44be6bc12a33343232ebf7b26e3a49ef9deb7fef
[lttng-docs.git] / 2.11 / lttng-docs-2.11.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.11, 12 November 2018
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/welcome.txt[]
11
12
13 include::../common/audience.txt[]
14
15
16 [[chapters]]
17 === What's in this documentation?
18
19 The LTTng Documentation is divided into the following sections:
20
21 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
22 rudiments of software tracing and the rationale behind the
23 LTTng project.
24 +
25 You can skip this section if you’re familiar with software tracing and
26 with the LTTng project.
27
28 * **<<installing-lttng,Installation>>** describes the steps to
29 install the LTTng packages on common Linux distributions and from
30 their sources.
31 +
32 You can skip this section if you already properly installed LTTng on
33 your target system.
34
35 * **<<getting-started,Quick start>>** is a concise guide to
36 getting started quickly with LTTng kernel and user space tracing.
37 +
38 We recommend this section if you're new to LTTng or to software tracing
39 in general.
40 +
41 You can skip this section if you're not new to LTTng.
42
43 * **<<core-concepts,Core concepts>>** explains the concepts at
44 the heart of LTTng.
45 +
46 It's a good idea to become familiar with the core concepts
47 before attempting to use the toolkit.
48
49 * **<<plumbing,Components of LTTng>>** describes the various components
50 of the LTTng machinery, like the daemons, the libraries, and the
51 command-line interface.
52 * **<<instrumenting,Instrumentation>>** shows different ways to
53 instrument user applications and the Linux kernel.
54 +
55 Instrumenting source code is essential to provide a meaningful
56 source of events.
57 +
58 You can skip this section if you do not have a programming background.
59
60 * **<<controlling-tracing,Tracing control>>** is divided into topics
61 which demonstrate how to use the vast array of features that
62 LTTng{nbsp}{revision} offers.
63 * **<<reference,Reference>>** contains reference tables.
64 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
65 to LTTng or to the field of software tracing.
66
67
68 include::../common/convention.txt[]
69
70
71 include::../common/acknowledgements.txt[]
72
73
74 [[whats-new]]
75 == What's new in LTTng{nbsp}{revision}?
76
77 LTTng{nbsp}{revision} bears the name _Lafontaine_. This modern
78 https://en.wikipedia.org/wiki/Saison[saison] from the
79 https://oshlag.com/[Oshlag] microbrewery is a refreshing--zesty--rice
80 beer with hints of fruit and spices. Some even say it makes for a great
81 https://en.wikipedia.org/wiki/Somaek[Somaek] when mixed with
82 Chamisul Soju, not that we've tried!
83
84 New features and changes in LTTng{nbsp}{revision}:
85
86 * Just like you can typically perform
87 https://en.wikipedia.org/wiki/Log_rotation[log rotation], you can
88 now <<session-rotation,_rotate_ a tracing session>>, that
89 is, according to man:lttng-rotate(1), archive the current trace
90 chunk (all the tracing session's trace data since the last rotation
91 or since its inception) so that LTTng does not manage it anymore.
92 +
93 Once LTTng archives a trace chunk, you are free to read it, modify it,
94 move it, or remove it.
95 +
96 You can rotate a tracing session immediately or set a rotation schedule
97 to automate rotations.
98
99 * When you <<enabling-disabling-events,create an event rule>>, the
100 filter expression syntax now supports the following new operators:
101 +
102 --
103 ** `~` (bitwise not)
104 ** `<<` (bitwise left shift)
105 ** `>>` (bitwise right shift)
106 ** `&` (bitwise AND)
107 ** `^` (bitwise XOR)
108 ** `|` (bitwise OR)
109 --
110 +
111 The syntax also supports array indexing with the usual square brackets:
112 +
113 ----
114 regs[3][1] & 0xff7 == 0x240
115 ----
116 +
117 There are peculiarities for both the new operators and the array
118 indexing brackets, like a custom precedence table and implicit casting.
119 See man:lttng-enable-event(1) to get all the details about the filter
120 expression syntax.
121
122 * You can now dynamically instrument any application's or library's
123 function entry by symbol name thanks to the new
124 opt:lttng-enable-event(1):--userspace-probe option of
125 the `lttng enable-event` command:
126 +
127 [role="term"]
128 ----
129 $ lttng enable-event --kernel \
130 --userspace-probe=/usr/lib/libc.so.6:malloc libc_malloc
131 ----
132 +
133 The option also supports tracing existing
134 https://www.sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps[SystemTap
135 Statically Defined Tracing] (SDT) probe (DTrace-style marker). For example,
136 given the following probe:
137 +
138 [source,c]
139 ----
140 DTRACE_PROBE2("server", "accept-request", request_id, ip_addr);
141 ----
142 +
143 You can trace this probe with:
144 +
145 ----
146 $ lttng enable-event --kernel \
147 --userspace-probe=sdt:/path/to/server:server:accept-request \
148 server_accept_request
149 ----
150 +
151 This feature makes use of Linux's
152 https://www.kernel.org/doc/Documentation/trace/uprobetracer.txt[uprobe]
153 mechanism, therefore you must use the `--userspace-probe`
154 instrumentation option with the opt:lttng-enable-event(1):--kernel
155 domain option.
156 +
157 NOTE: As of LTTng{nbsp}{revision}, LTTng does not record function
158 parameters with the opt:lttng-enable-event(1):--userspace-probe option.
159
160 * Two new <<adding-context,context>> fields are available for Linux
161 kernel <<channel,channels>>:
162 +
163 --
164 ** `callstack-kernel`
165 ** `callstack-user`
166 --
167 +
168 Thanks to those, you can record the Linux kernel and user call stacks
169 when a kernel event occurs. For example:
170 +
171 [role="term"]
172 ----
173 $ lttng enable-event --kernel --syscall read
174 $ lttng add-context --kernel --type=callstack-kernel --type=callstack-user
175 ----
176 +
177 When an man:open(2) system call occurs, LTTng attaches the kernel and
178 user call stacks to the recorded event.
179 +
180 NOTE: LTTng cannot always sample the user space call stack reliably.
181 For instance, LTTng cannot sample the call stack of user applications
182 and libraries compiled with the
183 https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html[`-fomit-frame pointer`]
184 option. In such a case, the tracing is not affected, but the sampled
185 user space call stack may only contain the user call stack's topmost
186 address.
187
188 * The <<lttng-relayd,relay daemon>> is more efficient and presents fewer
189 connectivity issues, especially when a large number of targets send
190 trace data to a given relay daemon.
191
192 * User applications and libraries instrumented with
193 <<lttng-ust,LTTng-UST>> can now safely unload (man:dlclose(3)) a
194 dynamically loaded
195 <<building-tracepoint-providers-and-user-application,tracepoint
196 provider package>>.
197
198
199 [[nuts-and-bolts]]
200 == Nuts and bolts
201
202 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
203 generation_ is a modern toolkit for tracing Linux systems and
204 applications. So your first question might be:
205 **what is tracing?**
206
207
208 [[what-is-tracing]]
209 === What is tracing?
210
211 As the history of software engineering progressed and led to what
212 we now take for granted--complex, numerous and
213 interdependent software applications running in parallel on
214 sophisticated operating systems like Linux--the authors of such
215 components, software developers, began feeling a natural
216 urge to have tools that would ensure the robustness and good performance
217 of their masterpieces.
218
219 One major achievement in this field is, inarguably, the
220 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
221 an essential tool for developers to find and fix bugs. But even the best
222 debugger won't help make your software run faster, and nowadays, faster
223 software means either more work done by the same hardware, or cheaper
224 hardware for the same work.
225
226 A _profiler_ is often the tool of choice to identify performance
227 bottlenecks. Profiling is suitable to identify _where_ performance is
228 lost in a given software. The profiler outputs a profile, a statistical
229 summary of observed events, which you may use to discover which
230 functions took the most time to execute. However, a profiler won't
231 report _why_ some identified functions are the bottleneck. Bottlenecks
232 might only occur when specific conditions are met, conditions that are
233 sometimes impossible to capture by a statistical profiler, or impossible
234 to reproduce with an application altered by the overhead of an
235 event-based profiler. For a thorough investigation of software
236 performance issues, a history of execution is essential, with the
237 recorded values of variables and context fields you choose, and
238 with as little influence as possible on the instrumented software. This
239 is where tracing comes in handy.
240
241 _Tracing_ is a technique used to understand what goes on in a running
242 software system. The software used for tracing is called a _tracer_,
243 which is conceptually similar to a tape recorder. When recording,
244 specific instrumentation points placed in the software source code
245 generate events that are saved on a giant tape: a _trace_ file. You
246 can trace user applications and the operating system at the same time,
247 opening the possibility of resolving a wide range of problems that would
248 otherwise be extremely challenging.
249
250 Tracing is often compared to _logging_. However, tracers and loggers are
251 two different tools, serving two different purposes. Tracers are
252 designed to record much lower-level events that occur much more
253 frequently than log messages, often in the range of thousands per
254 second, with very little execution overhead. Logging is more appropriate
255 for a very high-level analysis of less frequent events: user accesses,
256 exceptional conditions (errors and warnings, for example), database
257 transactions, instant messaging communications, and such. Simply put,
258 logging is one of the many use cases that can be satisfied with tracing.
259
260 The list of recorded events inside a trace file can be read manually
261 like a log file for the maximum level of detail, but it is generally
262 much more interesting to perform application-specific analyses to
263 produce reduced statistics and graphs that are useful to resolve a
264 given problem. Trace viewers and analyzers are specialized tools
265 designed to do this.
266
267 In the end, this is what LTTng is: a powerful, open source set of
268 tools to trace the Linux kernel and user applications at the same time.
269 LTTng is composed of several components actively maintained and
270 developed by its link:/community/#where[community].
271
272
273 [[lttng-alternatives]]
274 === Alternatives to noch:{LTTng}
275
276 Excluding proprietary solutions, a few competing software tracers
277 exist for Linux:
278
279 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
280 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
281 user scripts and is responsible for loading code into the
282 Linux kernel for further execution and collecting the outputted data.
283 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
284 subsystem in the Linux kernel in which a virtual machine can execute
285 programs passed from the user space to the kernel. You can attach
286 such programs to tracepoints and kprobes thanks to a system call, and
287 they can output data to the user space when executed thanks to
288 different mechanisms (pipe, VM register values, and eBPF maps, to name
289 a few).
290 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
291 is the de facto function tracer of the Linux kernel. Its user
292 interface is a set of special files in sysfs.
293 * https://perf.wiki.kernel.org/[perf] is
294 a performance analyzing tool for Linux which supports hardware
295 performance counters, tracepoints, as well as other counters and
296 types of probes. perf's controlling utility is the cmd:perf command
297 line/curses tool.
298 * http://linux.die.net/man/1/strace[strace]
299 is a command-line utility which records system calls made by a
300 user process, as well as signal deliveries and changes of process
301 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
302 to fulfill its function.
303 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
304 analyze Linux kernel events. You write scripts, or _chisels_ in
305 sysdig's jargon, in Lua and sysdig executes them while it traces the
306 system or afterwards. sysdig's interface is the cmd:sysdig
307 command-line tool as well as the curses-based cmd:csysdig tool.
308 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
309 user space tracer which uses custom user scripts to produce plain text
310 traces. SystemTap converts the scripts to the C language, and then
311 compiles them as Linux kernel modules which are loaded to produce
312 trace data. SystemTap's primary user interface is the cmd:stap
313 command-line tool.
314
315 The main distinctive features of LTTng is that it produces correlated
316 kernel and user space traces, as well as doing so with the lowest
317 overhead amongst other solutions. It produces trace files in the
318 http://diamon.org/ctf[CTF] format, a file format optimized
319 for the production and analyses of multi-gigabyte data.
320
321 LTTng is the result of more than 10{nbsp}years of active open source
322 development by a community of passionate developers.
323 LTTng{nbsp}{revision} is currently available on major desktop and server
324 Linux distributions.
325
326 The main interface for tracing control is a single command-line tool
327 named cmd:lttng. The latter can create several tracing sessions, enable
328 and disable events on the fly, filter events efficiently with custom
329 user expressions, start and stop tracing, and much more. LTTng can
330 record the traces on the file system or send them over the network, and
331 keep them totally or partially. You can view the traces once tracing
332 becomes inactive or in real-time.
333
334 <<installing-lttng,Install LTTng now>> and
335 <<getting-started,start tracing>>!
336
337
338 [[installing-lttng]]
339 == Installation
340
341 **LTTng** is a set of software <<plumbing,components>> which interact to
342 <<instrumenting,instrument>> the Linux kernel and user applications, and
343 to <<controlling-tracing,control tracing>> (start and stop
344 tracing, enable and disable event rules, and the rest). Those
345 components are bundled into the following packages:
346
347 * **LTTng-tools**: Libraries and command-line interface to
348 control tracing.
349 * **LTTng-modules**: Linux kernel modules to instrument and
350 trace the kernel.
351 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
352 trace user applications.
353
354 Most distributions mark the LTTng-modules and LTTng-UST packages as
355 optional when installing LTTng-tools (which is always required). In the
356 following sections, we always provide the steps to install all three,
357 but note that:
358
359 * You only need to install LTTng-modules if you intend to trace the
360 Linux kernel.
361 * You only need to install LTTng-UST if you intend to trace user
362 applications.
363
364 [role="growable"]
365 .Availability of LTTng{nbsp}{revision} for major Linux distributions as of 12 November 2018.
366 |====
367 |Distribution |Available in releases |Alternatives
368
369 |https://www.ubuntu.com/[Ubuntu]
370 |Ubuntu{nbsp}14.04 _Trusty Tahr_, Ubuntu{nbsp}16.04 _Xenial Xerus_,
371 and Ubuntu{nbsp}18.04 _Bionic Beaver_:
372 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
373 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
374
375 |https://getfedora.org/[Fedora]
376 |_Not available_
377 |
378 link:/docs/v2.10#doc-fedora[LTTng{nbsp}2.10 for Fedora{nbsp}27,
379 Fedora{nbsp}28, and Fedora{nbsp}29].
380
381 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
382
383 |https://www.debian.org/[Debian]
384 |_Not available_
385 |link:/docs/v2.10#doc-debian[LTTng{nbsp}2.10 for Debian "buster" (testing)].
386
387 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
388
389 |https://www.archlinux.org/[Arch Linux]
390 |_Not available_
391 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
392
393 |https://alpinelinux.org/[Alpine Linux]
394 |_Not available_
395 |
396 link:/docs/v2.10#doc-alpine-linux[LTTng{nbsp}2.10 for
397 Alpine Linux{nbsp}3.7 and Alpine Linux{nbsp}3.8].
398
399 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
400
401 |https://www.opensuse.org/[openSUSE]
402 |_Not available_
403 |link:/docs/v2.10#doc-opensuse[LTTng{nbsp}2.10 for openSUSE Leap{nbsp}15.0].
404
405 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
406
407 |https://www.redhat.com/[RHEL] and https://www.suse.com/[SLES]
408 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
409 |
410
411 |https://buildroot.org/[Buildroot]
412 |_Not available_
413 |
414 link:/docs/v2.10#doc-buildroot[LTTng{nbsp}2.10 for Buildroot{nbsp}2018.02,
415 Buildroot{nbsp}2018.05, Buildroot{nbsp}2018.08, and Buildroot{nbsp}2018.11].
416
417 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
418
419 |http://www.openembedded.org/wiki/Main_Page[OpenEmbedded] and
420 https://www.yoctoproject.org/[Yocto]
421 |_Not available_
422 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
423 |====
424
425
426 [[ubuntu-ppa]]
427 === Ubuntu: noch:{LTTng} Stable {revision} PPA
428
429 The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
430 Stable{nbsp}{revision} PPA] offers the latest stable
431 LTTng{nbsp}{revision} packages for:
432
433 * Ubuntu{nbsp}14.04 _Trusty Tahr_
434 * Ubuntu{nbsp}16.04 _Xenial Xerus_
435 * Ubuntu{nbsp}18.04 _Bionic Beaver_
436
437 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
438
439 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
440 list of packages:
441 +
442 --
443 [role="term"]
444 ----
445 # apt-add-repository ppa:lttng/stable-2.11
446 # apt-get update
447 ----
448 --
449
450 . Install the main LTTng{nbsp}{revision} packages:
451 +
452 --
453 [role="term"]
454 ----
455 # apt-get install lttng-tools
456 # apt-get install lttng-modules-dkms
457 # apt-get install liblttng-ust-dev
458 ----
459 --
460
461 . **If you need to instrument and trace
462 <<java-application,Java applications>>**, install the LTTng-UST
463 Java agent:
464 +
465 --
466 [role="term"]
467 ----
468 # apt-get install liblttng-ust-agent-java
469 ----
470 --
471
472 . **If you need to instrument and trace
473 <<python-application,Python{nbsp}3 applications>>**, install the
474 LTTng-UST Python agent:
475 +
476 --
477 [role="term"]
478 ----
479 # apt-get install python3-lttngust
480 ----
481 --
482
483
484 [[enterprise-distributions]]
485 === RHEL, SUSE, and other enterprise distributions
486
487 To install LTTng on enterprise Linux distributions, such as Red Hat
488 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
489 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
490
491
492 [[building-from-source]]
493 === Build from source
494
495 To build and install LTTng{nbsp}{revision} from source:
496
497 . Using your distribution's package manager, or from source, install
498 the following dependencies of LTTng-tools and LTTng-UST:
499 +
500 --
501 * https://sourceforge.net/projects/libuuid/[libuuid]
502 * http://directory.fsf.org/wiki/Popt[popt]
503 * http://liburcu.org/[Userspace RCU]
504 * http://www.xmlsoft.org/[libxml2]
505 * **Optional**: https://github.com/numactl/numactl[numactl]
506 --
507
508 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
509 +
510 --
511 [role="term"]
512 ----
513 $ cd $(mktemp -d) &&
514 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.11.tar.bz2 &&
515 tar -xf lttng-modules-latest-2.11.tar.bz2 &&
516 cd lttng-modules-2.11.* &&
517 make &&
518 sudo make modules_install &&
519 sudo depmod -a
520 ----
521 --
522
523 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
524 +
525 --
526 [role="term"]
527 ----
528 $ cd $(mktemp -d) &&
529 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.11.tar.bz2 &&
530 tar -xf lttng-ust-latest-2.11.tar.bz2 &&
531 cd lttng-ust-2.11.* &&
532 ./configure &&
533 make &&
534 sudo make install &&
535 sudo ldconfig
536 ----
537 --
538 +
539 Add `--disable-numa` to `./configure` if you don't have
540 https://github.com/numactl/numactl[numactl].
541 +
542 --
543 [IMPORTANT]
544 .Java and Python application tracing
545 ====
546 If you need to instrument and trace <<java-application,Java
547 applications>>, pass the `--enable-java-agent-jul`,
548 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
549 `configure` script, depending on which Java logging framework you use.
550
551 If you need to instrument and trace <<python-application,Python
552 applications>>, pass the `--enable-python-agent` option to the
553 `configure` script. You can set the `PYTHON` environment variable to the
554 path to the Python interpreter for which to install the LTTng-UST Python
555 agent package.
556 ====
557 --
558 +
559 --
560 [NOTE]
561 ====
562 By default, LTTng-UST libraries are installed to
563 dir:{/usr/local/lib}, which is the de facto directory in which to
564 keep self-compiled and third-party libraries.
565
566 When <<building-tracepoint-providers-and-user-application,linking an
567 instrumented user application with `liblttng-ust`>>:
568
569 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
570 variable.
571 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
572 man:gcc(1), man:g++(1), or man:clang(1).
573 ====
574 --
575
576 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
577 +
578 --
579 [role="term"]
580 ----
581 $ cd $(mktemp -d) &&
582 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.11.tar.bz2 &&
583 tar -xf lttng-tools-latest-2.11.tar.bz2 &&
584 cd lttng-tools-2.11.* &&
585 ./configure &&
586 make &&
587 sudo make install &&
588 sudo ldconfig
589 ----
590 --
591
592 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
593 previous steps automatically for a given version of LTTng and confine
594 the installed files in a specific directory. This can be useful to test
595 LTTng without installing it on your system.
596
597
598 [[getting-started]]
599 == Quick start
600
601 This is a short guide to get started quickly with LTTng kernel and user
602 space tracing.
603
604 Before you follow this guide, make sure to <<installing-lttng,install>>
605 LTTng.
606
607 This tutorial walks you through the steps to:
608
609 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
610 . <<tracing-your-own-user-application,Trace a user application>> written
611 in C.
612 . <<viewing-and-analyzing-your-traces,View and analyze the
613 recorded events>>.
614
615
616 [[tracing-the-linux-kernel]]
617 === Trace the Linux kernel
618
619 The following command lines start with the `#` prompt because you need
620 root privileges to trace the Linux kernel. You can also trace the kernel
621 as a regular user if your Unix user is a member of the
622 <<tracing-group,tracing group>>.
623
624 . Create a <<tracing-session,tracing session>> which writes its traces
625 to dir:{/tmp/my-kernel-trace}:
626 +
627 --
628 [role="term"]
629 ----
630 # lttng create my-kernel-session --output=/tmp/my-kernel-trace
631 ----
632 --
633
634 . List the available kernel tracepoints and system calls:
635 +
636 --
637 [role="term"]
638 ----
639 # lttng list --kernel
640 # lttng list --kernel --syscall
641 ----
642 --
643
644 . Create <<event,event rules>> which match the desired instrumentation
645 point names, for example the `sched_switch` and `sched_process_fork`
646 tracepoints, and the man:open(2) and man:close(2) system calls:
647 +
648 --
649 [role="term"]
650 ----
651 # lttng enable-event --kernel sched_switch,sched_process_fork
652 # lttng enable-event --kernel --syscall open,close
653 ----
654 --
655 +
656 You can also create an event rule which matches _all_ the Linux kernel
657 tracepoints (this will generate a lot of data when tracing):
658 +
659 --
660 [role="term"]
661 ----
662 # lttng enable-event --kernel --all
663 ----
664 --
665
666 . <<basic-tracing-session-control,Start tracing>>:
667 +
668 --
669 [role="term"]
670 ----
671 # lttng start
672 ----
673 --
674
675 . Do some operation on your system for a few seconds. For example,
676 load a website, or list the files of a directory.
677 . <<basic-tracing-session-control,Stop tracing>> and destroy the
678 tracing session:
679 +
680 --
681 [role="term"]
682 ----
683 # lttng stop
684 # lttng destroy
685 ----
686 --
687 +
688 The man:lttng-destroy(1) command does not destroy the trace data; it
689 only destroys the state of the tracing session.
690
691 . For the sake of this example, make the recorded trace accessible to
692 the non-root users:
693 +
694 --
695 [role="term"]
696 ----
697 # chown -R $(whoami) /tmp/my-kernel-trace
698 ----
699 --
700
701 See <<viewing-and-analyzing-your-traces,View and analyze the
702 recorded events>> to view the recorded events.
703
704
705 [[tracing-your-own-user-application]]
706 === Trace a user application
707
708 This section steps you through a simple example to trace a
709 _Hello world_ program written in C.
710
711 To create the traceable user application:
712
713 . Create the tracepoint provider header file, which defines the
714 tracepoints and the events they can generate:
715 +
716 --
717 [source,c]
718 .path:{hello-tp.h}
719 ----
720 #undef TRACEPOINT_PROVIDER
721 #define TRACEPOINT_PROVIDER hello_world
722
723 #undef TRACEPOINT_INCLUDE
724 #define TRACEPOINT_INCLUDE "./hello-tp.h"
725
726 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
727 #define _HELLO_TP_H
728
729 #include <lttng/tracepoint.h>
730
731 TRACEPOINT_EVENT(
732 hello_world,
733 my_first_tracepoint,
734 TP_ARGS(
735 int, my_integer_arg,
736 char*, my_string_arg
737 ),
738 TP_FIELDS(
739 ctf_string(my_string_field, my_string_arg)
740 ctf_integer(int, my_integer_field, my_integer_arg)
741 )
742 )
743
744 #endif /* _HELLO_TP_H */
745
746 #include <lttng/tracepoint-event.h>
747 ----
748 --
749
750 . Create the tracepoint provider package source file:
751 +
752 --
753 [source,c]
754 .path:{hello-tp.c}
755 ----
756 #define TRACEPOINT_CREATE_PROBES
757 #define TRACEPOINT_DEFINE
758
759 #include "hello-tp.h"
760 ----
761 --
762
763 . Build the tracepoint provider package:
764 +
765 --
766 [role="term"]
767 ----
768 $ gcc -c -I. hello-tp.c
769 ----
770 --
771
772 . Create the _Hello World_ application source file:
773 +
774 --
775 [source,c]
776 .path:{hello.c}
777 ----
778 #include <stdio.h>
779 #include "hello-tp.h"
780
781 int main(int argc, char *argv[])
782 {
783 int x;
784
785 puts("Hello, World!\nPress Enter to continue...");
786
787 /*
788 * The following getchar() call is only placed here for the purpose
789 * of this demonstration, to pause the application in order for
790 * you to have time to list its tracepoints. It is not
791 * needed otherwise.
792 */
793 getchar();
794
795 /*
796 * A tracepoint() call.
797 *
798 * Arguments, as defined in hello-tp.h:
799 *
800 * 1. Tracepoint provider name (required)
801 * 2. Tracepoint name (required)
802 * 3. my_integer_arg (first user-defined argument)
803 * 4. my_string_arg (second user-defined argument)
804 *
805 * Notice the tracepoint provider and tracepoint names are
806 * NOT strings: they are in fact parts of variables that the
807 * macros in hello-tp.h create.
808 */
809 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
810
811 for (x = 0; x < argc; ++x) {
812 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
813 }
814
815 puts("Quitting now!");
816 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
817
818 return 0;
819 }
820 ----
821 --
822
823 . Build the application:
824 +
825 --
826 [role="term"]
827 ----
828 $ gcc -c hello.c
829 ----
830 --
831
832 . Link the application with the tracepoint provider package,
833 `liblttng-ust`, and `libdl`:
834 +
835 --
836 [role="term"]
837 ----
838 $ gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
839 ----
840 --
841
842 Here's the whole build process:
843
844 [role="img-100"]
845 .User space tracing tutorial's build steps.
846 image::ust-flow.png[]
847
848 To trace the user application:
849
850 . Run the application with a few arguments:
851 +
852 --
853 [role="term"]
854 ----
855 $ ./hello world and beyond
856 ----
857 --
858 +
859 You see:
860 +
861 --
862 ----
863 Hello, World!
864 Press Enter to continue...
865 ----
866 --
867
868 . Start an LTTng <<lttng-sessiond,session daemon>>:
869 +
870 --
871 [role="term"]
872 ----
873 $ lttng-sessiond --daemonize
874 ----
875 --
876 +
877 Note that a session daemon might already be running, for example as
878 a service that the distribution's service manager started.
879
880 . List the available user space tracepoints:
881 +
882 --
883 [role="term"]
884 ----
885 $ lttng list --userspace
886 ----
887 --
888 +
889 You see the `hello_world:my_first_tracepoint` tracepoint listed
890 under the `./hello` process.
891
892 . Create a <<tracing-session,tracing session>>:
893 +
894 --
895 [role="term"]
896 ----
897 $ lttng create my-user-space-session
898 ----
899 --
900
901 . Create an <<event,event rule>> which matches the
902 `hello_world:my_first_tracepoint` event name:
903 +
904 --
905 [role="term"]
906 ----
907 $ lttng enable-event --userspace hello_world:my_first_tracepoint
908 ----
909 --
910
911 . <<basic-tracing-session-control,Start tracing>>:
912 +
913 --
914 [role="term"]
915 ----
916 $ lttng start
917 ----
918 --
919
920 . Go back to the running `hello` application and press Enter. The
921 program executes all `tracepoint()` instrumentation points and exits.
922 . <<basic-tracing-session-control,Stop tracing>> and destroy the
923 tracing session:
924 +
925 --
926 [role="term"]
927 ----
928 $ lttng stop
929 $ lttng destroy
930 ----
931 --
932 +
933 The man:lttng-destroy(1) command does not destroy the trace data; it
934 only destroys the state of the tracing session.
935
936 By default, LTTng saves the traces in
937 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
938 where +__name__+ is the tracing session name. The
939 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
940
941 See <<viewing-and-analyzing-your-traces,View and analyze the
942 recorded events>> to view the recorded events.
943
944
945 [[viewing-and-analyzing-your-traces]]
946 === View and analyze the recorded events
947
948 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
949 kernel>> and <<tracing-your-own-user-application,Trace a user
950 application>> tutorials, you can inspect the recorded events.
951
952 Many tools are available to read LTTng traces:
953
954 * **cmd:babeltrace** is a command-line utility which converts trace
955 formats; it supports the format that LTTng produces, CTF, as well as a
956 basic text output which can be ++grep++ed. The cmd:babeltrace command
957 is part of the http://diamon.org/babeltrace[Babeltrace] project.
958 * Babeltrace also includes
959 **https://www.python.org/[Python] bindings** so
960 that you can easily open and read an LTTng trace with your own script,
961 benefiting from the power of Python.
962 * http://tracecompass.org/[**Trace Compass**]
963 is a graphical user interface for viewing and analyzing any type of
964 logs or traces, including LTTng's.
965 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
966 project which includes many high-level analyses of LTTng kernel
967 traces, like scheduling statistics, interrupt frequency distribution,
968 top CPU usage, and more.
969
970 NOTE: This section assumes that LTTng saved the traces it recorded
971 during the previous tutorials to their default location, in the
972 dir:{$LTTNG_HOME/lttng-traces} directory. The env:LTTNG_HOME
973 environment variable defaults to `$HOME` if not set.
974
975
976 [[viewing-and-analyzing-your-traces-bt]]
977 ==== Use the cmd:babeltrace command-line tool
978
979 The simplest way to list all the recorded events of a trace is to pass
980 its path to cmd:babeltrace with no options:
981
982 [role="term"]
983 ----
984 $ babeltrace ~/lttng-traces/my-user-space-session*
985 ----
986
987 cmd:babeltrace finds all traces recursively within the given path and
988 prints all their events, merging them in chronological order.
989
990 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
991 further filtering:
992
993 [role="term"]
994 ----
995 $ babeltrace /tmp/my-kernel-trace | grep _switch
996 ----
997
998 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
999 count the recorded events:
1000
1001 [role="term"]
1002 ----
1003 $ babeltrace /tmp/my-kernel-trace | grep _open | wc --lines
1004 ----
1005
1006
1007 [[viewing-and-analyzing-your-traces-bt-python]]
1008 ==== Use the Babeltrace Python bindings
1009
1010 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
1011 is useful to isolate events by simple matching using man:grep(1) and
1012 similar utilities. However, more elaborate filters, such as keeping only
1013 event records with a field value falling within a specific range, are
1014 not trivial to write using a shell. Moreover, reductions and even the
1015 most basic computations involving multiple event records are virtually
1016 impossible to implement.
1017
1018 Fortunately, Babeltrace ships with Python{nbsp}3 bindings which makes it
1019 easy to read the event records of an LTTng trace sequentially and
1020 compute the desired information.
1021
1022 The following script accepts an LTTng Linux kernel trace path as its
1023 first argument and prints the short names of the top five running
1024 processes on CPU{nbsp}0 during the whole trace:
1025
1026 [source,python]
1027 .path:{top5proc.py}
1028 ----
1029 from collections import Counter
1030 import babeltrace
1031 import sys
1032
1033
1034 def top5proc():
1035 if len(sys.argv) != 2:
1036 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
1037 print(msg, file=sys.stderr)
1038 return False
1039
1040 # A trace collection contains one or more traces
1041 col = babeltrace.TraceCollection()
1042
1043 # Add the trace provided by the user (LTTng traces always have
1044 # the 'ctf' format)
1045 if col.add_trace(sys.argv[1], 'ctf') is None:
1046 raise RuntimeError('Cannot add trace')
1047
1048 # This counter dict contains execution times:
1049 #
1050 # task command name -> total execution time (ns)
1051 exec_times = Counter()
1052
1053 # This contains the last `sched_switch` timestamp
1054 last_ts = None
1055
1056 # Iterate on events
1057 for event in col.events:
1058 # Keep only `sched_switch` events
1059 if event.name != 'sched_switch':
1060 continue
1061
1062 # Keep only events which happened on CPU 0
1063 if event['cpu_id'] != 0:
1064 continue
1065
1066 # Event timestamp
1067 cur_ts = event.timestamp
1068
1069 if last_ts is None:
1070 # We start here
1071 last_ts = cur_ts
1072
1073 # Previous task command (short) name
1074 prev_comm = event['prev_comm']
1075
1076 # Initialize entry in our dict if not yet done
1077 if prev_comm not in exec_times:
1078 exec_times[prev_comm] = 0
1079
1080 # Compute previous command execution time
1081 diff = cur_ts - last_ts
1082
1083 # Update execution time of this command
1084 exec_times[prev_comm] += diff
1085
1086 # Update last timestamp
1087 last_ts = cur_ts
1088
1089 # Display top 5
1090 for name, ns in exec_times.most_common(5):
1091 s = ns / 1000000000
1092 print('{:20}{} s'.format(name, s))
1093
1094 return True
1095
1096
1097 if __name__ == '__main__':
1098 sys.exit(0 if top5proc() else 1)
1099 ----
1100
1101 Run this script:
1102
1103 [role="term"]
1104 ----
1105 $ python3 top5proc.py /tmp/my-kernel-trace/kernel
1106 ----
1107
1108 Output example:
1109
1110 ----
1111 swapper/0 48.607245889 s
1112 chromium 7.192738188 s
1113 pavucontrol 0.709894415 s
1114 Compositor 0.660867933 s
1115 Xorg.bin 0.616753786 s
1116 ----
1117
1118 Note that `swapper/0` is the "idle" process of CPU{nbsp}0 on Linux;
1119 since we weren't using the CPU that much when tracing, its first
1120 position in the list makes sense.
1121
1122
1123 [[core-concepts]]
1124 == [[understanding-lttng]]Core concepts
1125
1126 From a user's perspective, the LTTng system is built on a few concepts,
1127 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1128 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1129 Understanding how those objects relate to eachother is key in mastering
1130 the toolkit.
1131
1132 The core concepts are:
1133
1134 * <<tracing-session,Tracing session>>
1135 * <<domain,Tracing domain>>
1136 * <<channel,Channel and ring buffer>>
1137 * <<"event","Instrumentation point, event rule, event, and event record">>
1138
1139
1140 [[tracing-session]]
1141 === Tracing session
1142
1143 A _tracing session_ is a stateful dialogue between you and
1144 a <<lttng-sessiond,session daemon>>. You can
1145 <<creating-destroying-tracing-sessions,create a new tracing
1146 session>> with the `lttng create` command.
1147
1148 Anything that you do when you control LTTng tracers happens within a
1149 tracing session. In particular, a tracing session:
1150
1151 * Has its own name.
1152 * Has its own set of trace files.
1153 * Has its own state of activity (started or stopped).
1154 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1155 snapshot, or live).
1156 * Has its own <<channel,channels>> to which are associated their own
1157 <<event,event rules>>.
1158
1159 [role="img-100"]
1160 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1161 image::concepts.png[]
1162
1163 Those attributes and objects are completely isolated between different
1164 tracing sessions.
1165
1166 A tracing session is analogous to a cash machine session:
1167 the operations you do on the banking system through the cash machine do
1168 not alter the data of other users of the same system. In the case of
1169 the cash machine, a session lasts as long as your bank card is inside.
1170 In the case of LTTng, a tracing session lasts from the `lttng create`
1171 command to the `lttng destroy` command.
1172
1173 [role="img-100"]
1174 .Each Unix user has its own set of tracing sessions.
1175 image::many-sessions.png[]
1176
1177
1178 [[tracing-session-mode]]
1179 ==== Tracing session mode
1180
1181 LTTng can send the generated trace data to different locations. The
1182 _tracing session mode_ dictates where to send it. The following modes
1183 are available in LTTng{nbsp}{revision}:
1184
1185 Local mode::
1186 LTTng writes the traces to the file system of the machine it traces
1187 (target system).
1188
1189 Network streaming mode::
1190 LTTng sends the traces over the network to a
1191 <<lttng-relayd,relay daemon>> running on a remote system.
1192
1193 Snapshot mode::
1194 LTTng does not write the traces by default. Instead, you can request
1195 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1196 tracing session's current sub-buffers, and to write it to the
1197 target's file system or to send it over the network to a
1198 <<lttng-relayd,relay daemon>> running on a remote system.
1199
1200 Live mode::
1201 This mode is similar to the network streaming mode, but a live
1202 trace viewer can connect to the distant relay daemon to
1203 <<lttng-live,view event records as LTTng generates them>>.
1204
1205
1206 [[domain]]
1207 === Tracing domain
1208
1209 A _tracing domain_ is a namespace for event sources. A tracing domain
1210 has its own properties and features.
1211
1212 There are currently five available tracing domains:
1213
1214 * Linux kernel
1215 * User space
1216 * `java.util.logging` (JUL)
1217 * log4j
1218 * Python
1219
1220 You must specify a tracing domain when using some commands to avoid
1221 ambiguity. For example, since all the domains support named tracepoints
1222 as event sources (instrumentation points that you manually insert in the
1223 source code), you need to specify a tracing domain when
1224 <<enabling-disabling-events,creating an event rule>> because all the
1225 tracing domains could have tracepoints with the same names.
1226
1227 Some features are reserved to specific tracing domains. Dynamic function
1228 entry and return instrumentation points, for example, are currently only
1229 supported in the Linux kernel tracing domain, but support for other
1230 tracing domains could be added in the future.
1231
1232 You can create <<channel,channels>> in the Linux kernel and user space
1233 tracing domains. The other tracing domains have a single default
1234 channel.
1235
1236
1237 [[channel]]
1238 === Channel and ring buffer
1239
1240 A _channel_ is an object which is responsible for a set of ring buffers.
1241 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1242 tracer emits an event, it can record it to one or more
1243 sub-buffers. The attributes of a channel determine what to do when
1244 there's no space left for a new event record because all sub-buffers
1245 are full, where to send a full sub-buffer, and other behaviours.
1246
1247 A channel is always associated to a <<domain,tracing domain>>. The
1248 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1249 a default channel which you cannot configure.
1250
1251 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1252 an event, it records it to the sub-buffers of all
1253 the enabled channels with a satisfied event rule, as long as those
1254 channels are part of active <<tracing-session,tracing sessions>>.
1255
1256
1257 [[channel-buffering-schemes]]
1258 ==== Per-user vs. per-process buffering schemes
1259
1260 A channel has at least one ring buffer _per CPU_. LTTng always
1261 records an event to the ring buffer associated to the CPU on which it
1262 occurs.
1263
1264 Two _buffering schemes_ are available when you
1265 <<enabling-disabling-channels,create a channel>> in the
1266 user space <<domain,tracing domain>>:
1267
1268 Per-user buffering::
1269 Allocate one set of ring buffers--one per CPU--shared by all the
1270 instrumented processes of each Unix user.
1271 +
1272 --
1273 [role="img-100"]
1274 .Per-user buffering scheme.
1275 image::per-user-buffering.png[]
1276 --
1277
1278 Per-process buffering::
1279 Allocate one set of ring buffers--one per CPU--for each
1280 instrumented process.
1281 +
1282 --
1283 [role="img-100"]
1284 .Per-process buffering scheme.
1285 image::per-process-buffering.png[]
1286 --
1287 +
1288 The per-process buffering scheme tends to consume more memory than the
1289 per-user option because systems generally have more instrumented
1290 processes than Unix users running instrumented processes. However, the
1291 per-process buffering scheme ensures that one process having a high
1292 event throughput won't fill all the shared sub-buffers of the same
1293 user, only its own.
1294
1295 The Linux kernel tracing domain has only one available buffering scheme
1296 which is to allocate a single set of ring buffers for the whole system.
1297 This scheme is similar to the per-user option, but with a single, global
1298 user "running" the kernel.
1299
1300
1301 [[channel-overwrite-mode-vs-discard-mode]]
1302 ==== Overwrite vs. discard event record loss modes
1303
1304 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1305 arc in the following animations) of a specific channel's ring buffer.
1306 When there's no space left in a sub-buffer, the tracer marks it as
1307 consumable (red) and another, empty sub-buffer starts receiving the
1308 following event records. A <<lttng-consumerd,consumer daemon>>
1309 eventually consumes the marked sub-buffer (returns to white).
1310
1311 [NOTE]
1312 [role="docsvg-channel-subbuf-anim"]
1313 ====
1314 {note-no-anim}
1315 ====
1316
1317 In an ideal world, sub-buffers are consumed faster than they are filled,
1318 as it is the case in the previous animation. In the real world,
1319 however, all sub-buffers can be full at some point, leaving no space to
1320 record the following events.
1321
1322 By default, LTTng-modules and LTTng-UST are _non-blocking_ tracers: when
1323 no empty sub-buffer is available, it is acceptable to lose event records
1324 when the alternative would be to cause substantial delays in the
1325 instrumented application's execution. LTTng privileges performance over
1326 integrity; it aims at perturbing the target system as little as possible
1327 in order to make tracing of subtle race conditions and rare interrupt
1328 cascades possible.
1329
1330 Since LTTng{nbsp}2.10, the LTTng user space tracer, LTTng-UST, supports
1331 a _blocking mode_. See the <<blocking-timeout-example,blocking timeout
1332 example>> to learn how to use the blocking mode.
1333
1334 When it comes to losing event records because no empty sub-buffer is
1335 available, or because the <<opt-blocking-timeout,blocking timeout>> is
1336 reached, the channel's _event record loss mode_ determines what to do.
1337 The available event record loss modes are:
1338
1339 Discard mode::
1340 Drop the newest event records until a the tracer releases a
1341 sub-buffer.
1342 +
1343 This is the only available mode when you specify a
1344 <<opt-blocking-timeout,blocking timeout>>.
1345
1346 Overwrite mode::
1347 Clear the sub-buffer containing the oldest event records and start
1348 writing the newest event records there.
1349 +
1350 This mode is sometimes called _flight recorder mode_ because it's
1351 similar to a
1352 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1353 always keep a fixed amount of the latest data.
1354
1355 Which mechanism you should choose depends on your context: prioritize
1356 the newest or the oldest event records in the ring buffer?
1357
1358 Beware that, in overwrite mode, the tracer abandons a _whole sub-buffer_
1359 as soon as a there's no space left for a new event record, whereas in
1360 discard mode, the tracer only discards the event record that doesn't
1361 fit.
1362
1363 In discard mode, LTTng increments a count of lost event records when an
1364 event record is lost and saves this count to the trace. In overwrite
1365 mode, since LTTng{nbsp}2.8, LTTng increments a count of lost sub-buffers
1366 when a sub-buffer is lost and saves this count to the trace. In this
1367 mode, LTTng does not write to the trace the exact number of lost event
1368 records in those lost sub-buffers. Trace analyses can use the trace's
1369 saved discarded event record and sub-buffer counts to decide whether or
1370 not to perform the analyses even if trace data is known to be missing.
1371
1372 There are a few ways to decrease your probability of losing event
1373 records.
1374 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1375 how you can fine-tune the sub-buffer count and size of a channel to
1376 virtually stop losing event records, though at the cost of greater
1377 memory usage.
1378
1379
1380 [[channel-subbuf-size-vs-subbuf-count]]
1381 ==== Sub-buffer count and size
1382
1383 When you <<enabling-disabling-channels,create a channel>>, you can
1384 set its number of sub-buffers and their size.
1385
1386 Note that there is noticeable CPU overhead introduced when
1387 switching sub-buffers (marking a full one as consumable and switching
1388 to an empty one for the following events to be recorded). Knowing this,
1389 the following list presents a few practical situations along with how
1390 to configure the sub-buffer count and size for them:
1391
1392 * **High event throughput**: In general, prefer bigger sub-buffers to
1393 lower the risk of losing event records.
1394 +
1395 Having bigger sub-buffers also ensures a lower
1396 <<channel-switch-timer,sub-buffer switching frequency>>.
1397 +
1398 The number of sub-buffers is only meaningful if you create the channel
1399 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1400 other sub-buffers are left unaltered.
1401
1402 * **Low event throughput**: In general, prefer smaller sub-buffers
1403 since the risk of losing event records is low.
1404 +
1405 Because events occur less frequently, the sub-buffer switching frequency
1406 should remain low and thus the tracer's overhead should not be a
1407 problem.
1408
1409 * **Low memory system**: If your target system has a low memory
1410 limit, prefer fewer first, then smaller sub-buffers.
1411 +
1412 Even if the system is limited in memory, you want to keep the
1413 sub-buffers as big as possible to avoid a high sub-buffer switching
1414 frequency.
1415
1416 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1417 which means event data is very compact. For example, the average
1418 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1419 sub-buffer size of 1{nbsp}MiB is considered big.
1420
1421 The previous situations highlight the major trade-off between a few big
1422 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1423 frequency vs. how much data is lost in overwrite mode. Assuming a
1424 constant event throughput and using the overwrite mode, the two
1425 following configurations have the same ring buffer total size:
1426
1427 [NOTE]
1428 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1429 ====
1430 {note-no-anim}
1431 ====
1432
1433 * **Two sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1434 switching frequency, but if a sub-buffer overwrite happens, half of
1435 the event records so far (4{nbsp}MiB) are definitely lost.
1436 * **Eight sub-buffers of 1{nbsp}MiB each**: Expect four times the tracer's
1437 overhead as the previous configuration, but if a sub-buffer
1438 overwrite happens, only the eighth of event records so far are
1439 definitely lost.
1440
1441 In discard mode, the sub-buffers count parameter is pointless: use two
1442 sub-buffers and set their size according to the requirements of your
1443 situation.
1444
1445
1446 [[channel-switch-timer]]
1447 ==== Switch timer period
1448
1449 The _switch timer period_ is an important configurable attribute of
1450 a channel to ensure periodic sub-buffer flushing.
1451
1452 When the _switch timer_ expires, a sub-buffer switch happens. You can
1453 set the switch timer period attribute when you
1454 <<enabling-disabling-channels,create a channel>> to ensure that LTTng
1455 consumes and commits trace data to trace files or to a distant relay
1456 daemon periodically in case of a low event throughput.
1457
1458 [NOTE]
1459 [role="docsvg-channel-switch-timer"]
1460 ====
1461 {note-no-anim}
1462 ====
1463
1464 This attribute is also convenient when you use big sub-buffers to cope
1465 with a sporadic high event throughput, even if the throughput is
1466 normally low.
1467
1468
1469 [[channel-read-timer]]
1470 ==== Read timer period
1471
1472 By default, the LTTng tracers use a notification mechanism to signal a
1473 full sub-buffer so that a consumer daemon can consume it. When such
1474 notifications must be avoided, for example in real-time applications,
1475 you can use the channel's _read timer_ instead. When the read timer
1476 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1477 consumable sub-buffers.
1478
1479
1480 [[tracefile-rotation]]
1481 ==== Trace file count and size
1482
1483 By default, trace files can grow as large as needed. You can set the
1484 maximum size of each trace file that a channel writes when you
1485 <<enabling-disabling-channels,create a channel>>. When the size of
1486 a trace file reaches the channel's fixed maximum size, LTTng creates
1487 another file to contain the next event records. LTTng appends a file
1488 count to each trace file name in this case.
1489
1490 If you set the trace file size attribute when you create a channel, the
1491 maximum number of trace files that LTTng creates is _unlimited_ by
1492 default. To limit them, you can also set a maximum number of trace
1493 files. When the number of trace files reaches the channel's fixed
1494 maximum count, the oldest trace file is overwritten. This mechanism is
1495 called _trace file rotation_.
1496
1497 Even if you don't limit the trace file count, you cannot assume that
1498 LTTng doesn't manage any trace file. In other words, there is no safe
1499 way to know if LTTng still holds a given trace file open with the trace
1500 file rotation feature. The only way to obtain an unmanaged,
1501 self-contained LTTng trace before you
1502 <<creating-destroying-tracing-sessions,destroy>> the tracing session is
1503 with the <<session-rotation,tracing session rotation>> feature
1504 (available since LTTng{nbsp}2.11).
1505
1506
1507 [[event]]
1508 === Instrumentation point, event rule, event, and event record
1509
1510 An _event rule_ is a set of conditions which must be **all** satisfied
1511 for LTTng to record an occuring event.
1512
1513 You set the conditions when you <<enabling-disabling-events,create
1514 an event rule>>.
1515
1516 You always attach an event rule to <<channel,channel>> when you create
1517 it.
1518
1519 When an event passes the conditions of an event rule, LTTng records it
1520 in one of the attached channel's sub-buffers.
1521
1522 The available conditions, as of LTTng{nbsp}{revision}, are:
1523
1524 * The event rule _is enabled_.
1525 * The instrumentation point's type _is{nbsp}T_.
1526 * The instrumentation point's name (sometimes called _event name_)
1527 _matches{nbsp}N_, but _is not{nbsp}E_.
1528 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1529 _is exactly{nbsp}L_.
1530 * The fields of the event's payload _satisfy_ a filter
1531 expression{nbsp}__F__.
1532
1533 As you can see, all the conditions but the dynamic filter are related to
1534 the event rule's status or to the instrumentation point, not to the
1535 occurring events. This is why, without a filter, checking if an event
1536 passes an event rule is not a dynamic task: when you create or modify an
1537 event rule, all the tracers of its tracing domain enable or disable the
1538 instrumentation points themselves once. This is possible because the
1539 attributes of an instrumentation point (type, name, and log level) are
1540 defined statically. In other words, without a dynamic filter, the tracer
1541 _does not evaluate_ the arguments of an instrumentation point unless it
1542 matches an enabled event rule.
1543
1544 Note that, for LTTng to record an event, the <<channel,channel>> to
1545 which a matching event rule is attached must also be enabled, and the
1546 <<tracing-session,tracing session>> owning this channel must be active
1547 (started).
1548
1549 [role="img-100"]
1550 .Logical path from an instrumentation point to an event record.
1551 image::event-rule.png[]
1552
1553 .Event, event record, or event rule?
1554 ****
1555 With so many similar terms, it's easy to get confused.
1556
1557 An **event** is the consequence of the execution of an _instrumentation
1558 point_, like a tracepoint that you manually place in some source code,
1559 or a Linux kernel kprobe. An event is said to _occur_ at a specific
1560 time. Different actions can be taken upon the occurrence of an event,
1561 like record the event's payload to a buffer.
1562
1563 An **event record** is the representation of an event in a sub-buffer. A
1564 tracer is responsible for capturing the payload of an event, current
1565 context variables, the event's ID, and the event's timestamp. LTTng
1566 can append this sub-buffer to a trace file.
1567
1568 An **event rule** is a set of conditions which must _all_ be satisfied
1569 for LTTng to record an occuring event. Events still occur without
1570 satisfying event rules, but LTTng does not record them.
1571 ****
1572
1573
1574 [[plumbing]]
1575 == Components of noch:{LTTng}
1576
1577 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1578 to call LTTng a simple _tool_ since it is composed of multiple
1579 interacting components. This section describes those components,
1580 explains their respective roles, and shows how they connect together to
1581 form the LTTng ecosystem.
1582
1583 The following diagram shows how the most important components of LTTng
1584 interact with user applications, the Linux kernel, and you:
1585
1586 [role="img-100"]
1587 .Control and trace data paths between LTTng components.
1588 image::plumbing.png[]
1589
1590 The LTTng project incorporates:
1591
1592 * **LTTng-tools**: Libraries and command-line interface to
1593 control tracing sessions.
1594 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1595 ** <<lttng-consumerd,Consumer daemon>> (cmd:lttng-consumerd).
1596 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1597 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1598 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1599 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1600 applications.
1601 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1602 headers to instrument and trace any native user application.
1603 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1604 *** `liblttng-ust-libc-wrapper`
1605 *** `liblttng-ust-pthread-wrapper`
1606 *** `liblttng-ust-cyg-profile`
1607 *** `liblttng-ust-cyg-profile-fast`
1608 *** `liblttng-ust-dl`
1609 ** User space tracepoint provider source files generator command-line
1610 tool (man:lttng-gen-tp(1)).
1611 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1612 Java applications using `java.util.logging` or
1613 Apache log4j{nbsp}1.2 logging.
1614 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1615 Python applications using the standard `logging` package.
1616 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1617 the kernel.
1618 ** LTTng kernel tracer module.
1619 ** Tracing ring buffer kernel modules.
1620 ** Probe kernel modules.
1621 ** LTTng logger kernel module.
1622
1623
1624 [[lttng-cli]]
1625 === Tracing control command-line interface
1626
1627 [role="img-100"]
1628 .The tracing control command-line interface.
1629 image::plumbing-lttng-cli.png[]
1630
1631 The _man:lttng(1) command-line tool_ is the standard user interface to
1632 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1633 is part of LTTng-tools.
1634
1635 The cmd:lttng tool is linked with
1636 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1637 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1638
1639 The cmd:lttng tool has a Git-like interface:
1640
1641 [role="term"]
1642 ----
1643 $ lttng <GENERAL OPTIONS> <COMMAND> <COMMAND OPTIONS>
1644 ----
1645
1646 The <<controlling-tracing,Tracing control>> section explores the
1647 available features of LTTng using the cmd:lttng tool.
1648
1649
1650 [[liblttng-ctl-lttng]]
1651 === Tracing control library
1652
1653 [role="img-100"]
1654 .The tracing control library.
1655 image::plumbing-liblttng-ctl.png[]
1656
1657 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1658 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1659 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1660
1661 The <<lttng-cli,cmd:lttng command-line tool>>
1662 is linked with `liblttng-ctl`.
1663
1664 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1665 "master" header:
1666
1667 [source,c]
1668 ----
1669 #include <lttng/lttng.h>
1670 ----
1671
1672 Some objects are referenced by name (C string), such as tracing
1673 sessions, but most of them require to create a handle first using
1674 `lttng_create_handle()`.
1675
1676 The best available developer documentation for `liblttng-ctl` is, as of
1677 LTTng{nbsp}{revision}, its installed header files. Every function and
1678 structure is thoroughly documented.
1679
1680
1681 [[lttng-ust]]
1682 === User space tracing library
1683
1684 [role="img-100"]
1685 .The user space tracing library.
1686 image::plumbing-liblttng-ust.png[]
1687
1688 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1689 is the LTTng user space tracer. It receives commands from a
1690 <<lttng-sessiond,session daemon>>, for example to
1691 enable and disable specific instrumentation points, and writes event
1692 records to ring buffers shared with a
1693 <<lttng-consumerd,consumer daemon>>.
1694 `liblttng-ust` is part of LTTng-UST.
1695
1696 Public C header files are installed beside `liblttng-ust` to
1697 instrument any <<c-application,C or $$C++$$ application>>.
1698
1699 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1700 packages, use their own library providing tracepoints which is
1701 linked with `liblttng-ust`.
1702
1703 An application or library does not have to initialize `liblttng-ust`
1704 manually: its constructor does the necessary tasks to properly register
1705 to a session daemon. The initialization phase also enables the
1706 instrumentation points matching the <<event,event rules>> that you
1707 already created.
1708
1709
1710 [[lttng-ust-agents]]
1711 === User space tracing agents
1712
1713 [role="img-100"]
1714 .The user space tracing agents.
1715 image::plumbing-lttng-ust-agents.png[]
1716
1717 The _LTTng-UST Java and Python agents_ are regular Java and Python
1718 packages which add LTTng tracing capabilities to the
1719 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1720
1721 In the case of Java, the
1722 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1723 core logging facilities] and
1724 https://logging.apache.org/log4j/1.2/[Apache log4j{nbsp}1.2] are supported.
1725 Note that Apache Log4{nbsp}2 is not supported.
1726
1727 In the case of Python, the standard
1728 https://docs.python.org/3/library/logging.html[`logging`] package
1729 is supported. Both Python{nbsp}2 and Python{nbsp}3 modules can import the
1730 LTTng-UST Python agent package.
1731
1732 The applications using the LTTng-UST agents are in the
1733 `java.util.logging` (JUL),
1734 log4j, and Python <<domain,tracing domains>>.
1735
1736 Both agents use the same mechanism to trace the log statements. When an
1737 agent initializes, it creates a log handler that attaches to the root
1738 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1739 When the application executes a log statement, the root logger passes it
1740 to the agent's log handler. The agent's log handler calls a native
1741 function in a tracepoint provider package shared library linked with
1742 <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1743 other fields, like its logger name and its log level. This native
1744 function contains a user space instrumentation point, hence tracing the
1745 log statement.
1746
1747 The log level condition of an
1748 <<event,event rule>> is considered when tracing
1749 a Java or a Python application, and it's compatible with the standard
1750 JUL, log4j, and Python log levels.
1751
1752
1753 [[lttng-modules]]
1754 === LTTng kernel modules
1755
1756 [role="img-100"]
1757 .The LTTng kernel modules.
1758 image::plumbing-lttng-modules.png[]
1759
1760 The _LTTng kernel modules_ are a set of Linux kernel modules
1761 which implement the kernel tracer of the LTTng project. The LTTng
1762 kernel modules are part of LTTng-modules.
1763
1764 The LTTng kernel modules include:
1765
1766 * A set of _probe_ modules.
1767 +
1768 Each module attaches to a specific subsystem
1769 of the Linux kernel using its tracepoint instrument points. There are
1770 also modules to attach to the entry and return points of the Linux
1771 system call functions.
1772
1773 * _Ring buffer_ modules.
1774 +
1775 A ring buffer implementation is provided as kernel modules. The LTTng
1776 kernel tracer writes to the ring buffer; a
1777 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1778
1779 * The _LTTng kernel tracer_ module.
1780 * The _LTTng logger_ module.
1781 +
1782 The LTTng logger module implements the special path:{/proc/lttng-logger}
1783 file so that any executable can generate LTTng events by opening and
1784 writing to this file.
1785 +
1786 See <<proc-lttng-logger-abi,LTTng logger>>.
1787
1788 Generally, you do not have to load the LTTng kernel modules manually
1789 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1790 daemon>> loads the necessary modules when starting. If you have extra
1791 probe modules, you can specify to load them to the session daemon on
1792 the command line.
1793
1794 The LTTng kernel modules are installed in
1795 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1796 the kernel release (see `uname --kernel-release`).
1797
1798
1799 [[lttng-sessiond]]
1800 === Session daemon
1801
1802 [role="img-100"]
1803 .The session daemon.
1804 image::plumbing-sessiond.png[]
1805
1806 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1807 managing tracing sessions and for controlling the various components of
1808 LTTng. The session daemon is part of LTTng-tools.
1809
1810 The session daemon sends control requests to and receives control
1811 responses from:
1812
1813 * The <<lttng-ust,user space tracing library>>.
1814 +
1815 Any instance of the user space tracing library first registers to
1816 a session daemon. Then, the session daemon can send requests to
1817 this instance, such as:
1818 +
1819 --
1820 ** Get the list of tracepoints.
1821 ** Share an <<event,event rule>> so that the user space tracing library
1822 can enable or disable tracepoints. Amongst the possible conditions
1823 of an event rule is a filter expression which `liblttng-ust` evalutes
1824 when an event occurs.
1825 ** Share <<channel,channel>> attributes and ring buffer locations.
1826 --
1827 +
1828 The session daemon and the user space tracing library use a Unix
1829 domain socket for their communication.
1830
1831 * The <<lttng-ust-agents,user space tracing agents>>.
1832 +
1833 Any instance of a user space tracing agent first registers to
1834 a session daemon. Then, the session daemon can send requests to
1835 this instance, such as:
1836 +
1837 --
1838 ** Get the list of loggers.
1839 ** Enable or disable a specific logger.
1840 --
1841 +
1842 The session daemon and the user space tracing agent use a TCP connection
1843 for their communication.
1844
1845 * The <<lttng-modules,LTTng kernel tracer>>.
1846 * The <<lttng-consumerd,consumer daemon>>.
1847 +
1848 The session daemon sends requests to the consumer daemon to instruct
1849 it where to send the trace data streams, amongst other information.
1850
1851 * The <<lttng-relayd,relay daemon>>.
1852
1853 The session daemon receives commands from the
1854 <<liblttng-ctl-lttng,tracing control library>>.
1855
1856 The root session daemon loads the appropriate
1857 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
1858 a <<lttng-consumerd,consumer daemon>> as soon as you create
1859 an <<event,event rule>>.
1860
1861 The session daemon does not send and receive trace data: this is the
1862 role of the <<lttng-consumerd,consumer daemon>> and
1863 <<lttng-relayd,relay daemon>>. It does, however, generate the
1864 http://diamon.org/ctf/[CTF] metadata stream.
1865
1866 Each Unix user can have its own session daemon instance. The
1867 tracing sessions which different session daemons manage are completely
1868 independent.
1869
1870 The root user's session daemon is the only one which is
1871 allowed to control the LTTng kernel tracer, and its spawned consumer
1872 daemon is the only one which is allowed to consume trace data from the
1873 LTTng kernel tracer. Note, however, that any Unix user which is a member
1874 of the <<tracing-group,tracing group>> is allowed
1875 to create <<channel,channels>> in the
1876 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
1877 kernel.
1878
1879 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
1880 session daemon when using its `create` command if none is currently
1881 running. You can also start the session daemon manually.
1882
1883
1884 [[lttng-consumerd]]
1885 === Consumer daemon
1886
1887 [role="img-100"]
1888 .The consumer daemon.
1889 image::plumbing-consumerd.png[]
1890
1891 The _consumer daemon_, cmd:lttng-consumerd, is a daemon which shares
1892 ring buffers with user applications or with the LTTng kernel modules to
1893 collect trace data and send it to some location (on disk or to a
1894 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
1895 is part of LTTng-tools.
1896
1897 You do not start a consumer daemon manually: a consumer daemon is always
1898 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
1899 <<event,event rule>>, that is, before you start tracing. When you kill
1900 its owner session daemon, the consumer daemon also exits because it is
1901 the session daemon's child process. Command-line options of
1902 man:lttng-sessiond(8) target the consumer daemon process.
1903
1904 There are up to two running consumer daemons per Unix user, whereas only
1905 one session daemon can run per user. This is because each process can be
1906 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
1907 and 64-bit processes, it is more efficient to have separate
1908 corresponding 32-bit and 64-bit consumer daemons. The root user is an
1909 exception: it can have up to _three_ running consumer daemons: 32-bit
1910 and 64-bit instances for its user applications, and one more
1911 reserved for collecting kernel trace data.
1912
1913
1914 [[lttng-relayd]]
1915 === Relay daemon
1916
1917 [role="img-100"]
1918 .The relay daemon.
1919 image::plumbing-relayd.png[]
1920
1921 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
1922 between remote session and consumer daemons, local trace files, and a
1923 remote live trace viewer. The relay daemon is part of LTTng-tools.
1924
1925 The main purpose of the relay daemon is to implement a receiver of
1926 <<sending-trace-data-over-the-network,trace data over the network>>.
1927 This is useful when the target system does not have much file system
1928 space to record trace files locally.
1929
1930 The relay daemon is also a server to which a
1931 <<lttng-live,live trace viewer>> can
1932 connect. The live trace viewer sends requests to the relay daemon to
1933 receive trace data as the target system emits events. The
1934 communication protocol is named _LTTng live_; it is used over TCP
1935 connections.
1936
1937 Note that you can start the relay daemon on the target system directly.
1938 This is the setup of choice when the use case is to view events as
1939 the target system emits them without the need of a remote system.
1940
1941
1942 [[instrumenting]]
1943 == [[using-lttng]]Instrumentation
1944
1945 There are many examples of tracing and monitoring in our everyday life:
1946
1947 * You have access to real-time and historical weather reports and
1948 forecasts thanks to weather stations installed around the country.
1949 * You know your heart is safe thanks to an electrocardiogram.
1950 * You make sure not to drive your car too fast and to have enough fuel
1951 to reach your destination thanks to gauges visible on your dashboard.
1952
1953 All the previous examples have something in common: they rely on
1954 **instruments**. Without the electrodes attached to the surface of your
1955 body's skin, cardiac monitoring is futile.
1956
1957 LTTng, as a tracer, is no different from those real life examples. If
1958 you're about to trace a software system or, in other words, record its
1959 history of execution, you better have **instrumentation points** in the
1960 subject you're tracing, that is, the actual software.
1961
1962 Various ways were developed to instrument a piece of software for LTTng
1963 tracing. The most straightforward one is to manually place
1964 instrumentation points, called _tracepoints_, in the software's source
1965 code. It is also possible to add instrumentation points dynamically in
1966 the Linux kernel <<domain,tracing domain>>.
1967
1968 If you're only interested in tracing the Linux kernel, your
1969 instrumentation needs are probably already covered by LTTng's built-in
1970 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
1971 user application which is already instrumented for LTTng tracing.
1972 In such cases, you can skip this whole section and read the topics of
1973 the <<controlling-tracing,Tracing control>> section.
1974
1975 Many methods are available to instrument a piece of software for LTTng
1976 tracing. They are:
1977
1978 * <<c-application,User space instrumentation for C and $$C++$$
1979 applications>>.
1980 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
1981 * <<java-application,User space Java agent>>.
1982 * <<python-application,User space Python agent>>.
1983 * <<proc-lttng-logger-abi,LTTng logger>>.
1984 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
1985
1986
1987 [[c-application]]
1988 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
1989
1990 The procedure to instrument a C or $$C++$$ user application with
1991 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
1992
1993 . <<tracepoint-provider,Create the source files of a tracepoint provider
1994 package>>.
1995 . <<probing-the-application-source-code,Add tracepoints to
1996 the application's source code>>.
1997 . <<building-tracepoint-providers-and-user-application,Build and link
1998 a tracepoint provider package and the user application>>.
1999
2000 If you need quick, man:printf(3)-like instrumentation, you can skip
2001 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
2002 instead.
2003
2004 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
2005 instrument a user application with `liblttng-ust`.
2006
2007
2008 [[tracepoint-provider]]
2009 ==== Create the source files of a tracepoint provider package
2010
2011 A _tracepoint provider_ is a set of compiled functions which provide
2012 **tracepoints** to an application, the type of instrumentation point
2013 supported by LTTng-UST. Those functions can emit events with
2014 user-defined fields and serialize those events as event records to one
2015 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
2016 macro, which you <<probing-the-application-source-code,insert in a user
2017 application's source code>>, calls those functions.
2018
2019 A _tracepoint provider package_ is an object file (`.o`) or a shared
2020 library (`.so`) which contains one or more tracepoint providers.
2021 Its source files are:
2022
2023 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
2024 * A <<tpp-source,tracepoint provider package source>> (`.c`).
2025
2026 A tracepoint provider package is dynamically linked with `liblttng-ust`,
2027 the LTTng user space tracer, at run time.
2028
2029 [role="img-100"]
2030 .User application linked with `liblttng-ust` and containing a tracepoint provider.
2031 image::ust-app.png[]
2032
2033 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
2034 skip creating and using a tracepoint provider and use
2035 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
2036
2037
2038 [[tpp-header]]
2039 ===== Create a tracepoint provider header file template
2040
2041 A _tracepoint provider header file_ contains the tracepoint
2042 definitions of a tracepoint provider.
2043
2044 To create a tracepoint provider header file:
2045
2046 . Start from this template:
2047 +
2048 --
2049 [source,c]
2050 .Tracepoint provider header file template (`.h` file extension).
2051 ----
2052 #undef TRACEPOINT_PROVIDER
2053 #define TRACEPOINT_PROVIDER provider_name
2054
2055 #undef TRACEPOINT_INCLUDE
2056 #define TRACEPOINT_INCLUDE "./tp.h"
2057
2058 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
2059 #define _TP_H
2060
2061 #include <lttng/tracepoint.h>
2062
2063 /*
2064 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2065 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2066 */
2067
2068 #endif /* _TP_H */
2069
2070 #include <lttng/tracepoint-event.h>
2071 ----
2072 --
2073
2074 . Replace:
2075 +
2076 * `provider_name` with the name of your tracepoint provider.
2077 * `"tp.h"` with the name of your tracepoint provider header file.
2078
2079 . Below the `#include <lttng/tracepoint.h>` line, put your
2080 <<defining-tracepoints,tracepoint definitions>>.
2081
2082 Your tracepoint provider name must be unique amongst all the possible
2083 tracepoint provider names used on the same target system. We
2084 suggest to include the name of your project or company in the name,
2085 for example, `org_lttng_my_project_tpp`.
2086
2087 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2088 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2089 write are the <<defining-tracepoints,tracepoint definitions>>.
2090
2091
2092 [[defining-tracepoints]]
2093 ===== Create a tracepoint definition
2094
2095 A _tracepoint definition_ defines, for a given tracepoint:
2096
2097 * Its **input arguments**. They are the macro parameters that the
2098 `tracepoint()` macro accepts for this particular tracepoint
2099 in the user application's source code.
2100 * Its **output event fields**. They are the sources of event fields
2101 that form the payload of any event that the execution of the
2102 `tracepoint()` macro emits for this particular tracepoint.
2103
2104 You can create a tracepoint definition by using the
2105 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2106 line in the
2107 <<tpp-header,tracepoint provider header file template>>.
2108
2109 The syntax of the `TRACEPOINT_EVENT()` macro is:
2110
2111 [source,c]
2112 .`TRACEPOINT_EVENT()` macro syntax.
2113 ----
2114 TRACEPOINT_EVENT(
2115 /* Tracepoint provider name */
2116 provider_name,
2117
2118 /* Tracepoint name */
2119 tracepoint_name,
2120
2121 /* Input arguments */
2122 TP_ARGS(
2123 arguments
2124 ),
2125
2126 /* Output event fields */
2127 TP_FIELDS(
2128 fields
2129 )
2130 )
2131 ----
2132
2133 Replace:
2134
2135 * `provider_name` with your tracepoint provider name.
2136 * `tracepoint_name` with your tracepoint name.
2137 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2138 * `fields` with the <<tpp-def-output-fields,output event field>>
2139 definitions.
2140
2141 This tracepoint emits events named `provider_name:tracepoint_name`.
2142
2143 [IMPORTANT]
2144 .Event name's length limitation
2145 ====
2146 The concatenation of the tracepoint provider name and the
2147 tracepoint name must not exceed **254{nbsp}characters**. If it does, the
2148 instrumented application compiles and runs, but LTTng throws multiple
2149 warnings and you could experience serious issues.
2150 ====
2151
2152 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2153
2154 [source,c]
2155 .`TP_ARGS()` macro syntax.
2156 ----
2157 TP_ARGS(
2158 type, arg_name
2159 )
2160 ----
2161
2162 Replace:
2163
2164 * `type` with the C type of the argument.
2165 * `arg_name` with the argument name.
2166
2167 You can repeat `type` and `arg_name` up to 10{nbsp}times to have
2168 more than one argument.
2169
2170 .`TP_ARGS()` usage with three arguments.
2171 ====
2172 [source,c]
2173 ----
2174 TP_ARGS(
2175 int, count,
2176 float, ratio,
2177 const char*, query
2178 )
2179 ----
2180 ====
2181
2182 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2183 tracepoint definition with no input arguments.
2184
2185 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2186 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2187 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2188 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2189 one event field.
2190
2191 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2192 C expression that the tracer evalutes at the `tracepoint()` macro site
2193 in the application's source code. This expression provides a field's
2194 source of data. The argument expression can include input argument names
2195 listed in the `TP_ARGS()` macro.
2196
2197 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2198 must be unique within a given tracepoint definition.
2199
2200 Here's a complete tracepoint definition example:
2201
2202 .Tracepoint definition.
2203 ====
2204 The following tracepoint definition defines a tracepoint which takes
2205 three input arguments and has four output event fields.
2206
2207 [source,c]
2208 ----
2209 #include "my-custom-structure.h"
2210
2211 TRACEPOINT_EVENT(
2212 my_provider,
2213 my_tracepoint,
2214 TP_ARGS(
2215 const struct my_custom_structure*, my_custom_structure,
2216 float, ratio,
2217 const char*, query
2218 ),
2219 TP_FIELDS(
2220 ctf_string(query_field, query)
2221 ctf_float(double, ratio_field, ratio)
2222 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2223 ctf_integer(int, send_size, my_custom_structure->send_size)
2224 )
2225 )
2226 ----
2227
2228 You can refer to this tracepoint definition with the `tracepoint()`
2229 macro in your application's source code like this:
2230
2231 [source,c]
2232 ----
2233 tracepoint(my_provider, my_tracepoint,
2234 my_structure, some_ratio, the_query);
2235 ----
2236 ====
2237
2238 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2239 if they satisfy an enabled <<event,event rule>>.
2240
2241
2242 [[using-tracepoint-classes]]
2243 ===== Use a tracepoint class
2244
2245 A _tracepoint class_ is a class of tracepoints which share the same
2246 output event field definitions. A _tracepoint instance_ is one
2247 instance of such a defined tracepoint class, with its own tracepoint
2248 name.
2249
2250 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2251 shorthand which defines both a tracepoint class and a tracepoint
2252 instance at the same time.
2253
2254 When you build a tracepoint provider package, the C or $$C++$$ compiler
2255 creates one serialization function for each **tracepoint class**. A
2256 serialization function is responsible for serializing the event fields
2257 of a tracepoint to a sub-buffer when tracing.
2258
2259 For various performance reasons, when your situation requires multiple
2260 tracepoint definitions with different names, but with the same event
2261 fields, we recommend that you manually create a tracepoint class
2262 and instantiate as many tracepoint instances as needed. One positive
2263 effect of such a design, amongst other advantages, is that all
2264 tracepoint instances of the same tracepoint class reuse the same
2265 serialization function, thus reducing
2266 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2267
2268 .Use a tracepoint class and tracepoint instances.
2269 ====
2270 Consider the following three tracepoint definitions:
2271
2272 [source,c]
2273 ----
2274 TRACEPOINT_EVENT(
2275 my_app,
2276 get_account,
2277 TP_ARGS(
2278 int, userid,
2279 size_t, len
2280 ),
2281 TP_FIELDS(
2282 ctf_integer(int, userid, userid)
2283 ctf_integer(size_t, len, len)
2284 )
2285 )
2286
2287 TRACEPOINT_EVENT(
2288 my_app,
2289 get_settings,
2290 TP_ARGS(
2291 int, userid,
2292 size_t, len
2293 ),
2294 TP_FIELDS(
2295 ctf_integer(int, userid, userid)
2296 ctf_integer(size_t, len, len)
2297 )
2298 )
2299
2300 TRACEPOINT_EVENT(
2301 my_app,
2302 get_transaction,
2303 TP_ARGS(
2304 int, userid,
2305 size_t, len
2306 ),
2307 TP_FIELDS(
2308 ctf_integer(int, userid, userid)
2309 ctf_integer(size_t, len, len)
2310 )
2311 )
2312 ----
2313
2314 In this case, we create three tracepoint classes, with one implicit
2315 tracepoint instance for each of them: `get_account`, `get_settings`, and
2316 `get_transaction`. However, they all share the same event field names
2317 and types. Hence three identical, yet independent serialization
2318 functions are created when you build the tracepoint provider package.
2319
2320 A better design choice is to define a single tracepoint class and three
2321 tracepoint instances:
2322
2323 [source,c]
2324 ----
2325 /* The tracepoint class */
2326 TRACEPOINT_EVENT_CLASS(
2327 /* Tracepoint provider name */
2328 my_app,
2329
2330 /* Tracepoint class name */
2331 my_class,
2332
2333 /* Input arguments */
2334 TP_ARGS(
2335 int, userid,
2336 size_t, len
2337 ),
2338
2339 /* Output event fields */
2340 TP_FIELDS(
2341 ctf_integer(int, userid, userid)
2342 ctf_integer(size_t, len, len)
2343 )
2344 )
2345
2346 /* The tracepoint instances */
2347 TRACEPOINT_EVENT_INSTANCE(
2348 /* Tracepoint provider name */
2349 my_app,
2350
2351 /* Tracepoint class name */
2352 my_class,
2353
2354 /* Tracepoint name */
2355 get_account,
2356
2357 /* Input arguments */
2358 TP_ARGS(
2359 int, userid,
2360 size_t, len
2361 )
2362 )
2363 TRACEPOINT_EVENT_INSTANCE(
2364 my_app,
2365 my_class,
2366 get_settings,
2367 TP_ARGS(
2368 int, userid,
2369 size_t, len
2370 )
2371 )
2372 TRACEPOINT_EVENT_INSTANCE(
2373 my_app,
2374 my_class,
2375 get_transaction,
2376 TP_ARGS(
2377 int, userid,
2378 size_t, len
2379 )
2380 )
2381 ----
2382 ====
2383
2384
2385 [[assigning-log-levels]]
2386 ===== Assign a log level to a tracepoint definition
2387
2388 You can assign an optional _log level_ to a
2389 <<defining-tracepoints,tracepoint definition>>.
2390
2391 Assigning different levels of severity to tracepoint definitions can
2392 be useful: when you <<enabling-disabling-events,create an event rule>>,
2393 you can target tracepoints having a log level as severe as a specific
2394 value.
2395
2396 The concept of LTTng-UST log levels is similar to the levels found
2397 in typical logging frameworks:
2398
2399 * In a logging framework, the log level is given by the function
2400 or method name you use at the log statement site: `debug()`,
2401 `info()`, `warn()`, `error()`, and so on.
2402 * In LTTng-UST, you statically assign the log level to a tracepoint
2403 definition; any `tracepoint()` macro invocation which refers to
2404 this definition has this log level.
2405
2406 You can assign a log level to a tracepoint definition with the
2407 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2408 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2409 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2410 tracepoint.
2411
2412 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2413
2414 [source,c]
2415 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2416 ----
2417 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2418 ----
2419
2420 Replace:
2421
2422 * `provider_name` with the tracepoint provider name.
2423 * `tracepoint_name` with the tracepoint name.
2424 * `log_level` with the log level to assign to the tracepoint
2425 definition named `tracepoint_name` in the `provider_name`
2426 tracepoint provider.
2427 +
2428 See man:lttng-ust(3) for a list of available log level names.
2429
2430 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2431 ====
2432 [source,c]
2433 ----
2434 /* Tracepoint definition */
2435 TRACEPOINT_EVENT(
2436 my_app,
2437 get_transaction,
2438 TP_ARGS(
2439 int, userid,
2440 size_t, len
2441 ),
2442 TP_FIELDS(
2443 ctf_integer(int, userid, userid)
2444 ctf_integer(size_t, len, len)
2445 )
2446 )
2447
2448 /* Log level assignment */
2449 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2450 ----
2451 ====
2452
2453
2454 [[tpp-source]]
2455 ===== Create a tracepoint provider package source file
2456
2457 A _tracepoint provider package source file_ is a C source file which
2458 includes a <<tpp-header,tracepoint provider header file>> to expand its
2459 macros into event serialization and other functions.
2460
2461 You can always use the following tracepoint provider package source
2462 file template:
2463
2464 [source,c]
2465 .Tracepoint provider package source file template.
2466 ----
2467 #define TRACEPOINT_CREATE_PROBES
2468
2469 #include "tp.h"
2470 ----
2471
2472 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2473 header file>> name. You may also include more than one tracepoint
2474 provider header file here to create a tracepoint provider package
2475 holding more than one tracepoint providers.
2476
2477
2478 [[probing-the-application-source-code]]
2479 ==== Add tracepoints to an application's source code
2480
2481 Once you <<tpp-header,create a tracepoint provider header file>>, you
2482 can use the `tracepoint()` macro in your application's
2483 source code to insert the tracepoints that this header
2484 <<defining-tracepoints,defines>>.
2485
2486 The `tracepoint()` macro takes at least two parameters: the tracepoint
2487 provider name and the tracepoint name. The corresponding tracepoint
2488 definition defines the other parameters.
2489
2490 .`tracepoint()` usage.
2491 ====
2492 The following <<defining-tracepoints,tracepoint definition>> defines a
2493 tracepoint which takes two input arguments and has two output event
2494 fields.
2495
2496 [source,c]
2497 .Tracepoint provider header file.
2498 ----
2499 #include "my-custom-structure.h"
2500
2501 TRACEPOINT_EVENT(
2502 my_provider,
2503 my_tracepoint,
2504 TP_ARGS(
2505 int, argc,
2506 const char*, cmd_name
2507 ),
2508 TP_FIELDS(
2509 ctf_string(cmd_name, cmd_name)
2510 ctf_integer(int, number_of_args, argc)
2511 )
2512 )
2513 ----
2514
2515 You can refer to this tracepoint definition with the `tracepoint()`
2516 macro in your application's source code like this:
2517
2518 [source,c]
2519 .Application's source file.
2520 ----
2521 #include "tp.h"
2522
2523 int main(int argc, char* argv[])
2524 {
2525 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2526
2527 return 0;
2528 }
2529 ----
2530
2531 Note how the application's source code includes
2532 the tracepoint provider header file containing the tracepoint
2533 definitions to use, path:{tp.h}.
2534 ====
2535
2536 .`tracepoint()` usage with a complex tracepoint definition.
2537 ====
2538 Consider this complex tracepoint definition, where multiple event
2539 fields refer to the same input arguments in their argument expression
2540 parameter:
2541
2542 [source,c]
2543 .Tracepoint provider header file.
2544 ----
2545 /* For `struct stat` */
2546 #include <sys/types.h>
2547 #include <sys/stat.h>
2548 #include <unistd.h>
2549
2550 TRACEPOINT_EVENT(
2551 my_provider,
2552 my_tracepoint,
2553 TP_ARGS(
2554 int, my_int_arg,
2555 char*, my_str_arg,
2556 struct stat*, st
2557 ),
2558 TP_FIELDS(
2559 ctf_integer(int, my_constant_field, 23 + 17)
2560 ctf_integer(int, my_int_arg_field, my_int_arg)
2561 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2562 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2563 my_str_arg[2] + my_str_arg[3])
2564 ctf_string(my_str_arg_field, my_str_arg)
2565 ctf_integer_hex(off_t, size_field, st->st_size)
2566 ctf_float(double, size_dbl_field, (double) st->st_size)
2567 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2568 size_t, strlen(my_str_arg) / 2)
2569 )
2570 )
2571 ----
2572
2573 You can refer to this tracepoint definition with the `tracepoint()`
2574 macro in your application's source code like this:
2575
2576 [source,c]
2577 .Application's source file.
2578 ----
2579 #define TRACEPOINT_DEFINE
2580 #include "tp.h"
2581
2582 int main(void)
2583 {
2584 struct stat s;
2585
2586 stat("/etc/fstab", &s);
2587 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2588
2589 return 0;
2590 }
2591 ----
2592
2593 If you look at the event record that LTTng writes when tracing this
2594 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2595 it should look like this:
2596
2597 .Event record fields
2598 |====
2599 |Field's name |Field's value
2600 |`my_constant_field` |40
2601 |`my_int_arg_field` |23
2602 |`my_int_arg_field2` |529
2603 |`sum4_field` |389
2604 |`my_str_arg_field` |`Hello, World!`
2605 |`size_field` |0x12d
2606 |`size_dbl_field` |301.0
2607 |`half_my_str_arg_field` |`Hello,`
2608 |====
2609 ====
2610
2611 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2612 compute--they use the call stack, for example. To avoid this
2613 computation when the tracepoint is disabled, you can use the
2614 `tracepoint_enabled()` and `do_tracepoint()` macros.
2615
2616 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2617 is:
2618
2619 [source,c]
2620 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2621 ----
2622 tracepoint_enabled(provider_name, tracepoint_name)
2623 do_tracepoint(provider_name, tracepoint_name, ...)
2624 ----
2625
2626 Replace:
2627
2628 * `provider_name` with the tracepoint provider name.
2629 * `tracepoint_name` with the tracepoint name.
2630
2631 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2632 `tracepoint_name` from the provider named `provider_name` is enabled
2633 **at run time**.
2634
2635 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2636 if the tracepoint is enabled. Using `tracepoint()` with
2637 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2638 the `tracepoint_enabled()` check, thus a race condition is
2639 possible in this situation:
2640
2641 [source,c]
2642 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2643 ----
2644 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2645 stuff = prepare_stuff();
2646 }
2647
2648 tracepoint(my_provider, my_tracepoint, stuff);
2649 ----
2650
2651 If the tracepoint is enabled after the condition, then `stuff` is not
2652 prepared: the emitted event will either contain wrong data, or the whole
2653 application could crash (segmentation fault, for example).
2654
2655 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2656 `STAP_PROBEV()` call. If you need it, you must emit
2657 this call yourself.
2658
2659
2660 [[building-tracepoint-providers-and-user-application]]
2661 ==== Build and link a tracepoint provider package and an application
2662
2663 Once you have one or more <<tpp-header,tracepoint provider header
2664 files>> and a <<tpp-source,tracepoint provider package source file>>,
2665 you can create the tracepoint provider package by compiling its source
2666 file. From here, multiple build and run scenarios are possible. The
2667 following table shows common application and library configurations
2668 along with the required command lines to achieve them.
2669
2670 In the following diagrams, we use the following file names:
2671
2672 `app`::
2673 Executable application.
2674
2675 `app.o`::
2676 Application's object file.
2677
2678 `tpp.o`::
2679 Tracepoint provider package object file.
2680
2681 `tpp.a`::
2682 Tracepoint provider package archive file.
2683
2684 `libtpp.so`::
2685 Tracepoint provider package shared object file.
2686
2687 `emon.o`::
2688 User library object file.
2689
2690 `libemon.so`::
2691 User library shared object file.
2692
2693 We use the following symbols in the diagrams of table below:
2694
2695 [role="img-100"]
2696 .Symbols used in the build scenario diagrams.
2697 image::ust-sit-symbols.png[]
2698
2699 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2700 variable in the following instructions.
2701
2702 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2703 .Common tracepoint provider package scenarios.
2704 |====
2705 |Scenario |Instructions
2706
2707 |
2708 The instrumented application is statically linked with
2709 the tracepoint provider package object.
2710
2711 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2712
2713 |
2714 include::../common/ust-sit-step-tp-o.txt[]
2715
2716 To build the instrumented application:
2717
2718 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2719 +
2720 --
2721 [source,c]
2722 ----
2723 #define TRACEPOINT_DEFINE
2724 ----
2725 --
2726
2727 . Compile the application source file:
2728 +
2729 --
2730 [role="term"]
2731 ----
2732 $ gcc -c app.c
2733 ----
2734 --
2735
2736 . Build the application:
2737 +
2738 --
2739 [role="term"]
2740 ----
2741 $ gcc -o app app.o tpp.o -llttng-ust -ldl
2742 ----
2743 --
2744
2745 To run the instrumented application:
2746
2747 * Start the application:
2748 +
2749 --
2750 [role="term"]
2751 ----
2752 $ ./app
2753 ----
2754 --
2755
2756 |
2757 The instrumented application is statically linked with the
2758 tracepoint provider package archive file.
2759
2760 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2761
2762 |
2763 To create the tracepoint provider package archive file:
2764
2765 . Compile the <<tpp-source,tracepoint provider package source file>>:
2766 +
2767 --
2768 [role="term"]
2769 ----
2770 $ gcc -I. -c tpp.c
2771 ----
2772 --
2773
2774 . Create the tracepoint provider package archive file:
2775 +
2776 --
2777 [role="term"]
2778 ----
2779 $ ar rcs tpp.a tpp.o
2780 ----
2781 --
2782
2783 To build the instrumented application:
2784
2785 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2786 +
2787 --
2788 [source,c]
2789 ----
2790 #define TRACEPOINT_DEFINE
2791 ----
2792 --
2793
2794 . Compile the application source file:
2795 +
2796 --
2797 [role="term"]
2798 ----
2799 $ gcc -c app.c
2800 ----
2801 --
2802
2803 . Build the application:
2804 +
2805 --
2806 [role="term"]
2807 ----
2808 $ gcc -o app app.o tpp.a -llttng-ust -ldl
2809 ----
2810 --
2811
2812 To run the instrumented application:
2813
2814 * Start the application:
2815 +
2816 --
2817 [role="term"]
2818 ----
2819 $ ./app
2820 ----
2821 --
2822
2823 |
2824 The instrumented application is linked with the tracepoint provider
2825 package shared object.
2826
2827 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2828
2829 |
2830 include::../common/ust-sit-step-tp-so.txt[]
2831
2832 To build the instrumented application:
2833
2834 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2835 +
2836 --
2837 [source,c]
2838 ----
2839 #define TRACEPOINT_DEFINE
2840 ----
2841 --
2842
2843 . Compile the application source file:
2844 +
2845 --
2846 [role="term"]
2847 ----
2848 $ gcc -c app.c
2849 ----
2850 --
2851
2852 . Build the application:
2853 +
2854 --
2855 [role="term"]
2856 ----
2857 $ gcc -o app app.o -ldl -L. -ltpp
2858 ----
2859 --
2860
2861 To run the instrumented application:
2862
2863 * Start the application:
2864 +
2865 --
2866 [role="term"]
2867 ----
2868 $ ./app
2869 ----
2870 --
2871
2872 |
2873 The tracepoint provider package shared object is preloaded before the
2874 instrumented application starts.
2875
2876 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
2877
2878 |
2879 include::../common/ust-sit-step-tp-so.txt[]
2880
2881 To build the instrumented application:
2882
2883 . In path:{app.c}, before including path:{tpp.h}, add the
2884 following lines:
2885 +
2886 --
2887 [source,c]
2888 ----
2889 #define TRACEPOINT_DEFINE
2890 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2891 ----
2892 --
2893
2894 . Compile the application source file:
2895 +
2896 --
2897 [role="term"]
2898 ----
2899 $ gcc -c app.c
2900 ----
2901 --
2902
2903 . Build the application:
2904 +
2905 --
2906 [role="term"]
2907 ----
2908 $ gcc -o app app.o -ldl
2909 ----
2910 --
2911
2912 To run the instrumented application with tracing support:
2913
2914 * Preload the tracepoint provider package shared object and
2915 start the application:
2916 +
2917 --
2918 [role="term"]
2919 ----
2920 $ LD_PRELOAD=./libtpp.so ./app
2921 ----
2922 --
2923
2924 To run the instrumented application without tracing support:
2925
2926 * Start the application:
2927 +
2928 --
2929 [role="term"]
2930 ----
2931 $ ./app
2932 ----
2933 --
2934
2935 |
2936 The instrumented application dynamically loads the tracepoint provider
2937 package shared object.
2938
2939 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
2940
2941 |
2942 include::../common/ust-sit-step-tp-so.txt[]
2943
2944 To build the instrumented application:
2945
2946 . In path:{app.c}, before including path:{tpp.h}, add the
2947 following lines:
2948 +
2949 --
2950 [source,c]
2951 ----
2952 #define TRACEPOINT_DEFINE
2953 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2954 ----
2955 --
2956
2957 . Compile the application source file:
2958 +
2959 --
2960 [role="term"]
2961 ----
2962 $ gcc -c app.c
2963 ----
2964 --
2965
2966 . Build the application:
2967 +
2968 --
2969 [role="term"]
2970 ----
2971 $ gcc -o app app.o -ldl
2972 ----
2973 --
2974
2975 To run the instrumented application:
2976
2977 * Start the application:
2978 +
2979 --
2980 [role="term"]
2981 ----
2982 $ ./app
2983 ----
2984 --
2985
2986 |
2987 The application is linked with the instrumented user library.
2988
2989 The instrumented user library is statically linked with the tracepoint
2990 provider package object file.
2991
2992 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
2993
2994 |
2995 include::../common/ust-sit-step-tp-o-fpic.txt[]
2996
2997 To build the instrumented user library:
2998
2999 . In path:{emon.c}, before including path:{tpp.h}, add the
3000 following line:
3001 +
3002 --
3003 [source,c]
3004 ----
3005 #define TRACEPOINT_DEFINE
3006 ----
3007 --
3008
3009 . Compile the user library source file:
3010 +
3011 --
3012 [role="term"]
3013 ----
3014 $ gcc -I. -fpic -c emon.c
3015 ----
3016 --
3017
3018 . Build the user library shared object:
3019 +
3020 --
3021 [role="term"]
3022 ----
3023 $ gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
3024 ----
3025 --
3026
3027 To build the application:
3028
3029 . Compile the application source file:
3030 +
3031 --
3032 [role="term"]
3033 ----
3034 $ gcc -c app.c
3035 ----
3036 --
3037
3038 . Build the application:
3039 +
3040 --
3041 [role="term"]
3042 ----
3043 $ gcc -o app app.o -L. -lemon
3044 ----
3045 --
3046
3047 To run the application:
3048
3049 * Start the application:
3050 +
3051 --
3052 [role="term"]
3053 ----
3054 $ ./app
3055 ----
3056 --
3057
3058 |
3059 The application is linked with the instrumented user library.
3060
3061 The instrumented user library is linked with the tracepoint provider
3062 package shared object.
3063
3064 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3065
3066 |
3067 include::../common/ust-sit-step-tp-so.txt[]
3068
3069 To build the instrumented user library:
3070
3071 . In path:{emon.c}, before including path:{tpp.h}, add the
3072 following line:
3073 +
3074 --
3075 [source,c]
3076 ----
3077 #define TRACEPOINT_DEFINE
3078 ----
3079 --
3080
3081 . Compile the user library source file:
3082 +
3083 --
3084 [role="term"]
3085 ----
3086 $ gcc -I. -fpic -c emon.c
3087 ----
3088 --
3089
3090 . Build the user library shared object:
3091 +
3092 --
3093 [role="term"]
3094 ----
3095 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3096 ----
3097 --
3098
3099 To build the application:
3100
3101 . Compile the application source file:
3102 +
3103 --
3104 [role="term"]
3105 ----
3106 $ gcc -c app.c
3107 ----
3108 --
3109
3110 . Build the application:
3111 +
3112 --
3113 [role="term"]
3114 ----
3115 $ gcc -o app app.o -L. -lemon
3116 ----
3117 --
3118
3119 To run the application:
3120
3121 * Start the application:
3122 +
3123 --
3124 [role="term"]
3125 ----
3126 $ ./app
3127 ----
3128 --
3129
3130 |
3131 The tracepoint provider package shared object is preloaded before the
3132 application starts.
3133
3134 The application is linked with the instrumented user library.
3135
3136 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3137
3138 |
3139 include::../common/ust-sit-step-tp-so.txt[]
3140
3141 To build the instrumented user library:
3142
3143 . In path:{emon.c}, before including path:{tpp.h}, add the
3144 following lines:
3145 +
3146 --
3147 [source,c]
3148 ----
3149 #define TRACEPOINT_DEFINE
3150 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3151 ----
3152 --
3153
3154 . Compile the user library source file:
3155 +
3156 --
3157 [role="term"]
3158 ----
3159 $ gcc -I. -fpic -c emon.c
3160 ----
3161 --
3162
3163 . Build the user library shared object:
3164 +
3165 --
3166 [role="term"]
3167 ----
3168 $ gcc -shared -o libemon.so emon.o -ldl
3169 ----
3170 --
3171
3172 To build the application:
3173
3174 . Compile the application source file:
3175 +
3176 --
3177 [role="term"]
3178 ----
3179 $ gcc -c app.c
3180 ----
3181 --
3182
3183 . Build the application:
3184 +
3185 --
3186 [role="term"]
3187 ----
3188 $ gcc -o app app.o -L. -lemon
3189 ----
3190 --
3191
3192 To run the application with tracing support:
3193
3194 * Preload the tracepoint provider package shared object and
3195 start the application:
3196 +
3197 --
3198 [role="term"]
3199 ----
3200 $ LD_PRELOAD=./libtpp.so ./app
3201 ----
3202 --
3203
3204 To run the application without tracing support:
3205
3206 * Start the application:
3207 +
3208 --
3209 [role="term"]
3210 ----
3211 $ ./app
3212 ----
3213 --
3214
3215 |
3216 The application is linked with the instrumented user library.
3217
3218 The instrumented user library dynamically loads the tracepoint provider
3219 package shared object.
3220
3221 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3222
3223 |
3224 include::../common/ust-sit-step-tp-so.txt[]
3225
3226 To build the instrumented user library:
3227
3228 . In path:{emon.c}, before including path:{tpp.h}, add the
3229 following lines:
3230 +
3231 --
3232 [source,c]
3233 ----
3234 #define TRACEPOINT_DEFINE
3235 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3236 ----
3237 --
3238
3239 . Compile the user library source file:
3240 +
3241 --
3242 [role="term"]
3243 ----
3244 $ gcc -I. -fpic -c emon.c
3245 ----
3246 --
3247
3248 . Build the user library shared object:
3249 +
3250 --
3251 [role="term"]
3252 ----
3253 $ gcc -shared -o libemon.so emon.o -ldl
3254 ----
3255 --
3256
3257 To build the application:
3258
3259 . Compile the application source file:
3260 +
3261 --
3262 [role="term"]
3263 ----
3264 $ gcc -c app.c
3265 ----
3266 --
3267
3268 . Build the application:
3269 +
3270 --
3271 [role="term"]
3272 ----
3273 $ gcc -o app app.o -L. -lemon
3274 ----
3275 --
3276
3277 To run the application:
3278
3279 * Start the application:
3280 +
3281 --
3282 [role="term"]
3283 ----
3284 $ ./app
3285 ----
3286 --
3287
3288 |
3289 The application dynamically loads the instrumented user library.
3290
3291 The instrumented user library is linked with the tracepoint provider
3292 package shared object.
3293
3294 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3295
3296 |
3297 include::../common/ust-sit-step-tp-so.txt[]
3298
3299 To build the instrumented user library:
3300
3301 . In path:{emon.c}, before including path:{tpp.h}, add the
3302 following line:
3303 +
3304 --
3305 [source,c]
3306 ----
3307 #define TRACEPOINT_DEFINE
3308 ----
3309 --
3310
3311 . Compile the user library source file:
3312 +
3313 --
3314 [role="term"]
3315 ----
3316 $ gcc -I. -fpic -c emon.c
3317 ----
3318 --
3319
3320 . Build the user library shared object:
3321 +
3322 --
3323 [role="term"]
3324 ----
3325 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3326 ----
3327 --
3328
3329 To build the application:
3330
3331 . Compile the application source file:
3332 +
3333 --
3334 [role="term"]
3335 ----
3336 $ gcc -c app.c
3337 ----
3338 --
3339
3340 . Build the application:
3341 +
3342 --
3343 [role="term"]
3344 ----
3345 $ gcc -o app app.o -ldl -L. -lemon
3346 ----
3347 --
3348
3349 To run the application:
3350
3351 * Start the application:
3352 +
3353 --
3354 [role="term"]
3355 ----
3356 $ ./app
3357 ----
3358 --
3359
3360 |
3361 The application dynamically loads the instrumented user library.
3362
3363 The instrumented user library dynamically loads the tracepoint provider
3364 package shared object.
3365
3366 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3367
3368 |
3369 include::../common/ust-sit-step-tp-so.txt[]
3370
3371 To build the instrumented user library:
3372
3373 . In path:{emon.c}, before including path:{tpp.h}, add the
3374 following lines:
3375 +
3376 --
3377 [source,c]
3378 ----
3379 #define TRACEPOINT_DEFINE
3380 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3381 ----
3382 --
3383
3384 . Compile the user library source file:
3385 +
3386 --
3387 [role="term"]
3388 ----
3389 $ gcc -I. -fpic -c emon.c
3390 ----
3391 --
3392
3393 . Build the user library shared object:
3394 +
3395 --
3396 [role="term"]
3397 ----
3398 $ gcc -shared -o libemon.so emon.o -ldl
3399 ----
3400 --
3401
3402 To build the application:
3403
3404 . Compile the application source file:
3405 +
3406 --
3407 [role="term"]
3408 ----
3409 $ gcc -c app.c
3410 ----
3411 --
3412
3413 . Build the application:
3414 +
3415 --
3416 [role="term"]
3417 ----
3418 $ gcc -o app app.o -ldl -L. -lemon
3419 ----
3420 --
3421
3422 To run the application:
3423
3424 * Start the application:
3425 +
3426 --
3427 [role="term"]
3428 ----
3429 $ ./app
3430 ----
3431 --
3432
3433 |
3434 The tracepoint provider package shared object is preloaded before the
3435 application starts.
3436
3437 The application dynamically loads the instrumented user library.
3438
3439 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3440
3441 |
3442 include::../common/ust-sit-step-tp-so.txt[]
3443
3444 To build the instrumented user library:
3445
3446 . In path:{emon.c}, before including path:{tpp.h}, add the
3447 following lines:
3448 +
3449 --
3450 [source,c]
3451 ----
3452 #define TRACEPOINT_DEFINE
3453 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3454 ----
3455 --
3456
3457 . Compile the user library source file:
3458 +
3459 --
3460 [role="term"]
3461 ----
3462 $ gcc -I. -fpic -c emon.c
3463 ----
3464 --
3465
3466 . Build the user library shared object:
3467 +
3468 --
3469 [role="term"]
3470 ----
3471 $ gcc -shared -o libemon.so emon.o -ldl
3472 ----
3473 --
3474
3475 To build the application:
3476
3477 . Compile the application source file:
3478 +
3479 --
3480 [role="term"]
3481 ----
3482 $ gcc -c app.c
3483 ----
3484 --
3485
3486 . Build the application:
3487 +
3488 --
3489 [role="term"]
3490 ----
3491 $ gcc -o app app.o -L. -lemon
3492 ----
3493 --
3494
3495 To run the application with tracing support:
3496
3497 * Preload the tracepoint provider package shared object and
3498 start the application:
3499 +
3500 --
3501 [role="term"]
3502 ----
3503 $ LD_PRELOAD=./libtpp.so ./app
3504 ----
3505 --
3506
3507 To run the application without tracing support:
3508
3509 * Start the application:
3510 +
3511 --
3512 [role="term"]
3513 ----
3514 $ ./app
3515 ----
3516 --
3517
3518 |
3519 The application is statically linked with the tracepoint provider
3520 package object file.
3521
3522 The application is linked with the instrumented user library.
3523
3524 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3525
3526 |
3527 include::../common/ust-sit-step-tp-o.txt[]
3528
3529 To build the instrumented user library:
3530
3531 . In path:{emon.c}, before including path:{tpp.h}, add the
3532 following line:
3533 +
3534 --
3535 [source,c]
3536 ----
3537 #define TRACEPOINT_DEFINE
3538 ----
3539 --
3540
3541 . Compile the user library source file:
3542 +
3543 --
3544 [role="term"]
3545 ----
3546 $ gcc -I. -fpic -c emon.c
3547 ----
3548 --
3549
3550 . Build the user library shared object:
3551 +
3552 --
3553 [role="term"]
3554 ----
3555 $ gcc -shared -o libemon.so emon.o
3556 ----
3557 --
3558
3559 To build the application:
3560
3561 . Compile the application source file:
3562 +
3563 --
3564 [role="term"]
3565 ----
3566 $ gcc -c app.c
3567 ----
3568 --
3569
3570 . Build the application:
3571 +
3572 --
3573 [role="term"]
3574 ----
3575 $ gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3576 ----
3577 --
3578
3579 To run the instrumented application:
3580
3581 * Start the application:
3582 +
3583 --
3584 [role="term"]
3585 ----
3586 $ ./app
3587 ----
3588 --
3589
3590 |
3591 The application is statically linked with the tracepoint provider
3592 package object file.
3593
3594 The application dynamically loads the instrumented user library.
3595
3596 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3597
3598 |
3599 include::../common/ust-sit-step-tp-o.txt[]
3600
3601 To build the application:
3602
3603 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3604 +
3605 --
3606 [source,c]
3607 ----
3608 #define TRACEPOINT_DEFINE
3609 ----
3610 --
3611
3612 . Compile the application source file:
3613 +
3614 --
3615 [role="term"]
3616 ----
3617 $ gcc -c app.c
3618 ----
3619 --
3620
3621 . Build the application:
3622 +
3623 --
3624 [role="term"]
3625 ----
3626 $ gcc -Wl,--export-dynamic -o app app.o tpp.o \
3627 -llttng-ust -ldl
3628 ----
3629 --
3630 +
3631 The `--export-dynamic` option passed to the linker is necessary for the
3632 dynamically loaded library to ``see'' the tracepoint symbols defined in
3633 the application.
3634
3635 To build the instrumented user library:
3636
3637 . Compile the user library source file:
3638 +
3639 --
3640 [role="term"]
3641 ----
3642 $ gcc -I. -fpic -c emon.c
3643 ----
3644 --
3645
3646 . Build the user library shared object:
3647 +
3648 --
3649 [role="term"]
3650 ----
3651 $ gcc -shared -o libemon.so emon.o
3652 ----
3653 --
3654
3655 To run the application:
3656
3657 * Start the application:
3658 +
3659 --
3660 [role="term"]
3661 ----
3662 $ ./app
3663 ----
3664 --
3665 |====
3666
3667
3668 [[using-lttng-ust-with-daemons]]
3669 ===== Use noch:{LTTng-UST} with daemons
3670
3671 If your instrumented application calls man:fork(2), man:clone(2),
3672 or BSD's man:rfork(2), without a following man:exec(3)-family
3673 system call, you must preload the path:{liblttng-ust-fork.so} shared
3674 object when you start the application.
3675
3676 [role="term"]
3677 ----
3678 $ LD_PRELOAD=liblttng-ust-fork.so ./my-app
3679 ----
3680
3681 If your tracepoint provider package is
3682 a shared library which you also preload, you must put both
3683 shared objects in env:LD_PRELOAD:
3684
3685 [role="term"]
3686 ----
3687 $ LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3688 ----
3689
3690
3691 [role="since-2.9"]
3692 [[liblttng-ust-fd]]
3693 ===== Use noch:{LTTng-UST} with applications which close file descriptors that don't belong to them
3694
3695 If your instrumented application closes one or more file descriptors
3696 which it did not open itself, you must preload the
3697 path:{liblttng-ust-fd.so} shared object when you start the application:
3698
3699 [role="term"]
3700 ----
3701 $ LD_PRELOAD=liblttng-ust-fd.so ./my-app
3702 ----
3703
3704 Typical use cases include closing all the file descriptors after
3705 man:fork(2) or man:rfork(2) and buggy applications doing
3706 ``double closes''.
3707
3708
3709 [[lttng-ust-pkg-config]]
3710 ===== Use noch:{pkg-config}
3711
3712 On some distributions, LTTng-UST ships with a
3713 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3714 metadata file. If this is your case, then you can use cmd:pkg-config to
3715 build an application on the command line:
3716
3717 [role="term"]
3718 ----
3719 $ gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3720 ----
3721
3722
3723 [[instrumenting-32-bit-app-on-64-bit-system]]
3724 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3725
3726 In order to trace a 32-bit application running on a 64-bit system,
3727 LTTng must use a dedicated 32-bit
3728 <<lttng-consumerd,consumer daemon>>.
3729
3730 The following steps show how to build and install a 32-bit consumer
3731 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3732 build and install the 32-bit LTTng-UST libraries, and how to build and
3733 link an instrumented 32-bit application in that context.
3734
3735 To build a 32-bit instrumented application for a 64-bit target system,
3736 assuming you have a fresh target system with no installed Userspace RCU
3737 or LTTng packages:
3738
3739 . Download, build, and install a 32-bit version of Userspace RCU:
3740 +
3741 --
3742 [role="term"]
3743 ----
3744 $ cd $(mktemp -d) &&
3745 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3746 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3747 cd userspace-rcu-0.9.* &&
3748 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3749 make &&
3750 sudo make install &&
3751 sudo ldconfig
3752 ----
3753 --
3754
3755 . Using your distribution's package manager, or from source, install
3756 the following 32-bit versions of the following dependencies of
3757 LTTng-tools and LTTng-UST:
3758 +
3759 --
3760 * https://sourceforge.net/projects/libuuid/[libuuid]
3761 * http://directory.fsf.org/wiki/Popt[popt]
3762 * http://www.xmlsoft.org/[libxml2]
3763 --
3764
3765 . Download, build, and install a 32-bit version of the latest
3766 LTTng-UST{nbsp}{revision}:
3767 +
3768 --
3769 [role="term"]
3770 ----
3771 $ cd $(mktemp -d) &&
3772 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.11.tar.bz2 &&
3773 tar -xf lttng-ust-latest-2.11.tar.bz2 &&
3774 cd lttng-ust-2.11.* &&
3775 ./configure --libdir=/usr/local/lib32 \
3776 CFLAGS=-m32 CXXFLAGS=-m32 \
3777 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3778 make &&
3779 sudo make install &&
3780 sudo ldconfig
3781 ----
3782 --
3783 +
3784 [NOTE]
3785 ====
3786 Depending on your distribution,
3787 32-bit libraries could be installed at a different location than
3788 `/usr/lib32`. For example, Debian is known to install
3789 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3790
3791 In this case, make sure to set `LDFLAGS` to all the
3792 relevant 32-bit library paths, for example:
3793
3794 [role="term"]
3795 ----
3796 $ LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3797 ----
3798 ====
3799
3800 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
3801 the 32-bit consumer daemon:
3802 +
3803 --
3804 [role="term"]
3805 ----
3806 $ cd $(mktemp -d) &&
3807 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.11.tar.bz2 &&
3808 tar -xf lttng-tools-latest-2.11.tar.bz2 &&
3809 cd lttng-tools-2.11.* &&
3810 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3811 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' \
3812 --disable-bin-lttng --disable-bin-lttng-crash \
3813 --disable-bin-lttng-relayd --disable-bin-lttng-sessiond &&
3814 make &&
3815 cd src/bin/lttng-consumerd &&
3816 sudo make install &&
3817 sudo ldconfig
3818 ----
3819 --
3820
3821 . From your distribution or from source,
3822 <<installing-lttng,install>> the 64-bit versions of
3823 LTTng-UST and Userspace RCU.
3824 . Download, build, and install the 64-bit version of the
3825 latest LTTng-tools{nbsp}{revision}:
3826 +
3827 --
3828 [role="term"]
3829 ----
3830 $ cd $(mktemp -d) &&
3831 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.11.tar.bz2 &&
3832 tar -xf lttng-tools-latest-2.11.tar.bz2 &&
3833 cd lttng-tools-2.11.* &&
3834 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
3835 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
3836 make &&
3837 sudo make install &&
3838 sudo ldconfig
3839 ----
3840 --
3841
3842 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
3843 when linking your 32-bit application:
3844 +
3845 ----
3846 -m32 -L/usr/lib32 -L/usr/local/lib32 \
3847 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
3848 ----
3849 +
3850 For example, let's rebuild the quick start example in
3851 <<tracing-your-own-user-application,Trace a user application>> as an
3852 instrumented 32-bit application:
3853 +
3854 --
3855 [role="term"]
3856 ----
3857 $ gcc -m32 -c -I. hello-tp.c
3858 $ gcc -m32 -c hello.c
3859 $ gcc -m32 -o hello hello.o hello-tp.o \
3860 -L/usr/lib32 -L/usr/local/lib32 \
3861 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
3862 -llttng-ust -ldl
3863 ----
3864 --
3865
3866 No special action is required to execute the 32-bit application and
3867 to trace it: use the command-line man:lttng(1) tool as usual.
3868
3869
3870 [role="since-2.5"]
3871 [[tracef]]
3872 ==== Use `tracef()`
3873
3874 man:tracef(3) is a small LTTng-UST API designed for quick,
3875 man:printf(3)-like instrumentation without the burden of
3876 <<tracepoint-provider,creating>> and
3877 <<building-tracepoint-providers-and-user-application,building>>
3878 a tracepoint provider package.
3879
3880 To use `tracef()` in your application:
3881
3882 . In the C or C++ source files where you need to use `tracef()`,
3883 include `<lttng/tracef.h>`:
3884 +
3885 --
3886 [source,c]
3887 ----
3888 #include <lttng/tracef.h>
3889 ----
3890 --
3891
3892 . In the application's source code, use `tracef()` like you would use
3893 man:printf(3):
3894 +
3895 --
3896 [source,c]
3897 ----
3898 /* ... */
3899
3900 tracef("my message: %d (%s)", my_integer, my_string);
3901
3902 /* ... */
3903 ----
3904 --
3905
3906 . Link your application with `liblttng-ust`:
3907 +
3908 --
3909 [role="term"]
3910 ----
3911 $ gcc -o app app.c -llttng-ust
3912 ----
3913 --
3914
3915 To trace the events that `tracef()` calls emit:
3916
3917 * <<enabling-disabling-events,Create an event rule>> which matches the
3918 `lttng_ust_tracef:*` event name:
3919 +
3920 --
3921 [role="term"]
3922 ----
3923 $ lttng enable-event --userspace 'lttng_ust_tracef:*'
3924 ----
3925 --
3926
3927 [IMPORTANT]
3928 .Limitations of `tracef()`
3929 ====
3930 The `tracef()` utility function was developed to make user space tracing
3931 super simple, albeit with notable disadvantages compared to
3932 <<defining-tracepoints,user-defined tracepoints>>:
3933
3934 * All the emitted events have the same tracepoint provider and
3935 tracepoint names, respectively `lttng_ust_tracef` and `event`.
3936 * There is no static type checking.
3937 * The only event record field you actually get, named `msg`, is a string
3938 potentially containing the values you passed to `tracef()`
3939 using your own format string. This also means that you cannot filter
3940 events with a custom expression at run time because there are no
3941 isolated fields.
3942 * Since `tracef()` uses the C standard library's man:vasprintf(3)
3943 function behind the scenes to format the strings at run time, its
3944 expected performance is lower than with user-defined tracepoints,
3945 which do not require a conversion to a string.
3946
3947 Taking this into consideration, `tracef()` is useful for some quick
3948 prototyping and debugging, but you should not consider it for any
3949 permanent and serious applicative instrumentation.
3950 ====
3951
3952
3953 [role="since-2.7"]
3954 [[tracelog]]
3955 ==== Use `tracelog()`
3956
3957 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
3958 the difference that it accepts an additional log level parameter.
3959
3960 The goal of `tracelog()` is to ease the migration from logging to
3961 tracing.
3962
3963 To use `tracelog()` in your application:
3964
3965 . In the C or C++ source files where you need to use `tracelog()`,
3966 include `<lttng/tracelog.h>`:
3967 +
3968 --
3969 [source,c]
3970 ----
3971 #include <lttng/tracelog.h>
3972 ----
3973 --
3974
3975 . In the application's source code, use `tracelog()` like you would use
3976 man:printf(3), except for the first parameter which is the log
3977 level:
3978 +
3979 --
3980 [source,c]
3981 ----
3982 /* ... */
3983
3984 tracelog(TRACE_WARNING, "my message: %d (%s)",
3985 my_integer, my_string);
3986
3987 /* ... */
3988 ----
3989 --
3990 +
3991 See man:lttng-ust(3) for a list of available log level names.
3992
3993 . Link your application with `liblttng-ust`:
3994 +
3995 --
3996 [role="term"]
3997 ----
3998 $ gcc -o app app.c -llttng-ust
3999 ----
4000 --
4001
4002 To trace the events that `tracelog()` calls emit with a log level
4003 _as severe as_ a specific log level:
4004
4005 * <<enabling-disabling-events,Create an event rule>> which matches the
4006 `lttng_ust_tracelog:*` event name and a minimum level
4007 of severity:
4008 +
4009 --
4010 [role="term"]
4011 ----
4012 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
4013 --loglevel=TRACE_WARNING
4014 ----
4015 --
4016
4017 To trace the events that `tracelog()` calls emit with a
4018 _specific log level_:
4019
4020 * Create an event rule which matches the `lttng_ust_tracelog:*`
4021 event name and a specific log level:
4022 +
4023 --
4024 [role="term"]
4025 ----
4026 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
4027 --loglevel-only=TRACE_INFO
4028 ----
4029 --
4030
4031
4032 [[prebuilt-ust-helpers]]
4033 === Prebuilt user space tracing helpers
4034
4035 The LTTng-UST package provides a few helpers in the form or preloadable
4036 shared objects which automatically instrument system functions and
4037 calls.
4038
4039 The helper shared objects are normally found in dir:{/usr/lib}. If you
4040 built LTTng-UST <<building-from-source,from source>>, they are probably
4041 located in dir:{/usr/local/lib}.
4042
4043 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4044 are:
4045
4046 path:{liblttng-ust-libc-wrapper.so}::
4047 path:{liblttng-ust-pthread-wrapper.so}::
4048 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4049 memory and POSIX threads function tracing>>.
4050
4051 path:{liblttng-ust-cyg-profile.so}::
4052 path:{liblttng-ust-cyg-profile-fast.so}::
4053 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4054
4055 path:{liblttng-ust-dl.so}::
4056 <<liblttng-ust-dl,Dynamic linker tracing>>.
4057
4058 To use a user space tracing helper with any user application:
4059
4060 * Preload the helper shared object when you start the application:
4061 +
4062 --
4063 [role="term"]
4064 ----
4065 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4066 ----
4067 --
4068 +
4069 You can preload more than one helper:
4070 +
4071 --
4072 [role="term"]
4073 ----
4074 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4075 ----
4076 --
4077
4078
4079 [role="since-2.3"]
4080 [[liblttng-ust-libc-pthread-wrapper]]
4081 ==== Instrument C standard library memory and POSIX threads functions
4082
4083 The path:{liblttng-ust-libc-wrapper.so} and
4084 path:{liblttng-ust-pthread-wrapper.so} helpers
4085 add instrumentation to some C standard library and POSIX
4086 threads functions.
4087
4088 [role="growable"]
4089 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4090 |====
4091 |TP provider name |TP name |Instrumented function
4092
4093 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4094 |`calloc` |man:calloc(3)
4095 |`realloc` |man:realloc(3)
4096 |`free` |man:free(3)
4097 |`memalign` |man:memalign(3)
4098 |`posix_memalign` |man:posix_memalign(3)
4099 |====
4100
4101 [role="growable"]
4102 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4103 |====
4104 |TP provider name |TP name |Instrumented function
4105
4106 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4107 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4108 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4109 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4110 |====
4111
4112 When you preload the shared object, it replaces the functions listed
4113 in the previous tables by wrappers which contain tracepoints and call
4114 the replaced functions.
4115
4116
4117 [[liblttng-ust-cyg-profile]]
4118 ==== Instrument function entry and exit
4119
4120 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4121 to the entry and exit points of functions.
4122
4123 man:gcc(1) and man:clang(1) have an option named
4124 https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html[`-finstrument-functions`]
4125 which generates instrumentation calls for entry and exit to functions.
4126 The LTTng-UST function tracing helpers,
4127 path:{liblttng-ust-cyg-profile.so} and
4128 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4129 to add tracepoints to the two generated functions (which contain
4130 `cyg_profile` in their names, hence the helper's name).
4131
4132 To use the LTTng-UST function tracing helper, the source files to
4133 instrument must be built using the `-finstrument-functions` compiler
4134 flag.
4135
4136 There are two versions of the LTTng-UST function tracing helper:
4137
4138 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4139 that you should only use when it can be _guaranteed_ that the
4140 complete event stream is recorded without any lost event record.
4141 Any kind of duplicate information is left out.
4142 +
4143 Assuming no event record is lost, having only the function addresses on
4144 entry is enough to create a call graph, since an event record always
4145 contains the ID of the CPU that generated it.
4146 +
4147 You can use a tool like man:addr2line(1) to convert function addresses
4148 back to source file names and line numbers.
4149
4150 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4151 which also works in use cases where event records might get discarded or
4152 not recorded from application startup.
4153 In these cases, the trace analyzer needs more information to be
4154 able to reconstruct the program flow.
4155
4156 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4157 points of this helper.
4158
4159 All the tracepoints that this helper provides have the
4160 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4161
4162 TIP: It's sometimes a good idea to limit the number of source files that
4163 you compile with the `-finstrument-functions` option to prevent LTTng
4164 from writing an excessive amount of trace data at run time. When using
4165 man:gcc(1), you can use the
4166 `-finstrument-functions-exclude-function-list` option to avoid
4167 instrument entries and exits of specific function names.
4168
4169
4170 [role="since-2.4"]
4171 [[liblttng-ust-dl]]
4172 ==== Instrument the dynamic linker
4173
4174 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4175 man:dlopen(3) and man:dlclose(3) function calls.
4176
4177 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4178 of this helper.
4179
4180
4181 [role="since-2.4"]
4182 [[java-application]]
4183 === User space Java agent
4184
4185 You can instrument any Java application which uses one of the following
4186 logging frameworks:
4187
4188 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4189 (JUL) core logging facilities.
4190 * http://logging.apache.org/log4j/1.2/[**Apache log4j{nbsp}1.2**], since
4191 LTTng{nbsp}2.6. Note that Apache Log4j{nbsp}2 is not supported.
4192
4193 [role="img-100"]
4194 .LTTng-UST Java agent imported by a Java application.
4195 image::java-app.png[]
4196
4197 Note that the methods described below are new in LTTng{nbsp}{revision}.
4198 Previous LTTng versions use another technique.
4199
4200 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4201 and https://ci.lttng.org/[continuous integration], thus this version is
4202 directly supported. However, the LTTng-UST Java agent is also tested
4203 with OpenJDK{nbsp}7.
4204
4205
4206 [role="since-2.8"]
4207 [[jul]]
4208 ==== Use the LTTng-UST Java agent for `java.util.logging`
4209
4210 To use the LTTng-UST Java agent in a Java application which uses
4211 `java.util.logging` (JUL):
4212
4213 . In the Java application's source code, import the LTTng-UST
4214 log handler package for `java.util.logging`:
4215 +
4216 --
4217 [source,java]
4218 ----
4219 import org.lttng.ust.agent.jul.LttngLogHandler;
4220 ----
4221 --
4222
4223 . Create an LTTng-UST JUL log handler:
4224 +
4225 --
4226 [source,java]
4227 ----
4228 Handler lttngUstLogHandler = new LttngLogHandler();
4229 ----
4230 --
4231
4232 . Add this handler to the JUL loggers which should emit LTTng events:
4233 +
4234 --
4235 [source,java]
4236 ----
4237 Logger myLogger = Logger.getLogger("some-logger");
4238
4239 myLogger.addHandler(lttngUstLogHandler);
4240 ----
4241 --
4242
4243 . Use `java.util.logging` log statements and configuration as usual.
4244 The loggers with an attached LTTng-UST log handler can emit
4245 LTTng events.
4246
4247 . Before exiting the application, remove the LTTng-UST log handler from
4248 the loggers attached to it and call its `close()` method:
4249 +
4250 --
4251 [source,java]
4252 ----
4253 myLogger.removeHandler(lttngUstLogHandler);
4254 lttngUstLogHandler.close();
4255 ----
4256 --
4257 +
4258 This is not strictly necessary, but it is recommended for a clean
4259 disposal of the handler's resources.
4260
4261 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4262 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4263 in the
4264 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4265 path] when you build the Java application.
4266 +
4267 The JAR files are typically located in dir:{/usr/share/java}.
4268 +
4269 IMPORTANT: The LTTng-UST Java agent must be
4270 <<installing-lttng,installed>> for the logging framework your
4271 application uses.
4272
4273 .Use the LTTng-UST Java agent for `java.util.logging`.
4274 ====
4275 [source,java]
4276 .path:{Test.java}
4277 ----
4278 import java.io.IOException;
4279 import java.util.logging.Handler;
4280 import java.util.logging.Logger;
4281 import org.lttng.ust.agent.jul.LttngLogHandler;
4282
4283 public class Test
4284 {
4285 private static final int answer = 42;
4286
4287 public static void main(String[] argv) throws Exception
4288 {
4289 // Create a logger
4290 Logger logger = Logger.getLogger("jello");
4291
4292 // Create an LTTng-UST log handler
4293 Handler lttngUstLogHandler = new LttngLogHandler();
4294
4295 // Add the LTTng-UST log handler to our logger
4296 logger.addHandler(lttngUstLogHandler);
4297
4298 // Log at will!
4299 logger.info("some info");
4300 logger.warning("some warning");
4301 Thread.sleep(500);
4302 logger.finer("finer information; the answer is " + answer);
4303 Thread.sleep(123);
4304 logger.severe("error!");
4305
4306 // Not mandatory, but cleaner
4307 logger.removeHandler(lttngUstLogHandler);
4308 lttngUstLogHandler.close();
4309 }
4310 }
4311 ----
4312
4313 Build this example:
4314
4315 [role="term"]
4316 ----
4317 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4318 ----
4319
4320 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4321 <<enabling-disabling-events,create an event rule>> matching the
4322 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4323
4324 [role="term"]
4325 ----
4326 $ lttng create
4327 $ lttng enable-event --jul jello
4328 $ lttng start
4329 ----
4330
4331 Run the compiled class:
4332
4333 [role="term"]
4334 ----
4335 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4336 ----
4337
4338 <<basic-tracing-session-control,Stop tracing>> and inspect the
4339 recorded events:
4340
4341 [role="term"]
4342 ----
4343 $ lttng stop
4344 $ lttng view
4345 ----
4346 ====
4347
4348 In the resulting trace, an <<event,event record>> generated by a Java
4349 application using `java.util.logging` is named `lttng_jul:event` and
4350 has the following fields:
4351
4352 `msg`::
4353 Log record's message.
4354
4355 `logger_name`::
4356 Logger name.
4357
4358 `class_name`::
4359 Name of the class in which the log statement was executed.
4360
4361 `method_name`::
4362 Name of the method in which the log statement was executed.
4363
4364 `long_millis`::
4365 Logging time (timestamp in milliseconds).
4366
4367 `int_loglevel`::
4368 Log level integer value.
4369
4370 `int_threadid`::
4371 ID of the thread in which the log statement was executed.
4372
4373 You can use the opt:lttng-enable-event(1):--loglevel or
4374 opt:lttng-enable-event(1):--loglevel-only option of the
4375 man:lttng-enable-event(1) command to target a range of JUL log levels
4376 or a specific JUL log level.
4377
4378
4379 [role="since-2.8"]
4380 [[log4j]]
4381 ==== Use the LTTng-UST Java agent for Apache log4j
4382
4383 To use the LTTng-UST Java agent in a Java application which uses
4384 Apache log4j{nbsp}1.2:
4385
4386 . In the Java application's source code, import the LTTng-UST
4387 log appender package for Apache log4j:
4388 +
4389 --
4390 [source,java]
4391 ----
4392 import org.lttng.ust.agent.log4j.LttngLogAppender;
4393 ----
4394 --
4395
4396 . Create an LTTng-UST log4j log appender:
4397 +
4398 --
4399 [source,java]
4400 ----
4401 Appender lttngUstLogAppender = new LttngLogAppender();
4402 ----
4403 --
4404
4405 . Add this appender to the log4j loggers which should emit LTTng events:
4406 +
4407 --
4408 [source,java]
4409 ----
4410 Logger myLogger = Logger.getLogger("some-logger");
4411
4412 myLogger.addAppender(lttngUstLogAppender);
4413 ----
4414 --
4415
4416 . Use Apache log4j log statements and configuration as usual. The
4417 loggers with an attached LTTng-UST log appender can emit LTTng events.
4418
4419 . Before exiting the application, remove the LTTng-UST log appender from
4420 the loggers attached to it and call its `close()` method:
4421 +
4422 --
4423 [source,java]
4424 ----
4425 myLogger.removeAppender(lttngUstLogAppender);
4426 lttngUstLogAppender.close();
4427 ----
4428 --
4429 +
4430 This is not strictly necessary, but it is recommended for a clean
4431 disposal of the appender's resources.
4432
4433 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4434 files, path:{lttng-ust-agent-common.jar} and
4435 path:{lttng-ust-agent-log4j.jar}, in the
4436 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4437 path] when you build the Java application.
4438 +
4439 The JAR files are typically located in dir:{/usr/share/java}.
4440 +
4441 IMPORTANT: The LTTng-UST Java agent must be
4442 <<installing-lttng,installed>> for the logging framework your
4443 application uses.
4444
4445 .Use the LTTng-UST Java agent for Apache log4j.
4446 ====
4447 [source,java]
4448 .path:{Test.java}
4449 ----
4450 import org.apache.log4j.Appender;
4451 import org.apache.log4j.Logger;
4452 import org.lttng.ust.agent.log4j.LttngLogAppender;
4453
4454 public class Test
4455 {
4456 private static final int answer = 42;
4457
4458 public static void main(String[] argv) throws Exception
4459 {
4460 // Create a logger
4461 Logger logger = Logger.getLogger("jello");
4462
4463 // Create an LTTng-UST log appender
4464 Appender lttngUstLogAppender = new LttngLogAppender();
4465
4466 // Add the LTTng-UST log appender to our logger
4467 logger.addAppender(lttngUstLogAppender);
4468
4469 // Log at will!
4470 logger.info("some info");
4471 logger.warn("some warning");
4472 Thread.sleep(500);
4473 logger.debug("debug information; the answer is " + answer);
4474 Thread.sleep(123);
4475 logger.fatal("error!");
4476
4477 // Not mandatory, but cleaner
4478 logger.removeAppender(lttngUstLogAppender);
4479 lttngUstLogAppender.close();
4480 }
4481 }
4482
4483 ----
4484
4485 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4486 file):
4487
4488 [role="term"]
4489 ----
4490 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4491 ----
4492
4493 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4494 <<enabling-disabling-events,create an event rule>> matching the
4495 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4496
4497 [role="term"]
4498 ----
4499 $ lttng create
4500 $ lttng enable-event --log4j jello
4501 $ lttng start
4502 ----
4503
4504 Run the compiled class:
4505
4506 [role="term"]
4507 ----
4508 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4509 ----
4510
4511 <<basic-tracing-session-control,Stop tracing>> and inspect the
4512 recorded events:
4513
4514 [role="term"]
4515 ----
4516 $ lttng stop
4517 $ lttng view
4518 ----
4519 ====
4520
4521 In the resulting trace, an <<event,event record>> generated by a Java
4522 application using log4j is named `lttng_log4j:event` and
4523 has the following fields:
4524
4525 `msg`::
4526 Log record's message.
4527
4528 `logger_name`::
4529 Logger name.
4530
4531 `class_name`::
4532 Name of the class in which the log statement was executed.
4533
4534 `method_name`::
4535 Name of the method in which the log statement was executed.
4536
4537 `filename`::
4538 Name of the file in which the executed log statement is located.
4539
4540 `line_number`::
4541 Line number at which the log statement was executed.
4542
4543 `timestamp`::
4544 Logging timestamp.
4545
4546 `int_loglevel`::
4547 Log level integer value.
4548
4549 `thread_name`::
4550 Name of the Java thread in which the log statement was executed.
4551
4552 You can use the opt:lttng-enable-event(1):--loglevel or
4553 opt:lttng-enable-event(1):--loglevel-only option of the
4554 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4555 or a specific log4j log level.
4556
4557
4558 [role="since-2.8"]
4559 [[java-application-context]]
4560 ==== Provide application-specific context fields in a Java application
4561
4562 A Java application-specific context field is a piece of state provided
4563 by the application which <<adding-context,you can add>>, using the
4564 man:lttng-add-context(1) command, to each <<event,event record>>
4565 produced by the log statements of this application.
4566
4567 For example, a given object might have a current request ID variable.
4568 You can create a context information retriever for this object and
4569 assign a name to this current request ID. You can then, using the
4570 man:lttng-add-context(1) command, add this context field by name to
4571 the JUL or log4j <<channel,channel>>.
4572
4573 To provide application-specific context fields in a Java application:
4574
4575 . In the Java application's source code, import the LTTng-UST
4576 Java agent context classes and interfaces:
4577 +
4578 --
4579 [source,java]
4580 ----
4581 import org.lttng.ust.agent.context.ContextInfoManager;
4582 import org.lttng.ust.agent.context.IContextInfoRetriever;
4583 ----
4584 --
4585
4586 . Create a context information retriever class, that is, a class which
4587 implements the `IContextInfoRetriever` interface:
4588 +
4589 --
4590 [source,java]
4591 ----
4592 class MyContextInfoRetriever implements IContextInfoRetriever
4593 {
4594 @Override
4595 public Object retrieveContextInfo(String key)
4596 {
4597 if (key.equals("intCtx")) {
4598 return (short) 17;
4599 } else if (key.equals("strContext")) {
4600 return "context value!";
4601 } else {
4602 return null;
4603 }
4604 }
4605 }
4606 ----
4607 --
4608 +
4609 This `retrieveContextInfo()` method is the only member of the
4610 `IContextInfoRetriever` interface. Its role is to return the current
4611 value of a state by name to create a context field. The names of the
4612 context fields and which state variables they return depends on your
4613 specific scenario.
4614 +
4615 All primitive types and objects are supported as context fields.
4616 When `retrieveContextInfo()` returns an object, the context field
4617 serializer calls its `toString()` method to add a string field to
4618 event records. The method can also return `null`, which means that
4619 no context field is available for the required name.
4620
4621 . Register an instance of your context information retriever class to
4622 the context information manager singleton:
4623 +
4624 --
4625 [source,java]
4626 ----
4627 IContextInfoRetriever cir = new MyContextInfoRetriever();
4628 ContextInfoManager cim = ContextInfoManager.getInstance();
4629 cim.registerContextInfoRetriever("retrieverName", cir);
4630 ----
4631 --
4632
4633 . Before exiting the application, remove your context information
4634 retriever from the context information manager singleton:
4635 +
4636 --
4637 [source,java]
4638 ----
4639 ContextInfoManager cim = ContextInfoManager.getInstance();
4640 cim.unregisterContextInfoRetriever("retrieverName");
4641 ----
4642 --
4643 +
4644 This is not strictly necessary, but it is recommended for a clean
4645 disposal of some manager's resources.
4646
4647 . Build your Java application with LTTng-UST Java agent support as
4648 usual, following the procedure for either the <<jul,JUL>> or
4649 <<log4j,Apache log4j>> framework.
4650
4651
4652 .Provide application-specific context fields in a Java application.
4653 ====
4654 [source,java]
4655 .path:{Test.java}
4656 ----
4657 import java.util.logging.Handler;
4658 import java.util.logging.Logger;
4659 import org.lttng.ust.agent.jul.LttngLogHandler;
4660 import org.lttng.ust.agent.context.ContextInfoManager;
4661 import org.lttng.ust.agent.context.IContextInfoRetriever;
4662
4663 public class Test
4664 {
4665 // Our context information retriever class
4666 private static class MyContextInfoRetriever
4667 implements IContextInfoRetriever
4668 {
4669 @Override
4670 public Object retrieveContextInfo(String key) {
4671 if (key.equals("intCtx")) {
4672 return (short) 17;
4673 } else if (key.equals("strContext")) {
4674 return "context value!";
4675 } else {
4676 return null;
4677 }
4678 }
4679 }
4680
4681 private static final int answer = 42;
4682
4683 public static void main(String args[]) throws Exception
4684 {
4685 // Get the context information manager instance
4686 ContextInfoManager cim = ContextInfoManager.getInstance();
4687
4688 // Create and register our context information retriever
4689 IContextInfoRetriever cir = new MyContextInfoRetriever();
4690 cim.registerContextInfoRetriever("myRetriever", cir);
4691
4692 // Create a logger
4693 Logger logger = Logger.getLogger("jello");
4694
4695 // Create an LTTng-UST log handler
4696 Handler lttngUstLogHandler = new LttngLogHandler();
4697
4698 // Add the LTTng-UST log handler to our logger
4699 logger.addHandler(lttngUstLogHandler);
4700
4701 // Log at will!
4702 logger.info("some info");
4703 logger.warning("some warning");
4704 Thread.sleep(500);
4705 logger.finer("finer information; the answer is " + answer);
4706 Thread.sleep(123);
4707 logger.severe("error!");
4708
4709 // Not mandatory, but cleaner
4710 logger.removeHandler(lttngUstLogHandler);
4711 lttngUstLogHandler.close();
4712 cim.unregisterContextInfoRetriever("myRetriever");
4713 }
4714 }
4715 ----
4716
4717 Build this example:
4718
4719 [role="term"]
4720 ----
4721 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4722 ----
4723
4724 <<creating-destroying-tracing-sessions,Create a tracing session>>
4725 and <<enabling-disabling-events,create an event rule>> matching the
4726 `jello` JUL logger:
4727
4728 [role="term"]
4729 ----
4730 $ lttng create
4731 $ lttng enable-event --jul jello
4732 ----
4733
4734 <<adding-context,Add the application-specific context fields>> to the
4735 JUL channel:
4736
4737 [role="term"]
4738 ----
4739 $ lttng add-context --jul --type='$app.myRetriever:intCtx'
4740 $ lttng add-context --jul --type='$app.myRetriever:strContext'
4741 ----
4742
4743 <<basic-tracing-session-control,Start tracing>>:
4744
4745 [role="term"]
4746 ----
4747 $ lttng start
4748 ----
4749
4750 Run the compiled class:
4751
4752 [role="term"]
4753 ----
4754 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4755 ----
4756
4757 <<basic-tracing-session-control,Stop tracing>> and inspect the
4758 recorded events:
4759
4760 [role="term"]
4761 ----
4762 $ lttng stop
4763 $ lttng view
4764 ----
4765 ====
4766
4767
4768 [role="since-2.7"]
4769 [[python-application]]
4770 === User space Python agent
4771
4772 You can instrument a Python{nbsp}2 or Python{nbsp}3 application which
4773 uses the standard
4774 https://docs.python.org/3/library/logging.html[`logging`] package.
4775
4776 Each log statement emits an LTTng event once the
4777 application module imports the
4778 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4779
4780 [role="img-100"]
4781 .A Python application importing the LTTng-UST Python agent.
4782 image::python-app.png[]
4783
4784 To use the LTTng-UST Python agent:
4785
4786 . In the Python application's source code, import the LTTng-UST Python
4787 agent:
4788 +
4789 --
4790 [source,python]
4791 ----
4792 import lttngust
4793 ----
4794 --
4795 +
4796 The LTTng-UST Python agent automatically adds its logging handler to the
4797 root logger at import time.
4798 +
4799 Any log statement that the application executes before this import does
4800 not emit an LTTng event.
4801 +
4802 IMPORTANT: The LTTng-UST Python agent must be
4803 <<installing-lttng,installed>>.
4804
4805 . Use log statements and logging configuration as usual.
4806 Since the LTTng-UST Python agent adds a handler to the _root_
4807 logger, you can trace any log statement from any logger.
4808
4809 .Use the LTTng-UST Python agent.
4810 ====
4811 [source,python]
4812 .path:{test.py}
4813 ----
4814 import lttngust
4815 import logging
4816 import time
4817
4818
4819 def example():
4820 logging.basicConfig()
4821 logger = logging.getLogger('my-logger')
4822
4823 while True:
4824 logger.debug('debug message')
4825 logger.info('info message')
4826 logger.warn('warn message')
4827 logger.error('error message')
4828 logger.critical('critical message')
4829 time.sleep(1)
4830
4831
4832 if __name__ == '__main__':
4833 example()
4834 ----
4835
4836 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
4837 logging handler which prints to the standard error stream, is not
4838 strictly required for LTTng-UST tracing to work, but in versions of
4839 Python preceding{nbsp}3.2, you could see a warning message which indicates
4840 that no handler exists for the logger `my-logger`.
4841
4842 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4843 <<enabling-disabling-events,create an event rule>> matching the
4844 `my-logger` Python logger, and <<basic-tracing-session-control,start
4845 tracing>>:
4846
4847 [role="term"]
4848 ----
4849 $ lttng create
4850 $ lttng enable-event --python my-logger
4851 $ lttng start
4852 ----
4853
4854 Run the Python script:
4855
4856 [role="term"]
4857 ----
4858 $ python test.py
4859 ----
4860
4861 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4862 events:
4863
4864 [role="term"]
4865 ----
4866 $ lttng stop
4867 $ lttng view
4868 ----
4869 ====
4870
4871 In the resulting trace, an <<event,event record>> generated by a Python
4872 application is named `lttng_python:event` and has the following fields:
4873
4874 `asctime`::
4875 Logging time (string).
4876
4877 `msg`::
4878 Log record's message.
4879
4880 `logger_name`::
4881 Logger name.
4882
4883 `funcName`::
4884 Name of the function in which the log statement was executed.
4885
4886 `lineno`::
4887 Line number at which the log statement was executed.
4888
4889 `int_loglevel`::
4890 Log level integer value.
4891
4892 `thread`::
4893 ID of the Python thread in which the log statement was executed.
4894
4895 `threadName`::
4896 Name of the Python thread in which the log statement was executed.
4897
4898 You can use the opt:lttng-enable-event(1):--loglevel or
4899 opt:lttng-enable-event(1):--loglevel-only option of the
4900 man:lttng-enable-event(1) command to target a range of Python log levels
4901 or a specific Python log level.
4902
4903 When an application imports the LTTng-UST Python agent, the agent tries
4904 to register to a <<lttng-sessiond,session daemon>>. Note that you must
4905 <<start-sessiond,start the session daemon>> _before_ you run the Python
4906 application. If a session daemon is found, the agent tries to register
4907 to it during five seconds, after which the application continues
4908 without LTTng tracing support. You can override this timeout value with
4909 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
4910 (milliseconds).
4911
4912 If the session daemon stops while a Python application with an imported
4913 LTTng-UST Python agent runs, the agent retries to connect and to
4914 register to a session daemon every three seconds. You can override this
4915 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
4916 variable.
4917
4918
4919 [role="since-2.5"]
4920 [[proc-lttng-logger-abi]]
4921 === LTTng logger
4922
4923 The `lttng-tracer` Linux kernel module, part of
4924 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
4925 path:{/proc/lttng-logger} when it's loaded. Any application can write
4926 text data to this file to emit an LTTng event.
4927
4928 [role="img-100"]
4929 .An application writes to the LTTng logger file to emit an LTTng event.
4930 image::lttng-logger.png[]
4931
4932 The LTTng logger is the quickest method--not the most efficient,
4933 however--to add instrumentation to an application. It is designed
4934 mostly to instrument shell scripts:
4935
4936 [role="term"]
4937 ----
4938 $ echo "Some message, some $variable" > /proc/lttng-logger
4939 ----
4940
4941 Any event that the LTTng logger emits is named `lttng_logger` and
4942 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
4943 other instrumentation points in the kernel tracing domain, **any Unix
4944 user** can <<enabling-disabling-events,create an event rule>> which
4945 matches its event name, not only the root user or users in the
4946 <<tracing-group,tracing group>>.
4947
4948 To use the LTTng logger:
4949
4950 * From any application, write text data to the path:{/proc/lttng-logger}
4951 file.
4952
4953 The `msg` field of `lttng_logger` event records contains the
4954 recorded message.
4955
4956 NOTE: The maximum message length of an LTTng logger event is
4957 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
4958 than one event to contain the remaining data.
4959
4960 You should not use the LTTng logger to trace a user application which
4961 can be instrumented in a more efficient way, namely:
4962
4963 * <<c-application,C and $$C++$$ applications>>.
4964 * <<java-application,Java applications>>.
4965 * <<python-application,Python applications>>.
4966
4967 .Use the LTTng logger.
4968 ====
4969 [source,bash]
4970 .path:{test.bash}
4971 ----
4972 echo 'Hello, World!' > /proc/lttng-logger
4973 sleep 2
4974 df --human-readable --print-type / > /proc/lttng-logger
4975 ----
4976
4977 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4978 <<enabling-disabling-events,create an event rule>> matching the
4979 `lttng_logger` Linux kernel tracepoint, and
4980 <<basic-tracing-session-control,start tracing>>:
4981
4982 [role="term"]
4983 ----
4984 $ lttng create
4985 $ lttng enable-event --kernel lttng_logger
4986 $ lttng start
4987 ----
4988
4989 Run the Bash script:
4990
4991 [role="term"]
4992 ----
4993 $ bash test.bash
4994 ----
4995
4996 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4997 events:
4998
4999 [role="term"]
5000 ----
5001 $ lttng stop
5002 $ lttng view
5003 ----
5004 ====
5005
5006
5007 [[instrumenting-linux-kernel]]
5008 === LTTng kernel tracepoints
5009
5010 NOTE: This section shows how to _add_ instrumentation points to the
5011 Linux kernel. The kernel's subsystems are already thoroughly
5012 instrumented at strategic places for LTTng when you
5013 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
5014 package.
5015
5016 ////
5017 There are two methods to instrument the Linux kernel:
5018
5019 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
5020 tracepoint which uses the `TRACE_EVENT()` API.
5021 +
5022 Choose this if you want to instrumentation a Linux kernel tree with an
5023 instrumentation point compatible with ftrace, perf, and SystemTap.
5024
5025 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
5026 instrument an out-of-tree kernel module.
5027 +
5028 Choose this if you don't need ftrace, perf, or SystemTap support.
5029 ////
5030
5031
5032 [[linux-add-lttng-layer]]
5033 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
5034
5035 This section shows how to add an LTTng layer to existing ftrace
5036 instrumentation using the `TRACE_EVENT()` API.
5037
5038 This section does not document the `TRACE_EVENT()` macro. You can
5039 read the following articles to learn more about this API:
5040
5041 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part{nbsp}1)]
5042 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part{nbsp}2)]
5043 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part{nbsp}3)]
5044
5045 The following procedure assumes that your ftrace tracepoints are
5046 correctly defined in their own header and that they are created in
5047 one source file using the `CREATE_TRACE_POINTS` definition.
5048
5049 To add an LTTng layer over an existing ftrace tracepoint:
5050
5051 . Make sure the following kernel configuration options are
5052 enabled:
5053 +
5054 --
5055 * `CONFIG_MODULES`
5056 * `CONFIG_KALLSYMS`
5057 * `CONFIG_HIGH_RES_TIMERS`
5058 * `CONFIG_TRACEPOINTS`
5059 --
5060
5061 . Build the Linux source tree with your custom ftrace tracepoints.
5062 . Boot the resulting Linux image on your target system.
5063 +
5064 Confirm that the tracepoints exist by looking for their names in the
5065 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
5066 is your subsystem's name.
5067
5068 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
5069 +
5070 --
5071 [role="term"]
5072 ----
5073 $ cd $(mktemp -d) &&
5074 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.11.tar.bz2 &&
5075 tar -xf lttng-modules-latest-2.11.tar.bz2 &&
5076 cd lttng-modules-2.11.*
5077 ----
5078 --
5079
5080 . In dir:{instrumentation/events/lttng-module}, relative to the root
5081 of the LTTng-modules source tree, create a header file named
5082 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5083 LTTng-modules tracepoint definitions using the LTTng-modules
5084 macros in it.
5085 +
5086 Start with this template:
5087 +
5088 --
5089 [source,c]
5090 .path:{instrumentation/events/lttng-module/my_subsys.h}
5091 ----
5092 #undef TRACE_SYSTEM
5093 #define TRACE_SYSTEM my_subsys
5094
5095 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5096 #define _LTTNG_MY_SUBSYS_H
5097
5098 #include "../../../probes/lttng-tracepoint-event.h"
5099 #include <linux/tracepoint.h>
5100
5101 LTTNG_TRACEPOINT_EVENT(
5102 /*
5103 * Format is identical to TRACE_EVENT()'s version for the three
5104 * following macro parameters:
5105 */
5106 my_subsys_my_event,
5107 TP_PROTO(int my_int, const char *my_string),
5108 TP_ARGS(my_int, my_string),
5109
5110 /* LTTng-modules specific macros */
5111 TP_FIELDS(
5112 ctf_integer(int, my_int_field, my_int)
5113 ctf_string(my_bar_field, my_bar)
5114 )
5115 )
5116
5117 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5118
5119 #include "../../../probes/define_trace.h"
5120 ----
5121 --
5122 +
5123 The entries in the `TP_FIELDS()` section are the list of fields for the
5124 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5125 ftrace's `TRACE_EVENT()` macro.
5126 +
5127 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5128 complete description of the available `ctf_*()` macros.
5129
5130 . Create the LTTng-modules probe's kernel module C source file,
5131 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5132 subsystem name:
5133 +
5134 --
5135 [source,c]
5136 .path:{probes/lttng-probe-my-subsys.c}
5137 ----
5138 #include <linux/module.h>
5139 #include "../lttng-tracer.h"
5140
5141 /*
5142 * Build-time verification of mismatch between mainline
5143 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5144 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5145 */
5146 #include <trace/events/my_subsys.h>
5147
5148 /* Create LTTng tracepoint probes */
5149 #define LTTNG_PACKAGE_BUILD
5150 #define CREATE_TRACE_POINTS
5151 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5152
5153 #include "../instrumentation/events/lttng-module/my_subsys.h"
5154
5155 MODULE_LICENSE("GPL and additional rights");
5156 MODULE_AUTHOR("Your name <your-email>");
5157 MODULE_DESCRIPTION("LTTng my_subsys probes");
5158 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5159 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5160 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5161 LTTNG_MODULES_EXTRAVERSION);
5162 ----
5163 --
5164
5165 . Edit path:{probes/KBuild} and add your new kernel module object
5166 next to the existing ones:
5167 +
5168 --
5169 [source,make]
5170 .path:{probes/KBuild}
5171 ----
5172 # ...
5173
5174 obj-m += lttng-probe-module.o
5175 obj-m += lttng-probe-power.o
5176
5177 obj-m += lttng-probe-my-subsys.o
5178
5179 # ...
5180 ----
5181 --
5182
5183 . Build and install the LTTng kernel modules:
5184 +
5185 --
5186 [role="term"]
5187 ----
5188 $ make KERNELDIR=/path/to/linux
5189 # make modules_install && depmod -a
5190 ----
5191 --
5192 +
5193 Replace `/path/to/linux` with the path to the Linux source tree where
5194 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5195
5196 Note that you can also use the
5197 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5198 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5199 C code that need to be executed before the event fields are recorded.
5200
5201 The best way to learn how to use the previous LTTng-modules macros is to
5202 inspect the existing LTTng-modules tracepoint definitions in the
5203 dir:{instrumentation/events/lttng-module} header files. Compare them
5204 with the Linux kernel mainline versions in the
5205 dir:{include/trace/events} directory of the Linux source tree.
5206
5207
5208 [role="since-2.7"]
5209 [[lttng-tracepoint-event-code]]
5210 ===== Use custom C code to access the data for tracepoint fields
5211
5212 Although we recommended to always use the
5213 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5214 the arguments and fields of an LTTng-modules tracepoint when possible,
5215 sometimes you need a more complex process to access the data that the
5216 tracer records as event record fields. In other words, you need local
5217 variables and multiple C{nbsp}statements instead of simple
5218 argument-based expressions that you pass to the
5219 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5220
5221 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5222 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5223 a block of C{nbsp}code to be executed before LTTng records the fields.
5224 The structure of this macro is:
5225
5226 [source,c]
5227 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5228 ----
5229 LTTNG_TRACEPOINT_EVENT_CODE(
5230 /*
5231 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5232 * version for the following three macro parameters:
5233 */
5234 my_subsys_my_event,
5235 TP_PROTO(int my_int, const char *my_string),
5236 TP_ARGS(my_int, my_string),
5237
5238 /* Declarations of custom local variables */
5239 TP_locvar(
5240 int a = 0;
5241 unsigned long b = 0;
5242 const char *name = "(undefined)";
5243 struct my_struct *my_struct;
5244 ),
5245
5246 /*
5247 * Custom code which uses both tracepoint arguments
5248 * (in TP_ARGS()) and local variables (in TP_locvar()).
5249 *
5250 * Local variables are actually members of a structure pointed
5251 * to by the special variable tp_locvar.
5252 */
5253 TP_code(
5254 if (my_int) {
5255 tp_locvar->a = my_int + 17;
5256 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5257 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5258 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5259 put_my_struct(tp_locvar->my_struct);
5260
5261 if (tp_locvar->b) {
5262 tp_locvar->a = 1;
5263 }
5264 }
5265 ),
5266
5267 /*
5268 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5269 * version for this, except that tp_locvar members can be
5270 * used in the argument expression parameters of
5271 * the ctf_*() macros.
5272 */
5273 TP_FIELDS(
5274 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5275 ctf_integer(int, my_struct_a, tp_locvar->a)
5276 ctf_string(my_string_field, my_string)
5277 ctf_string(my_struct_name, tp_locvar->name)
5278 )
5279 )
5280 ----
5281
5282 IMPORTANT: The C code defined in `TP_code()` must not have any side
5283 effects when executed. In particular, the code must not allocate
5284 memory or get resources without deallocating this memory or putting
5285 those resources afterwards.
5286
5287
5288 [[instrumenting-linux-kernel-tracing]]
5289 ==== Load and unload a custom probe kernel module
5290
5291 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5292 kernel module>> in the kernel before it can emit LTTng events.
5293
5294 To load the default probe kernel modules and a custom probe kernel
5295 module:
5296
5297 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5298 probe modules to load when starting a root <<lttng-sessiond,session
5299 daemon>>:
5300 +
5301 --
5302 .Load the `my_subsys`, `usb`, and the default probe modules.
5303 ====
5304 [role="term"]
5305 ----
5306 # lttng-sessiond --extra-kmod-probes=my_subsys,usb
5307 ----
5308 ====
5309 --
5310 +
5311 You only need to pass the subsystem name, not the whole kernel module
5312 name.
5313
5314 To load _only_ a given custom probe kernel module:
5315
5316 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5317 modules to load when starting a root session daemon:
5318 +
5319 --
5320 .Load only the `my_subsys` and `usb` probe modules.
5321 ====
5322 [role="term"]
5323 ----
5324 # lttng-sessiond --kmod-probes=my_subsys,usb
5325 ----
5326 ====
5327 --
5328
5329 To confirm that a probe module is loaded:
5330
5331 * Use man:lsmod(8):
5332 +
5333 --
5334 [role="term"]
5335 ----
5336 $ lsmod | grep lttng_probe_usb
5337 ----
5338 --
5339
5340 To unload the loaded probe modules:
5341
5342 * Kill the session daemon with `SIGTERM`:
5343 +
5344 --
5345 [role="term"]
5346 ----
5347 # pkill lttng-sessiond
5348 ----
5349 --
5350 +
5351 You can also use man:modprobe(8)'s `--remove` option if the session
5352 daemon terminates abnormally.
5353
5354
5355 [[controlling-tracing]]
5356 == Tracing control
5357
5358 Once an application or a Linux kernel is
5359 <<instrumenting,instrumented>> for LTTng tracing,
5360 you can _trace_ it.
5361
5362 This section is divided in topics on how to use the various
5363 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5364 command-line tool>>, to _control_ the LTTng daemons and tracers.
5365
5366 NOTE: In the following subsections, we refer to an man:lttng(1) command
5367 using its man page name. For example, instead of _Run the `create`
5368 command to..._, we use _Run the man:lttng-create(1) command to..._.
5369
5370
5371 [[start-sessiond]]
5372 === Start a session daemon
5373
5374 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5375 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5376 command-line tool.
5377
5378 You will see the following error when you run a command while no session
5379 daemon is running:
5380
5381 ----
5382 Error: No session daemon is available
5383 ----
5384
5385 The only command that automatically runs a session daemon is
5386 man:lttng-create(1), which you use to
5387 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5388 this is most of the time the first operation that you do, sometimes it's
5389 not. Some examples are:
5390
5391 * <<list-instrumentation-points,List the available instrumentation points>>.
5392 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5393
5394 [[tracing-group]] Each Unix user must have its own running session
5395 daemon to trace user applications. The session daemon that the root user
5396 starts is the only one allowed to control the LTTng kernel tracer. Users
5397 that are part of the _tracing group_ can control the root session
5398 daemon. The default tracing group name is `tracing`; you can set it to
5399 something else with the opt:lttng-sessiond(8):--group option when you
5400 start the root session daemon.
5401
5402 To start a user session daemon:
5403
5404 * Run man:lttng-sessiond(8):
5405 +
5406 --
5407 [role="term"]
5408 ----
5409 $ lttng-sessiond --daemonize
5410 ----
5411 --
5412
5413 To start the root session daemon:
5414
5415 * Run man:lttng-sessiond(8) as the root user:
5416 +
5417 --
5418 [role="term"]
5419 ----
5420 # lttng-sessiond --daemonize
5421 ----
5422 --
5423
5424 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5425 start the session daemon in foreground.
5426
5427 To stop a session daemon, use man:kill(1) on its process ID (standard
5428 `TERM` signal).
5429
5430 Note that some Linux distributions could manage the LTTng session daemon
5431 as a service. In this case, you should use the service manager to
5432 start, restart, and stop session daemons.
5433
5434
5435 [[creating-destroying-tracing-sessions]]
5436 === Create and destroy a tracing session
5437
5438 Almost all the LTTng control operations happen in the scope of
5439 a <<tracing-session,tracing session>>, which is the dialogue between the
5440 <<lttng-sessiond,session daemon>> and you.
5441
5442 To create a tracing session with a generated name:
5443
5444 * Use the man:lttng-create(1) command:
5445 +
5446 --
5447 [role="term"]
5448 ----
5449 $ lttng create
5450 ----
5451 --
5452
5453 The created tracing session's name is `auto` followed by the
5454 creation date.
5455
5456 To create a tracing session with a specific name:
5457
5458 * Use the optional argument of the man:lttng-create(1) command:
5459 +
5460 --
5461 [role="term"]
5462 ----
5463 $ lttng create my-session
5464 ----
5465 --
5466 +
5467 Replace `my-session` with the specific tracing session name.
5468
5469 LTTng appends the creation date to the created tracing session's name.
5470
5471 LTTng writes the traces of a tracing session in
5472 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5473 name of the tracing session. Note that the env:LTTNG_HOME environment
5474 variable defaults to `$HOME` if not set.
5475
5476 To output LTTng traces to a non-default location:
5477
5478 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5479 +
5480 --
5481 [role="term"]
5482 ----
5483 $ lttng create my-session --output=/tmp/some-directory
5484 ----
5485 --
5486
5487 You may create as many tracing sessions as you wish.
5488
5489 To list all the existing tracing sessions for your Unix user:
5490
5491 * Use the man:lttng-list(1) command:
5492 +
5493 --
5494 [role="term"]
5495 ----
5496 $ lttng list
5497 ----
5498 --
5499
5500 When you create a tracing session, it is set as the _current tracing
5501 session_. The following man:lttng(1) commands operate on the current
5502 tracing session when you don't specify one:
5503
5504 [role="list-3-cols"]
5505 * man:lttng-add-context(1)
5506 * man:lttng-destroy(1)
5507 * man:lttng-disable-channel(1)
5508 * man:lttng-disable-event(1)
5509 * man:lttng-disable-rotation(1)
5510 * man:lttng-enable-channel(1)
5511 * man:lttng-enable-event(1)
5512 * man:lttng-enable-rotation(1)
5513 * man:lttng-load(1)
5514 * man:lttng-regenerate(1)
5515 * man:lttng-rotate(1)
5516 * man:lttng-save(1)
5517 * man:lttng-snapshot(1)
5518 * man:lttng-start(1)
5519 * man:lttng-status(1)
5520 * man:lttng-stop(1)
5521 * man:lttng-track(1)
5522 * man:lttng-untrack(1)
5523 * man:lttng-view(1)
5524
5525 To change the current tracing session:
5526
5527 * Use the man:lttng-set-session(1) command:
5528 +
5529 --
5530 [role="term"]
5531 ----
5532 $ lttng set-session new-session
5533 ----
5534 --
5535 +
5536 Replace `new-session` by the name of the new current tracing session.
5537
5538 When you are done tracing in a given tracing session, you can destroy
5539 it. This operation frees the resources taken by the tracing session
5540 to destroy; it does not destroy the trace data that LTTng wrote for
5541 this tracing session.
5542
5543 To destroy the current tracing session:
5544
5545 * Use the man:lttng-destroy(1) command:
5546 +
5547 --
5548 [role="term"]
5549 ----
5550 $ lttng destroy
5551 ----
5552 --
5553
5554
5555 [[list-instrumentation-points]]
5556 === List the available instrumentation points
5557
5558 The <<lttng-sessiond,session daemon>> can query the running instrumented
5559 user applications and the Linux kernel to get a list of available
5560 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5561 they are tracepoints and system calls. For the user space tracing
5562 domain, they are tracepoints. For the other tracing domains, they are
5563 logger names.
5564
5565 To list the available instrumentation points:
5566
5567 * Use the man:lttng-list(1) command with the requested tracing domain's
5568 option amongst:
5569 +
5570 --
5571 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5572 must be a root user, or it must be a member of the
5573 <<tracing-group,tracing group>>).
5574 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5575 kernel system calls (your Unix user must be a root user, or it must be
5576 a member of the tracing group).
5577 * opt:lttng-list(1):--userspace: user space tracepoints.
5578 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5579 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5580 * opt:lttng-list(1):--python: Python loggers.
5581 --
5582
5583 .List the available user space tracepoints.
5584 ====
5585 [role="term"]
5586 ----
5587 $ lttng list --userspace
5588 ----
5589 ====
5590
5591 .List the available Linux kernel system call tracepoints.
5592 ====
5593 [role="term"]
5594 ----
5595 $ lttng list --kernel --syscall
5596 ----
5597 ====
5598
5599
5600 [[enabling-disabling-events]]
5601 === Create and enable an event rule
5602
5603 Once you <<creating-destroying-tracing-sessions,create a tracing
5604 session>>, you can create <<event,event rules>> with the
5605 man:lttng-enable-event(1) command.
5606
5607 You specify each condition with a command-line option. The available
5608 condition arguments are shown in the following table.
5609
5610 [role="growable",cols="asciidoc,asciidoc,default"]
5611 .Condition command-line arguments for the man:lttng-enable-event(1) command.
5612 |====
5613 |Argument |Description |Applicable tracing domains
5614
5615 |
5616 One of:
5617
5618 . `--syscall`
5619 . +--probe=__ADDR__+
5620 . +--function=__ADDR__+
5621 . +--userspace-probe=__PATH__:__SYMBOL__+
5622 . +--userspace-probe=sdt:__PATH__:__PROVIDER__:__NAME__+
5623
5624 |
5625 Instead of using the default _tracepoint_ instrumentation type, use:
5626
5627 . A Linux system call (entry and exit).
5628 . A Linux https://lwn.net/Articles/132196/[kprobe] (symbol or address).
5629 . The entry and return points of a Linux function (symbol or address).
5630 . The entry point of a user application or library function (path to
5631 application/library and symbol).
5632 . A https://www.sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps[SystemTap
5633 Statically Defined Tracing] (SDT) probe (path to application/library,
5634 provider and probe names).
5635
5636 |Linux kernel.
5637
5638 |First positional argument.
5639
5640 |
5641 Tracepoint or system call name.
5642
5643 With the opt:lttng-enable-event(1):--probe,
5644 opt:lttng-enable-event(1):--function, and
5645 opt:lttng-enable-event(1):--userspace-probe options, this is a custom
5646 name given to the event rule. With the JUL, log4j, and Python domains,
5647 this is a logger name.
5648
5649 With a tracepoint, logger, or system call name, you can use the special
5650 `*` globbing character to match anything (for example, `sched_*`,
5651 `my_comp*:*msg_*`).
5652
5653 |All.
5654
5655 |
5656 One of:
5657
5658 . +--loglevel=__LEVEL__+
5659 . +--loglevel-only=__LEVEL__+
5660
5661 |
5662 . Match only tracepoints or log statements with a logging level at
5663 least as severe as +__LEVEL__+.
5664 . Match only tracepoints or log statements with a logging level
5665 equal to +__LEVEL__+.
5666
5667 See man:lttng-enable-event(1) for the list of available logging level
5668 names.
5669
5670 |User space, JUL, log4j, and Python.
5671
5672 |+--exclude=__EXCLUSIONS__+
5673
5674 |
5675 When you use a `*` character at the end of the tracepoint or logger
5676 name (first positional argument), exclude the specific names in the
5677 comma-delimited list +__EXCLUSIONS__+.
5678
5679 |
5680 User space, JUL, log4j, and Python.
5681
5682 |+--filter=__EXPR__+
5683
5684 |
5685 Match only events which satisfy the expression +__EXPR__+.
5686
5687 See man:lttng-enable-event(1) to learn more about the syntax of a
5688 filter expression.
5689
5690 |All.
5691
5692 |====
5693
5694 You attach an event rule to a <<channel,channel>> on creation. If you do
5695 not specify the channel with the opt:lttng-enable-event(1):--channel
5696 option, and if the event rule to create is the first in its
5697 <<domain,tracing domain>> for a given tracing session, then LTTng
5698 creates a _default channel_ for you. This default channel is reused in
5699 subsequent invocations of the man:lttng-enable-event(1) command for the
5700 same tracing domain.
5701
5702 An event rule is always enabled at creation time.
5703
5704 The following examples show how you can combine the previous
5705 command-line options to create simple to more complex event rules.
5706
5707 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5708 ====
5709 [role="term"]
5710 ----
5711 $ lttng enable-event --kernel sched_switch
5712 ----
5713 ====
5714
5715 .Create an event rule matching four Linux kernel system calls (default channel).
5716 ====
5717 [role="term"]
5718 ----
5719 $ lttng enable-event --kernel --syscall open,write,read,close
5720 ----
5721 ====
5722
5723 .Create event rules matching tracepoints with filter expressions (default channel).
5724 ====
5725 [role="term"]
5726 ----
5727 $ lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5728 ----
5729
5730 [role="term"]
5731 ----
5732 $ lttng enable-event --kernel --all \
5733 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5734 ----
5735
5736 [role="term"]
5737 ----
5738 $ lttng enable-event --jul my_logger \
5739 --filter='$app.retriever:cur_msg_id > 3'
5740 ----
5741
5742 IMPORTANT: Make sure to always quote the filter string when you
5743 use man:lttng(1) from a shell.
5744 ====
5745
5746 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5747 ====
5748 [role="term"]
5749 ----
5750 $ lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5751 ----
5752
5753 IMPORTANT: Make sure to always quote the wildcard character when you
5754 use man:lttng(1) from a shell.
5755 ====
5756
5757 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5758 ====
5759 [role="term"]
5760 ----
5761 $ lttng enable-event --python my-app.'*' \
5762 --exclude='my-app.module,my-app.hello'
5763 ----
5764 ====
5765
5766 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5767 ====
5768 [role="term"]
5769 ----
5770 $ lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5771 ----
5772 ====
5773
5774 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5775 ====
5776 [role="term"]
5777 ----
5778 $ lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5779 ----
5780 ====
5781
5782 .Create an event rule matching the `malloc` function entry in path:{/usr/lib/libc.so.6}:
5783 ====
5784 [role="term"]
5785 ----
5786 $ lttng enable-event --kernel --userspace-probe=/usr/lib/libc.so.6:malloc \
5787 libc_malloc
5788 ----
5789 ====
5790
5791 .Create an event rule matching the `server`/`accept_request` https://www.sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps[SDT probe] in path:{/usr/bin/serv}:
5792 ====
5793 [role="term"]
5794 ----
5795 $ lttng enable-event --kernel --userspace-probe=sdt:serv:server:accept_request \
5796 server_accept_request
5797 ----
5798 ====
5799
5800 The event rules of a given channel form a whitelist: as soon as an
5801 emitted event passes one of them, LTTng can record the event. For
5802 example, an event named `my_app:my_tracepoint` emitted from a user space
5803 tracepoint with a `TRACE_ERROR` log level passes both of the following
5804 rules:
5805
5806 [role="term"]
5807 ----
5808 $ lttng enable-event --userspace my_app:my_tracepoint
5809 $ lttng enable-event --userspace my_app:my_tracepoint \
5810 --loglevel=TRACE_INFO
5811 ----
5812
5813 The second event rule is redundant: the first one includes
5814 the second one.
5815
5816
5817 [[disable-event-rule]]
5818 === Disable an event rule
5819
5820 To disable an event rule that you <<enabling-disabling-events,created>>
5821 previously, use the man:lttng-disable-event(1) command. This command
5822 disables _all_ the event rules (of a given tracing domain and channel)
5823 which match an instrumentation point. The other conditions are not
5824 supported as of LTTng{nbsp}{revision}.
5825
5826 The LTTng tracer does not record an emitted event which passes
5827 a _disabled_ event rule.
5828
5829 .Disable an event rule matching a Python logger (default channel).
5830 ====
5831 [role="term"]
5832 ----
5833 $ lttng disable-event --python my-logger
5834 ----
5835 ====
5836
5837 .Disable an event rule matching all `java.util.logging` loggers (default channel).
5838 ====
5839 [role="term"]
5840 ----
5841 $ lttng disable-event --jul '*'
5842 ----
5843 ====
5844
5845 .Disable _all_ the event rules of the default channel.
5846 ====
5847 The opt:lttng-disable-event(1):--all-events option is not, like the
5848 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
5849 equivalent of the event name `*` (wildcard): it disables _all_ the event
5850 rules of a given channel.
5851
5852 [role="term"]
5853 ----
5854 $ lttng disable-event --jul --all-events
5855 ----
5856 ====
5857
5858 NOTE: You cannot delete an event rule once you create it.
5859
5860
5861 [[status]]
5862 === Get the status of a tracing session
5863
5864 To get the status of the current tracing session, that is, its
5865 parameters, its channels, event rules, and their attributes:
5866
5867 * Use the man:lttng-status(1) command:
5868 +
5869 --
5870 [role="term"]
5871 ----
5872 $ lttng status
5873 ----
5874 --
5875 +
5876
5877 To get the status of any tracing session:
5878
5879 * Use the man:lttng-list(1) command with the tracing session's name:
5880 +
5881 --
5882 [role="term"]
5883 ----
5884 $ lttng list my-session
5885 ----
5886 --
5887 +
5888 Replace `my-session` with the desired tracing session's name.
5889
5890
5891 [[basic-tracing-session-control]]
5892 === Start and stop a tracing session
5893
5894 Once you <<creating-destroying-tracing-sessions,create a tracing
5895 session>> and
5896 <<enabling-disabling-events,create one or more event rules>>,
5897 you can start and stop the tracers for this tracing session.
5898
5899 To start tracing in the current tracing session:
5900
5901 * Use the man:lttng-start(1) command:
5902 +
5903 --
5904 [role="term"]
5905 ----
5906 $ lttng start
5907 ----
5908 --
5909
5910 LTTng is very flexible: you can launch user applications before
5911 or after the you start the tracers. The tracers only record the events
5912 if they pass enabled event rules and if they occur while the tracers are
5913 started.
5914
5915 To stop tracing in the current tracing session:
5916
5917 * Use the man:lttng-stop(1) command:
5918 +
5919 --
5920 [role="term"]
5921 ----
5922 $ lttng stop
5923 ----
5924 --
5925 +
5926 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
5927 records>> or lost sub-buffers since the last time you ran
5928 man:lttng-start(1), warnings are printed when you run the
5929 man:lttng-stop(1) command.
5930
5931
5932 [[enabling-disabling-channels]]
5933 === Create a channel
5934
5935 Once you create a tracing session, you can create a <<channel,channel>>
5936 with the man:lttng-enable-channel(1) command.
5937
5938 Note that LTTng automatically creates a default channel when, for a
5939 given <<domain,tracing domain>>, no channels exist and you
5940 <<enabling-disabling-events,create>> the first event rule. This default
5941 channel is named `channel0` and its attributes are set to reasonable
5942 values. Therefore, you only need to create a channel when you need
5943 non-default attributes.
5944
5945 You specify each non-default channel attribute with a command-line
5946 option when you use the man:lttng-enable-channel(1) command. The
5947 available command-line options are:
5948
5949 [role="growable",cols="asciidoc,asciidoc"]
5950 .Command-line options for the man:lttng-enable-channel(1) command.
5951 |====
5952 |Option |Description
5953
5954 |`--overwrite`
5955
5956 |
5957 Use the _overwrite_
5958 <<channel-overwrite-mode-vs-discard-mode,event record loss mode>> instead
5959 of the default _discard_ mode.
5960
5961 |`--buffers-pid` (user space tracing domain only)
5962
5963 |
5964 Use the per-process <<channel-buffering-schemes,buffering scheme>>
5965 instead of the default per-user buffering scheme.
5966
5967 |+--subbuf-size=__SIZE__+
5968
5969 |
5970 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
5971 either for each Unix user (default), or for each instrumented process.
5972
5973 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5974
5975 |+--num-subbuf=__COUNT__+
5976
5977 |
5978 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
5979 for each Unix user (default), or for each instrumented process.
5980
5981 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5982
5983 |+--tracefile-size=__SIZE__+
5984
5985 |
5986 Set the maximum size of each trace file that this channel writes within
5987 a stream to +__SIZE__+ bytes instead of no maximum.
5988
5989 See <<tracefile-rotation,Trace file count and size>>.
5990
5991 |+--tracefile-count=__COUNT__+
5992
5993 |
5994 Limit the number of trace files that this channel creates to
5995 +__COUNT__+ channels instead of no limit.
5996
5997 See <<tracefile-rotation,Trace file count and size>>.
5998
5999 |+--switch-timer=__PERIODUS__+
6000
6001 |
6002 Set the <<channel-switch-timer,switch timer period>>
6003 to +__PERIODUS__+{nbsp}µs.
6004
6005 |+--read-timer=__PERIODUS__+
6006
6007 |
6008 Set the <<channel-read-timer,read timer period>>
6009 to +__PERIODUS__+{nbsp}µs.
6010
6011 |[[opt-blocking-timeout]]+--blocking-timeout=__TIMEOUTUS__+
6012
6013 |
6014 Set the timeout of user space applications which load LTTng-UST
6015 in blocking mode to +__TIMEOUTUS__+:
6016
6017 0 (default)::
6018 Never block (non-blocking mode).
6019
6020 `inf`::
6021 Block forever until space is available in a sub-buffer to record
6022 the event.
6023
6024 __n__, a positive value::
6025 Wait for at most __n__ µs when trying to write into a sub-buffer.
6026
6027 Note that, for this option to have any effect on an instrumented
6028 user space application, you need to run the application with a set
6029 env:LTTNG_UST_ALLOW_BLOCKING environment variable.
6030
6031 |+--output=__TYPE__+ (Linux kernel tracing domain only)
6032
6033 |
6034 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
6035
6036 |====
6037
6038 You can only create a channel in the Linux kernel and user space
6039 <<domain,tracing domains>>: other tracing domains have their own channel
6040 created on the fly when <<enabling-disabling-events,creating event
6041 rules>>.
6042
6043 [IMPORTANT]
6044 ====
6045 Because of a current LTTng limitation, you must create all channels
6046 _before_ you <<basic-tracing-session-control,start tracing>> in a given
6047 tracing session, that is, before the first time you run
6048 man:lttng-start(1).
6049
6050 Since LTTng automatically creates a default channel when you use the
6051 man:lttng-enable-event(1) command with a specific tracing domain, you
6052 cannot, for example, create a Linux kernel event rule, start tracing,
6053 and then create a user space event rule, because no user space channel
6054 exists yet and it's too late to create one.
6055
6056 For this reason, make sure to configure your channels properly
6057 before starting the tracers for the first time!
6058 ====
6059
6060 The following examples show how you can combine the previous
6061 command-line options to create simple to more complex channels.
6062
6063 .Create a Linux kernel channel with default attributes.
6064 ====
6065 [role="term"]
6066 ----
6067 $ lttng enable-channel --kernel my-channel
6068 ----
6069 ====
6070
6071 .Create a user space channel with four sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6072 ====
6073 [role="term"]
6074 ----
6075 $ lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6076 --buffers-pid my-channel
6077 ----
6078 ====
6079
6080 .[[blocking-timeout-example]]Create a default user space channel with an infinite blocking timeout.
6081 ====
6082 <<creating-destroying-tracing-sessions,Create a tracing-session>>,
6083 create the channel, <<enabling-disabling-events,create an event rule>>,
6084 and <<basic-tracing-session-control,start tracing>>:
6085
6086 [role="term"]
6087 ----
6088 $ lttng create
6089 $ lttng enable-channel --userspace --blocking-timeout=inf blocking-channel
6090 $ lttng enable-event --userspace --channel=blocking-channel --all
6091 $ lttng start
6092 ----
6093
6094 Run an application instrumented with LTTng-UST and allow it to block:
6095
6096 [role="term"]
6097 ----
6098 $ LTTNG_UST_ALLOW_BLOCKING=1 my-app
6099 ----
6100 ====
6101
6102 .Create a Linux kernel channel which rotates eight trace files of 4{nbsp}MiB each for each stream
6103 ====
6104 [role="term"]
6105 ----
6106 $ lttng enable-channel --kernel --tracefile-count=8 \
6107 --tracefile-size=4194304 my-channel
6108 ----
6109 ====
6110
6111 .Create a user space channel in overwrite (or _flight recorder_) mode.
6112 ====
6113 [role="term"]
6114 ----
6115 $ lttng enable-channel --userspace --overwrite my-channel
6116 ----
6117 ====
6118
6119 You can <<enabling-disabling-events,create>> the same event rule in
6120 two different channels:
6121
6122 [role="term"]
6123 ----
6124 $ lttng enable-event --userspace --channel=my-channel app:tp
6125 $ lttng enable-event --userspace --channel=other-channel app:tp
6126 ----
6127
6128 If both channels are enabled, when a tracepoint named `app:tp` is
6129 reached, LTTng records two events, one for each channel.
6130
6131
6132 [[disable-channel]]
6133 === Disable a channel
6134
6135 To disable a specific channel that you <<enabling-disabling-channels,created>>
6136 previously, use the man:lttng-disable-channel(1) command.
6137
6138 .Disable a specific Linux kernel channel.
6139 ====
6140 [role="term"]
6141 ----
6142 $ lttng disable-channel --kernel my-channel
6143 ----
6144 ====
6145
6146 The state of a channel precedes the individual states of event rules
6147 attached to it: event rules which belong to a disabled channel, even if
6148 they are enabled, are also considered disabled.
6149
6150
6151 [[adding-context]]
6152 === Add context fields to a channel
6153
6154 Event record fields in trace files provide important information about
6155 events that occured previously, but sometimes some external context may
6156 help you solve a problem faster. Examples of context fields are:
6157
6158 * The **process ID**, **thread ID**, **process name**, and
6159 **process priority** of the thread in which the event occurs.
6160 * The **hostname** of the system on which the event occurs.
6161 * The Linux kernel and user call stacks (since
6162 LTTng{nbsp}{revision}).
6163 * The current values of many possible **performance counters** using
6164 perf, for example:
6165 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6166 ** Cache misses.
6167 ** Branch instructions, misses, and loads.
6168 ** CPU faults.
6169 * Any context defined at the application level (supported for the
6170 JUL and log4j <<domain,tracing domains>>).
6171
6172 To get the full list of available context fields, see
6173 `lttng add-context --list`. Some context fields are reserved for a
6174 specific <<domain,tracing domain>> (Linux kernel or user space).
6175
6176 You add context fields to <<channel,channels>>. All the events
6177 that a channel with added context fields records contain those fields.
6178
6179 To add context fields to one or all the channels of a given tracing
6180 session:
6181
6182 * Use the man:lttng-add-context(1) command.
6183
6184 .Add context fields to all the channels of the current tracing session.
6185 ====
6186 The following command line adds the virtual process identifier and
6187 the per-thread CPU cycles count fields to all the user space channels
6188 of the current tracing session.
6189
6190 [role="term"]
6191 ----
6192 $ lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6193 ----
6194 ====
6195
6196 .Add performance counter context fields by raw ID
6197 ====
6198 See man:lttng-add-context(1) for the exact format of the context field
6199 type, which is partly compatible with the format used in
6200 man:perf-record(1).
6201
6202 [role="term"]
6203 ----
6204 $ lttng add-context --userspace --type=perf:thread:raw:r0110:test
6205 $ lttng add-context --kernel --type=perf:cpu:raw:r0013c:x86unhalted
6206 ----
6207 ====
6208
6209 .Add context fields to a specific channel.
6210 ====
6211 The following command line adds the thread identifier and user call
6212 stack context fields to the Linux kernel channel named `my-channel` in
6213 the current tracing session.
6214
6215 [role="term"]
6216 ----
6217 $ lttng add-context --kernel --channel=my-channel \
6218 --type=tid --type=callstack-user
6219 ----
6220 ====
6221
6222 .Add an application-specific context field to a specific channel.
6223 ====
6224 The following command line adds the `cur_msg_id` context field of the
6225 `retriever` context retriever for all the instrumented
6226 <<java-application,Java applications>> recording <<event,event records>>
6227 in the channel named `my-channel`:
6228
6229 [role="term"]
6230 ----
6231 $ lttng add-context --kernel --channel=my-channel \
6232 --type='$app:retriever:cur_msg_id'
6233 ----
6234
6235 IMPORTANT: Make sure to always quote the `$` character when you
6236 use man:lttng-add-context(1) from a shell.
6237 ====
6238
6239 NOTE: You cannot remove context fields from a channel once you add it.
6240
6241
6242 [role="since-2.7"]
6243 [[pid-tracking]]
6244 === Track process IDs
6245
6246 It's often useful to allow only specific process IDs (PIDs) to emit
6247 events. For example, you may wish to record all the system calls made by
6248 a given process (Ă  la http://linux.die.net/man/1/strace[strace]).
6249
6250 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6251 purpose. Both commands operate on a whitelist of process IDs. You _add_
6252 entries to this whitelist with the man:lttng-track(1) command and remove
6253 entries with the man:lttng-untrack(1) command. Any process which has one
6254 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6255 an enabled <<event,event rule>>.
6256
6257 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6258 process with a given tracked ID exit and another process be given this
6259 ID, then the latter would also be allowed to emit events.
6260
6261 .Track and untrack process IDs.
6262 ====
6263 For the sake of the following example, assume the target system has
6264 16{nbsp}possible PIDs.
6265
6266 When you
6267 <<creating-destroying-tracing-sessions,create a tracing session>>,
6268 the whitelist contains all the possible PIDs:
6269
6270 [role="img-100"]
6271 .All PIDs are tracked.
6272 image::track-all.png[]
6273
6274 When the whitelist is full and you use the man:lttng-track(1) command to
6275 specify some PIDs to track, LTTng first clears the whitelist, then it
6276 tracks the specific PIDs. After:
6277
6278 [role="term"]
6279 ----
6280 $ lttng track --pid=3,4,7,10,13
6281 ----
6282
6283 the whitelist is:
6284
6285 [role="img-100"]
6286 .PIDs 3, 4, 7, 10, and 13 are tracked.
6287 image::track-3-4-7-10-13.png[]
6288
6289 You can add more PIDs to the whitelist afterwards:
6290
6291 [role="term"]
6292 ----
6293 $ lttng track --pid=1,15,16
6294 ----
6295
6296 The result is:
6297
6298 [role="img-100"]
6299 .PIDs 1, 15, and 16 are added to the whitelist.
6300 image::track-1-3-4-7-10-13-15-16.png[]
6301
6302 The man:lttng-untrack(1) command removes entries from the PID tracker's
6303 whitelist. Given the previous example, the following command:
6304
6305 [role="term"]
6306 ----
6307 $ lttng untrack --pid=3,7,10,13
6308 ----
6309
6310 leads to this whitelist:
6311
6312 [role="img-100"]
6313 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6314 image::track-1-4-15-16.png[]
6315
6316 LTTng can track all possible PIDs again using the
6317 opt:lttng-track(1):--all option:
6318
6319 [role="term"]
6320 ----
6321 $ lttng track --pid --all
6322 ----
6323
6324 The result is, again:
6325
6326 [role="img-100"]
6327 .All PIDs are tracked.
6328 image::track-all.png[]
6329 ====
6330
6331 .Track only specific PIDs
6332 ====
6333 A very typical use case with PID tracking is to start with an empty
6334 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6335 then add PIDs manually while tracers are active. You can accomplish this
6336 by using the opt:lttng-untrack(1):--all option of the
6337 man:lttng-untrack(1) command to clear the whitelist after you
6338 <<creating-destroying-tracing-sessions,create a tracing session>>:
6339
6340 [role="term"]
6341 ----
6342 $ lttng untrack --pid --all
6343 ----
6344
6345 gives:
6346
6347 [role="img-100"]
6348 .No PIDs are tracked.
6349 image::untrack-all.png[]
6350
6351 If you trace with this whitelist configuration, the tracer records no
6352 events for this <<domain,tracing domain>> because no processes are
6353 tracked. You can use the man:lttng-track(1) command as usual to track
6354 specific PIDs, for example:
6355
6356 [role="term"]
6357 ----
6358 $ lttng track --pid=6,11
6359 ----
6360
6361 Result:
6362
6363 [role="img-100"]
6364 .PIDs 6 and 11 are tracked.
6365 image::track-6-11.png[]
6366 ====
6367
6368
6369 [role="since-2.5"]
6370 [[saving-loading-tracing-session]]
6371 === Save and load tracing session configurations
6372
6373 Configuring a <<tracing-session,tracing session>> can be long. Some of
6374 the tasks involved are:
6375
6376 * <<enabling-disabling-channels,Create channels>> with
6377 specific attributes.
6378 * <<adding-context,Add context fields>> to specific channels.
6379 * <<enabling-disabling-events,Create event rules>> with specific log
6380 level and filter conditions.
6381
6382 If you use LTTng to solve real world problems, chances are you have to
6383 record events using the same tracing session setup over and over,
6384 modifying a few variables each time in your instrumented program
6385 or environment. To avoid constant tracing session reconfiguration,
6386 the man:lttng(1) command-line tool can save and load tracing session
6387 configurations to/from XML files.
6388
6389 To save a given tracing session configuration:
6390
6391 * Use the man:lttng-save(1) command:
6392 +
6393 --
6394 [role="term"]
6395 ----
6396 $ lttng save my-session
6397 ----
6398 --
6399 +
6400 Replace `my-session` with the name of the tracing session to save.
6401
6402 LTTng saves tracing session configurations to
6403 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6404 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6405 the opt:lttng-save(1):--output-path option to change this destination
6406 directory.
6407
6408 LTTng saves all configuration parameters, for example:
6409
6410 * The tracing session name.
6411 * The trace data output path.
6412 * The channels with their state and all their attributes.
6413 * The context fields you added to channels.
6414 * The event rules with their state, log level and filter conditions.
6415
6416 To load a tracing session:
6417
6418 * Use the man:lttng-load(1) command:
6419 +
6420 --
6421 [role="term"]
6422 ----
6423 $ lttng load my-session
6424 ----
6425 --
6426 +
6427 Replace `my-session` with the name of the tracing session to load.
6428
6429 When LTTng loads a configuration, it restores your saved tracing session
6430 as if you just configured it manually.
6431
6432 See man:lttng(1) for the complete list of command-line options. You
6433 can also save and load all many sessions at a time, and decide in which
6434 directory to output the XML files.
6435
6436
6437 [[sending-trace-data-over-the-network]]
6438 === Send trace data over the network
6439
6440 LTTng can send the recorded trace data to a remote system over the
6441 network instead of writing it to the local file system.
6442
6443 To send the trace data over the network:
6444
6445 . On the _remote_ system (which can also be the target system),
6446 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6447 +
6448 --
6449 [role="term"]
6450 ----
6451 $ lttng-relayd
6452 ----
6453 --
6454
6455 . On the _target_ system, create a tracing session configured to
6456 send trace data over the network:
6457 +
6458 --
6459 [role="term"]
6460 ----
6461 $ lttng create my-session --set-url=net://remote-system
6462 ----
6463 --
6464 +
6465 Replace `remote-system` by the host name or IP address of the
6466 remote system. See man:lttng-create(1) for the exact URL format.
6467
6468 . On the target system, use the man:lttng(1) command-line tool as usual.
6469 When tracing is active, the target's consumer daemon sends sub-buffers
6470 to the relay daemon running on the remote system instead of flushing
6471 them to the local file system. The relay daemon writes the received
6472 packets to the local file system.
6473
6474 The relay daemon writes trace files to
6475 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6476 +__hostname__+ is the host name of the target system and +__session__+
6477 is the tracing session name. Note that the env:LTTNG_HOME environment
6478 variable defaults to `$HOME` if not set. Use the
6479 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6480 trace files to another base directory.
6481
6482
6483 [role="since-2.4"]
6484 [[lttng-live]]
6485 === View events as LTTng emits them (noch:{LTTng} live)
6486
6487 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6488 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6489 display events as LTTng emits them on the target system while tracing is
6490 active.
6491
6492 The relay daemon creates a _tee_: it forwards the trace data to both
6493 the local file system and to connected live viewers:
6494
6495 [role="img-90"]
6496 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6497 image::live.png[]
6498
6499 To use LTTng live:
6500
6501 . On the _target system_, create a <<tracing-session,tracing session>>
6502 in _live mode_:
6503 +
6504 --
6505 [role="term"]
6506 ----
6507 $ lttng create my-session --live
6508 ----
6509 --
6510 +
6511 This spawns a local relay daemon.
6512
6513 . Start the live viewer and configure it to connect to the relay
6514 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6515 +
6516 --
6517 [role="term"]
6518 ----
6519 $ babeltrace --input-format=lttng-live \
6520 net://localhost/host/hostname/my-session
6521 ----
6522 --
6523 +
6524 Replace:
6525 +
6526 --
6527 * `hostname` with the host name of the target system.
6528 * `my-session` with the name of the tracing session to view.
6529 --
6530
6531 . Configure the tracing session as usual with the man:lttng(1)
6532 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6533
6534 You can list the available live tracing sessions with Babeltrace:
6535
6536 [role="term"]
6537 ----
6538 $ babeltrace --input-format=lttng-live net://localhost
6539 ----
6540
6541 You can start the relay daemon on another system. In this case, you need
6542 to specify the relay daemon's URL when you create the tracing session
6543 with the opt:lttng-create(1):--set-url option. You also need to replace
6544 `localhost` in the procedure above with the host name of the system on
6545 which the relay daemon is running.
6546
6547 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6548 command-line options.
6549
6550
6551 [role="since-2.3"]
6552 [[taking-a-snapshot]]
6553 === Take a snapshot of the current sub-buffers of a tracing session
6554
6555 The normal behavior of LTTng is to append full sub-buffers to growing
6556 trace data files. This is ideal to keep a full history of the events
6557 that occurred on the target system, but it can
6558 represent too much data in some situations. For example, you may wish
6559 to trace your application continuously until some critical situation
6560 happens, in which case you only need the latest few recorded
6561 events to perform the desired analysis, not multi-gigabyte trace files.
6562
6563 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6564 current sub-buffers of a given <<tracing-session,tracing session>>.
6565 LTTng can write the snapshot to the local file system or send it over
6566 the network.
6567
6568 [role="img-100"]
6569 .A snapshot is a copy of the current sub-buffers, which are not cleared after the operation.
6570 image::snapshot.png[]
6571
6572 If you wish to create unmanaged, self-contained, non-overlapping
6573 trace chunk archives instead of a simple copy of the current
6574 sub-buffers, see the <<session-rotation,tracing session rotation>>
6575 feature (available since LTTng{nbsp}2.11).
6576
6577 To take a snapshot:
6578
6579 . Create a tracing session in _snapshot mode_:
6580 +
6581 --
6582 [role="term"]
6583 ----
6584 $ lttng create my-session --snapshot
6585 ----
6586 --
6587 +
6588 The <<channel-overwrite-mode-vs-discard-mode,event record loss mode>> of
6589 <<channel,channels>> created in this mode is automatically set to
6590 _overwrite_ (flight recorder mode).
6591
6592 . Configure the tracing session as usual with the man:lttng(1)
6593 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6594
6595 . **Optional**: When you need to take a snapshot,
6596 <<basic-tracing-session-control,stop tracing>>.
6597 +
6598 You can take a snapshot when the tracers are active, but if you stop
6599 them first, you are sure that the data in the sub-buffers does not
6600 change before you actually take the snapshot.
6601
6602 . Take a snapshot:
6603 +
6604 --
6605 [role="term"]
6606 ----
6607 $ lttng snapshot record --name=my-first-snapshot
6608 ----
6609 --
6610 +
6611 LTTng writes the current sub-buffers of all the current tracing
6612 session's channels to trace files on the local file system. Those trace
6613 files have `my-first-snapshot` in their name.
6614
6615 There is no difference between the format of a normal trace file and the
6616 format of a snapshot: viewers of LTTng traces also support LTTng
6617 snapshots.
6618
6619 By default, LTTng writes snapshot files to the path shown by
6620 `lttng snapshot list-output`. You can change this path or decide to send
6621 snapshots over the network using either:
6622
6623 . An output path or URL that you specify when you
6624 <<creating-destroying-tracing-sessions,create the tracing session>>.
6625 . A snapshot output path or URL that you add using
6626 `lttng snapshot add-output`.
6627 . An output path or URL that you provide directly to the
6628 `lttng snapshot record` command.
6629
6630 Method{nbsp}3 overrides method{nbsp}2, which overrides method 1. When
6631 you specify a URL, a relay daemon must listen on a remote system (see
6632 <<sending-trace-data-over-the-network,Send trace data over the
6633 network>>).
6634
6635
6636 [role="since-2.11"]
6637 [[session-rotation]]
6638 === Archive the current trace chunk (rotate a tracing session)
6639
6640 The <<taking-a-snapshot,snapshot user guide>> shows how you can dump
6641 a tracing session's current sub-buffers to the file system or send them
6642 over the network. When you take a snapshot, LTTng does not clear the
6643 tracing session's ring buffers: if you take another snapshot immediately
6644 after, both snapshots could contain overlapping trace data.
6645
6646 Inspired by https://en.wikipedia.org/wiki/Log_rotation[log rotation],
6647 _tracing session rotation_ is a feature which appends the content of the
6648 ring buffers to what's already on the file system or sent over the
6649 network since the tracing session's creation or since the last
6650 rotation, and then clears those ring buffers to avoid trace data
6651 overlaps.
6652
6653 What LTTng is about to write when performing a tracing session rotation
6654 is called the _current trace chunk_. When this current trace chunk is
6655 written to the file system or sent over the network, it is called a
6656 _trace chunk archive_. Therefore, a tracing session rotation _archives_
6657 the current trace chunk.
6658
6659 [role="img-100"]
6660 .A tracing session rotation operation _archives_ the current trace chunk.
6661 image::rotation.png[]
6662
6663 A trace chunk archive is a self-contained LTTng trace and is not managed
6664 anymore by LTTng: you can read it, modify it, move it, or remove it.
6665
6666 There are two methods to perform a tracing session rotation:
6667 immediately or automatically.
6668
6669 To perform an immediate tracing session rotation:
6670
6671 . <<creating-destroying-tracing-sessions,Create a tracing session>>
6672 in _normal mode_ or _network streaming mode_
6673 (only those two creation modes support tracing session rotation):
6674 +
6675 --
6676 [role="term"]
6677 ----
6678 $ lttng create my-session
6679 ----
6680 --
6681
6682 . <<enabling-disabling-events,Create one or more event rules>>
6683 and <<basic-tracing-session-control,start tracing>>:
6684 +
6685 --
6686 [role="term"]
6687 ----
6688 $ lttng enable-event --kernel sched_'*'
6689 $ lttng start
6690 ----
6691 --
6692
6693 . When needed, immediately rotate the current tracing session:
6694 +
6695 --
6696 [role="term"]
6697 ----
6698 $ lttng rotate
6699 ----
6700 --
6701 +
6702 The cmd:lttng-rotate command prints the path to the created trace
6703 chunk archive. See man:lttng-rotate(1) to learn about the format
6704 of trace chunk archive directory names.
6705 +
6706 You can perform other immediate rotations while the tracing session is
6707 active. It is guaranteed that all the trace chunk archives do not
6708 contain overlapping trace data. You can also perform an immediate
6709 rotation once the tracing session is
6710 <<basic-tracing-session-control,stopped>>.
6711
6712 . When you are done tracing,
6713 <<creating-destroying-tracing-sessions,destroy the current tracing
6714 session>>:
6715 +
6716 --
6717 [role="term"]
6718 ----
6719 $ lttng destroy
6720 ----
6721 --
6722 +
6723 The tracing session destruction operation creates one last trace
6724 chunk archive from the current trace chunk.
6725
6726 An automatic tracing session rotation is a rotation which LTTng
6727 performs automatically based on one of the following conditions:
6728
6729 * A timer with a configured period times out.
6730 * The total size of the flushed part of the current trace chunk
6731 becomes greater than or equal to a configured value.
6732
6733 To configure a future, automatic tracing session rotation, you need
6734 to set a _rotation schedule_.
6735
6736 To set a rotation schedule:
6737
6738 . <<creating-destroying-tracing-sessions,Create a tracing session>>
6739 in _normal mode_ or _network streaming mode_
6740 (only those two creation modes support tracing session rotation):
6741 +
6742 --
6743 [role="term"]
6744 ----
6745 $ lttng create my-session
6746 ----
6747 --
6748
6749 . <<enabling-disabling-events,Create one or more event rules>>:
6750 +
6751 --
6752 [role="term"]
6753 ----
6754 $ lttng enable-event --kernel sched_'*'
6755 ----
6756 --
6757
6758 . Set a tracing session rotation schedule:
6759 +
6760 --
6761 [role="term"]
6762 ----
6763 $ lttng enable-rotation --timer=12s
6764 ----
6765 --
6766 +
6767 In this example, we set a rotation schedule so that LTTng performs a
6768 tracing session rotation every 12{nbsp}seconds.
6769 +
6770 See man:lttng-enable-rotation(1) to learn more about other ways to set a
6771 rotation schedule.
6772
6773 . <<basic-tracing-session-control,Start tracing>>:
6774 +
6775 --
6776 [role="term"]
6777 ----
6778 $ lttng start
6779 ----
6780 --
6781 +
6782 LTTng performs tracing session rotations automatically while the tracing
6783 session is active thanks to the rotation schedule.
6784
6785 . When you are done tracing,
6786 <<creating-destroying-tracing-sessions,destroy the current tracing
6787 session>>:
6788 +
6789 --
6790 [role="term"]
6791 ----
6792 $ lttng destroy
6793 ----
6794 --
6795 +
6796 The tracing session destruction operation creates one last trace chunk
6797 archive from the current trace chunk.
6798
6799 You can use man:lttng-disable-rotation(1) to unset an a tracing session
6800 rotation schedule.
6801
6802 NOTE: man:lttng-rotate(1) and man:lttng-enable-rotation(1) list
6803 limitations regarding those two commands.
6804
6805
6806 [role="since-2.6"]
6807 [[mi]]
6808 === Use the machine interface
6809
6810 With any command of the man:lttng(1) command-line tool, you can set the
6811 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6812 XML machine interface output, for example:
6813
6814 [role="term"]
6815 ----
6816 $ lttng --mi=xml enable-event --kernel --syscall open
6817 ----
6818
6819 A schema definition (XSD) is
6820 https://github.com/lttng/lttng-tools/blob/stable-2.11/src/common/mi-lttng-3.0.xsd[available]
6821 to ease the integration with external tools as much as possible.
6822
6823
6824 [role="since-2.8"]
6825 [[metadata-regenerate]]
6826 === Regenerate the metadata of an LTTng trace
6827
6828 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6829 data stream files and a metadata file. This metadata file contains,
6830 amongst other things, information about the offset of the clock sources
6831 used to timestamp <<event,event records>> when tracing.
6832
6833 If, once a <<tracing-session,tracing session>> is
6834 <<basic-tracing-session-control,started>>, a major
6835 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6836 happens, the trace's clock offset also needs to be updated. You
6837 can use the `metadata` item of the man:lttng-regenerate(1) command
6838 to do so.
6839
6840 The main use case of this command is to allow a system to boot with
6841 an incorrect wall time and trace it with LTTng before its wall time
6842 is corrected. Once the system is known to be in a state where its
6843 wall time is correct, it can run `lttng regenerate metadata`.
6844
6845 To regenerate the metadata of an LTTng trace:
6846
6847 * Use the `metadata` item of the man:lttng-regenerate(1) command:
6848 +
6849 --
6850 [role="term"]
6851 ----
6852 $ lttng regenerate metadata
6853 ----
6854 --
6855
6856 [IMPORTANT]
6857 ====
6858 `lttng regenerate metadata` has the following limitations:
6859
6860 * Tracing session <<creating-destroying-tracing-sessions,created>>
6861 in non-live mode.
6862 * User space <<channel,channels>>, if any, are using
6863 <<channel-buffering-schemes,per-user buffering>>.
6864 ====
6865
6866
6867 [role="since-2.9"]
6868 [[regenerate-statedump]]
6869 === Regenerate the state dump of a tracing session
6870
6871 The LTTng kernel and user space tracers generate state dump
6872 <<event,event records>> when the application starts or when you
6873 <<basic-tracing-session-control,start a tracing session>>. An analysis
6874 can use the state dump event records to set an initial state before it
6875 builds the rest of the state from the following event records.
6876 http://tracecompass.org/[Trace Compass] is a notable example of an
6877 application which uses the state dump of an LTTng trace.
6878
6879 When you <<taking-a-snapshot,take a snapshot>>, it's possible that the
6880 state dump event records are not included in the snapshot because they
6881 were recorded to a sub-buffer that has been consumed or overwritten
6882 already.
6883
6884 You can use the `lttng regenerate statedump` command to emit the state
6885 dump event records again.
6886
6887 To regenerate the state dump of the current tracing session, provided
6888 create it in snapshot mode, before you take a snapshot:
6889
6890 . Use the `statedump` item of the man:lttng-regenerate(1) command:
6891 +
6892 --
6893 [role="term"]
6894 ----
6895 $ lttng regenerate statedump
6896 ----
6897 --
6898
6899 . <<basic-tracing-session-control,Stop the tracing session>>:
6900 +
6901 --
6902 [role="term"]
6903 ----
6904 $ lttng stop
6905 ----
6906 --
6907
6908 . <<taking-a-snapshot,Take a snapshot>>:
6909 +
6910 --
6911 [role="term"]
6912 ----
6913 $ lttng snapshot record --name=my-snapshot
6914 ----
6915 --
6916
6917 Depending on the event throughput, you should run steps 1 and 2
6918 as closely as possible.
6919
6920 NOTE: To record the state dump events, you need to
6921 <<enabling-disabling-events,create event rules>> which enable them.
6922 LTTng-UST state dump tracepoints start with `lttng_ust_statedump:`.
6923 LTTng-modules state dump tracepoints start with `lttng_statedump_`.
6924
6925
6926 [role="since-2.7"]
6927 [[persistent-memory-file-systems]]
6928 === Record trace data on persistent memory file systems
6929
6930 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6931 (NVRAM) is random-access memory that retains its information when power
6932 is turned off (non-volatile). Systems with such memory can store data
6933 structures in RAM and retrieve them after a reboot, without flushing
6934 to typical _storage_.
6935
6936 Linux supports NVRAM file systems thanks to either
6937 http://pramfs.sourceforge.net/[PRAMFS] or
6938 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6939 (requires Linux{nbsp}4.1+).
6940
6941 This section does not describe how to operate such file systems;
6942 we assume that you have a working persistent memory file system.
6943
6944 When you create a <<tracing-session,tracing session>>, you can specify
6945 the path of the shared memory holding the sub-buffers. If you specify a
6946 location on an NVRAM file system, then you can retrieve the latest
6947 recorded trace data when the system reboots after a crash.
6948
6949 To record trace data on a persistent memory file system and retrieve the
6950 trace data after a system crash:
6951
6952 . Create a tracing session with a sub-buffer shared memory path located
6953 on an NVRAM file system:
6954 +
6955 --
6956 [role="term"]
6957 ----
6958 $ lttng create my-session --shm-path=/path/to/shm
6959 ----
6960 --
6961
6962 . Configure the tracing session as usual with the man:lttng(1)
6963 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6964
6965 . After a system crash, use the man:lttng-crash(1) command-line tool to
6966 view the trace data recorded on the NVRAM file system:
6967 +
6968 --
6969 [role="term"]
6970 ----
6971 $ lttng-crash /path/to/shm
6972 ----
6973 --
6974
6975 The binary layout of the ring buffer files is not exactly the same as
6976 the trace files layout. This is why you need to use man:lttng-crash(1)
6977 instead of your preferred trace viewer directly.
6978
6979 To convert the ring buffer files to LTTng trace files:
6980
6981 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6982 +
6983 --
6984 [role="term"]
6985 ----
6986 $ lttng-crash --extract=/path/to/trace /path/to/shm
6987 ----
6988 --
6989
6990
6991 [role="since-2.10"]
6992 [[notif-trigger-api]]
6993 === Get notified when a channel's buffer usage is too high or too low
6994
6995 With LTTng's $$C/C++$$ notification and trigger API, your user
6996 application can get notified when the buffer usage of one or more
6997 <<channel,channels>> becomes too low or too high. You can use this API
6998 and enable or disable <<event,event rules>> during tracing to avoid
6999 <<channel-overwrite-mode-vs-discard-mode,discarded event records>>.
7000
7001 .Have a user application get notified when an LTTng channel's buffer usage is too high.
7002 ====
7003 In this example, we create and build an application which gets notified
7004 when the buffer usage of a specific LTTng channel is higher than
7005 75{nbsp}%. We only print that it is the case in the example, but we
7006 could as well use the API of <<liblttng-ctl-lttng,`liblttng-ctl`>> to
7007 disable event rules when this happens.
7008
7009 . Create the application's C source file:
7010 +
7011 --
7012 [source,c]
7013 .path:{notif-app.c}
7014 ----
7015 #include <stdio.h>
7016 #include <assert.h>
7017 #include <lttng/domain.h>
7018 #include <lttng/action/action.h>
7019 #include <lttng/action/notify.h>
7020 #include <lttng/condition/condition.h>
7021 #include <lttng/condition/buffer-usage.h>
7022 #include <lttng/condition/evaluation.h>
7023 #include <lttng/notification/channel.h>
7024 #include <lttng/notification/notification.h>
7025 #include <lttng/trigger/trigger.h>
7026 #include <lttng/endpoint.h>
7027
7028 int main(int argc, char *argv[])
7029 {
7030 int exit_status = 0;
7031 struct lttng_notification_channel *notification_channel;
7032 struct lttng_condition *condition;
7033 struct lttng_action *action;
7034 struct lttng_trigger *trigger;
7035 const char *tracing_session_name;
7036 const char *channel_name;
7037
7038 assert(argc >= 3);
7039 tracing_session_name = argv[1];
7040 channel_name = argv[2];
7041
7042 /*
7043 * Create a notification channel. A notification channel
7044 * connects the user application to the LTTng session daemon.
7045 * This notification channel can be used to listen to various
7046 * types of notifications.
7047 */
7048 notification_channel = lttng_notification_channel_create(
7049 lttng_session_daemon_notification_endpoint);
7050
7051 /*
7052 * Create a "high buffer usage" condition. In this case, the
7053 * condition is reached when the buffer usage is greater than or
7054 * equal to 75 %. We create the condition for a specific tracing
7055 * session name, channel name, and for the user space tracing
7056 * domain.
7057 *
7058 * The "low buffer usage" condition type also exists.
7059 */
7060 condition = lttng_condition_buffer_usage_high_create();
7061 lttng_condition_buffer_usage_set_threshold_ratio(condition, .75);
7062 lttng_condition_buffer_usage_set_session_name(
7063 condition, tracing_session_name);
7064 lttng_condition_buffer_usage_set_channel_name(condition,
7065 channel_name);
7066 lttng_condition_buffer_usage_set_domain_type(condition,
7067 LTTNG_DOMAIN_UST);
7068
7069 /*
7070 * Create an action (get a notification) to take when the
7071 * condition created above is reached.
7072 */
7073 action = lttng_action_notify_create();
7074
7075 /*
7076 * Create a trigger. A trigger associates a condition to an
7077 * action: the action is executed when the condition is reached.
7078 */
7079 trigger = lttng_trigger_create(condition, action);
7080
7081 /* Register the trigger to LTTng. */
7082 lttng_register_trigger(trigger);
7083
7084 /*
7085 * Now that we have registered a trigger, a notification will be
7086 * emitted everytime its condition is met. To receive this
7087 * notification, we must subscribe to notifications that match
7088 * the same condition.
7089 */
7090 lttng_notification_channel_subscribe(notification_channel,
7091 condition);
7092
7093 /*
7094 * Notification loop. You can put this in a dedicated thread to
7095 * avoid blocking the main thread.
7096 */
7097 for (;;) {
7098 struct lttng_notification *notification;
7099 enum lttng_notification_channel_status status;
7100 const struct lttng_evaluation *notification_evaluation;
7101 const struct lttng_condition *notification_condition;
7102 double buffer_usage;
7103
7104 /* Receive the next notification. */
7105 status = lttng_notification_channel_get_next_notification(
7106 notification_channel, &notification);
7107
7108 switch (status) {
7109 case LTTNG_NOTIFICATION_CHANNEL_STATUS_OK:
7110 break;
7111 case LTTNG_NOTIFICATION_CHANNEL_STATUS_NOTIFICATIONS_DROPPED:
7112 /*
7113 * The session daemon can drop notifications if
7114 * a monitoring application is not consuming the
7115 * notifications fast enough.
7116 */
7117 continue;
7118 case LTTNG_NOTIFICATION_CHANNEL_STATUS_CLOSED:
7119 /*
7120 * The notification channel has been closed by the
7121 * session daemon. This is typically caused by a session
7122 * daemon shutting down.
7123 */
7124 goto end;
7125 default:
7126 /* Unhandled conditions or errors. */
7127 exit_status = 1;
7128 goto end;
7129 }
7130
7131 /*
7132 * A notification provides, amongst other things:
7133 *
7134 * * The condition that caused this notification to be
7135 * emitted.
7136 * * The condition evaluation, which provides more
7137 * specific information on the evaluation of the
7138 * condition.
7139 *
7140 * The condition evaluation provides the buffer usage
7141 * value at the moment the condition was reached.
7142 */
7143 notification_condition = lttng_notification_get_condition(
7144 notification);
7145 notification_evaluation = lttng_notification_get_evaluation(
7146 notification);
7147
7148 /* We're subscribed to only one condition. */
7149 assert(lttng_condition_get_type(notification_condition) ==
7150 LTTNG_CONDITION_TYPE_BUFFER_USAGE_HIGH);
7151
7152 /*
7153 * Get the exact sampled buffer usage from the
7154 * condition evaluation.
7155 */
7156 lttng_evaluation_buffer_usage_get_usage_ratio(
7157 notification_evaluation, &buffer_usage);
7158
7159 /*
7160 * At this point, instead of printing a message, we
7161 * could do something to reduce the channel's buffer
7162 * usage, like disable specific events.
7163 */
7164 printf("Buffer usage is %f %% in tracing session \"%s\", "
7165 "user space channel \"%s\".\n", buffer_usage * 100,
7166 tracing_session_name, channel_name);
7167 lttng_notification_destroy(notification);
7168 }
7169
7170 end:
7171 lttng_action_destroy(action);
7172 lttng_condition_destroy(condition);
7173 lttng_trigger_destroy(trigger);
7174 lttng_notification_channel_destroy(notification_channel);
7175 return exit_status;
7176 }
7177 ----
7178 --
7179
7180 . Build the `notif-app` application, linking it to `liblttng-ctl`:
7181 +
7182 --
7183 [role="term"]
7184 ----
7185 $ gcc -o notif-app notif-app.c -llttng-ctl
7186 ----
7187 --
7188
7189 . <<creating-destroying-tracing-sessions,Create a tracing session>>,
7190 <<enabling-disabling-events,create an event rule>> matching all the
7191 user space tracepoints, and
7192 <<basic-tracing-session-control,start tracing>>:
7193 +
7194 --
7195 [role="term"]
7196 ----
7197 $ lttng create my-session
7198 $ lttng enable-event --userspace --all
7199 $ lttng start
7200 ----
7201 --
7202 +
7203 If you create the channel manually with the man:lttng-enable-channel(1)
7204 command, you can control how frequently are the current values of the
7205 channel's properties sampled to evaluate user conditions with the
7206 opt:lttng-enable-channel(1):--monitor-timer option.
7207
7208 . Run the `notif-app` application. This program accepts the
7209 <<tracing-session,tracing session>> name and the user space channel
7210 name as its two first arguments. The channel which LTTng automatically
7211 creates with the man:lttng-enable-event(1) command above is named
7212 `channel0`:
7213 +
7214 --
7215 [role="term"]
7216 ----
7217 $ ./notif-app my-session channel0
7218 ----
7219 --
7220
7221 . In another terminal, run an application with a very high event
7222 throughput so that the 75{nbsp}% buffer usage condition is reached.
7223 +
7224 In the first terminal, the application should print lines like this:
7225 +
7226 ----
7227 Buffer usage is 81.45197 % in tracing session "my-session", user space
7228 channel "channel0".
7229 ----
7230 +
7231 If you don't see anything, try modifying the condition in
7232 path:{notif-app.c} to a lower value (0.1, for example), rebuilding it
7233 (step{nbsp}2) and running it again (step{nbsp}4).
7234 ====
7235
7236
7237 [[reference]]
7238 == Reference
7239
7240 [[lttng-modules-ref]]
7241 === noch:{LTTng-modules}
7242
7243
7244 [role="since-2.9"]
7245 [[lttng-tracepoint-enum]]
7246 ==== `LTTNG_TRACEPOINT_ENUM()` usage
7247
7248 Use the `LTTNG_TRACEPOINT_ENUM()` macro to define an enumeration:
7249
7250 [source,c]
7251 ----
7252 LTTNG_TRACEPOINT_ENUM(name, TP_ENUM_VALUES(entries))
7253 ----
7254
7255 Replace:
7256
7257 * `name` with the name of the enumeration (C identifier, unique
7258 amongst all the defined enumerations).
7259 * `entries` with a list of enumeration entries.
7260
7261 The available enumeration entry macros are:
7262
7263 +ctf_enum_value(__name__, __value__)+::
7264 Entry named +__name__+ mapped to the integral value +__value__+.
7265
7266 +ctf_enum_range(__name__, __begin__, __end__)+::
7267 Entry named +__name__+ mapped to the range of integral values between
7268 +__begin__+ (included) and +__end__+ (included).
7269
7270 +ctf_enum_auto(__name__)+::
7271 Entry named +__name__+ mapped to the integral value following the
7272 last mapping's value.
7273 +
7274 The last value of a `ctf_enum_value()` entry is its +__value__+
7275 parameter.
7276 +
7277 The last value of a `ctf_enum_range()` entry is its +__end__+ parameter.
7278 +
7279 If `ctf_enum_auto()` is the first entry in the list, its integral
7280 value is 0.
7281
7282 Use the `ctf_enum()` <<lttng-modules-tp-fields,field definition macro>>
7283 to use a defined enumeration as a tracepoint field.
7284
7285 .Define an enumeration with `LTTNG_TRACEPOINT_ENUM()`.
7286 ====
7287 [source,c]
7288 ----
7289 LTTNG_TRACEPOINT_ENUM(
7290 my_enum,
7291 TP_ENUM_VALUES(
7292 ctf_enum_auto("AUTO: EXPECT 0")
7293 ctf_enum_value("VALUE: 23", 23)
7294 ctf_enum_value("VALUE: 27", 27)
7295 ctf_enum_auto("AUTO: EXPECT 28")
7296 ctf_enum_range("RANGE: 101 TO 303", 101, 303)
7297 ctf_enum_auto("AUTO: EXPECT 304")
7298 )
7299 )
7300 ----
7301 ====
7302
7303
7304 [role="since-2.7"]
7305 [[lttng-modules-tp-fields]]
7306 ==== Tracepoint fields macros (for `TP_FIELDS()`)
7307
7308 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
7309 tracepoint fields, which must be listed within `TP_FIELDS()` in
7310 `LTTNG_TRACEPOINT_EVENT()`, are:
7311
7312 [role="func-desc growable",cols="asciidoc,asciidoc"]
7313 .Available macros to define LTTng-modules tracepoint fields
7314 |====
7315 |Macro |Description and parameters
7316
7317 |
7318 +ctf_integer(__t__, __n__, __e__)+
7319
7320 +ctf_integer_nowrite(__t__, __n__, __e__)+
7321
7322 +ctf_user_integer(__t__, __n__, __e__)+
7323
7324 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
7325 |
7326 Standard integer, displayed in base{nbsp}10.
7327
7328 +__t__+::
7329 Integer C type (`int`, `long`, `size_t`, ...).
7330
7331 +__n__+::
7332 Field name.
7333
7334 +__e__+::
7335 Argument expression.
7336
7337 |
7338 +ctf_integer_hex(__t__, __n__, __e__)+
7339
7340 +ctf_user_integer_hex(__t__, __n__, __e__)+
7341 |
7342 Standard integer, displayed in base{nbsp}16.
7343
7344 +__t__+::
7345 Integer C type.
7346
7347 +__n__+::
7348 Field name.
7349
7350 +__e__+::
7351 Argument expression.
7352
7353 |+ctf_integer_oct(__t__, __n__, __e__)+
7354 |
7355 Standard integer, displayed in base{nbsp}8.
7356
7357 +__t__+::
7358 Integer C type.
7359
7360 +__n__+::
7361 Field name.
7362
7363 +__e__+::
7364 Argument expression.
7365
7366 |
7367 +ctf_integer_network(__t__, __n__, __e__)+
7368
7369 +ctf_user_integer_network(__t__, __n__, __e__)+
7370 |
7371 Integer in network byte order (big-endian), displayed in base{nbsp}10.
7372
7373 +__t__+::
7374 Integer C type.
7375
7376 +__n__+::
7377 Field name.
7378
7379 +__e__+::
7380 Argument expression.
7381
7382 |
7383 +ctf_integer_network_hex(__t__, __n__, __e__)+
7384
7385 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
7386 |
7387 Integer in network byte order, displayed in base{nbsp}16.
7388
7389 +__t__+::
7390 Integer C type.
7391
7392 +__n__+::
7393 Field name.
7394
7395 +__e__+::
7396 Argument expression.
7397
7398 |
7399 +ctf_enum(__N__, __t__, __n__, __e__)+
7400
7401 +ctf_enum_nowrite(__N__, __t__, __n__, __e__)+
7402
7403 +ctf_user_enum(__N__, __t__, __n__, __e__)+
7404
7405 +ctf_user_enum_nowrite(__N__, __t__, __n__, __e__)+
7406 |
7407 Enumeration.
7408
7409 +__N__+::
7410 Name of a <<lttng-tracepoint-enum,previously defined enumeration>>.
7411
7412 +__t__+::
7413 Integer C type (`int`, `long`, `size_t`, ...).
7414
7415 +__n__+::
7416 Field name.
7417
7418 +__e__+::
7419 Argument expression.
7420
7421 |
7422 +ctf_string(__n__, __e__)+
7423
7424 +ctf_string_nowrite(__n__, __e__)+
7425
7426 +ctf_user_string(__n__, __e__)+
7427
7428 +ctf_user_string_nowrite(__n__, __e__)+
7429 |
7430 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
7431
7432 +__n__+::
7433 Field name.
7434
7435 +__e__+::
7436 Argument expression.
7437
7438 |
7439 +ctf_array(__t__, __n__, __e__, __s__)+
7440
7441 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
7442
7443 +ctf_user_array(__t__, __n__, __e__, __s__)+
7444
7445 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
7446 |
7447 Statically-sized array of integers.
7448
7449 +__t__+::
7450 Array element C type.
7451
7452 +__n__+::
7453 Field name.
7454
7455 +__e__+::
7456 Argument expression.
7457
7458 +__s__+::
7459 Number of elements.
7460
7461 |
7462 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
7463
7464 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
7465
7466 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
7467
7468 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
7469 |
7470 Statically-sized array of bits.
7471
7472 The type of +__e__+ must be an integer type. +__s__+ is the number
7473 of elements of such type in +__e__+, not the number of bits.
7474
7475 +__t__+::
7476 Array element C type.
7477
7478 +__n__+::
7479 Field name.
7480
7481 +__e__+::
7482 Argument expression.
7483
7484 +__s__+::
7485 Number of elements.
7486
7487 |
7488 +ctf_array_text(__t__, __n__, __e__, __s__)+
7489
7490 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
7491
7492 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
7493
7494 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
7495 |
7496 Statically-sized array, printed as text.
7497
7498 The string does not need to be null-terminated.
7499
7500 +__t__+::
7501 Array element C type (always `char`).
7502
7503 +__n__+::
7504 Field name.
7505
7506 +__e__+::
7507 Argument expression.
7508
7509 +__s__+::
7510 Number of elements.
7511
7512 |
7513 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
7514
7515 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7516
7517 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
7518
7519 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7520 |
7521 Dynamically-sized array of integers.
7522
7523 The type of +__E__+ must be unsigned.
7524
7525 +__t__+::
7526 Array element C type.
7527
7528 +__n__+::
7529 Field name.
7530
7531 +__e__+::
7532 Argument expression.
7533
7534 +__T__+::
7535 Length expression C type.
7536
7537 +__E__+::
7538 Length expression.
7539
7540 |
7541 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7542
7543 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7544 |
7545 Dynamically-sized array of integers, displayed in base{nbsp}16.
7546
7547 The type of +__E__+ must be unsigned.
7548
7549 +__t__+::
7550 Array element C type.
7551
7552 +__n__+::
7553 Field name.
7554
7555 +__e__+::
7556 Argument expression.
7557
7558 +__T__+::
7559 Length expression C type.
7560
7561 +__E__+::
7562 Length expression.
7563
7564 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
7565 |
7566 Dynamically-sized array of integers in network byte order (big-endian),
7567 displayed in base{nbsp}10.
7568
7569 The type of +__E__+ must be unsigned.
7570
7571 +__t__+::
7572 Array element C type.
7573
7574 +__n__+::
7575 Field name.
7576
7577 +__e__+::
7578 Argument expression.
7579
7580 +__T__+::
7581 Length expression C type.
7582
7583 +__E__+::
7584 Length expression.
7585
7586 |
7587 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7588
7589 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7590
7591 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7592
7593 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7594 |
7595 Dynamically-sized array of bits.
7596
7597 The type of +__e__+ must be an integer type. +__s__+ is the number
7598 of elements of such type in +__e__+, not the number of bits.
7599
7600 The type of +__E__+ must be unsigned.
7601
7602 +__t__+::
7603 Array element C type.
7604
7605 +__n__+::
7606 Field name.
7607
7608 +__e__+::
7609 Argument expression.
7610
7611 +__T__+::
7612 Length expression C type.
7613
7614 +__E__+::
7615 Length expression.
7616
7617 |
7618 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7619
7620 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7621
7622 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7623
7624 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7625 |
7626 Dynamically-sized array, displayed as text.
7627
7628 The string does not need to be null-terminated.
7629
7630 The type of +__E__+ must be unsigned.
7631
7632 The behaviour is undefined if +__e__+ is `NULL`.
7633
7634 +__t__+::
7635 Sequence element C type (always `char`).
7636
7637 +__n__+::
7638 Field name.
7639
7640 +__e__+::
7641 Argument expression.
7642
7643 +__T__+::
7644 Length expression C type.
7645
7646 +__E__+::
7647 Length expression.
7648 |====
7649
7650 Use the `_user` versions when the argument expression, `e`, is
7651 a user space address. In the cases of `ctf_user_integer*()` and
7652 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7653 be addressable.
7654
7655 The `_nowrite` versions omit themselves from the session trace, but are
7656 otherwise identical. This means the `_nowrite` fields won't be written
7657 in the recorded trace. Their primary purpose is to make some
7658 of the event context available to the
7659 <<enabling-disabling-events,event filters>> without having to
7660 commit the data to sub-buffers.
7661
7662
7663 [[glossary]]
7664 == Glossary
7665
7666 Terms related to LTTng and to tracing in general:
7667
7668 Babeltrace::
7669 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7670 the cmd:babeltrace command, libraries, and Python bindings.
7671
7672 [[def-buffering-scheme]]<<channel-buffering-schemes,buffering scheme>>::
7673 A layout of <<def-sub-buffer,sub-buffers>> applied to a given channel.
7674
7675 <<channel,channel>>::
7676 An entity which is responsible for a set of
7677 <<def-ring-buffer,ring buffers>>.
7678 +
7679 <<event,Event rules>> are always attached to a specific channel.
7680
7681 clock::
7682 A source of time for a <<def-tracer,tracer>>.
7683
7684 <<lttng-consumerd,consumer daemon>>::
7685 A process which is responsible for consuming the full
7686 <<def-sub-buffer,sub-buffers>> and write them to a file system or
7687 send them over the network.
7688
7689 [[def-current-trace-chunk]]current trace chunk::
7690 A <<def-trace-chunk,trace chunk>> which includes the current content
7691 of all the <<tracing-session,tracing session>>'s
7692 <<def-sub-buffer,sub-buffers>> and the stream files produced since the
7693 latest event amongst:
7694 +
7695 * The creation of the tracing session.
7696 * The last <<session-rotation,tracing session rotation>>, if any.
7697
7698 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event
7699 record loss mode in which the <<def-tracer,tracer>> _discards_ new
7700 event records when there's no
7701 <<def-sub-buffer,sub-buffer>> space left to store them.
7702
7703 [[def-event]]event::
7704 The consequence of the execution of an
7705 <<def-instrumentation-point,instrumentation point>>, like a
7706 <<def-tracepoint,tracepoint>> that you manually place in some source
7707 code, or a Linux kernel kprobe.
7708 +
7709 An event is said to _occur_ at a specific time. Different actions can
7710 be taken upon the occurrence of an event, like record the event's payload
7711 to a <<def-sub-buffer,sub-buffer>>.
7712
7713 [[def-event-name]]event name::
7714 The name of an event, which is also the name of the event record.
7715 This is also called the _instrumentation point name_.
7716
7717 [[def-event-record]]event record::
7718 A record, in a <<def-trace,trace>>, of the payload of an event
7719 which occured.
7720
7721 [[def-event-record-loss-mode]]<<channel-overwrite-mode-vs-discard-mode,event record loss mode>>::
7722 The mechanism by which event records of a given <<channel,channel>>
7723 are lost (not recorded) when there is no <<def-sub-buffer,sub-buffer>>
7724 space left to store them.
7725
7726 <<event,event rule>>::
7727 Set of conditions which must be satisfied for one or more occuring
7728 events to be recorded.
7729
7730 `java.util.logging`::
7731 Java platform's
7732 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7733
7734 <<instrumenting,instrumentation>>::
7735 The use of LTTng probes to make a piece of software traceable.
7736
7737 [[def-instrumentation-point]]instrumentation point::
7738 A point in the execution path of a piece of software that, when
7739 reached by this execution, can emit an <<def-event,event>>.
7740
7741 instrumentation point name::
7742 See _<<def-event-name,event name>>_.
7743
7744 log4j::
7745 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7746 developed by the Apache Software Foundation.
7747
7748 log level::
7749 Level of severity of a log statement or user space
7750 instrumentation point.
7751
7752 LTTng::
7753 The _Linux Trace Toolkit: next generation_ project.
7754
7755 <<lttng-cli,cmd:lttng>>::
7756 A command-line tool provided by the LTTng-tools project which you
7757 can use to send and receive control messages to and from a
7758 session daemon.
7759
7760 LTTng analyses::
7761 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7762 which is a set of analyzing programs that are used to obtain a
7763 higher level view of an LTTng <<def-trace,trace>>.
7764
7765 cmd:lttng-consumerd::
7766 The name of the consumer daemon program.
7767
7768 cmd:lttng-crash::
7769 A utility provided by the LTTng-tools project which can convert
7770 <<def-ring-buffer,ring buffer>> files (usually
7771 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7772 to <<def-trace,trace>> files.
7773
7774 LTTng Documentation::
7775 This document.
7776
7777 <<lttng-live,LTTng live>>::
7778 A communication protocol between the <<lttng-relayd,relay daemon>> and
7779 live viewers which makes it possible to see <<def-event-record,event
7780 records>> "live", as they are received by the relay daemon.
7781
7782 <<lttng-modules,LTTng-modules>>::
7783 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7784 which contains the Linux kernel modules to make the Linux kernel
7785 <<def-instrumentation-point,instrumentation points>> available for
7786 LTTng tracing.
7787
7788 cmd:lttng-relayd::
7789 The name of the <<lttng-relayd,relay daemon>> program.
7790
7791 cmd:lttng-sessiond::
7792 The name of the <<lttng-sessiond,session daemon>> program.
7793
7794 LTTng-tools::
7795 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7796 contains the various programs and libraries used to
7797 <<controlling-tracing,control tracing>>.
7798
7799 <<lttng-ust,LTTng-UST>>::
7800 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7801 contains libraries to instrument
7802 <<def-user-application,user applications>>.
7803
7804 <<lttng-ust-agents,LTTng-UST Java agent>>::
7805 A Java package provided by the LTTng-UST project to allow the
7806 LTTng instrumentation of `java.util.logging` and Apache log4j{nbsp}1.2
7807 logging statements.
7808
7809 <<lttng-ust-agents,LTTng-UST Python agent>>::
7810 A Python package provided by the LTTng-UST project to allow the
7811 LTTng instrumentation of Python logging statements.
7812
7813 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7814 The <<def-event-record-loss-mode,event record loss mode>> in which new
7815 <<def-event-record,event records>> _overwrite_ older event records
7816 when there's no <<def-sub-buffer,sub-buffer>> space left to store
7817 them.
7818
7819 <<channel-buffering-schemes,per-process buffering>>::
7820 A <<def-buffering-scheme,buffering scheme>> in which each instrumented
7821 process has its own <<def-sub-buffer,sub-buffers>> for a given user
7822 space <<channel,channel>>.
7823
7824 <<channel-buffering-schemes,per-user buffering>>::
7825 A <<def-buffering-scheme,buffering scheme>> in which all the processes
7826 of a Unix user share the same <<def-sub-buffer,sub-buffers>> for a
7827 given user space <<channel,channel>>.
7828
7829 <<lttng-relayd,relay daemon>>::
7830 A process which is responsible for receiving the <<def-trace,trace>>
7831 data sent by a distant <<lttng-consumerd,consumer daemon>>.
7832
7833 [[def-ring-buffer]]ring buffer::
7834 A set of <<def-sub-buffer,sub-buffers>>.
7835
7836 rotation::
7837 See _<<def-tracing-session-rotation,tracing session rotation>>_.
7838
7839 <<lttng-sessiond,session daemon>>::
7840 A process which receives control commands from you and orchestrates
7841 the <<def-tracer,tracers>> and various LTTng daemons.
7842
7843 <<taking-a-snapshot,snapshot>>::
7844 A copy of the current data of all the <<def-sub-buffer,sub-buffers>>
7845 of a given <<tracing-session,tracing session>>, saved as
7846 <<def-trace,trace>> files.
7847
7848 [[def-sub-buffer]]sub-buffer::
7849 One part of an LTTng <<def-ring-buffer,ring buffer>> which contains
7850 <<def-event-record,event records>>.
7851
7852 timestamp::
7853 The time information attached to an
7854 <<def-event,event>> when it is emitted.
7855
7856 [[def-trace]]trace (_noun_)::
7857 A set of:
7858 +
7859 * One http://diamon.org/ctf/[CTF] metadata stream file.
7860 * One or more CTF data stream files which are the concatenations of one
7861 or more flushed <<def-sub-buffer,sub-buffers>>.
7862
7863 trace (_verb_)::
7864 The action of recording the <<def-event,events>> emitted by an
7865 application or by a system, or to initiate such recording by
7866 controlling a tracer.
7867
7868 [[def-trace-chunk]]trace chunk::
7869 A self-contained trace which is part of a <<tracing-session,tracing
7870 session>>. Each <<session-rotation, tracing session rotation>>
7871 produces a trace chunk archive.
7872
7873 trace chunk archive::
7874 The result of a <<session-rotation, tracing session rotation>>. A
7875 trace chunk archive is not managed by LTTng, even if its containing
7876 <<tracing-session,tracing session>> is still active: you are free to
7877 read it, modify it, move it, or remove it.
7878
7879 Trace Compass::
7880 The http://tracecompass.org[Trace Compass] project and application.
7881
7882 [[def-tracepoint]]tracepoint::
7883 An instrumentation point using the tracepoint mechanism of the Linux
7884 kernel or of LTTng-UST.
7885
7886 tracepoint definition::
7887 The definition of a single tracepoint.
7888
7889 tracepoint name::
7890 The name of a tracepoint.
7891
7892 tracepoint provider::
7893 A set of functions providing tracepoints to an instrumented user
7894 application.
7895 +
7896 Not to be confused with a _tracepoint provider package_: many tracepoint
7897 providers can exist within a tracepoint provider package.
7898
7899 tracepoint provider package::
7900 One or more tracepoint providers compiled as an
7901 https://en.wikipedia.org/wiki/Object_file[object file] or as
7902 a link:https://en.wikipedia.org/wiki/Library_(computing)#Shared_libraries[shared library].
7903
7904 [[def-tracer]]tracer::
7905 A software which records emitted <<def-event,events>>.
7906
7907 <<domain,tracing domain>>::
7908 A namespace for <<def-event,event>> sources.
7909
7910 <<tracing-group,tracing group>>::
7911 The Unix group in which a Unix user can be to be allowed to trace the
7912 Linux kernel.
7913
7914 [[def-tracing-session-rotation]]<<tracing-session,tracing session>>::
7915 A stateful dialogue between you and a <<lttng-sessiond,session
7916 daemon>>.
7917
7918 <<session-rotation,tracing session rotation>>::
7919 The action of archiving the
7920 <<def-current-trace-chunk,current trace chunk>> of a
7921 <<tracing-session,tracing session>>.
7922
7923 [[def-user-application]]user application::
7924 An application running in user space, as opposed to a Linux kernel
7925 module, for example.
This page took 0.183195 seconds and 3 git commands to generate.