277 ----
3278 $ gcc -o app app.o -ldl -L. -lemon
3279 ----
3280 --
3281
3282 To run the application:
3283
3284 * Start the application:
3285 +
3286 --
3287 [role="term"]
3288 ----
3289 $ ./app
3290 ----
3291 --
3292
3293 |
3294 The application dynamically loads the instrumented user library.
3295
3296 The instrumented user library dynamically loads the tracepoint provider
3297 package shared object.
3298
3299 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3300
3301 |
3302 include::../common/ust-sit-step-tp-so.txt[]
3303
3304 To build the instrumented user library:
3305
3306 . In path:{emon.c}, before including path:{tpp.h}, add the
3307 following lines:
3308 +
3309 --
3310 [source,c]
3311 ----
3312 #define TRACEPOINT_DEFINE
3313 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3314 ----
3315 --
3316
3317 . Compile the user library source file:
3318 +
3319 --
3320 [role="term"]
3321 ----
3322 $ gcc -I. -fpic -c emon.c
3323 ----
3324 --
3325
3326 . Build the user library shared object:
3327 +
3328 --
3329 [role="term"]
3330 ----
3331 $ gcc -shared -o libemon.so emon.o -ldl
3332 ----
3333 --
3334
3335 To build the application:
3336
3337 . Compile the application source file:
3338 +
3339 --
3340 [role="term"]
3341 ----
3342 $ gcc -c app.c
3343 ----
3344 --
3345
3346 . Build the application:
3347 +
3348 --
3349 [role="term"]
3350 ----
3351 $ gcc -o app app.o -ldl -L. -lemon
3352 ----
3353 --
3354
3355 To run the application:
3356
3357 * Start the application:
3358 +
3359 --
3360 [role="term"]
3361 ----
3362 $ ./app
3363 ----
3364 --
3365
3366 |
3367 The tracepoint provider package shared object is preloaded before the
3368 application starts.
3369
3370 The application dynamically loads the instrumented user library.
3371
3372 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3373
3374 |
3375 include::../common/ust-sit-step-tp-so.txt[]
3376
3377 To build the instrumented user library:
3378
3379 . In path:{emon.c}, before including path:{tpp.h}, add the
3380 following lines:
3381 +
3382 --
3383 [source,c]
3384 ----
3385 #define TRACEPOINT_DEFINE
3386 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3387 ----
3388 --
3389
3390 . Compile the user library source file:
3391 +
3392 --
3393 [role="term"]
3394 ----
3395 $ gcc -I. -fpic -c emon.c
3396 ----
3397 --
3398
3399 . Build the user library shared object:
3400 +
3401 --
3402 [role="term"]
3403 ----
3404 $ gcc -shared -o libemon.so emon.o -ldl
3405 ----
3406 --
3407
3408 To build the application:
3409
3410 . Compile the application source file:
3411 +
3412 --
3413 [role="term"]
3414 ----
3415 $ gcc -c app.c
3416 ----
3417 --
3418
3419 . Build the application:
3420 +
3421 --
3422 [role="term"]
3423 ----
3424 $ gcc -o app app.o -L. -lemon
3425 ----
3426 --
3427
3428 To run the application with tracing support:
3429
3430 * Preload the tracepoint provider package shared object and
3431 start the application:
3432 +
3433 --
3434 [role="term"]
3435 ----
3436 $ LD_PRELOAD=./libtpp.so ./app
3437 ----
3438 --
3439
3440 To run the application without tracing support:
3441
3442 * Start the application:
3443 +
3444 --
3445 [role="term"]
3446 ----
3447 $ ./app
3448 ----
3449 --
3450
3451 |
3452 The application is statically linked with the tracepoint provider
3453 package object file.
3454
3455 The application is linked with the instrumented user library.
3456
3457 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3458
3459 |
3460 include::../common/ust-sit-step-tp-o.txt[]
3461
3462 To build the instrumented user library:
3463
3464 . In path:{emon.c}, before including path:{tpp.h}, add the
3465 following line:
3466 +
3467 --
3468 [source,c]
3469 ----
3470 #define TRACEPOINT_DEFINE
3471 ----
3472 --
3473
3474 . Compile the user library source file:
3475 +
3476 --
3477 [role="term"]
3478 ----
3479 $ gcc -I. -fpic -c emon.c
3480 ----
3481 --
3482
3483 . Build the user library shared object:
3484 +
3485 --
3486 [role="term"]
3487 ----
3488 $ gcc -shared -o libemon.so emon.o
3489 ----
3490 --
3491
3492 To build the application:
3493
3494 . Compile the application source file:
3495 +
3496 --
3497 [role="term"]
3498 ----
3499 $ gcc -c app.c
3500 ----
3501 --
3502
3503 . Build the application:
3504 +
3505 --
3506 [role="term"]
3507 ----
3508 $ gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3509 ----
3510 --
3511
3512 To run the instrumented application:
3513
3514 * Start the application:
3515 +
3516 --
3517 [role="term"]
3518 ----
3519 $ ./app
3520 ----
3521 --
3522
3523 |
3524 The application is statically linked with the tracepoint provider
3525 package object file.
3526
3527 The application dynamically loads the instrumented user library.
3528
3529 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3530
3531 |
3532 include::../common/ust-sit-step-tp-o.txt[]
3533
3534 To build the application:
3535
3536 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3537 +
3538 --
3539 [source,c]
3540 ----
3541 #define TRACEPOINT_DEFINE
3542 ----
3543 --
3544
3545 . Compile the application source file:
3546 +
3547 --
3548 [role="term"]
3549 ----
3550 $ gcc -c app.c
3551 ----
3552 --
3553
3554 . Build the application:
3555 +
3556 --
3557 [role="term"]
3558 ----
3559 $ gcc -Wl,--export-dynamic -o app app.o tpp.o \
3560 -llttng-ust -ldl
3561 ----
3562 --
3563 +
3564 The `--export-dynamic` option passed to the linker is necessary for the
3565 dynamically loaded library to ``see'' the tracepoint symbols defined in
3566 the application.
3567
3568 To build the instrumented user library:
3569
3570 . Compile the user library source file:
3571 +
3572 --
3573 [role="term"]
3574 ----
3575 $ gcc -I. -fpic -c emon.c
3576 ----
3577 --
3578
3579 . Build the user library shared object:
3580 +
3581 --
3582 [role="term"]
3583 ----
3584 $ gcc -shared -o libemon.so emon.o
3585 ----
3586 --
3587
3588 To run the application:
3589
3590 * Start the application:
3591 +
3592 --
3593 [role="term"]
3594 ----
3595 $ ./app
3596 ----
3597 --
3598 |====
3599
3600
3601 [[using-lttng-ust-with-daemons]]
3602 ===== Use noch:{LTTng-UST} with daemons
3603
3604 If your instrumented application calls man:fork(2), man:clone(2),
3605 or BSD's man:rfork(2), without a following man:exec(3)-family
3606 system call, you must preload the path:{liblttng-ust-fork.so} shared
3607 object when you start the application.
3608
3609 [role="term"]
3610 ----
3611 $ LD_PRELOAD=liblttng-ust-fork.so ./my-app
3612 ----
3613
3614 If your tracepoint provider package is
3615 a shared library which you also preload, you must put both
3616 shared objects in env:LD_PRELOAD:
3617
3618 [role="term"]
3619 ----
3620 $ LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3621 ----
3622
3623
3624 [role="since-2.9"]
3625 [[liblttng-ust-fd]]
3626 ===== Use noch:{LTTng-UST} with applications which close file descriptors that don't belong to them
3627
3628 If your instrumented application closes one or more file descriptors
3629 which it did not open itself, you must preload the
3630 path:{liblttng-ust-fd.so} shared object when you start the application:
3631
3632 [role="term"]
3633 ----
3634 $ LD_PRELOAD=liblttng-ust-fd.so ./my-app
3635 ----
3636
3637 Typical use cases include closing all the file descriptors after
3638 man:fork(2) or man:rfork(2) and buggy applications doing
3639 ``double closes''.
3640
3641
3642 [[lttng-ust-pkg-config]]
3643 ===== Use noch:{pkg-config}
3644
3645 On some distributions, LTTng-UST ships with a
3646 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3647 metadata file. If this is your case, then you can use cmd:pkg-config to
3648 build an application on the command line:
3649
3650 [role="term"]
3651 ----
3652 $ gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3653 ----
3654
3655
3656 [[instrumenting-32-bit-app-on-64-bit-system]]
3657 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3658
3659 In order to trace a 32-bit application running on a 64-bit system,
3660 LTTng must use a dedicated 32-bit
3661 <<lttng-consumerd,consumer daemon>>.
3662
3663 The following steps show how to build and install a 32-bit consumer
3664 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3665 build and install the 32-bit LTTng-UST libraries, and how to build and
3666 link an instrumented 32-bit application in that context.
3667
3668 To build a 32-bit instrumented application for a 64-bit target system,
3669 assuming you have a fresh target system with no installed Userspace RCU
3670 or LTTng packages:
3671
3672 . Download, build, and install a 32-bit version of Userspace RCU:
3673 +
3674 --
3675 [role="term"]
3676 ----
3677 $ cd $(mktemp -d) &&
3678 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3679 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3680 cd userspace-rcu-0.9.* &&
3681 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3682 make &&
3683 sudo make install &&
3684 sudo ldconfig
3685 ----
3686 --
3687
3688 . Using your distribution's package manager, or from source, install
3689 the following 32-bit versions of the following dependencies of
3690 LTTng-tools and LTTng-UST:
3691 +
3692 --
3693 * https://sourceforge.net/projects/libuuid/[libuuid]
3694 * http://directory.fsf.org/wiki/Popt[popt]
3695 * http://www.xmlsoft.org/[libxml2]
3696 --
3697
3698 . Download, build, and install a 32-bit version of the latest
3699 LTTng-UST{nbsp}{revision}:
3700 +
3701 --
3702 [role="term"]
3703 ----
3704 $ cd $(mktemp -d) &&
3705 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.11.tar.bz2 &&
3706 tar -xf lttng-ust-latest-2.11.tar.bz2 &&
3707 cd lttng-ust-2.11.* &&
3708 ./configure --libdir=/usr/local/lib32 \
3709 CFLAGS=-m32 CXXFLAGS=-m32 \
3710 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3711 make &&
3712 sudo make install &&
3713 sudo ldconfig
3714 ----
3715 --
3716 +
3717 [NOTE]
3718 ====
3719 Depending on your distribution,
3720 32-bit libraries could be installed at a different location than
3721 `/usr/lib32`. For example, Debian is known to install
3722 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3723
3724 In this case, make sure to set `LDFLAGS` to all the
3725 relevant 32-bit library paths, for example:
3726
3727 [role="term"]
3728 ----
3729 $ LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3730 ----
3731 ====
3732
3733 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
3734 the 32-bit consumer daemon:
3735 +
3736 --
3737 [role="term"]
3738 ----
3739 $ cd $(mktemp -d) &&
3740 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.11.tar.bz2 &&
3741 tar -xf lttng-tools-latest-2.11.tar.bz2 &&
3742 cd lttng-tools-2.11.* &&
3743 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3744 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' \
3745 --disable-bin-lttng --disable-bin-lttng-crash \
3746 --disable-bin-lttng-relayd --disable-bin-lttng-sessiond &&
3747 make &&
3748 cd src/bin/lttng-consumerd &&
3749 sudo make install &&
3750 sudo ldconfig
3751 ----
3752 --
3753
3754 . From your distribution or from source,
3755 <<installing-lttng,install>> the 64-bit versions of
3756 LTTng-UST and Userspace RCU.
3757 . Download, build, and install the 64-bit version of the
3758 latest LTTng-tools{nbsp}{revision}:
3759 +
3760 --
3761 [role="term"]
3762 ----
3763 $ cd $(mktemp -d) &&
3764 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.11.tar.bz2 &&
3765 tar -xf lttng-tools-latest-2.11.tar.bz2 &&
3766 cd lttng-tools-2.11.* &&
3767 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
3768 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
3769 make &&
3770 sudo make install &&
3771 sudo ldconfig
3772 ----
3773 --
3774
3775 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
3776 when linking your 32-bit application:
3777 +
3778 ----
3779 -m32 -L/usr/lib32 -L/usr/local/lib32 \
3780 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
3781 ----
3782 +
3783 For example, let's rebuild the quick start example in
3784 <<tracing-your-own-user-application,Trace a user application>> as an
3785 instrumented 32-bit application:
3786 +
3787 --
3788 [role="term"]
3789 ----
3790 $ gcc -m32 -c -I. hello-tp.c
3791 $ gcc -m32 -c hello.c
3792 $ gcc -m32 -o hello hello.o hello-tp.o \
3793 -L/usr/lib32 -L/usr/local/lib32 \
3794 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
3795 -llttng-ust -ldl
3796 ----
3797 --
3798
3799 No special action is required to execute the 32-bit application and
3800 to trace it: use the command-line man:lttng(1) tool as usual.
3801
3802
3803 [role="since-2.5"]
3804 [[tracef]]
3805 ==== Use `tracef()`
3806
3807 man:tracef(3) is a small LTTng-UST API designed for quick,
3808 man:printf(3)-like instrumentation without the burden of
3809 <<tracepoint-provider,creating>> and
3810 <<building-tracepoint-providers-and-user-application,building>>
3811 a tracepoint provider package.
3812
3813 To use `tracef()` in your application:
3814
3815 . In the C or C++ source files where you need to use `tracef()`,
3816 include `<lttng/tracef.h>`:
3817 +
3818 --
3819 [source,c]
3820 ----
3821 #include <lttng/tracef.h>
3822 ----
3823 --
3824
3825 . In the application's source code, use `tracef()` like you would use
3826 man:printf(3):
3827 +
3828 --
3829 [source,c]
3830 ----
3831 /* ... */
3832
3833 tracef("my message: %d (%s)", my_integer, my_string);
3834
3835 /* ... */
3836 ----
3837 --
3838
3839 . Link your application with `liblttng-ust`:
3840 +
3841 --
3842 [role="term"]
3843 ----
3844 $ gcc -o app app.c -llttng-ust
3845 ----
3846 --
3847
3848 To trace the events that `tracef()` calls emit:
3849
3850 * <<enabling-disabling-events,Create an event rule>> which matches the
3851 `lttng_ust_tracef:*` event name:
3852 +
3853 --
3854 [role="term"]
3855 ----
3856 $ lttng enable-event --userspace 'lttng_ust_tracef:*'
3857 ----
3858 --
3859
3860 [IMPORTANT]
3861 .Limitations of `tracef()`
3862 ====
3863 The `tracef()` utility function was developed to make user space tracing
3864 super simple, albeit with notable disadvantages compared to
3865 <<defining-tracepoints,user-defined tracepoints>>:
3866
3867 * All the emitted events have the same tracepoint provider and
3868 tracepoint names, respectively `lttng_ust_tracef` and `event`.
3869 * There is no static type checking.
3870 * The only event record field you actually get, named `msg`, is a string
3871 potentially containing the values you passed to `tracef()`
3872 using your own format string. This also means that you cannot filter
3873 events with a custom expression at run time because there are no
3874 isolated fields.
3875 * Since `tracef()` uses the C standard library's man:vasprintf(3)
3876 function behind the scenes to format the strings at run time, its
3877 expected performance is lower than with user-defined tracepoints,
3878 which do not require a conversion to a string.
3879
3880 Taking this into consideration, `tracef()` is useful for some quick
3881 prototyping and debugging, but you should not consider it for any
3882 permanent and serious applicative instrumentation.
3883 ====
3884
3885
3886 [role="since-2.7"]
3887 [[tracelog]]
3888 ==== Use `tracelog()`
3889
3890 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
3891 the difference that it accepts an additional log level parameter.
3892
3893 The goal of `tracelog()` is to ease the migration from logging to
3894 tracing.
3895
3896 To use `tracelog()` in your application:
3897
3898 . In the C or C++ source files where you need to use `tracelog()`,
3899 include `<lttng/tracelog.h>`:
3900 +
3901 --
3902 [source,c]
3903 ----
3904 #include <lttng/tracelog.h>
3905 ----
3906 --
3907
3908 . In the application's source code, use `tracelog()` like you would use
3909 man:printf(3), except for the first parameter which is the log
3910 level:
3911 +
3912 --
3913 [source,c]
3914 ----
3915 /* ... */
3916
3917 tracelog(TRACE_WARNING, "my message: %d (%s)",
3918 my_integer, my_string);
3919
3920 /* ... */
3921 ----
3922 --
3923 +
3924 See man:lttng-ust(3) for a list of available log level names.
3925
3926 . Link your application with `liblttng-ust`:
3927 +
3928 --
3929 [role="term"]
3930 ----
3931 $ gcc -o app app.c -llttng-ust
3932 ----
3933 --
3934
3935 To trace the events that `tracelog()` calls emit with a log level
3936 _as severe as_ a specific log level:
3937
3938 * <<enabling-disabling-events,Create an event rule>> which matches the
3939 `lttng_ust_tracelog:*` event name and a minimum level
3940 of severity:
3941 +
3942 --
3943 [role="term"]
3944 ----
3945 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
3946 --loglevel=TRACE_WARNING
3947 ----
3948 --
3949
3950 To trace the events that `tracelog()` calls emit with a
3951 _specific log level_:
3952
3953 * Create an event rule which matches the `lttng_ust_tracelog:*`
3954 event name and a specific log level:
3955 +
3956 --
3957 [role="term"]
3958 ----
3959 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
3960 --loglevel-only=TRACE_INFO
3961 ----
3962 --
3963
3964
3965 [[prebuilt-ust-helpers]]
3966 === Prebuilt user space tracing helpers
3967
3968 The LTTng-UST package provides a few helpers in the form or preloadable
3969 shared objects which automatically instrument system functions and
3970 calls.
3971
3972 The helper shared objects are normally found in dir:{/usr/lib}. If you
3973 built LTTng-UST <<building-from-source,from source>>, they are probably
3974 located in dir:{/usr/local/lib}.
3975
3976 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
3977 are:
3978
3979 path:{liblttng-ust-libc-wrapper.so}::
3980 path:{liblttng-ust-pthread-wrapper.so}::
3981 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
3982 memory and POSIX threads function tracing>>.
3983
3984 path:{liblttng-ust-cyg-profile.so}::
3985 path:{liblttng-ust-cyg-profile-fast.so}::
3986 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
3987
3988 path:{liblttng-ust-dl.so}::
3989 <<liblttng-ust-dl,Dynamic linker tracing>>.
3990
3991 To use a user space tracing helper with any user application:
3992
3993 * Preload the helper shared object when you start the application:
3994 +
3995 --
3996 [role="term"]
3997 ----
3998 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
3999 ----
4000 --
4001 +
4002 You can preload more than one helper:
4003 +
4004 --
4005 [role="term"]
4006 ----
4007 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4008 ----
4009 --
4010
4011
4012 [role="since-2.3"]
4013 [[liblttng-ust-libc-pthread-wrapper]]
4014 ==== Instrument C standard library memory and POSIX threads functions
4015
4016 The path:{liblttng-ust-libc-wrapper.so} and
4017 path:{liblttng-ust-pthread-wrapper.so} helpers
4018 add instrumentation to some C standard library and POSIX
4019 threads functions.
4020
4021 [role="growable"]
4022 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4023 |====
4024 |TP provider name |TP name |Instrumented function
4025
4026 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4027 |`calloc` |man:calloc(3)
4028 |`realloc` |man:realloc(3)
4029 |`free` |man:free(3)
4030 |`memalign` |man:memalign(3)
4031 |`posix_memalign` |man:posix_memalign(3)
4032 |====
4033
4034 [role="growable"]
4035 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4036 |====
4037 |TP provider name |TP name |Instrumented function
4038
4039 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4040 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4041 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4042 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4043 |====
4044
4045 When you preload the shared object, it replaces the functions listed
4046 in the previous tables by wrappers which contain tracepoints and call
4047 the replaced functions.
4048
4049
4050 [[liblttng-ust-cyg-profile]]
4051 ==== Instrument function entry and exit
4052
4053 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4054 to the entry and exit points of functions.
4055
4056 man:gcc(1) and man:clang(1) have an option named
4057 https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html[`-finstrument-functions`]
4058 which generates instrumentation calls for entry and exit to functions.
4059 The LTTng-UST function tracing helpers,
4060 path:{liblttng-ust-cyg-profile.so} and
4061 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4062 to add tracepoints to the two generated functions (which contain
4063 `cyg_profile` in their names, hence the helper's name).
4064
4065 To use the LTTng-UST function tracing helper, the source files to
4066 instrument must be built using the `-finstrument-functions` compiler
4067 flag.
4068
4069 There are two versions of the LTTng-UST function tracing helper:
4070
4071 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4072 that you should only use when it can be _guaranteed_ that the
4073 complete event stream is recorded without any lost event record.
4074 Any kind of duplicate information is left out.
4075 +
4076 Assuming no event record is lost, having only the function addresses on
4077 entry is enough to create a call graph, since an event record always
4078 contains the ID of the CPU that generated it.
4079 +
4080 You can use a tool like man:addr2line(1) to convert function addresses
4081 back to source file names and line numbers.
4082
4083 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4084 which also works in use cases where event records might get discarded or
4085 not recorded from application startup.
4086 In these cases, the trace analyzer needs more information to be
4087 able to reconstruct the program flow.
4088
4089 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4090 points of this helper.
4091
4092 All the tracepoints that this helper provides have the
4093 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4094
4095 TIP: It's sometimes a good idea to limit the number of source files that
4096 you compile with the `-finstrument-functions` option to prevent LTTng
4097 from writing an excessive amount of trace data at run time. When using
4098 man:gcc(1), you can use the
4099 `-finstrument-functions-exclude-function-list` option to avoid
4100 instrument entries and exits of specific function names.
4101
4102
4103 [role="since-2.4"]
4104 [[liblttng-ust-dl]]
4105 ==== Instrument the dynamic linker
4106
4107 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4108 man:dlopen(3) and man:dlclose(3) function calls.
4109
4110 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4111 of this helper.
4112
4113
4114 [role="since-2.4"]
4115 [[java-application]]
4116 === User space Java agent
4117
4118 You can instrument any Java application which uses one of the following
4119 logging frameworks:
4120
4121 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4122 (JUL) core logging facilities.
4123 * http://logging.apache.org/log4j/1.2/[**Apache log4j{nbsp}1.2**], since
4124 LTTng{nbsp}2.6. Note that Apache Log4j{nbsp}2 is not supported.
4125
4126 [role="img-100"]
4127 .LTTng-UST Java agent imported by a Java application.
4128 image::java-app.png[]
4129
4130 Note that the methods described below are new in LTTng{nbsp}{revision}.
4131 Previous LTTng versions use another technique.
4132
4133 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4134 and https://ci.lttng.org/[continuous integration], thus this version is
4135 directly supported. However, the LTTng-UST Java agent is also tested
4136 with OpenJDK{nbsp}7.
4137
4138
4139 [role="since-2.8"]
4140 [[jul]]
4141 ==== Use the LTTng-UST Java agent for `java.util.logging`
4142
4143 To use the LTTng-UST Java agent in a Java application which uses
4144 `java.util.logging` (JUL):
4145
4146 . In the Java application's source code, import the LTTng-UST
4147 log handler package for `java.util.logging`:
4148 +
4149 --
4150 [source,java]
4151 ----
4152 import org.lttng.ust.agent.jul.LttngLogHandler;
4153 ----
4154 --
4155
4156 . Create an LTTng-UST JUL log handler:
4157 +
4158 --
4159 [source,java]
4160 ----
4161 Handler lttngUstLogHandler = new LttngLogHandler();
4162 ----
4163 --
4164
4165 . Add this handler to the JUL loggers which should emit LTTng events:
4166 +
4167 --
4168 [source,java]
4169 ----
4170 Logger myLogger = Logger.getLogger("some-logger");
4171
4172 myLogger.addHandler(lttngUstLogHandler);
4173 ----
4174 --
4175
4176 . Use `java.util.logging` log statements and configuration as usual.
4177 The loggers with an attached LTTng-UST log handler can emit
4178 LTTng events.
4179
4180 . Before exiting the application, remove the LTTng-UST log handler from
4181 the loggers attached to it and call its `close()` method:
4182 +
4183 --
4184 [source,java]
4185 ----
4186 myLogger.removeHandler(lttngUstLogHandler);
4187 lttngUstLogHandler.close();
4188 ----
4189 --
4190 +
4191 This is not strictly necessary, but it is recommended for a clean
4192 disposal of the handler's resources.
4193
4194 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4195 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4196 in the
4197 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4198 path] when you build the Java application.
4199 +
4200 The JAR files are typically located in dir:{/usr/share/java}.
4201 +
4202 IMPORTANT: The LTTng-UST Java agent must be
4203 <<installing-lttng,installed>> for the logging framework your
4204 application uses.
4205
4206 .Use the LTTng-UST Java agent for `java.util.logging`.
4207 ====
4208 [source,java]
4209 .path:{Test.java}
4210 ----
4211 import java.io.IOException;
4212 import java.util.logging.Handler;
4213 import java.util.logging.Logger;
4214 import org.lttng.ust.agent.jul.LttngLogHandler;
4215
4216 public class Test
4217 {
4218 private static final int answer = 42;
4219
4220 public static void main(String[] argv) throws Exception
4221 {
4222 // Create a logger
4223 Logger logger = Logger.getLogger("jello");
4224
4225 // Create an LTTng-UST log handler
4226 Handler lttngUstLogHandler = new LttngLogHandler();
4227
4228 // Add the LTTng-UST log handler to our logger
4229 logger.addHandler(lttngUstLogHandler);
4230
4231 // Log at will!
4232 logger.info("some info");
4233 logger.warning("some warning");
4234 Thread.sleep(500);
4235 logger.finer("finer information; the answer is " + answer);
4236 Thread.sleep(123);
4237 logger.severe("error!");
4238
4239 // Not mandatory, but cleaner
4240 logger.removeHandler(lttngUstLogHandler);
4241 lttngUstLogHandler.close();
4242 }
4243 }
4244 ----
4245
4246 Build this example:
4247
4248 [role="term"]
4249 ----
4250 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4251 ----
4252
4253 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4254 <<enabling-disabling-events,create an event rule>> matching the
4255 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4256
4257 [role="term"]
4258 ----
4259 $ lttng create
4260 $ lttng enable-event --jul jello
4261 $ lttng start
4262 ----
4263
4264 Run the compiled class:
4265
4266 [role="term"]
4267 ----
4268 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4269 ----
4270
4271 <<basic-tracing-session-control,Stop tracing>> and inspect the
4272 recorded events:
4273
4274 [role="term"]
4275 ----
4276 $ lttng stop
4277 $ lttng view
4278 ----
4279 ====
4280
4281 In the resulting trace, an <<event,event record>> generated by a Java
4282 application using `java.util.logging` is named `lttng_jul:event` and
4283 has the following fields:
4284
4285 `msg`::
4286 Log record's message.
4287
4288 `logger_name`::
4289 Logger name.
4290
4291 `class_name`::
4292 Name of the class in which the log statement was executed.
4293
4294 `method_name`::
4295 Name of the method in which the log statement was executed.
4296
4297 `long_millis`::
4298 Logging time (timestamp in milliseconds).
4299
4300 `int_loglevel`::
4301 Log level integer value.
4302
4303 `int_threadid`::
4304 ID of the thread in which the log statement was executed.
4305
4306 You can use the opt:lttng-enable-event(1):--loglevel or
4307 opt:lttng-enable-event(1):--loglevel-only option of the
4308 man:lttng-enable-event(1) command to target a range of JUL log levels
4309 or a specific JUL log level.
4310
4311
4312 [role="since-2.8"]
4313 [[log4j]]
4314 ==== Use the LTTng-UST Java agent for Apache log4j
4315
4316 To use the LTTng-UST Java agent in a Java application which uses
4317 Apache log4j{nbsp}1.2:
4318
4319 . In the Java application's source code, import the LTTng-UST
4320 log appender package for Apache log4j:
4321 +
4322 --
4323 [source,java]
4324 ----
4325 import org.lttng.ust.agent.log4j.LttngLogAppender;
4326 ----
4327 --
4328
4329 . Create an LTTng-UST log4j log appender:
4330 +
4331 --
4332 [source,java]
4333 ----
4334 Appender lttngUstLogAppender = new LttngLogAppender();
4335 ----
4336 --
4337
4338 . Add this appender to the log4j loggers which should emit LTTng events:
4339 +
4340 --
4341 [source,java]
4342 ----
4343 Logger myLogger = Logger.getLogger("some-logger");
4344
4345 myLogger.addAppender(lttngUstLogAppender);
4346 ----
4347 --
4348
4349 . Use Apache log4j log statements and configuration as usual. The
4350 loggers with an attached LTTng-UST log appender can emit LTTng events.
4351
4352 . Before exiting the application, remove the LTTng-UST log appender from
4353 the loggers attached to it and call its `close()` method:
4354 +
4355 --
4356 [source,java]
4357 ----
4358 myLogger.removeAppender(lttngUstLogAppender);
4359 lttngUstLogAppender.close();
4360 ----
4361 --
4362 +
4363 This is not strictly necessary, but it is recommended for a clean
4364 disposal of the appender's resources.
4365
4366 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4367 files, path:{lttng-ust-agent-common.jar} and
4368 path:{lttng-ust-agent-log4j.jar}, in the
4369 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4370 path] when you build the Java application.
4371 +
4372 The JAR files are typically located in dir:{/usr/share/java}.
4373 +
4374 IMPORTANT: The LTTng-UST Java agent must be
4375 <<installing-lttng,installed>> for the logging framework your
4376 application uses.
4377
4378 .Use the LTTng-UST Java agent for Apache log4j.
4379 ====
4380 [source,java]
4381 .path:{Test.java}
4382 ----
4383 import org.apache.log4j.Appender;
4384 import org.apache.log4j.Logger;
4385 import org.lttng.ust.agent.log4j.LttngLogAppender;
4386
4387 public class Test
4388 {
4389 private static final int answer = 42;
4390
4391 public static void main(String[] argv) throws Exception
4392 {
4393 // Create a logger
4394 Logger logger = Logger.getLogger("jello");
4395
4396 // Create an LTTng-UST log appender
4397 Appender lttngUstLogAppender = new LttngLogAppender();
4398
4399 // Add the LTTng-UST log appender to our logger
4400 logger.addAppender(lttngUstLogAppender);
4401
4402 // Log at will!
4403 logger.info("some info");
4404 logger.warn("some warning");
4405 Thread.sleep(500);
4406 logger.debug("debug information; the answer is " + answer);
4407 Thread.sleep(123);
4408 logger.fatal("error!");
4409
4410 // Not mandatory, but cleaner
4411 logger.removeAppender(lttngUstLogAppender);
4412 lttngUstLogAppender.close();
4413 }
4414 }
4415
4416 ----
4417
4418 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4419 file):
4420
4421 [role="term"]
4422 ----
4423 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4424 ----
4425
4426 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4427 <<enabling-disabling-events,create an event rule>> matching the
4428 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4429
4430 [role="term"]
4431 ----
4432 $ lttng create
4433 $ lttng enable-event --log4j jello
4434 $ lttng start
4435 ----
4436
4437 Run the compiled class:
4438
4439 [role="term"]
4440 ----
4441 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4442 ----
4443
4444 <<basic-tracing-session-control,Stop tracing>> and inspect the
4445 recorded events:
4446
4447 [role="term"]
4448 ----
4449 $ lttng stop
4450 $ lttng view
4451 ----
4452 ====
4453
4454 In the resulting trace, an <<event,event record>> generated by a Java
4455 application using log4j is named `lttng_log4j:event` and
4456 has the following fields:
4457
4458 `msg`::
4459 Log record's message.
4460
4461 `logger_name`::
4462 Logger name.
4463
4464 `class_name`::
4465 Name of the class in which the log statement was executed.
4466
4467 `method_name`::
4468 Name of the method in which the log statement was executed.
4469
4470 `filename`::
4471 Name of the file in which the executed log statement is located.
4472
4473 `line_number`::
4474 Line number at which the log statement was executed.
4475
4476 `timestamp`::
4477 Logging timestamp.
4478
4479 `int_loglevel`::
4480 Log level integer value.
4481
4482 `thread_name`::
4483 Name of the Java thread in which the log statement was executed.
4484
4485 You can use the opt:lttng-enable-event(1):--loglevel or
4486 opt:lttng-enable-event(1):--loglevel-only option of the
4487 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4488 or a specific log4j log level.
4489
4490
4491 [role="since-2.8"]
4492 [[java-application-context]]
4493 ==== Provide application-specific context fields in a Java application
4494
4495 A Java application-specific context field is a piece of state provided
4496 by the application which <<adding-context,you can add>>, using the
4497 man:lttng-add-context(1) command, to each <<event,event record>>
4498 produced by the log statements of this application.
4499
4500 For example, a given object might have a current request ID variable.
4501 You can create a context information retriever for this object and
4502 assign a name to this current request ID. You can then, using the
4503 man:lttng-add-context(1) command, add this context field by name to
4504 the JUL or log4j <<channel,channel>>.
4505
4506 To provide application-specific context fields in a Java application:
4507
4508 . In the Java application's source code, import the LTTng-UST
4509 Java agent context classes and interfaces:
4510 +
4511 --
4512 [source,java]
4513 ----
4514 import org.lttng.ust.agent.context.ContextInfoManager;
4515 import org.lttng.ust.agent.context.IContextInfoRetriever;
4516 ----
4517 --
4518
4519 . Create a context information retriever class, that is, a class which
4520 implements the `IContextInfoRetriever` interface:
4521 +
4522 --
4523 [source,java]
4524 ----
4525 class MyContextInfoRetriever implements IContextInfoRetriever
4526 {
4527 @Override
4528 public Object retrieveContextInfo(String key)
4529 {
4530 if (key.equals("intCtx")) {
4531 return (short) 17;
4532 } else if (key.equals("strContext")) {
4533 return "context value!";
4534 } else {
4535 return null;
4536 }
4537 }
4538 }
4539 ----
4540 --
4541 +
4542 This `retrieveContextInfo()` method is the only member of the
4543 `IContextInfoRetriever` interface. Its role is to return the current
4544 value of a state by name to create a context field. The names of the
4545 context fields and which state variables they return depends on your
4546 specific scenario.
4547 +
4548 All primitive types and objects are supported as context fields.
4549 When `retrieveContextInfo()` returns an object, the context field
4550 serializer calls its `toString()` method to add a string field to
4551 event records. The method can also return `null`, which means that
4552 no context field is available for the required name.
4553
4554 . Register an instance of your context information retriever class to
4555 the context information manager singleton:
4556 +
4557 --
4558 [source,java]
4559 ----
4560 IContextInfoRetriever cir = new MyContextInfoRetriever();
4561 ContextInfoManager cim = ContextInfoManager.getInstance();
4562 cim.registerContextInfoRetriever("retrieverName", cir);
4563 ----
4564 --
4565
4566 . Before exiting the application, remove your context information
4567 retriever from the context information manager singleton:
4568 +
4569 --
4570 [source,java]
4571 ----
4572 ContextInfoManager cim = ContextInfoManager.getInstance();
4573 cim.unregisterContextInfoRetriever("retrieverName");
4574 ----
4575 --
4576 +
4577 This is not strictly necessary, but it is recommended for a clean
4578 disposal of some manager's resources.
4579
4580 . Build your Java application with LTTng-UST Java agent support as
4581 usual, following the procedure for either the <<jul,JUL>> or
4582 <<log4j,Apache log4j>> framework.
4583
4584
4585 .Provide application-specific context fields in a Java application.
4586 ====
4587 [source,java]
4588 .path:{Test.java}
4589 ----
4590 import java.util.logging.Handler;
4591 import java.util.logging.Logger;
4592 import org.lttng.ust.agent.jul.LttngLogHandler;
4593 import org.lttng.ust.agent.context.ContextInfoManager;
4594 import org.lttng.ust.agent.context.IContextInfoRetriever;
4595
4596 public class Test
4597 {
4598 // Our context information retriever class
4599 private static class MyContextInfoRetriever
4600 implements IContextInfoRetriever
4601 {
4602 @Override
4603 public Object retrieveContextInfo(String key) {
4604 if (key.equals("intCtx")) {
4605 return (short) 17;
4606 } else if (key.equals("strContext")) {
4607 return "context value!";
4608 } else {
4609 return null;
4610 }
4611 }
4612 }
4613
4614 private static final int answer = 42;
4615
4616 public static void main(String args[]) throws Exception
4617 {
4618 // Get the context information manager instance
4619 ContextInfoManager cim = ContextInfoManager.getInstance();
4620
4621 // Create and register our context information retriever
4622 IContextInfoRetriever cir = new MyContextInfoRetriever();
4623 cim.registerContextInfoRetriever("myRetriever", cir);
4624
4625 // Create a logger
4626 Logger logger = Logger.getLogger("jello");
4627
4628 // Create an LTTng-UST log handler
4629 Handler lttngUstLogHandler = new LttngLogHandler();
4630
4631 // Add the LTTng-UST log handler to our logger
4632 logger.addHandler(lttngUstLogHandler);
4633
4634 // Log at will!
4635 logger.info("some info");
4636 logger.warning("some warning");
4637 Thread.sleep(500);
4638 logger.finer("finer information; the answer is " + answer);
4639 Thread.sleep(123);
4640 logger.severe("error!");
4641
4642 // Not mandatory, but cleaner
4643 logger.removeHandler(lttngUstLogHandler);
4644 lttngUstLogHandler.close();
4645 cim.unregisterContextInfoRetriever("myRetriever");
4646 }
4647 }
4648 ----
4649
4650 Build this example:
4651
4652 [role="term"]
4653 ----
4654 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4655 ----
4656
4657 <<creating-destroying-tracing-sessions,Create a tracing session>>
4658 and <<enabling-disabling-events,create an event rule>> matching the
4659 `jello` JUL logger:
4660
4661 [role="term"]
4662 ----
4663 $ lttng create
4664 $ lttng enable-event --jul jello
4665 ----
4666
4667 <<adding-context,Add the application-specific context fields>> to the
4668 JUL channel:
4669
4670 [role="term"]
4671 ----
4672 $ lttng add-context --jul --type='$app.myRetriever:intCtx'
4673 $ lttng add-context --jul --type='$app.myRetriever:strContext'
4674 ----
4675
4676 <<basic-tracing-session-control,Start tracing>>:
4677
4678 [role="term"]
4679 ----
4680 $ lttng start
4681 ----
4682
4683 Run the compiled class:
4684
4685 [role="term"]
4686 ----
4687 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4688 ----
4689
4690 <<basic-tracing-session-control,Stop tracing>> and inspect the
4691 recorded events:
4692
4693 [role="term"]
4694 ----
4695 $ lttng stop
4696 $ lttng view
4697 ----
4698 ====
4699
4700
4701 [role="since-2.7"]
4702 [[python-application]]
4703 === User space Python agent
4704
4705 You can instrument a Python{nbsp}2 or Python{nbsp}3 application which
4706 uses the standard
4707 https://docs.python.org/3/library/logging.html[`logging`] package.
4708
4709 Each log statement emits an LTTng event once the
4710 application module imports the
4711 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4712
4713 [role="img-100"]
4714 .A Python application importing the LTTng-UST Python agent.
4715 image::python-app.png[]
4716
4717 To use the LTTng-UST Python agent:
4718
4719 . In the Python application's source code, import the LTTng-UST Python
4720 agent:
4721 +
4722 --
4723 [source,python]
4724 ----
4725 import lttngust
4726 ----
4727 --
4728 +
4729 The LTTng-UST Python agent automatically adds its logging handler to the
4730 root logger at import time.
4731 +
4732 Any log statement that the application executes before this import does
4733 not emit an LTTng event.
4734 +
4735 IMPORTANT: The LTTng-UST Python agent must be
4736 <<installing-lttng,installed>>.
4737
4738 . Use log statements and logging configuration as usual.
4739 Since the LTTng-UST Python agent adds a handler to the _root_
4740 logger, you can trace any log statement from any logger.
4741
4742 .Use the LTTng-UST Python agent.
4743 ====
4744 [source,python]
4745 .path:{test.py}
4746 ----
4747 import lttngust
4748 import logging
4749 import time
4750
4751
4752 def example():
4753 logging.basicConfig()
4754 logger = logging.getLogger('my-logger')
4755
4756 while True:
4757 logger.debug('debug message')
4758 logger.info('info message')
4759 logger.warn('warn message')
4760 logger.error('error message')
4761 logger.critical('critical message')
4762 time.sleep(1)
4763
4764
4765 if __name__ == '__main__':
4766 example()
4767 ----
4768
4769 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
4770 logging handler which prints to the standard error stream, is not
4771 strictly required for LTTng-UST tracing to work, but in versions of
4772 Python preceding{nbsp}3.2, you could see a warning message which indicates
4773 that no handler exists for the logger `my-logger`.
4774
4775 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4776 <<enabling-disabling-events,create an event rule>> matching the
4777 `my-logger` Python logger, and <<basic-tracing-session-control,start
4778 tracing>>:
4779
4780 [role="term"]
4781 ----
4782 $ lttng create
4783 $ lttng enable-event --python my-logger
4784 $ lttng start
4785 ----
4786
4787 Run the Python script:
4788
4789 [role="term"]
4790 ----
4791 $ python test.py
4792 ----
4793
4794 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4795 events:
4796
4797 [role="term"]
4798 ----
4799 $ lttng stop
4800 $ lttng view
4801 ----
4802 ====
4803
4804 In the resulting trace, an <<event,event record>> generated by a Python
4805 application is named `lttng_python:event` and has the following fields:
4806
4807 `asctime`::
4808 Logging time (string).
4809
4810 `msg`::
4811 Log record's message.
4812
4813 `logger_name`::
4814 Logger name.
4815
4816 `funcName`::
4817 Name of the function in which the log statement was executed.
4818
4819 `lineno`::
4820 Line number at which the log statement was executed.
4821
4822 `int_loglevel`::
4823 Log level integer value.
4824
4825 `thread`::
4826 ID of the Python thread in which the log statement was executed.
4827
4828 `threadName`::
4829 Name of the Python thread in which the log statement was executed.
4830
4831 You can use the opt:lttng-enable-event(1):--loglevel or
4832 opt:lttng-enable-event(1):--loglevel-only option of the
4833 man:lttng-enable-event(1) command to target a range of Python log levels
4834 or a specific Python log level.
4835
4836 When an application imports the LTTng-UST Python agent, the agent tries
4837 to register to a <<lttng-sessiond,session daemon>>. Note that you must
4838 <<start-sessiond,start the session daemon>> _before_ you run the Python
4839 application. If a session daemon is found, the agent tries to register
4840 to it during five seconds, after which the application continues
4841 without LTTng tracing support. You can override this timeout value with
4842 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
4843 (milliseconds).
4844
4845 If the session daemon stops while a Python application with an imported
4846 LTTng-UST Python agent runs, the agent retries to connect and to
4847 register to a session daemon every three seconds. You can override this
4848 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
4849 variable.
4850
4851
4852 [role="since-2.5"]
4853 [[proc-lttng-logger-abi]]
4854 === LTTng logger
4855
4856 The `lttng-tracer` Linux kernel module, part of
4857 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
4858 path:{/proc/lttng-logger} when it's loaded. Any application can write
4859 text data to this file to emit an LTTng event.
4860
4861 [role="img-100"]
4862 .An application writes to the LTTng logger file to emit an LTTng event.
4863 image::lttng-logger.png[]
4864
4865 The LTTng logger is the quickest method--not the most efficient,
4866 however--to add instrumentation to an application. It is designed
4867 mostly to instrument shell scripts:
4868
4869 [role="term"]
4870 ----
4871 $ echo "Some message, some $variable" > /proc/lttng-logger
4872 ----
4873
4874 Any event that the LTTng logger emits is named `lttng_logger` and
4875 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
4876 other instrumentation points in the kernel tracing domain, **any Unix
4877 user** can <<enabling-disabling-events,create an event rule>> which
4878 matches its event name, not only the root user or users in the
4879 <<tracing-group,tracing group>>.
4880
4881 To use the LTTng logger:
4882
4883 * From any application, write text data to the path:{/proc/lttng-logger}
4884 file.
4885
4886 The `msg` field of `lttng_logger` event records contains the
4887 recorded message.
4888
4889 NOTE: The maximum message length of an LTTng logger event is
4890 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
4891 than one event to contain the remaining data.
4892
4893 You should not use the LTTng logger to trace a user application which
4894 can be instrumented in a more efficient way, namely:
4895
4896 * <<c-application,C and $$C++$$ applications>>.
4897 * <<java-application,Java applications>>.
4898 * <<python-application,Python applications>>.
4899
4900 .Use the LTTng logger.
4901 ====
4902 [source,bash]
4903 .path:{test.bash}
4904 ----
4905 echo 'Hello, World!' > /proc/lttng-logger
4906 sleep 2
4907 df --human-readable --print-type / > /proc/lttng-logger
4908 ----
4909
4910 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4911 <<enabling-disabling-events,create an event rule>> matching the
4912 `lttng_logger` Linux kernel tracepoint, and
4913 <<basic-tracing-session-control,start tracing>>:
4914
4915 [role="term"]
4916 ----
4917 $ lttng create
4918 $ lttng enable-event --kernel lttng_logger
4919 $ lttng start
4920 ----
4921
4922 Run the Bash script:
4923
4924 [role="term"]
4925 ----
4926 $ bash test.bash
4927 ----
4928
4929 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4930 events:
4931
4932 [role="term"]
4933 ----
4934 $ lttng stop
4935 $ lttng view
4936 ----
4937 ====
4938
4939
4940 [[instrumenting-linux-kernel]]
4941 === LTTng kernel tracepoints
4942
4943 NOTE: This section shows how to _add_ instrumentation points to the
4944 Linux kernel. The kernel's subsystems are already thoroughly
4945 instrumented at strategic places for LTTng when you
4946 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
4947 package.
4948
4949 ////
4950 There are two methods to instrument the Linux kernel:
4951
4952 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
4953 tracepoint which uses the `TRACE_EVENT()` API.
4954 +
4955 Choose this if you want to instrumentation a Linux kernel tree with an
4956 instrumentation point compatible with ftrace, perf, and SystemTap.
4957
4958 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
4959 instrument an out-of-tree kernel module.
4960 +
4961 Choose this if you don't need ftrace, perf, or SystemTap support.
4962 ////
4963
4964
4965 [[linux-add-lttng-layer]]
4966 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
4967
4968 This section shows how to add an LTTng layer to existing ftrace
4969 instrumentation using the `TRACE_EVENT()` API.
4970
4971 This section does not document the `TRACE_EVENT()` macro. You can
4972 read the following articles to learn more about this API:
4973
4974 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part{nbsp}1)]
4975 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part{nbsp}2)]
4976 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part{nbsp}3)]
4977
4978 The following procedure assumes that your ftrace tracepoints are
4979 correctly defined in their own header and that they are created in
4980 one source file using the `CREATE_TRACE_POINTS` definition.
4981
4982 To add an LTTng layer over an existing ftrace tracepoint:
4983
4984 . Make sure the following kernel configuration options are
4985 enabled:
4986 +
4987 --
4988 * `CONFIG_MODULES`
4989 * `CONFIG_KALLSYMS`
4990 * `CONFIG_HIGH_RES_TIMERS`
4991 * `CONFIG_TRACEPOINTS`
4992 --
4993
4994 . Build the Linux source tree with your custom ftrace tracepoints.
4995 . Boot the resulting Linux image on your target system.
4996 +
4997 Confirm that the tracepoints exist by looking for their names in the
4998 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
4999 is your subsystem's name.
5000
5001 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
5002 +
5003 --
5004 [role="term"]
5005 ----
5006 $ cd $(mktemp -d) &&
5007 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.11.tar.bz2 &&
5008 tar -xf lttng-modules-latest-2.11.tar.bz2 &&
5009 cd lttng-modules-2.11.*
5010 ----
5011 --
5012
5013 . In dir:{instrumentation/events/lttng-module}, relative to the root
5014 of the LTTng-modules source tree, create a header file named
5015 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5016 LTTng-modules tracepoint definitions using the LTTng-modules
5017 macros in it.
5018 +
5019 Start with this template:
5020 +
5021 --
5022 [source,c]
5023 .path:{instrumentation/events/lttng-module/my_subsys.h}
5024 ----
5025 #undef TRACE_SYSTEM
5026 #define TRACE_SYSTEM my_subsys
5027
5028 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5029 #define _LTTNG_MY_SUBSYS_H
5030
5031 #include "../../../probes/lttng-tracepoint-event.h"
5032 #include <linux/tracepoint.h>
5033
5034 LTTNG_TRACEPOINT_EVENT(
5035 /*
5036 * Format is identical to TRACE_EVENT()'s version for the three
5037 * following macro parameters:
5038 */
5039 my_subsys_my_event,
5040 TP_PROTO(int my_int, const char *my_string),
5041 TP_ARGS(my_int, my_string),
5042
5043 /* LTTng-modules specific macros */
5044 TP_FIELDS(
5045 ctf_integer(int, my_int_field, my_int)
5046 ctf_string(my_bar_field, my_bar)
5047 )
5048 )
5049
5050 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5051
5052 #include "../../../probes/define_trace.h"
5053 ----
5054 --
5055 +
5056 The entries in the `TP_FIELDS()` section are the list of fields for the
5057 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5058 ftrace's `TRACE_EVENT()` macro.
5059 +
5060 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5061 complete description of the available `ctf_*()` macros.
5062
5063 . Create the LTTng-modules probe's kernel module C source file,
5064 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5065 subsystem name:
5066 +
5067 --
5068 [source,c]
5069 .path:{probes/lttng-probe-my-subsys.c}
5070 ----
5071 #include <linux/module.h>
5072 #include "../lttng-tracer.h"
5073
5074 /*
5075 * Build-time verification of mismatch between mainline
5076 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5077 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5078 */
5079 #include <trace/events/my_subsys.h>
5080
5081 /* Create LTTng tracepoint probes */
5082 #define LTTNG_PACKAGE_BUILD
5083 #define CREATE_TRACE_POINTS
5084 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5085
5086 #include "../instrumentation/events/lttng-module/my_subsys.h"
5087
5088 MODULE_LICENSE("GPL and additional rights");
5089 MODULE_AUTHOR("Your name <your-email>");
5090 MODULE_DESCRIPTION("LTTng my_subsys probes");
5091 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5092 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5093 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5094 LTTNG_MODULES_EXTRAVERSION);
5095 ----
5096 --
5097
5098 . Edit path:{probes/KBuild} and add your new kernel module object
5099 next to the existing ones:
5100 +
5101 --
5102 [source,make]
5103 .path:{probes/KBuild}
5104 ----
5105 # ...
5106
5107 obj-m += lttng-probe-module.o
5108 obj-m += lttng-probe-power.o
5109
5110 obj-m += lttng-probe-my-subsys.o
5111
5112 # ...
5113 ----
5114 --
5115
5116 . Build and install the LTTng kernel modules:
5117 +
5118 --
5119 [role="term"]
5120 ----
5121 $ make KERNELDIR=/path/to/linux
5122 # make modules_install && depmod -a
5123 ----
5124 --
5125 +
5126 Replace `/path/to/linux` with the path to the Linux source tree where
5127 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5128
5129 Note that you can also use the
5130 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5131 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5132 C code that need to be executed before the event fields are recorded.
5133
5134 The best way to learn how to use the previous LTTng-modules macros is to
5135 inspect the existing LTTng-modules tracepoint definitions in the
5136 dir:{instrumentation/events/lttng-module} header files. Compare them
5137 with the Linux kernel mainline versions in the
5138 dir:{include/trace/events} directory of the Linux source tree.
5139
5140
5141 [role="since-2.7"]
5142 [[lttng-tracepoint-event-code]]
5143 ===== Use custom C code to access the data for tracepoint fields
5144
5145 Although we recommended to always use the
5146 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5147 the arguments and fields of an LTTng-modules tracepoint when possible,
5148 sometimes you need a more complex process to access the data that the
5149 tracer records as event record fields. In other words, you need local
5150 variables and multiple C{nbsp}statements instead of simple
5151 argument-based expressions that you pass to the
5152 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5153
5154 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5155 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5156 a block of C{nbsp}code to be executed before LTTng records the fields.
5157 The structure of this macro is:
5158
5159 [source,c]
5160 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5161 ----
5162 LTTNG_TRACEPOINT_EVENT_CODE(
5163 /*
5164 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5165 * version for the following three macro parameters:
5166 */
5167 my_subsys_my_event,
5168 TP_PROTO(int my_int, const char *my_string),
5169 TP_ARGS(my_int, my_string),
5170
5171 /* Declarations of custom local variables */
5172 TP_locvar(
5173 int a = 0;
5174 unsigned long b = 0;
5175 const char *name = "(undefined)";
5176 struct my_struct *my_struct;
5177 ),
5178
5179 /*
5180 * Custom code which uses both tracepoint arguments
5181 * (in TP_ARGS()) and local variables (in TP_locvar()).
5182 *
5183 * Local variables are actually members of a structure pointed
5184 * to by the special variable tp_locvar.
5185 */
5186 TP_code(
5187 if (my_int) {
5188 tp_locvar->a = my_int + 17;
5189 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5190 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5191 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5192 put_my_struct(tp_locvar->my_struct);
5193
5194 if (tp_locvar->b) {
5195 tp_locvar->a = 1;
5196 }
5197 }
5198 ),
5199
5200 /*
5201 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5202 * version for this, except that tp_locvar members can be
5203 * used in the argument expression parameters of
5204 * the ctf_*() macros.
5205 */
5206 TP_FIELDS(
5207 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5208 ctf_integer(int, my_struct_a, tp_locvar->a)
5209 ctf_string(my_string_field, my_string)
5210 ctf_string(my_struct_name, tp_locvar->name)
5211 )
5212 )
5213 ----
5214
5215 IMPORTANT: The C code defined in `TP_code()` must not have any side
5216 effects when executed. In particular, the code must not allocate
5217 memory or get resources without deallocating this memory or putting
5218 those resources afterwards.
5219
5220
5221 [[instrumenting-linux-kernel-tracing]]
5222 ==== Load and unload a custom probe kernel module
5223
5224 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5225 kernel module>> in the kernel before it can emit LTTng events.
5226
5227 To load the default probe kernel modules and a custom probe kernel
5228 module:
5229
5230 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5231 probe modules to load when starting a root <<lttng-sessiond,session
5232 daemon>>:
5233 +
5234 --
5235 .Load the `my_subsys`, `usb`, and the default probe modules.
5236 ====
5237 [role="term"]
5238 ----
5239 # lttng-sessiond --extra-kmod-probes=my_subsys,usb
5240 ----
5241 ====
5242 --
5243 +
5244 You only need to pass the subsystem name, not the whole kernel module
5245 name.
5246
5247 To load _only_ a given custom probe kernel module:
5248
5249 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5250 modules to load when starting a root session daemon:
5251 +
5252 --
5253 .Load only the `my_subsys` and `usb` probe modules.
5254 ====
5255 [role="term"]
5256 ----
5257 # lttng-sessiond --kmod-probes=my_subsys,usb
5258 ----
5259 ====
5260 --
5261
5262 To confirm that a probe module is loaded:
5263
5264 * Use man:lsmod(8):
5265 +
5266 --
5267 [role="term"]
5268 ----
5269 $ lsmod | grep lttng_probe_usb
5270 ----
5271 --
5272
5273 To unload the loaded probe modules:
5274
5275 * Kill the session daemon with `SIGTERM`:
5276 +
5277 --
5278 [role="term"]
5279 ----
5280 # pkill lttng-sessiond
5281 ----
5282 --
5283 +
5284 You can also use man:modprobe(8)'s `--remove` option if the session
5285 daemon terminates abnormally.
5286
5287
5288 [[controlling-tracing]]
5289 == Tracing control
5290
5291 Once an application or a Linux kernel is
5292 <<instrumenting,instrumented>> for LTTng tracing,
5293 you can _trace_ it.
5294
5295 This section is divided in topics on how to use the various
5296 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5297 command-line tool>>, to _control_ the LTTng daemons and tracers.
5298
5299 NOTE: In the following subsections, we refer to an man:lttng(1) command
5300 using its man page name. For example, instead of _Run the `create`
5301 command to..._, we use _Run the man:lttng-create(1) command to..._.
5302
5303
5304 [[start-sessiond]]
5305 === Start a session daemon
5306
5307 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5308 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5309 command-line tool.
5310
5311 You will see the following error when you run a command while no session
5312 daemon is running:
5313
5314 ----
5315 Error: No session daemon is available
5316 ----
5317
5318 The only command that automatically runs a session daemon is
5319 man:lttng-create(1), which you use to
5320 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5321 this is most of the time the first operation that you do, sometimes it's
5322 not. Some examples are:
5323
5324 * <<list-instrumentation-points,List the available instrumentation points>>.
5325 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5326
5327 [[tracing-group]] Each Unix user must have its own running session
5328 daemon to trace user applications. The session daemon that the root user
5329 starts is the only one allowed to control the LTTng kernel tracer. Users
5330 that are part of the _tracing group_ can control the root session
5331 daemon. The default tracing group name is `tracing`; you can set it to
5332 something else with the opt:lttng-sessiond(8):--group option when you
5333 start the root session daemon.
5334
5335 To start a user session daemon:
5336
5337 * Run man:lttng-sessiond(8):
5338 +
5339 --
5340 [role="term"]
5341 ----
5342 $ lttng-sessiond --daemonize
5343 ----
5344 --
5345
5346 To start the root session daemon:
5347
5348 * Run man:lttng-sessiond(8) as the root user:
5349 +
5350 --
5351 [role="term"]
5352 ----
5353 # lttng-sessiond --daemonize
5354 ----
5355 --
5356
5357 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5358 start the session daemon in foreground.
5359
5360 To stop a session daemon, use man:kill(1) on its process ID (standard
5361 `TERM` signal).
5362
5363 Note that some Linux distributions could manage the LTTng session daemon
5364 as a service. In this case, you should use the service manager to
5365 start, restart, and stop session daemons.
5366
5367
5368 [[creating-destroying-tracing-sessions]]
5369 === Create and destroy a tracing session
5370
5371 Almost all the LTTng control operations happen in the scope of
5372 a <<tracing-session,tracing session>>, which is the dialogue between the
5373 <<lttng-sessiond,session daemon>> and you.
5374
5375 To create a tracing session with a generated name:
5376
5377 * Use the man:lttng-create(1) command:
5378 +
5379 --
5380 [role="term"]
5381 ----
5382 $ lttng create
5383 ----
5384 --
5385
5386 The created tracing session's name is `auto` followed by the
5387 creation date.
5388
5389 To create a tracing session with a specific name:
5390
5391 * Use the optional argument of the man:lttng-create(1) command:
5392 +
5393 --
5394 [role="term"]
5395 ----
5396 $ lttng create my-session
5397 ----
5398 --
5399 +
5400 Replace `my-session` with the specific tracing session name.
5401
5402 LTTng appends the creation date to the created tracing session's name.
5403
5404 LTTng writes the traces of a tracing session in
5405 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5406 name of the tracing session. Note that the env:LTTNG_HOME environment
5407 variable defaults to `$HOME` if not set.
5408
5409 To output LTTng traces to a non-default location:
5410
5411 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5412 +
5413 --
5414 [role="term"]
5415 ----
5416 $ lttng create my-session --output=/tmp/some-directory
5417 ----
5418 --
5419
5420 You may create as many tracing sessions as you wish.
5421
5422 To list all the existing tracing sessions for your Unix user:
5423
5424 * Use the man:lttng-list(1) command:
5425 +
5426 --
5427 [role="term"]
5428 ----
5429 $ lttng list
5430 ----
5431 --
5432
5433 When you create a tracing session, it is set as the _current tracing
5434 session_. The following man:lttng(1) commands operate on the current
5435 tracing session when you don't specify one:
5436
5437 [role="list-3-cols"]
5438 * man:lttng-add-context(1)
5439 * man:lttng-destroy(1)
5440 * man:lttng-disable-channel(1)
5441 * man:lttng-disable-event(1)
5442 * man:lttng-disable-rotation(1)
5443 * man:lttng-enable-channel(1)
5444 * man:lttng-enable-event(1)
5445 * man:lttng-enable-rotation(1)
5446 * man:lttng-load(1)
5447 * man:lttng-regenerate(1)
5448 * man:lttng-rotate(1)
5449 * man:lttng-save(1)
5450 * man:lttng-snapshot(1)
5451 * man:lttng-start(1)
5452 * man:lttng-status(1)
5453 * man:lttng-stop(1)
5454 * man:lttng-track(1)
5455 * man:lttng-untrack(1)
5456 * man:lttng-view(1)
5457
5458 To change the current tracing session:
5459
5460 * Use the man:lttng-set-session(1) command:
5461 +
5462 --
5463 [role="term"]
5464 ----
5465 $ lttng set-session new-session
5466 ----
5467 --
5468 +
5469 Replace `new-session` by the name of the new current tracing session.
5470
5471 When you are done tracing in a given tracing session, you can destroy
5472 it. This operation frees the resources taken by the tracing session
5473 to destroy; it does not destroy the trace data that LTTng wrote for
5474 this tracing session.
5475
5476 To destroy the current tracing session:
5477
5478 * Use the man:lttng-destroy(1) command:
5479 +
5480 --
5481 [role="term"]
5482 ----
5483 $ lttng destroy
5484 ----
5485 --
5486
5487 The man:lttng-destroy(1) command also runs the man:lttng-stop(1)
5488 command implicitly (see <<basic-tracing-session-control,Start and stop a
5489 tracing session>>). You need to stop tracing to make LTTng flush the
5490 remaining trace data and make the trace readable.
5491
5492
5493 [[list-instrumentation-points]]
5494 === List the available instrumentation points
5495
5496 The <<lttng-sessiond,session daemon>> can query the running instrumented
5497 user applications and the Linux kernel to get a list of available
5498 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5499 they are tracepoints and system calls. For the user space tracing
5500 domain, they are tracepoints. For the other tracing domains, they are
5501 logger names.
5502
5503 To list the available instrumentation points:
5504
5505 * Use the man:lttng-list(1) command with the requested tracing domain's
5506 option amongst:
5507 +
5508 --
5509 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5510 must be a root user, or it must be a member of the
5511 <<tracing-group,tracing group>>).
5512 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5513 kernel system calls (your Unix user must be a root user, or it must be
5514 a member of the tracing group).
5515 * opt:lttng-list(1):--userspace: user space tracepoints.
5516 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5517 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5518 * opt:lttng-list(1):--python: Python loggers.
5519 --
5520
5521 .List the available user space tracepoints.
5522 ====
5523 [role="term"]
5524 ----
5525 $ lttng list --userspace
5526 ----
5527 ====
5528
5529 .List the available Linux kernel system call tracepoints.
5530 ====
5531 [role="term"]
5532 ----
5533 $ lttng list --kernel --syscall
5534 ----
5535 ====
5536
5537
5538 [[enabling-disabling-events]]
5539 === Create and enable an event rule
5540
5541 Once you <<creating-destroying-tracing-sessions,create a tracing
5542 session>>, you can create <<event,event rules>> with the
5543 man:lttng-enable-event(1) command.
5544
5545 You specify each condition with a command-line option. The available
5546 condition arguments are shown in the following table.
5547
5548 [role="growable",cols="asciidoc,asciidoc,default"]
5549 .Condition command-line arguments for the man:lttng-enable-event(1) command.
5550 |====
5551 |Argument |Description |Applicable tracing domains
5552
5553 |
5554 One of:
5555
5556 . `--syscall`
5557 . +--probe=__ADDR__+
5558 . +--function=__ADDR__+
5559 . +--userspace-probe=__PATH__:__SYMBOL__+
5560 . +--userspace-probe=sdt:__PATH__:__PROVIDER__:__NAME__+
5561
5562 |
5563 Instead of using the default _tracepoint_ instrumentation type, use:
5564
5565 . A Linux system call (entry and exit).
5566 . A Linux https://lwn.net/Articles/132196/[kprobe] (symbol or address).
5567 . The entry and return points of a Linux function (symbol or address).
5568 . The entry point of a user application or library function (path to
5569 application/library and symbol).
5570 . A https://www.sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps[SystemTap
5571 Statically Defined Tracing] (USDT) probe (path to application/library,
5572 provider and probe names).
5573
5574 |Linux kernel.
5575
5576 |First positional argument.
5577
5578 |
5579 Tracepoint or system call name.
5580
5581 With the opt:lttng-enable-event(1):--probe,
5582 opt:lttng-enable-event(1):--function, and
5583 opt:lttng-enable-event(1):--userspace-probe options, this is a custom
5584 name given to the event rule. With the JUL, log4j, and Python domains,
5585 this is a logger name.
5586
5587 With a tracepoint, logger, or system call name, you can use the special
5588 `*` globbing character to match anything (for example, `sched_*`,
5589 `my_comp*:*msg_*`).
5590
5591 |All.
5592
5593 |
5594 One of:
5595
5596 . +--loglevel=__LEVEL__+
5597 . +--loglevel-only=__LEVEL__+
5598
5599 |
5600 . Match only tracepoints or log statements with a logging level at
5601 least as severe as +__LEVEL__+.
5602 . Match only tracepoints or log statements with a logging level
5603 equal to +__LEVEL__+.
5604
5605 See man:lttng-enable-event(1) for the list of available logging level
5606 names.
5607
5608 |User space, JUL, log4j, and Python.
5609
5610 |+--exclude=__EXCLUSIONS__+
5611
5612 |
5613 When you use a `*` character at the end of the tracepoint or logger
5614 name (first positional argument), exclude the specific names in the
5615 comma-delimited list +__EXCLUSIONS__+.
5616
5617 |
5618 User space, JUL, log4j, and Python.
5619
5620 |+--filter=__EXPR__+
5621
5622 |
5623 Match only events which satisfy the expression +__EXPR__+.
5624
5625 See man:lttng-enable-event(1) to learn more about the syntax of a
5626 filter expression.
5627
5628 |All.
5629
5630 |====
5631
5632 You attach an event rule to a <<channel,channel>> on creation. If you do
5633 not specify the channel with the opt:lttng-enable-event(1):--channel
5634 option, and if the event rule to create is the first in its
5635 <<domain,tracing domain>> for a given tracing session, then LTTng
5636 creates a _default channel_ for you. This default channel is reused in
5637 subsequent invocations of the man:lttng-enable-event(1) command for the
5638 same tracing domain.
5639
5640 An event rule is always enabled at creation time.
5641
5642 The following examples show how you can combine the previous
5643 command-line options to create simple to more complex event rules.
5644
5645 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5646 ====
5647 [role="term"]
5648 ----
5649 $ lttng enable-event --kernel sched_switch
5650 ----
5651 ====
5652
5653 .Create an event rule matching four Linux kernel system calls (default channel).
5654 ====
5655 [role="term"]
5656 ----
5657 $ lttng enable-event --kernel --syscall open,write,read,close
5658 ----
5659 ====
5660
5661 .Create event rules matching tracepoints with filter expressions (default channel).
5662 ====
5663 [role="term"]
5664 ----
5665 $ lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5666 ----
5667
5668 [role="term"]
5669 ----
5670 $ lttng enable-event --kernel --all \
5671 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5672 ----
5673
5674 [role="term"]
5675 ----
5676 $ lttng enable-event --jul my_logger \
5677 --filter='$app.retriever:cur_msg_id > 3'
5678 ----
5679
5680 IMPORTANT: Make sure to always quote the filter string when you
5681 use man:lttng(1) from a shell.
5682 ====
5683
5684 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5685 ====
5686 [role="term"]
5687 ----
5688 $ lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5689 ----
5690
5691 IMPORTANT: Make sure to always quote the wildcard character when you
5692 use man:lttng(1) from a shell.
5693 ====
5694
5695 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5696 ====
5697 [role="term"]
5698 ----
5699 $ lttng enable-event --python my-app.'*' \
5700 --exclude='my-app.module,my-app.hello'
5701 ----
5702 ====
5703
5704 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5705 ====
5706 [role="term"]
5707 ----
5708 $ lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5709 ----
5710 ====
5711
5712 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5713 ====
5714 [role="term"]
5715 ----
5716 $ lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5717 ----
5718 ====
5719
5720 .Create an event rule matching the `malloc` function entry in path:{/usr/lib/libc.so.6}:
5721 ====
5722 [role="term"]
5723 ----
5724 $ lttng enable-event --kernel --userspace-probe=/usr/lib/libc.so.6:malloc \
5725 libc_malloc
5726 ----
5727 ====
5728
5729 .Create an event rule matching the `server`/`accept_request` https://www.sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps[USDT probe] in path:{/usr/bin/serv}:
5730 ====
5731 [role="term"]
5732 ----
5733 $ lttng enable-event --kernel --userspace-probe=sdt:serv:server:accept_request \
5734 server_accept_request
5735 ----
5736 ====
5737
5738 The event rules of a given channel form a whitelist: as soon as an
5739 emitted event passes one of them, LTTng can record the event. For
5740 example, an event named `my_app:my_tracepoint` emitted from a user space
5741 tracepoint with a `TRACE_ERROR` log level passes both of the following
5742 rules:
5743
5744 [role="term"]
5745 ----
5746 $ lttng enable-event --userspace my_app:my_tracepoint
5747 $ lttng enable-event --userspace my_app:my_tracepoint \
5748 --loglevel=TRACE_INFO
5749 ----
5750
5751 The second event rule is redundant: the first one includes
5752 the second one.
5753
5754
5755 [[disable-event-rule]]
5756 === Disable an event rule
5757
5758 To disable an event rule that you <<enabling-disabling-events,created>>
5759 previously, use the man:lttng-disable-event(1) command. This command
5760 disables _all_ the event rules (of a given tracing domain and channel)
5761 which match an instrumentation point. The other conditions are not
5762 supported as of LTTng{nbsp}{revision}.
5763
5764 The LTTng tracer does not record an emitted event which passes
5765 a _disabled_ event rule.
5766
5767 .Disable an event rule matching a Python logger (default channel).
5768 ====
5769 [role="term"]
5770 ----
5771 $ lttng disable-event --python my-logger
5772 ----
5773 ====
5774
5775 .Disable an event rule matching all `java.util.logging` loggers (default channel).
5776 ====
5777 [role="term"]
5778 ----
5779 $ lttng disable-event --jul '*'
5780 ----
5781 ====
5782
5783 .Disable _all_ the event rules of the default channel.
5784 ====
5785 The opt:lttng-disable-event(1):--all-events option is not, like the
5786 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
5787 equivalent of the event name `*` (wildcard): it disables _all_ the event
5788 rules of a given channel.
5789
5790 [role="term"]
5791 ----
5792 $ lttng disable-event --jul --all-events
5793 ----
5794 ====
5795
5796 NOTE: You cannot delete an event rule once you create it.
5797
5798
5799 [[status]]
5800 === Get the status of a tracing session
5801
5802 To get the status of the current tracing session, that is, its
5803 parameters, its channels, event rules, and their attributes:
5804
5805 * Use the man:lttng-status(1) command:
5806 +
5807 --
5808 [role="term"]
5809 ----
5810 $ lttng status
5811 ----
5812 --
5813 +
5814
5815 To get the status of any tracing session:
5816
5817 * Use the man:lttng-list(1) command with the tracing session's name:
5818 +
5819 --
5820 [role="term"]
5821 ----
5822 $ lttng list my-session
5823 ----
5824 --
5825 +
5826 Replace `my-session` with the desired tracing session's name.
5827
5828
5829 [[basic-tracing-session-control]]
5830 === Start and stop a tracing session
5831
5832 Once you <<creating-destroying-tracing-sessions,create a tracing
5833 session>> and
5834 <<enabling-disabling-events,create one or more event rules>>,
5835 you can start and stop the tracers for this tracing session.
5836
5837 To start tracing in the current tracing session:
5838
5839 * Use the man:lttng-start(1) command:
5840 +
5841 --
5842 [role="term"]
5843 ----
5844 $ lttng start
5845 ----
5846 --
5847
5848 LTTng is very flexible: you can launch user applications before
5849 or after the you start the tracers. The tracers only record the events
5850 if they pass enabled event rules and if they occur while the tracers are
5851 started.
5852
5853 To stop tracing in the current tracing session:
5854
5855 * Use the man:lttng-stop(1) command:
5856 +
5857 --
5858 [role="term"]
5859 ----
5860 $ lttng stop
5861 ----
5862 --
5863 +
5864 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
5865 records>> or lost sub-buffers since the last time you ran
5866 man:lttng-start(1), warnings are printed when you run the
5867 man:lttng-stop(1) command.
5868
5869 IMPORTANT: You need to stop tracing to make LTTng flush the remaining
5870 trace data and make the trace readable. Note that the
5871 man:lttng-destroy(1) command (see
5872 <<creating-destroying-tracing-sessions,Create and destroy a tracing
5873 session>>) also runs the man:lttng-stop(1) command implicitly.
5874
5875
5876 [[enabling-disabling-channels]]
5877 === Create a channel
5878
5879 Once you create a tracing session, you can create a <<channel,channel>>
5880 with the man:lttng-enable-channel(1) command.
5881
5882 Note that LTTng automatically creates a default channel when, for a
5883 given <<domain,tracing domain>>, no channels exist and you
5884 <<enabling-disabling-events,create>> the first event rule. This default
5885 channel is named `channel0` and its attributes are set to reasonable
5886 values. Therefore, you only need to create a channel when you need
5887 non-default attributes.
5888
5889 You specify each non-default channel attribute with a command-line
5890 option when you use the man:lttng-enable-channel(1) command. The
5891 available command-line options are:
5892
5893 [role="growable",cols="asciidoc,asciidoc"]
5894 .Command-line options for the man:lttng-enable-channel(1) command.
5895 |====
5896 |Option |Description
5897
5898 |`--overwrite`
5899
5900 |
5901 Use the _overwrite_
5902 <<channel-overwrite-mode-vs-discard-mode,event record loss mode>> instead
5903 of the default _discard_ mode.
5904
5905 |`--buffers-pid` (user space tracing domain only)
5906
5907 |
5908 Use the per-process <<channel-buffering-schemes,buffering scheme>>
5909 instead of the default per-user buffering scheme.
5910
5911 |+--subbuf-size=__SIZE__+
5912
5913 |
5914 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
5915 either for each Unix user (default), or for each instrumented process.
5916
5917 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5918
5919 |+--num-subbuf=__COUNT__+
5920
5921 |
5922 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
5923 for each Unix user (default), or for each instrumented process.
5924
5925 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5926
5927 |+--tracefile-size=__SIZE__+
5928
5929 |
5930 Set the maximum size of each trace file that this channel writes within
5931 a stream to +__SIZE__+ bytes instead of no maximum.
5932
5933 See <<tracefile-rotation,Trace file count and size>>.
5934
5935 |+--tracefile-count=__COUNT__+
5936
5937 |
5938 Limit the number of trace files that this channel creates to
5939 +__COUNT__+ channels instead of no limit.
5940
5941 See <<tracefile-rotation,Trace file count and size>>.
5942
5943 |+--switch-timer=__PERIODUS__+
5944
5945 |
5946 Set the <<channel-switch-timer,switch timer period>>
5947 to +__PERIODUS__+{nbsp}µs.
5948
5949 |+--read-timer=__PERIODUS__+
5950
5951 |
5952 Set the <<channel-read-timer,read timer period>>
5953 to +__PERIODUS__+{nbsp}µs.
5954
5955 |[[opt-blocking-timeout]]+--blocking-timeout=__TIMEOUTUS__+
5956
5957 |
5958 Set the timeout of user space applications which load LTTng-UST
5959 in blocking mode to +__TIMEOUTUS__+:
5960
5961 0 (default)::
5962 Never block (non-blocking mode).
5963
5964 `inf`::
5965 Block forever until space is available in a sub-buffer to record
5966 the event.
5967
5968 __n__, a positive value::
5969 Wait for at most __n__ µs when trying to write into a sub-buffer.
5970
5971 Note that, for this option to have any effect on an instrumented
5972 user space application, you need to run the application with a set
5973 env:LTTNG_UST_ALLOW_BLOCKING environment variable.
5974
5975 |+--output=__TYPE__+ (Linux kernel tracing domain only)
5976
5977 |
5978 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
5979
5980 |====
5981
5982 You can only create a channel in the Linux kernel and user space
5983 <<domain,tracing domains>>: other tracing domains have their own channel
5984 created on the fly when <<enabling-disabling-events,creating event
5985 rules>>.
5986
5987 [IMPORTANT]
5988 ====
5989 Because of a current LTTng limitation, you must create all channels
5990 _before_ you <<basic-tracing-session-control,start tracing>> in a given
5991 tracing session, that is, before the first time you run
5992 man:lttng-start(1).
5993
5994 Since LTTng automatically creates a default channel when you use the
5995 man:lttng-enable-event(1) command with a specific tracing domain, you
5996 cannot, for example, create a Linux kernel event rule, start tracing,
5997 and then create a user space event rule, because no user space channel
5998 exists yet and it's too late to create one.
5999
6000 For this reason, make sure to configure your channels properly
6001 before starting the tracers for the first time!
6002 ====
6003
6004 The following examples show how you can combine the previous
6005 command-line options to create simple to more complex channels.
6006
6007 .Create a Linux kernel channel with default attributes.
6008 ====
6009 [role="term"]
6010 ----
6011 $ lttng enable-channel --kernel my-channel
6012 ----
6013 ====
6014
6015 .Create a user space channel with four sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6016 ====
6017 [role="term"]
6018 ----
6019 $ lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6020 --buffers-pid my-channel
6021 ----
6022 ====
6023
6024 .[[blocking-timeout-example]]Create a default user space channel with an infinite blocking timeout.
6025 ====
6026 <<creating-destroying-tracing-sessions,Create a tracing-session>>,
6027 create the channel, <<enabling-disabling-events,create an event rule>>,
6028 and <<basic-tracing-session-control,start tracing>>:
6029
6030 [role="term"]
6031 ----
6032 $ lttng create
6033 $ lttng enable-channel --userspace --blocking-timeout=inf blocking-channel
6034 $ lttng enable-event --userspace --channel=blocking-channel --all
6035 $ lttng start
6036 ----
6037
6038 Run an application instrumented with LTTng-UST and allow it to block:
6039
6040 [role="term"]
6041 ----
6042 $ LTTNG_UST_ALLOW_BLOCKING=1 my-app
6043 ----
6044 ====
6045
6046 .Create a Linux kernel channel which rotates eight trace files of 4{nbsp}MiB each for each stream
6047 ====
6048 [role="term"]
6049 ----
6050 $ lttng enable-channel --kernel --tracefile-count=8 \
6051 --tracefile-size=4194304 my-channel
6052 ----
6053 ====
6054
6055 .Create a user space channel in overwrite (or _flight recorder_) mode.
6056 ====
6057 [role="term"]
6058 ----
6059 $ lttng enable-channel --userspace --overwrite my-channel
6060 ----
6061 ====
6062
6063 You can <<enabling-disabling-events,create>> the same event rule in
6064 two different channels:
6065
6066 [role="term"]
6067 ----
6068 $ lttng enable-event --userspace --channel=my-channel app:tp
6069 $ lttng enable-event --userspace --channel=other-channel app:tp
6070 ----
6071
6072 If both channels are enabled, when a tracepoint named `app:tp` is
6073 reached, LTTng records two events, one for each channel.
6074
6075
6076 [[disable-channel]]
6077 === Disable a channel
6078
6079 To disable a specific channel that you <<enabling-disabling-channels,created>>
6080 previously, use the man:lttng-disable-channel(1) command.
6081
6082 .Disable a specific Linux kernel channel.
6083 ====
6084 [role="term"]
6085 ----
6086 $ lttng disable-channel --kernel my-channel
6087 ----
6088 ====
6089
6090 The state of a channel precedes the individual states of event rules
6091 attached to it: event rules which belong to a disabled channel, even if
6092 they are enabled, are also considered disabled.
6093
6094
6095 [[adding-context]]
6096 === Add context fields to a channel
6097
6098 Event record fields in trace files provide important information about
6099 events that occured previously, but sometimes some external context may
6100 help you solve a problem faster. Examples of context fields are:
6101
6102 * The **process ID**, **thread ID**, **process name**, and
6103 **process priority** of the thread in which the event occurs.
6104 * The **hostname** of the system on which the event occurs.
6105 * The Linux kernel and user call stacks (since
6106 LTTng{nbsp}{revision}).
6107 * The current values of many possible **performance counters** using
6108 perf, for example:
6109 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6110 ** Cache misses.
6111 ** Branch instructions, misses, and loads.
6112 ** CPU faults.
6113 * Any context defined at the application level (supported for the
6114 JUL and log4j <<domain,tracing domains>>).
6115
6116 To get the full list of available context fields, see
6117 `lttng add-context --list`. Some context fields are reserved for a
6118 specific <<domain,tracing domain>> (Linux kernel or user space).
6119
6120 You add context fields to <<channel,channels>>. All the events
6121 that a channel with added context fields records contain those fields.
6122
6123 To add context fields to one or all the channels of a given tracing
6124 session:
6125
6126 * Use the man:lttng-add-context(1) command.
6127
6128 .Add context fields to all the channels of the current tracing session.
6129 ====
6130 The following command line adds the virtual process identifier and
6131 the per-thread CPU cycles count fields to all the user space channels
6132 of the current tracing session.
6133
6134 [role="term"]
6135 ----
6136 $ lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6137 ----
6138 ====
6139
6140 .Add performance counter context fields by raw ID
6141 ====
6142 See man:lttng-add-context(1) for the exact format of the context field
6143 type, which is partly compatible with the format used in
6144 man:perf-record(1).
6145
6146 [role="term"]
6147 ----
6148 $ lttng add-context --userspace --type=perf:thread:raw:r0110:test
6149 $ lttng add-context --kernel --type=perf:cpu:raw:r0013c:x86unhalted
6150 ----
6151 ====
6152
6153 .Add context fields to a specific channel.
6154 ====
6155 The following command line adds the thread identifier and user call
6156 stack context fields to the Linux kernel channel named `my-channel` in
6157 the current tracing session.
6158
6159 [role="term"]
6160 ----
6161 $ lttng add-context --kernel --channel=my-channel \
6162 --type=tid --type=callstack-user
6163 ----
6164 ====
6165
6166 .Add an application-specific context field to a specific channel.
6167 ====
6168 The following command line adds the `cur_msg_id` context field of the
6169 `retriever` context retriever for all the instrumented
6170 <<java-application,Java applications>> recording <<event,event records>>
6171 in the channel named `my-channel`:
6172
6173 [role="term"]
6174 ----
6175 $ lttng add-context --kernel --channel=my-channel \
6176 --type='$app:retriever:cur_msg_id'
6177 ----
6178
6179 IMPORTANT: Make sure to always quote the `$` character when you
6180 use man:lttng-add-context(1) from a shell.
6181 ====
6182
6183 NOTE: You cannot remove context fields from a channel once you add it.
6184
6185
6186 [role="since-2.7"]
6187 [[pid-tracking]]
6188 === Track process IDs
6189
6190 It's often useful to allow only specific process IDs (PIDs) to emit
6191 events. For example, you may wish to record all the system calls made by
6192 a given process (Ă  la http://linux.die.net/man/1/strace[strace]).
6193
6194 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6195 purpose. Both commands operate on a whitelist of process IDs. You _add_
6196 entries to this whitelist with the man:lttng-track(1) command and remove
6197 entries with the man:lttng-untrack(1) command. Any process which has one
6198 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6199 an enabled <<event,event rule>>.
6200
6201 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6202 process with a given tracked ID exit and another process be given this
6203 ID, then the latter would also be allowed to emit events.
6204
6205 .Track and untrack process IDs.
6206 ====
6207 For the sake of the following example, assume the target system has
6208 16{nbsp}possible PIDs.
6209
6210 When you
6211 <<creating-destroying-tracing-sessions,create a tracing session>>,
6212 the whitelist contains all the possible PIDs:
6213
6214 [role="img-100"]
6215 .All PIDs are tracked.
6216 image::track-all.png[]
6217
6218 When the whitelist is full and you use the man:lttng-track(1) command to
6219 specify some PIDs to track, LTTng first clears the whitelist, then it
6220 tracks the specific PIDs. After:
6221
6222 [role="term"]
6223 ----
6224 $ lttng track --pid=3,4,7,10,13
6225 ----
6226
6227 the whitelist is:
6228
6229 [role="img-100"]
6230 .PIDs 3, 4, 7, 10, and 13 are tracked.
6231 image::track-3-4-7-10-13.png[]
6232
6233 You can add more PIDs to the whitelist afterwards:
6234
6235 [role="term"]
6236 ----
6237 $ lttng track --pid=1,15,16
6238 ----
6239
6240 The result is:
6241
6242 [role="img-100"]
6243 .PIDs 1, 15, and 16 are added to the whitelist.
6244 image::track-1-3-4-7-10-13-15-16.png[]
6245
6246 The man:lttng-untrack(1) command removes entries from the PID tracker's
6247 whitelist. Given the previous example, the following command:
6248
6249 [role="term"]
6250 ----
6251 $ lttng untrack --pid=3,7,10,13
6252 ----
6253
6254 leads to this whitelist:
6255
6256 [role="img-100"]
6257 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6258 image::track-1-4-15-16.png[]
6259
6260 LTTng can track all possible PIDs again using the
6261 opt:lttng-track(1):--all option:
6262
6263 [role="term"]
6264 ----
6265 $ lttng track --pid --all
6266 ----
6267
6268 The result is, again:
6269
6270 [role="img-100"]
6271 .All PIDs are tracked.
6272 image::track-all.png[]
6273 ====
6274
6275 .Track only specific PIDs
6276 ====
6277 A very typical use case with PID tracking is to start with an empty
6278 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6279 then add PIDs manually while tracers are active. You can accomplish this
6280 by using the opt:lttng-untrack(1):--all option of the
6281 man:lttng-untrack(1) command to clear the whitelist after you
6282 <<creating-destroying-tracing-sessions,create a tracing session>>:
6283
6284 [role="term"]
6285 ----
6286 $ lttng untrack --pid --all
6287 ----
6288
6289 gives:
6290
6291 [role="img-100"]
6292 .No PIDs are tracked.
6293 image::untrack-all.png[]
6294
6295 If you trace with this whitelist configuration, the tracer records no
6296 events for this <<domain,tracing domain>> because no processes are
6297 tracked. You can use the man:lttng-track(1) command as usual to track
6298 specific PIDs, for example:
6299
6300 [role="term"]
6301 ----
6302 $ lttng track --pid=6,11
6303 ----
6304
6305 Result:
6306
6307 [role="img-100"]
6308 .PIDs 6 and 11 are tracked.
6309 image::track-6-11.png[]
6310 ====
6311
6312
6313 [role="since-2.5"]
6314 [[saving-loading-tracing-session]]
6315 === Save and load tracing session configurations
6316
6317 Configuring a <<tracing-session,tracing session>> can be long. Some of
6318 the tasks involved are:
6319
6320 * <<enabling-disabling-channels,Create channels>> with
6321 specific attributes.
6322 * <<adding-context,Add context fields>> to specific channels.
6323 * <<enabling-disabling-events,Create event rules>> with specific log
6324 level and filter conditions.
6325
6326 If you use LTTng to solve real world problems, chances are you have to
6327 record events using the same tracing session setup over and over,
6328 modifying a few variables each time in your instrumented program
6329 or environment. To avoid constant tracing session reconfiguration,
6330 the man:lttng(1) command-line tool can save and load tracing session
6331 configurations to/from XML files.
6332
6333 To save a given tracing session configuration:
6334
6335 * Use the man:lttng-save(1) command:
6336 +
6337 --
6338 [role="term"]
6339 ----
6340 $ lttng save my-session
6341 ----
6342 --
6343 +
6344 Replace `my-session` with the name of the tracing session to save.
6345
6346 LTTng saves tracing session configurations to
6347 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6348 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6349 the opt:lttng-save(1):--output-path option to change this destination
6350 directory.
6351
6352 LTTng saves all configuration parameters, for example:
6353
6354 * The tracing session name.
6355 * The trace data output path.
6356 * The channels with their state and all their attributes.
6357 * The context fields you added to channels.
6358 * The event rules with their state, log level and filter conditions.
6359
6360 To load a tracing session:
6361
6362 * Use the man:lttng-load(1) command:
6363 +
6364 --
6365 [role="term"]
6366 ----
6367 $ lttng load my-session
6368 ----
6369 --
6370 +
6371 Replace `my-session` with the name of the tracing session to load.
6372
6373 When LTTng loads a configuration, it restores your saved tracing session
6374 as if you just configured it manually.
6375
6376 See man:lttng-load(1) for the complete list of command-line options. You
6377 can also save and load many sessions at a time, and decide in which
6378 directory to output the XML files.
6379
6380
6381 [[sending-trace-data-over-the-network]]
6382 === Send trace data over the network
6383
6384 LTTng can send the recorded trace data to a remote system over the
6385 network instead of writing it to the local file system.
6386
6387 To send the trace data over the network:
6388
6389 . On the _remote_ system (which can also be the target system),
6390 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6391 +
6392 --
6393 [role="term"]
6394 ----
6395 $ lttng-relayd
6396 ----
6397 --
6398
6399 . On the _target_ system, create a tracing session configured to
6400 send trace data over the network:
6401 +
6402 --
6403 [role="term"]
6404 ----
6405 $ lttng create my-session --set-url=net://remote-system
6406 ----
6407 --
6408 +
6409 Replace `remote-system` by the host name or IP address of the
6410 remote system. See man:lttng-create(1) for the exact URL format.
6411
6412 . On the target system, use the man:lttng(1) command-line tool as usual.
6413 When tracing is active, the target's consumer daemon sends sub-buffers
6414 to the relay daemon running on the remote system instead of flushing
6415 them to the local file system. The relay daemon writes the received
6416 packets to the local file system.
6417
6418 The relay daemon writes trace files to
6419 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6420 +__hostname__+ is the host name of the target system and +__session__+
6421 is the tracing session name. Note that the env:LTTNG_HOME environment
6422 variable defaults to `$HOME` if not set. Use the
6423 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6424 trace files to another base directory.
6425
6426
6427 [role="since-2.4"]
6428 [[lttng-live]]
6429 === View events as LTTng emits them (noch:{LTTng} live)
6430
6431 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6432 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6433 display events as LTTng emits them on the target system while tracing is
6434 active.
6435
6436 The relay daemon creates a _tee_: it forwards the trace data to both
6437 the local file system and to connected live viewers:
6438
6439 [role="img-90"]
6440 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6441 image::live.png[]
6442
6443 To use LTTng live:
6444
6445 . On the _target system_, create a <<tracing-session,tracing session>>
6446 in _live mode_:
6447 +
6448 --
6449 [role="term"]
6450 ----
6451 $ lttng create my-session --live
6452 ----
6453 --
6454 +
6455 This spawns a local relay daemon.
6456
6457 . Start the live viewer and configure it to connect to the relay
6458 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6459 +
6460 --
6461 [role="term"]
6462 ----
6463 $ babeltrace --input-format=lttng-live \
6464 net://localhost/host/hostname/my-session
6465 ----
6466 --
6467 +
6468 Replace:
6469 +
6470 --
6471 * `hostname` with the host name of the target system.
6472 * `my-session` with the name of the tracing session to view.
6473 --
6474
6475 . Configure the tracing session as usual with the man:lttng(1)
6476 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6477
6478 You can list the available live tracing sessions with Babeltrace:
6479
6480 [role="term"]
6481 ----
6482 $ babeltrace --input-format=lttng-live net://localhost
6483 ----
6484
6485 You can start the relay daemon on another system. In this case, you need
6486 to specify the relay daemon's URL when you create the tracing session
6487 with the opt:lttng-create(1):--set-url option. You also need to replace
6488 `localhost` in the procedure above with the host name of the system on
6489 which the relay daemon is running.
6490
6491 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6492 command-line options.
6493
6494
6495 [role="since-2.3"]
6496 [[taking-a-snapshot]]
6497 === Take a snapshot of the current sub-buffers of a tracing session
6498
6499 The normal behavior of LTTng is to append full sub-buffers to growing
6500 trace data files. This is ideal to keep a full history of the events
6501 that occurred on the target system, but it can
6502 represent too much data in some situations. For example, you may wish
6503 to trace your application continuously until some critical situation
6504 happens, in which case you only need the latest few recorded
6505 events to perform the desired analysis, not multi-gigabyte trace files.
6506
6507 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6508 current sub-buffers of a given <<tracing-session,tracing session>>.
6509 LTTng can write the snapshot to the local file system or send it over
6510 the network.
6511
6512 [role="img-100"]
6513 .A snapshot is a copy of the current sub-buffers, which are not cleared after the operation.
6514 image::snapshot.png[]
6515
6516 If you wish to create unmanaged, self-contained, non-overlapping
6517 trace chunk archives instead of a simple copy of the current
6518 sub-buffers, see the <<session-rotation,tracing session rotation>>
6519 feature (available since LTTng{nbsp}2.11).
6520
6521 To take a snapshot:
6522
6523 . Create a tracing session in _snapshot mode_:
6524 +
6525 --
6526 [role="term"]
6527 ----
6528 $ lttng create my-session --snapshot
6529 ----
6530 --
6531 +
6532 The <<channel-overwrite-mode-vs-discard-mode,event record loss mode>> of
6533 <<channel,channels>> created in this mode is automatically set to
6534 _overwrite_ (flight recorder mode).
6535
6536 . Configure the tracing session as usual with the man:lttng(1)
6537 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6538
6539 . **Optional**: When you need to take a snapshot,
6540 <<basic-tracing-session-control,stop tracing>>.
6541 +
6542 You can take a snapshot when the tracers are active, but if you stop
6543 them first, you are sure that the data in the sub-buffers does not
6544 change before you actually take the snapshot.
6545
6546 . Take a snapshot:
6547 +
6548 --
6549 [role="term"]
6550 ----
6551 $ lttng snapshot record --name=my-first-snapshot
6552 ----
6553 --
6554 +
6555 LTTng writes the current sub-buffers of all the current tracing
6556 session's channels to trace files on the local file system. Those trace
6557 files have `my-first-snapshot` in their name.
6558
6559 There is no difference between the format of a normal trace file and the
6560 format of a snapshot: viewers of LTTng traces also support LTTng
6561 snapshots.
6562
6563 By default, LTTng writes snapshot files to the path shown by
6564 `lttng snapshot list-output`. You can change this path or decide to send
6565 snapshots over the network using either:
6566
6567 . An output path or URL that you specify when you
6568 <<creating-destroying-tracing-sessions,create the tracing session>>.
6569 . A snapshot output path or URL that you add using
6570 `lttng snapshot add-output`.
6571 . An output path or URL that you provide directly to the
6572 `lttng snapshot record` command.
6573
6574 Method{nbsp}3 overrides method{nbsp}2, which overrides method 1. When
6575 you specify a URL, a relay daemon must listen on a remote system (see
6576 <<sending-trace-data-over-the-network,Send trace data over the
6577 network>>).
6578
6579
6580 [role="since-2.11"]
6581 [[session-rotation]]
6582 === Archive the current trace chunk (rotate a tracing session)
6583
6584 The <<taking-a-snapshot,snapshot user guide>> shows how you can dump
6585 a tracing session's current sub-buffers to the file system or send them
6586 over the network. When you take a snapshot, LTTng does not clear the
6587 tracing session's ring buffers: if you take another snapshot immediately
6588 after, both snapshots could contain overlapping trace data.
6589
6590 Inspired by https://en.wikipedia.org/wiki/Log_rotation[log rotation],
6591 _tracing session rotation_ is a feature which appends the content of the
6592 ring buffers to what's already on the file system or sent over the
6593 network since the tracing session's creation or since the last
6594 rotation, and then clears those ring buffers to avoid trace data
6595 overlaps.
6596
6597 What LTTng is about to write when performing a tracing session rotation
6598 is called the _current trace chunk_. When this current trace chunk is
6599 written to the file system or sent over the network, it becomes a _trace
6600 chunk archive_. Therefore, a tracing session rotation _archives_ the
6601 current trace chunk.
6602
6603 [role="img-100"]
6604 .A tracing session rotation operation _archives_ the current trace chunk.
6605 image::rotation.png[]
6606
6607 A trace chunk archive is a self-contained LTTng trace which LTTng
6608 doesn't manage anymore: you can read it, modify it, move it, or remove
6609 it.
6610
6611 There are two methods to perform a tracing session rotation: immediately
6612 or with a rotation schedule.
6613
6614 To perform an immediate tracing session rotation:
6615
6616 . <<creating-destroying-tracing-sessions,Create a tracing session>>
6617 in _normal mode_ or _network streaming mode_
6618 (only those two creation modes support tracing session rotation):
6619 +
6620 --
6621 [role="term"]
6622 ----
6623 $ lttng create my-session
6624 ----
6625 --
6626
6627 . <<enabling-disabling-events,Create one or more event rules>>
6628 and <<basic-tracing-session-control,start tracing>>:
6629 +
6630 --
6631 [role="term"]
6632 ----
6633 $ lttng enable-event --kernel sched_'*'
6634 $ lttng start
6635 ----
6636 --
6637
6638 . When needed, immediately rotate the current tracing session:
6639 +
6640 --
6641 [role="term"]
6642 ----
6643 $ lttng rotate
6644 ----
6645 --
6646 +
6647 The cmd:lttng-rotate command prints the path to the created trace
6648 chunk archive. See man:lttng-rotate(1) to learn about the format
6649 of trace chunk archive directory names.
6650 +
6651 You can perform other immediate rotations while the tracing session is
6652 active. It is guaranteed that all the trace chunk archives do not
6653 contain overlapping trace data. You can also perform an immediate
6654 rotation once you have <<basic-tracing-session-control,stopped>> the
6655 tracing session.
6656
6657 . When you are done tracing,
6658 <<creating-destroying-tracing-sessions,destroy the current tracing
6659 session>>:
6660 +
6661 --
6662 [role="term"]
6663 ----
6664 $ lttng destroy
6665 ----
6666 --
6667 +
6668 The tracing session destruction operation creates one last trace
6669 chunk archive from the current trace chunk.
6670
6671 A tracing session rotation schedule is a planned rotation which LTTng
6672 performs automatically based on one of the following conditions:
6673
6674 * A timer with a configured period times out.
6675
6676 * The total size of the flushed part of the current trace chunk
6677 becomes greater than or equal to a configured value.
6678
6679 To schedule a tracing session rotation, set a _rotation schedule_:
6680
6681 . <<creating-destroying-tracing-sessions,Create a tracing session>>
6682 in _normal mode_ or _network streaming mode_
6683 (only those two creation modes support tracing session rotation):
6684 +
6685 --
6686 [role="term"]
6687 ----
6688 $ lttng create my-session
6689 ----
6690 --
6691
6692 . <<enabling-disabling-events,Create one or more event rules>>:
6693 +
6694 --
6695 [role="term"]
6696 ----
6697 $ lttng enable-event --kernel sched_'*'
6698 ----
6699 --
6700
6701 . Set a tracing session rotation schedule:
6702 +
6703 --
6704 [role="term"]
6705 ----
6706 $ lttng enable-rotation --timer=10s
6707 ----
6708 --
6709 +
6710 In this example, we set a rotation schedule so that LTTng performs a
6711 tracing session rotation every ten seconds.
6712 +
6713 See man:lttng-enable-rotation(1) to learn more about other ways to set a
6714 rotation schedule.
6715
6716 . <<basic-tracing-session-control,Start tracing>>:
6717 +
6718 --
6719 [role="term"]
6720 ----
6721 $ lttng start
6722 ----
6723 --
6724 +
6725 LTTng performs tracing session rotations automatically while the tracing
6726 session is active thanks to the rotation schedule.
6727
6728 . When you are done tracing,
6729 <<creating-destroying-tracing-sessions,destroy the current tracing
6730 session>>:
6731 +
6732 --
6733 [role="term"]
6734 ----
6735 $ lttng destroy
6736 ----
6737 --
6738 +
6739 The tracing session destruction operation creates one last trace chunk
6740 archive from the current trace chunk.
6741
6742 You can use man:lttng-disable-rotation(1) to unset a tracing session
6743 rotation schedule.
6744
6745 NOTE: man:lttng-rotate(1) and man:lttng-enable-rotation(1) list
6746 limitations regarding those two commands.
6747
6748
6749 [role="since-2.6"]
6750 [[mi]]
6751 === Use the machine interface
6752
6753 With any command of the man:lttng(1) command-line tool, you can set the
6754 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6755 XML machine interface output, for example:
6756
6757 [role="term"]
6758 ----
6759 $ lttng --mi=xml enable-event --kernel --syscall open
6760 ----
6761
6762 A schema definition (XSD) is
6763 https://github.com/lttng/lttng-tools/blob/stable-2.11/src/common/mi-lttng-3.0.xsd[available]
6764 to ease the integration with external tools as much as possible.
6765
6766
6767 [role="since-2.8"]
6768 [[metadata-regenerate]]
6769 === Regenerate the metadata of an LTTng trace
6770
6771 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6772 data stream files and a metadata file. This metadata file contains,
6773 amongst other things, information about the offset of the clock sources
6774 used to timestamp <<event,event records>> when tracing.
6775
6776 If, once a <<tracing-session,tracing session>> is
6777 <<basic-tracing-session-control,started>>, a major
6778 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6779 happens, the trace's clock offset also needs to be updated. You
6780 can use the `metadata` item of the man:lttng-regenerate(1) command
6781 to do so.
6782
6783 The main use case of this command is to allow a system to boot with
6784 an incorrect wall time and trace it with LTTng before its wall time
6785 is corrected. Once the system is known to be in a state where its
6786 wall time is correct, it can run `lttng regenerate metadata`.
6787
6788 To regenerate the metadata of an LTTng trace:
6789
6790 * Use the `metadata` item of the man:lttng-regenerate(1) command:
6791 +
6792 --
6793 [role="term"]
6794 ----
6795 $ lttng regenerate metadata
6796 ----
6797 --
6798
6799 [IMPORTANT]
6800 ====
6801 `lttng regenerate metadata` has the following limitations:
6802
6803 * Tracing session <<creating-destroying-tracing-sessions,created>>
6804 in non-live mode.
6805 * User space <<channel,channels>>, if any, are using
6806 <<channel-buffering-schemes,per-user buffering>>.
6807 ====
6808
6809
6810 [role="since-2.9"]
6811 [[regenerate-statedump]]
6812 === Regenerate the state dump of a tracing session
6813
6814 The LTTng kernel and user space tracers generate state dump
6815 <<event,event records>> when the application starts or when you
6816 <<basic-tracing-session-control,start a tracing session>>. An analysis
6817 can use the state dump event records to set an initial state before it
6818 builds the rest of the state from the following event records.
6819 http://tracecompass.org/[Trace Compass] is a notable example of an
6820 application which uses the state dump of an LTTng trace.
6821
6822 When you <<taking-a-snapshot,take a snapshot>>, it's possible that the
6823 state dump event records are not included in the snapshot because they
6824 were recorded to a sub-buffer that has been consumed or overwritten
6825 already.
6826
6827 You can use the `lttng regenerate statedump` command to emit the state
6828 dump event records again.
6829
6830 To regenerate the state dump of the current tracing session, provided
6831 create it in snapshot mode, before you take a snapshot:
6832
6833 . Use the `statedump` item of the man:lttng-regenerate(1) command:
6834 +
6835 --
6836 [role="term"]
6837 ----
6838 $ lttng regenerate statedump
6839 ----
6840 --
6841
6842 . <<basic-tracing-session-control,Stop the tracing session>>:
6843 +
6844 --
6845 [role="term"]
6846 ----
6847 $ lttng stop
6848 ----
6849 --
6850
6851 . <<taking-a-snapshot,Take a snapshot>>:
6852 +
6853 --
6854 [role="term"]
6855 ----
6856 $ lttng snapshot record --name=my-snapshot
6857 ----
6858 --
6859
6860 Depending on the event throughput, you should run steps 1 and 2
6861 as closely as possible.
6862
6863 NOTE: To record the state dump events, you need to
6864 <<enabling-disabling-events,create event rules>> which enable them.
6865 LTTng-UST state dump tracepoints start with `lttng_ust_statedump:`.
6866 LTTng-modules state dump tracepoints start with `lttng_statedump_`.
6867
6868
6869 [role="since-2.7"]
6870 [[persistent-memory-file-systems]]
6871 === Record trace data on persistent memory file systems
6872
6873 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6874 (NVRAM) is random-access memory that retains its information when power
6875 is turned off (non-volatile). Systems with such memory can store data
6876 structures in RAM and retrieve them after a reboot, without flushing
6877 to typical _storage_.
6878
6879 Linux supports NVRAM file systems thanks to either
6880 http://pramfs.sourceforge.net/[PRAMFS] or
6881 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6882 (requires Linux{nbsp}4.1+).
6883
6884 This section does not describe how to operate such file systems;
6885 we assume that you have a working persistent memory file system.
6886
6887 When you create a <<tracing-session,tracing session>>, you can specify
6888 the path of the shared memory holding the sub-buffers. If you specify a
6889 location on an NVRAM file system, then you can retrieve the latest
6890 recorded trace data when the system reboots after a crash.
6891
6892 To record trace data on a persistent memory file system and retrieve the
6893 trace data after a system crash:
6894
6895 . Create a tracing session with a sub-buffer shared memory path located
6896 on an NVRAM file system:
6897 +
6898 --
6899 [role="term"]
6900 ----
6901 $ lttng create my-session --shm-path=/path/to/shm
6902 ----
6903 --
6904
6905 . Configure the tracing session as usual with the man:lttng(1)
6906 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6907
6908 . After a system crash, use the man:lttng-crash(1) command-line tool to
6909 view the trace data recorded on the NVRAM file system:
6910 +
6911 --
6912 [role="term"]
6913 ----
6914 $ lttng-crash /path/to/shm
6915 ----
6916 --
6917
6918 The binary layout of the ring buffer files is not exactly the same as
6919 the trace files layout. This is why you need to use man:lttng-crash(1)
6920 instead of your preferred trace viewer directly.
6921
6922 To convert the ring buffer files to LTTng trace files:
6923
6924 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6925 +
6926 --
6927 [role="term"]
6928 ----
6929 $ lttng-crash --extract=/path/to/trace /path/to/shm
6930 ----
6931 --
6932
6933
6934 [role="since-2.10"]
6935 [[notif-trigger-api]]
6936 === Get notified when a channel's buffer usage is too high or too low
6937
6938 With LTTng's $$C/C++$$ notification and trigger API, your user
6939 application can get notified when the buffer usage of one or more
6940 <<channel,channels>> becomes too low or too high. You can use this API
6941 and enable or disable <<event,event rules>> during tracing to avoid
6942 <<channel-overwrite-mode-vs-discard-mode,discarded event records>>.
6943
6944 .Have a user application get notified when an LTTng channel's buffer usage is too high.
6945 ====
6946 In this example, we create and build an application which gets notified
6947 when the buffer usage of a specific LTTng channel is higher than
6948 75{nbsp}%. We only print that it is the case in the example, but we
6949 could as well use the API of <<liblttng-ctl-lttng,`liblttng-ctl`>> to
6950 disable event rules when this happens.
6951
6952 . Create the application's C source file:
6953 +
6954 --
6955 [source,c]
6956 .path:{notif-app.c}
6957 ----
6958 #include <stdio.h>
6959 #include <assert.h>
6960 #include <lttng/domain.h>
6961 #include <lttng/action/action.h>
6962 #include <lttng/action/notify.h>
6963 #include <lttng/condition/condition.h>
6964 #include <lttng/condition/buffer-usage.h>
6965 #include <lttng/condition/evaluation.h>
6966 #include <lttng/notification/channel.h>
6967 #include <lttng/notification/notification.h>
6968 #include <lttng/trigger/trigger.h>
6969 #include <lttng/endpoint.h>
6970
6971 int main(int argc, char *argv[])
6972 {
6973 int exit_status = 0;
6974 struct lttng_notification_channel *notification_channel;
6975 struct lttng_condition *condition;
6976 struct lttng_action *action;
6977 struct lttng_trigger *trigger;
6978 const char *tracing_session_name;
6979 const char *channel_name;
6980
6981 assert(argc >= 3);
6982 tracing_session_name = argv[1];
6983 channel_name = argv[2];
6984
6985 /*
6986 * Create a notification channel. A notification channel
6987 * connects the user application to the LTTng session daemon.
6988 * This notification channel can be used to listen to various
6989 * types of notifications.
6990 */
6991 notification_channel = lttng_notification_channel_create(
6992 lttng_session_daemon_notification_endpoint);
6993
6994 /*
6995 * Create a "high buffer usage" condition. In this case, the
6996 * condition is reached when the buffer usage is greater than or
6997 * equal to 75 %. We create the condition for a specific tracing
6998 * session name, channel name, and for the user space tracing
6999 * domain.
7000 *
7001 * The "low buffer usage" condition type also exists.
7002 */
7003 condition = lttng_condition_buffer_usage_high_create();
7004 lttng_condition_buffer_usage_set_threshold_ratio(condition, .75);
7005 lttng_condition_buffer_usage_set_session_name(
7006 condition, tracing_session_name);
7007 lttng_condition_buffer_usage_set_channel_name(condition,
7008 channel_name);
7009 lttng_condition_buffer_usage_set_domain_type(condition,
7010 LTTNG_DOMAIN_UST);
7011
7012 /*
7013 * Create an action (get a notification) to take when the
7014 * condition created above is reached.
7015 */
7016 action = lttng_action_notify_create();
7017
7018 /*
7019 * Create a trigger. A trigger associates a condition to an
7020 * action: the action is executed when the condition is reached.
7021 */
7022 trigger = lttng_trigger_create(condition, action);
7023
7024 /* Register the trigger to LTTng. */
7025 lttng_register_trigger(trigger);
7026
7027 /*
7028 * Now that we have registered a trigger, a notification will be
7029 * emitted everytime its condition is met. To receive this
7030 * notification, we must subscribe to notifications that match
7031 * the same condition.
7032 */
7033 lttng_notification_channel_subscribe(notification_channel,
7034 condition);
7035
7036 /*
7037 * Notification loop. You can put this in a dedicated thread to
7038 * avoid blocking the main thread.
7039 */
7040 for (;;) {
7041 struct lttng_notification *notification;
7042 enum lttng_notification_channel_status status;
7043 const struct lttng_evaluation *notification_evaluation;
7044 const struct lttng_condition *notification_condition;
7045 double buffer_usage;
7046
7047 /* Receive the next notification. */
7048 status = lttng_notification_channel_get_next_notification(
7049 notification_channel, &notification);
7050
7051 switch (status) {
7052 case LTTNG_NOTIFICATION_CHANNEL_STATUS_OK:
7053 break;
7054 case LTTNG_NOTIFICATION_CHANNEL_STATUS_NOTIFICATIONS_DROPPED:
7055 /*
7056 * The session daemon can drop notifications if
7057 * a monitoring application is not consuming the
7058 * notifications fast enough.
7059 */
7060 continue;
7061 case LTTNG_NOTIFICATION_CHANNEL_STATUS_CLOSED:
7062 /*
7063 * The notification channel has been closed by the
7064 * session daemon. This is typically caused by a session
7065 * daemon shutting down.
7066 */
7067 goto end;
7068 default:
7069 /* Unhandled conditions or errors. */
7070 exit_status = 1;
7071 goto end;
7072 }
7073
7074 /*
7075 * A notification provides, amongst other things:
7076 *
7077 * * The condition that caused this notification to be
7078 * emitted.
7079 * * The condition evaluation, which provides more
7080 * specific information on the evaluation of the
7081 * condition.
7082 *
7083 * The condition evaluation provides the buffer usage
7084 * value at the moment the condition was reached.
7085 */
7086 notification_condition = lttng_notification_get_condition(
7087 notification);
7088 notification_evaluation = lttng_notification_get_evaluation(
7089 notification);
7090
7091 /* We're subscribed to only one condition. */
7092 assert(lttng_condition_get_type(notification_condition) ==
7093 LTTNG_CONDITION_TYPE_BUFFER_USAGE_HIGH);
7094
7095 /*
7096 * Get the exact sampled buffer usage from the
7097 * condition evaluation.
7098 */
7099 lttng_evaluation_buffer_usage_get_usage_ratio(
7100 notification_evaluation, &buffer_usage);
7101
7102 /*
7103 * At this point, instead of printing a message, we
7104 * could do something to reduce the channel's buffer
7105 * usage, like disable specific events.
7106 */
7107 printf("Buffer usage is %f %% in tracing session \"%s\", "
7108 "user space channel \"%s\".\n", buffer_usage * 100,
7109 tracing_session_name, channel_name);
7110 lttng_notification_destroy(notification);
7111 }
7112
7113 end:
7114 lttng_action_destroy(action);
7115 lttng_condition_destroy(condition);
7116 lttng_trigger_destroy(trigger);
7117 lttng_notification_channel_destroy(notification_channel);
7118 return exit_status;
7119 }
7120 ----
7121 --
7122
7123 . Build the `notif-app` application, linking it to `liblttng-ctl`:
7124 +
7125 --
7126 [role="term"]
7127 ----
7128 $ gcc -o notif-app notif-app.c -llttng-ctl
7129 ----
7130 --
7131
7132 . <<creating-destroying-tracing-sessions,Create a tracing session>>,
7133 <<enabling-disabling-events,create an event rule>> matching all the
7134 user space tracepoints, and
7135 <<basic-tracing-session-control,start tracing>>:
7136 +
7137 --
7138 [role="term"]
7139 ----
7140 $ lttng create my-session
7141 $ lttng enable-event --userspace --all
7142 $ lttng start
7143 ----
7144 --
7145 +
7146 If you create the channel manually with the man:lttng-enable-channel(1)
7147 command, you can control how frequently are the current values of the
7148 channel's properties sampled to evaluate user conditions with the
7149 opt:lttng-enable-channel(1):--monitor-timer option.
7150
7151 . Run the `notif-app` application. This program accepts the
7152 <<tracing-session,tracing session>> name and the user space channel
7153 name as its two first arguments. The channel which LTTng automatically
7154 creates with the man:lttng-enable-event(1) command above is named
7155 `channel0`:
7156 +
7157 --
7158 [role="term"]
7159 ----
7160 $ ./notif-app my-session channel0
7161 ----
7162 --
7163
7164 . In another terminal, run an application with a very high event
7165 throughput so that the 75{nbsp}% buffer usage condition is reached.
7166 +
7167 In the first terminal, the application should print lines like this:
7168 +
7169 ----
7170 Buffer usage is 81.45197 % in tracing session "my-session", user space
7171 channel "channel0".
7172 ----
7173 +
7174 If you don't see anything, try modifying the condition in
7175 path:{notif-app.c} to a lower value (0.1, for example), rebuilding it
7176 (step{nbsp}2) and running it again (step{nbsp}4).
7177 ====
7178
7179
7180 [[reference]]
7181 == Reference
7182
7183 [[lttng-modules-ref]]
7184 === noch:{LTTng-modules}
7185
7186
7187 [role="since-2.9"]
7188 [[lttng-tracepoint-enum]]
7189 ==== `LTTNG_TRACEPOINT_ENUM()` usage
7190
7191 Use the `LTTNG_TRACEPOINT_ENUM()` macro to define an enumeration:
7192
7193 [source,c]
7194 ----
7195 LTTNG_TRACEPOINT_ENUM(name, TP_ENUM_VALUES(entries))
7196 ----
7197
7198 Replace:
7199
7200 * `name` with the name of the enumeration (C identifier, unique
7201 amongst all the defined enumerations).
7202 * `entries` with a list of enumeration entries.
7203
7204 The available enumeration entry macros are:
7205
7206 +ctf_enum_value(__name__, __value__)+::
7207 Entry named +__name__+ mapped to the integral value +__value__+.
7208
7209 +ctf_enum_range(__name__, __begin__, __end__)+::
7210 Entry named +__name__+ mapped to the range of integral values between
7211 +__begin__+ (included) and +__end__+ (included).
7212
7213 +ctf_enum_auto(__name__)+::
7214 Entry named +__name__+ mapped to the integral value following the
7215 last mapping's value.
7216 +
7217 The last value of a `ctf_enum_value()` entry is its +__value__+
7218 parameter.
7219 +
7220 The last value of a `ctf_enum_range()` entry is its +__end__+ parameter.
7221 +
7222 If `ctf_enum_auto()` is the first entry in the list, its integral
7223 value is 0.
7224
7225 Use the `ctf_enum()` <<lttng-modules-tp-fields,field definition macro>>
7226 to use a defined enumeration as a tracepoint field.
7227
7228 .Define an enumeration with `LTTNG_TRACEPOINT_ENUM()`.
7229 ====
7230 [source,c]
7231 ----
7232 LTTNG_TRACEPOINT_ENUM(
7233 my_enum,
7234 TP_ENUM_VALUES(
7235 ctf_enum_auto("AUTO: EXPECT 0")
7236 ctf_enum_value("VALUE: 23", 23)
7237 ctf_enum_value("VALUE: 27", 27)
7238 ctf_enum_auto("AUTO: EXPECT 28")
7239 ctf_enum_range("RANGE: 101 TO 303", 101, 303)
7240 ctf_enum_auto("AUTO: EXPECT 304")
7241 )
7242 )
7243 ----
7244 ====
7245
7246
7247 [role="since-2.7"]
7248 [[lttng-modules-tp-fields]]
7249 ==== Tracepoint fields macros (for `TP_FIELDS()`)
7250
7251 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
7252 tracepoint fields, which must be listed within `TP_FIELDS()` in
7253 `LTTNG_TRACEPOINT_EVENT()`, are:
7254
7255 [role="func-desc growable",cols="asciidoc,asciidoc"]
7256 .Available macros to define LTTng-modules tracepoint fields
7257 |====
7258 |Macro |Description and parameters
7259
7260 |
7261 +ctf_integer(__t__, __n__, __e__)+
7262
7263 +ctf_integer_nowrite(__t__, __n__, __e__)+
7264
7265 +ctf_user_integer(__t__, __n__, __e__)+
7266
7267 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
7268 |
7269 Standard integer, displayed in base{nbsp}10.
7270
7271 +__t__+::
7272 Integer C type (`int`, `long`, `size_t`, ...).
7273
7274 +__n__+::
7275 Field name.
7276
7277 +__e__+::
7278 Argument expression.
7279
7280 |
7281 +ctf_integer_hex(__t__, __n__, __e__)+
7282
7283 +ctf_user_integer_hex(__t__, __n__, __e__)+
7284 |
7285 Standard integer, displayed in base{nbsp}16.
7286
7287 +__t__+::
7288 Integer C type.
7289
7290 +__n__+::
7291 Field name.
7292
7293 +__e__+::
7294 Argument expression.
7295
7296 |+ctf_integer_oct(__t__, __n__, __e__)+
7297 |
7298 Standard integer, displayed in base{nbsp}8.
7299
7300 +__t__+::
7301 Integer C type.
7302
7303 +__n__+::
7304 Field name.
7305
7306 +__e__+::
7307 Argument expression.
7308
7309 |
7310 +ctf_integer_network(__t__, __n__, __e__)+
7311
7312 +ctf_user_integer_network(__t__, __n__, __e__)+
7313 |
7314 Integer in network byte order (big-endian), displayed in base{nbsp}10.
7315
7316 +__t__+::
7317 Integer C type.
7318
7319 +__n__+::
7320 Field name.
7321
7322 +__e__+::
7323 Argument expression.
7324
7325 |
7326 +ctf_integer_network_hex(__t__, __n__, __e__)+
7327
7328 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
7329 |
7330 Integer in network byte order, displayed in base{nbsp}16.
7331
7332 +__t__+::
7333 Integer C type.
7334
7335 +__n__+::
7336 Field name.
7337
7338 +__e__+::
7339 Argument expression.
7340
7341 |
7342 +ctf_enum(__N__, __t__, __n__, __e__)+
7343
7344 +ctf_enum_nowrite(__N__, __t__, __n__, __e__)+
7345
7346 +ctf_user_enum(__N__, __t__, __n__, __e__)+
7347
7348 +ctf_user_enum_nowrite(__N__, __t__, __n__, __e__)+
7349 |
7350 Enumeration.
7351
7352 +__N__+::
7353 Name of a <<lttng-tracepoint-enum,previously defined enumeration>>.
7354
7355 +__t__+::
7356 Integer C type (`int`, `long`, `size_t`, ...).
7357
7358 +__n__+::
7359 Field name.
7360
7361 +__e__+::
7362 Argument expression.
7363
7364 |
7365 +ctf_string(__n__, __e__)+
7366
7367 +ctf_string_nowrite(__n__, __e__)+
7368
7369 +ctf_user_string(__n__, __e__)+
7370
7371 +ctf_user_string_nowrite(__n__, __e__)+
7372 |
7373 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
7374
7375 +__n__+::
7376 Field name.
7377
7378 +__e__+::
7379 Argument expression.
7380
7381 |
7382 +ctf_array(__t__, __n__, __e__, __s__)+
7383
7384 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
7385
7386 +ctf_user_array(__t__, __n__, __e__, __s__)+
7387
7388 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
7389 |
7390 Statically-sized array of integers.
7391
7392 +__t__+::
7393 Array element C type.
7394
7395 +__n__+::
7396 Field name.
7397
7398 +__e__+::
7399 Argument expression.
7400
7401 +__s__+::
7402 Number of elements.
7403
7404 |
7405 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
7406
7407 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
7408
7409 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
7410
7411 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
7412 |
7413 Statically-sized array of bits.
7414
7415 The type of +__e__+ must be an integer type. +__s__+ is the number
7416 of elements of such type in +__e__+, not the number of bits.
7417
7418 +__t__+::
7419 Array element C type.
7420
7421 +__n__+::
7422 Field name.
7423
7424 +__e__+::
7425 Argument expression.
7426
7427 +__s__+::
7428 Number of elements.
7429
7430 |
7431 +ctf_array_text(__t__, __n__, __e__, __s__)+
7432
7433 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
7434
7435 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
7436
7437 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
7438 |
7439 Statically-sized array, printed as text.
7440
7441 The string does not need to be null-terminated.
7442
7443 +__t__+::
7444 Array element C type (always `char`).
7445
7446 +__n__+::
7447 Field name.
7448
7449 +__e__+::
7450 Argument expression.
7451
7452 +__s__+::
7453 Number of elements.
7454
7455 |
7456 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
7457
7458 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7459
7460 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
7461
7462 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7463 |
7464 Dynamically-sized array of integers.
7465
7466 The type of +__E__+ must be unsigned.
7467
7468 +__t__+::
7469 Array element C type.
7470
7471 +__n__+::
7472 Field name.
7473
7474 +__e__+::
7475 Argument expression.
7476
7477 +__T__+::
7478 Length expression C type.
7479
7480 +__E__+::
7481 Length expression.
7482
7483 |
7484 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7485
7486 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7487 |
7488 Dynamically-sized array of integers, displayed in base{nbsp}16.
7489
7490 The type of +__E__+ must be unsigned.
7491
7492 +__t__+::
7493 Array element C type.
7494
7495 +__n__+::
7496 Field name.
7497
7498 +__e__+::
7499 Argument expression.
7500
7501 +__T__+::
7502 Length expression C type.
7503
7504 +__E__+::
7505 Length expression.
7506
7507 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
7508 |
7509 Dynamically-sized array of integers in network byte order (big-endian),
7510 displayed in base{nbsp}10.
7511
7512 The type of +__E__+ must be unsigned.
7513
7514 +__t__+::
7515 Array element C type.
7516
7517 +__n__+::
7518 Field name.
7519
7520 +__e__+::
7521 Argument expression.
7522
7523 +__T__+::
7524 Length expression C type.
7525
7526 +__E__+::
7527 Length expression.
7528
7529 |
7530 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7531
7532 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7533
7534 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7535
7536 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7537 |
7538 Dynamically-sized array of bits.
7539
7540 The type of +__e__+ must be an integer type. +__s__+ is the number
7541 of elements of such type in +__e__+, not the number of bits.
7542
7543 The type of +__E__+ must be unsigned.
7544
7545 +__t__+::
7546 Array element C type.
7547
7548 +__n__+::
7549 Field name.
7550
7551 +__e__+::
7552 Argument expression.
7553
7554 +__T__+::
7555 Length expression C type.
7556
7557 +__E__+::
7558 Length expression.
7559
7560 |
7561 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7562
7563 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7564
7565 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7566
7567 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7568 |
7569 Dynamically-sized array, displayed as text.
7570
7571 The string does not need to be null-terminated.
7572
7573 The type of +__E__+ must be unsigned.
7574
7575 The behaviour is undefined if +__e__+ is `NULL`.
7576
7577 +__t__+::
7578 Sequence element C type (always `char`).
7579
7580 +__n__+::
7581 Field name.
7582
7583 +__e__+::
7584 Argument expression.
7585
7586 +__T__+::
7587 Length expression C type.
7588
7589 +__E__+::
7590 Length expression.
7591 |====
7592
7593 Use the `_user` versions when the argument expression, `e`, is
7594 a user space address. In the cases of `ctf_user_integer*()` and
7595 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7596 be addressable.
7597
7598 The `_nowrite` versions omit themselves from the session trace, but are
7599 otherwise identical. This means the `_nowrite` fields won't be written
7600 in the recorded trace. Their primary purpose is to make some
7601 of the event context available to the
7602 <<enabling-disabling-events,event filters>> without having to
7603 commit the data to sub-buffers.
7604
7605
7606 [[glossary]]
7607 == Glossary
7608
7609 Terms related to LTTng and to tracing in general:
7610
7611 Babeltrace::
7612 The http://diamon.org/babeltrace[Babeltrace] project, which includes:
7613 +
7614 * The cmd:babeltrace (Babeltrace{nbsp}1) or cmd:babeltrace2
7615 (Babeltrace{nbsp}2) command.
7616 * Libraries with a C{nbsp}API.
7617 * Python{nbsp}3 bindings.
7618 * Plugins (Babeltrace{nbsp}2).
7619
7620 [[def-buffering-scheme]]<<channel-buffering-schemes,buffering scheme>>::
7621 A layout of <<def-sub-buffer,sub-buffers>> applied to a given channel.
7622
7623 [[def-channel]]<<channel,channel>>::
7624 An entity which is responsible for a set of
7625 <<def-ring-buffer,ring buffers>>.
7626 +
7627 <<def-event-rule,Event rules>> are always attached to a specific
7628 channel.
7629
7630 clock::
7631 A source of time for a <<def-tracer,tracer>>.
7632
7633 [[def-consumer-daemon]]<<lttng-consumerd,consumer daemon>>::
7634 A process which is responsible for consuming the full
7635 <<def-sub-buffer,sub-buffers>> and write them to a file system or
7636 send them over the network.
7637
7638 [[def-current-trace-chunk]]current trace chunk::
7639 A <<def-trace-chunk,trace chunk>> which includes the current content
7640 of all the <<def-tracing-session-rotation,tracing session>>'s
7641 <<def-sub-buffer,sub-buffers>> and the stream files produced since the
7642 latest event amongst:
7643 +
7644 * The creation of the <<def-tracing-session,tracing session>>.
7645 * The last tracing session rotation, if any.
7646
7647 <<channel-overwrite-mode-vs-discard-mode,discard mode>>::
7648 The <<def-event-record-loss-mode,event record loss mode>> in which
7649 the <<def-tracer,tracer>> _discards_ new event records when there's no
7650 <<def-sub-buffer,sub-buffer>> space left to store them.
7651
7652 [[def-event]]event::
7653 The consequence of the execution of an
7654 <<def-instrumentation-point,instrumentation point>>, like a
7655 <<def-tracepoint,tracepoint>> that you manually place in some source
7656 code, or a Linux kernel kprobe.
7657 +
7658 An event is said to _occur_ at a specific time. <<def-lttng,LTTng>> can
7659 take various actions upon the occurrence of an event, like record the
7660 event's payload to a <<def-sub-buffer,sub-buffer>>.
7661
7662 [[def-event-name]]event name::
7663 The name of an <<def-event,event>>, which is also the name of the
7664 <<def-event-record,event record>>.
7665 +
7666 This is also called the _instrumentation point name_.
7667
7668 [[def-event-record]]event record::
7669 A record, in a <<def-trace,trace>>, of the payload of an
7670 <<def-event,event>> which occured.
7671
7672 [[def-event-record-loss-mode]]<<channel-overwrite-mode-vs-discard-mode,event record loss mode>>::
7673 The mechanism by which event records of a given
7674 <<def-channel,channel>> are lost (not recorded) when there is no
7675 <<def-sub-buffer,sub-buffer>> space left to store them.
7676
7677 [[def-event-rule]]<<event,event rule>>::
7678 Set of conditions which must be satisfied for one or more occuring
7679 <<def-event,events>> to be recorded.
7680
7681 `java.util.logging`::
7682 Java platform's
7683 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7684
7685 <<instrumenting,instrumentation>>::
7686 The use of <<def-lttng,LTTng>> probes to make a piece of software
7687 traceable.
7688
7689 [[def-instrumentation-point]]instrumentation point::
7690 A point in the execution path of a piece of software that, when
7691 reached by this execution, can emit an <<def-event,event>>.
7692
7693 instrumentation point name::
7694 See _<<def-event-name,event name>>_.
7695
7696 log4j::
7697 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7698 developed by the Apache Software Foundation.
7699
7700 log level::
7701 Level of severity of a log statement or user space
7702 <<def-instrumentation-point,instrumentation point>>.
7703
7704 [[def-lttng]]LTTng::
7705 The _Linux Trace Toolkit: next generation_ project.
7706
7707 <<lttng-cli,cmd:lttng>>::
7708 A command-line tool provided by the <<def-lttng-tools,LTTng-tools>>
7709 project which you can use to send and receive control messages to and
7710 from a <<def-session-daemon,session daemon>>.
7711
7712 LTTng analyses::
7713 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7714 which is a set of analyzing programs that you can use to obtain a
7715 higher level view of an <<def-lttng,LTTng>> <<def-trace,trace>>.
7716
7717 cmd:lttng-consumerd::
7718 The name of the <<def-consumer-daemon,consumer daemon>> program.
7719
7720 cmd:lttng-crash::
7721 A utility provided by the <<def-lttng-tools,LTTng-tools>> project
7722 which can convert <<def-ring-buffer,ring buffer>> files (usually
7723 <<persistent-memory-file-systems,saved on a persistent memory file
7724 system>>) to <<def-trace,trace>> files.
7725 +
7726 See man:lttng-crash(1).
7727
7728 LTTng Documentation::
7729 This document.
7730
7731 <<lttng-live,LTTng live>>::
7732 A communication protocol between the <<lttng-relayd,relay daemon>> and
7733 live viewers which makes it possible to see <<def-event-record,event
7734 records>> "live", as they are received by the
7735 <<def-relay-daemon,relay daemon>>.
7736
7737 <<lttng-modules,LTTng-modules>>::
7738 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7739 which contains the Linux kernel modules to make the Linux kernel
7740 <<def-instrumentation-point,instrumentation points>> available for
7741 <<def-lttng,LTTng>> tracing.
7742
7743 cmd:lttng-relayd::
7744 The name of the <<def-relay-daemon,relay daemon>> program.
7745
7746 cmd:lttng-sessiond::
7747 The name of the <<def-session-daemon,session daemon>> program.
7748
7749 [[def-lttng-tools]]LTTng-tools::
7750 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7751 contains the various programs and libraries used to
7752 <<controlling-tracing,control tracing>>.
7753
7754 [[def-lttng-ust]]<<lttng-ust,LTTng-UST>>::
7755 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7756 contains libraries to instrument
7757 <<def-user-application,user applications>>.
7758
7759 <<lttng-ust-agents,LTTng-UST Java agent>>::
7760 A Java package provided by the <<def-lttng-ust,LTTng-UST>> project to
7761 allow the LTTng instrumentation of `java.util.logging` and Apache
7762 log4j{nbsp}1.2 logging statements.
7763
7764 <<lttng-ust-agents,LTTng-UST Python agent>>::
7765 A Python package provided by the <<def-lttng-ust,LTTng-UST>> project
7766 to allow the <<def-lttng,LTTng>> instrumentation of Python logging
7767 statements.
7768
7769 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7770 The <<def-event-record-loss-mode,event record loss mode>> in which new
7771 <<def-event-record,event records>> _overwrite_ older event records
7772 when there's no <<def-sub-buffer,sub-buffer>> space left to store
7773 them.
7774
7775 <<channel-buffering-schemes,per-process buffering>>::
7776 A <<def-buffering-scheme,buffering scheme>> in which each instrumented
7777 process has its own <<def-sub-buffer,sub-buffers>> for a given user
7778 space <<def-channel,channel>>.
7779
7780 <<channel-buffering-schemes,per-user buffering>>::
7781 A <<def-buffering-scheme,buffering scheme>> in which all the processes
7782 of a Unix user share the same <<def-sub-buffer,sub-buffers>> for a
7783 given user space <<def-channel,channel>>.
7784
7785 [[def-relay-daemon]]<<lttng-relayd,relay daemon>>::
7786 A process which is responsible for receiving the <<def-trace,trace>>
7787 data which a distant <<def-consumer-daemon,consumer daemon>> sends.
7788
7789 [[def-ring-buffer]]ring buffer::
7790 A set of <<def-sub-buffer,sub-buffers>>.
7791
7792 rotation::
7793 See _<<def-tracing-session-rotation,tracing session rotation>>_.
7794
7795 [[def-session-daemon]]<<lttng-sessiond,session daemon>>::
7796 A process which receives control commands from you and orchestrates
7797 the <<def-tracer,tracers>> and various <<def-lttng,LTTng>> daemons.
7798
7799 <<taking-a-snapshot,snapshot>>::
7800 A copy of the current data of all the <<def-sub-buffer,sub-buffers>>
7801 of a given <<def-tracing-session,tracing session>>, saved as
7802 <<def-trace,trace>> files.
7803
7804 [[def-sub-buffer]]sub-buffer::
7805 One part of an <<def-lttng,LTTng>> <<def-ring-buffer,ring buffer>>
7806 which contains <<def-event-record,event records>>.
7807
7808 timestamp::
7809 The time information attached to an <<def-event,event>> when it is
7810 emitted.
7811
7812 [[def-trace]]trace (_noun_)::
7813 A set of:
7814 +
7815 * One http://diamon.org/ctf/[CTF] metadata stream file.
7816 * One or more CTF data stream files which are the concatenations of one
7817 or more flushed <<def-sub-buffer,sub-buffers>>.
7818
7819 [[def-trace-verb]]trace (_verb_)::
7820 The action of recording the <<def-event,events>> emitted by an
7821 application or by a system, or to initiate such recording by
7822 controlling a <<def-tracer,tracer>>.
7823
7824 [[def-trace-chunk]]trace chunk::
7825 A self-contained <<def-trace,trace>> which is part of a
7826 <<def-tracing-session,tracing session>>. Each
7827 <<def-tracing-session-rotation, tracing session rotation>> produces a
7828 <<def-trace-chunk-archive,trace chunk archive>>.
7829
7830 [[def-trace-chunk-archive]]trace chunk archive::
7831 The result of a <<def-tracing-session-rotation, tracing session rotation>>.
7832 +
7833 <<def-lttng,LTTng>> does not manage any trace chunk archive, even if its
7834 containing <<def-tracing-session,tracing session>> is still active: you
7835 are free to read it, modify it, move it, or remove it.
7836
7837 Trace Compass::
7838 The http://tracecompass.org[Trace Compass] project and application.
7839
7840 [[def-tracepoint]]tracepoint::
7841 An instrumentation point using the tracepoint mechanism of the Linux
7842 kernel or of <<def-lttng-ust,LTTng-UST>>.
7843
7844 tracepoint definition::
7845 The definition of a single <<def-tracepoint,tracepoint>>.
7846
7847 tracepoint name::
7848 The name of a <<def-tracepoint,tracepoint>>.
7849
7850 [[def-tracepoint-provider]]tracepoint provider::
7851 A set of functions providing <<def-tracepoint,tracepoints>> to an
7852 instrumented <<def-user-application,user application>>.
7853 +
7854 Not to be confused with a <<def-tracepoint-provider-package,tracepoint
7855 provider package>>: many tracepoint providers can exist within a
7856 tracepoint provider package.
7857
7858 [[def-tracepoint-provider-package]]tracepoint provider package::
7859 One or more <<def-tracepoint-provider,tracepoint providers>> compiled
7860 as an https://en.wikipedia.org/wiki/Object_file[object file] or as a
7861 link:https://en.wikipedia.org/wiki/Library_(computing)#Shared_libraries[shared
7862 library].
7863
7864 [[def-tracer]]tracer::
7865 A software which records emitted <<def-event,events>>.
7866
7867 <<domain,tracing domain>>::
7868 A namespace for <<def-event,event>> sources.
7869
7870 <<tracing-group,tracing group>>::
7871 The Unix group in which a Unix user can be to be allowed to
7872 <<def-trace-verb,trace>> the Linux kernel.
7873
7874 [[def-tracing-session]]<<tracing-session,tracing session>>::
7875 A stateful dialogue between you and a <<lttng-sessiond,session daemon>>.
7876
7877 [[def-tracing-session-rotation]]<<session-rotation,tracing session rotation>>::
7878 The action of archiving the
7879 <<def-current-trace-chunk,current trace chunk>> of a
7880 <<def-tracing-session,tracing session>>.
7881
7882 [[def-user-application]]user application::
7883 An application running in user space, as opposed to a Linux kernel
7884 module, for example.
This page took 0.18682 seconds and 3 git commands to generate.