8483146c65ab6ecf3d1b026d1f33c62be4442c8a
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/time.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer/consumer-timer.h>
47 #include <common/consumer/consumer.h>
48 #include <common/consumer/consumer-stream.h>
49 #include <common/consumer/consumer-testpoint.h>
50 #include <common/align.h>
51 #include <common/consumer/consumer-metadata-cache.h>
52 #include <common/trace-chunk.h>
53 #include <common/trace-chunk-registry.h>
54 #include <common/string-utils/format.h>
55 #include <common/dynamic-array.h>
56
57 struct lttng_consumer_global_data consumer_data = {
58 .stream_count = 0,
59 .need_update = 1,
60 .type = LTTNG_CONSUMER_UNKNOWN,
61 };
62
63 enum consumer_channel_action {
64 CONSUMER_CHANNEL_ADD,
65 CONSUMER_CHANNEL_DEL,
66 CONSUMER_CHANNEL_QUIT,
67 };
68
69 struct consumer_channel_msg {
70 enum consumer_channel_action action;
71 struct lttng_consumer_channel *chan; /* add */
72 uint64_t key; /* del */
73 };
74
75 /* Flag used to temporarily pause data consumption from testpoints. */
76 int data_consumption_paused;
77
78 /*
79 * Flag to inform the polling thread to quit when all fd hung up. Updated by
80 * the consumer_thread_receive_fds when it notices that all fds has hung up.
81 * Also updated by the signal handler (consumer_should_exit()). Read by the
82 * polling threads.
83 */
84 int consumer_quit;
85
86 /*
87 * Global hash table containing respectively metadata and data streams. The
88 * stream element in this ht should only be updated by the metadata poll thread
89 * for the metadata and the data poll thread for the data.
90 */
91 static struct lttng_ht *metadata_ht;
92 static struct lttng_ht *data_ht;
93
94 /*
95 * Notify a thread lttng pipe to poll back again. This usually means that some
96 * global state has changed so we just send back the thread in a poll wait
97 * call.
98 */
99 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
100 {
101 struct lttng_consumer_stream *null_stream = NULL;
102
103 assert(pipe);
104
105 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
106 }
107
108 static void notify_health_quit_pipe(int *pipe)
109 {
110 ssize_t ret;
111
112 ret = lttng_write(pipe[1], "4", 1);
113 if (ret < 1) {
114 PERROR("write consumer health quit");
115 }
116 }
117
118 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
119 struct lttng_consumer_channel *chan,
120 uint64_t key,
121 enum consumer_channel_action action)
122 {
123 struct consumer_channel_msg msg;
124 ssize_t ret;
125
126 memset(&msg, 0, sizeof(msg));
127
128 msg.action = action;
129 msg.chan = chan;
130 msg.key = key;
131 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
132 if (ret < sizeof(msg)) {
133 PERROR("notify_channel_pipe write error");
134 }
135 }
136
137 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
138 uint64_t key)
139 {
140 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
141 }
142
143 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
144 struct lttng_consumer_channel **chan,
145 uint64_t *key,
146 enum consumer_channel_action *action)
147 {
148 struct consumer_channel_msg msg;
149 ssize_t ret;
150
151 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
152 if (ret < sizeof(msg)) {
153 ret = -1;
154 goto error;
155 }
156 *action = msg.action;
157 *chan = msg.chan;
158 *key = msg.key;
159 error:
160 return (int) ret;
161 }
162
163 /*
164 * Cleanup the stream list of a channel. Those streams are not yet globally
165 * visible
166 */
167 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
168 {
169 struct lttng_consumer_stream *stream, *stmp;
170
171 assert(channel);
172
173 /* Delete streams that might have been left in the stream list. */
174 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
175 send_node) {
176 cds_list_del(&stream->send_node);
177 /*
178 * Once a stream is added to this list, the buffers were created so we
179 * have a guarantee that this call will succeed. Setting the monitor
180 * mode to 0 so we don't lock nor try to delete the stream from the
181 * global hash table.
182 */
183 stream->monitor = 0;
184 consumer_stream_destroy(stream, NULL);
185 }
186 }
187
188 /*
189 * Find a stream. The consumer_data.lock must be locked during this
190 * call.
191 */
192 static struct lttng_consumer_stream *find_stream(uint64_t key,
193 struct lttng_ht *ht)
194 {
195 struct lttng_ht_iter iter;
196 struct lttng_ht_node_u64 *node;
197 struct lttng_consumer_stream *stream = NULL;
198
199 assert(ht);
200
201 /* -1ULL keys are lookup failures */
202 if (key == (uint64_t) -1ULL) {
203 return NULL;
204 }
205
206 rcu_read_lock();
207
208 lttng_ht_lookup(ht, &key, &iter);
209 node = lttng_ht_iter_get_node_u64(&iter);
210 if (node != NULL) {
211 stream = caa_container_of(node, struct lttng_consumer_stream, node);
212 }
213
214 rcu_read_unlock();
215
216 return stream;
217 }
218
219 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
220 {
221 struct lttng_consumer_stream *stream;
222
223 rcu_read_lock();
224 stream = find_stream(key, ht);
225 if (stream) {
226 stream->key = (uint64_t) -1ULL;
227 /*
228 * We don't want the lookup to match, but we still need
229 * to iterate on this stream when iterating over the hash table. Just
230 * change the node key.
231 */
232 stream->node.key = (uint64_t) -1ULL;
233 }
234 rcu_read_unlock();
235 }
236
237 /*
238 * Return a channel object for the given key.
239 *
240 * RCU read side lock MUST be acquired before calling this function and
241 * protects the channel ptr.
242 */
243 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
244 {
245 struct lttng_ht_iter iter;
246 struct lttng_ht_node_u64 *node;
247 struct lttng_consumer_channel *channel = NULL;
248
249 /* -1ULL keys are lookup failures */
250 if (key == (uint64_t) -1ULL) {
251 return NULL;
252 }
253
254 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
255 node = lttng_ht_iter_get_node_u64(&iter);
256 if (node != NULL) {
257 channel = caa_container_of(node, struct lttng_consumer_channel, node);
258 }
259
260 return channel;
261 }
262
263 /*
264 * There is a possibility that the consumer does not have enough time between
265 * the close of the channel on the session daemon and the cleanup in here thus
266 * once we have a channel add with an existing key, we know for sure that this
267 * channel will eventually get cleaned up by all streams being closed.
268 *
269 * This function just nullifies the already existing channel key.
270 */
271 static void steal_channel_key(uint64_t key)
272 {
273 struct lttng_consumer_channel *channel;
274
275 rcu_read_lock();
276 channel = consumer_find_channel(key);
277 if (channel) {
278 channel->key = (uint64_t) -1ULL;
279 /*
280 * We don't want the lookup to match, but we still need to iterate on
281 * this channel when iterating over the hash table. Just change the
282 * node key.
283 */
284 channel->node.key = (uint64_t) -1ULL;
285 }
286 rcu_read_unlock();
287 }
288
289 static void free_channel_rcu(struct rcu_head *head)
290 {
291 struct lttng_ht_node_u64 *node =
292 caa_container_of(head, struct lttng_ht_node_u64, head);
293 struct lttng_consumer_channel *channel =
294 caa_container_of(node, struct lttng_consumer_channel, node);
295
296 switch (consumer_data.type) {
297 case LTTNG_CONSUMER_KERNEL:
298 break;
299 case LTTNG_CONSUMER32_UST:
300 case LTTNG_CONSUMER64_UST:
301 lttng_ustconsumer_free_channel(channel);
302 break;
303 default:
304 ERR("Unknown consumer_data type");
305 abort();
306 }
307 free(channel);
308 }
309
310 /*
311 * RCU protected relayd socket pair free.
312 */
313 static void free_relayd_rcu(struct rcu_head *head)
314 {
315 struct lttng_ht_node_u64 *node =
316 caa_container_of(head, struct lttng_ht_node_u64, head);
317 struct consumer_relayd_sock_pair *relayd =
318 caa_container_of(node, struct consumer_relayd_sock_pair, node);
319
320 /*
321 * Close all sockets. This is done in the call RCU since we don't want the
322 * socket fds to be reassigned thus potentially creating bad state of the
323 * relayd object.
324 *
325 * We do not have to lock the control socket mutex here since at this stage
326 * there is no one referencing to this relayd object.
327 */
328 (void) relayd_close(&relayd->control_sock);
329 (void) relayd_close(&relayd->data_sock);
330
331 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
332 free(relayd);
333 }
334
335 /*
336 * Destroy and free relayd socket pair object.
337 */
338 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
339 {
340 int ret;
341 struct lttng_ht_iter iter;
342
343 if (relayd == NULL) {
344 return;
345 }
346
347 DBG("Consumer destroy and close relayd socket pair");
348
349 iter.iter.node = &relayd->node.node;
350 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
351 if (ret != 0) {
352 /* We assume the relayd is being or is destroyed */
353 return;
354 }
355
356 /* RCU free() call */
357 call_rcu(&relayd->node.head, free_relayd_rcu);
358 }
359
360 /*
361 * Remove a channel from the global list protected by a mutex. This function is
362 * also responsible for freeing its data structures.
363 */
364 void consumer_del_channel(struct lttng_consumer_channel *channel)
365 {
366 struct lttng_ht_iter iter;
367
368 DBG("Consumer delete channel key %" PRIu64, channel->key);
369
370 pthread_mutex_lock(&consumer_data.lock);
371 pthread_mutex_lock(&channel->lock);
372
373 /* Destroy streams that might have been left in the stream list. */
374 clean_channel_stream_list(channel);
375
376 if (channel->live_timer_enabled == 1) {
377 consumer_timer_live_stop(channel);
378 }
379 if (channel->monitor_timer_enabled == 1) {
380 consumer_timer_monitor_stop(channel);
381 }
382
383 switch (consumer_data.type) {
384 case LTTNG_CONSUMER_KERNEL:
385 break;
386 case LTTNG_CONSUMER32_UST:
387 case LTTNG_CONSUMER64_UST:
388 lttng_ustconsumer_del_channel(channel);
389 break;
390 default:
391 ERR("Unknown consumer_data type");
392 assert(0);
393 goto end;
394 }
395
396 lttng_trace_chunk_put(channel->trace_chunk);
397 channel->trace_chunk = NULL;
398
399 if (channel->is_published) {
400 int ret;
401
402 rcu_read_lock();
403 iter.iter.node = &channel->node.node;
404 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
405 assert(!ret);
406
407 iter.iter.node = &channel->channels_by_session_id_ht_node.node;
408 ret = lttng_ht_del(consumer_data.channels_by_session_id_ht,
409 &iter);
410 assert(!ret);
411 rcu_read_unlock();
412 }
413
414 call_rcu(&channel->node.head, free_channel_rcu);
415 end:
416 pthread_mutex_unlock(&channel->lock);
417 pthread_mutex_unlock(&consumer_data.lock);
418 }
419
420 /*
421 * Iterate over the relayd hash table and destroy each element. Finally,
422 * destroy the whole hash table.
423 */
424 static void cleanup_relayd_ht(void)
425 {
426 struct lttng_ht_iter iter;
427 struct consumer_relayd_sock_pair *relayd;
428
429 rcu_read_lock();
430
431 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
432 node.node) {
433 consumer_destroy_relayd(relayd);
434 }
435
436 rcu_read_unlock();
437
438 lttng_ht_destroy(consumer_data.relayd_ht);
439 }
440
441 /*
442 * Update the end point status of all streams having the given network sequence
443 * index (relayd index).
444 *
445 * It's atomically set without having the stream mutex locked which is fine
446 * because we handle the write/read race with a pipe wakeup for each thread.
447 */
448 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
449 enum consumer_endpoint_status status)
450 {
451 struct lttng_ht_iter iter;
452 struct lttng_consumer_stream *stream;
453
454 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
455
456 rcu_read_lock();
457
458 /* Let's begin with metadata */
459 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
460 if (stream->net_seq_idx == net_seq_idx) {
461 uatomic_set(&stream->endpoint_status, status);
462 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
463 }
464 }
465
466 /* Follow up by the data streams */
467 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
468 if (stream->net_seq_idx == net_seq_idx) {
469 uatomic_set(&stream->endpoint_status, status);
470 DBG("Delete flag set to data stream %d", stream->wait_fd);
471 }
472 }
473 rcu_read_unlock();
474 }
475
476 /*
477 * Cleanup a relayd object by flagging every associated streams for deletion,
478 * destroying the object meaning removing it from the relayd hash table,
479 * closing the sockets and freeing the memory in a RCU call.
480 *
481 * If a local data context is available, notify the threads that the streams'
482 * state have changed.
483 */
484 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair *relayd)
485 {
486 uint64_t netidx;
487
488 assert(relayd);
489
490 DBG("Cleaning up relayd object ID %"PRIu64, relayd->net_seq_idx);
491
492 /* Save the net sequence index before destroying the object */
493 netidx = relayd->net_seq_idx;
494
495 /*
496 * Delete the relayd from the relayd hash table, close the sockets and free
497 * the object in a RCU call.
498 */
499 consumer_destroy_relayd(relayd);
500
501 /* Set inactive endpoint to all streams */
502 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
503
504 /*
505 * With a local data context, notify the threads that the streams' state
506 * have changed. The write() action on the pipe acts as an "implicit"
507 * memory barrier ordering the updates of the end point status from the
508 * read of this status which happens AFTER receiving this notify.
509 */
510 notify_thread_lttng_pipe(relayd->ctx->consumer_data_pipe);
511 notify_thread_lttng_pipe(relayd->ctx->consumer_metadata_pipe);
512 }
513
514 /*
515 * Flag a relayd socket pair for destruction. Destroy it if the refcount
516 * reaches zero.
517 *
518 * RCU read side lock MUST be aquired before calling this function.
519 */
520 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
521 {
522 assert(relayd);
523
524 /* Set destroy flag for this object */
525 uatomic_set(&relayd->destroy_flag, 1);
526
527 /* Destroy the relayd if refcount is 0 */
528 if (uatomic_read(&relayd->refcount) == 0) {
529 consumer_destroy_relayd(relayd);
530 }
531 }
532
533 /*
534 * Completly destroy stream from every visiable data structure and the given
535 * hash table if one.
536 *
537 * One this call returns, the stream object is not longer usable nor visible.
538 */
539 void consumer_del_stream(struct lttng_consumer_stream *stream,
540 struct lttng_ht *ht)
541 {
542 consumer_stream_destroy(stream, ht);
543 }
544
545 /*
546 * XXX naming of del vs destroy is all mixed up.
547 */
548 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
549 {
550 consumer_stream_destroy(stream, data_ht);
551 }
552
553 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
554 {
555 consumer_stream_destroy(stream, metadata_ht);
556 }
557
558 void consumer_stream_update_channel_attributes(
559 struct lttng_consumer_stream *stream,
560 struct lttng_consumer_channel *channel)
561 {
562 stream->channel_read_only_attributes.tracefile_size =
563 channel->tracefile_size;
564 }
565
566 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
567 uint64_t stream_key,
568 const char *channel_name,
569 uint64_t relayd_id,
570 uint64_t session_id,
571 struct lttng_trace_chunk *trace_chunk,
572 int cpu,
573 int *alloc_ret,
574 enum consumer_channel_type type,
575 unsigned int monitor)
576 {
577 int ret;
578 struct lttng_consumer_stream *stream;
579
580 stream = zmalloc(sizeof(*stream));
581 if (stream == NULL) {
582 PERROR("malloc struct lttng_consumer_stream");
583 ret = -ENOMEM;
584 goto end;
585 }
586
587 if (trace_chunk && !lttng_trace_chunk_get(trace_chunk)) {
588 ERR("Failed to acquire trace chunk reference during the creation of a stream");
589 ret = -1;
590 goto error;
591 }
592
593 rcu_read_lock();
594 stream->key = stream_key;
595 stream->trace_chunk = trace_chunk;
596 stream->out_fd = -1;
597 stream->out_fd_offset = 0;
598 stream->output_written = 0;
599 stream->net_seq_idx = relayd_id;
600 stream->session_id = session_id;
601 stream->monitor = monitor;
602 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
603 stream->index_file = NULL;
604 stream->last_sequence_number = -1ULL;
605 pthread_mutex_init(&stream->lock, NULL);
606 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
607
608 /* If channel is the metadata, flag this stream as metadata. */
609 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
610 stream->metadata_flag = 1;
611 /* Metadata is flat out. */
612 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
613 /* Live rendez-vous point. */
614 pthread_cond_init(&stream->metadata_rdv, NULL);
615 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
616 } else {
617 /* Format stream name to <channel_name>_<cpu_number> */
618 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
619 channel_name, cpu);
620 if (ret < 0) {
621 PERROR("snprintf stream name");
622 goto error;
623 }
624 }
625
626 /* Key is always the wait_fd for streams. */
627 lttng_ht_node_init_u64(&stream->node, stream->key);
628
629 /* Init node per channel id key */
630 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
631
632 /* Init session id node with the stream session id */
633 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
634
635 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
636 " relayd_id %" PRIu64 ", session_id %" PRIu64,
637 stream->name, stream->key, channel_key,
638 stream->net_seq_idx, stream->session_id);
639
640 rcu_read_unlock();
641 return stream;
642
643 error:
644 rcu_read_unlock();
645 lttng_trace_chunk_put(stream->trace_chunk);
646 free(stream);
647 end:
648 if (alloc_ret) {
649 *alloc_ret = ret;
650 }
651 return NULL;
652 }
653
654 /*
655 * Add a stream to the global list protected by a mutex.
656 */
657 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
658 {
659 struct lttng_ht *ht = data_ht;
660
661 assert(stream);
662 assert(ht);
663
664 DBG3("Adding consumer stream %" PRIu64, stream->key);
665
666 pthread_mutex_lock(&consumer_data.lock);
667 pthread_mutex_lock(&stream->chan->lock);
668 pthread_mutex_lock(&stream->chan->timer_lock);
669 pthread_mutex_lock(&stream->lock);
670 rcu_read_lock();
671
672 /* Steal stream identifier to avoid having streams with the same key */
673 steal_stream_key(stream->key, ht);
674
675 lttng_ht_add_unique_u64(ht, &stream->node);
676
677 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
678 &stream->node_channel_id);
679
680 /*
681 * Add stream to the stream_list_ht of the consumer data. No need to steal
682 * the key since the HT does not use it and we allow to add redundant keys
683 * into this table.
684 */
685 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
686
687 /*
688 * When nb_init_stream_left reaches 0, we don't need to trigger any action
689 * in terms of destroying the associated channel, because the action that
690 * causes the count to become 0 also causes a stream to be added. The
691 * channel deletion will thus be triggered by the following removal of this
692 * stream.
693 */
694 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
695 /* Increment refcount before decrementing nb_init_stream_left */
696 cmm_smp_wmb();
697 uatomic_dec(&stream->chan->nb_init_stream_left);
698 }
699
700 /* Update consumer data once the node is inserted. */
701 consumer_data.stream_count++;
702 consumer_data.need_update = 1;
703
704 rcu_read_unlock();
705 pthread_mutex_unlock(&stream->lock);
706 pthread_mutex_unlock(&stream->chan->timer_lock);
707 pthread_mutex_unlock(&stream->chan->lock);
708 pthread_mutex_unlock(&consumer_data.lock);
709 }
710
711 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
712 {
713 consumer_del_stream(stream, data_ht);
714 }
715
716 /*
717 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
718 * be acquired before calling this.
719 */
720 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
721 {
722 int ret = 0;
723 struct lttng_ht_node_u64 *node;
724 struct lttng_ht_iter iter;
725
726 assert(relayd);
727
728 lttng_ht_lookup(consumer_data.relayd_ht,
729 &relayd->net_seq_idx, &iter);
730 node = lttng_ht_iter_get_node_u64(&iter);
731 if (node != NULL) {
732 goto end;
733 }
734 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
735
736 end:
737 return ret;
738 }
739
740 /*
741 * Allocate and return a consumer relayd socket.
742 */
743 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
744 uint64_t net_seq_idx)
745 {
746 struct consumer_relayd_sock_pair *obj = NULL;
747
748 /* net sequence index of -1 is a failure */
749 if (net_seq_idx == (uint64_t) -1ULL) {
750 goto error;
751 }
752
753 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
754 if (obj == NULL) {
755 PERROR("zmalloc relayd sock");
756 goto error;
757 }
758
759 obj->net_seq_idx = net_seq_idx;
760 obj->refcount = 0;
761 obj->destroy_flag = 0;
762 obj->control_sock.sock.fd = -1;
763 obj->data_sock.sock.fd = -1;
764 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
765 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
766
767 error:
768 return obj;
769 }
770
771 /*
772 * Find a relayd socket pair in the global consumer data.
773 *
774 * Return the object if found else NULL.
775 * RCU read-side lock must be held across this call and while using the
776 * returned object.
777 */
778 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
779 {
780 struct lttng_ht_iter iter;
781 struct lttng_ht_node_u64 *node;
782 struct consumer_relayd_sock_pair *relayd = NULL;
783
784 /* Negative keys are lookup failures */
785 if (key == (uint64_t) -1ULL) {
786 goto error;
787 }
788
789 lttng_ht_lookup(consumer_data.relayd_ht, &key,
790 &iter);
791 node = lttng_ht_iter_get_node_u64(&iter);
792 if (node != NULL) {
793 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
794 }
795
796 error:
797 return relayd;
798 }
799
800 /*
801 * Find a relayd and send the stream
802 *
803 * Returns 0 on success, < 0 on error
804 */
805 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
806 char *path)
807 {
808 int ret = 0;
809 struct consumer_relayd_sock_pair *relayd;
810
811 assert(stream);
812 assert(stream->net_seq_idx != -1ULL);
813 assert(path);
814
815 /* The stream is not metadata. Get relayd reference if exists. */
816 rcu_read_lock();
817 relayd = consumer_find_relayd(stream->net_seq_idx);
818 if (relayd != NULL) {
819 /* Add stream on the relayd */
820 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
821 ret = relayd_add_stream(&relayd->control_sock, stream->name,
822 path, &stream->relayd_stream_id,
823 stream->chan->tracefile_size,
824 stream->chan->tracefile_count,
825 stream->trace_chunk);
826 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
827 if (ret < 0) {
828 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
829 lttng_consumer_cleanup_relayd(relayd);
830 goto end;
831 }
832
833 uatomic_inc(&relayd->refcount);
834 stream->sent_to_relayd = 1;
835 } else {
836 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
837 stream->key, stream->net_seq_idx);
838 ret = -1;
839 goto end;
840 }
841
842 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
843 stream->name, stream->key, stream->net_seq_idx);
844
845 end:
846 rcu_read_unlock();
847 return ret;
848 }
849
850 /*
851 * Find a relayd and send the streams sent message
852 *
853 * Returns 0 on success, < 0 on error
854 */
855 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
856 {
857 int ret = 0;
858 struct consumer_relayd_sock_pair *relayd;
859
860 assert(net_seq_idx != -1ULL);
861
862 /* The stream is not metadata. Get relayd reference if exists. */
863 rcu_read_lock();
864 relayd = consumer_find_relayd(net_seq_idx);
865 if (relayd != NULL) {
866 /* Add stream on the relayd */
867 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
868 ret = relayd_streams_sent(&relayd->control_sock);
869 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
870 if (ret < 0) {
871 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
872 lttng_consumer_cleanup_relayd(relayd);
873 goto end;
874 }
875 } else {
876 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
877 net_seq_idx);
878 ret = -1;
879 goto end;
880 }
881
882 ret = 0;
883 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
884
885 end:
886 rcu_read_unlock();
887 return ret;
888 }
889
890 /*
891 * Find a relayd and close the stream
892 */
893 void close_relayd_stream(struct lttng_consumer_stream *stream)
894 {
895 struct consumer_relayd_sock_pair *relayd;
896
897 /* The stream is not metadata. Get relayd reference if exists. */
898 rcu_read_lock();
899 relayd = consumer_find_relayd(stream->net_seq_idx);
900 if (relayd) {
901 consumer_stream_relayd_close(stream, relayd);
902 }
903 rcu_read_unlock();
904 }
905
906 /*
907 * Handle stream for relayd transmission if the stream applies for network
908 * streaming where the net sequence index is set.
909 *
910 * Return destination file descriptor or negative value on error.
911 */
912 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
913 size_t data_size, unsigned long padding,
914 struct consumer_relayd_sock_pair *relayd)
915 {
916 int outfd = -1, ret;
917 struct lttcomm_relayd_data_hdr data_hdr;
918
919 /* Safety net */
920 assert(stream);
921 assert(relayd);
922
923 /* Reset data header */
924 memset(&data_hdr, 0, sizeof(data_hdr));
925
926 if (stream->metadata_flag) {
927 /* Caller MUST acquire the relayd control socket lock */
928 ret = relayd_send_metadata(&relayd->control_sock, data_size);
929 if (ret < 0) {
930 goto error;
931 }
932
933 /* Metadata are always sent on the control socket. */
934 outfd = relayd->control_sock.sock.fd;
935 } else {
936 /* Set header with stream information */
937 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
938 data_hdr.data_size = htobe32(data_size);
939 data_hdr.padding_size = htobe32(padding);
940
941 /*
942 * Note that net_seq_num below is assigned with the *current* value of
943 * next_net_seq_num and only after that the next_net_seq_num will be
944 * increment. This is why when issuing a command on the relayd using
945 * this next value, 1 should always be substracted in order to compare
946 * the last seen sequence number on the relayd side to the last sent.
947 */
948 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
949 /* Other fields are zeroed previously */
950
951 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
952 sizeof(data_hdr));
953 if (ret < 0) {
954 goto error;
955 }
956
957 ++stream->next_net_seq_num;
958
959 /* Set to go on data socket */
960 outfd = relayd->data_sock.sock.fd;
961 }
962
963 error:
964 return outfd;
965 }
966
967 /*
968 * Trigger a dump of the metadata content. Following/during the succesful
969 * completion of this call, the metadata poll thread will start receiving
970 * metadata packets to consume.
971 *
972 * The caller must hold the channel and stream locks.
973 */
974 static
975 int consumer_metadata_stream_dump(struct lttng_consumer_stream *stream)
976 {
977 int ret;
978
979 ASSERT_LOCKED(stream->chan->lock);
980 ASSERT_LOCKED(stream->lock);
981 assert(stream->metadata_flag);
982 assert(stream->chan->trace_chunk);
983
984 switch (consumer_data.type) {
985 case LTTNG_CONSUMER_KERNEL:
986 /*
987 * Reset the position of what has been read from the
988 * metadata cache to 0 so we can dump it again.
989 */
990 ret = kernctl_metadata_cache_dump(stream->wait_fd);
991 break;
992 case LTTNG_CONSUMER32_UST:
993 case LTTNG_CONSUMER64_UST:
994 /*
995 * Reset the position pushed from the metadata cache so it
996 * will write from the beginning on the next push.
997 */
998 stream->ust_metadata_pushed = 0;
999 ret = consumer_metadata_wakeup_pipe(stream->chan);
1000 break;
1001 default:
1002 ERR("Unknown consumer_data type");
1003 abort();
1004 }
1005 if (ret < 0) {
1006 ERR("Failed to dump the metadata cache");
1007 }
1008 return ret;
1009 }
1010
1011 static
1012 int lttng_consumer_channel_set_trace_chunk(
1013 struct lttng_consumer_channel *channel,
1014 struct lttng_trace_chunk *new_trace_chunk)
1015 {
1016 int ret = 0;
1017 const bool is_local_trace = channel->relayd_id == -1ULL;
1018 bool update_stream_trace_chunk;
1019 struct cds_lfht_iter iter;
1020 struct lttng_consumer_stream *stream;
1021 unsigned long channel_hash;
1022
1023 pthread_mutex_lock(&channel->lock);
1024 /*
1025 * A stream can transition to a state where it and its channel
1026 * no longer belong to a trace chunk. For instance, this happens when
1027 * a session is rotated while it is inactive. After the rotation
1028 * of an inactive session completes, the channel and its streams no
1029 * longer belong to a trace chunk.
1030 *
1031 * However, if a session is stopped, rotated, and started again,
1032 * the session daemon will create a new chunk and send it to its peers.
1033 * In that case, the streams' transition to a new chunk can be performed
1034 * immediately.
1035 *
1036 * This trace chunk transition could also be performed lazily when
1037 * a buffer is consumed. However, creating the files here allows the
1038 * consumer daemon to report any creation error to the session daemon
1039 * and cause the start of the tracing session to fail.
1040 */
1041 update_stream_trace_chunk = !channel->trace_chunk && new_trace_chunk;
1042
1043 /*
1044 * The acquisition of the reference cannot fail (barring
1045 * a severe internal error) since a reference to the published
1046 * chunk is already held by the caller.
1047 */
1048 if (new_trace_chunk) {
1049 const bool acquired_reference = lttng_trace_chunk_get(
1050 new_trace_chunk);
1051
1052 assert(acquired_reference);
1053 }
1054
1055 lttng_trace_chunk_put(channel->trace_chunk);
1056 channel->trace_chunk = new_trace_chunk;
1057 if (!is_local_trace || !new_trace_chunk) {
1058 /* Not an error. */
1059 goto end;
1060 }
1061
1062 if (!update_stream_trace_chunk) {
1063 goto end;
1064 }
1065
1066 channel_hash = consumer_data.stream_per_chan_id_ht->hash_fct(
1067 &channel->key, lttng_ht_seed);
1068 rcu_read_lock();
1069 cds_lfht_for_each_entry_duplicate(consumer_data.stream_per_chan_id_ht->ht,
1070 channel_hash,
1071 consumer_data.stream_per_chan_id_ht->match_fct,
1072 &channel->key, &iter, stream, node_channel_id.node) {
1073 bool acquired_reference, should_regenerate_metadata = false;
1074
1075 acquired_reference = lttng_trace_chunk_get(channel->trace_chunk);
1076 assert(acquired_reference);
1077
1078 pthread_mutex_lock(&stream->lock);
1079
1080 /*
1081 * On a transition from "no-chunk" to a new chunk, a metadata
1082 * stream's content must be entirely dumped. This must occcur
1083 * _after_ the creation of the metadata stream's output files
1084 * as the consumption thread (not necessarily the one executing
1085 * this) may start to consume during the call to
1086 * consumer_metadata_stream_dump().
1087 */
1088 should_regenerate_metadata =
1089 stream->metadata_flag &&
1090 !stream->trace_chunk && channel->trace_chunk;
1091 stream->trace_chunk = channel->trace_chunk;
1092 ret = consumer_stream_create_output_files(stream, true);
1093 if (ret) {
1094 pthread_mutex_unlock(&stream->lock);
1095 goto end_rcu_unlock;
1096 }
1097 if (should_regenerate_metadata) {
1098 ret = consumer_metadata_stream_dump(stream);
1099 }
1100 pthread_mutex_unlock(&stream->lock);
1101 if (ret) {
1102 goto end_rcu_unlock;
1103 }
1104 }
1105 end_rcu_unlock:
1106 rcu_read_unlock();
1107 end:
1108 pthread_mutex_unlock(&channel->lock);
1109 return ret;
1110 }
1111
1112 /*
1113 * Allocate and return a new lttng_consumer_channel object using the given key
1114 * to initialize the hash table node.
1115 *
1116 * On error, return NULL.
1117 */
1118 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
1119 uint64_t session_id,
1120 const uint64_t *chunk_id,
1121 const char *pathname,
1122 const char *name,
1123 uint64_t relayd_id,
1124 enum lttng_event_output output,
1125 uint64_t tracefile_size,
1126 uint64_t tracefile_count,
1127 uint64_t session_id_per_pid,
1128 unsigned int monitor,
1129 unsigned int live_timer_interval,
1130 const char *root_shm_path,
1131 const char *shm_path)
1132 {
1133 struct lttng_consumer_channel *channel = NULL;
1134 struct lttng_trace_chunk *trace_chunk = NULL;
1135
1136 if (chunk_id) {
1137 trace_chunk = lttng_trace_chunk_registry_find_chunk(
1138 consumer_data.chunk_registry, session_id,
1139 *chunk_id);
1140 if (!trace_chunk) {
1141 ERR("Failed to find trace chunk reference during creation of channel");
1142 goto end;
1143 }
1144 }
1145
1146 channel = zmalloc(sizeof(*channel));
1147 if (channel == NULL) {
1148 PERROR("malloc struct lttng_consumer_channel");
1149 goto end;
1150 }
1151
1152 channel->key = key;
1153 channel->refcount = 0;
1154 channel->session_id = session_id;
1155 channel->session_id_per_pid = session_id_per_pid;
1156 channel->relayd_id = relayd_id;
1157 channel->tracefile_size = tracefile_size;
1158 channel->tracefile_count = tracefile_count;
1159 channel->monitor = monitor;
1160 channel->live_timer_interval = live_timer_interval;
1161 pthread_mutex_init(&channel->lock, NULL);
1162 pthread_mutex_init(&channel->timer_lock, NULL);
1163
1164 switch (output) {
1165 case LTTNG_EVENT_SPLICE:
1166 channel->output = CONSUMER_CHANNEL_SPLICE;
1167 break;
1168 case LTTNG_EVENT_MMAP:
1169 channel->output = CONSUMER_CHANNEL_MMAP;
1170 break;
1171 default:
1172 assert(0);
1173 free(channel);
1174 channel = NULL;
1175 goto end;
1176 }
1177
1178 /*
1179 * In monitor mode, the streams associated with the channel will be put in
1180 * a special list ONLY owned by this channel. So, the refcount is set to 1
1181 * here meaning that the channel itself has streams that are referenced.
1182 *
1183 * On a channel deletion, once the channel is no longer visible, the
1184 * refcount is decremented and checked for a zero value to delete it. With
1185 * streams in no monitor mode, it will now be safe to destroy the channel.
1186 */
1187 if (!channel->monitor) {
1188 channel->refcount = 1;
1189 }
1190
1191 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1192 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1193
1194 strncpy(channel->name, name, sizeof(channel->name));
1195 channel->name[sizeof(channel->name) - 1] = '\0';
1196
1197 if (root_shm_path) {
1198 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1199 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1200 }
1201 if (shm_path) {
1202 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1203 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1204 }
1205
1206 lttng_ht_node_init_u64(&channel->node, channel->key);
1207 lttng_ht_node_init_u64(&channel->channels_by_session_id_ht_node,
1208 channel->session_id);
1209
1210 channel->wait_fd = -1;
1211 CDS_INIT_LIST_HEAD(&channel->streams.head);
1212
1213 if (trace_chunk) {
1214 int ret = lttng_consumer_channel_set_trace_chunk(channel,
1215 trace_chunk);
1216 if (ret) {
1217 goto error;
1218 }
1219 }
1220
1221 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1222
1223 end:
1224 lttng_trace_chunk_put(trace_chunk);
1225 return channel;
1226 error:
1227 consumer_del_channel(channel);
1228 channel = NULL;
1229 goto end;
1230 }
1231
1232 /*
1233 * Add a channel to the global list protected by a mutex.
1234 *
1235 * Always return 0 indicating success.
1236 */
1237 int consumer_add_channel(struct lttng_consumer_channel *channel,
1238 struct lttng_consumer_local_data *ctx)
1239 {
1240 pthread_mutex_lock(&consumer_data.lock);
1241 pthread_mutex_lock(&channel->lock);
1242 pthread_mutex_lock(&channel->timer_lock);
1243
1244 /*
1245 * This gives us a guarantee that the channel we are about to add to the
1246 * channel hash table will be unique. See this function comment on the why
1247 * we need to steel the channel key at this stage.
1248 */
1249 steal_channel_key(channel->key);
1250
1251 rcu_read_lock();
1252 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1253 lttng_ht_add_u64(consumer_data.channels_by_session_id_ht,
1254 &channel->channels_by_session_id_ht_node);
1255 rcu_read_unlock();
1256 channel->is_published = true;
1257
1258 pthread_mutex_unlock(&channel->timer_lock);
1259 pthread_mutex_unlock(&channel->lock);
1260 pthread_mutex_unlock(&consumer_data.lock);
1261
1262 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1263 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1264 }
1265
1266 return 0;
1267 }
1268
1269 /*
1270 * Allocate the pollfd structure and the local view of the out fds to avoid
1271 * doing a lookup in the linked list and concurrency issues when writing is
1272 * needed. Called with consumer_data.lock held.
1273 *
1274 * Returns the number of fds in the structures.
1275 */
1276 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1277 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1278 struct lttng_ht *ht, int *nb_inactive_fd)
1279 {
1280 int i = 0;
1281 struct lttng_ht_iter iter;
1282 struct lttng_consumer_stream *stream;
1283
1284 assert(ctx);
1285 assert(ht);
1286 assert(pollfd);
1287 assert(local_stream);
1288
1289 DBG("Updating poll fd array");
1290 *nb_inactive_fd = 0;
1291 rcu_read_lock();
1292 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1293 /*
1294 * Only active streams with an active end point can be added to the
1295 * poll set and local stream storage of the thread.
1296 *
1297 * There is a potential race here for endpoint_status to be updated
1298 * just after the check. However, this is OK since the stream(s) will
1299 * be deleted once the thread is notified that the end point state has
1300 * changed where this function will be called back again.
1301 *
1302 * We track the number of inactive FDs because they still need to be
1303 * closed by the polling thread after a wakeup on the data_pipe or
1304 * metadata_pipe.
1305 */
1306 if (stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1307 (*nb_inactive_fd)++;
1308 continue;
1309 }
1310 /*
1311 * This clobbers way too much the debug output. Uncomment that if you
1312 * need it for debugging purposes.
1313 */
1314 (*pollfd)[i].fd = stream->wait_fd;
1315 (*pollfd)[i].events = POLLIN | POLLPRI;
1316 local_stream[i] = stream;
1317 i++;
1318 }
1319 rcu_read_unlock();
1320
1321 /*
1322 * Insert the consumer_data_pipe at the end of the array and don't
1323 * increment i so nb_fd is the number of real FD.
1324 */
1325 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1326 (*pollfd)[i].events = POLLIN | POLLPRI;
1327
1328 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1329 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1330 return i;
1331 }
1332
1333 /*
1334 * Poll on the should_quit pipe and the command socket return -1 on
1335 * error, 1 if should exit, 0 if data is available on the command socket
1336 */
1337 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1338 {
1339 int num_rdy;
1340
1341 restart:
1342 num_rdy = poll(consumer_sockpoll, 2, -1);
1343 if (num_rdy == -1) {
1344 /*
1345 * Restart interrupted system call.
1346 */
1347 if (errno == EINTR) {
1348 goto restart;
1349 }
1350 PERROR("Poll error");
1351 return -1;
1352 }
1353 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1354 DBG("consumer_should_quit wake up");
1355 return 1;
1356 }
1357 return 0;
1358 }
1359
1360 /*
1361 * Set the error socket.
1362 */
1363 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1364 int sock)
1365 {
1366 ctx->consumer_error_socket = sock;
1367 }
1368
1369 /*
1370 * Set the command socket path.
1371 */
1372 void lttng_consumer_set_command_sock_path(
1373 struct lttng_consumer_local_data *ctx, char *sock)
1374 {
1375 ctx->consumer_command_sock_path = sock;
1376 }
1377
1378 /*
1379 * Send return code to the session daemon.
1380 * If the socket is not defined, we return 0, it is not a fatal error
1381 */
1382 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1383 {
1384 if (ctx->consumer_error_socket > 0) {
1385 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1386 sizeof(enum lttcomm_sessiond_command));
1387 }
1388
1389 return 0;
1390 }
1391
1392 /*
1393 * Close all the tracefiles and stream fds and MUST be called when all
1394 * instances are destroyed i.e. when all threads were joined and are ended.
1395 */
1396 void lttng_consumer_cleanup(void)
1397 {
1398 struct lttng_ht_iter iter;
1399 struct lttng_consumer_channel *channel;
1400
1401 rcu_read_lock();
1402
1403 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1404 node.node) {
1405 consumer_del_channel(channel);
1406 }
1407
1408 rcu_read_unlock();
1409
1410 lttng_ht_destroy(consumer_data.channel_ht);
1411 lttng_ht_destroy(consumer_data.channels_by_session_id_ht);
1412
1413 cleanup_relayd_ht();
1414
1415 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1416
1417 /*
1418 * This HT contains streams that are freed by either the metadata thread or
1419 * the data thread so we do *nothing* on the hash table and simply destroy
1420 * it.
1421 */
1422 lttng_ht_destroy(consumer_data.stream_list_ht);
1423
1424 lttng_trace_chunk_registry_destroy(consumer_data.chunk_registry);
1425 }
1426
1427 /*
1428 * Called from signal handler.
1429 */
1430 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1431 {
1432 ssize_t ret;
1433
1434 CMM_STORE_SHARED(consumer_quit, 1);
1435 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1436 if (ret < 1) {
1437 PERROR("write consumer quit");
1438 }
1439
1440 DBG("Consumer flag that it should quit");
1441 }
1442
1443
1444 /*
1445 * Flush pending writes to trace output disk file.
1446 */
1447 static
1448 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1449 off_t orig_offset)
1450 {
1451 int ret;
1452 int outfd = stream->out_fd;
1453
1454 /*
1455 * This does a blocking write-and-wait on any page that belongs to the
1456 * subbuffer prior to the one we just wrote.
1457 * Don't care about error values, as these are just hints and ways to
1458 * limit the amount of page cache used.
1459 */
1460 if (orig_offset < stream->max_sb_size) {
1461 return;
1462 }
1463 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1464 stream->max_sb_size,
1465 SYNC_FILE_RANGE_WAIT_BEFORE
1466 | SYNC_FILE_RANGE_WRITE
1467 | SYNC_FILE_RANGE_WAIT_AFTER);
1468 /*
1469 * Give hints to the kernel about how we access the file:
1470 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1471 * we write it.
1472 *
1473 * We need to call fadvise again after the file grows because the
1474 * kernel does not seem to apply fadvise to non-existing parts of the
1475 * file.
1476 *
1477 * Call fadvise _after_ having waited for the page writeback to
1478 * complete because the dirty page writeback semantic is not well
1479 * defined. So it can be expected to lead to lower throughput in
1480 * streaming.
1481 */
1482 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1483 stream->max_sb_size, POSIX_FADV_DONTNEED);
1484 if (ret && ret != -ENOSYS) {
1485 errno = ret;
1486 PERROR("posix_fadvise on fd %i", outfd);
1487 }
1488 }
1489
1490 /*
1491 * Initialise the necessary environnement :
1492 * - create a new context
1493 * - create the poll_pipe
1494 * - create the should_quit pipe (for signal handler)
1495 * - create the thread pipe (for splice)
1496 *
1497 * Takes a function pointer as argument, this function is called when data is
1498 * available on a buffer. This function is responsible to do the
1499 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1500 * buffer configuration and then kernctl_put_next_subbuf at the end.
1501 *
1502 * Returns a pointer to the new context or NULL on error.
1503 */
1504 struct lttng_consumer_local_data *lttng_consumer_create(
1505 enum lttng_consumer_type type,
1506 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1507 struct lttng_consumer_local_data *ctx),
1508 int (*recv_channel)(struct lttng_consumer_channel *channel),
1509 int (*recv_stream)(struct lttng_consumer_stream *stream),
1510 int (*update_stream)(uint64_t stream_key, uint32_t state))
1511 {
1512 int ret;
1513 struct lttng_consumer_local_data *ctx;
1514
1515 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1516 consumer_data.type == type);
1517 consumer_data.type = type;
1518
1519 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1520 if (ctx == NULL) {
1521 PERROR("allocating context");
1522 goto error;
1523 }
1524
1525 ctx->consumer_error_socket = -1;
1526 ctx->consumer_metadata_socket = -1;
1527 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1528 /* assign the callbacks */
1529 ctx->on_buffer_ready = buffer_ready;
1530 ctx->on_recv_channel = recv_channel;
1531 ctx->on_recv_stream = recv_stream;
1532 ctx->on_update_stream = update_stream;
1533
1534 ctx->consumer_data_pipe = lttng_pipe_open(0);
1535 if (!ctx->consumer_data_pipe) {
1536 goto error_poll_pipe;
1537 }
1538
1539 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1540 if (!ctx->consumer_wakeup_pipe) {
1541 goto error_wakeup_pipe;
1542 }
1543
1544 ret = pipe(ctx->consumer_should_quit);
1545 if (ret < 0) {
1546 PERROR("Error creating recv pipe");
1547 goto error_quit_pipe;
1548 }
1549
1550 ret = pipe(ctx->consumer_channel_pipe);
1551 if (ret < 0) {
1552 PERROR("Error creating channel pipe");
1553 goto error_channel_pipe;
1554 }
1555
1556 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1557 if (!ctx->consumer_metadata_pipe) {
1558 goto error_metadata_pipe;
1559 }
1560
1561 ctx->channel_monitor_pipe = -1;
1562
1563 return ctx;
1564
1565 error_metadata_pipe:
1566 utils_close_pipe(ctx->consumer_channel_pipe);
1567 error_channel_pipe:
1568 utils_close_pipe(ctx->consumer_should_quit);
1569 error_quit_pipe:
1570 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1571 error_wakeup_pipe:
1572 lttng_pipe_destroy(ctx->consumer_data_pipe);
1573 error_poll_pipe:
1574 free(ctx);
1575 error:
1576 return NULL;
1577 }
1578
1579 /*
1580 * Iterate over all streams of the hashtable and free them properly.
1581 */
1582 static void destroy_data_stream_ht(struct lttng_ht *ht)
1583 {
1584 struct lttng_ht_iter iter;
1585 struct lttng_consumer_stream *stream;
1586
1587 if (ht == NULL) {
1588 return;
1589 }
1590
1591 rcu_read_lock();
1592 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1593 /*
1594 * Ignore return value since we are currently cleaning up so any error
1595 * can't be handled.
1596 */
1597 (void) consumer_del_stream(stream, ht);
1598 }
1599 rcu_read_unlock();
1600
1601 lttng_ht_destroy(ht);
1602 }
1603
1604 /*
1605 * Iterate over all streams of the metadata hashtable and free them
1606 * properly.
1607 */
1608 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1609 {
1610 struct lttng_ht_iter iter;
1611 struct lttng_consumer_stream *stream;
1612
1613 if (ht == NULL) {
1614 return;
1615 }
1616
1617 rcu_read_lock();
1618 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1619 /*
1620 * Ignore return value since we are currently cleaning up so any error
1621 * can't be handled.
1622 */
1623 (void) consumer_del_metadata_stream(stream, ht);
1624 }
1625 rcu_read_unlock();
1626
1627 lttng_ht_destroy(ht);
1628 }
1629
1630 /*
1631 * Close all fds associated with the instance and free the context.
1632 */
1633 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1634 {
1635 int ret;
1636
1637 DBG("Consumer destroying it. Closing everything.");
1638
1639 if (!ctx) {
1640 return;
1641 }
1642
1643 destroy_data_stream_ht(data_ht);
1644 destroy_metadata_stream_ht(metadata_ht);
1645
1646 ret = close(ctx->consumer_error_socket);
1647 if (ret) {
1648 PERROR("close");
1649 }
1650 ret = close(ctx->consumer_metadata_socket);
1651 if (ret) {
1652 PERROR("close");
1653 }
1654 utils_close_pipe(ctx->consumer_channel_pipe);
1655 lttng_pipe_destroy(ctx->consumer_data_pipe);
1656 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1657 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1658 utils_close_pipe(ctx->consumer_should_quit);
1659
1660 unlink(ctx->consumer_command_sock_path);
1661 free(ctx);
1662 }
1663
1664 /*
1665 * Write the metadata stream id on the specified file descriptor.
1666 */
1667 static int write_relayd_metadata_id(int fd,
1668 struct lttng_consumer_stream *stream,
1669 unsigned long padding)
1670 {
1671 ssize_t ret;
1672 struct lttcomm_relayd_metadata_payload hdr;
1673
1674 hdr.stream_id = htobe64(stream->relayd_stream_id);
1675 hdr.padding_size = htobe32(padding);
1676 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1677 if (ret < sizeof(hdr)) {
1678 /*
1679 * This error means that the fd's end is closed so ignore the PERROR
1680 * not to clubber the error output since this can happen in a normal
1681 * code path.
1682 */
1683 if (errno != EPIPE) {
1684 PERROR("write metadata stream id");
1685 }
1686 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1687 /*
1688 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1689 * handle writting the missing part so report that as an error and
1690 * don't lie to the caller.
1691 */
1692 ret = -1;
1693 goto end;
1694 }
1695 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1696 stream->relayd_stream_id, padding);
1697
1698 end:
1699 return (int) ret;
1700 }
1701
1702 /*
1703 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1704 * core function for writing trace buffers to either the local filesystem or
1705 * the network.
1706 *
1707 * It must be called with the stream and the channel lock held.
1708 *
1709 * Careful review MUST be put if any changes occur!
1710 *
1711 * Returns the number of bytes written
1712 */
1713 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1714 struct lttng_consumer_local_data *ctx,
1715 struct lttng_consumer_stream *stream, unsigned long len,
1716 unsigned long padding,
1717 struct ctf_packet_index *index)
1718 {
1719 unsigned long mmap_offset;
1720 void *mmap_base;
1721 ssize_t ret = 0;
1722 off_t orig_offset = stream->out_fd_offset;
1723 /* Default is on the disk */
1724 int outfd = stream->out_fd;
1725 struct consumer_relayd_sock_pair *relayd = NULL;
1726 unsigned int relayd_hang_up = 0;
1727
1728 /* RCU lock for the relayd pointer */
1729 rcu_read_lock();
1730 assert(stream->net_seq_idx != (uint64_t) -1ULL ||
1731 stream->trace_chunk);
1732
1733 /* Flag that the current stream if set for network streaming. */
1734 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1735 relayd = consumer_find_relayd(stream->net_seq_idx);
1736 if (relayd == NULL) {
1737 ret = -EPIPE;
1738 goto end;
1739 }
1740 }
1741
1742 /* get the offset inside the fd to mmap */
1743 switch (consumer_data.type) {
1744 case LTTNG_CONSUMER_KERNEL:
1745 mmap_base = stream->mmap_base;
1746 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1747 if (ret < 0) {
1748 PERROR("tracer ctl get_mmap_read_offset");
1749 goto end;
1750 }
1751 break;
1752 case LTTNG_CONSUMER32_UST:
1753 case LTTNG_CONSUMER64_UST:
1754 mmap_base = lttng_ustctl_get_mmap_base(stream);
1755 if (!mmap_base) {
1756 ERR("read mmap get mmap base for stream %s", stream->name);
1757 ret = -EPERM;
1758 goto end;
1759 }
1760 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1761 if (ret != 0) {
1762 PERROR("tracer ctl get_mmap_read_offset");
1763 ret = -EINVAL;
1764 goto end;
1765 }
1766 break;
1767 default:
1768 ERR("Unknown consumer_data type");
1769 assert(0);
1770 }
1771
1772 /* Handle stream on the relayd if the output is on the network */
1773 if (relayd) {
1774 unsigned long netlen = len;
1775
1776 /*
1777 * Lock the control socket for the complete duration of the function
1778 * since from this point on we will use the socket.
1779 */
1780 if (stream->metadata_flag) {
1781 /* Metadata requires the control socket. */
1782 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1783 if (stream->reset_metadata_flag) {
1784 ret = relayd_reset_metadata(&relayd->control_sock,
1785 stream->relayd_stream_id,
1786 stream->metadata_version);
1787 if (ret < 0) {
1788 relayd_hang_up = 1;
1789 goto write_error;
1790 }
1791 stream->reset_metadata_flag = 0;
1792 }
1793 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1794 }
1795
1796 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1797 if (ret < 0) {
1798 relayd_hang_up = 1;
1799 goto write_error;
1800 }
1801 /* Use the returned socket. */
1802 outfd = ret;
1803
1804 /* Write metadata stream id before payload */
1805 if (stream->metadata_flag) {
1806 ret = write_relayd_metadata_id(outfd, stream, padding);
1807 if (ret < 0) {
1808 relayd_hang_up = 1;
1809 goto write_error;
1810 }
1811 }
1812 } else {
1813 /* No streaming, we have to set the len with the full padding */
1814 len += padding;
1815
1816 if (stream->metadata_flag && stream->reset_metadata_flag) {
1817 ret = utils_truncate_stream_file(stream->out_fd, 0);
1818 if (ret < 0) {
1819 ERR("Reset metadata file");
1820 goto end;
1821 }
1822 stream->reset_metadata_flag = 0;
1823 }
1824
1825 /*
1826 * Check if we need to change the tracefile before writing the packet.
1827 */
1828 if (stream->chan->tracefile_size > 0 &&
1829 (stream->tracefile_size_current + len) >
1830 stream->chan->tracefile_size) {
1831 ret = consumer_stream_rotate_output_files(stream);
1832 if (ret) {
1833 goto end;
1834 }
1835 outfd = stream->out_fd;
1836 orig_offset = 0;
1837 }
1838 stream->tracefile_size_current += len;
1839 if (index) {
1840 index->offset = htobe64(stream->out_fd_offset);
1841 }
1842 }
1843
1844 /*
1845 * This call guarantee that len or less is returned. It's impossible to
1846 * receive a ret value that is bigger than len.
1847 */
1848 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1849 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1850 if (ret < 0 || ((size_t) ret != len)) {
1851 /*
1852 * Report error to caller if nothing was written else at least send the
1853 * amount written.
1854 */
1855 if (ret < 0) {
1856 ret = -errno;
1857 }
1858 relayd_hang_up = 1;
1859
1860 /* Socket operation failed. We consider the relayd dead */
1861 if (errno == EPIPE) {
1862 /*
1863 * This is possible if the fd is closed on the other side
1864 * (outfd) or any write problem. It can be verbose a bit for a
1865 * normal execution if for instance the relayd is stopped
1866 * abruptly. This can happen so set this to a DBG statement.
1867 */
1868 DBG("Consumer mmap write detected relayd hang up");
1869 } else {
1870 /* Unhandled error, print it and stop function right now. */
1871 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1872 }
1873 goto write_error;
1874 }
1875 stream->output_written += ret;
1876
1877 /* This call is useless on a socket so better save a syscall. */
1878 if (!relayd) {
1879 /* This won't block, but will start writeout asynchronously */
1880 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1881 SYNC_FILE_RANGE_WRITE);
1882 stream->out_fd_offset += len;
1883 lttng_consumer_sync_trace_file(stream, orig_offset);
1884 }
1885
1886 write_error:
1887 /*
1888 * This is a special case that the relayd has closed its socket. Let's
1889 * cleanup the relayd object and all associated streams.
1890 */
1891 if (relayd && relayd_hang_up) {
1892 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1893 lttng_consumer_cleanup_relayd(relayd);
1894 }
1895
1896 end:
1897 /* Unlock only if ctrl socket used */
1898 if (relayd && stream->metadata_flag) {
1899 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1900 }
1901
1902 rcu_read_unlock();
1903 return ret;
1904 }
1905
1906 /*
1907 * Splice the data from the ring buffer to the tracefile.
1908 *
1909 * It must be called with the stream lock held.
1910 *
1911 * Returns the number of bytes spliced.
1912 */
1913 ssize_t lttng_consumer_on_read_subbuffer_splice(
1914 struct lttng_consumer_local_data *ctx,
1915 struct lttng_consumer_stream *stream, unsigned long len,
1916 unsigned long padding,
1917 struct ctf_packet_index *index)
1918 {
1919 ssize_t ret = 0, written = 0, ret_splice = 0;
1920 loff_t offset = 0;
1921 off_t orig_offset = stream->out_fd_offset;
1922 int fd = stream->wait_fd;
1923 /* Default is on the disk */
1924 int outfd = stream->out_fd;
1925 struct consumer_relayd_sock_pair *relayd = NULL;
1926 int *splice_pipe;
1927 unsigned int relayd_hang_up = 0;
1928
1929 switch (consumer_data.type) {
1930 case LTTNG_CONSUMER_KERNEL:
1931 break;
1932 case LTTNG_CONSUMER32_UST:
1933 case LTTNG_CONSUMER64_UST:
1934 /* Not supported for user space tracing */
1935 return -ENOSYS;
1936 default:
1937 ERR("Unknown consumer_data type");
1938 assert(0);
1939 }
1940
1941 /* RCU lock for the relayd pointer */
1942 rcu_read_lock();
1943
1944 /* Flag that the current stream if set for network streaming. */
1945 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1946 relayd = consumer_find_relayd(stream->net_seq_idx);
1947 if (relayd == NULL) {
1948 written = -ret;
1949 goto end;
1950 }
1951 }
1952 splice_pipe = stream->splice_pipe;
1953
1954 /* Write metadata stream id before payload */
1955 if (relayd) {
1956 unsigned long total_len = len;
1957
1958 if (stream->metadata_flag) {
1959 /*
1960 * Lock the control socket for the complete duration of the function
1961 * since from this point on we will use the socket.
1962 */
1963 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1964
1965 if (stream->reset_metadata_flag) {
1966 ret = relayd_reset_metadata(&relayd->control_sock,
1967 stream->relayd_stream_id,
1968 stream->metadata_version);
1969 if (ret < 0) {
1970 relayd_hang_up = 1;
1971 goto write_error;
1972 }
1973 stream->reset_metadata_flag = 0;
1974 }
1975 ret = write_relayd_metadata_id(splice_pipe[1], stream,
1976 padding);
1977 if (ret < 0) {
1978 written = ret;
1979 relayd_hang_up = 1;
1980 goto write_error;
1981 }
1982
1983 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1984 }
1985
1986 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1987 if (ret < 0) {
1988 written = ret;
1989 relayd_hang_up = 1;
1990 goto write_error;
1991 }
1992 /* Use the returned socket. */
1993 outfd = ret;
1994 } else {
1995 /* No streaming, we have to set the len with the full padding */
1996 len += padding;
1997
1998 if (stream->metadata_flag && stream->reset_metadata_flag) {
1999 ret = utils_truncate_stream_file(stream->out_fd, 0);
2000 if (ret < 0) {
2001 ERR("Reset metadata file");
2002 goto end;
2003 }
2004 stream->reset_metadata_flag = 0;
2005 }
2006 /*
2007 * Check if we need to change the tracefile before writing the packet.
2008 */
2009 if (stream->chan->tracefile_size > 0 &&
2010 (stream->tracefile_size_current + len) >
2011 stream->chan->tracefile_size) {
2012 ret = consumer_stream_rotate_output_files(stream);
2013 if (ret < 0) {
2014 written = ret;
2015 goto end;
2016 }
2017 outfd = stream->out_fd;
2018 orig_offset = 0;
2019 }
2020 stream->tracefile_size_current += len;
2021 index->offset = htobe64(stream->out_fd_offset);
2022 }
2023
2024 while (len > 0) {
2025 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
2026 (unsigned long)offset, len, fd, splice_pipe[1]);
2027 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
2028 SPLICE_F_MOVE | SPLICE_F_MORE);
2029 DBG("splice chan to pipe, ret %zd", ret_splice);
2030 if (ret_splice < 0) {
2031 ret = errno;
2032 written = -ret;
2033 PERROR("Error in relay splice");
2034 goto splice_error;
2035 }
2036
2037 /* Handle stream on the relayd if the output is on the network */
2038 if (relayd && stream->metadata_flag) {
2039 size_t metadata_payload_size =
2040 sizeof(struct lttcomm_relayd_metadata_payload);
2041
2042 /* Update counter to fit the spliced data */
2043 ret_splice += metadata_payload_size;
2044 len += metadata_payload_size;
2045 /*
2046 * We do this so the return value can match the len passed as
2047 * argument to this function.
2048 */
2049 written -= metadata_payload_size;
2050 }
2051
2052 /* Splice data out */
2053 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
2054 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
2055 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
2056 outfd, ret_splice);
2057 if (ret_splice < 0) {
2058 ret = errno;
2059 written = -ret;
2060 relayd_hang_up = 1;
2061 goto write_error;
2062 } else if (ret_splice > len) {
2063 /*
2064 * We don't expect this code path to be executed but you never know
2065 * so this is an extra protection agains a buggy splice().
2066 */
2067 ret = errno;
2068 written += ret_splice;
2069 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
2070 len);
2071 goto splice_error;
2072 } else {
2073 /* All good, update current len and continue. */
2074 len -= ret_splice;
2075 }
2076
2077 /* This call is useless on a socket so better save a syscall. */
2078 if (!relayd) {
2079 /* This won't block, but will start writeout asynchronously */
2080 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
2081 SYNC_FILE_RANGE_WRITE);
2082 stream->out_fd_offset += ret_splice;
2083 }
2084 stream->output_written += ret_splice;
2085 written += ret_splice;
2086 }
2087 if (!relayd) {
2088 lttng_consumer_sync_trace_file(stream, orig_offset);
2089 }
2090 goto end;
2091
2092 write_error:
2093 /*
2094 * This is a special case that the relayd has closed its socket. Let's
2095 * cleanup the relayd object and all associated streams.
2096 */
2097 if (relayd && relayd_hang_up) {
2098 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
2099 lttng_consumer_cleanup_relayd(relayd);
2100 /* Skip splice error so the consumer does not fail */
2101 goto end;
2102 }
2103
2104 splice_error:
2105 /* send the appropriate error description to sessiond */
2106 switch (ret) {
2107 case EINVAL:
2108 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
2109 break;
2110 case ENOMEM:
2111 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
2112 break;
2113 case ESPIPE:
2114 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
2115 break;
2116 }
2117
2118 end:
2119 if (relayd && stream->metadata_flag) {
2120 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2121 }
2122
2123 rcu_read_unlock();
2124 return written;
2125 }
2126
2127 /*
2128 * Sample the snapshot positions for a specific fd
2129 *
2130 * Returns 0 on success, < 0 on error
2131 */
2132 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
2133 {
2134 switch (consumer_data.type) {
2135 case LTTNG_CONSUMER_KERNEL:
2136 return lttng_kconsumer_sample_snapshot_positions(stream);
2137 case LTTNG_CONSUMER32_UST:
2138 case LTTNG_CONSUMER64_UST:
2139 return lttng_ustconsumer_sample_snapshot_positions(stream);
2140 default:
2141 ERR("Unknown consumer_data type");
2142 assert(0);
2143 return -ENOSYS;
2144 }
2145 }
2146 /*
2147 * Take a snapshot for a specific fd
2148 *
2149 * Returns 0 on success, < 0 on error
2150 */
2151 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
2152 {
2153 switch (consumer_data.type) {
2154 case LTTNG_CONSUMER_KERNEL:
2155 return lttng_kconsumer_take_snapshot(stream);
2156 case LTTNG_CONSUMER32_UST:
2157 case LTTNG_CONSUMER64_UST:
2158 return lttng_ustconsumer_take_snapshot(stream);
2159 default:
2160 ERR("Unknown consumer_data type");
2161 assert(0);
2162 return -ENOSYS;
2163 }
2164 }
2165
2166 /*
2167 * Get the produced position
2168 *
2169 * Returns 0 on success, < 0 on error
2170 */
2171 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2172 unsigned long *pos)
2173 {
2174 switch (consumer_data.type) {
2175 case LTTNG_CONSUMER_KERNEL:
2176 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2177 case LTTNG_CONSUMER32_UST:
2178 case LTTNG_CONSUMER64_UST:
2179 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2180 default:
2181 ERR("Unknown consumer_data type");
2182 assert(0);
2183 return -ENOSYS;
2184 }
2185 }
2186
2187 /*
2188 * Get the consumed position (free-running counter position in bytes).
2189 *
2190 * Returns 0 on success, < 0 on error
2191 */
2192 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2193 unsigned long *pos)
2194 {
2195 switch (consumer_data.type) {
2196 case LTTNG_CONSUMER_KERNEL:
2197 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2198 case LTTNG_CONSUMER32_UST:
2199 case LTTNG_CONSUMER64_UST:
2200 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2201 default:
2202 ERR("Unknown consumer_data type");
2203 assert(0);
2204 return -ENOSYS;
2205 }
2206 }
2207
2208 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2209 int sock, struct pollfd *consumer_sockpoll)
2210 {
2211 switch (consumer_data.type) {
2212 case LTTNG_CONSUMER_KERNEL:
2213 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2214 case LTTNG_CONSUMER32_UST:
2215 case LTTNG_CONSUMER64_UST:
2216 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2217 default:
2218 ERR("Unknown consumer_data type");
2219 assert(0);
2220 return -ENOSYS;
2221 }
2222 }
2223
2224 void lttng_consumer_close_all_metadata(void)
2225 {
2226 switch (consumer_data.type) {
2227 case LTTNG_CONSUMER_KERNEL:
2228 /*
2229 * The Kernel consumer has a different metadata scheme so we don't
2230 * close anything because the stream will be closed by the session
2231 * daemon.
2232 */
2233 break;
2234 case LTTNG_CONSUMER32_UST:
2235 case LTTNG_CONSUMER64_UST:
2236 /*
2237 * Close all metadata streams. The metadata hash table is passed and
2238 * this call iterates over it by closing all wakeup fd. This is safe
2239 * because at this point we are sure that the metadata producer is
2240 * either dead or blocked.
2241 */
2242 lttng_ustconsumer_close_all_metadata(metadata_ht);
2243 break;
2244 default:
2245 ERR("Unknown consumer_data type");
2246 assert(0);
2247 }
2248 }
2249
2250 /*
2251 * Clean up a metadata stream and free its memory.
2252 */
2253 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2254 struct lttng_ht *ht)
2255 {
2256 struct lttng_consumer_channel *free_chan = NULL;
2257
2258 assert(stream);
2259 /*
2260 * This call should NEVER receive regular stream. It must always be
2261 * metadata stream and this is crucial for data structure synchronization.
2262 */
2263 assert(stream->metadata_flag);
2264
2265 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2266
2267 pthread_mutex_lock(&consumer_data.lock);
2268 pthread_mutex_lock(&stream->chan->lock);
2269 pthread_mutex_lock(&stream->lock);
2270 if (stream->chan->metadata_cache) {
2271 /* Only applicable to userspace consumers. */
2272 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2273 }
2274
2275 /* Remove any reference to that stream. */
2276 consumer_stream_delete(stream, ht);
2277
2278 /* Close down everything including the relayd if one. */
2279 consumer_stream_close(stream);
2280 /* Destroy tracer buffers of the stream. */
2281 consumer_stream_destroy_buffers(stream);
2282
2283 /* Atomically decrement channel refcount since other threads can use it. */
2284 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2285 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2286 /* Go for channel deletion! */
2287 free_chan = stream->chan;
2288 }
2289
2290 /*
2291 * Nullify the stream reference so it is not used after deletion. The
2292 * channel lock MUST be acquired before being able to check for a NULL
2293 * pointer value.
2294 */
2295 stream->chan->metadata_stream = NULL;
2296
2297 if (stream->chan->metadata_cache) {
2298 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2299 }
2300 pthread_mutex_unlock(&stream->lock);
2301 pthread_mutex_unlock(&stream->chan->lock);
2302 pthread_mutex_unlock(&consumer_data.lock);
2303
2304 if (free_chan) {
2305 consumer_del_channel(free_chan);
2306 }
2307
2308 lttng_trace_chunk_put(stream->trace_chunk);
2309 stream->trace_chunk = NULL;
2310 consumer_stream_free(stream);
2311 }
2312
2313 /*
2314 * Action done with the metadata stream when adding it to the consumer internal
2315 * data structures to handle it.
2316 */
2317 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2318 {
2319 struct lttng_ht *ht = metadata_ht;
2320 struct lttng_ht_iter iter;
2321 struct lttng_ht_node_u64 *node;
2322
2323 assert(stream);
2324 assert(ht);
2325
2326 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2327
2328 pthread_mutex_lock(&consumer_data.lock);
2329 pthread_mutex_lock(&stream->chan->lock);
2330 pthread_mutex_lock(&stream->chan->timer_lock);
2331 pthread_mutex_lock(&stream->lock);
2332
2333 /*
2334 * From here, refcounts are updated so be _careful_ when returning an error
2335 * after this point.
2336 */
2337
2338 rcu_read_lock();
2339
2340 /*
2341 * Lookup the stream just to make sure it does not exist in our internal
2342 * state. This should NEVER happen.
2343 */
2344 lttng_ht_lookup(ht, &stream->key, &iter);
2345 node = lttng_ht_iter_get_node_u64(&iter);
2346 assert(!node);
2347
2348 /*
2349 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2350 * in terms of destroying the associated channel, because the action that
2351 * causes the count to become 0 also causes a stream to be added. The
2352 * channel deletion will thus be triggered by the following removal of this
2353 * stream.
2354 */
2355 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2356 /* Increment refcount before decrementing nb_init_stream_left */
2357 cmm_smp_wmb();
2358 uatomic_dec(&stream->chan->nb_init_stream_left);
2359 }
2360
2361 lttng_ht_add_unique_u64(ht, &stream->node);
2362
2363 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2364 &stream->node_channel_id);
2365
2366 /*
2367 * Add stream to the stream_list_ht of the consumer data. No need to steal
2368 * the key since the HT does not use it and we allow to add redundant keys
2369 * into this table.
2370 */
2371 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2372
2373 rcu_read_unlock();
2374
2375 pthread_mutex_unlock(&stream->lock);
2376 pthread_mutex_unlock(&stream->chan->lock);
2377 pthread_mutex_unlock(&stream->chan->timer_lock);
2378 pthread_mutex_unlock(&consumer_data.lock);
2379 }
2380
2381 /*
2382 * Delete data stream that are flagged for deletion (endpoint_status).
2383 */
2384 static void validate_endpoint_status_data_stream(void)
2385 {
2386 struct lttng_ht_iter iter;
2387 struct lttng_consumer_stream *stream;
2388
2389 DBG("Consumer delete flagged data stream");
2390
2391 rcu_read_lock();
2392 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2393 /* Validate delete flag of the stream */
2394 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2395 continue;
2396 }
2397 /* Delete it right now */
2398 consumer_del_stream(stream, data_ht);
2399 }
2400 rcu_read_unlock();
2401 }
2402
2403 /*
2404 * Delete metadata stream that are flagged for deletion (endpoint_status).
2405 */
2406 static void validate_endpoint_status_metadata_stream(
2407 struct lttng_poll_event *pollset)
2408 {
2409 struct lttng_ht_iter iter;
2410 struct lttng_consumer_stream *stream;
2411
2412 DBG("Consumer delete flagged metadata stream");
2413
2414 assert(pollset);
2415
2416 rcu_read_lock();
2417 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2418 /* Validate delete flag of the stream */
2419 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2420 continue;
2421 }
2422 /*
2423 * Remove from pollset so the metadata thread can continue without
2424 * blocking on a deleted stream.
2425 */
2426 lttng_poll_del(pollset, stream->wait_fd);
2427
2428 /* Delete it right now */
2429 consumer_del_metadata_stream(stream, metadata_ht);
2430 }
2431 rcu_read_unlock();
2432 }
2433
2434 /*
2435 * Thread polls on metadata file descriptor and write them on disk or on the
2436 * network.
2437 */
2438 void *consumer_thread_metadata_poll(void *data)
2439 {
2440 int ret, i, pollfd, err = -1;
2441 uint32_t revents, nb_fd;
2442 struct lttng_consumer_stream *stream = NULL;
2443 struct lttng_ht_iter iter;
2444 struct lttng_ht_node_u64 *node;
2445 struct lttng_poll_event events;
2446 struct lttng_consumer_local_data *ctx = data;
2447 ssize_t len;
2448
2449 rcu_register_thread();
2450
2451 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2452
2453 if (testpoint(consumerd_thread_metadata)) {
2454 goto error_testpoint;
2455 }
2456
2457 health_code_update();
2458
2459 DBG("Thread metadata poll started");
2460
2461 /* Size is set to 1 for the consumer_metadata pipe */
2462 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2463 if (ret < 0) {
2464 ERR("Poll set creation failed");
2465 goto end_poll;
2466 }
2467
2468 ret = lttng_poll_add(&events,
2469 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2470 if (ret < 0) {
2471 goto end;
2472 }
2473
2474 /* Main loop */
2475 DBG("Metadata main loop started");
2476
2477 while (1) {
2478 restart:
2479 health_code_update();
2480 health_poll_entry();
2481 DBG("Metadata poll wait");
2482 ret = lttng_poll_wait(&events, -1);
2483 DBG("Metadata poll return from wait with %d fd(s)",
2484 LTTNG_POLL_GETNB(&events));
2485 health_poll_exit();
2486 DBG("Metadata event caught in thread");
2487 if (ret < 0) {
2488 if (errno == EINTR) {
2489 ERR("Poll EINTR caught");
2490 goto restart;
2491 }
2492 if (LTTNG_POLL_GETNB(&events) == 0) {
2493 err = 0; /* All is OK */
2494 }
2495 goto end;
2496 }
2497
2498 nb_fd = ret;
2499
2500 /* From here, the event is a metadata wait fd */
2501 for (i = 0; i < nb_fd; i++) {
2502 health_code_update();
2503
2504 revents = LTTNG_POLL_GETEV(&events, i);
2505 pollfd = LTTNG_POLL_GETFD(&events, i);
2506
2507 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2508 if (revents & LPOLLIN) {
2509 ssize_t pipe_len;
2510
2511 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2512 &stream, sizeof(stream));
2513 if (pipe_len < sizeof(stream)) {
2514 if (pipe_len < 0) {
2515 PERROR("read metadata stream");
2516 }
2517 /*
2518 * Remove the pipe from the poll set and continue the loop
2519 * since their might be data to consume.
2520 */
2521 lttng_poll_del(&events,
2522 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2523 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2524 continue;
2525 }
2526
2527 /* A NULL stream means that the state has changed. */
2528 if (stream == NULL) {
2529 /* Check for deleted streams. */
2530 validate_endpoint_status_metadata_stream(&events);
2531 goto restart;
2532 }
2533
2534 DBG("Adding metadata stream %d to poll set",
2535 stream->wait_fd);
2536
2537 /* Add metadata stream to the global poll events list */
2538 lttng_poll_add(&events, stream->wait_fd,
2539 LPOLLIN | LPOLLPRI | LPOLLHUP);
2540 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2541 DBG("Metadata thread pipe hung up");
2542 /*
2543 * Remove the pipe from the poll set and continue the loop
2544 * since their might be data to consume.
2545 */
2546 lttng_poll_del(&events,
2547 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2548 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2549 continue;
2550 } else {
2551 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2552 goto end;
2553 }
2554
2555 /* Handle other stream */
2556 continue;
2557 }
2558
2559 rcu_read_lock();
2560 {
2561 uint64_t tmp_id = (uint64_t) pollfd;
2562
2563 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2564 }
2565 node = lttng_ht_iter_get_node_u64(&iter);
2566 assert(node);
2567
2568 stream = caa_container_of(node, struct lttng_consumer_stream,
2569 node);
2570
2571 if (revents & (LPOLLIN | LPOLLPRI)) {
2572 /* Get the data out of the metadata file descriptor */
2573 DBG("Metadata available on fd %d", pollfd);
2574 assert(stream->wait_fd == pollfd);
2575
2576 do {
2577 health_code_update();
2578
2579 len = ctx->on_buffer_ready(stream, ctx);
2580 /*
2581 * We don't check the return value here since if we get
2582 * a negative len, it means an error occurred thus we
2583 * simply remove it from the poll set and free the
2584 * stream.
2585 */
2586 } while (len > 0);
2587
2588 /* It's ok to have an unavailable sub-buffer */
2589 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2590 /* Clean up stream from consumer and free it. */
2591 lttng_poll_del(&events, stream->wait_fd);
2592 consumer_del_metadata_stream(stream, metadata_ht);
2593 }
2594 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2595 DBG("Metadata fd %d is hup|err.", pollfd);
2596 if (!stream->hangup_flush_done
2597 && (consumer_data.type == LTTNG_CONSUMER32_UST
2598 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2599 DBG("Attempting to flush and consume the UST buffers");
2600 lttng_ustconsumer_on_stream_hangup(stream);
2601
2602 /* We just flushed the stream now read it. */
2603 do {
2604 health_code_update();
2605
2606 len = ctx->on_buffer_ready(stream, ctx);
2607 /*
2608 * We don't check the return value here since if we get
2609 * a negative len, it means an error occurred thus we
2610 * simply remove it from the poll set and free the
2611 * stream.
2612 */
2613 } while (len > 0);
2614 }
2615
2616 lttng_poll_del(&events, stream->wait_fd);
2617 /*
2618 * This call update the channel states, closes file descriptors
2619 * and securely free the stream.
2620 */
2621 consumer_del_metadata_stream(stream, metadata_ht);
2622 } else {
2623 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2624 rcu_read_unlock();
2625 goto end;
2626 }
2627 /* Release RCU lock for the stream looked up */
2628 rcu_read_unlock();
2629 }
2630 }
2631
2632 /* All is OK */
2633 err = 0;
2634 end:
2635 DBG("Metadata poll thread exiting");
2636
2637 lttng_poll_clean(&events);
2638 end_poll:
2639 error_testpoint:
2640 if (err) {
2641 health_error();
2642 ERR("Health error occurred in %s", __func__);
2643 }
2644 health_unregister(health_consumerd);
2645 rcu_unregister_thread();
2646 return NULL;
2647 }
2648
2649 /*
2650 * This thread polls the fds in the set to consume the data and write
2651 * it to tracefile if necessary.
2652 */
2653 void *consumer_thread_data_poll(void *data)
2654 {
2655 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2656 struct pollfd *pollfd = NULL;
2657 /* local view of the streams */
2658 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2659 /* local view of consumer_data.fds_count */
2660 int nb_fd = 0;
2661 /* 2 for the consumer_data_pipe and wake up pipe */
2662 const int nb_pipes_fd = 2;
2663 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2664 int nb_inactive_fd = 0;
2665 struct lttng_consumer_local_data *ctx = data;
2666 ssize_t len;
2667
2668 rcu_register_thread();
2669
2670 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2671
2672 if (testpoint(consumerd_thread_data)) {
2673 goto error_testpoint;
2674 }
2675
2676 health_code_update();
2677
2678 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2679 if (local_stream == NULL) {
2680 PERROR("local_stream malloc");
2681 goto end;
2682 }
2683
2684 while (1) {
2685 health_code_update();
2686
2687 high_prio = 0;
2688 num_hup = 0;
2689
2690 /*
2691 * the fds set has been updated, we need to update our
2692 * local array as well
2693 */
2694 pthread_mutex_lock(&consumer_data.lock);
2695 if (consumer_data.need_update) {
2696 free(pollfd);
2697 pollfd = NULL;
2698
2699 free(local_stream);
2700 local_stream = NULL;
2701
2702 /* Allocate for all fds */
2703 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2704 if (pollfd == NULL) {
2705 PERROR("pollfd malloc");
2706 pthread_mutex_unlock(&consumer_data.lock);
2707 goto end;
2708 }
2709
2710 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2711 sizeof(struct lttng_consumer_stream *));
2712 if (local_stream == NULL) {
2713 PERROR("local_stream malloc");
2714 pthread_mutex_unlock(&consumer_data.lock);
2715 goto end;
2716 }
2717 ret = update_poll_array(ctx, &pollfd, local_stream,
2718 data_ht, &nb_inactive_fd);
2719 if (ret < 0) {
2720 ERR("Error in allocating pollfd or local_outfds");
2721 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2722 pthread_mutex_unlock(&consumer_data.lock);
2723 goto end;
2724 }
2725 nb_fd = ret;
2726 consumer_data.need_update = 0;
2727 }
2728 pthread_mutex_unlock(&consumer_data.lock);
2729
2730 /* No FDs and consumer_quit, consumer_cleanup the thread */
2731 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2732 CMM_LOAD_SHARED(consumer_quit) == 1) {
2733 err = 0; /* All is OK */
2734 goto end;
2735 }
2736 /* poll on the array of fds */
2737 restart:
2738 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2739 if (testpoint(consumerd_thread_data_poll)) {
2740 goto end;
2741 }
2742 health_poll_entry();
2743 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2744 health_poll_exit();
2745 DBG("poll num_rdy : %d", num_rdy);
2746 if (num_rdy == -1) {
2747 /*
2748 * Restart interrupted system call.
2749 */
2750 if (errno == EINTR) {
2751 goto restart;
2752 }
2753 PERROR("Poll error");
2754 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2755 goto end;
2756 } else if (num_rdy == 0) {
2757 DBG("Polling thread timed out");
2758 goto end;
2759 }
2760
2761 if (caa_unlikely(data_consumption_paused)) {
2762 DBG("Data consumption paused, sleeping...");
2763 sleep(1);
2764 goto restart;
2765 }
2766
2767 /*
2768 * If the consumer_data_pipe triggered poll go directly to the
2769 * beginning of the loop to update the array. We want to prioritize
2770 * array update over low-priority reads.
2771 */
2772 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2773 ssize_t pipe_readlen;
2774
2775 DBG("consumer_data_pipe wake up");
2776 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2777 &new_stream, sizeof(new_stream));
2778 if (pipe_readlen < sizeof(new_stream)) {
2779 PERROR("Consumer data pipe");
2780 /* Continue so we can at least handle the current stream(s). */
2781 continue;
2782 }
2783
2784 /*
2785 * If the stream is NULL, just ignore it. It's also possible that
2786 * the sessiond poll thread changed the consumer_quit state and is
2787 * waking us up to test it.
2788 */
2789 if (new_stream == NULL) {
2790 validate_endpoint_status_data_stream();
2791 continue;
2792 }
2793
2794 /* Continue to update the local streams and handle prio ones */
2795 continue;
2796 }
2797
2798 /* Handle wakeup pipe. */
2799 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2800 char dummy;
2801 ssize_t pipe_readlen;
2802
2803 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2804 sizeof(dummy));
2805 if (pipe_readlen < 0) {
2806 PERROR("Consumer data wakeup pipe");
2807 }
2808 /* We've been awakened to handle stream(s). */
2809 ctx->has_wakeup = 0;
2810 }
2811
2812 /* Take care of high priority channels first. */
2813 for (i = 0; i < nb_fd; i++) {
2814 health_code_update();
2815
2816 if (local_stream[i] == NULL) {
2817 continue;
2818 }
2819 if (pollfd[i].revents & POLLPRI) {
2820 DBG("Urgent read on fd %d", pollfd[i].fd);
2821 high_prio = 1;
2822 len = ctx->on_buffer_ready(local_stream[i], ctx);
2823 /* it's ok to have an unavailable sub-buffer */
2824 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2825 /* Clean the stream and free it. */
2826 consumer_del_stream(local_stream[i], data_ht);
2827 local_stream[i] = NULL;
2828 } else if (len > 0) {
2829 local_stream[i]->data_read = 1;
2830 }
2831 }
2832 }
2833
2834 /*
2835 * If we read high prio channel in this loop, try again
2836 * for more high prio data.
2837 */
2838 if (high_prio) {
2839 continue;
2840 }
2841
2842 /* Take care of low priority channels. */
2843 for (i = 0; i < nb_fd; i++) {
2844 health_code_update();
2845
2846 if (local_stream[i] == NULL) {
2847 continue;
2848 }
2849 if ((pollfd[i].revents & POLLIN) ||
2850 local_stream[i]->hangup_flush_done ||
2851 local_stream[i]->has_data) {
2852 DBG("Normal read on fd %d", pollfd[i].fd);
2853 len = ctx->on_buffer_ready(local_stream[i], ctx);
2854 /* it's ok to have an unavailable sub-buffer */
2855 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2856 /* Clean the stream and free it. */
2857 consumer_del_stream(local_stream[i], data_ht);
2858 local_stream[i] = NULL;
2859 } else if (len > 0) {
2860 local_stream[i]->data_read = 1;
2861 }
2862 }
2863 }
2864
2865 /* Handle hangup and errors */
2866 for (i = 0; i < nb_fd; i++) {
2867 health_code_update();
2868
2869 if (local_stream[i] == NULL) {
2870 continue;
2871 }
2872 if (!local_stream[i]->hangup_flush_done
2873 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2874 && (consumer_data.type == LTTNG_CONSUMER32_UST
2875 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2876 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2877 pollfd[i].fd);
2878 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2879 /* Attempt read again, for the data we just flushed. */
2880 local_stream[i]->data_read = 1;
2881 }
2882 /*
2883 * If the poll flag is HUP/ERR/NVAL and we have
2884 * read no data in this pass, we can remove the
2885 * stream from its hash table.
2886 */
2887 if ((pollfd[i].revents & POLLHUP)) {
2888 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2889 if (!local_stream[i]->data_read) {
2890 consumer_del_stream(local_stream[i], data_ht);
2891 local_stream[i] = NULL;
2892 num_hup++;
2893 }
2894 } else if (pollfd[i].revents & POLLERR) {
2895 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2896 if (!local_stream[i]->data_read) {
2897 consumer_del_stream(local_stream[i], data_ht);
2898 local_stream[i] = NULL;
2899 num_hup++;
2900 }
2901 } else if (pollfd[i].revents & POLLNVAL) {
2902 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2903 if (!local_stream[i]->data_read) {
2904 consumer_del_stream(local_stream[i], data_ht);
2905 local_stream[i] = NULL;
2906 num_hup++;
2907 }
2908 }
2909 if (local_stream[i] != NULL) {
2910 local_stream[i]->data_read = 0;
2911 }
2912 }
2913 }
2914 /* All is OK */
2915 err = 0;
2916 end:
2917 DBG("polling thread exiting");
2918 free(pollfd);
2919 free(local_stream);
2920
2921 /*
2922 * Close the write side of the pipe so epoll_wait() in
2923 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2924 * read side of the pipe. If we close them both, epoll_wait strangely does
2925 * not return and could create a endless wait period if the pipe is the
2926 * only tracked fd in the poll set. The thread will take care of closing
2927 * the read side.
2928 */
2929 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2930
2931 error_testpoint:
2932 if (err) {
2933 health_error();
2934 ERR("Health error occurred in %s", __func__);
2935 }
2936 health_unregister(health_consumerd);
2937
2938 rcu_unregister_thread();
2939 return NULL;
2940 }
2941
2942 /*
2943 * Close wake-up end of each stream belonging to the channel. This will
2944 * allow the poll() on the stream read-side to detect when the
2945 * write-side (application) finally closes them.
2946 */
2947 static
2948 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2949 {
2950 struct lttng_ht *ht;
2951 struct lttng_consumer_stream *stream;
2952 struct lttng_ht_iter iter;
2953
2954 ht = consumer_data.stream_per_chan_id_ht;
2955
2956 rcu_read_lock();
2957 cds_lfht_for_each_entry_duplicate(ht->ht,
2958 ht->hash_fct(&channel->key, lttng_ht_seed),
2959 ht->match_fct, &channel->key,
2960 &iter.iter, stream, node_channel_id.node) {
2961 /*
2962 * Protect against teardown with mutex.
2963 */
2964 pthread_mutex_lock(&stream->lock);
2965 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2966 goto next;
2967 }
2968 switch (consumer_data.type) {
2969 case LTTNG_CONSUMER_KERNEL:
2970 break;
2971 case LTTNG_CONSUMER32_UST:
2972 case LTTNG_CONSUMER64_UST:
2973 if (stream->metadata_flag) {
2974 /* Safe and protected by the stream lock. */
2975 lttng_ustconsumer_close_metadata(stream->chan);
2976 } else {
2977 /*
2978 * Note: a mutex is taken internally within
2979 * liblttng-ust-ctl to protect timer wakeup_fd
2980 * use from concurrent close.
2981 */
2982 lttng_ustconsumer_close_stream_wakeup(stream);
2983 }
2984 break;
2985 default:
2986 ERR("Unknown consumer_data type");
2987 assert(0);
2988 }
2989 next:
2990 pthread_mutex_unlock(&stream->lock);
2991 }
2992 rcu_read_unlock();
2993 }
2994
2995 static void destroy_channel_ht(struct lttng_ht *ht)
2996 {
2997 struct lttng_ht_iter iter;
2998 struct lttng_consumer_channel *channel;
2999 int ret;
3000
3001 if (ht == NULL) {
3002 return;
3003 }
3004
3005 rcu_read_lock();
3006 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
3007 ret = lttng_ht_del(ht, &iter);
3008 assert(ret != 0);
3009 }
3010 rcu_read_unlock();
3011
3012 lttng_ht_destroy(ht);
3013 }
3014
3015 /*
3016 * This thread polls the channel fds to detect when they are being
3017 * closed. It closes all related streams if the channel is detected as
3018 * closed. It is currently only used as a shim layer for UST because the
3019 * consumerd needs to keep the per-stream wakeup end of pipes open for
3020 * periodical flush.
3021 */
3022 void *consumer_thread_channel_poll(void *data)
3023 {
3024 int ret, i, pollfd, err = -1;
3025 uint32_t revents, nb_fd;
3026 struct lttng_consumer_channel *chan = NULL;
3027 struct lttng_ht_iter iter;
3028 struct lttng_ht_node_u64 *node;
3029 struct lttng_poll_event events;
3030 struct lttng_consumer_local_data *ctx = data;
3031 struct lttng_ht *channel_ht;
3032
3033 rcu_register_thread();
3034
3035 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
3036
3037 if (testpoint(consumerd_thread_channel)) {
3038 goto error_testpoint;
3039 }
3040
3041 health_code_update();
3042
3043 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3044 if (!channel_ht) {
3045 /* ENOMEM at this point. Better to bail out. */
3046 goto end_ht;
3047 }
3048
3049 DBG("Thread channel poll started");
3050
3051 /* Size is set to 1 for the consumer_channel pipe */
3052 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
3053 if (ret < 0) {
3054 ERR("Poll set creation failed");
3055 goto end_poll;
3056 }
3057
3058 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
3059 if (ret < 0) {
3060 goto end;
3061 }
3062
3063 /* Main loop */
3064 DBG("Channel main loop started");
3065
3066 while (1) {
3067 restart:
3068 health_code_update();
3069 DBG("Channel poll wait");
3070 health_poll_entry();
3071 ret = lttng_poll_wait(&events, -1);
3072 DBG("Channel poll return from wait with %d fd(s)",
3073 LTTNG_POLL_GETNB(&events));
3074 health_poll_exit();
3075 DBG("Channel event caught in thread");
3076 if (ret < 0) {
3077 if (errno == EINTR) {
3078 ERR("Poll EINTR caught");
3079 goto restart;
3080 }
3081 if (LTTNG_POLL_GETNB(&events) == 0) {
3082 err = 0; /* All is OK */
3083 }
3084 goto end;
3085 }
3086
3087 nb_fd = ret;
3088
3089 /* From here, the event is a channel wait fd */
3090 for (i = 0; i < nb_fd; i++) {
3091 health_code_update();
3092
3093 revents = LTTNG_POLL_GETEV(&events, i);
3094 pollfd = LTTNG_POLL_GETFD(&events, i);
3095
3096 if (pollfd == ctx->consumer_channel_pipe[0]) {
3097 if (revents & LPOLLIN) {
3098 enum consumer_channel_action action;
3099 uint64_t key;
3100
3101 ret = read_channel_pipe(ctx, &chan, &key, &action);
3102 if (ret <= 0) {
3103 if (ret < 0) {
3104 ERR("Error reading channel pipe");
3105 }
3106 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3107 continue;
3108 }
3109
3110 switch (action) {
3111 case CONSUMER_CHANNEL_ADD:
3112 DBG("Adding channel %d to poll set",
3113 chan->wait_fd);
3114
3115 lttng_ht_node_init_u64(&chan->wait_fd_node,
3116 chan->wait_fd);
3117 rcu_read_lock();
3118 lttng_ht_add_unique_u64(channel_ht,
3119 &chan->wait_fd_node);
3120 rcu_read_unlock();
3121 /* Add channel to the global poll events list */
3122 lttng_poll_add(&events, chan->wait_fd,
3123 LPOLLERR | LPOLLHUP);
3124 break;
3125 case CONSUMER_CHANNEL_DEL:
3126 {
3127 /*
3128 * This command should never be called if the channel
3129 * has streams monitored by either the data or metadata
3130 * thread. The consumer only notify this thread with a
3131 * channel del. command if it receives a destroy
3132 * channel command from the session daemon that send it
3133 * if a command prior to the GET_CHANNEL failed.
3134 */
3135
3136 rcu_read_lock();
3137 chan = consumer_find_channel(key);
3138 if (!chan) {
3139 rcu_read_unlock();
3140 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
3141 break;
3142 }
3143 lttng_poll_del(&events, chan->wait_fd);
3144 iter.iter.node = &chan->wait_fd_node.node;
3145 ret = lttng_ht_del(channel_ht, &iter);
3146 assert(ret == 0);
3147
3148 switch (consumer_data.type) {
3149 case LTTNG_CONSUMER_KERNEL:
3150 break;
3151 case LTTNG_CONSUMER32_UST:
3152 case LTTNG_CONSUMER64_UST:
3153 health_code_update();
3154 /* Destroy streams that might have been left in the stream list. */
3155 clean_channel_stream_list(chan);
3156 break;
3157 default:
3158 ERR("Unknown consumer_data type");
3159 assert(0);
3160 }
3161
3162 /*
3163 * Release our own refcount. Force channel deletion even if
3164 * streams were not initialized.
3165 */
3166 if (!uatomic_sub_return(&chan->refcount, 1)) {
3167 consumer_del_channel(chan);
3168 }
3169 rcu_read_unlock();
3170 goto restart;
3171 }
3172 case CONSUMER_CHANNEL_QUIT:
3173 /*
3174 * Remove the pipe from the poll set and continue the loop
3175 * since their might be data to consume.
3176 */
3177 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3178 continue;
3179 default:
3180 ERR("Unknown action");
3181 break;
3182 }
3183 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3184 DBG("Channel thread pipe hung up");
3185 /*
3186 * Remove the pipe from the poll set and continue the loop
3187 * since their might be data to consume.
3188 */
3189 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3190 continue;
3191 } else {
3192 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3193 goto end;
3194 }
3195
3196 /* Handle other stream */
3197 continue;
3198 }
3199
3200 rcu_read_lock();
3201 {
3202 uint64_t tmp_id = (uint64_t) pollfd;
3203
3204 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3205 }
3206 node = lttng_ht_iter_get_node_u64(&iter);
3207 assert(node);
3208
3209 chan = caa_container_of(node, struct lttng_consumer_channel,
3210 wait_fd_node);
3211
3212 /* Check for error event */
3213 if (revents & (LPOLLERR | LPOLLHUP)) {
3214 DBG("Channel fd %d is hup|err.", pollfd);
3215
3216 lttng_poll_del(&events, chan->wait_fd);
3217 ret = lttng_ht_del(channel_ht, &iter);
3218 assert(ret == 0);
3219
3220 /*
3221 * This will close the wait fd for each stream associated to
3222 * this channel AND monitored by the data/metadata thread thus
3223 * will be clean by the right thread.
3224 */
3225 consumer_close_channel_streams(chan);
3226
3227 /* Release our own refcount */
3228 if (!uatomic_sub_return(&chan->refcount, 1)
3229 && !uatomic_read(&chan->nb_init_stream_left)) {
3230 consumer_del_channel(chan);
3231 }
3232 } else {
3233 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3234 rcu_read_unlock();
3235 goto end;
3236 }
3237
3238 /* Release RCU lock for the channel looked up */
3239 rcu_read_unlock();
3240 }
3241 }
3242
3243 /* All is OK */
3244 err = 0;
3245 end:
3246 lttng_poll_clean(&events);
3247 end_poll:
3248 destroy_channel_ht(channel_ht);
3249 end_ht:
3250 error_testpoint:
3251 DBG("Channel poll thread exiting");
3252 if (err) {
3253 health_error();
3254 ERR("Health error occurred in %s", __func__);
3255 }
3256 health_unregister(health_consumerd);
3257 rcu_unregister_thread();
3258 return NULL;
3259 }
3260
3261 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3262 struct pollfd *sockpoll, int client_socket)
3263 {
3264 int ret;
3265
3266 assert(ctx);
3267 assert(sockpoll);
3268
3269 ret = lttng_consumer_poll_socket(sockpoll);
3270 if (ret) {
3271 goto error;
3272 }
3273 DBG("Metadata connection on client_socket");
3274
3275 /* Blocking call, waiting for transmission */
3276 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3277 if (ctx->consumer_metadata_socket < 0) {
3278 WARN("On accept metadata");
3279 ret = -1;
3280 goto error;
3281 }
3282 ret = 0;
3283
3284 error:
3285 return ret;
3286 }
3287
3288 /*
3289 * This thread listens on the consumerd socket and receives the file
3290 * descriptors from the session daemon.
3291 */
3292 void *consumer_thread_sessiond_poll(void *data)
3293 {
3294 int sock = -1, client_socket, ret, err = -1;
3295 /*
3296 * structure to poll for incoming data on communication socket avoids
3297 * making blocking sockets.
3298 */
3299 struct pollfd consumer_sockpoll[2];
3300 struct lttng_consumer_local_data *ctx = data;
3301
3302 rcu_register_thread();
3303
3304 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3305
3306 if (testpoint(consumerd_thread_sessiond)) {
3307 goto error_testpoint;
3308 }
3309
3310 health_code_update();
3311
3312 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3313 unlink(ctx->consumer_command_sock_path);
3314 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3315 if (client_socket < 0) {
3316 ERR("Cannot create command socket");
3317 goto end;
3318 }
3319
3320 ret = lttcomm_listen_unix_sock(client_socket);
3321 if (ret < 0) {
3322 goto end;
3323 }
3324
3325 DBG("Sending ready command to lttng-sessiond");
3326 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3327 /* return < 0 on error, but == 0 is not fatal */
3328 if (ret < 0) {
3329 ERR("Error sending ready command to lttng-sessiond");
3330 goto end;
3331 }
3332
3333 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3334 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3335 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3336 consumer_sockpoll[1].fd = client_socket;
3337 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3338
3339 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3340 if (ret) {
3341 if (ret > 0) {
3342 /* should exit */
3343 err = 0;
3344 }
3345 goto end;
3346 }
3347 DBG("Connection on client_socket");
3348
3349 /* Blocking call, waiting for transmission */
3350 sock = lttcomm_accept_unix_sock(client_socket);
3351 if (sock < 0) {
3352 WARN("On accept");
3353 goto end;
3354 }
3355
3356 /*
3357 * Setup metadata socket which is the second socket connection on the
3358 * command unix socket.
3359 */
3360 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3361 if (ret) {
3362 if (ret > 0) {
3363 /* should exit */
3364 err = 0;
3365 }
3366 goto end;
3367 }
3368
3369 /* This socket is not useful anymore. */
3370 ret = close(client_socket);
3371 if (ret < 0) {
3372 PERROR("close client_socket");
3373 }
3374 client_socket = -1;
3375
3376 /* update the polling structure to poll on the established socket */
3377 consumer_sockpoll[1].fd = sock;
3378 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3379
3380 while (1) {
3381 health_code_update();
3382
3383 health_poll_entry();
3384 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3385 health_poll_exit();
3386 if (ret) {
3387 if (ret > 0) {
3388 /* should exit */
3389 err = 0;
3390 }
3391 goto end;
3392 }
3393 DBG("Incoming command on sock");
3394 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3395 if (ret <= 0) {
3396 /*
3397 * This could simply be a session daemon quitting. Don't output
3398 * ERR() here.
3399 */
3400 DBG("Communication interrupted on command socket");
3401 err = 0;
3402 goto end;
3403 }
3404 if (CMM_LOAD_SHARED(consumer_quit)) {
3405 DBG("consumer_thread_receive_fds received quit from signal");
3406 err = 0; /* All is OK */
3407 goto end;
3408 }
3409 DBG("received command on sock");
3410 }
3411 /* All is OK */
3412 err = 0;
3413
3414 end:
3415 DBG("Consumer thread sessiond poll exiting");
3416
3417 /*
3418 * Close metadata streams since the producer is the session daemon which
3419 * just died.
3420 *
3421 * NOTE: for now, this only applies to the UST tracer.
3422 */
3423 lttng_consumer_close_all_metadata();
3424
3425 /*
3426 * when all fds have hung up, the polling thread
3427 * can exit cleanly
3428 */
3429 CMM_STORE_SHARED(consumer_quit, 1);
3430
3431 /*
3432 * Notify the data poll thread to poll back again and test the
3433 * consumer_quit state that we just set so to quit gracefully.
3434 */
3435 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3436
3437 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3438
3439 notify_health_quit_pipe(health_quit_pipe);
3440
3441 /* Cleaning up possibly open sockets. */
3442 if (sock >= 0) {
3443 ret = close(sock);
3444 if (ret < 0) {
3445 PERROR("close sock sessiond poll");
3446 }
3447 }
3448 if (client_socket >= 0) {
3449 ret = close(client_socket);
3450 if (ret < 0) {
3451 PERROR("close client_socket sessiond poll");
3452 }
3453 }
3454
3455 error_testpoint:
3456 if (err) {
3457 health_error();
3458 ERR("Health error occurred in %s", __func__);
3459 }
3460 health_unregister(health_consumerd);
3461
3462 rcu_unregister_thread();
3463 return NULL;
3464 }
3465
3466 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3467 struct lttng_consumer_local_data *ctx)
3468 {
3469 ssize_t ret;
3470
3471 pthread_mutex_lock(&stream->chan->lock);
3472 pthread_mutex_lock(&stream->lock);
3473 if (stream->metadata_flag) {
3474 pthread_mutex_lock(&stream->metadata_rdv_lock);
3475 }
3476
3477 switch (consumer_data.type) {
3478 case LTTNG_CONSUMER_KERNEL:
3479 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3480 break;
3481 case LTTNG_CONSUMER32_UST:
3482 case LTTNG_CONSUMER64_UST:
3483 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3484 break;
3485 default:
3486 ERR("Unknown consumer_data type");
3487 assert(0);
3488 ret = -ENOSYS;
3489 break;
3490 }
3491
3492 if (stream->metadata_flag) {
3493 pthread_cond_broadcast(&stream->metadata_rdv);
3494 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3495 }
3496 pthread_mutex_unlock(&stream->lock);
3497 pthread_mutex_unlock(&stream->chan->lock);
3498
3499 return ret;
3500 }
3501
3502 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3503 {
3504 switch (consumer_data.type) {
3505 case LTTNG_CONSUMER_KERNEL:
3506 return lttng_kconsumer_on_recv_stream(stream);
3507 case LTTNG_CONSUMER32_UST:
3508 case LTTNG_CONSUMER64_UST:
3509 return lttng_ustconsumer_on_recv_stream(stream);
3510 default:
3511 ERR("Unknown consumer_data type");
3512 assert(0);
3513 return -ENOSYS;
3514 }
3515 }
3516
3517 /*
3518 * Allocate and set consumer data hash tables.
3519 */
3520 int lttng_consumer_init(void)
3521 {
3522 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3523 if (!consumer_data.channel_ht) {
3524 goto error;
3525 }
3526
3527 consumer_data.channels_by_session_id_ht =
3528 lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3529 if (!consumer_data.channels_by_session_id_ht) {
3530 goto error;
3531 }
3532
3533 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3534 if (!consumer_data.relayd_ht) {
3535 goto error;
3536 }
3537
3538 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3539 if (!consumer_data.stream_list_ht) {
3540 goto error;
3541 }
3542
3543 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3544 if (!consumer_data.stream_per_chan_id_ht) {
3545 goto error;
3546 }
3547
3548 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3549 if (!data_ht) {
3550 goto error;
3551 }
3552
3553 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3554 if (!metadata_ht) {
3555 goto error;
3556 }
3557
3558 consumer_data.chunk_registry = lttng_trace_chunk_registry_create();
3559 if (!consumer_data.chunk_registry) {
3560 goto error;
3561 }
3562
3563 return 0;
3564
3565 error:
3566 return -1;
3567 }
3568
3569 /*
3570 * Process the ADD_RELAYD command receive by a consumer.
3571 *
3572 * This will create a relayd socket pair and add it to the relayd hash table.
3573 * The caller MUST acquire a RCU read side lock before calling it.
3574 */
3575 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3576 struct lttng_consumer_local_data *ctx, int sock,
3577 struct pollfd *consumer_sockpoll,
3578 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3579 uint64_t relayd_session_id)
3580 {
3581 int fd = -1, ret = -1, relayd_created = 0;
3582 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3583 struct consumer_relayd_sock_pair *relayd = NULL;
3584
3585 assert(ctx);
3586 assert(relayd_sock);
3587
3588 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3589
3590 /* Get relayd reference if exists. */
3591 relayd = consumer_find_relayd(net_seq_idx);
3592 if (relayd == NULL) {
3593 assert(sock_type == LTTNG_STREAM_CONTROL);
3594 /* Not found. Allocate one. */
3595 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3596 if (relayd == NULL) {
3597 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3598 goto error;
3599 } else {
3600 relayd->sessiond_session_id = sessiond_id;
3601 relayd_created = 1;
3602 }
3603
3604 /*
3605 * This code path MUST continue to the consumer send status message to
3606 * we can notify the session daemon and continue our work without
3607 * killing everything.
3608 */
3609 } else {
3610 /*
3611 * relayd key should never be found for control socket.
3612 */
3613 assert(sock_type != LTTNG_STREAM_CONTROL);
3614 }
3615
3616 /* First send a status message before receiving the fds. */
3617 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3618 if (ret < 0) {
3619 /* Somehow, the session daemon is not responding anymore. */
3620 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3621 goto error_nosignal;
3622 }
3623
3624 /* Poll on consumer socket. */
3625 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3626 if (ret) {
3627 /* Needing to exit in the middle of a command: error. */
3628 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3629 goto error_nosignal;
3630 }
3631
3632 /* Get relayd socket from session daemon */
3633 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3634 if (ret != sizeof(fd)) {
3635 fd = -1; /* Just in case it gets set with an invalid value. */
3636
3637 /*
3638 * Failing to receive FDs might indicate a major problem such as
3639 * reaching a fd limit during the receive where the kernel returns a
3640 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3641 * don't take any chances and stop everything.
3642 *
3643 * XXX: Feature request #558 will fix that and avoid this possible
3644 * issue when reaching the fd limit.
3645 */
3646 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3647 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3648 goto error;
3649 }
3650
3651 /* Copy socket information and received FD */
3652 switch (sock_type) {
3653 case LTTNG_STREAM_CONTROL:
3654 /* Copy received lttcomm socket */
3655 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3656 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3657 /* Handle create_sock error. */
3658 if (ret < 0) {
3659 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3660 goto error;
3661 }
3662 /*
3663 * Close the socket created internally by
3664 * lttcomm_create_sock, so we can replace it by the one
3665 * received from sessiond.
3666 */
3667 if (close(relayd->control_sock.sock.fd)) {
3668 PERROR("close");
3669 }
3670
3671 /* Assign new file descriptor */
3672 relayd->control_sock.sock.fd = fd;
3673 /* Assign version values. */
3674 relayd->control_sock.major = relayd_sock->major;
3675 relayd->control_sock.minor = relayd_sock->minor;
3676
3677 relayd->relayd_session_id = relayd_session_id;
3678
3679 break;
3680 case LTTNG_STREAM_DATA:
3681 /* Copy received lttcomm socket */
3682 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3683 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3684 /* Handle create_sock error. */
3685 if (ret < 0) {
3686 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3687 goto error;
3688 }
3689 /*
3690 * Close the socket created internally by
3691 * lttcomm_create_sock, so we can replace it by the one
3692 * received from sessiond.
3693 */
3694 if (close(relayd->data_sock.sock.fd)) {
3695 PERROR("close");
3696 }
3697
3698 /* Assign new file descriptor */
3699 relayd->data_sock.sock.fd = fd;
3700 /* Assign version values. */
3701 relayd->data_sock.major = relayd_sock->major;
3702 relayd->data_sock.minor = relayd_sock->minor;
3703 break;
3704 default:
3705 ERR("Unknown relayd socket type (%d)", sock_type);
3706 ret_code = LTTCOMM_CONSUMERD_FATAL;
3707 goto error;
3708 }
3709
3710 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3711 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3712 relayd->net_seq_idx, fd);
3713 /*
3714 * We gave the ownership of the fd to the relayd structure. Set the
3715 * fd to -1 so we don't call close() on it in the error path below.
3716 */
3717 fd = -1;
3718
3719 /* We successfully added the socket. Send status back. */
3720 ret = consumer_send_status_msg(sock, ret_code);
3721 if (ret < 0) {
3722 /* Somehow, the session daemon is not responding anymore. */
3723 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3724 goto error_nosignal;
3725 }
3726
3727 /*
3728 * Add relayd socket pair to consumer data hashtable. If object already
3729 * exists or on error, the function gracefully returns.
3730 */
3731 relayd->ctx = ctx;
3732 add_relayd(relayd);
3733
3734 /* All good! */
3735 return;
3736
3737 error:
3738 if (consumer_send_status_msg(sock, ret_code) < 0) {
3739 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3740 }
3741
3742 error_nosignal:
3743 /* Close received socket if valid. */
3744 if (fd >= 0) {
3745 if (close(fd)) {
3746 PERROR("close received socket");
3747 }
3748 }
3749
3750 if (relayd_created) {
3751 free(relayd);
3752 }
3753 }
3754
3755 /*
3756 * Search for a relayd associated to the session id and return the reference.
3757 *
3758 * A rcu read side lock MUST be acquire before calling this function and locked
3759 * until the relayd object is no longer necessary.
3760 */
3761 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3762 {
3763 struct lttng_ht_iter iter;
3764 struct consumer_relayd_sock_pair *relayd = NULL;
3765
3766 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3767 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3768 node.node) {
3769 /*
3770 * Check by sessiond id which is unique here where the relayd session
3771 * id might not be when having multiple relayd.
3772 */
3773 if (relayd->sessiond_session_id == id) {
3774 /* Found the relayd. There can be only one per id. */
3775 goto found;
3776 }
3777 }
3778
3779 return NULL;
3780
3781 found:
3782 return relayd;
3783 }
3784
3785 /*
3786 * Check if for a given session id there is still data needed to be extract
3787 * from the buffers.
3788 *
3789 * Return 1 if data is pending or else 0 meaning ready to be read.
3790 */
3791 int consumer_data_pending(uint64_t id)
3792 {
3793 int ret;
3794 struct lttng_ht_iter iter;
3795 struct lttng_ht *ht;
3796 struct lttng_consumer_stream *stream;
3797 struct consumer_relayd_sock_pair *relayd = NULL;
3798 int (*data_pending)(struct lttng_consumer_stream *);
3799
3800 DBG("Consumer data pending command on session id %" PRIu64, id);
3801
3802 rcu_read_lock();
3803 pthread_mutex_lock(&consumer_data.lock);
3804
3805 switch (consumer_data.type) {
3806 case LTTNG_CONSUMER_KERNEL:
3807 data_pending = lttng_kconsumer_data_pending;
3808 break;
3809 case LTTNG_CONSUMER32_UST:
3810 case LTTNG_CONSUMER64_UST:
3811 data_pending = lttng_ustconsumer_data_pending;
3812 break;
3813 default:
3814 ERR("Unknown consumer data type");
3815 assert(0);
3816 }
3817
3818 /* Ease our life a bit */
3819 ht = consumer_data.stream_list_ht;
3820
3821 cds_lfht_for_each_entry_duplicate(ht->ht,
3822 ht->hash_fct(&id, lttng_ht_seed),
3823 ht->match_fct, &id,
3824 &iter.iter, stream, node_session_id.node) {
3825 pthread_mutex_lock(&stream->lock);
3826
3827 /*
3828 * A removed node from the hash table indicates that the stream has
3829 * been deleted thus having a guarantee that the buffers are closed
3830 * on the consumer side. However, data can still be transmitted
3831 * over the network so don't skip the relayd check.
3832 */
3833 ret = cds_lfht_is_node_deleted(&stream->node.node);
3834 if (!ret) {
3835 /* Check the stream if there is data in the buffers. */
3836 ret = data_pending(stream);
3837 if (ret == 1) {
3838 pthread_mutex_unlock(&stream->lock);
3839 goto data_pending;
3840 }
3841 }
3842
3843 pthread_mutex_unlock(&stream->lock);
3844 }
3845
3846 relayd = find_relayd_by_session_id(id);
3847 if (relayd) {
3848 unsigned int is_data_inflight = 0;
3849
3850 /* Send init command for data pending. */
3851 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3852 ret = relayd_begin_data_pending(&relayd->control_sock,
3853 relayd->relayd_session_id);
3854 if (ret < 0) {
3855 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3856 /* Communication error thus the relayd so no data pending. */
3857 goto data_not_pending;
3858 }
3859
3860 cds_lfht_for_each_entry_duplicate(ht->ht,
3861 ht->hash_fct(&id, lttng_ht_seed),
3862 ht->match_fct, &id,
3863 &iter.iter, stream, node_session_id.node) {
3864 if (stream->metadata_flag) {
3865 ret = relayd_quiescent_control(&relayd->control_sock,
3866 stream->relayd_stream_id);
3867 } else {
3868 ret = relayd_data_pending(&relayd->control_sock,
3869 stream->relayd_stream_id,
3870 stream->next_net_seq_num - 1);
3871 }
3872
3873 if (ret == 1) {
3874 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3875 goto data_pending;
3876 } else if (ret < 0) {
3877 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3878 lttng_consumer_cleanup_relayd(relayd);
3879 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3880 goto data_not_pending;
3881 }
3882 }
3883
3884 /* Send end command for data pending. */
3885 ret = relayd_end_data_pending(&relayd->control_sock,
3886 relayd->relayd_session_id, &is_data_inflight);
3887 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3888 if (ret < 0) {
3889 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3890 lttng_consumer_cleanup_relayd(relayd);
3891 goto data_not_pending;
3892 }
3893 if (is_data_inflight) {
3894 goto data_pending;
3895 }
3896 }
3897
3898 /*
3899 * Finding _no_ node in the hash table and no inflight data means that the
3900 * stream(s) have been removed thus data is guaranteed to be available for
3901 * analysis from the trace files.
3902 */
3903
3904 data_not_pending:
3905 /* Data is available to be read by a viewer. */
3906 pthread_mutex_unlock(&consumer_data.lock);
3907 rcu_read_unlock();
3908 return 0;
3909
3910 data_pending:
3911 /* Data is still being extracted from buffers. */
3912 pthread_mutex_unlock(&consumer_data.lock);
3913 rcu_read_unlock();
3914 return 1;
3915 }
3916
3917 /*
3918 * Send a ret code status message to the sessiond daemon.
3919 *
3920 * Return the sendmsg() return value.
3921 */
3922 int consumer_send_status_msg(int sock, int ret_code)
3923 {
3924 struct lttcomm_consumer_status_msg msg;
3925
3926 memset(&msg, 0, sizeof(msg));
3927 msg.ret_code = ret_code;
3928
3929 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3930 }
3931
3932 /*
3933 * Send a channel status message to the sessiond daemon.
3934 *
3935 * Return the sendmsg() return value.
3936 */
3937 int consumer_send_status_channel(int sock,
3938 struct lttng_consumer_channel *channel)
3939 {
3940 struct lttcomm_consumer_status_channel msg;
3941
3942 assert(sock >= 0);
3943
3944 memset(&msg, 0, sizeof(msg));
3945 if (!channel) {
3946 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3947 } else {
3948 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3949 msg.key = channel->key;
3950 msg.stream_count = channel->streams.count;
3951 }
3952
3953 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3954 }
3955
3956 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3957 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3958 uint64_t max_sb_size)
3959 {
3960 unsigned long start_pos;
3961
3962 if (!nb_packets_per_stream) {
3963 return consumed_pos; /* Grab everything */
3964 }
3965 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3966 start_pos -= max_sb_size * nb_packets_per_stream;
3967 if ((long) (start_pos - consumed_pos) < 0) {
3968 return consumed_pos; /* Grab everything */
3969 }
3970 return start_pos;
3971 }
3972
3973 static
3974 int consumer_flush_buffer(struct lttng_consumer_stream *stream, int producer_active)
3975 {
3976 int ret = 0;
3977
3978 switch (consumer_data.type) {
3979 case LTTNG_CONSUMER_KERNEL:
3980 ret = kernctl_buffer_flush(stream->wait_fd);
3981 if (ret < 0) {
3982 ERR("Failed to flush kernel stream");
3983 goto end;
3984 }
3985 break;
3986 case LTTNG_CONSUMER32_UST:
3987 case LTTNG_CONSUMER64_UST:
3988 lttng_ustctl_flush_buffer(stream, producer_active);
3989 break;
3990 default:
3991 ERR("Unknown consumer_data type");
3992 abort();
3993 }
3994
3995 end:
3996 return ret;
3997 }
3998
3999 /*
4000 * Sample the rotate position for all the streams of a channel. If a stream
4001 * is already at the rotate position (produced == consumed), we flag it as
4002 * ready for rotation. The rotation of ready streams occurs after we have
4003 * replied to the session daemon that we have finished sampling the positions.
4004 * Must be called with RCU read-side lock held to ensure existence of channel.
4005 *
4006 * Returns 0 on success, < 0 on error
4007 */
4008 int lttng_consumer_rotate_channel(struct lttng_consumer_channel *channel,
4009 uint64_t key, uint64_t relayd_id, uint32_t metadata,
4010 struct lttng_consumer_local_data *ctx)
4011 {
4012 int ret;
4013 struct lttng_consumer_stream *stream;
4014 struct lttng_ht_iter iter;
4015 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4016 struct lttng_dynamic_array stream_rotation_positions;
4017 uint64_t next_chunk_id, stream_count = 0;
4018 enum lttng_trace_chunk_status chunk_status;
4019 const bool is_local_trace = relayd_id == -1ULL;
4020 struct consumer_relayd_sock_pair *relayd = NULL;
4021 bool rotating_to_new_chunk = true;
4022
4023 DBG("Consumer sample rotate position for channel %" PRIu64, key);
4024
4025 lttng_dynamic_array_init(&stream_rotation_positions,
4026 sizeof(struct relayd_stream_rotation_position), NULL);
4027
4028 rcu_read_lock();
4029
4030 pthread_mutex_lock(&channel->lock);
4031 assert(channel->trace_chunk);
4032 chunk_status = lttng_trace_chunk_get_id(channel->trace_chunk,
4033 &next_chunk_id);
4034 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4035 ret = -1;
4036 goto end_unlock_channel;
4037 }
4038
4039 cds_lfht_for_each_entry_duplicate(ht->ht,
4040 ht->hash_fct(&channel->key, lttng_ht_seed),
4041 ht->match_fct, &channel->key, &iter.iter,
4042 stream, node_channel_id.node) {
4043 unsigned long consumed_pos;
4044
4045 health_code_update();
4046
4047 /*
4048 * Lock stream because we are about to change its state.
4049 */
4050 pthread_mutex_lock(&stream->lock);
4051
4052 if (stream->trace_chunk == stream->chan->trace_chunk) {
4053 rotating_to_new_chunk = false;
4054 }
4055
4056 ret = lttng_consumer_sample_snapshot_positions(stream);
4057 if (ret < 0) {
4058 ERR("Failed to sample snapshot position during channel rotation");
4059 goto end_unlock_stream;
4060 }
4061
4062 ret = lttng_consumer_get_produced_snapshot(stream,
4063 &stream->rotate_position);
4064 if (ret < 0) {
4065 ERR("Failed to sample produced position during channel rotation");
4066 goto end_unlock_stream;
4067 }
4068
4069 lttng_consumer_get_consumed_snapshot(stream,
4070 &consumed_pos);
4071 if (consumed_pos == stream->rotate_position) {
4072 stream->rotate_ready = true;
4073 }
4074
4075 /*
4076 * Active flush; has no effect if the production position
4077 * is at a packet boundary.
4078 */
4079 ret = consumer_flush_buffer(stream, 1);
4080 if (ret < 0) {
4081 ERR("Failed to flush stream %" PRIu64 " during channel rotation",
4082 stream->key);
4083 goto end_unlock_stream;
4084 }
4085
4086 if (!is_local_trace) {
4087 /*
4088 * The relay daemon control protocol expects a rotation
4089 * position as "the sequence number of the first packet
4090 * _after_ the current trace chunk.
4091 *
4092 * At the moment when the positions of the buffers are
4093 * sampled, the production position does not necessarily
4094 * sit at a packet boundary. The 'active' flush
4095 * operation above will push the production position to
4096 * the next packet boundary _if_ it is not already
4097 * sitting at such a boundary.
4098 *
4099 * Assuming a current production position that is not
4100 * on the bound of a packet, the 'target' sequence
4101 * number is
4102 * (consumed_pos / subbuffer_size) + 1
4103 * Note the '+ 1' to ensure the current packet is
4104 * part of the current trace chunk.
4105 *
4106 * However, if the production position is already at
4107 * a packet boundary, the '+ 1' is not necessary as the
4108 * last packet of the current chunk is already
4109 * 'complete'.
4110 */
4111 const struct relayd_stream_rotation_position position = {
4112 .stream_id = stream->relayd_stream_id,
4113 .rotate_at_seq_num = (stream->rotate_position / stream->max_sb_size) +
4114 !!(stream->rotate_position % stream->max_sb_size),
4115 };
4116
4117 ret = lttng_dynamic_array_add_element(
4118 &stream_rotation_positions,
4119 &position);
4120 if (ret) {
4121 ERR("Failed to allocate stream rotation position");
4122 goto end_unlock_stream;
4123 }
4124 stream_count++;
4125 }
4126 pthread_mutex_unlock(&stream->lock);
4127 }
4128 stream = NULL;
4129 pthread_mutex_unlock(&channel->lock);
4130
4131 if (is_local_trace) {
4132 ret = 0;
4133 goto end;
4134 }
4135
4136 relayd = consumer_find_relayd(relayd_id);
4137 if (!relayd) {
4138 ERR("Failed to find relayd %" PRIu64, relayd_id);
4139 ret = -1;
4140 goto end;
4141 }
4142
4143 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4144 ret = relayd_rotate_streams(&relayd->control_sock, stream_count,
4145 rotating_to_new_chunk ? &next_chunk_id : NULL,
4146 (const struct relayd_stream_rotation_position *)
4147 stream_rotation_positions.buffer.data);
4148 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4149 if (ret < 0) {
4150 ERR("Relayd rotate stream failed. Cleaning up relayd %" PRIu64,
4151 relayd->net_seq_idx);
4152 lttng_consumer_cleanup_relayd(relayd);
4153 goto end;
4154 }
4155
4156 ret = 0;
4157 goto end;
4158
4159 end_unlock_stream:
4160 pthread_mutex_unlock(&stream->lock);
4161 end_unlock_channel:
4162 pthread_mutex_unlock(&channel->lock);
4163 end:
4164 rcu_read_unlock();
4165 lttng_dynamic_array_reset(&stream_rotation_positions);
4166 return ret;
4167 }
4168
4169 /*
4170 * Check if a stream is ready to be rotated after extracting it.
4171 *
4172 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4173 * error. Stream lock must be held.
4174 */
4175 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream *stream)
4176 {
4177 int ret;
4178 unsigned long consumed_pos;
4179
4180 if (!stream->rotate_position && !stream->rotate_ready) {
4181 ret = 0;
4182 goto end;
4183 }
4184
4185 if (stream->rotate_ready) {
4186 ret = 1;
4187 goto end;
4188 }
4189
4190 /*
4191 * If we don't have the rotate_ready flag, check the consumed position
4192 * to determine if we need to rotate.
4193 */
4194 ret = lttng_consumer_sample_snapshot_positions(stream);
4195 if (ret < 0) {
4196 ERR("Taking snapshot positions");
4197 goto end;
4198 }
4199
4200 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos);
4201 if (ret < 0) {
4202 ERR("Consumed snapshot position");
4203 goto end;
4204 }
4205
4206 /* Rotate position not reached yet (with check for overflow). */
4207 if ((long) (consumed_pos - stream->rotate_position) < 0) {
4208 ret = 0;
4209 goto end;
4210 }
4211 ret = 1;
4212
4213 end:
4214 return ret;
4215 }
4216
4217 /*
4218 * Reset the state for a stream after a rotation occurred.
4219 */
4220 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream *stream)
4221 {
4222 stream->rotate_position = 0;
4223 stream->rotate_ready = false;
4224 }
4225
4226 /*
4227 * Perform the rotation a local stream file.
4228 */
4229 static
4230 int rotate_local_stream(struct lttng_consumer_local_data *ctx,
4231 struct lttng_consumer_stream *stream)
4232 {
4233 int ret = 0;
4234
4235 DBG("Rotate local stream: stream key %" PRIu64 ", channel key %" PRIu64,
4236 stream->key,
4237 stream->chan->key);
4238 stream->tracefile_size_current = 0;
4239 stream->tracefile_count_current = 0;
4240
4241 if (stream->out_fd >= 0) {
4242 ret = close(stream->out_fd);
4243 if (ret) {
4244 PERROR("Failed to close stream out_fd of channel \"%s\"",
4245 stream->chan->name);
4246 }
4247 stream->out_fd = -1;
4248 }
4249
4250 if (stream->index_file) {
4251 lttng_index_file_put(stream->index_file);
4252 stream->index_file = NULL;
4253 }
4254
4255 if (!stream->trace_chunk) {
4256 goto end;
4257 }
4258
4259 ret = consumer_stream_create_output_files(stream, true);
4260 end:
4261 return ret;
4262 }
4263
4264 /*
4265 * Performs the stream rotation for the rotate session feature if needed.
4266 * It must be called with the channel and stream locks held.
4267 *
4268 * Return 0 on success, a negative number of error.
4269 */
4270 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data *ctx,
4271 struct lttng_consumer_stream *stream)
4272 {
4273 int ret;
4274
4275 DBG("Consumer rotate stream %" PRIu64, stream->key);
4276
4277 /*
4278 * Update the stream's 'current' chunk to the session's (channel)
4279 * now-current chunk.
4280 */
4281 lttng_trace_chunk_put(stream->trace_chunk);
4282 if (stream->chan->trace_chunk == stream->trace_chunk) {
4283 /*
4284 * A channel can be rotated and not have a "next" chunk
4285 * to transition to. In that case, the channel's "current chunk"
4286 * has not been closed yet, but it has not been updated to
4287 * a "next" trace chunk either. Hence, the stream, like its
4288 * parent channel, becomes part of no chunk and can't output
4289 * anything until a new trace chunk is created.
4290 */
4291 stream->trace_chunk = NULL;
4292 } else if (stream->chan->trace_chunk &&
4293 !lttng_trace_chunk_get(stream->chan->trace_chunk)) {
4294 ERR("Failed to acquire a reference to channel's trace chunk during stream rotation");
4295 ret = -1;
4296 goto error;
4297 } else {
4298 /*
4299 * Update the stream's trace chunk to its parent channel's
4300 * current trace chunk.
4301 */
4302 stream->trace_chunk = stream->chan->trace_chunk;
4303 }
4304
4305 if (stream->net_seq_idx == (uint64_t) -1ULL) {
4306 ret = rotate_local_stream(ctx, stream);
4307 if (ret < 0) {
4308 ERR("Failed to rotate stream, ret = %i", ret);
4309 goto error;
4310 }
4311 }
4312
4313 if (stream->metadata_flag && stream->trace_chunk) {
4314 /*
4315 * If the stream has transitioned to a new trace
4316 * chunk, the metadata should be re-dumped to the
4317 * newest chunk.
4318 *
4319 * However, it is possible for a stream to transition to
4320 * a "no-chunk" state. This can happen if a rotation
4321 * occurs on an inactive session. In such cases, the metadata
4322 * regeneration will happen when the next trace chunk is
4323 * created.
4324 */
4325 ret = consumer_metadata_stream_dump(stream);
4326 if (ret) {
4327 goto error;
4328 }
4329 }
4330 lttng_consumer_reset_stream_rotate_state(stream);
4331
4332 ret = 0;
4333
4334 error:
4335 return ret;
4336 }
4337
4338 /*
4339 * Rotate all the ready streams now.
4340 *
4341 * This is especially important for low throughput streams that have already
4342 * been consumed, we cannot wait for their next packet to perform the
4343 * rotation.
4344 * Need to be called with RCU read-side lock held to ensure existence of
4345 * channel.
4346 *
4347 * Returns 0 on success, < 0 on error
4348 */
4349 int lttng_consumer_rotate_ready_streams(struct lttng_consumer_channel *channel,
4350 uint64_t key, struct lttng_consumer_local_data *ctx)
4351 {
4352 int ret;
4353 struct lttng_consumer_stream *stream;
4354 struct lttng_ht_iter iter;
4355 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4356
4357 rcu_read_lock();
4358
4359 DBG("Consumer rotate ready streams in channel %" PRIu64, key);
4360
4361 cds_lfht_for_each_entry_duplicate(ht->ht,
4362 ht->hash_fct(&channel->key, lttng_ht_seed),
4363 ht->match_fct, &channel->key, &iter.iter,
4364 stream, node_channel_id.node) {
4365 health_code_update();
4366
4367 pthread_mutex_lock(&stream->chan->lock);
4368 pthread_mutex_lock(&stream->lock);
4369
4370 if (!stream->rotate_ready) {
4371 pthread_mutex_unlock(&stream->lock);
4372 pthread_mutex_unlock(&stream->chan->lock);
4373 continue;
4374 }
4375 DBG("Consumer rotate ready stream %" PRIu64, stream->key);
4376
4377 ret = lttng_consumer_rotate_stream(ctx, stream);
4378 pthread_mutex_unlock(&stream->lock);
4379 pthread_mutex_unlock(&stream->chan->lock);
4380 if (ret) {
4381 goto end;
4382 }
4383 }
4384
4385 ret = 0;
4386
4387 end:
4388 rcu_read_unlock();
4389 return ret;
4390 }
4391
4392 enum lttcomm_return_code lttng_consumer_init_command(
4393 struct lttng_consumer_local_data *ctx,
4394 const lttng_uuid sessiond_uuid)
4395 {
4396 enum lttcomm_return_code ret;
4397 char uuid_str[UUID_STR_LEN];
4398
4399 if (ctx->sessiond_uuid.is_set) {
4400 ret = LTTCOMM_CONSUMERD_ALREADY_SET;
4401 goto end;
4402 }
4403
4404 ctx->sessiond_uuid.is_set = true;
4405 memcpy(ctx->sessiond_uuid.value, sessiond_uuid, sizeof(lttng_uuid));
4406 ret = LTTCOMM_CONSUMERD_SUCCESS;
4407 lttng_uuid_to_str(sessiond_uuid, uuid_str);
4408 DBG("Received session daemon UUID: %s", uuid_str);
4409 end:
4410 return ret;
4411 }
4412
4413 enum lttcomm_return_code lttng_consumer_create_trace_chunk(
4414 const uint64_t *relayd_id, uint64_t session_id,
4415 uint64_t chunk_id,
4416 time_t chunk_creation_timestamp,
4417 const char *chunk_override_name,
4418 const struct lttng_credentials *credentials,
4419 struct lttng_directory_handle *chunk_directory_handle)
4420 {
4421 int ret;
4422 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4423 struct lttng_trace_chunk *created_chunk, *published_chunk;
4424 enum lttng_trace_chunk_status chunk_status;
4425 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4426 char creation_timestamp_buffer[ISO8601_STR_LEN];
4427 const char *relayd_id_str = "(none)";
4428 const char *creation_timestamp_str;
4429 struct lttng_ht_iter iter;
4430 struct lttng_consumer_channel *channel;
4431
4432 if (relayd_id) {
4433 /* Only used for logging purposes. */
4434 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4435 "%" PRIu64, *relayd_id);
4436 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4437 relayd_id_str = relayd_id_buffer;
4438 } else {
4439 relayd_id_str = "(formatting error)";
4440 }
4441 }
4442
4443 /* Local protocol error. */
4444 assert(chunk_creation_timestamp);
4445 ret = time_to_iso8601_str(chunk_creation_timestamp,
4446 creation_timestamp_buffer,
4447 sizeof(creation_timestamp_buffer));
4448 creation_timestamp_str = !ret ? creation_timestamp_buffer :
4449 "(formatting error)";
4450
4451 DBG("Consumer create trace chunk command: relay_id = %s"
4452 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4453 ", chunk_override_name = %s"
4454 ", chunk_creation_timestamp = %s",
4455 relayd_id_str, session_id, chunk_id,
4456 chunk_override_name ? : "(none)",
4457 creation_timestamp_str);
4458
4459 /*
4460 * The trace chunk registry, as used by the consumer daemon, implicitly
4461 * owns the trace chunks. This is only needed in the consumer since
4462 * the consumer has no notion of a session beyond session IDs being
4463 * used to identify other objects.
4464 *
4465 * The lttng_trace_chunk_registry_publish() call below provides a
4466 * reference which is not released; it implicitly becomes the session
4467 * daemon's reference to the chunk in the consumer daemon.
4468 *
4469 * The lifetime of trace chunks in the consumer daemon is managed by
4470 * the session daemon through the LTTNG_CONSUMER_CREATE_TRACE_CHUNK
4471 * and LTTNG_CONSUMER_DESTROY_TRACE_CHUNK commands.
4472 */
4473 created_chunk = lttng_trace_chunk_create(chunk_id,
4474 chunk_creation_timestamp);
4475 if (!created_chunk) {
4476 ERR("Failed to create trace chunk");
4477 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4478 goto end;
4479 }
4480
4481 if (chunk_override_name) {
4482 chunk_status = lttng_trace_chunk_override_name(created_chunk,
4483 chunk_override_name);
4484 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4485 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4486 goto end;
4487 }
4488 }
4489
4490 if (chunk_directory_handle) {
4491 chunk_status = lttng_trace_chunk_set_credentials(created_chunk,
4492 credentials);
4493 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4494 ERR("Failed to set trace chunk credentials");
4495 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4496 goto end;
4497 }
4498 /*
4499 * The consumer daemon has no ownership of the chunk output
4500 * directory.
4501 */
4502 chunk_status = lttng_trace_chunk_set_as_user(created_chunk,
4503 chunk_directory_handle);
4504 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4505 ERR("Failed to set trace chunk's directory handle");
4506 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4507 goto end;
4508 }
4509 }
4510
4511 published_chunk = lttng_trace_chunk_registry_publish_chunk(
4512 consumer_data.chunk_registry, session_id,
4513 created_chunk);
4514 lttng_trace_chunk_put(created_chunk);
4515 created_chunk = NULL;
4516 if (!published_chunk) {
4517 ERR("Failed to publish trace chunk");
4518 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4519 goto end;
4520 }
4521
4522 rcu_read_lock();
4523 cds_lfht_for_each_entry_duplicate(consumer_data.channels_by_session_id_ht->ht,
4524 consumer_data.channels_by_session_id_ht->hash_fct(
4525 &session_id, lttng_ht_seed),
4526 consumer_data.channels_by_session_id_ht->match_fct,
4527 &session_id, &iter.iter, channel,
4528 channels_by_session_id_ht_node.node) {
4529 ret = lttng_consumer_channel_set_trace_chunk(channel,
4530 published_chunk);
4531 if (ret) {
4532 /*
4533 * Roll-back the creation of this chunk.
4534 *
4535 * This is important since the session daemon will
4536 * assume that the creation of this chunk failed and
4537 * will never ask for it to be closed, resulting
4538 * in a leak and an inconsistent state for some
4539 * channels.
4540 */
4541 enum lttcomm_return_code close_ret;
4542
4543 DBG("Failed to set new trace chunk on existing channels, rolling back");
4544 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4545 session_id, chunk_id,
4546 chunk_creation_timestamp, NULL);
4547 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4548 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4549 session_id, chunk_id);
4550 }
4551
4552 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4553 break;
4554 }
4555 }
4556
4557 if (relayd_id) {
4558 struct consumer_relayd_sock_pair *relayd;
4559
4560 relayd = consumer_find_relayd(*relayd_id);
4561 if (relayd) {
4562 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4563 ret = relayd_create_trace_chunk(
4564 &relayd->control_sock, published_chunk);
4565 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4566 } else {
4567 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64, *relayd_id);
4568 }
4569
4570 if (!relayd || ret) {
4571 enum lttcomm_return_code close_ret;
4572
4573 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4574 session_id,
4575 chunk_id,
4576 chunk_creation_timestamp,
4577 NULL);
4578 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4579 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4580 session_id,
4581 chunk_id);
4582 }
4583
4584 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4585 goto error;
4586 }
4587 }
4588 error:
4589 rcu_read_unlock();
4590 /* Release the reference returned by the "publish" operation. */
4591 lttng_trace_chunk_put(published_chunk);
4592 end:
4593 return ret_code;
4594 }
4595
4596 enum lttcomm_return_code lttng_consumer_close_trace_chunk(
4597 const uint64_t *relayd_id, uint64_t session_id,
4598 uint64_t chunk_id, time_t chunk_close_timestamp,
4599 const enum lttng_trace_chunk_command_type *close_command)
4600 {
4601 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4602 struct lttng_trace_chunk *chunk;
4603 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4604 const char *relayd_id_str = "(none)";
4605 const char *close_command_name = "none";
4606 struct lttng_ht_iter iter;
4607 struct lttng_consumer_channel *channel;
4608 enum lttng_trace_chunk_status chunk_status;
4609
4610 if (relayd_id) {
4611 int ret;
4612
4613 /* Only used for logging purposes. */
4614 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4615 "%" PRIu64, *relayd_id);
4616 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4617 relayd_id_str = relayd_id_buffer;
4618 } else {
4619 relayd_id_str = "(formatting error)";
4620 }
4621 }
4622 if (close_command) {
4623 close_command_name = lttng_trace_chunk_command_type_get_name(
4624 *close_command);
4625 }
4626
4627 DBG("Consumer close trace chunk command: relayd_id = %s"
4628 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4629 ", close command = %s",
4630 relayd_id_str, session_id, chunk_id,
4631 close_command_name);
4632
4633 chunk = lttng_trace_chunk_registry_find_chunk(
4634 consumer_data.chunk_registry, session_id, chunk_id);
4635 if (!chunk) {
4636 ERR("Failed to find chunk: session_id = %" PRIu64
4637 ", chunk_id = %" PRIu64,
4638 session_id, chunk_id);
4639 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4640 goto end;
4641 }
4642
4643 chunk_status = lttng_trace_chunk_set_close_timestamp(chunk,
4644 chunk_close_timestamp);
4645 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4646 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4647 goto end;
4648 }
4649
4650 if (close_command) {
4651 chunk_status = lttng_trace_chunk_set_close_command(
4652 chunk, *close_command);
4653 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4654 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4655 goto end;
4656 }
4657 }
4658
4659 /*
4660 * chunk is now invalid to access as we no longer hold a reference to
4661 * it; it is only kept around to compare it (by address) to the
4662 * current chunk found in the session's channels.
4663 */
4664 rcu_read_lock();
4665 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter,
4666 channel, node.node) {
4667 int ret;
4668
4669 /*
4670 * Only change the channel's chunk to NULL if it still
4671 * references the chunk being closed. The channel may
4672 * reference a newer channel in the case of a session
4673 * rotation. When a session rotation occurs, the "next"
4674 * chunk is created before the "current" chunk is closed.
4675 */
4676 if (channel->trace_chunk != chunk) {
4677 continue;
4678 }
4679 ret = lttng_consumer_channel_set_trace_chunk(channel, NULL);
4680 if (ret) {
4681 /*
4682 * Attempt to close the chunk on as many channels as
4683 * possible.
4684 */
4685 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4686 }
4687 }
4688
4689 if (relayd_id) {
4690 int ret;
4691 struct consumer_relayd_sock_pair *relayd;
4692
4693 relayd = consumer_find_relayd(*relayd_id);
4694 if (relayd) {
4695 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4696 ret = relayd_close_trace_chunk(
4697 &relayd->control_sock, chunk);
4698 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4699 } else {
4700 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64,
4701 *relayd_id);
4702 }
4703
4704 if (!relayd || ret) {
4705 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4706 goto error_unlock;
4707 }
4708 }
4709 error_unlock:
4710 rcu_read_unlock();
4711 end:
4712 /*
4713 * Release the reference returned by the "find" operation and
4714 * the session daemon's implicit reference to the chunk.
4715 */
4716 lttng_trace_chunk_put(chunk);
4717 lttng_trace_chunk_put(chunk);
4718
4719 return ret_code;
4720 }
4721
4722 enum lttcomm_return_code lttng_consumer_trace_chunk_exists(
4723 const uint64_t *relayd_id, uint64_t session_id,
4724 uint64_t chunk_id)
4725 {
4726 int ret;
4727 enum lttcomm_return_code ret_code;
4728 struct lttng_trace_chunk *chunk;
4729 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4730 const char *relayd_id_str = "(none)";
4731 const bool is_local_trace = !relayd_id;
4732 struct consumer_relayd_sock_pair *relayd = NULL;
4733 bool chunk_exists_remote;
4734
4735 if (relayd_id) {
4736 int ret;
4737
4738 /* Only used for logging purposes. */
4739 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4740 "%" PRIu64, *relayd_id);
4741 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4742 relayd_id_str = relayd_id_buffer;
4743 } else {
4744 relayd_id_str = "(formatting error)";
4745 }
4746 }
4747
4748 DBG("Consumer trace chunk exists command: relayd_id = %s"
4749 ", chunk_id = %" PRIu64, relayd_id_str,
4750 chunk_id);
4751 chunk = lttng_trace_chunk_registry_find_chunk(
4752 consumer_data.chunk_registry, session_id,
4753 chunk_id);
4754 DBG("Trace chunk %s locally", chunk ? "exists" : "does not exist");
4755 if (chunk) {
4756 ret_code = LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL;
4757 lttng_trace_chunk_put(chunk);
4758 goto end;
4759 } else if (is_local_trace) {
4760 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4761 goto end;
4762 }
4763
4764 rcu_read_lock();
4765 relayd = consumer_find_relayd(*relayd_id);
4766 if (!relayd) {
4767 ERR("Failed to find relayd %" PRIu64, *relayd_id);
4768 ret_code = LTTCOMM_CONSUMERD_INVALID_PARAMETERS;
4769 goto end_rcu_unlock;
4770 }
4771 DBG("Looking up existence of trace chunk on relay daemon");
4772 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4773 ret = relayd_trace_chunk_exists(&relayd->control_sock, chunk_id,
4774 &chunk_exists_remote);
4775 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4776 if (ret < 0) {
4777 ERR("Failed to look-up the existence of trace chunk on relay daemon");
4778 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
4779 goto end_rcu_unlock;
4780 }
4781
4782 ret_code = chunk_exists_remote ?
4783 LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE :
4784 LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4785 DBG("Trace chunk %s on relay daemon",
4786 chunk_exists_remote ? "exists" : "does not exist");
4787
4788 end_rcu_unlock:
4789 rcu_read_unlock();
4790 end:
4791 return ret_code;
4792 }
This page took 0.12659 seconds and 4 git commands to generate.