Fix: relayd: rotation failure for multi-domain session
[lttng-tools.git] / src / bin / lttng-sessiond / consumer.cpp
1 /*
2 * Copyright (C) 2012 David Goulet <dgoulet@efficios.com>
3 * Copyright (C) 2018 Jérémie Galarneau <jeremie.galarneau@efficios.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0-only
6 *
7 */
8
9 #define _LGPL_SOURCE
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <sys/stat.h>
14 #include <sys/types.h>
15 #include <unistd.h>
16 #include <inttypes.h>
17
18 #include <common/common.h>
19 #include <common/defaults.h>
20 #include <common/uri.h>
21 #include <common/relayd/relayd.h>
22 #include <common/string-utils/format.h>
23
24 #include "consumer.h"
25 #include "health-sessiond.h"
26 #include "ust-app.h"
27 #include "utils.h"
28 #include "lttng-sessiond.h"
29
30 /*
31 * Return allocated full pathname of the session using the consumer trace path
32 * and subdir if available.
33 *
34 * The caller can safely free(3) the returned value. On error, NULL is
35 * returned.
36 */
37 char *setup_channel_trace_path(struct consumer_output *consumer,
38 const char *session_path, size_t *consumer_path_offset)
39 {
40 int ret;
41 char *pathname;
42
43 LTTNG_ASSERT(consumer);
44 LTTNG_ASSERT(session_path);
45
46 health_code_update();
47
48 /*
49 * Allocate the string ourself to make sure we never exceed
50 * LTTNG_PATH_MAX.
51 */
52 pathname = (char *) zmalloc(LTTNG_PATH_MAX);
53 if (!pathname) {
54 goto error;
55 }
56
57 /* Get correct path name destination */
58 if (consumer->type == CONSUMER_DST_NET &&
59 consumer->relay_major_version == 2 &&
60 consumer->relay_minor_version < 11) {
61 ret = snprintf(pathname, LTTNG_PATH_MAX, "%s%s/%s/%s",
62 consumer->dst.net.base_dir,
63 consumer->chunk_path, consumer->domain_subdir,
64 session_path);
65 *consumer_path_offset = 0;
66 } else {
67 ret = snprintf(pathname, LTTNG_PATH_MAX, "%s/%s",
68 consumer->domain_subdir, session_path);
69 *consumer_path_offset = strlen(consumer->domain_subdir) + 1;
70 }
71 DBG3("Consumer trace path relative to current trace chunk: \"%s\"",
72 pathname);
73 if (ret < 0) {
74 PERROR("Failed to format channel path");
75 goto error;
76 } else if (ret >= LTTNG_PATH_MAX) {
77 ERR("Truncation occurred while formatting channel path");
78 goto error;
79 }
80
81 return pathname;
82 error:
83 free(pathname);
84 return NULL;
85 }
86
87 /*
88 * Send a data payload using a given consumer socket of size len.
89 *
90 * The consumer socket lock MUST be acquired before calling this since this
91 * function can change the fd value.
92 *
93 * Return 0 on success else a negative value on error.
94 */
95 int consumer_socket_send(
96 struct consumer_socket *socket, const void *msg, size_t len)
97 {
98 int fd;
99 ssize_t size;
100
101 LTTNG_ASSERT(socket);
102 LTTNG_ASSERT(socket->fd_ptr);
103 LTTNG_ASSERT(msg);
104
105 /* Consumer socket is invalid. Stopping. */
106 fd = *socket->fd_ptr;
107 if (fd < 0) {
108 goto error;
109 }
110
111 size = lttcomm_send_unix_sock(fd, msg, len);
112 if (size < 0) {
113 /* The above call will print a PERROR on error. */
114 DBG("Error when sending data to consumer on sock %d", fd);
115 /*
116 * At this point, the socket is not usable anymore thus closing it and
117 * setting the file descriptor to -1 so it is not reused.
118 */
119
120 /* This call will PERROR on error. */
121 (void) lttcomm_close_unix_sock(fd);
122 *socket->fd_ptr = -1;
123 goto error;
124 }
125
126 return 0;
127
128 error:
129 return -1;
130 }
131
132 /*
133 * Receive a data payload using a given consumer socket of size len.
134 *
135 * The consumer socket lock MUST be acquired before calling this since this
136 * function can change the fd value.
137 *
138 * Return 0 on success else a negative value on error.
139 */
140 int consumer_socket_recv(struct consumer_socket *socket, void *msg, size_t len)
141 {
142 int fd;
143 ssize_t size;
144
145 LTTNG_ASSERT(socket);
146 LTTNG_ASSERT(socket->fd_ptr);
147 LTTNG_ASSERT(msg);
148
149 /* Consumer socket is invalid. Stopping. */
150 fd = *socket->fd_ptr;
151 if (fd < 0) {
152 goto error;
153 }
154
155 size = lttcomm_recv_unix_sock(fd, msg, len);
156 if (size <= 0) {
157 /* The above call will print a PERROR on error. */
158 DBG("Error when receiving data from the consumer socket %d", fd);
159 /*
160 * At this point, the socket is not usable anymore thus closing it and
161 * setting the file descriptor to -1 so it is not reused.
162 */
163
164 /* This call will PERROR on error. */
165 (void) lttcomm_close_unix_sock(fd);
166 *socket->fd_ptr = -1;
167 goto error;
168 }
169
170 return 0;
171
172 error:
173 return -1;
174 }
175
176 /*
177 * Receive a reply command status message from the consumer. Consumer socket
178 * lock MUST be acquired before calling this function.
179 *
180 * Return 0 on success, -1 on recv error or a negative lttng error code which
181 * was possibly returned by the consumer.
182 */
183 int consumer_recv_status_reply(struct consumer_socket *sock)
184 {
185 int ret;
186 struct lttcomm_consumer_status_msg reply;
187
188 LTTNG_ASSERT(sock);
189
190 ret = consumer_socket_recv(sock, &reply, sizeof(reply));
191 if (ret < 0) {
192 goto end;
193 }
194
195 if (reply.ret_code == LTTCOMM_CONSUMERD_SUCCESS) {
196 /* All good. */
197 ret = 0;
198 } else {
199 ret = -reply.ret_code;
200 DBG("Consumer ret code %d", ret);
201 }
202
203 end:
204 return ret;
205 }
206
207 /*
208 * Once the ASK_CHANNEL command is sent to the consumer, the channel
209 * information are sent back. This call receives that data and populates key
210 * and stream_count.
211 *
212 * On success return 0 and both key and stream_count are set. On error, a
213 * negative value is sent back and both parameters are untouched.
214 */
215 int consumer_recv_status_channel(struct consumer_socket *sock,
216 uint64_t *key, unsigned int *stream_count)
217 {
218 int ret;
219 struct lttcomm_consumer_status_channel reply;
220
221 LTTNG_ASSERT(sock);
222 LTTNG_ASSERT(stream_count);
223 LTTNG_ASSERT(key);
224
225 ret = consumer_socket_recv(sock, &reply, sizeof(reply));
226 if (ret < 0) {
227 goto end;
228 }
229
230 /* An error is possible so don't touch the key and stream_count. */
231 if (reply.ret_code != LTTCOMM_CONSUMERD_SUCCESS) {
232 ret = -1;
233 goto end;
234 }
235
236 *key = reply.key;
237 *stream_count = reply.stream_count;
238 ret = 0;
239
240 end:
241 return ret;
242 }
243
244 /*
245 * Send destroy relayd command to consumer.
246 *
247 * On success return positive value. On error, negative value.
248 */
249 int consumer_send_destroy_relayd(struct consumer_socket *sock,
250 struct consumer_output *consumer)
251 {
252 int ret;
253 struct lttcomm_consumer_msg msg;
254
255 LTTNG_ASSERT(consumer);
256 LTTNG_ASSERT(sock);
257
258 DBG2("Sending destroy relayd command to consumer sock %d", *sock->fd_ptr);
259
260 memset(&msg, 0, sizeof(msg));
261 msg.cmd_type = LTTNG_CONSUMER_DESTROY_RELAYD;
262 msg.u.destroy_relayd.net_seq_idx = consumer->net_seq_index;
263
264 pthread_mutex_lock(sock->lock);
265 ret = consumer_socket_send(sock, &msg, sizeof(msg));
266 if (ret < 0) {
267 goto error;
268 }
269
270 /* Don't check the return value. The caller will do it. */
271 ret = consumer_recv_status_reply(sock);
272
273 DBG2("Consumer send destroy relayd command done");
274
275 error:
276 pthread_mutex_unlock(sock->lock);
277 return ret;
278 }
279
280 /*
281 * For each consumer socket in the consumer output object, send a destroy
282 * relayd command.
283 */
284 void consumer_output_send_destroy_relayd(struct consumer_output *consumer)
285 {
286 struct lttng_ht_iter iter;
287 struct consumer_socket *socket;
288
289 LTTNG_ASSERT(consumer);
290
291 /* Destroy any relayd connection */
292 if (consumer->type == CONSUMER_DST_NET) {
293 rcu_read_lock();
294 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
295 node.node) {
296 int ret;
297
298 /* Send destroy relayd command */
299 ret = consumer_send_destroy_relayd(socket, consumer);
300 if (ret < 0) {
301 DBG("Unable to send destroy relayd command to consumer");
302 /* Continue since we MUST delete everything at this point. */
303 }
304 }
305 rcu_read_unlock();
306 }
307 }
308
309 /*
310 * From a consumer_data structure, allocate and add a consumer socket to the
311 * consumer output.
312 *
313 * Return 0 on success, else negative value on error
314 */
315 int consumer_create_socket(struct consumer_data *data,
316 struct consumer_output *output)
317 {
318 int ret = 0;
319 struct consumer_socket *socket;
320
321 LTTNG_ASSERT(data);
322
323 if (output == NULL || data->cmd_sock < 0) {
324 /*
325 * Not an error. Possible there is simply not spawned consumer or it's
326 * disabled for the tracing session asking the socket.
327 */
328 goto error;
329 }
330
331 rcu_read_lock();
332 socket = consumer_find_socket(data->cmd_sock, output);
333 rcu_read_unlock();
334 if (socket == NULL) {
335 socket = consumer_allocate_socket(&data->cmd_sock);
336 if (socket == NULL) {
337 ret = -1;
338 goto error;
339 }
340
341 socket->registered = 0;
342 socket->lock = &data->lock;
343 rcu_read_lock();
344 consumer_add_socket(socket, output);
345 rcu_read_unlock();
346 }
347
348 socket->type = data->type;
349
350 DBG3("Consumer socket created (fd: %d) and added to output",
351 data->cmd_sock);
352
353 error:
354 return ret;
355 }
356
357 /*
358 * Return the consumer socket from the given consumer output with the right
359 * bitness. On error, returns NULL.
360 *
361 * The caller MUST acquire a rcu read side lock and keep it until the socket
362 * object reference is not needed anymore.
363 */
364 struct consumer_socket *consumer_find_socket_by_bitness(int bits,
365 const struct consumer_output *consumer)
366 {
367 int consumer_fd;
368 struct consumer_socket *socket = NULL;
369
370 switch (bits) {
371 case 64:
372 consumer_fd = uatomic_read(&the_ust_consumerd64_fd);
373 break;
374 case 32:
375 consumer_fd = uatomic_read(&the_ust_consumerd32_fd);
376 break;
377 default:
378 abort();
379 goto end;
380 }
381
382 socket = consumer_find_socket(consumer_fd, consumer);
383 if (!socket) {
384 ERR("Consumer socket fd %d not found in consumer obj %p",
385 consumer_fd, consumer);
386 }
387
388 end:
389 return socket;
390 }
391
392 /*
393 * Find a consumer_socket in a consumer_output hashtable. Read side lock must
394 * be acquired before calling this function and across use of the
395 * returned consumer_socket.
396 */
397 struct consumer_socket *consumer_find_socket(int key,
398 const struct consumer_output *consumer)
399 {
400 struct lttng_ht_iter iter;
401 struct lttng_ht_node_ulong *node;
402 struct consumer_socket *socket = NULL;
403
404 /* Negative keys are lookup failures */
405 if (key < 0 || consumer == NULL) {
406 return NULL;
407 }
408
409 lttng_ht_lookup(consumer->socks, (void *)((unsigned long) key),
410 &iter);
411 node = lttng_ht_iter_get_node_ulong(&iter);
412 if (node != NULL) {
413 socket = caa_container_of(node, struct consumer_socket, node);
414 }
415
416 return socket;
417 }
418
419 /*
420 * Allocate a new consumer_socket and return the pointer.
421 */
422 struct consumer_socket *consumer_allocate_socket(int *fd)
423 {
424 struct consumer_socket *socket = NULL;
425
426 LTTNG_ASSERT(fd);
427
428 socket = (consumer_socket *) zmalloc(sizeof(struct consumer_socket));
429 if (socket == NULL) {
430 PERROR("zmalloc consumer socket");
431 goto error;
432 }
433
434 socket->fd_ptr = fd;
435 lttng_ht_node_init_ulong(&socket->node, *fd);
436
437 error:
438 return socket;
439 }
440
441 /*
442 * Add consumer socket to consumer output object. Read side lock must be
443 * acquired before calling this function.
444 */
445 void consumer_add_socket(struct consumer_socket *sock,
446 struct consumer_output *consumer)
447 {
448 LTTNG_ASSERT(sock);
449 LTTNG_ASSERT(consumer);
450
451 lttng_ht_add_unique_ulong(consumer->socks, &sock->node);
452 }
453
454 /*
455 * Delete consumer socket to consumer output object. Read side lock must be
456 * acquired before calling this function.
457 */
458 void consumer_del_socket(struct consumer_socket *sock,
459 struct consumer_output *consumer)
460 {
461 int ret;
462 struct lttng_ht_iter iter;
463
464 LTTNG_ASSERT(sock);
465 LTTNG_ASSERT(consumer);
466
467 iter.iter.node = &sock->node.node;
468 ret = lttng_ht_del(consumer->socks, &iter);
469 LTTNG_ASSERT(!ret);
470 }
471
472 /*
473 * RCU destroy call function.
474 */
475 static void destroy_socket_rcu(struct rcu_head *head)
476 {
477 struct lttng_ht_node_ulong *node =
478 caa_container_of(head, struct lttng_ht_node_ulong, head);
479 struct consumer_socket *socket =
480 caa_container_of(node, struct consumer_socket, node);
481
482 free(socket);
483 }
484
485 /*
486 * Destroy and free socket pointer in a call RCU. Read side lock must be
487 * acquired before calling this function.
488 */
489 void consumer_destroy_socket(struct consumer_socket *sock)
490 {
491 LTTNG_ASSERT(sock);
492
493 /*
494 * We DO NOT close the file descriptor here since it is global to the
495 * session daemon and is closed only if the consumer dies or a custom
496 * consumer was registered,
497 */
498 if (sock->registered) {
499 DBG3("Consumer socket was registered. Closing fd %d", *sock->fd_ptr);
500 lttcomm_close_unix_sock(*sock->fd_ptr);
501 }
502
503 call_rcu(&sock->node.head, destroy_socket_rcu);
504 }
505
506 /*
507 * Allocate and assign data to a consumer_output object.
508 *
509 * Return pointer to structure.
510 */
511 struct consumer_output *consumer_create_output(enum consumer_dst_type type)
512 {
513 struct consumer_output *output = NULL;
514
515 output = (consumer_output *) zmalloc(sizeof(struct consumer_output));
516 if (output == NULL) {
517 PERROR("zmalloc consumer_output");
518 goto error;
519 }
520
521 /* By default, consumer output is enabled */
522 output->enabled = 1;
523 output->type = type;
524 output->net_seq_index = (uint64_t) -1ULL;
525 urcu_ref_init(&output->ref);
526
527 output->socks = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
528
529 error:
530 return output;
531 }
532
533 /*
534 * Iterate over the consumer output socket hash table and destroy them. The
535 * socket file descriptor are only closed if the consumer output was
536 * registered meaning it's an external consumer.
537 */
538 void consumer_destroy_output_sockets(struct consumer_output *obj)
539 {
540 struct lttng_ht_iter iter;
541 struct consumer_socket *socket;
542
543 if (!obj->socks) {
544 return;
545 }
546
547 rcu_read_lock();
548 cds_lfht_for_each_entry(obj->socks->ht, &iter.iter, socket, node.node) {
549 consumer_del_socket(socket, obj);
550 consumer_destroy_socket(socket);
551 }
552 rcu_read_unlock();
553 }
554
555 /*
556 * Delete the consumer_output object from the list and free the ptr.
557 *
558 * Should *NOT* be called with RCU read-side lock held.
559 */
560 static void consumer_release_output(struct urcu_ref *ref)
561 {
562 struct consumer_output *obj =
563 caa_container_of(ref, struct consumer_output, ref);
564
565 consumer_destroy_output_sockets(obj);
566
567 if (obj->socks) {
568 /* Finally destroy HT */
569 ht_cleanup_push(obj->socks);
570 }
571
572 free(obj);
573 }
574
575 /*
576 * Get the consumer_output object.
577 */
578 void consumer_output_get(struct consumer_output *obj)
579 {
580 urcu_ref_get(&obj->ref);
581 }
582
583 /*
584 * Put the consumer_output object.
585 *
586 * Should *NOT* be called with RCU read-side lock held.
587 */
588 void consumer_output_put(struct consumer_output *obj)
589 {
590 if (!obj) {
591 return;
592 }
593 urcu_ref_put(&obj->ref, consumer_release_output);
594 }
595
596 /*
597 * Copy consumer output and returned the newly allocated copy.
598 *
599 * Should *NOT* be called with RCU read-side lock held.
600 */
601 struct consumer_output *consumer_copy_output(struct consumer_output *src)
602 {
603 int ret;
604 struct consumer_output *output;
605
606 LTTNG_ASSERT(src);
607
608 output = consumer_create_output(src->type);
609 if (output == NULL) {
610 goto end;
611 }
612 output->enabled = src->enabled;
613 output->net_seq_index = src->net_seq_index;
614 memcpy(output->domain_subdir, src->domain_subdir,
615 sizeof(output->domain_subdir));
616 output->snapshot = src->snapshot;
617 output->relay_major_version = src->relay_major_version;
618 output->relay_minor_version = src->relay_minor_version;
619 output->relay_allows_clear = src->relay_allows_clear;
620 memcpy(&output->dst, &src->dst, sizeof(output->dst));
621 ret = consumer_copy_sockets(output, src);
622 if (ret < 0) {
623 goto error_put;
624 }
625 end:
626 return output;
627
628 error_put:
629 consumer_output_put(output);
630 return NULL;
631 }
632
633 /*
634 * Copy consumer sockets from src to dst.
635 *
636 * Return 0 on success or else a negative value.
637 */
638 int consumer_copy_sockets(struct consumer_output *dst,
639 struct consumer_output *src)
640 {
641 int ret = 0;
642 struct lttng_ht_iter iter;
643 struct consumer_socket *socket, *copy_sock;
644
645 LTTNG_ASSERT(dst);
646 LTTNG_ASSERT(src);
647
648 rcu_read_lock();
649 cds_lfht_for_each_entry(src->socks->ht, &iter.iter, socket, node.node) {
650 /* Ignore socket that are already there. */
651 copy_sock = consumer_find_socket(*socket->fd_ptr, dst);
652 if (copy_sock) {
653 continue;
654 }
655
656 /* Create new socket object. */
657 copy_sock = consumer_allocate_socket(socket->fd_ptr);
658 if (copy_sock == NULL) {
659 rcu_read_unlock();
660 ret = -ENOMEM;
661 goto error;
662 }
663
664 copy_sock->registered = socket->registered;
665 /*
666 * This is valid because this lock is shared accross all consumer
667 * object being the global lock of the consumer data structure of the
668 * session daemon.
669 */
670 copy_sock->lock = socket->lock;
671 consumer_add_socket(copy_sock, dst);
672 }
673 rcu_read_unlock();
674
675 error:
676 return ret;
677 }
678
679 /*
680 * Set network URI to the consumer output.
681 *
682 * Return 0 on success. Return 1 if the URI were equal. Else, negative value on
683 * error.
684 */
685 int consumer_set_network_uri(const struct ltt_session *session,
686 struct consumer_output *output,
687 struct lttng_uri *uri)
688 {
689 int ret;
690 struct lttng_uri *dst_uri = NULL;
691
692 /* Code flow error safety net. */
693 LTTNG_ASSERT(output);
694 LTTNG_ASSERT(uri);
695
696 switch (uri->stype) {
697 case LTTNG_STREAM_CONTROL:
698 dst_uri = &output->dst.net.control;
699 output->dst.net.control_isset = 1;
700 if (uri->port == 0) {
701 /* Assign default port. */
702 uri->port = DEFAULT_NETWORK_CONTROL_PORT;
703 } else {
704 if (output->dst.net.data_isset && uri->port ==
705 output->dst.net.data.port) {
706 ret = -LTTNG_ERR_INVALID;
707 goto error;
708 }
709 }
710 DBG3("Consumer control URI set with port %d", uri->port);
711 break;
712 case LTTNG_STREAM_DATA:
713 dst_uri = &output->dst.net.data;
714 output->dst.net.data_isset = 1;
715 if (uri->port == 0) {
716 /* Assign default port. */
717 uri->port = DEFAULT_NETWORK_DATA_PORT;
718 } else {
719 if (output->dst.net.control_isset && uri->port ==
720 output->dst.net.control.port) {
721 ret = -LTTNG_ERR_INVALID;
722 goto error;
723 }
724 }
725 DBG3("Consumer data URI set with port %d", uri->port);
726 break;
727 default:
728 ERR("Set network uri type unknown %d", uri->stype);
729 ret = -LTTNG_ERR_INVALID;
730 goto error;
731 }
732
733 ret = uri_compare(dst_uri, uri);
734 if (!ret) {
735 /* Same URI, don't touch it and return success. */
736 DBG3("URI network compare are the same");
737 goto equal;
738 }
739
740 /* URIs were not equal, replacing it. */
741 memcpy(dst_uri, uri, sizeof(struct lttng_uri));
742 output->type = CONSUMER_DST_NET;
743 if (dst_uri->stype != LTTNG_STREAM_CONTROL) {
744 /* Only the control uri needs to contain the path. */
745 goto end;
746 }
747
748 /*
749 * If the user has specified a subdir as part of the control
750 * URL, the session's base output directory is:
751 * /RELAYD_OUTPUT_PATH/HOSTNAME/USER_SPECIFIED_DIR
752 *
753 * Hence, the "base_dir" from which all stream files and
754 * session rotation chunks are created takes the form
755 * /HOSTNAME/USER_SPECIFIED_DIR
756 *
757 * If the user has not specified an output directory as part of
758 * the control URL, the base output directory has the form:
759 * /RELAYD_OUTPUT_PATH/HOSTNAME/SESSION_NAME-CREATION_TIME
760 *
761 * Hence, the "base_dir" from which all stream files and
762 * session rotation chunks are created takes the form
763 * /HOSTNAME/SESSION_NAME-CREATION_TIME
764 *
765 * Note that automatically generated session names already
766 * contain the session's creation time. In that case, the
767 * creation time is omitted to prevent it from being duplicated
768 * in the final directory hierarchy.
769 */
770 if (*uri->subdir) {
771 if (strstr(uri->subdir, "../")) {
772 ERR("Network URI subdirs are not allowed to walk up the path hierarchy");
773 ret = -LTTNG_ERR_INVALID;
774 goto error;
775 }
776 ret = snprintf(output->dst.net.base_dir,
777 sizeof(output->dst.net.base_dir),
778 "/%s/%s/", session->hostname, uri->subdir);
779 } else {
780 if (session->has_auto_generated_name) {
781 ret = snprintf(output->dst.net.base_dir,
782 sizeof(output->dst.net.base_dir),
783 "/%s/%s/", session->hostname,
784 session->name);
785 } else {
786 char session_creation_datetime[16];
787 size_t strftime_ret;
788 struct tm *timeinfo;
789
790 timeinfo = localtime(&session->creation_time);
791 if (!timeinfo) {
792 ret = -LTTNG_ERR_FATAL;
793 goto error;
794 }
795 strftime_ret = strftime(session_creation_datetime,
796 sizeof(session_creation_datetime),
797 "%Y%m%d-%H%M%S", timeinfo);
798 if (strftime_ret == 0) {
799 ERR("Failed to format session creation timestamp while setting network URI");
800 ret = -LTTNG_ERR_FATAL;
801 goto error;
802 }
803 ret = snprintf(output->dst.net.base_dir,
804 sizeof(output->dst.net.base_dir),
805 "/%s/%s-%s/", session->hostname,
806 session->name,
807 session_creation_datetime);
808 }
809 }
810 if (ret >= sizeof(output->dst.net.base_dir)) {
811 ret = -LTTNG_ERR_INVALID;
812 ERR("Truncation occurred while setting network output base directory");
813 goto error;
814 } else if (ret == -1) {
815 ret = -LTTNG_ERR_INVALID;
816 PERROR("Error occurred while setting network output base directory");
817 goto error;
818 }
819
820 DBG3("Consumer set network uri base_dir path %s",
821 output->dst.net.base_dir);
822
823 end:
824 return 0;
825 equal:
826 return 1;
827 error:
828 return ret;
829 }
830
831 /*
832 * Send file descriptor to consumer via sock.
833 *
834 * The consumer socket lock must be held by the caller.
835 */
836 int consumer_send_fds(struct consumer_socket *sock, const int *fds,
837 size_t nb_fd)
838 {
839 int ret;
840
841 LTTNG_ASSERT(fds);
842 LTTNG_ASSERT(sock);
843 LTTNG_ASSERT(nb_fd > 0);
844 LTTNG_ASSERT(pthread_mutex_trylock(sock->lock) == EBUSY);
845
846 ret = lttcomm_send_fds_unix_sock(*sock->fd_ptr, fds, nb_fd);
847 if (ret < 0) {
848 /* The above call will print a PERROR on error. */
849 DBG("Error when sending consumer fds on sock %d", *sock->fd_ptr);
850 goto error;
851 }
852
853 ret = consumer_recv_status_reply(sock);
854 error:
855 return ret;
856 }
857
858 /*
859 * Consumer send communication message structure to consumer.
860 *
861 * The consumer socket lock must be held by the caller.
862 */
863 int consumer_send_msg(struct consumer_socket *sock,
864 const struct lttcomm_consumer_msg *msg)
865 {
866 int ret;
867
868 LTTNG_ASSERT(msg);
869 LTTNG_ASSERT(sock);
870 LTTNG_ASSERT(pthread_mutex_trylock(sock->lock) == EBUSY);
871
872 ret = consumer_socket_send(sock, msg, sizeof(struct lttcomm_consumer_msg));
873 if (ret < 0) {
874 goto error;
875 }
876
877 ret = consumer_recv_status_reply(sock);
878
879 error:
880 return ret;
881 }
882
883 /*
884 * Consumer send channel communication message structure to consumer.
885 *
886 * The consumer socket lock must be held by the caller.
887 */
888 int consumer_send_channel(struct consumer_socket *sock,
889 struct lttcomm_consumer_msg *msg)
890 {
891 int ret;
892
893 LTTNG_ASSERT(msg);
894 LTTNG_ASSERT(sock);
895
896 ret = consumer_send_msg(sock, msg);
897 if (ret < 0) {
898 goto error;
899 }
900
901 error:
902 return ret;
903 }
904
905 /*
906 * Populate the given consumer msg structure with the ask_channel command
907 * information.
908 */
909 void consumer_init_ask_channel_comm_msg(struct lttcomm_consumer_msg *msg,
910 uint64_t subbuf_size,
911 uint64_t num_subbuf,
912 int overwrite,
913 unsigned int switch_timer_interval,
914 unsigned int read_timer_interval,
915 unsigned int live_timer_interval,
916 bool is_in_live_session,
917 unsigned int monitor_timer_interval,
918 int output,
919 int type,
920 uint64_t session_id,
921 const char *pathname,
922 const char *name,
923 uint64_t relayd_id,
924 uint64_t key,
925 unsigned char *uuid,
926 uint32_t chan_id,
927 uint64_t tracefile_size,
928 uint64_t tracefile_count,
929 uint64_t session_id_per_pid,
930 unsigned int monitor,
931 uint32_t ust_app_uid,
932 int64_t blocking_timeout,
933 const char *root_shm_path,
934 const char *shm_path,
935 struct lttng_trace_chunk *trace_chunk,
936 const struct lttng_credentials *buffer_credentials)
937 {
938 LTTNG_ASSERT(msg);
939
940 /* Zeroed structure */
941 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
942 msg->u.ask_channel.buffer_credentials.uid = UINT32_MAX;
943 msg->u.ask_channel.buffer_credentials.gid = UINT32_MAX;
944
945 if (trace_chunk) {
946 uint64_t chunk_id;
947 enum lttng_trace_chunk_status chunk_status;
948
949 chunk_status = lttng_trace_chunk_get_id(trace_chunk, &chunk_id);
950 LTTNG_ASSERT(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
951 LTTNG_OPTIONAL_SET(&msg->u.ask_channel.chunk_id, chunk_id);
952 }
953 msg->u.ask_channel.buffer_credentials.uid =
954 lttng_credentials_get_uid(buffer_credentials);
955 msg->u.ask_channel.buffer_credentials.gid =
956 lttng_credentials_get_gid(buffer_credentials);
957
958 msg->cmd_type = LTTNG_CONSUMER_ASK_CHANNEL_CREATION;
959 msg->u.ask_channel.subbuf_size = subbuf_size;
960 msg->u.ask_channel.num_subbuf = num_subbuf ;
961 msg->u.ask_channel.overwrite = overwrite;
962 msg->u.ask_channel.switch_timer_interval = switch_timer_interval;
963 msg->u.ask_channel.read_timer_interval = read_timer_interval;
964 msg->u.ask_channel.live_timer_interval = live_timer_interval;
965 msg->u.ask_channel.is_live = is_in_live_session;
966 msg->u.ask_channel.monitor_timer_interval = monitor_timer_interval;
967 msg->u.ask_channel.output = output;
968 msg->u.ask_channel.type = type;
969 msg->u.ask_channel.session_id = session_id;
970 msg->u.ask_channel.session_id_per_pid = session_id_per_pid;
971 msg->u.ask_channel.relayd_id = relayd_id;
972 msg->u.ask_channel.key = key;
973 msg->u.ask_channel.chan_id = chan_id;
974 msg->u.ask_channel.tracefile_size = tracefile_size;
975 msg->u.ask_channel.tracefile_count = tracefile_count;
976 msg->u.ask_channel.monitor = monitor;
977 msg->u.ask_channel.ust_app_uid = ust_app_uid;
978 msg->u.ask_channel.blocking_timeout = blocking_timeout;
979
980 memcpy(msg->u.ask_channel.uuid, uuid, sizeof(msg->u.ask_channel.uuid));
981
982 if (pathname) {
983 strncpy(msg->u.ask_channel.pathname, pathname,
984 sizeof(msg->u.ask_channel.pathname));
985 msg->u.ask_channel.pathname[sizeof(msg->u.ask_channel.pathname)-1] = '\0';
986 }
987
988 strncpy(msg->u.ask_channel.name, name, sizeof(msg->u.ask_channel.name));
989 msg->u.ask_channel.name[sizeof(msg->u.ask_channel.name) - 1] = '\0';
990
991 if (root_shm_path) {
992 strncpy(msg->u.ask_channel.root_shm_path, root_shm_path,
993 sizeof(msg->u.ask_channel.root_shm_path));
994 msg->u.ask_channel.root_shm_path[sizeof(msg->u.ask_channel.root_shm_path) - 1] = '\0';
995 }
996 if (shm_path) {
997 strncpy(msg->u.ask_channel.shm_path, shm_path,
998 sizeof(msg->u.ask_channel.shm_path));
999 msg->u.ask_channel.shm_path[sizeof(msg->u.ask_channel.shm_path) - 1] = '\0';
1000 }
1001 }
1002
1003 /*
1004 * Init channel communication message structure.
1005 */
1006 void consumer_init_add_channel_comm_msg(struct lttcomm_consumer_msg *msg,
1007 uint64_t channel_key,
1008 uint64_t session_id,
1009 const char *pathname,
1010 uid_t uid,
1011 gid_t gid,
1012 uint64_t relayd_id,
1013 const char *name,
1014 unsigned int nb_init_streams,
1015 enum lttng_event_output output,
1016 int type,
1017 uint64_t tracefile_size,
1018 uint64_t tracefile_count,
1019 unsigned int monitor,
1020 unsigned int live_timer_interval,
1021 bool is_in_live_session,
1022 unsigned int monitor_timer_interval,
1023 struct lttng_trace_chunk *trace_chunk)
1024 {
1025 LTTNG_ASSERT(msg);
1026
1027 /* Zeroed structure */
1028 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
1029
1030 if (trace_chunk) {
1031 uint64_t chunk_id;
1032 enum lttng_trace_chunk_status chunk_status;
1033
1034 chunk_status = lttng_trace_chunk_get_id(trace_chunk, &chunk_id);
1035 LTTNG_ASSERT(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
1036 LTTNG_OPTIONAL_SET(&msg->u.channel.chunk_id, chunk_id);
1037 }
1038
1039 /* Send channel */
1040 msg->cmd_type = LTTNG_CONSUMER_ADD_CHANNEL;
1041 msg->u.channel.channel_key = channel_key;
1042 msg->u.channel.session_id = session_id;
1043 msg->u.channel.relayd_id = relayd_id;
1044 msg->u.channel.nb_init_streams = nb_init_streams;
1045 msg->u.channel.output = output;
1046 msg->u.channel.type = type;
1047 msg->u.channel.tracefile_size = tracefile_size;
1048 msg->u.channel.tracefile_count = tracefile_count;
1049 msg->u.channel.monitor = monitor;
1050 msg->u.channel.live_timer_interval = live_timer_interval;
1051 msg->u.channel.is_live = is_in_live_session;
1052 msg->u.channel.monitor_timer_interval = monitor_timer_interval;
1053
1054 strncpy(msg->u.channel.pathname, pathname,
1055 sizeof(msg->u.channel.pathname));
1056 msg->u.channel.pathname[sizeof(msg->u.channel.pathname) - 1] = '\0';
1057
1058 strncpy(msg->u.channel.name, name, sizeof(msg->u.channel.name));
1059 msg->u.channel.name[sizeof(msg->u.channel.name) - 1] = '\0';
1060 }
1061
1062 /*
1063 * Init stream communication message structure.
1064 */
1065 void consumer_init_add_stream_comm_msg(struct lttcomm_consumer_msg *msg,
1066 uint64_t channel_key,
1067 uint64_t stream_key,
1068 int32_t cpu)
1069 {
1070 LTTNG_ASSERT(msg);
1071
1072 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
1073
1074 msg->cmd_type = LTTNG_CONSUMER_ADD_STREAM;
1075 msg->u.stream.channel_key = channel_key;
1076 msg->u.stream.stream_key = stream_key;
1077 msg->u.stream.cpu = cpu;
1078 }
1079
1080 void consumer_init_streams_sent_comm_msg(struct lttcomm_consumer_msg *msg,
1081 enum lttng_consumer_command cmd,
1082 uint64_t channel_key, uint64_t net_seq_idx)
1083 {
1084 LTTNG_ASSERT(msg);
1085
1086 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
1087
1088 msg->cmd_type = cmd;
1089 msg->u.sent_streams.channel_key = channel_key;
1090 msg->u.sent_streams.net_seq_idx = net_seq_idx;
1091 }
1092
1093 /*
1094 * Send stream communication structure to the consumer.
1095 */
1096 int consumer_send_stream(struct consumer_socket *sock,
1097 struct consumer_output *dst, struct lttcomm_consumer_msg *msg,
1098 const int *fds, size_t nb_fd)
1099 {
1100 int ret;
1101
1102 LTTNG_ASSERT(msg);
1103 LTTNG_ASSERT(dst);
1104 LTTNG_ASSERT(sock);
1105 LTTNG_ASSERT(fds);
1106
1107 ret = consumer_send_msg(sock, msg);
1108 if (ret < 0) {
1109 goto error;
1110 }
1111
1112 ret = consumer_send_fds(sock, fds, nb_fd);
1113 if (ret < 0) {
1114 goto error;
1115 }
1116
1117 error:
1118 return ret;
1119 }
1120
1121 /*
1122 * Send relayd socket to consumer associated with a session name.
1123 *
1124 * The consumer socket lock must be held by the caller.
1125 *
1126 * On success return positive value. On error, negative value.
1127 */
1128 int consumer_send_relayd_socket(struct consumer_socket *consumer_sock,
1129 struct lttcomm_relayd_sock *rsock, struct consumer_output *consumer,
1130 enum lttng_stream_type type, uint64_t session_id,
1131 const char *session_name, const char *hostname,
1132 const char *base_path, int session_live_timer,
1133 const uint64_t *current_chunk_id, time_t session_creation_time,
1134 bool session_name_contains_creation_time)
1135 {
1136 int ret;
1137 int fd;
1138 struct lttcomm_consumer_msg msg;
1139
1140 /* Code flow error. Safety net. */
1141 LTTNG_ASSERT(rsock);
1142 LTTNG_ASSERT(consumer);
1143 LTTNG_ASSERT(consumer_sock);
1144
1145 memset(&msg, 0, sizeof(msg));
1146 /* Bail out if consumer is disabled */
1147 if (!consumer->enabled) {
1148 ret = LTTNG_OK;
1149 goto error;
1150 }
1151
1152 if (type == LTTNG_STREAM_CONTROL) {
1153 char output_path[LTTNG_PATH_MAX] = {};
1154 uint64_t relayd_session_id;
1155
1156 ret = relayd_create_session(rsock, &relayd_session_id,
1157 session_name, hostname, base_path,
1158 session_live_timer, consumer->snapshot,
1159 session_id, the_sessiond_uuid, current_chunk_id,
1160 session_creation_time,
1161 session_name_contains_creation_time,
1162 output_path);
1163 if (ret < 0) {
1164 /* Close the control socket. */
1165 (void) relayd_close(rsock);
1166 goto error;
1167 }
1168 msg.u.relayd_sock.relayd_session_id = relayd_session_id;
1169 DBG("Created session on relay, output path reply: %s",
1170 output_path);
1171 }
1172
1173 msg.cmd_type = LTTNG_CONSUMER_ADD_RELAYD_SOCKET;
1174 /*
1175 * Assign network consumer output index using the temporary consumer since
1176 * this call should only be made from within a set_consumer_uri() function
1177 * call in the session daemon.
1178 */
1179 msg.u.relayd_sock.net_index = consumer->net_seq_index;
1180 msg.u.relayd_sock.type = type;
1181 msg.u.relayd_sock.session_id = session_id;
1182 memcpy(&msg.u.relayd_sock.sock, rsock, sizeof(msg.u.relayd_sock.sock));
1183
1184 DBG3("Sending relayd sock info to consumer on %d", *consumer_sock->fd_ptr);
1185 ret = consumer_send_msg(consumer_sock, &msg);
1186 if (ret < 0) {
1187 goto error;
1188 }
1189
1190 DBG3("Sending relayd socket file descriptor to consumer");
1191 fd = rsock->sock.fd;
1192 ret = consumer_send_fds(consumer_sock, &fd, 1);
1193 if (ret < 0) {
1194 goto error;
1195 }
1196
1197 DBG2("Consumer relayd socket sent");
1198
1199 error:
1200 return ret;
1201 }
1202
1203 static
1204 int consumer_send_pipe(struct consumer_socket *consumer_sock,
1205 enum lttng_consumer_command cmd, int pipe)
1206 {
1207 int ret;
1208 struct lttcomm_consumer_msg msg;
1209 const char *pipe_name;
1210 const char *command_name;
1211
1212 switch (cmd) {
1213 case LTTNG_CONSUMER_SET_CHANNEL_MONITOR_PIPE:
1214 pipe_name = "channel monitor";
1215 command_name = "SET_CHANNEL_MONITOR_PIPE";
1216 break;
1217 default:
1218 ERR("Unexpected command received in %s (cmd = %d)", __func__,
1219 (int) cmd);
1220 abort();
1221 }
1222
1223 /* Code flow error. Safety net. */
1224
1225 memset(&msg, 0, sizeof(msg));
1226 msg.cmd_type = cmd;
1227
1228 pthread_mutex_lock(consumer_sock->lock);
1229 DBG3("Sending %s command to consumer", command_name);
1230 ret = consumer_send_msg(consumer_sock, &msg);
1231 if (ret < 0) {
1232 goto error;
1233 }
1234
1235 DBG3("Sending %s pipe %d to consumer on socket %d",
1236 pipe_name,
1237 pipe, *consumer_sock->fd_ptr);
1238 ret = consumer_send_fds(consumer_sock, &pipe, 1);
1239 if (ret < 0) {
1240 goto error;
1241 }
1242
1243 DBG2("%s pipe successfully sent", pipe_name);
1244 error:
1245 pthread_mutex_unlock(consumer_sock->lock);
1246 return ret;
1247 }
1248
1249 int consumer_send_channel_monitor_pipe(struct consumer_socket *consumer_sock,
1250 int pipe)
1251 {
1252 return consumer_send_pipe(consumer_sock,
1253 LTTNG_CONSUMER_SET_CHANNEL_MONITOR_PIPE, pipe);
1254 }
1255
1256 /*
1257 * Ask the consumer if the data is pending for the specific session id.
1258 * Returns 1 if data is pending, 0 otherwise, or < 0 on error.
1259 */
1260 int consumer_is_data_pending(uint64_t session_id,
1261 struct consumer_output *consumer)
1262 {
1263 int ret;
1264 int32_t ret_code = 0; /* Default is that the data is NOT pending */
1265 struct consumer_socket *socket;
1266 struct lttng_ht_iter iter;
1267 struct lttcomm_consumer_msg msg;
1268
1269 LTTNG_ASSERT(consumer);
1270
1271 DBG3("Consumer data pending for id %" PRIu64, session_id);
1272
1273 memset(&msg, 0, sizeof(msg));
1274 msg.cmd_type = LTTNG_CONSUMER_DATA_PENDING;
1275 msg.u.data_pending.session_id = session_id;
1276
1277 /* Send command for each consumer */
1278 rcu_read_lock();
1279 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
1280 node.node) {
1281 pthread_mutex_lock(socket->lock);
1282 ret = consumer_socket_send(socket, &msg, sizeof(msg));
1283 if (ret < 0) {
1284 pthread_mutex_unlock(socket->lock);
1285 goto error_unlock;
1286 }
1287
1288 /*
1289 * No need for a recv reply status because the answer to the command is
1290 * the reply status message.
1291 */
1292
1293 ret = consumer_socket_recv(socket, &ret_code, sizeof(ret_code));
1294 if (ret < 0) {
1295 pthread_mutex_unlock(socket->lock);
1296 goto error_unlock;
1297 }
1298 pthread_mutex_unlock(socket->lock);
1299
1300 if (ret_code == 1) {
1301 break;
1302 }
1303 }
1304 rcu_read_unlock();
1305
1306 DBG("Consumer data is %s pending for session id %" PRIu64,
1307 ret_code == 1 ? "" : "NOT", session_id);
1308 return ret_code;
1309
1310 error_unlock:
1311 rcu_read_unlock();
1312 return -1;
1313 }
1314
1315 /*
1316 * Send a flush command to consumer using the given channel key.
1317 *
1318 * Return 0 on success else a negative value.
1319 */
1320 int consumer_flush_channel(struct consumer_socket *socket, uint64_t key)
1321 {
1322 int ret;
1323 struct lttcomm_consumer_msg msg;
1324
1325 LTTNG_ASSERT(socket);
1326
1327 DBG2("Consumer flush channel key %" PRIu64, key);
1328
1329 memset(&msg, 0, sizeof(msg));
1330 msg.cmd_type = LTTNG_CONSUMER_FLUSH_CHANNEL;
1331 msg.u.flush_channel.key = key;
1332
1333 pthread_mutex_lock(socket->lock);
1334 health_code_update();
1335
1336 ret = consumer_send_msg(socket, &msg);
1337 if (ret < 0) {
1338 goto end;
1339 }
1340
1341 end:
1342 health_code_update();
1343 pthread_mutex_unlock(socket->lock);
1344 return ret;
1345 }
1346
1347 /*
1348 * Send a clear quiescent command to consumer using the given channel key.
1349 *
1350 * Return 0 on success else a negative value.
1351 */
1352 int consumer_clear_quiescent_channel(struct consumer_socket *socket, uint64_t key)
1353 {
1354 int ret;
1355 struct lttcomm_consumer_msg msg;
1356
1357 LTTNG_ASSERT(socket);
1358
1359 DBG2("Consumer clear quiescent channel key %" PRIu64, key);
1360
1361 memset(&msg, 0, sizeof(msg));
1362 msg.cmd_type = LTTNG_CONSUMER_CLEAR_QUIESCENT_CHANNEL;
1363 msg.u.clear_quiescent_channel.key = key;
1364
1365 pthread_mutex_lock(socket->lock);
1366 health_code_update();
1367
1368 ret = consumer_send_msg(socket, &msg);
1369 if (ret < 0) {
1370 goto end;
1371 }
1372
1373 end:
1374 health_code_update();
1375 pthread_mutex_unlock(socket->lock);
1376 return ret;
1377 }
1378
1379 /*
1380 * Send a close metadata command to consumer using the given channel key.
1381 * Called with registry lock held.
1382 *
1383 * Return 0 on success else a negative value.
1384 */
1385 int consumer_close_metadata(struct consumer_socket *socket,
1386 uint64_t metadata_key)
1387 {
1388 int ret;
1389 struct lttcomm_consumer_msg msg;
1390
1391 LTTNG_ASSERT(socket);
1392
1393 DBG2("Consumer close metadata channel key %" PRIu64, metadata_key);
1394
1395 memset(&msg, 0, sizeof(msg));
1396 msg.cmd_type = LTTNG_CONSUMER_CLOSE_METADATA;
1397 msg.u.close_metadata.key = metadata_key;
1398
1399 pthread_mutex_lock(socket->lock);
1400 health_code_update();
1401
1402 ret = consumer_send_msg(socket, &msg);
1403 if (ret < 0) {
1404 goto end;
1405 }
1406
1407 end:
1408 health_code_update();
1409 pthread_mutex_unlock(socket->lock);
1410 return ret;
1411 }
1412
1413 /*
1414 * Send a setup metdata command to consumer using the given channel key.
1415 *
1416 * Return 0 on success else a negative value.
1417 */
1418 int consumer_setup_metadata(struct consumer_socket *socket,
1419 uint64_t metadata_key)
1420 {
1421 int ret;
1422 struct lttcomm_consumer_msg msg;
1423
1424 LTTNG_ASSERT(socket);
1425
1426 DBG2("Consumer setup metadata channel key %" PRIu64, metadata_key);
1427
1428 memset(&msg, 0, sizeof(msg));
1429 msg.cmd_type = LTTNG_CONSUMER_SETUP_METADATA;
1430 msg.u.setup_metadata.key = metadata_key;
1431
1432 pthread_mutex_lock(socket->lock);
1433 health_code_update();
1434
1435 ret = consumer_send_msg(socket, &msg);
1436 if (ret < 0) {
1437 goto end;
1438 }
1439
1440 end:
1441 health_code_update();
1442 pthread_mutex_unlock(socket->lock);
1443 return ret;
1444 }
1445
1446 /*
1447 * Send metadata string to consumer.
1448 * RCU read-side lock must be held to guarantee existence of socket.
1449 *
1450 * Return 0 on success else a negative value.
1451 */
1452 int consumer_push_metadata(struct consumer_socket *socket,
1453 uint64_t metadata_key, char *metadata_str, size_t len,
1454 size_t target_offset, uint64_t version)
1455 {
1456 int ret;
1457 struct lttcomm_consumer_msg msg;
1458
1459 LTTNG_ASSERT(socket);
1460
1461 DBG2("Consumer push metadata to consumer socket %d", *socket->fd_ptr);
1462
1463 pthread_mutex_lock(socket->lock);
1464
1465 memset(&msg, 0, sizeof(msg));
1466 msg.cmd_type = LTTNG_CONSUMER_PUSH_METADATA;
1467 msg.u.push_metadata.key = metadata_key;
1468 msg.u.push_metadata.target_offset = target_offset;
1469 msg.u.push_metadata.len = len;
1470 msg.u.push_metadata.version = version;
1471
1472 health_code_update();
1473 ret = consumer_send_msg(socket, &msg);
1474 if (ret < 0 || len == 0) {
1475 goto end;
1476 }
1477
1478 DBG3("Consumer pushing metadata on sock %d of len %zu", *socket->fd_ptr,
1479 len);
1480
1481 ret = consumer_socket_send(socket, metadata_str, len);
1482 if (ret < 0) {
1483 goto end;
1484 }
1485
1486 health_code_update();
1487 ret = consumer_recv_status_reply(socket);
1488 if (ret < 0) {
1489 goto end;
1490 }
1491
1492 end:
1493 pthread_mutex_unlock(socket->lock);
1494 health_code_update();
1495 return ret;
1496 }
1497
1498 /*
1499 * Ask the consumer to snapshot a specific channel using the key.
1500 *
1501 * Returns LTTNG_OK on success or else an LTTng error code.
1502 */
1503 enum lttng_error_code consumer_snapshot_channel(struct consumer_socket *socket,
1504 uint64_t key, const struct consumer_output *output, int metadata,
1505 uid_t uid, gid_t gid, const char *channel_path, int wait,
1506 uint64_t nb_packets_per_stream)
1507 {
1508 int ret;
1509 enum lttng_error_code status = LTTNG_OK;
1510 struct lttcomm_consumer_msg msg;
1511
1512 LTTNG_ASSERT(socket);
1513 LTTNG_ASSERT(output);
1514
1515 DBG("Consumer snapshot channel key %" PRIu64, key);
1516
1517 memset(&msg, 0, sizeof(msg));
1518 msg.cmd_type = LTTNG_CONSUMER_SNAPSHOT_CHANNEL;
1519 msg.u.snapshot_channel.key = key;
1520 msg.u.snapshot_channel.nb_packets_per_stream = nb_packets_per_stream;
1521 msg.u.snapshot_channel.metadata = metadata;
1522
1523 if (output->type == CONSUMER_DST_NET) {
1524 msg.u.snapshot_channel.relayd_id =
1525 output->net_seq_index;
1526 msg.u.snapshot_channel.use_relayd = 1;
1527 } else {
1528 msg.u.snapshot_channel.relayd_id = (uint64_t) -1ULL;
1529 }
1530 ret = lttng_strncpy(msg.u.snapshot_channel.pathname,
1531 channel_path,
1532 sizeof(msg.u.snapshot_channel.pathname));
1533 if (ret < 0) {
1534 ERR("Snapshot path exceeds the maximal allowed length of %zu bytes (%zu bytes required) with path \"%s\"",
1535 sizeof(msg.u.snapshot_channel.pathname),
1536 strlen(channel_path),
1537 channel_path);
1538 status = LTTNG_ERR_SNAPSHOT_FAIL;
1539 goto error;
1540 }
1541
1542 health_code_update();
1543 pthread_mutex_lock(socket->lock);
1544 ret = consumer_send_msg(socket, &msg);
1545 pthread_mutex_unlock(socket->lock);
1546 if (ret < 0) {
1547 switch (-ret) {
1548 case LTTCOMM_CONSUMERD_CHAN_NOT_FOUND:
1549 status = LTTNG_ERR_CHAN_NOT_FOUND;
1550 break;
1551 default:
1552 status = LTTNG_ERR_SNAPSHOT_FAIL;
1553 break;
1554 }
1555 goto error;
1556 }
1557
1558 error:
1559 health_code_update();
1560 return status;
1561 }
1562
1563 /*
1564 * Ask the consumer the number of discarded events for a channel.
1565 */
1566 int consumer_get_discarded_events(uint64_t session_id, uint64_t channel_key,
1567 struct consumer_output *consumer, uint64_t *discarded)
1568 {
1569 int ret;
1570 struct consumer_socket *socket;
1571 struct lttng_ht_iter iter;
1572 struct lttcomm_consumer_msg msg;
1573
1574 LTTNG_ASSERT(consumer);
1575
1576 DBG3("Consumer discarded events id %" PRIu64, session_id);
1577
1578 memset(&msg, 0, sizeof(msg));
1579 msg.cmd_type = LTTNG_CONSUMER_DISCARDED_EVENTS;
1580 msg.u.discarded_events.session_id = session_id;
1581 msg.u.discarded_events.channel_key = channel_key;
1582
1583 *discarded = 0;
1584
1585 /* Send command for each consumer */
1586 rcu_read_lock();
1587 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
1588 node.node) {
1589 uint64_t consumer_discarded = 0;
1590 pthread_mutex_lock(socket->lock);
1591 ret = consumer_socket_send(socket, &msg, sizeof(msg));
1592 if (ret < 0) {
1593 pthread_mutex_unlock(socket->lock);
1594 goto end;
1595 }
1596
1597 /*
1598 * No need for a recv reply status because the answer to the
1599 * command is the reply status message.
1600 */
1601 ret = consumer_socket_recv(socket, &consumer_discarded,
1602 sizeof(consumer_discarded));
1603 if (ret < 0) {
1604 ERR("get discarded events");
1605 pthread_mutex_unlock(socket->lock);
1606 goto end;
1607 }
1608 pthread_mutex_unlock(socket->lock);
1609 *discarded += consumer_discarded;
1610 }
1611 ret = 0;
1612 DBG("Consumer discarded %" PRIu64 " events in session id %" PRIu64,
1613 *discarded, session_id);
1614
1615 end:
1616 rcu_read_unlock();
1617 return ret;
1618 }
1619
1620 /*
1621 * Ask the consumer the number of lost packets for a channel.
1622 */
1623 int consumer_get_lost_packets(uint64_t session_id, uint64_t channel_key,
1624 struct consumer_output *consumer, uint64_t *lost)
1625 {
1626 int ret;
1627 struct consumer_socket *socket;
1628 struct lttng_ht_iter iter;
1629 struct lttcomm_consumer_msg msg;
1630
1631 LTTNG_ASSERT(consumer);
1632
1633 DBG3("Consumer lost packets id %" PRIu64, session_id);
1634
1635 memset(&msg, 0, sizeof(msg));
1636 msg.cmd_type = LTTNG_CONSUMER_LOST_PACKETS;
1637 msg.u.lost_packets.session_id = session_id;
1638 msg.u.lost_packets.channel_key = channel_key;
1639
1640 *lost = 0;
1641
1642 /* Send command for each consumer */
1643 rcu_read_lock();
1644 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
1645 node.node) {
1646 uint64_t consumer_lost = 0;
1647 pthread_mutex_lock(socket->lock);
1648 ret = consumer_socket_send(socket, &msg, sizeof(msg));
1649 if (ret < 0) {
1650 pthread_mutex_unlock(socket->lock);
1651 goto end;
1652 }
1653
1654 /*
1655 * No need for a recv reply status because the answer to the
1656 * command is the reply status message.
1657 */
1658 ret = consumer_socket_recv(socket, &consumer_lost,
1659 sizeof(consumer_lost));
1660 if (ret < 0) {
1661 ERR("get lost packets");
1662 pthread_mutex_unlock(socket->lock);
1663 goto end;
1664 }
1665 pthread_mutex_unlock(socket->lock);
1666 *lost += consumer_lost;
1667 }
1668 ret = 0;
1669 DBG("Consumer lost %" PRIu64 " packets in session id %" PRIu64,
1670 *lost, session_id);
1671
1672 end:
1673 rcu_read_unlock();
1674 return ret;
1675 }
1676
1677 /*
1678 * Ask the consumer to rotate a channel.
1679 *
1680 * The new_chunk_id is the session->rotate_count that has been incremented
1681 * when the rotation started. On the relay, this allows to keep track in which
1682 * chunk each stream is currently writing to (for the rotate_pending operation).
1683 */
1684 int consumer_rotate_channel(struct consumer_socket *socket, uint64_t key,
1685 uid_t uid, gid_t gid, struct consumer_output *output,
1686 bool is_metadata_channel)
1687 {
1688 int ret;
1689 struct lttcomm_consumer_msg msg;
1690
1691 LTTNG_ASSERT(socket);
1692
1693 DBG("Consumer rotate channel key %" PRIu64, key);
1694
1695 pthread_mutex_lock(socket->lock);
1696 memset(&msg, 0, sizeof(msg));
1697 msg.cmd_type = LTTNG_CONSUMER_ROTATE_CHANNEL;
1698 msg.u.rotate_channel.key = key;
1699 msg.u.rotate_channel.metadata = !!is_metadata_channel;
1700
1701 if (output->type == CONSUMER_DST_NET) {
1702 msg.u.rotate_channel.relayd_id = output->net_seq_index;
1703 } else {
1704 msg.u.rotate_channel.relayd_id = (uint64_t) -1ULL;
1705 }
1706
1707 health_code_update();
1708 ret = consumer_send_msg(socket, &msg);
1709 if (ret < 0) {
1710 switch (-ret) {
1711 case LTTCOMM_CONSUMERD_CHAN_NOT_FOUND:
1712 ret = -LTTNG_ERR_CHAN_NOT_FOUND;
1713 break;
1714 default:
1715 ret = -LTTNG_ERR_ROTATION_FAIL_CONSUMER;
1716 break;
1717 }
1718 goto error;
1719 }
1720 error:
1721 pthread_mutex_unlock(socket->lock);
1722 health_code_update();
1723 return ret;
1724 }
1725
1726 int consumer_open_channel_packets(struct consumer_socket *socket, uint64_t key)
1727 {
1728 int ret;
1729 lttcomm_consumer_msg msg = {
1730 .cmd_type = LTTNG_CONSUMER_OPEN_CHANNEL_PACKETS,
1731 };
1732 msg.u.open_channel_packets.key = key;
1733
1734 LTTNG_ASSERT(socket);
1735
1736 DBG("Consumer open channel packets: channel key = %" PRIu64, key);
1737
1738 health_code_update();
1739
1740 pthread_mutex_lock(socket->lock);
1741 ret = consumer_send_msg(socket, &msg);
1742 pthread_mutex_unlock(socket->lock);
1743 if (ret < 0) {
1744 goto error_socket;
1745 }
1746
1747 error_socket:
1748 health_code_update();
1749 return ret;
1750 }
1751
1752 int consumer_clear_channel(struct consumer_socket *socket, uint64_t key)
1753 {
1754 int ret;
1755 struct lttcomm_consumer_msg msg;
1756
1757 LTTNG_ASSERT(socket);
1758
1759 DBG("Consumer clear channel %" PRIu64, key);
1760
1761 memset(&msg, 0, sizeof(msg));
1762 msg.cmd_type = LTTNG_CONSUMER_CLEAR_CHANNEL;
1763 msg.u.clear_channel.key = key;
1764
1765 health_code_update();
1766
1767 pthread_mutex_lock(socket->lock);
1768 ret = consumer_send_msg(socket, &msg);
1769 if (ret < 0) {
1770 goto error_socket;
1771 }
1772
1773 error_socket:
1774 pthread_mutex_unlock(socket->lock);
1775
1776 health_code_update();
1777 return ret;
1778 }
1779
1780 int consumer_init(struct consumer_socket *socket,
1781 const lttng_uuid sessiond_uuid)
1782 {
1783 int ret;
1784 struct lttcomm_consumer_msg msg = {
1785 .cmd_type = LTTNG_CONSUMER_INIT,
1786 };
1787
1788 LTTNG_ASSERT(socket);
1789
1790 DBG("Sending consumer initialization command");
1791 lttng_uuid_copy(msg.u.init.sessiond_uuid, sessiond_uuid);
1792
1793 health_code_update();
1794 ret = consumer_send_msg(socket, &msg);
1795 if (ret < 0) {
1796 goto error;
1797 }
1798
1799 error:
1800 health_code_update();
1801 return ret;
1802 }
1803
1804 /*
1805 * Ask the consumer to create a new chunk for a given session.
1806 *
1807 * Called with the consumer socket lock held.
1808 */
1809 int consumer_create_trace_chunk(struct consumer_socket *socket,
1810 uint64_t relayd_id, uint64_t session_id,
1811 struct lttng_trace_chunk *chunk,
1812 const char *domain_subdir)
1813 {
1814 int ret;
1815 enum lttng_trace_chunk_status chunk_status;
1816 struct lttng_credentials chunk_credentials;
1817 const struct lttng_directory_handle *chunk_directory_handle = NULL;
1818 struct lttng_directory_handle *domain_handle = NULL;
1819 int domain_dirfd;
1820 const char *chunk_name;
1821 bool chunk_name_overridden;
1822 uint64_t chunk_id;
1823 time_t creation_timestamp;
1824 char creation_timestamp_buffer[ISO8601_STR_LEN];
1825 const char *creation_timestamp_str = "(none)";
1826 const bool chunk_has_local_output = relayd_id == -1ULL;
1827 enum lttng_trace_chunk_status tc_status;
1828 struct lttcomm_consumer_msg msg = {
1829 .cmd_type = LTTNG_CONSUMER_CREATE_TRACE_CHUNK,
1830 };
1831 msg.u.create_trace_chunk.session_id = session_id;
1832
1833 LTTNG_ASSERT(socket);
1834 LTTNG_ASSERT(chunk);
1835
1836 if (relayd_id != -1ULL) {
1837 LTTNG_OPTIONAL_SET(&msg.u.create_trace_chunk.relayd_id,
1838 relayd_id);
1839 }
1840
1841 chunk_status = lttng_trace_chunk_get_name(chunk, &chunk_name,
1842 &chunk_name_overridden);
1843 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK &&
1844 chunk_status != LTTNG_TRACE_CHUNK_STATUS_NONE) {
1845 ERR("Failed to get name of trace chunk");
1846 ret = -LTTNG_ERR_FATAL;
1847 goto error;
1848 }
1849 if (chunk_name_overridden) {
1850 ret = lttng_strncpy(msg.u.create_trace_chunk.override_name,
1851 chunk_name,
1852 sizeof(msg.u.create_trace_chunk.override_name));
1853 if (ret) {
1854 ERR("Trace chunk name \"%s\" exceeds the maximal length allowed by the consumer protocol",
1855 chunk_name);
1856 ret = -LTTNG_ERR_FATAL;
1857 goto error;
1858 }
1859 }
1860
1861 chunk_status = lttng_trace_chunk_get_creation_timestamp(chunk,
1862 &creation_timestamp);
1863 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1864 ret = -LTTNG_ERR_FATAL;
1865 goto error;
1866 }
1867 msg.u.create_trace_chunk.creation_timestamp =
1868 (uint64_t) creation_timestamp;
1869 /* Only used for logging purposes. */
1870 ret = time_to_iso8601_str(creation_timestamp,
1871 creation_timestamp_buffer,
1872 sizeof(creation_timestamp_buffer));
1873 creation_timestamp_str = !ret ? creation_timestamp_buffer :
1874 "(formatting error)";
1875
1876 chunk_status = lttng_trace_chunk_get_id(chunk, &chunk_id);
1877 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1878 /*
1879 * Anonymous trace chunks should never be transmitted
1880 * to remote peers (consumerd and relayd). They are used
1881 * internally for backward-compatibility purposes.
1882 */
1883 ret = -LTTNG_ERR_FATAL;
1884 goto error;
1885 }
1886 msg.u.create_trace_chunk.chunk_id = chunk_id;
1887
1888 if (chunk_has_local_output) {
1889 chunk_status = lttng_trace_chunk_borrow_chunk_directory_handle(
1890 chunk, &chunk_directory_handle);
1891 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1892 ret = -LTTNG_ERR_FATAL;
1893 goto error;
1894 }
1895 chunk_status = lttng_trace_chunk_get_credentials(
1896 chunk, &chunk_credentials);
1897 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1898 /*
1899 * Not associating credentials to a sessiond chunk is a
1900 * fatal internal error.
1901 */
1902 ret = -LTTNG_ERR_FATAL;
1903 goto error;
1904 }
1905 tc_status = lttng_trace_chunk_create_subdirectory(
1906 chunk, domain_subdir);
1907 if (tc_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1908 PERROR("Failed to create chunk domain output directory \"%s\"",
1909 domain_subdir);
1910 ret = -LTTNG_ERR_FATAL;
1911 goto error;
1912 }
1913 domain_handle = lttng_directory_handle_create_from_handle(
1914 domain_subdir,
1915 chunk_directory_handle);
1916 if (!domain_handle) {
1917 ret = -LTTNG_ERR_FATAL;
1918 goto error;
1919 }
1920
1921 /*
1922 * This will only compile on platforms that support
1923 * dirfd (POSIX.2008). This is fine as the session daemon
1924 * is only built for such platforms.
1925 *
1926 * The ownership of the chunk directory handle's is maintained
1927 * by the trace chunk.
1928 */
1929 domain_dirfd = lttng_directory_handle_get_dirfd(
1930 domain_handle);
1931 LTTNG_ASSERT(domain_dirfd >= 0);
1932
1933 msg.u.create_trace_chunk.credentials.value.uid =
1934 lttng_credentials_get_uid(&chunk_credentials);
1935 msg.u.create_trace_chunk.credentials.value.gid =
1936 lttng_credentials_get_gid(&chunk_credentials);
1937 msg.u.create_trace_chunk.credentials.is_set = 1;
1938 }
1939
1940 DBG("Sending consumer create trace chunk command: relayd_id = %" PRId64
1941 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
1942 ", creation_timestamp = %s",
1943 relayd_id, session_id, chunk_id,
1944 creation_timestamp_str);
1945 health_code_update();
1946 ret = consumer_send_msg(socket, &msg);
1947 health_code_update();
1948 if (ret < 0) {
1949 ERR("Trace chunk creation error on consumer");
1950 ret = -LTTNG_ERR_CREATE_TRACE_CHUNK_FAIL_CONSUMER;
1951 goto error;
1952 }
1953
1954 if (chunk_has_local_output) {
1955 DBG("Sending trace chunk domain directory fd to consumer");
1956 health_code_update();
1957 ret = consumer_send_fds(socket, &domain_dirfd, 1);
1958 health_code_update();
1959 if (ret < 0) {
1960 ERR("Trace chunk creation error on consumer");
1961 ret = -LTTNG_ERR_CREATE_TRACE_CHUNK_FAIL_CONSUMER;
1962 goto error;
1963 }
1964 }
1965 error:
1966 lttng_directory_handle_put(domain_handle);
1967 return ret;
1968 }
1969
1970 /*
1971 * Ask the consumer to close a trace chunk for a given session.
1972 *
1973 * Called with the consumer socket lock held.
1974 */
1975 int consumer_close_trace_chunk(struct consumer_socket *socket,
1976 uint64_t relayd_id, uint64_t session_id,
1977 struct lttng_trace_chunk *chunk,
1978 char *closed_trace_chunk_path)
1979 {
1980 int ret;
1981 enum lttng_trace_chunk_status chunk_status;
1982 lttcomm_consumer_msg msg = {
1983 .cmd_type = LTTNG_CONSUMER_CLOSE_TRACE_CHUNK,
1984 };
1985 msg.u.close_trace_chunk.session_id = session_id;
1986
1987 struct lttcomm_consumer_close_trace_chunk_reply reply;
1988 uint64_t chunk_id;
1989 time_t close_timestamp;
1990 enum lttng_trace_chunk_command_type close_command;
1991 const char *close_command_name = "none";
1992 struct lttng_dynamic_buffer path_reception_buffer;
1993
1994 LTTNG_ASSERT(socket);
1995 lttng_dynamic_buffer_init(&path_reception_buffer);
1996
1997 if (relayd_id != -1ULL) {
1998 LTTNG_OPTIONAL_SET(
1999 &msg.u.close_trace_chunk.relayd_id, relayd_id);
2000 }
2001
2002 chunk_status = lttng_trace_chunk_get_close_command(
2003 chunk, &close_command);
2004 switch (chunk_status) {
2005 case LTTNG_TRACE_CHUNK_STATUS_OK:
2006 LTTNG_OPTIONAL_SET(&msg.u.close_trace_chunk.close_command,
2007 (uint32_t) close_command);
2008 break;
2009 case LTTNG_TRACE_CHUNK_STATUS_NONE:
2010 break;
2011 default:
2012 ERR("Failed to get trace chunk close command");
2013 ret = -1;
2014 goto error;
2015 }
2016
2017 chunk_status = lttng_trace_chunk_get_id(chunk, &chunk_id);
2018 /*
2019 * Anonymous trace chunks should never be transmitted to remote peers
2020 * (consumerd and relayd). They are used internally for
2021 * backward-compatibility purposes.
2022 */
2023 LTTNG_ASSERT(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
2024 msg.u.close_trace_chunk.chunk_id = chunk_id;
2025
2026 chunk_status = lttng_trace_chunk_get_close_timestamp(chunk,
2027 &close_timestamp);
2028 /*
2029 * A trace chunk should be closed locally before being closed remotely.
2030 * Otherwise, the close timestamp would never be transmitted to the
2031 * peers.
2032 */
2033 LTTNG_ASSERT(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
2034 msg.u.close_trace_chunk.close_timestamp = (uint64_t) close_timestamp;
2035
2036 if (msg.u.close_trace_chunk.close_command.is_set) {
2037 close_command_name = lttng_trace_chunk_command_type_get_name(
2038 close_command);
2039 }
2040 DBG("Sending consumer close trace chunk command: relayd_id = %" PRId64
2041 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
2042 ", close command = \"%s\"",
2043 relayd_id, session_id, chunk_id, close_command_name);
2044
2045 health_code_update();
2046 ret = consumer_socket_send(socket, &msg, sizeof(struct lttcomm_consumer_msg));
2047 if (ret < 0) {
2048 ret = -LTTNG_ERR_CLOSE_TRACE_CHUNK_FAIL_CONSUMER;
2049 goto error;
2050 }
2051 ret = consumer_socket_recv(socket, &reply, sizeof(reply));
2052 if (ret < 0) {
2053 ret = -LTTNG_ERR_CLOSE_TRACE_CHUNK_FAIL_CONSUMER;
2054 goto error;
2055 }
2056 if (reply.path_length >= LTTNG_PATH_MAX) {
2057 ERR("Invalid path returned by relay daemon: %" PRIu32 "bytes exceeds maximal allowed length of %d bytes",
2058 reply.path_length, LTTNG_PATH_MAX);
2059 ret = -LTTNG_ERR_INVALID_PROTOCOL;
2060 goto error;
2061 }
2062 ret = lttng_dynamic_buffer_set_size(&path_reception_buffer,
2063 reply.path_length);
2064 if (ret) {
2065 ERR("Failed to allocate reception buffer of path returned by the \"close trace chunk\" command");
2066 ret = -LTTNG_ERR_NOMEM;
2067 goto error;
2068 }
2069 ret = consumer_socket_recv(socket, path_reception_buffer.data,
2070 path_reception_buffer.size);
2071 if (ret < 0) {
2072 ERR("Communication error while receiving path of closed trace chunk");
2073 ret = -LTTNG_ERR_CLOSE_TRACE_CHUNK_FAIL_CONSUMER;
2074 goto error;
2075 }
2076 if (path_reception_buffer.data[path_reception_buffer.size - 1] != '\0') {
2077 ERR("Invalid path returned by relay daemon: not null-terminated");
2078 ret = -LTTNG_ERR_INVALID_PROTOCOL;
2079 goto error;
2080 }
2081 if (closed_trace_chunk_path) {
2082 /*
2083 * closed_trace_chunk_path is assumed to have a length >=
2084 * LTTNG_PATH_MAX
2085 */
2086 memcpy(closed_trace_chunk_path, path_reception_buffer.data,
2087 path_reception_buffer.size);
2088 }
2089 error:
2090 lttng_dynamic_buffer_reset(&path_reception_buffer);
2091 health_code_update();
2092 return ret;
2093 }
2094
2095 /*
2096 * Ask the consumer if a trace chunk exists.
2097 *
2098 * Called with the consumer socket lock held.
2099 * Returns 0 on success, or a negative value on error.
2100 */
2101 int consumer_trace_chunk_exists(struct consumer_socket *socket,
2102 uint64_t relayd_id, uint64_t session_id,
2103 struct lttng_trace_chunk *chunk,
2104 enum consumer_trace_chunk_exists_status *result)
2105 {
2106 int ret;
2107 enum lttng_trace_chunk_status chunk_status;
2108 lttcomm_consumer_msg msg = {
2109 .cmd_type = LTTNG_CONSUMER_TRACE_CHUNK_EXISTS,
2110 };
2111 msg.u.trace_chunk_exists.session_id = session_id;
2112
2113 uint64_t chunk_id;
2114 const char *consumer_reply_str;
2115
2116 LTTNG_ASSERT(socket);
2117
2118 if (relayd_id != -1ULL) {
2119 LTTNG_OPTIONAL_SET(&msg.u.trace_chunk_exists.relayd_id,
2120 relayd_id);
2121 }
2122
2123 chunk_status = lttng_trace_chunk_get_id(chunk, &chunk_id);
2124 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
2125 /*
2126 * Anonymous trace chunks should never be transmitted
2127 * to remote peers (consumerd and relayd). They are used
2128 * internally for backward-compatibility purposes.
2129 */
2130 ret = -LTTNG_ERR_FATAL;
2131 goto error;
2132 }
2133 msg.u.trace_chunk_exists.chunk_id = chunk_id;
2134
2135 DBG("Sending consumer trace chunk exists command: relayd_id = %" PRId64
2136 ", session_id = %" PRIu64
2137 ", chunk_id = %" PRIu64, relayd_id, session_id, chunk_id);
2138
2139 health_code_update();
2140 ret = consumer_send_msg(socket, &msg);
2141 switch (-ret) {
2142 case LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK:
2143 consumer_reply_str = "unknown trace chunk";
2144 *result = CONSUMER_TRACE_CHUNK_EXISTS_STATUS_UNKNOWN_CHUNK;
2145 break;
2146 case LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL:
2147 consumer_reply_str = "trace chunk exists locally";
2148 *result = CONSUMER_TRACE_CHUNK_EXISTS_STATUS_EXISTS_LOCAL;
2149 break;
2150 case LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE:
2151 consumer_reply_str = "trace chunk exists on remote peer";
2152 *result = CONSUMER_TRACE_CHUNK_EXISTS_STATUS_EXISTS_REMOTE;
2153 break;
2154 default:
2155 ERR("Consumer returned an error from TRACE_CHUNK_EXISTS command");
2156 ret = -1;
2157 goto error;
2158 }
2159 DBG("Consumer reply to TRACE_CHUNK_EXISTS command: %s",
2160 consumer_reply_str);
2161 ret = 0;
2162 error:
2163 health_code_update();
2164 return ret;
2165 }
This page took 0.074769 seconds and 4 git commands to generate.