Add instruction scheduling model using SSA model
[urcu.git] / formal-model / ooomem-two-writes / mem.spin
diff --git a/formal-model/ooomem-two-writes/mem.spin b/formal-model/ooomem-two-writes/mem.spin
new file mode 100644 (file)
index 0000000..4892c5e
--- /dev/null
@@ -0,0 +1,267 @@
+/*
+ * mem.spin: Promela code to validate memory barriers with OOO memory.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * Copyright (c) 2009 Mathieu Desnoyers
+ */
+
+/* Promela validation variables. */
+
+/*
+ * Produced process data flow. Updated after each instruction to show which
+ * variables are ready. Assigned using SSA (static single assignment) (defuse
+ * analysis must be done on the program to map "real" variables to single define
+ * followed by use). Using one-hot bit encoding per variable to save state
+ * space.  Used as triggers to execute the instructions having those variables
+ * as input.
+ */
+
+#define PRODUCE_TOKENS(state, bits)    \
+       state = (state) | (bits)
+
+/* All bits must be active to consume. All notbits must be inactive. */
+/* Consuming a token does not clear it, it just waits for it. */
+#define CONSUME_TOKENS(state, bits, notbits)                           \
+       ((!((state) & (notbits))) && ((state) & (bits)) == (bits))
+
+#define CLEAR_TOKENS(state, bits)      \
+       state = (state) & ~(bits)
+
+/*
+ * Bit encoding, proc_one_produced :
+ */
+
+#define P1_PROD_NONE   (1 << 0)
+
+#define P1_WRITE       (1 << 1)
+#define P1_WMB         (1 << 2)
+#define P1_SYNC_CORE   (1 << 3)
+#define P1_RMB         (1 << 4)
+#define P1_READ                (1 << 5)
+
+int proc_one_produced;
+
+#define P2_PROD_NONE   (1 << 0)
+
+#define P2_WRITE       (1 << 1)
+#define P2_WMB         (1 << 2)
+#define P2_SYNC_CORE   (1 << 3)
+#define P2_RMB         (1 << 4)
+#define P2_READ                (1 << 5)
+
+int proc_two_produced;
+
+#define NR_PROCS 2
+
+#define get_pid()      (_pid)
+
+/*
+ * Each process have its own data in cache. Caches are randomly updated.
+ * smp_wmb and smp_rmb forces cache updates (write and read), wmb_mb forces
+ * both.
+ */
+
+#define DECLARE_CACHED_VAR(type, x, v)         \
+       type mem_##x = v;                       \
+       type cached_##x[NR_PROCS] = v;          \
+       bit cache_dirty_##x[NR_PROCS] = 0;
+
+#define IS_CACHE_DIRTY(x, id)  (cache_dirty_##x[id])
+
+#define READ_CACHED_VAR(x)                     \
+       (cached_##x[get_pid()])
+
+#define WRITE_CACHED_VAR(x, v)                 \
+       atomic {                                \
+               cached_##x[get_pid()] = v;      \
+               cache_dirty_##x[get_pid()] = 1; \
+       }
+
+#define CACHE_WRITE_TO_MEM(x, id)              \
+       if                                      \
+       :: IS_CACHE_DIRTY(x, id) ->             \
+               mem_##x = cached_##x[id];       \
+               cache_dirty_##x[id] = 0;        \
+       :: else ->                              \
+               skip                            \
+       fi;
+
+#define CACHE_READ_FROM_MEM(x, id)             \
+       if                                      \
+       :: !IS_CACHE_DIRTY(x, id) ->            \
+               cached_##x[id] = mem_##x;       \
+       :: else ->                              \
+               skip                            \
+       fi;
+
+/*
+ * May update other caches if cache is dirty, or not.
+ */
+#define RANDOM_CACHE_WRITE_TO_MEM(x, id)       \
+       if                                      \
+       :: 1 -> CACHE_WRITE_TO_MEM(x, id);      \
+       :: 1 -> skip                            \
+       fi;
+
+#define RANDOM_CACHE_READ_FROM_MEM(x, id)\
+       if                                      \
+       :: 1 -> CACHE_READ_FROM_MEM(x, id);     \
+       :: 1 -> skip                            \
+       fi;
+
+inline ooo_mem()
+{
+       atomic {
+               RANDOM_CACHE_WRITE_TO_MEM(alpha, get_pid());
+               RANDOM_CACHE_WRITE_TO_MEM(beta, get_pid());
+               RANDOM_CACHE_READ_FROM_MEM(alpha, get_pid());
+               RANDOM_CACHE_READ_FROM_MEM(beta, get_pid());
+       }
+}
+
+/* must consume all prior read tokens */
+inline smp_rmb()
+{
+       atomic {
+               /* todo : consume all read tokens .. ? */
+               CACHE_READ_FROM_MEM(alpha, get_pid());
+               CACHE_READ_FROM_MEM(beta, get_pid());
+       }
+}
+
+/* must consume all prior write tokens */
+inline smp_wmb()
+{
+       atomic {
+               CACHE_WRITE_TO_MEM(alpha, get_pid());
+               CACHE_WRITE_TO_MEM(beta, get_pid());
+       }
+}
+
+/* sync_core() must consume all prior read and write tokens, including rmb/wmb
+ * tokens */
+
+/* must consume all prior read and write tokens */
+inline smp_mb()
+{
+       atomic {
+               smp_wmb();
+               /* sync_core() */
+               smp_rmb();
+       }
+}
+
+/* Keep in sync manually with smp_rmb, wmp_wmb and ooo_mem */
+DECLARE_CACHED_VAR(byte, alpha, 0);
+DECLARE_CACHED_VAR(byte, beta, 0);
+
+/* value 2 is uninitialized */
+byte read_one = 2;
+byte read_two = 2;
+
+active proctype test_proc_one()
+{
+       assert(get_pid() < NR_PROCS);
+
+       PRODUCE_TOKENS(proc_one_produced, P1_PROD_NONE);
+
+#ifdef NO_WMB
+       PRODUCE_TOKENS(proc_one_produced, P1_WMB);
+#endif
+#ifdef NO_RMB
+       PRODUCE_TOKENS(proc_one_produced, P1_RMB);
+#endif
+
+       do
+       :: CONSUME_TOKENS(proc_one_produced, P1_PROD_NONE, P1_WRITE) ->
+               ooo_mem();
+               WRITE_CACHED_VAR(alpha, 1);
+               ooo_mem();
+               PRODUCE_TOKENS(proc_one_produced, P1_WRITE);
+       :: CONSUME_TOKENS(proc_one_produced, P1_WRITE, P1_WMB) ->
+               smp_wmb();
+               PRODUCE_TOKENS(proc_one_produced, P1_WMB);
+       :: CONSUME_TOKENS(proc_one_produced, P1_WRITE | P1_WMB, P1_SYNC_CORE) ->
+               /* sync_core(); */
+               PRODUCE_TOKENS(proc_one_produced, P1_SYNC_CORE);
+       :: CONSUME_TOKENS(proc_one_produced, P1_SYNC_CORE, P1_RMB) ->
+               smp_rmb();
+               PRODUCE_TOKENS(proc_one_produced, P1_RMB);
+       :: CONSUME_TOKENS(proc_one_produced, P1_RMB | P1_SYNC_CORE, P1_READ) ->
+               ooo_mem();
+               read_one = READ_CACHED_VAR(beta);
+               ooo_mem();
+               PRODUCE_TOKENS(proc_one_produced, P1_READ);
+       :: CONSUME_TOKENS(proc_one_produced, P1_PROD_NONE | P1_WRITE
+               | P1_WMB | P1_SYNC_CORE | P1_RMB | P1_READ, 0) ->
+               break;
+       od;
+
+       //CLEAR_TOKENS(proc_one_produced,
+       //      P1_PROD_NONE | P1_WRITE | P1_WMB | P1_SYNC_CORE | P1_RMB |
+       //      P2_READ);
+
+       // test : [] (read_one == 0 -> read_two != 0)
+       // test : [] (read_two == 0 -> read_one != 0)
+       assert(!(read_one == 0 && read_two == 0));
+}
+
+active proctype test_proc_two()
+{
+       assert(get_pid() < NR_PROCS);
+
+       PRODUCE_TOKENS(proc_two_produced, P2_PROD_NONE);
+
+#ifdef NO_WMB
+       PRODUCE_TOKENS(proc_two_produced, P2_WMB);
+#endif
+#ifdef NO_RMB
+       PRODUCE_TOKENS(proc_two_produced, P2_RMB);
+#endif
+
+       do
+       :: CONSUME_TOKENS(proc_two_produced, P2_PROD_NONE, P2_WRITE) ->
+               ooo_mem();
+               WRITE_CACHED_VAR(beta, 1);
+               ooo_mem();
+               PRODUCE_TOKENS(proc_two_produced, P2_WRITE);
+       :: CONSUME_TOKENS(proc_two_produced, P2_WRITE, P2_WMB) ->
+               smp_wmb();
+               PRODUCE_TOKENS(proc_two_produced, P2_WMB);
+       :: CONSUME_TOKENS(proc_two_produced, P2_WRITE | P2_WMB, P2_SYNC_CORE) ->
+               /* sync_core(); */
+               PRODUCE_TOKENS(proc_two_produced, P2_SYNC_CORE);
+       :: CONSUME_TOKENS(proc_two_produced, P2_SYNC_CORE, P2_RMB) ->
+               smp_rmb();
+               PRODUCE_TOKENS(proc_two_produced, P2_RMB);
+       :: CONSUME_TOKENS(proc_two_produced, P2_SYNC_CORE | P2_RMB, P2_READ) ->
+               ooo_mem();
+               read_two = READ_CACHED_VAR(alpha);
+               ooo_mem();
+               PRODUCE_TOKENS(proc_two_produced, P2_READ);
+       :: CONSUME_TOKENS(proc_two_produced, P2_PROD_NONE | P2_WRITE
+               | P2_WMB | P2_SYNC_CORE | P2_RMB | P2_READ, 0) ->
+               break;
+       od;
+
+       //CLEAR_TOKENS(proc_two_produced,
+       //      P2_PROD_NONE | P2_WRITE | P2_WMB | P2_SYNC_CORE | P2_RMB |
+       //      P2_READ);
+
+       // test : [] (read_one == 0 -> read_two != 0)
+       // test : [] (read_two == 0 -> read_one != 0)
+       assert(!(read_one == 0 && read_two == 0));
+}
This page took 0.031616 seconds and 4 git commands to generate.