2.8: whats-new: add link to metadata-regenerate
[lttng-docs.git] / 2.8 / lttng-docs-2.8.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.8, 25 October 2016
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/welcome.txt[]
11
12
13 include::../common/audience.txt[]
14
15
16 [[chapters]]
17 === What's in this documentation?
18
19 The LTTng Documentation is divided into the following sections:
20
21 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
22 rudiments of software tracing and the rationale behind the
23 LTTng project.
24 +
25 You can skip this section if you’re familiar with software tracing and
26 with the LTTng project.
27
28 * **<<installing-lttng,Installation>>** describes the steps to
29 install the LTTng packages on common Linux distributions and from
30 their sources.
31 +
32 You can skip this section if you already properly installed LTTng on
33 your target system.
34
35 * **<<getting-started,Quick start>>** is a concise guide to
36 getting started quickly with LTTng kernel and user space tracing.
37 +
38 We recommend this section if you're new to LTTng or to software tracing
39 in general.
40 +
41 You can skip this section if you're not new to LTTng.
42
43 * **<<core-concepts,Core concepts>>** explains the concepts at
44 the heart of LTTng.
45 +
46 It's a good idea to become familiar with the core concepts
47 before attempting to use the toolkit.
48
49 * **<<plumbing,Components of LTTng>>** describes the various components
50 of the LTTng machinery, like the daemons, the libraries, and the
51 command-line interface.
52 * **<<instrumenting,Instrumentation>>** shows different ways to
53 instrument user applications and the Linux kernel.
54 +
55 Instrumenting source code is essential to provide a meaningful
56 source of events.
57 +
58 You can skip this section if you do not have a programming background.
59
60 * **<<controlling-tracing,Tracing control>>** is divided into topics
61 which demonstrate how to use the vast array of features that
62 LTTng{nbsp}{revision} offers.
63 * **<<reference,Reference>>** contains reference tables.
64 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
65 to LTTng or to the field of software tracing.
66
67
68 include::../common/convention.txt[]
69
70
71 include::../common/acknowledgements.txt[]
72
73
74 [[whats-new]]
75 == What's new in LTTng {revision}?
76
77 * **Tracing control**:
78 ** You can attach <<java-application-context,Java application-specific
79 context fields>> to a <<channel,channel>> with the
80 man:lttng-add-context(1) command:
81 +
82 --
83 [role="term"]
84 ----
85 lttng add-context --jul --type='$app.retriever:cur_msg_id'
86 ----
87 --
88 +
89 Here, `$app` is the prefix of all application-specific context fields,
90 `retriever` names a _context information retriever_ defined at the
91 application level, and `cur_msg_id` names a context field read from this
92 retriever.
93 +
94 Both the `java.util.logging` and Apache log4j <<domain,tracing domains>>
95 are supported.
96
97 ** You can use Java application-specific <<adding-context,context>>
98 fields in the <<enabling-disabling-events,filter expression>> of an
99 <<event,event rule>>:
100 +
101 --
102 [role="term"]
103 ----
104 lttng enable-event --log4j my_logger \
105 --filter='$app.retriever:cur_msg_id == 23'
106 ----
107 --
108
109 ** New `lttng status` command which is the equivalent of +lttng list
110 __CUR__+, where +__CUR__+ is the name of the current
111 <<tracing-session,tracing session>>.
112 +
113 See man:lttng-status(1).
114
115 ** New `lttng metadata regenerate` command to
116 <<metadata-regenerate,regenerate the metadata file of an LTTng
117 trace>> at any moment. This command is meant to be used to resample
118 the wall time following a major
119 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
120 so that a system which boots with an incorrect wall time can be
121 traced before its wall time is NTP-corrected.
122 +
123 See man:lttng-metadata(1).
124
125 ** New command-line interface warnings when <<event,event records>> or
126 whole sub-buffers are
127 <<channel-overwrite-mode-vs-discard-mode,lost>>. The warning messages
128 are printed when a <<tracing-session,tracing session>> is
129 <<basic-tracing-session-control,stopped>> (man:lttng-stop(1)
130 command).
131
132 * **User space tracing**:
133 ** Shared object base address dump in order to map <<event,event
134 records>> to original source location (file and line number).
135 +
136 If you attach the `ip` and `vpid` <<adding-context,context fields>> to a
137 user space <<channel,channel>> and if you use the
138 <<liblttng-ust-dl,path:{liblttng-ust-dl.so} helper>>, you can retrieve
139 the source location where a given event record was generated.
140 +
141 The http://diamon.org/babeltrace/[Babeltrace] trace viewer supports this
142 state dump and those context fields since version 1.4 to print the
143 source location of a given event record. http://tracecompass.org/[Trace
144 Compass] also supports this since version 2.0.
145
146 ** A <<java-application,Java application>> which uses
147 `java.util.logging` now adds an LTTng-UST log handler to the desired
148 JUL loggers.
149 +
150 The previous workflow was to initialize the LTTng-UST Java agent
151 by calling `LTTngAgent.getLTTngAgent()`. This had the effect of adding
152 an LTTng-UST log handler to the root loggers.
153
154 ** A <<java-application,Java application>> which uses Apache log4j now
155 adds an LTTng-UST log appender to the desired log4j loggers.
156 +
157 The previous workflow was to initialize the LTTng-UST Java agent
158 by calling `LTTngAgent.getLTTngAgent()`. This had the effect of adding
159 an LTTng-UST appender to the root loggers.
160
161 ** Any <<java-application,Java application>> can provide
162 <<java-application-context,dynamic context fields>> while running
163 thanks to a new API provided by the <<lttng-ust-agents,LTTng-UST Java
164 agent>>. You can require LTTng to record specific context fields in
165 event records, and you can use them in the filter expression of
166 <<event,event rules>>.
167
168 * **Linux kernel tracing**:
169 ** The LTTng kernel modules can now be built into a Linux kernel image,
170 that is, not as loadable modules.
171 +
172 Follow the project's
173 https://github.com/lttng/lttng-modules/blob/stable-{revision}/README.md#kernel-built-in-support[`README.md`]
174 file to learn how.
175
176 ** New instrumentation:
177 *** ARM64 architecture support.
178 *** x86 page faults.
179 *** x86 `irq_vectors`.
180 ** New <<adding-context,context fields>>:
181 *** `interruptible`
182 *** `preemptible`
183 *** `need_reschedule`
184 *** `migratable` (specific to RT-Preempt)
185 ** Clock source plugin support for advanced cases where a custom source
186 of time is needed to timestamp LTTng event records.
187 +
188 See https://github.com/lttng/lttng-modules/blob/stable-{revision}/lttng-clock.h[`lttng-clock.h`]
189 for an overview of the small API.
190
191 * **Documentation**:
192 ** The link:/man[man pages] of the man:lttng(1) command-line tool are
193 split into one man page per command (à la Git), for example:
194 +
195 --
196 [role="term"]
197 ----
198 man lttng-enable-event
199 ----
200 --
201 +
202 You can also use the `--help` option of any man:lttng(1) command to
203 open its man page.
204 +
205 The content and formatting of all the LTTng man pages has improved
206 dramatically.
207
208
209 [[nuts-and-bolts]]
210 == Nuts and bolts
211
212 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
213 generation_ is a modern toolkit for tracing Linux systems and
214 applications. So your first question might be:
215 **what is tracing?**
216
217
218 [[what-is-tracing]]
219 === What is tracing?
220
221 As the history of software engineering progressed and led to what
222 we now take for granted--complex, numerous and
223 interdependent software applications running in parallel on
224 sophisticated operating systems like Linux--the authors of such
225 components, software developers, began feeling a natural
226 urge to have tools that would ensure the robustness and good performance
227 of their masterpieces.
228
229 One major achievement in this field is, inarguably, the
230 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
231 an essential tool for developers to find and fix bugs. But even the best
232 debugger won't help make your software run faster, and nowadays, faster
233 software means either more work done by the same hardware, or cheaper
234 hardware for the same work.
235
236 A _profiler_ is often the tool of choice to identify performance
237 bottlenecks. Profiling is suitable to identify _where_ performance is
238 lost in a given software. The profiler outputs a profile, a statistical
239 summary of observed events, which you may use to discover which
240 functions took the most time to execute. However, a profiler won't
241 report _why_ some identified functions are the bottleneck. Bottlenecks
242 might only occur when specific conditions are met, conditions that are
243 sometimes impossible to capture by a statistical profiler, or impossible
244 to reproduce with an application altered by the overhead of an
245 event-based profiler. For a thorough investigation of software
246 performance issues, a history of execution is essential, with the
247 recorded values of variables and context fields you choose, and
248 with as little influence as possible on the instrumented software. This
249 is where tracing comes in handy.
250
251 _Tracing_ is a technique used to understand what goes on in a running
252 software system. The software used for tracing is called a _tracer_,
253 which is conceptually similar to a tape recorder. When recording,
254 specific instrumentation points placed in the software source code
255 generate events that are saved on a giant tape: a _trace_ file. You
256 can trace user applications and the operating system at the same time,
257 opening the possibility of resolving a wide range of problems that would
258 otherwise be extremely challenging.
259
260 Tracing is often compared to _logging_. However, tracers and loggers are
261 two different tools, serving two different purposes. Tracers are
262 designed to record much lower-level events that occur much more
263 frequently than log messages, often in the range of thousands per
264 second, with very little execution overhead. Logging is more appropriate
265 for a very high-level analysis of less frequent events: user accesses,
266 exceptional conditions (errors and warnings, for example), database
267 transactions, instant messaging communications, and such. Simply put,
268 logging is one of the many use cases that can be satisfied with tracing.
269
270 The list of recorded events inside a trace file can be read manually
271 like a log file for the maximum level of detail, but it is generally
272 much more interesting to perform application-specific analyses to
273 produce reduced statistics and graphs that are useful to resolve a
274 given problem. Trace viewers and analyzers are specialized tools
275 designed to do this.
276
277 In the end, this is what LTTng is: a powerful, open source set of
278 tools to trace the Linux kernel and user applications at the same time.
279 LTTng is composed of several components actively maintained and
280 developed by its link:/community/#where[community].
281
282
283 [[lttng-alternatives]]
284 === Alternatives to noch:{LTTng}
285
286 Excluding proprietary solutions, a few competing software tracers
287 exist for Linux:
288
289 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
290 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
291 user scripts and is responsible for loading code into the
292 Linux kernel for further execution and collecting the outputted data.
293 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
294 subsystem in the Linux kernel in which a virtual machine can execute
295 programs passed from the user space to the kernel. You can attach
296 such programs to tracepoints and KProbes thanks to a system call, and
297 they can output data to the user space when executed thanks to
298 different mechanisms (pipe, VM register values, and eBPF maps, to name
299 a few).
300 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
301 is the de facto function tracer of the Linux kernel. Its user
302 interface is a set of special files in sysfs.
303 * https://perf.wiki.kernel.org/[perf] is
304 a performance analyzing tool for Linux which supports hardware
305 performance counters, tracepoints, as well as other counters and
306 types of probes. perf's controlling utility is the cmd:perf command
307 line/curses tool.
308 * http://linux.die.net/man/1/strace[strace]
309 is a command-line utility which records system calls made by a
310 user process, as well as signal deliveries and changes of process
311 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
312 to fulfill its function.
313 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
314 analyze Linux kernel events. You write scripts, or _chisels_ in
315 sysdig's jargon, in Lua and sysdig executes them while the system is
316 being traced or afterwards. sysdig's interface is the cmd:sysdig
317 command-line tool as well as the curses-based cmd:csysdig tool.
318 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
319 user space tracer which uses custom user scripts to produce plain text
320 traces. SystemTap converts the scripts to the C language, and then
321 compiles them as Linux kernel modules which are loaded to produce
322 trace data. SystemTap's primary user interface is the cmd:stap
323 command-line tool.
324
325 The main distinctive features of LTTng is that it produces correlated
326 kernel and user space traces, as well as doing so with the lowest
327 overhead amongst other solutions. It produces trace files in the
328 http://diamon.org/ctf[CTF] format, a file format optimized
329 for the production and analyses of multi-gigabyte data.
330
331 LTTng is the result of more than 10 years of active open source
332 development by a community of passionate developers.
333 LTTng{nbsp}{revision} is currently available on major desktop and server
334 Linux distributions.
335
336 The main interface for tracing control is a single command-line tool
337 named cmd:lttng. The latter can create several tracing sessions, enable
338 and disable events on the fly, filter events efficiently with custom
339 user expressions, start and stop tracing, and much more. LTTng can
340 record the traces on the file system or send them over the network, and
341 keep them totally or partially. You can view the traces once tracing
342 becomes inactive or in real-time.
343
344 <<installing-lttng,Install LTTng now>> and
345 <<getting-started,start tracing>>!
346
347
348 [[installing-lttng]]
349 == Installation
350
351 **LTTng** is a set of software <<plumbing,components>> which interact to
352 <<instrumenting,instrument>> the Linux kernel and user applications, and
353 to <<controlling-tracing,control tracing>> (start and stop
354 tracing, enable and disable event rules, and the rest). Those
355 components are bundled into the following packages:
356
357 * **LTTng-tools**: Libraries and command-line interface to
358 control tracing.
359 * **LTTng-modules**: Linux kernel modules to instrument and
360 trace the kernel.
361 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
362 trace user applications.
363
364 Most distributions mark the LTTng-modules and LTTng-UST packages as
365 optional when installing LTTng-tools (which is always required). In the
366 following sections, we always provide the steps to install all three,
367 but note that:
368
369 * You only need to install LTTng-modules if you intend to trace the
370 Linux kernel.
371 * You only need to install LTTng-UST if you intend to trace user
372 applications.
373
374 [role="growable"]
375 .Availability of LTTng{nbsp}{revision} for major Linux distributions.
376 |====
377 |Distribution |Available in releases |Alternatives
378
379 |Ubuntu
380 |<<ubuntu,Ubuntu{nbsp}16.10 _Yakkety Yak_>>
381 |LTTng{nbsp}{revision} for Ubuntu{nbsp}14.04 _Trusty Tahr_
382 and Ubuntu{nbsp}16.04 _Xenial Xerus_:
383 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
384
385 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
386 other Ubuntu releases.
387
388 |Fedora
389 |_Not available_
390 |LTTng{nbsp}{revision} for Fedora{nbsp}25 and Fedora{nbsp}26 (not
391 released yet).
392
393 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
394 other Fedora releases.
395
396 |Debian
397 |<<debian,Debian "stretch" (testing)>>
398 |
399 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
400 previous Debian releases.
401
402 |openSUSE
403 |_Not available_
404 |LTTng{nbsp}2.7 for openSUSE Leap{nbsp}42.1.
405
406 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
407 other openSUSE releases.
408
409 |Arch Linux
410 |Latest AUR packages.
411 |
412
413 |Alpine Linux
414 |<<alpine-linux,Alpine Linux "edge">>
415 |LTTng{nbsp}{revision} for Alpine Linux{nbsp}3.5 (not released yet).
416
417 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
418 other Alpine Linux releases.
419
420 |RHEL and SLES
421 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
422 |
423
424 |Buildroot
425 |_Not available_
426 |LTTng{nbsp}{revision} for Buildroot{nbsp}2016.11 (not released yet).
427
428 LTTng{nbsp}2.7 for Buildroot{nbsp}2016.02, Buildroot{nbsp}2016.05,
429 and Buildroot{nbsp}2016.08.
430
431 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
432 other Buildroot releases.
433
434 |OpenEmbedded and Yocto
435 |<<oe-yocto,Yocto Project{nbsp}2.2 _Morty_>> (`openembedded-core` layer)
436 |<<building-from-source,Build LTTng{nbsp}{revision} from source>> for
437 other OpenEmbedded releases.
438 |====
439
440
441 [[ubuntu]]
442 === [[ubuntu-official-repositories]]Ubuntu
443
444 LTTng{nbsp}{revision} is available on Ubuntu{nbsp}16.10 _Yakkety Yak_.
445 For previous releases of Ubuntu, <<ubuntu-ppa,use the LTTng
446 Stable{nbsp}{revision} PPA>>.
447
448 To install LTTng{nbsp}{revision} on Ubuntu 16.10{nbsp}_Yakkety Yak_:
449
450 . Install the main LTTng{nbsp}{revision} packages:
451 +
452 --
453 [role="term"]
454 ----
455 sudo apt-get install lttng-tools
456 sudo apt-get install lttng-modules-dkms
457 sudo apt-get install liblttng-ust-dev
458 ----
459 --
460
461 . **If you need to instrument and trace
462 <<java-application,Java applications>>**, install the LTTng-UST
463 Java agent:
464 +
465 --
466 [role="term"]
467 ----
468 sudo apt-get install liblttng-ust-agent-java
469 ----
470 --
471
472 . **If you need to instrument and trace
473 <<python-application,Python applications>>**, install the
474 LTTng-UST Python agent:
475 +
476 --
477 [role="term"]
478 ----
479 sudo apt-get install python3-lttngust
480 ----
481 --
482
483
484 [[ubuntu-ppa]]
485 ==== noch:{LTTng} Stable {revision} PPA
486
487 The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
488 Stable{nbsp}{revision} PPA] offers the latest stable
489 LTTng{nbsp}{revision} packages for:
490
491 * Ubuntu{nbsp}14.04 _Trusty Tahr_
492 * Ubuntu{nbsp}16.04 _Xenial Xerus_
493
494 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
495
496 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
497 list of packages:
498 +
499 --
500 [role="term"]
501 ----
502 sudo apt-add-repository ppa:lttng/stable-2.8
503 sudo apt-get update
504 ----
505 --
506
507 . Install the main LTTng{nbsp}{revision} packages:
508 +
509 --
510 [role="term"]
511 ----
512 sudo apt-get install lttng-tools
513 sudo apt-get install lttng-modules-dkms
514 sudo apt-get install liblttng-ust-dev
515 ----
516 --
517
518 . **If you need to instrument and trace
519 <<java-application,Java applications>>**, install the LTTng-UST
520 Java agent:
521 +
522 --
523 [role="term"]
524 ----
525 sudo apt-get install liblttng-ust-agent-java
526 ----
527 --
528
529 . **If you need to instrument and trace
530 <<python-application,Python applications>>**, install the
531 LTTng-UST Python agent:
532 +
533 --
534 [role="term"]
535 ----
536 sudo apt-get install python3-lttngust
537 ----
538 --
539
540
541 [[debian]]
542 === Debian
543
544 To install LTTng{nbsp}{revision} on Debian "stretch" (testing):
545
546 . Install the main LTTng{nbsp}{revision} packages:
547 +
548 --
549 [role="term"]
550 ----
551 sudo apt-get install lttng-modules-dkms
552 sudo apt-get install liblttng-ust-dev
553 sudo apt-get install lttng-tools
554 ----
555 --
556
557 . **If you need to instrument and trace <<java-application,Java
558 applications>>**, install the LTTng-UST Java agent:
559 +
560 --
561 [role="term"]
562 ----
563 sudo apt-get install liblttng-ust-agent-java
564 ----
565 --
566
567 . **If you need to instrument and trace <<python-application,Python
568 applications>>**, install the LTTng-UST Python agent:
569 +
570 --
571 [role="term"]
572 ----
573 sudo apt-get install python3-lttngust
574 ----
575 --
576
577
578 [[alpine-linux]]
579 === Alpine Linux
580
581 To install LTTng{nbsp}{revision} (tracing control and user space
582 tracing) on Alpine Linux "edge":
583
584 . Make sure your system is
585 https://wiki.alpinelinux.org/wiki/Edge[configured for "edge"].
586 . Enable the _testing_ repository by uncommenting the corresponding
587 line in path:{/etc/apk/repositories}.
588 . Add the LTTng packages:
589 +
590 --
591 [role="term"]
592 ----
593 sudo apk add lttng-tools
594 sudo apk add lttng-ust-dev
595 ----
596 --
597
598 To install LTTng-modules{nbsp}{revision} (Linux kernel tracing support)
599 on Alpine Linux "edge":
600
601 . Add the vanilla Linux kernel:
602 +
603 --
604 [role="term"]
605 ----
606 apk add linux-vanilla linux-vanilla-dev
607 ----
608 --
609
610 . Reboot with the vanilla Linux kernel.
611 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
612 +
613 --
614 [role="term"]
615 ----
616 cd $(mktemp -d) &&
617 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
618 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
619 cd lttng-modules-2.8.* &&
620 make &&
621 sudo make modules_install &&
622 sudo depmod -a
623 ----
624 --
625
626
627 [[oe-yocto]]
628 === OpenEmbedded and Yocto
629
630 LTTng{nbsp}{revision} recipes are available in the
631 http://layers.openembedded.org/layerindex/branch/master/layer/openembedded-core/[`openembedded-core`]
632 layer for Yocto Project{nbsp}2.2 _Morty_ under the following names:
633
634 * `lttng-tools`
635 * `lttng-modules`
636 * `lttng-ust`
637
638 With BitBake, the simplest way to include LTTng recipes in your target
639 image is to add them to `IMAGE_INSTALL_append` in path:{conf/local.conf}:
640
641 ----
642 IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"
643 ----
644
645 If you use Hob:
646
647 . Select a machine and an image recipe.
648 . Click **Edit image recipe**.
649 . Under the **All recipes** tab, search for **lttng**.
650 . Check the desired LTTng recipes.
651
652 [IMPORTANT]
653 .Java and Python application instrumentation and tracing
654 ====
655 If you need to instrument and trace <<java-application,Java
656 applications>> on openSUSE, you need to build and install
657 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
658 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
659 `--enable-java-agent-all` options to the `configure` script, depending
660 on which Java logging framework you use.
661
662 If you need to instrument and trace <<python-application,Python
663 applications>> on openSUSE, you need to build and install
664 LTTng-UST{nbsp}{revision} from source and pass the
665 `--enable-python-agent` option to the `configure` script.
666 ====
667
668
669 [[enterprise-distributions]]
670 === RHEL, SUSE, and other enterprise distributions
671
672 To install LTTng on enterprise Linux distributions, such as Red Hat
673 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
674 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
675
676
677 [[building-from-source]]
678 === Build from source
679
680 To build and install LTTng{nbsp}{revision} from source:
681
682 . Using your distribution's package manager, or from source, install
683 the following dependencies of LTTng-tools and LTTng-UST:
684 +
685 --
686 * https://sourceforge.net/projects/libuuid/[libuuid]
687 * http://directory.fsf.org/wiki/Popt[popt]
688 * http://liburcu.org/[Userspace RCU]
689 * http://www.xmlsoft.org/[libxml2]
690 --
691
692 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
693 +
694 --
695 [role="term"]
696 ----
697 cd $(mktemp -d) &&
698 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
699 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
700 cd lttng-modules-2.8.* &&
701 make &&
702 sudo make modules_install &&
703 sudo depmod -a
704 ----
705 --
706
707 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
708 +
709 --
710 [role="term"]
711 ----
712 cd $(mktemp -d) &&
713 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.8.tar.bz2 &&
714 tar -xf lttng-ust-latest-2.8.tar.bz2 &&
715 cd lttng-ust-2.8.* &&
716 ./configure &&
717 make &&
718 sudo make install &&
719 sudo ldconfig
720 ----
721 --
722 +
723 --
724 [IMPORTANT]
725 .Java and Python application tracing
726 ====
727 If you need to instrument and trace <<java-application,Java
728 applications>>, pass the `--enable-java-agent-jul`,
729 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
730 `configure` script, depending on which Java logging framework you use.
731
732 If you need to instrument and trace <<python-application,Python
733 applications>>, pass the `--enable-python-agent` option to the
734 `configure` script. You can set the `PYTHON` environment variable to the
735 path to the Python interpreter for which to install the LTTng-UST Python
736 agent package.
737 ====
738 --
739 +
740 --
741 [NOTE]
742 ====
743 By default, LTTng-UST libraries are installed to
744 dir:{/usr/local/lib}, which is the de facto directory in which to
745 keep self-compiled and third-party libraries.
746
747 When <<building-tracepoint-providers-and-user-application,linking an
748 instrumented user application with `liblttng-ust`>>:
749
750 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
751 variable.
752 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
753 man:gcc(1), man:g++(1), or man:clang(1).
754 ====
755 --
756
757 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
758 +
759 --
760 [role="term"]
761 ----
762 cd $(mktemp -d) &&
763 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
764 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
765 cd lttng-tools-2.8.* &&
766 ./configure &&
767 make &&
768 sudo make install &&
769 sudo ldconfig
770 ----
771 --
772
773 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
774 previous steps automatically for a given version of LTTng and confine
775 the installed files in a specific directory. This can be useful to test
776 LTTng without installing it on your system.
777
778
779 [[getting-started]]
780 == Quick start
781
782 This is a short guide to get started quickly with LTTng kernel and user
783 space tracing.
784
785 Before you follow this guide, make sure to <<installing-lttng,install>>
786 LTTng.
787
788 This tutorial walks you through the steps to:
789
790 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
791 . <<tracing-your-own-user-application,Trace a user application>> written
792 in C.
793 . <<viewing-and-analyzing-your-traces,View and analyze the
794 recorded events>>.
795
796
797 [[tracing-the-linux-kernel]]
798 === Trace the Linux kernel
799
800 The following command lines start with cmd:sudo because you need root
801 privileges to trace the Linux kernel. You can avoid using cmd:sudo if
802 your Unix user is a member of the <<lttng-sessiond,tracing group>>.
803
804 . Create a <<tracing-session,tracing session>>:
805 +
806 --
807 [role="term"]
808 ----
809 sudo lttng create my-kernel-session
810 ----
811 --
812
813 . List the available kernel tracepoints and system calls:
814 +
815 --
816 [role="term"]
817 ----
818 lttng list --kernel
819 ----
820 --
821
822 . Create an <<event,event rule>> which matches the desired event names,
823 for example `sched_switch` and `sched_process_fork`:
824 +
825 --
826 [role="term"]
827 ----
828 sudo lttng enable-event --kernel sched_switch,sched_process_fork
829 ----
830 --
831 +
832 You can also create an event rule which _matches_ all the Linux kernel
833 tracepoints (this will generate a lot of data when tracing):
834 +
835 --
836 [role="term"]
837 ----
838 sudo lttng enable-event --kernel --all
839 ----
840 --
841
842 . Start tracing:
843 +
844 --
845 [role="term"]
846 ----
847 sudo lttng start
848 ----
849 --
850
851 . Do some operation on your system for a few seconds. For example,
852 load a website, or list the files of a directory.
853 . Stop tracing and destroy the tracing session:
854 +
855 --
856 [role="term"]
857 ----
858 sudo lttng stop
859 sudo lttng destroy
860 ----
861 --
862 +
863 The man:lttng-destroy(1) command does not destroy the trace data; it
864 only destroys the state of the tracing session.
865
866 By default, LTTng saves the traces in
867 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
868 where +__name__+ is the tracing session name. Note that the
869 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
870
871 See <<viewing-and-analyzing-your-traces,View and analyze the
872 recorded events>> to view the recorded events.
873
874
875 [[tracing-your-own-user-application]]
876 === Trace a user application
877
878 This section steps you through a simple example to trace a
879 _Hello world_ program written in C.
880
881 To create the traceable user application:
882
883 . Create the tracepoint provider header file, which defines the
884 tracepoints and the events they can generate:
885 +
886 --
887 [source,c]
888 .path:{hello-tp.h}
889 ----
890 #undef TRACEPOINT_PROVIDER
891 #define TRACEPOINT_PROVIDER hello_world
892
893 #undef TRACEPOINT_INCLUDE
894 #define TRACEPOINT_INCLUDE "./hello-tp.h"
895
896 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
897 #define _HELLO_TP_H
898
899 #include <lttng/tracepoint.h>
900
901 TRACEPOINT_EVENT(
902 hello_world,
903 my_first_tracepoint,
904 TP_ARGS(
905 int, my_integer_arg,
906 char*, my_string_arg
907 ),
908 TP_FIELDS(
909 ctf_string(my_string_field, my_string_arg)
910 ctf_integer(int, my_integer_field, my_integer_arg)
911 )
912 )
913
914 #endif /* _HELLO_TP_H */
915
916 #include <lttng/tracepoint-event.h>
917 ----
918 --
919
920 . Create the tracepoint provider package source file:
921 +
922 --
923 [source,c]
924 .path:{hello-tp.c}
925 ----
926 #define TRACEPOINT_CREATE_PROBES
927 #define TRACEPOINT_DEFINE
928
929 #include "hello-tp.h"
930 ----
931 --
932
933 . Build the tracepoint provider package:
934 +
935 --
936 [role="term"]
937 ----
938 gcc -c -I. hello-tp.c
939 ----
940 --
941
942 . Create the _Hello World_ application source file:
943 +
944 --
945 [source,c]
946 .path:{hello.c}
947 ----
948 #include <stdio.h>
949 #include "hello-tp.h"
950
951 int main(int argc, char *argv[])
952 {
953 int x;
954
955 puts("Hello, World!\nPress Enter to continue...");
956
957 /*
958 * The following getchar() call is only placed here for the purpose
959 * of this demonstration, to pause the application in order for
960 * you to have time to list its tracepoints. It is not
961 * needed otherwise.
962 */
963 getchar();
964
965 /*
966 * A tracepoint() call.
967 *
968 * Arguments, as defined in hello-tp.h:
969 *
970 * 1. Tracepoint provider name (required)
971 * 2. Tracepoint name (required)
972 * 3. my_integer_arg (first user-defined argument)
973 * 4. my_string_arg (second user-defined argument)
974 *
975 * Notice the tracepoint provider and tracepoint names are
976 * NOT strings: they are in fact parts of variables that the
977 * macros in hello-tp.h create.
978 */
979 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
980
981 for (x = 0; x < argc; ++x) {
982 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
983 }
984
985 puts("Quitting now!");
986 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
987
988 return 0;
989 }
990 ----
991 --
992
993 . Build the application:
994 +
995 --
996 [role="term"]
997 ----
998 gcc -c hello.c
999 ----
1000 --
1001
1002 . Link the application with the tracepoint provider package,
1003 `liblttng-ust`, and `libdl`:
1004 +
1005 --
1006 [role="term"]
1007 ----
1008 gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
1009 ----
1010 --
1011
1012 Here's the whole build process:
1013
1014 [role="img-100"]
1015 .User space tracing tutorial's build steps.
1016 image::ust-flow.png[]
1017
1018 To trace the user application:
1019
1020 . Run the application with a few arguments:
1021 +
1022 --
1023 [role="term"]
1024 ----
1025 ./hello world and beyond
1026 ----
1027 --
1028 +
1029 You see:
1030 +
1031 --
1032 ----
1033 Hello, World!
1034 Press Enter to continue...
1035 ----
1036 --
1037
1038 . Start an LTTng <<lttng-sessiond,session daemon>>:
1039 +
1040 --
1041 [role="term"]
1042 ----
1043 lttng-sessiond --daemonize
1044 ----
1045 --
1046 +
1047 Note that a session daemon might already be running, for example as
1048 a service that the distribution's service manager started.
1049
1050 . List the available user space tracepoints:
1051 +
1052 --
1053 [role="term"]
1054 ----
1055 lttng list --userspace
1056 ----
1057 --
1058 +
1059 You see the `hello_world:my_first_tracepoint` tracepoint listed
1060 under the `./hello` process.
1061
1062 . Create a <<tracing-session,tracing session>>:
1063 +
1064 --
1065 [role="term"]
1066 ----
1067 lttng create my-user-space-session
1068 ----
1069 --
1070
1071 . Create an <<event,event rule>> which matches the
1072 `hello_world:my_first_tracepoint` event name:
1073 +
1074 --
1075 [role="term"]
1076 ----
1077 lttng enable-event --userspace hello_world:my_first_tracepoint
1078 ----
1079 --
1080
1081 . Start tracing:
1082 +
1083 --
1084 [role="term"]
1085 ----
1086 lttng start
1087 ----
1088 --
1089
1090 . Go back to the running `hello` application and press Enter. The
1091 program executes all `tracepoint()` instrumentation points and exits.
1092 . Stop tracing and destroy the tracing session:
1093 +
1094 --
1095 [role="term"]
1096 ----
1097 sudo lttng stop
1098 sudo lttng destroy
1099 ----
1100 --
1101 +
1102 The man:lttng-destroy(1) command does not destroy the trace data; it
1103 only destroys the state of the tracing session.
1104
1105 By default, LTTng saves the traces in
1106 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
1107 where +__name__+ is the tracing session name. Note that the
1108 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
1109
1110 See <<viewing-and-analyzing-your-traces,View and analyze the
1111 recorded events>> to view the recorded events.
1112
1113
1114 [[viewing-and-analyzing-your-traces]]
1115 === View and analyze the recorded events
1116
1117 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
1118 kernel>> and <<tracing-your-own-user-application,Trace a user
1119 application>> tutorials, you can inspect the recorded events.
1120
1121 Many tools are available to read LTTng traces:
1122
1123 * **cmd:babeltrace** is a command-line utility which converts trace
1124 formats; it supports the format that LTTng produces, CTF, as well as a
1125 basic text output which can be ++grep++ed. The cmd:babeltrace command
1126 is part of the http://diamon.org/babeltrace[Babeltrace] project.
1127 * Babeltrace also includes
1128 **https://www.python.org/[Python] bindings** so
1129 that you can easily open and read an LTTng trace with your own script,
1130 benefiting from the power of Python.
1131 * http://tracecompass.org/[**Trace Compass**]
1132 is a graphical user interface for viewing and analyzing any type of
1133 logs or traces, including LTTng's.
1134 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
1135 project which includes many high-level analyses of LTTng kernel
1136 traces, like scheduling statistics, interrupt frequency distribution,
1137 top CPU usage, and more.
1138
1139 NOTE: This section assumes that the traces recorded during the previous
1140 tutorials were saved to their default location, in the
1141 dir:{$LTTNG_HOME/lttng-traces} directory. Note that the env:LTTNG_HOME
1142 environment variable defaults to `$HOME` if not set.
1143
1144
1145 [[viewing-and-analyzing-your-traces-bt]]
1146 ==== Use the cmd:babeltrace command-line tool
1147
1148 The simplest way to list all the recorded events of a trace is to pass
1149 its path to cmd:babeltrace with no options:
1150
1151 [role="term"]
1152 ----
1153 babeltrace ~/lttng-traces/my-user-space-session*
1154 ----
1155
1156 cmd:babeltrace finds all traces recursively within the given path and
1157 prints all their events, merging them in chronological order.
1158
1159 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
1160 further filtering:
1161
1162 [role="term"]
1163 ----
1164 babeltrace ~/lttng-traces/my-kernel-session* | grep sys_
1165 ----
1166
1167 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
1168 count the recorded events:
1169
1170 [role="term"]
1171 ----
1172 babeltrace ~/lttng-traces/my-kernel-session* | grep sys_read | wc --lines
1173 ----
1174
1175
1176 [[viewing-and-analyzing-your-traces-bt-python]]
1177 ==== Use the Babeltrace Python bindings
1178
1179 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
1180 is useful to isolate events by simple matching using man:grep(1) and
1181 similar utilities. However, more elaborate filters, such as keeping only
1182 event records with a field value falling within a specific range, are
1183 not trivial to write using a shell. Moreover, reductions and even the
1184 most basic computations involving multiple event records are virtually
1185 impossible to implement.
1186
1187 Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
1188 to read the event records of an LTTng trace sequentially and compute the
1189 desired information.
1190
1191 The following script accepts an LTTng Linux kernel trace path as its
1192 first argument and prints the short names of the top 5 running processes
1193 on CPU 0 during the whole trace:
1194
1195 [source,python]
1196 .path:{top5proc.py}
1197 ----
1198 from collections import Counter
1199 import babeltrace
1200 import sys
1201
1202
1203 def top5proc():
1204 if len(sys.argv) != 2:
1205 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
1206 print(msg, file=sys.stderr)
1207 return False
1208
1209 # A trace collection contains one or more traces
1210 col = babeltrace.TraceCollection()
1211
1212 # Add the trace provided by the user (LTTng traces always have
1213 # the 'ctf' format)
1214 if col.add_trace(sys.argv[1], 'ctf') is None:
1215 raise RuntimeError('Cannot add trace')
1216
1217 # This counter dict contains execution times:
1218 #
1219 # task command name -> total execution time (ns)
1220 exec_times = Counter()
1221
1222 # This contains the last `sched_switch` timestamp
1223 last_ts = None
1224
1225 # Iterate on events
1226 for event in col.events:
1227 # Keep only `sched_switch` events
1228 if event.name != 'sched_switch':
1229 continue
1230
1231 # Keep only events which happened on CPU 0
1232 if event['cpu_id'] != 0:
1233 continue
1234
1235 # Event timestamp
1236 cur_ts = event.timestamp
1237
1238 if last_ts is None:
1239 # We start here
1240 last_ts = cur_ts
1241
1242 # Previous task command (short) name
1243 prev_comm = event['prev_comm']
1244
1245 # Initialize entry in our dict if not yet done
1246 if prev_comm not in exec_times:
1247 exec_times[prev_comm] = 0
1248
1249 # Compute previous command execution time
1250 diff = cur_ts - last_ts
1251
1252 # Update execution time of this command
1253 exec_times[prev_comm] += diff
1254
1255 # Update last timestamp
1256 last_ts = cur_ts
1257
1258 # Display top 5
1259 for name, ns in exec_times.most_common(5):
1260 s = ns / 1000000000
1261 print('{:20}{} s'.format(name, s))
1262
1263 return True
1264
1265
1266 if __name__ == '__main__':
1267 sys.exit(0 if top5proc() else 1)
1268 ----
1269
1270 Run this script:
1271
1272 [role="term"]
1273 ----
1274 python3 top5proc.py ~/lttng-traces/my-kernel-session*/kernel
1275 ----
1276
1277 Output example:
1278
1279 ----
1280 swapper/0 48.607245889 s
1281 chromium 7.192738188 s
1282 pavucontrol 0.709894415 s
1283 Compositor 0.660867933 s
1284 Xorg.bin 0.616753786 s
1285 ----
1286
1287 Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1288 weren't using the CPU that much when tracing, its first position in the
1289 list makes sense.
1290
1291
1292 [[core-concepts]]
1293 == [[understanding-lttng]]Core concepts
1294
1295 From a user's perspective, the LTTng system is built on a few concepts,
1296 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1297 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1298 Understanding how those objects relate to eachother is key in mastering
1299 the toolkit.
1300
1301 The core concepts are:
1302
1303 * <<tracing-session,Tracing session>>
1304 * <<domain,Tracing domain>>
1305 * <<channel,Channel and ring buffer>>
1306 * <<"event","Instrumentation point, event rule, event, and event record">>
1307
1308
1309 [[tracing-session]]
1310 === Tracing session
1311
1312 A _tracing session_ is a stateful dialogue between you and
1313 a <<lttng-sessiond,session daemon>>. You can
1314 <<creating-destroying-tracing-sessions,create a new tracing
1315 session>> with the `lttng create` command.
1316
1317 Anything that you do when you control LTTng tracers happens within a
1318 tracing session. In particular, a tracing session:
1319
1320 * Has its own name.
1321 * Has its own set of trace files.
1322 * Has its own state of activity (started or stopped).
1323 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1324 snapshot, or live).
1325 * Has its own <<channel,channels>> which have their own
1326 <<event,event rules>>.
1327
1328 [role="img-100"]
1329 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1330 image::concepts.png[]
1331
1332 Those attributes and objects are completely isolated between different
1333 tracing sessions.
1334
1335 A tracing session is analogous to a cash machine session:
1336 the operations you do on the banking system through the cash machine do
1337 not alter the data of other users of the same system. In the case of
1338 the cash machine, a session lasts as long as your bank card is inside.
1339 In the case of LTTng, a tracing session lasts from the `lttng create`
1340 command to the `lttng destroy` command.
1341
1342 [role="img-100"]
1343 .Each Unix user has its own set of tracing sessions.
1344 image::many-sessions.png[]
1345
1346
1347 [[tracing-session-mode]]
1348 ==== Tracing session mode
1349
1350 LTTng can send the generated trace data to different locations. The
1351 _tracing session mode_ dictates where to send it. The following modes
1352 are available in LTTng{nbsp}{revision}:
1353
1354 Local mode::
1355 LTTng writes the traces to the file system of the machine being traced
1356 (target system).
1357
1358 Network streaming mode::
1359 LTTng sends the traces over the network to a
1360 <<lttng-relayd,relay daemon>> running on a remote system.
1361
1362 Snapshot mode::
1363 LTTng does not write the traces by default. Instead, you can request
1364 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1365 current tracing buffers, and to write it to the target's file system
1366 or to send it over the network to a <<lttng-relayd,relay daemon>>
1367 running on a remote system.
1368
1369 Live mode::
1370 This mode is similar to the network streaming mode, but a live
1371 trace viewer can connect to the distant relay daemon to
1372 <<lttng-live,view event records as LTTng generates them>> by
1373 the tracers.
1374
1375
1376 [[domain]]
1377 === Tracing domain
1378
1379 A _tracing domain_ is a namespace for event sources. A tracing domain
1380 has its own properties and features.
1381
1382 There are currently five available tracing domains:
1383
1384 * Linux kernel
1385 * User space
1386 * `java.util.logging` (JUL)
1387 * log4j
1388 * Python
1389
1390 You must specify a tracing domain when using some commands to avoid
1391 ambiguity. For example, since all the domains support named tracepoints
1392 as event sources (instrumentation points that you manually insert in the
1393 source code), you need to specify a tracing domain when
1394 <<enabling-disabling-events,creating an event rule>> because all the
1395 tracing domains could have tracepoints with the same names.
1396
1397 Some features are reserved to specific tracing domains. Dynamic function
1398 entry and return instrumentation points, for example, are currently only
1399 supported in the Linux kernel tracing domain, but support for other
1400 tracing domains could be added in the future.
1401
1402 You can create <<channel,channels>> in the Linux kernel and user space
1403 tracing domains. The other tracing domains have a single default
1404 channel.
1405
1406
1407 [[channel]]
1408 === Channel and ring buffer
1409
1410 A _channel_ is an object which is responsible for a set of ring buffers.
1411 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1412 tracer emits an event, it can record it to one or more
1413 sub-buffers. The attributes of a channel determine what to do when
1414 there's no space left for a new event record because all sub-buffers
1415 are full, where to send a full sub-buffer, and other behaviours.
1416
1417 A channel is always associated to a <<domain,tracing domain>>. The
1418 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1419 a default channel which you cannot configure.
1420
1421 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1422 an event, it records it to the sub-buffers of all
1423 the enabled channels with a satisfied event rule, as long as those
1424 channels are part of active <<tracing-session,tracing sessions>>.
1425
1426
1427 [[channel-buffering-schemes]]
1428 ==== Per-user vs. per-process buffering schemes
1429
1430 A channel has at least one ring buffer _per CPU_. LTTng always
1431 records an event to the ring buffer associated to the CPU on which it
1432 occurred.
1433
1434 Two _buffering schemes_ are available when you
1435 <<enabling-disabling-channels,create a channel>> in the
1436 user space <<domain,tracing domain>>:
1437
1438 Per-user buffering::
1439 Allocate one set of ring buffers--one per CPU--shared by all the
1440 instrumented processes of each Unix user.
1441 +
1442 --
1443 [role="img-100"]
1444 .Per-user buffering scheme.
1445 image::per-user-buffering.png[]
1446 --
1447
1448 Per-process buffering::
1449 Allocate one set of ring buffers--one per CPU--for each
1450 instrumented process.
1451 +
1452 --
1453 [role="img-100"]
1454 .Per-process buffering scheme.
1455 image::per-process-buffering.png[]
1456 --
1457 +
1458 The per-process buffering scheme tends to consume more memory than the
1459 per-user option because systems generally have more instrumented
1460 processes than Unix users running instrumented processes. However, the
1461 per-process buffering scheme ensures that one process having a high
1462 event throughput won't fill all the shared sub-buffers of the same
1463 user, only its own.
1464
1465 The Linux kernel tracing domain has only one available buffering scheme
1466 which is to allocate a single set of ring buffers for the whole system.
1467 This scheme is similar to the per-user option, but with a single, global
1468 user "running" the kernel.
1469
1470
1471 [[channel-overwrite-mode-vs-discard-mode]]
1472 ==== Overwrite vs. discard event loss modes
1473
1474 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1475 arc in the following animation) of a specific channel's ring buffer.
1476 When there's no space left in a sub-buffer, the tracer marks it as
1477 consumable (red) and another, empty sub-buffer starts receiving the
1478 following event records. A <<lttng-consumerd,consumer daemon>>
1479 eventually consumes the marked sub-buffer (returns to white).
1480
1481 [NOTE]
1482 [role="docsvg-channel-subbuf-anim"]
1483 ====
1484 {note-no-anim}
1485 ====
1486
1487 In an ideal world, sub-buffers are consumed faster than they are filled,
1488 as is the case in the previous animation. In the real world,
1489 however, all sub-buffers can be full at some point, leaving no space to
1490 record the following events.
1491
1492 By design, LTTng is a _non-blocking_ tracer: when no empty sub-buffer is
1493 available, it is acceptable to lose event records when the alternative
1494 would be to cause substantial delays in the instrumented application's
1495 execution. LTTng privileges performance over integrity; it aims at
1496 perturbing the traced system as little as possible in order to make
1497 tracing of subtle race conditions and rare interrupt cascades possible.
1498
1499 When it comes to losing event records because no empty sub-buffer is
1500 available, the channel's _event loss mode_ determines what to do. The
1501 available event loss modes are:
1502
1503 Discard mode::
1504 Drop the newest event records until a the tracer
1505 releases a sub-buffer.
1506
1507 Overwrite mode::
1508 Clear the sub-buffer containing the oldest event records and start
1509 writing the newest event records there.
1510 +
1511 This mode is sometimes called _flight recorder mode_ because it's
1512 similar to a
1513 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1514 always keep a fixed amount of the latest data.
1515
1516 Which mechanism you should choose depends on your context: prioritize
1517 the newest or the oldest event records in the ring buffer?
1518
1519 Beware that, in overwrite mode, the tracer abandons a whole sub-buffer
1520 as soon as a there's no space left for a new event record, whereas in
1521 discard mode, the tracer only discards the event record that doesn't
1522 fit.
1523
1524 In discard mode, LTTng increments a count of lost event records when
1525 an event record is lost and saves this count to the trace. In
1526 overwrite mode, LTTng keeps no information when it overwrites a
1527 sub-buffer before consuming it.
1528
1529 There are a few ways to decrease your probability of losing event
1530 records.
1531 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1532 how you can fine-une the sub-buffer count and size of a channel to
1533 virtually stop losing event records, though at the cost of greater
1534 memory usage.
1535
1536
1537 [[channel-subbuf-size-vs-subbuf-count]]
1538 ==== Sub-buffer count and size
1539
1540 When you <<enabling-disabling-channels,create a channel>>, you can
1541 set its number of sub-buffers and their size.
1542
1543 Note that there is noticeable CPU overhead introduced when
1544 switching sub-buffers (marking a full one as consumable and switching
1545 to an empty one for the following events to be recorded). Knowing this,
1546 the following list presents a few practical situations along with how
1547 to configure the sub-buffer count and size for them:
1548
1549 * **High event throughput**: In general, prefer bigger sub-buffers to
1550 lower the risk of losing event records.
1551 +
1552 Having bigger sub-buffers also ensures a lower sub-buffer switching
1553 frequency.
1554 +
1555 The number of sub-buffers is only meaningful if you create the channel
1556 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1557 other sub-buffers are left unaltered.
1558
1559 * **Low event throughput**: In general, prefer smaller sub-buffers
1560 since the risk of losing event records is low.
1561 +
1562 Because events occur less frequently, the sub-buffer switching frequency
1563 should remain low and thus the tracer's overhead should not be a
1564 problem.
1565
1566 * **Low memory system**: If your target system has a low memory
1567 limit, prefer fewer first, then smaller sub-buffers.
1568 +
1569 Even if the system is limited in memory, you want to keep the
1570 sub-buffers as big as possible to avoid a high sub-buffer switching
1571 frequency.
1572
1573 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1574 which means event data is very compact. For example, the average
1575 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1576 sub-buffer size of 1{nbsp}MiB is considered big.
1577
1578 The previous situations highlight the major trade-off between a few big
1579 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1580 frequency vs. how much data is lost in overwrite mode. Assuming a
1581 constant event throughput and using the overwrite mode, the two
1582 following configurations have the same ring buffer total size:
1583
1584 [NOTE]
1585 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1586 ====
1587 {note-no-anim}
1588 ====
1589
1590 * **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1591 switching frequency, but if a sub-buffer overwrite happens, half of
1592 the event records so far (4{nbsp}MiB) are definitely lost.
1593 * **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1594 overhead as the previous configuration, but if a sub-buffer
1595 overwrite happens, only the eighth of event records so far are
1596 definitely lost.
1597
1598 In discard mode, the sub-buffers count parameter is pointless: use two
1599 sub-buffers and set their size according to the requirements of your
1600 situation.
1601
1602
1603 [[channel-switch-timer]]
1604 ==== Switch timer period
1605
1606 The _switch timer period_ is an important configurable attribute of
1607 a channel to ensure periodic sub-buffer flushing.
1608
1609 When the _switch timer_ expires, a sub-buffer switch happens. You can
1610 set the switch timer period attribute when you
1611 <<enabling-disabling-channels,create a channel>> to ensure that event
1612 data is consumed and committed to trace files or to a distant relay
1613 daemon periodically in case of a low event throughput.
1614
1615 [NOTE]
1616 [role="docsvg-channel-switch-timer"]
1617 ====
1618 {note-no-anim}
1619 ====
1620
1621 This attribute is also convenient when you use big sub-buffers to cope
1622 with a sporadic high event throughput, even if the throughput is
1623 normally low.
1624
1625
1626 [[channel-read-timer]]
1627 ==== Read timer period
1628
1629 By default, the LTTng tracers use a notification mechanism to signal a
1630 full sub-buffer so that a consumer daemon can consume it. When such
1631 notifications must be avoided, for example in real-time applications,
1632 you can use the channel's _read timer_ instead. When the read timer
1633 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1634 consumable sub-buffers.
1635
1636
1637 [[tracefile-rotation]]
1638 ==== Trace file count and size
1639
1640 By default, trace files can grow as large as needed. You can set the
1641 maximum size of each trace file that a channel writes when you
1642 <<enabling-disabling-channels,create a channel>>. When the size of
1643 a trace file reaches the channel's fixed maximum size, LTTng creates
1644 another file to contain the next event records. LTTng appends a file
1645 count to each trace file name in this case.
1646
1647 If you set the trace file size attribute when you create a channel, the
1648 maximum number of trace files that LTTng creates is _unlimited_ by
1649 default. To limit them, you can also set a maximum number of trace
1650 files. When the number of trace files reaches the channel's fixed
1651 maximum count, the oldest trace file is overwritten. This mechanism is
1652 called _trace file rotation_.
1653
1654
1655 [[event]]
1656 === Instrumentation point, event rule, event, and event record
1657
1658 An _event rule_ is a set of conditions which must be **all** satisfied
1659 for LTTng to record an occuring event.
1660
1661 You set the conditions when you <<enabling-disabling-events,create
1662 an event rule>>.
1663
1664 You always attach an event rule to <<channel,channel>> when you create
1665 it.
1666
1667 When an event passes the conditions of an event rule, LTTng records it
1668 in one of the attached channel's sub-buffers.
1669
1670 The available conditions, as of LTTng{nbsp}{revision}, are:
1671
1672 * The event rule _is enabled_.
1673 * The instrumentation point's type _is{nbsp}T_.
1674 * The instrumentation point's name (sometimes called _event name_)
1675 _matches{nbsp}N_, but _is not{nbsp}E_.
1676 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1677 _is exactly{nbsp}L_.
1678 * The fields of the event's payload _satisfy_ a filter
1679 expression{nbsp}__F__.
1680
1681 As you can see, all the conditions but the dynamic filter are related to
1682 the event rule's status or to the instrumentation point, not to the
1683 occurring events. This is why, without a filter, checking if an event
1684 passes an event rule is not a dynamic task: when you create or modify an
1685 event rule, all the tracers of its tracing domain enable or disable the
1686 instrumentation points themselves once. This is possible because the
1687 attributes of an instrumentation point (type, name, and log level) are
1688 defined statically. In other words, without a dynamic filter, the tracer
1689 _does not evaluate_ the arguments of an instrumentation point unless it
1690 matches an enabled event rule.
1691
1692 Note that, for LTTng to record an event, the <<channel,channel>> to
1693 which a matching event rule is attached must also be enabled, and the
1694 tracing session owning this channel must be active.
1695
1696 [role="img-100"]
1697 .Logical path from an instrumentation point to an event record.
1698 image::event-rule.png[]
1699
1700 .Event, event record, or event rule?
1701 ****
1702 With so many similar terms, it's easy to get confused.
1703
1704 An **event** is the consequence of the execution of an _instrumentation
1705 point_, like a tracepoint that you manually place in some source code,
1706 or a Linux kernel KProbe. An event is said to _occur_ at a specific
1707 time. Different actions can be taken upon the occurance of an event,
1708 like record the event's payload to a buffer.
1709
1710 An **event record** is the representation of an event in a sub-buffer. A
1711 tracer is responsible for capturing the payload of an event, current
1712 context variables, the event's ID, and the event's timestamp. LTTng
1713 can append this sub-buffer to a trace file.
1714
1715 An **event rule** is a set of conditions which must all be satisfied for
1716 LTTng to record an occuring event. Events still occur without
1717 satisfying event rules, but LTTng does not record them.
1718 ****
1719
1720
1721 [[plumbing]]
1722 == Components of noch:{LTTng}
1723
1724 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1725 to call LTTng a simple _tool_ since it is composed of multiple
1726 interacting components. This section describes those components,
1727 explains their respective roles, and shows how they connect together to
1728 form the LTTng ecosystem.
1729
1730 The following diagram shows how the most important components of LTTng
1731 interact with user applications, the Linux kernel, and you:
1732
1733 [role="img-100"]
1734 .Control and trace data paths between LTTng components.
1735 image::plumbing.png[]
1736
1737 The LTTng project incorporates:
1738
1739 * **LTTng-tools**: Libraries and command-line interface to
1740 control tracing sessions.
1741 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1742 ** <<lttng-consumerd,Consumer daemon>> (man:lttng-consumerd(8)).
1743 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1744 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1745 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1746 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1747 applications.
1748 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1749 headers to instrument and trace any native user application.
1750 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1751 *** `liblttng-ust-libc-wrapper`
1752 *** `liblttng-ust-pthread-wrapper`
1753 *** `liblttng-ust-cyg-profile`
1754 *** `liblttng-ust-cyg-profile-fast`
1755 *** `liblttng-ust-dl`
1756 ** User space tracepoint provider source files generator command-line
1757 tool (man:lttng-gen-tp(1)).
1758 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1759 Java applications using `java.util.logging` or
1760 Apache log4j 1.2 logging.
1761 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1762 Python applications using the standard `logging` package.
1763 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1764 the kernel.
1765 ** LTTng kernel tracer module.
1766 ** Tracing ring buffer kernel modules.
1767 ** Probe kernel modules.
1768 ** LTTng logger kernel module.
1769
1770
1771 [[lttng-cli]]
1772 === Tracing control command-line interface
1773
1774 [role="img-100"]
1775 .The tracing control command-line interface.
1776 image::plumbing-lttng-cli.png[]
1777
1778 The _man:lttng(1) command-line tool_ is the standard user interface to
1779 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1780 is part of LTTng-tools.
1781
1782 The cmd:lttng tool is linked with
1783 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1784 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1785
1786 The cmd:lttng tool has a Git-like interface:
1787
1788 [role="term"]
1789 ----
1790 lttng <general options> <command> <command options>
1791 ----
1792
1793 The <<controlling-tracing,Tracing control>> section explores the
1794 available features of LTTng using the cmd:lttng tool.
1795
1796
1797 [[liblttng-ctl-lttng]]
1798 === Tracing control library
1799
1800 [role="img-100"]
1801 .The tracing control library.
1802 image::plumbing-liblttng-ctl.png[]
1803
1804 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1805 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1806 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1807
1808 The <<lttng-cli,cmd:lttng command-line tool>>
1809 is linked with `liblttng-ctl`.
1810
1811 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1812 "master" header:
1813
1814 [source,c]
1815 ----
1816 #include <lttng/lttng.h>
1817 ----
1818
1819 Some objects are referenced by name (C string), such as tracing
1820 sessions, but most of them require to create a handle first using
1821 `lttng_create_handle()`.
1822
1823 The best available developer documentation for `liblttng-ctl` is, as of
1824 LTTng{nbsp}{revision}, its installed header files. Every function and
1825 structure is thoroughly documented.
1826
1827
1828 [[lttng-ust]]
1829 === User space tracing library
1830
1831 [role="img-100"]
1832 .The user space tracing library.
1833 image::plumbing-liblttng-ust.png[]
1834
1835 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1836 is the LTTng user space tracer. It receives commands from a
1837 <<lttng-sessiond,session daemon>>, for example to
1838 enable and disable specific instrumentation points, and writes event
1839 records to ring buffers shared with a
1840 <<lttng-consumerd,consumer daemon>>.
1841 `liblttng-ust` is part of LTTng-UST.
1842
1843 Public C header files are installed beside `liblttng-ust` to
1844 instrument any <<c-application,C or $$C++$$ application>>.
1845
1846 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1847 packages, use their own library providing tracepoints which is
1848 linked with `liblttng-ust`.
1849
1850 An application or library does not have to initialize `liblttng-ust`
1851 manually: its constructor does the necessary tasks to properly register
1852 to a session daemon. The initialization phase also enables the
1853 instrumentation points matching the <<event,event rules>> that you
1854 already created.
1855
1856
1857 [[lttng-ust-agents]]
1858 === User space tracing agents
1859
1860 [role="img-100"]
1861 .The user space tracing agents.
1862 image::plumbing-lttng-ust-agents.png[]
1863
1864 The _LTTng-UST Java and Python agents_ are regular Java and Python
1865 packages which add LTTng tracing capabilities to the
1866 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1867
1868 In the case of Java, the
1869 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1870 core logging facilities] and
1871 https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1872 Note that Apache Log4{nbsp}2 is not supported.
1873
1874 In the case of Python, the standard
1875 https://docs.python.org/3/library/logging.html[`logging`] package
1876 is supported. Both Python 2 and Python 3 modules can import the
1877 LTTng-UST Python agent package.
1878
1879 The applications using the LTTng-UST agents are in the
1880 `java.util.logging` (JUL),
1881 log4j, and Python <<domain,tracing domains>>.
1882
1883 Both agents use the same mechanism to trace the log statements. When an
1884 agent is initialized, it creates a log handler that attaches to the root
1885 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1886 When the application executes a log statement, it is passed to the
1887 agent's log handler by the root logger. The agent's log handler calls a
1888 native function in a tracepoint provider package shared library linked
1889 with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1890 other fields, like its logger name and its log level. This native
1891 function contains a user space instrumentation point, hence tracing the
1892 log statement.
1893
1894 The log level condition of an
1895 <<event,event rule>> is considered when tracing
1896 a Java or a Python application, and it's compatible with the standard
1897 JUL, log4j, and Python log levels.
1898
1899
1900 [[lttng-modules]]
1901 === LTTng kernel modules
1902
1903 [role="img-100"]
1904 .The LTTng kernel modules.
1905 image::plumbing-lttng-modules.png[]
1906
1907 The _LTTng kernel modules_ are a set of Linux kernel modules
1908 which implement the kernel tracer of the LTTng project. The LTTng
1909 kernel modules are part of LTTng-modules.
1910
1911 The LTTng kernel modules include:
1912
1913 * A set of _probe_ modules.
1914 +
1915 Each module attaches to a specific subsystem
1916 of the Linux kernel using its tracepoint instrument points. There are
1917 also modules to attach to the entry and return points of the Linux
1918 system call functions.
1919
1920 * _Ring buffer_ modules.
1921 +
1922 A ring buffer implementation is provided as kernel modules. The LTTng
1923 kernel tracer writes to the ring buffer; a
1924 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1925
1926 * The _LTTng kernel tracer_ module.
1927 * The _LTTng logger_ module.
1928 +
1929 The LTTng logger module implements the special path:{/proc/lttng-logger}
1930 file so that any executable can generate LTTng events by opening and
1931 writing to this file.
1932 +
1933 See <<proc-lttng-logger-abi,LTTng logger>>.
1934
1935 Generally, you do not have to load the LTTng kernel modules manually
1936 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1937 daemon>> loads the necessary modules when starting. If you have extra
1938 probe modules, you can specify to load them to the session daemon on
1939 the command line.
1940
1941 The LTTng kernel modules are installed in
1942 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1943 the kernel release (see `uname --kernel-release`).
1944
1945
1946 [[lttng-sessiond]]
1947 === Session daemon
1948
1949 [role="img-100"]
1950 .The session daemon.
1951 image::plumbing-sessiond.png[]
1952
1953 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1954 managing tracing sessions and for controlling the various components of
1955 LTTng. The session daemon is part of LTTng-tools.
1956
1957 The session daemon sends control requests to and receives control
1958 responses from:
1959
1960 * The <<lttng-ust,user space tracing library>>.
1961 +
1962 Any instance of the user space tracing library first registers to
1963 a session daemon. Then, the session daemon can send requests to
1964 this instance, such as:
1965 +
1966 --
1967 ** Get the list of tracepoints.
1968 ** Share an <<event,event rule>> so that the user space tracing library
1969 can enable or disable tracepoints. Amongst the possible conditions
1970 of an event rule is a filter expression which `liblttng-ust` evalutes
1971 when an event occurs.
1972 ** Share <<channel,channel>> attributes and ring buffer locations.
1973 --
1974 +
1975 The session daemon and the user space tracing library use a Unix
1976 domain socket for their communication.
1977
1978 * The <<lttng-ust-agents,user space tracing agents>>.
1979 +
1980 Any instance of a user space tracing agent first registers to
1981 a session daemon. Then, the session daemon can send requests to
1982 this instance, such as:
1983 +
1984 --
1985 ** Get the list of loggers.
1986 ** Enable or disable a specific logger.
1987 --
1988 +
1989 The session daemon and the user space tracing agent use a TCP connection
1990 for their communication.
1991
1992 * The <<lttng-modules,LTTng kernel tracer>>.
1993 * The <<lttng-consumerd,consumer daemon>>.
1994 +
1995 The session daemon sends requests to the consumer daemon to instruct
1996 it where to send the trace data streams, amongst other information.
1997
1998 * The <<lttng-relayd,relay daemon>>.
1999
2000 The session daemon receives commands from the
2001 <<liblttng-ctl-lttng,tracing control library>>.
2002
2003 The root session daemon loads the appropriate
2004 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
2005 a <<lttng-consumerd,consumer daemon>> as soon as you create
2006 an <<event,event rule>>.
2007
2008 The session daemon does not send and receive trace data: this is the
2009 role of the <<lttng-consumerd,consumer daemon>> and
2010 <<lttng-relayd,relay daemon>>. It does, however, generate the
2011 http://diamon.org/ctf/[CTF] metadata stream.
2012
2013 Each Unix user can have its own session daemon instance. The
2014 tracing sessions managed by different session daemons are completely
2015 independent.
2016
2017 The root user's session daemon is the only one which is
2018 allowed to control the LTTng kernel tracer, and its spawned consumer
2019 daemon is the only one which is allowed to consume trace data from the
2020 LTTng kernel tracer. Note, however, that any Unix user which is a member
2021 of the <<tracing-group,tracing group>> is allowed
2022 to create <<channel,channels>> in the
2023 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
2024 kernel.
2025
2026 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
2027 session daemon when using its `create` command if none is currently
2028 running. You can also start the session daemon manually.
2029
2030
2031 [[lttng-consumerd]]
2032 === Consumer daemon
2033
2034 [role="img-100"]
2035 .The consumer daemon.
2036 image::plumbing-consumerd.png[]
2037
2038 The _consumer daemon_, man:lttng-consumerd(8), is a daemon which shares
2039 ring buffers with user applications or with the LTTng kernel modules to
2040 collect trace data and send it to some location (on disk or to a
2041 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
2042 is part of LTTng-tools.
2043
2044 You do not start a consumer daemon manually: a consumer daemon is always
2045 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
2046 <<event,event rule>>, that is, before you start tracing. When you kill
2047 its owner session daemon, the consumer daemon also exits because it is
2048 the session daemon's child process. Command-line options of
2049 man:lttng-sessiond(8) target the consumer daemon process.
2050
2051 There are up to two running consumer daemons per Unix user, whereas only
2052 one session daemon can run per user. This is because each process can be
2053 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
2054 and 64-bit processes, it is more efficient to have separate
2055 corresponding 32-bit and 64-bit consumer daemons. The root user is an
2056 exception: it can have up to _three_ running consumer daemons: 32-bit
2057 and 64-bit instances for its user applications, and one more
2058 reserved for collecting kernel trace data.
2059
2060
2061 [[lttng-relayd]]
2062 === Relay daemon
2063
2064 [role="img-100"]
2065 .The relay daemon.
2066 image::plumbing-relayd.png[]
2067
2068 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
2069 between remote session and consumer daemons, local trace files, and a
2070 remote live trace viewer. The relay daemon is part of LTTng-tools.
2071
2072 The main purpose of the relay daemon is to implement a receiver of
2073 <<sending-trace-data-over-the-network,trace data over the network>>.
2074 This is useful when the target system does not have much file system
2075 space to record trace files locally.
2076
2077 The relay daemon is also a server to which a
2078 <<lttng-live,live trace viewer>> can
2079 connect. The live trace viewer sends requests to the relay daemon to
2080 receive trace data as the target system emits events. The
2081 communication protocol is named _LTTng live_; it is used over TCP
2082 connections.
2083
2084 Note that you can start the relay daemon on the target system directly.
2085 This is the setup of choice when the use case is to view events as
2086 the target system emits them without the need of a remote system.
2087
2088
2089 [[instrumenting]]
2090 == [[using-lttng]]Instrumentation
2091
2092 There are many examples of tracing and monitoring in our everyday life:
2093
2094 * You have access to real-time and historical weather reports and
2095 forecasts thanks to weather stations installed around the country.
2096 * You know your heart is safe thanks to an electrocardiogram.
2097 * You make sure not to drive your car too fast and to have enough fuel
2098 to reach your destination thanks to gauges visible on your dashboard.
2099
2100 All the previous examples have something in common: they rely on
2101 **instruments**. Without the electrodes attached to the surface of your
2102 body's skin, cardiac monitoring is futile.
2103
2104 LTTng, as a tracer, is no different from those real life examples. If
2105 you're about to trace a software system or, in other words, record its
2106 history of execution, you better have **instrumentation points** in the
2107 subject you're tracing, that is, the actual software.
2108
2109 Various ways were developed to instrument a piece of software for LTTng
2110 tracing. The most straightforward one is to manually place
2111 instrumentation points, called _tracepoints_, in the software's source
2112 code. It is also possible to add instrumentation points dynamically in
2113 the Linux kernel <<domain,tracing domain>>.
2114
2115 If you're only interested in tracing the Linux kernel, your
2116 instrumentation needs are probably already covered by LTTng's built-in
2117 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
2118 user application which is already instrumented for LTTng tracing.
2119 In such cases, you can skip this whole section and read the topics of
2120 the <<controlling-tracing,Tracing control>> section.
2121
2122 Many methods are available to instrument a piece of software for LTTng
2123 tracing. They are:
2124
2125 * <<c-application,User space instrumentation for C and $$C++$$
2126 applications>>.
2127 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
2128 * <<java-application,User space Java agent>>.
2129 * <<python-application,User space Python agent>>.
2130 * <<proc-lttng-logger-abi,LTTng logger>>.
2131 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
2132
2133
2134 [[c-application]]
2135 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
2136
2137 The procedure to instrument a C or $$C++$$ user application with
2138 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
2139
2140 . <<tracepoint-provider,Create the source files of a tracepoint provider
2141 package>>.
2142 . <<probing-the-application-source-code,Add tracepoints to
2143 the application's source code>>.
2144 . <<building-tracepoint-providers-and-user-application,Build and link
2145 a tracepoint provider package and the user application>>.
2146
2147 If you need quick, man:printf(3)-like instrumentation, you can skip
2148 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
2149 instead.
2150
2151 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
2152 instrument a user application with `liblttng-ust`.
2153
2154
2155 [[tracepoint-provider]]
2156 ==== Create the source files of a tracepoint provider package
2157
2158 A _tracepoint provider_ is a set of compiled functions which provide
2159 **tracepoints** to an application, the type of instrumentation point
2160 supported by LTTng-UST. Those functions can emit events with
2161 user-defined fields and serialize those events as event records to one
2162 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
2163 macro, which you <<probing-the-application-source-code,insert in a user
2164 application's source code>>, calls those functions.
2165
2166 A _tracepoint provider package_ is an object file (`.o`) or a shared
2167 library (`.so`) which contains one or more tracepoint providers.
2168 Its source files are:
2169
2170 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
2171 * A <<tpp-source,tracepoint provider package source>> (`.c`).
2172
2173 A tracepoint provider package is dynamically linked with `liblttng-ust`,
2174 the LTTng user space tracer, at run time.
2175
2176 [role="img-100"]
2177 .User application linked with `liblttng-ust` and containing a tracepoint provider.
2178 image::ust-app.png[]
2179
2180 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
2181 skip creating and using a tracepoint provider and use
2182 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
2183
2184
2185 [[tpp-header]]
2186 ===== Create a tracepoint provider header file template
2187
2188 A _tracepoint provider header file_ contains the tracepoint
2189 definitions of a tracepoint provider.
2190
2191 To create a tracepoint provider header file:
2192
2193 . Start from this template:
2194 +
2195 --
2196 [source,c]
2197 .Tracepoint provider header file template (`.h` file extension).
2198 ----
2199 #undef TRACEPOINT_PROVIDER
2200 #define TRACEPOINT_PROVIDER provider_name
2201
2202 #undef TRACEPOINT_INCLUDE
2203 #define TRACEPOINT_INCLUDE "./tp.h"
2204
2205 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
2206 #define _TP_H
2207
2208 #include <lttng/tracepoint.h>
2209
2210 /*
2211 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2212 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2213 */
2214
2215 #endif /* _TP_H */
2216
2217 #include <lttng/tracepoint-event.h>
2218 ----
2219 --
2220
2221 . Replace:
2222 +
2223 * `provider_name` with the name of your tracepoint provider.
2224 * `"tp.h"` with the name of your tracepoint provider header file.
2225
2226 . Below the `#include <lttng/tracepoint.h>` line, put your
2227 <<defining-tracepoints,tracepoint definitions>>.
2228
2229 Your tracepoint provider name must be unique amongst all the possible
2230 tracepoint provider names used on the same target system. We
2231 suggest to include the name of your project or company in the name,
2232 for example, `org_lttng_my_project_tpp`.
2233
2234 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2235 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2236 write are the <<defining-tracepoints,tracepoint definitions>>.
2237
2238
2239 [[defining-tracepoints]]
2240 ===== Create a tracepoint definition
2241
2242 A _tracepoint definition_ defines, for a given tracepoint:
2243
2244 * Its **input arguments**. They are the macro parameters that the
2245 `tracepoint()` macro accepts for this particular tracepoint
2246 in the user application's source code.
2247 * Its **output event fields**. They are the sources of event fields
2248 that form the payload of any event that the execution of the
2249 `tracepoint()` macro emits for this particular tracepoint.
2250
2251 You can create a tracepoint definition by using the
2252 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2253 line in the
2254 <<tpp-header,tracepoint provider header file template>>.
2255
2256 The syntax of the `TRACEPOINT_EVENT()` macro is:
2257
2258 [source,c]
2259 .`TRACEPOINT_EVENT()` macro syntax.
2260 ----
2261 TRACEPOINT_EVENT(
2262 /* Tracepoint provider name */
2263 provider_name,
2264
2265 /* Tracepoint name */
2266 tracepoint_name,
2267
2268 /* Input arguments */
2269 TP_ARGS(
2270 arguments
2271 ),
2272
2273 /* Output event fields */
2274 TP_FIELDS(
2275 fields
2276 )
2277 )
2278 ----
2279
2280 Replace:
2281
2282 * `provider_name` with your tracepoint provider name.
2283 * `tracepoint_name` with your tracepoint name.
2284 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2285 * `fields` with the <<tpp-def-output-fields,output event field>>
2286 definitions.
2287
2288 This tracepoint emits events named `provider_name:tracepoint_name`.
2289
2290 [IMPORTANT]
2291 .Event name's length limitation
2292 ====
2293 The concatenation of the tracepoint provider name and the
2294 tracepoint name must not exceed **254 characters**. If it does, the
2295 instrumented application compiles and runs, but LTTng throws multiple
2296 warnings and you could experience serious issues.
2297 ====
2298
2299 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2300
2301 [source,c]
2302 .`TP_ARGS()` macro syntax.
2303 ----
2304 TP_ARGS(
2305 type, arg_name
2306 )
2307 ----
2308
2309 Replace:
2310
2311 * `type` with the C type of the argument.
2312 * `arg_name` with the argument name.
2313
2314 You can repeat `type` and `arg_name` up to 10 times to have
2315 more than one argument.
2316
2317 .`TP_ARGS()` usage with three arguments.
2318 ====
2319 [source,c]
2320 ----
2321 TP_ARGS(
2322 int, count,
2323 float, ratio,
2324 const char*, query
2325 )
2326 ----
2327 ====
2328
2329 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2330 tracepoint definition with no input arguments.
2331
2332 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2333 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2334 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2335 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2336 one event field.
2337
2338 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2339 C expression that the tracer evalutes at the `tracepoint()` macro site
2340 in the application's source code. This expression provides a field's
2341 source of data. The argument expression can include input argument names
2342 listed in the `TP_ARGS()` macro.
2343
2344 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2345 must be unique within a given tracepoint definition.
2346
2347 Here's a complete tracepoint definition example:
2348
2349 .Tracepoint definition.
2350 ====
2351 The following tracepoint definition defines a tracepoint which takes
2352 three input arguments and has four output event fields.
2353
2354 [source,c]
2355 ----
2356 #include "my-custom-structure.h"
2357
2358 TRACEPOINT_EVENT(
2359 my_provider,
2360 my_tracepoint,
2361 TP_ARGS(
2362 const struct my_custom_structure*, my_custom_structure,
2363 float, ratio,
2364 const char*, query
2365 ),
2366 TP_FIELDS(
2367 ctf_string(query_field, query)
2368 ctf_float(double, ratio_field, ratio)
2369 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2370 ctf_integer(int, send_size, my_custom_structure->send_size)
2371 )
2372 )
2373 ----
2374
2375 You can refer to this tracepoint definition with the `tracepoint()`
2376 macro in your application's source code like this:
2377
2378 [source,c]
2379 ----
2380 tracepoint(my_provider, my_tracepoint,
2381 my_structure, some_ratio, the_query);
2382 ----
2383 ====
2384
2385 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2386 if they satisfy an enabled <<event,event rule>>.
2387
2388
2389 [[using-tracepoint-classes]]
2390 ===== Use a tracepoint class
2391
2392 A _tracepoint class_ is a class of tracepoints which share the same
2393 output event field definitions. A _tracepoint instance_ is one
2394 instance of such a defined tracepoint class, with its own tracepoint
2395 name.
2396
2397 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2398 shorthand which defines both a tracepoint class and a tracepoint
2399 instance at the same time.
2400
2401 When you build a tracepoint provider package, the C or $$C++$$ compiler
2402 creates one serialization function for each **tracepoint class**. A
2403 serialization function is responsible for serializing the event fields
2404 of a tracepoint to a sub-buffer when tracing.
2405
2406 For various performance reasons, when your situation requires multiple
2407 tracepoint definitions with different names, but with the same event
2408 fields, we recommend that you manually create a tracepoint class
2409 and instantiate as many tracepoint instances as needed. One positive
2410 effect of such a design, amongst other advantages, is that all
2411 tracepoint instances of the same tracepoint class reuse the same
2412 serialization function, thus reducing
2413 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2414
2415 .Use a tracepoint class and tracepoint instances.
2416 ====
2417 Consider the following three tracepoint definitions:
2418
2419 [source,c]
2420 ----
2421 TRACEPOINT_EVENT(
2422 my_app,
2423 get_account,
2424 TP_ARGS(
2425 int, userid,
2426 size_t, len
2427 ),
2428 TP_FIELDS(
2429 ctf_integer(int, userid, userid)
2430 ctf_integer(size_t, len, len)
2431 )
2432 )
2433
2434 TRACEPOINT_EVENT(
2435 my_app,
2436 get_settings,
2437 TP_ARGS(
2438 int, userid,
2439 size_t, len
2440 ),
2441 TP_FIELDS(
2442 ctf_integer(int, userid, userid)
2443 ctf_integer(size_t, len, len)
2444 )
2445 )
2446
2447 TRACEPOINT_EVENT(
2448 my_app,
2449 get_transaction,
2450 TP_ARGS(
2451 int, userid,
2452 size_t, len
2453 ),
2454 TP_FIELDS(
2455 ctf_integer(int, userid, userid)
2456 ctf_integer(size_t, len, len)
2457 )
2458 )
2459 ----
2460
2461 In this case, we create three tracepoint classes, with one implicit
2462 tracepoint instance for each of them: `get_account`, `get_settings`, and
2463 `get_transaction`. However, they all share the same event field names
2464 and types. Hence three identical, yet independent serialization
2465 functions are created when you build the tracepoint provider package.
2466
2467 A better design choice is to define a single tracepoint class and three
2468 tracepoint instances:
2469
2470 [source,c]
2471 ----
2472 /* The tracepoint class */
2473 TRACEPOINT_EVENT_CLASS(
2474 /* Tracepoint provider name */
2475 my_app,
2476
2477 /* Tracepoint class name */
2478 my_class,
2479
2480 /* Input arguments */
2481 TP_ARGS(
2482 int, userid,
2483 size_t, len
2484 ),
2485
2486 /* Output event fields */
2487 TP_FIELDS(
2488 ctf_integer(int, userid, userid)
2489 ctf_integer(size_t, len, len)
2490 )
2491 )
2492
2493 /* The tracepoint instances */
2494 TRACEPOINT_EVENT_INSTANCE(
2495 /* Tracepoint provider name */
2496 my_app,
2497
2498 /* Tracepoint class name */
2499 my_class,
2500
2501 /* Tracepoint name */
2502 get_account,
2503
2504 /* Input arguments */
2505 TP_ARGS(
2506 int, userid,
2507 size_t, len
2508 )
2509 )
2510 TRACEPOINT_EVENT_INSTANCE(
2511 my_app,
2512 my_class,
2513 get_settings,
2514 TP_ARGS(
2515 int, userid,
2516 size_t, len
2517 )
2518 )
2519 TRACEPOINT_EVENT_INSTANCE(
2520 my_app,
2521 my_class,
2522 get_transaction,
2523 TP_ARGS(
2524 int, userid,
2525 size_t, len
2526 )
2527 )
2528 ----
2529 ====
2530
2531
2532 [[assigning-log-levels]]
2533 ===== Assign a log level to a tracepoint definition
2534
2535 You can assign an optional _log level_ to a
2536 <<defining-tracepoints,tracepoint definition>>.
2537
2538 Assigning different levels of severity to tracepoint definitions can
2539 be useful: when you <<enabling-disabling-events,create an event rule>>,
2540 you can target tracepoints having a log level as severe as a specific
2541 value.
2542
2543 The concept of LTTng-UST log levels is similar to the levels found
2544 in typical logging frameworks:
2545
2546 * In a logging framework, the log level is given by the function
2547 or method name you use at the log statement site: `debug()`,
2548 `info()`, `warn()`, `error()`, and so on.
2549 * In LTTng-UST, you statically assign the log level to a tracepoint
2550 definition; any `tracepoint()` macro invocation which refers to
2551 this definition has this log level.
2552
2553 You can assign a log level to a tracepoint definition with the
2554 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2555 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2556 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2557 tracepoint.
2558
2559 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2560
2561 [source,c]
2562 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2563 ----
2564 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2565 ----
2566
2567 Replace:
2568
2569 * `provider_name` with the tracepoint provider name.
2570 * `tracepoint_name` with the tracepoint name.
2571 * `log_level` with the log level to assign to the tracepoint
2572 definition named `tracepoint_name` in the `provider_name`
2573 tracepoint provider.
2574 +
2575 See man:lttng-ust(3) for a list of available log level names.
2576
2577 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2578 ====
2579 [source,c]
2580 ----
2581 /* Tracepoint definition */
2582 TRACEPOINT_EVENT(
2583 my_app,
2584 get_transaction,
2585 TP_ARGS(
2586 int, userid,
2587 size_t, len
2588 ),
2589 TP_FIELDS(
2590 ctf_integer(int, userid, userid)
2591 ctf_integer(size_t, len, len)
2592 )
2593 )
2594
2595 /* Log level assignment */
2596 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2597 ----
2598 ====
2599
2600
2601 [[tpp-source]]
2602 ===== Create a tracepoint provider package source file
2603
2604 A _tracepoint provider package source file_ is a C source file which
2605 includes a <<tpp-header,tracepoint provider header file>> to expand its
2606 macros into event serialization and other functions.
2607
2608 You can always use the following tracepoint provider package source
2609 file template:
2610
2611 [source,c]
2612 .Tracepoint provider package source file template.
2613 ----
2614 #define TRACEPOINT_CREATE_PROBES
2615
2616 #include "tp.h"
2617 ----
2618
2619 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2620 header file>> name. You may also include more than one tracepoint
2621 provider header file here to create a tracepoint provider package
2622 holding more than one tracepoint providers.
2623
2624
2625 [[probing-the-application-source-code]]
2626 ==== Add tracepoints to an application's source code
2627
2628 Once you <<tpp-header,create a tracepoint provider header file>>, you
2629 can use the `tracepoint()` macro in your application's
2630 source code to insert the tracepoints that this header
2631 <<defining-tracepoints,defined>> defines.
2632
2633 The `tracepoint()` macro takes at least two parameters: the tracepoint
2634 provider name and the tracepoint name. The corresponding tracepoint
2635 definition defines the other parameters.
2636
2637 .`tracepoint()` usage.
2638 ====
2639 The following <<defining-tracepoints,tracepoint definition>> defines a
2640 tracepoint which takes two input arguments and has two output event
2641 fields.
2642
2643 [source,c]
2644 .Tracepoint provider header file.
2645 ----
2646 #include "my-custom-structure.h"
2647
2648 TRACEPOINT_EVENT(
2649 my_provider,
2650 my_tracepoint,
2651 TP_ARGS(
2652 int, argc,
2653 const char*, cmd_name
2654 ),
2655 TP_FIELDS(
2656 ctf_string(cmd_name, cmd_name)
2657 ctf_integer(int, number_of_args, argc)
2658 )
2659 )
2660 ----
2661
2662 You can refer to this tracepoint definition with the `tracepoint()`
2663 macro in your application's source code like this:
2664
2665 [source,c]
2666 .Application's source file.
2667 ----
2668 #include "tp.h"
2669
2670 int main(int argc, char* argv[])
2671 {
2672 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2673
2674 return 0;
2675 }
2676 ----
2677
2678 Note how the application's source code includes
2679 the tracepoint provider header file containing the tracepoint
2680 definitions to use, path:{tp.h}.
2681 ====
2682
2683 .`tracepoint()` usage with a complex tracepoint definition.
2684 ====
2685 Consider this complex tracepoint definition, where multiple event
2686 fields refer to the same input arguments in their argument expression
2687 parameter:
2688
2689 [source,c]
2690 .Tracepoint provider header file.
2691 ----
2692 /* For `struct stat` */
2693 #include <sys/types.h>
2694 #include <sys/stat.h>
2695 #include <unistd.h>
2696
2697 TRACEPOINT_EVENT(
2698 my_provider,
2699 my_tracepoint,
2700 TP_ARGS(
2701 int, my_int_arg,
2702 char*, my_str_arg,
2703 struct stat*, st
2704 ),
2705 TP_FIELDS(
2706 ctf_integer(int, my_constant_field, 23 + 17)
2707 ctf_integer(int, my_int_arg_field, my_int_arg)
2708 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2709 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2710 my_str_arg[2] + my_str_arg[3])
2711 ctf_string(my_str_arg_field, my_str_arg)
2712 ctf_integer_hex(off_t, size_field, st->st_size)
2713 ctf_float(double, size_dbl_field, (double) st->st_size)
2714 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2715 size_t, strlen(my_str_arg) / 2)
2716 )
2717 )
2718 ----
2719
2720 You can refer to this tracepoint definition with the `tracepoint()`
2721 macro in your application's source code like this:
2722
2723 [source,c]
2724 .Application's source file.
2725 ----
2726 #define TRACEPOINT_DEFINE
2727 #include "tp.h"
2728
2729 int main(void)
2730 {
2731 struct stat s;
2732
2733 stat("/etc/fstab", &s);
2734 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2735
2736 return 0;
2737 }
2738 ----
2739
2740 If you look at the event record that LTTng writes when tracing this
2741 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2742 it should look like this:
2743
2744 .Event record fields
2745 |====
2746 |Field's name |Field's value
2747 |`my_constant_field` |40
2748 |`my_int_arg_field` |23
2749 |`my_int_arg_field2` |529
2750 |`sum4_field` |389
2751 |`my_str_arg_field` |`Hello, World!`
2752 |`size_field` |0x12d
2753 |`size_dbl_field` |301.0
2754 |`half_my_str_arg_field` |`Hello,`
2755 |====
2756 ====
2757
2758 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2759 compute--they use the call stack, for example. To avoid this
2760 computation when the tracepoint is disabled, you can use the
2761 `tracepoint_enabled()` and `do_tracepoint()` macros.
2762
2763 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2764 is:
2765
2766 [source,c]
2767 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2768 ----
2769 tracepoint_enabled(provider_name, tracepoint_name)
2770 do_tracepoint(provider_name, tracepoint_name, ...)
2771 ----
2772
2773 Replace:
2774
2775 * `provider_name` with the tracepoint provider name.
2776 * `tracepoint_name` with the tracepoint name.
2777
2778 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2779 `tracepoint_name` from the provider named `provider_name` is enabled
2780 **at run time**.
2781
2782 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2783 if the tracepoint is enabled. Using `tracepoint()` with
2784 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2785 the `tracepoint_enabled()` check, thus a race condition is
2786 possible in this situation:
2787
2788 [source,c]
2789 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2790 ----
2791 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2792 stuff = prepare_stuff();
2793 }
2794
2795 tracepoint(my_provider, my_tracepoint, stuff);
2796 ----
2797
2798 If the tracepoint is enabled after the condition, then `stuff` is not
2799 prepared: the emitted event will either contain wrong data, or the whole
2800 application could crash (segmentation fault, for example).
2801
2802 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2803 `STAP_PROBEV()` call. If you need it, you must emit
2804 this call yourself.
2805
2806
2807 [[building-tracepoint-providers-and-user-application]]
2808 ==== Build and link a tracepoint provider package and an application
2809
2810 Once you have one or more <<tpp-header,tracepoint provider header
2811 files>> and a <<tpp-source,tracepoint provider package source file>>,
2812 you can create the tracepoint provider package by compiling its source
2813 file. From here, multiple build and run scenarios are possible. The
2814 following table shows common application and library configurations
2815 along with the required command lines to achieve them.
2816
2817 In the following diagrams, we use the following file names:
2818
2819 `app`::
2820 Executable application.
2821
2822 `app.o`::
2823 Application's object file.
2824
2825 `tpp.o`::
2826 Tracepoint provider package object file.
2827
2828 `tpp.a`::
2829 Tracepoint provider package archive file.
2830
2831 `libtpp.so`::
2832 Tracepoint provider package shared object file.
2833
2834 `emon.o`::
2835 User library object file.
2836
2837 `libemon.so`::
2838 User library shared object file.
2839
2840 The red star indicates that this object file is instrumented
2841 (contains code which uses the `tracepoint()` macro). The spring
2842 symbol between the application and a library means the application is
2843 linked with the library at build time.
2844
2845 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2846 variable in the following instructions.
2847
2848 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2849 .Common tracepoint provider package scenarios.
2850 |====
2851 |Scenario |Instructions
2852
2853 |
2854 The instrumented application is statically linked with
2855 the tracepoint provider package object.
2856
2857 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2858
2859 |
2860 include::../common/ust-sit-step-tp-o.txt[]
2861
2862 To build the instrumented application:
2863
2864 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2865 +
2866 --
2867 [source,c]
2868 ----
2869 #define TRACEPOINT_DEFINE
2870 ----
2871 --
2872
2873 . Compile the application source file:
2874 +
2875 --
2876 [role="term"]
2877 ----
2878 gcc -c app.c
2879 ----
2880 --
2881
2882 . Build the application:
2883 +
2884 --
2885 [role="term"]
2886 ----
2887 gcc -o app app.o tpp.o -llttng-ust -ldl
2888 ----
2889 --
2890
2891 To run the instrumented application:
2892
2893 * Start the application:
2894 +
2895 --
2896 [role="term"]
2897 ----
2898 ./app
2899 ----
2900 --
2901
2902 |
2903 The instrumented application is statically linked with the
2904 tracepoint provider package archive file.
2905
2906 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2907
2908 |
2909 To create the tracepoint provider package archive file:
2910
2911 . Compile the <<tpp-source,tracepoint provider package source file>>:
2912 +
2913 --
2914 [role="term"]
2915 ----
2916 gcc -I. -c tpp.c
2917 ----
2918 --
2919
2920 . Create the tracepoint provider package archive file:
2921 +
2922 --
2923 [role="term"]
2924 ----
2925 ar rcs tpp.a tpp.o
2926 ----
2927 --
2928
2929 To build the instrumented application:
2930
2931 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2932 +
2933 --
2934 [source,c]
2935 ----
2936 #define TRACEPOINT_DEFINE
2937 ----
2938 --
2939
2940 . Compile the application source file:
2941 +
2942 --
2943 [role="term"]
2944 ----
2945 gcc -c app.c
2946 ----
2947 --
2948
2949 . Build the application:
2950 +
2951 --
2952 [role="term"]
2953 ----
2954 gcc -o app app.o tpp.a -llttng-ust -ldl
2955 ----
2956 --
2957
2958 To run the instrumented application:
2959
2960 * Start the application:
2961 +
2962 --
2963 [role="term"]
2964 ----
2965 ./app
2966 ----
2967 --
2968
2969 |
2970 The instrumented application is linked with the tracepoint provider
2971 package shared object.
2972
2973 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2974
2975 |
2976 include::../common/ust-sit-step-tp-so.txt[]
2977
2978 To build the instrumented application:
2979
2980 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2981 +
2982 --
2983 [source,c]
2984 ----
2985 #define TRACEPOINT_DEFINE
2986 ----
2987 --
2988
2989 . Compile the application source file:
2990 +
2991 --
2992 [role="term"]
2993 ----
2994 gcc -c app.c
2995 ----
2996 --
2997
2998 . Build the application:
2999 +
3000 --
3001 [role="term"]
3002 ----
3003 gcc -o app app.o -ldl -L. -ltpp
3004 ----
3005 --
3006
3007 To run the instrumented application:
3008
3009 * Start the application:
3010 +
3011 --
3012 [role="term"]
3013 ----
3014 ./app
3015 ----
3016 --
3017
3018 |
3019 The tracepoint provider package shared object is preloaded before the
3020 instrumented application starts.
3021
3022 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
3023
3024 |
3025 include::../common/ust-sit-step-tp-so.txt[]
3026
3027 To build the instrumented application:
3028
3029 . In path:{app.c}, before including path:{tpp.h}, add the
3030 following lines:
3031 +
3032 --
3033 [source,c]
3034 ----
3035 #define TRACEPOINT_DEFINE
3036 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3037 ----
3038 --
3039
3040 . Compile the application source file:
3041 +
3042 --
3043 [role="term"]
3044 ----
3045 gcc -c app.c
3046 ----
3047 --
3048
3049 . Build the application:
3050 +
3051 --
3052 [role="term"]
3053 ----
3054 gcc -o app app.o -ldl
3055 ----
3056 --
3057
3058 To run the instrumented application with tracing support:
3059
3060 * Preload the tracepoint provider package shared object and
3061 start the application:
3062 +
3063 --
3064 [role="term"]
3065 ----
3066 LD_PRELOAD=./libtpp.so ./app
3067 ----
3068 --
3069
3070 To run the instrumented application without tracing support:
3071
3072 * Start the application:
3073 +
3074 --
3075 [role="term"]
3076 ----
3077 ./app
3078 ----
3079 --
3080
3081 |
3082 The instrumented application dynamically loads the tracepoint provider
3083 package shared object.
3084
3085 See the <<dlclose-warning,warning about `dlclose()`>>.
3086
3087 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
3088
3089 |
3090 include::../common/ust-sit-step-tp-so.txt[]
3091
3092 To build the instrumented application:
3093
3094 . In path:{app.c}, before including path:{tpp.h}, add the
3095 following lines:
3096 +
3097 --
3098 [source,c]
3099 ----
3100 #define TRACEPOINT_DEFINE
3101 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3102 ----
3103 --
3104
3105 . Compile the application source file:
3106 +
3107 --
3108 [role="term"]
3109 ----
3110 gcc -c app.c
3111 ----
3112 --
3113
3114 . Build the application:
3115 +
3116 --
3117 [role="term"]
3118 ----
3119 gcc -o app app.o -ldl
3120 ----
3121 --
3122
3123 To run the instrumented application:
3124
3125 * Start the application:
3126 +
3127 --
3128 [role="term"]
3129 ----
3130 ./app
3131 ----
3132 --
3133
3134 |
3135 The application is linked with the instrumented user library.
3136
3137 The instrumented user library is statically linked with the tracepoint
3138 provider package object file.
3139
3140 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
3141
3142 |
3143 include::../common/ust-sit-step-tp-o-fpic.txt[]
3144
3145 To build the instrumented user library:
3146
3147 . In path:{emon.c}, before including path:{tpp.h}, add the
3148 following line:
3149 +
3150 --
3151 [source,c]
3152 ----
3153 #define TRACEPOINT_DEFINE
3154 ----
3155 --
3156
3157 . Compile the user library source file:
3158 +
3159 --
3160 [role="term"]
3161 ----
3162 gcc -I. -fpic -c emon.c
3163 ----
3164 --
3165
3166 . Build the user library shared object:
3167 +
3168 --
3169 [role="term"]
3170 ----
3171 gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
3172 ----
3173 --
3174
3175 To build the application:
3176
3177 . Compile the application source file:
3178 +
3179 --
3180 [role="term"]
3181 ----
3182 gcc -c app.c
3183 ----
3184 --
3185
3186 . Build the application:
3187 +
3188 --
3189 [role="term"]
3190 ----
3191 gcc -o app app.o -L. -lemon
3192 ----
3193 --
3194
3195 To run the application:
3196
3197 * Start the application:
3198 +
3199 --
3200 [role="term"]
3201 ----
3202 ./app
3203 ----
3204 --
3205
3206 |
3207 The application is linked with the instrumented user library.
3208
3209 The instrumented user library is linked with the tracepoint provider
3210 package shared object.
3211
3212 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3213
3214 |
3215 include::../common/ust-sit-step-tp-so.txt[]
3216
3217 To build the instrumented user library:
3218
3219 . In path:{emon.c}, before including path:{tpp.h}, add the
3220 following line:
3221 +
3222 --
3223 [source,c]
3224 ----
3225 #define TRACEPOINT_DEFINE
3226 ----
3227 --
3228
3229 . Compile the user library source file:
3230 +
3231 --
3232 [role="term"]
3233 ----
3234 gcc -I. -fpic -c emon.c
3235 ----
3236 --
3237
3238 . Build the user library shared object:
3239 +
3240 --
3241 [role="term"]
3242 ----
3243 gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3244 ----
3245 --
3246
3247 To build the application:
3248
3249 . Compile the application source file:
3250 +
3251 --
3252 [role="term"]
3253 ----
3254 gcc -c app.c
3255 ----
3256 --
3257
3258 . Build the application:
3259 +
3260 --
3261 [role="term"]
3262 ----
3263 gcc -o app app.o -L. -lemon
3264 ----
3265 --
3266
3267 To run the application:
3268
3269 * Start the application:
3270 +
3271 --
3272 [role="term"]
3273 ----
3274 ./app
3275 ----
3276 --
3277
3278 |
3279 The tracepoint provider package shared object is preloaded before the
3280 application starts.
3281
3282 The application is linked with the instrumented user library.
3283
3284 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3285
3286 |
3287 include::../common/ust-sit-step-tp-so.txt[]
3288
3289 To build the instrumented user library:
3290
3291 . In path:{emon.c}, before including path:{tpp.h}, add the
3292 following line:
3293 +
3294 --
3295 [source,c]
3296 ----
3297 #define TRACEPOINT_DEFINE
3298 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3299 ----
3300 --
3301
3302 . Compile the user library source file:
3303 +
3304 --
3305 [role="term"]
3306 ----
3307 gcc -I. -fpic -c emon.c
3308 ----
3309 --
3310
3311 . Build the user library shared object:
3312 +
3313 --
3314 [role="term"]
3315 ----
3316 gcc -shared -o libemon.so emon.o -ldl
3317 ----
3318 --
3319
3320 To build the application:
3321
3322 . Compile the application source file:
3323 +
3324 --
3325 [role="term"]
3326 ----
3327 gcc -c app.c
3328 ----
3329 --
3330
3331 . Build the application:
3332 +
3333 --
3334 [role="term"]
3335 ----
3336 gcc -o app app.o -L. -lemon
3337 ----
3338 --
3339
3340 To run the application with tracing support:
3341
3342 * Preload the tracepoint provider package shared object and
3343 start the application:
3344 +
3345 --
3346 [role="term"]
3347 ----
3348 LD_PRELOAD=./libtpp.so ./app
3349 ----
3350 --
3351
3352 To run the application without tracing support:
3353
3354 * Start the application:
3355 +
3356 --
3357 [role="term"]
3358 ----
3359 ./app
3360 ----
3361 --
3362
3363 |
3364 The application is linked with the instrumented user library.
3365
3366 The instrumented user library dynamically loads the tracepoint provider
3367 package shared object.
3368
3369 See the <<dlclose-warning,warning about `dlclose()`>>.
3370
3371 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3372
3373 |
3374 include::../common/ust-sit-step-tp-so.txt[]
3375
3376 To build the instrumented user library:
3377
3378 . In path:{emon.c}, before including path:{tpp.h}, add the
3379 following line:
3380 +
3381 --
3382 [source,c]
3383 ----
3384 #define TRACEPOINT_DEFINE
3385 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3386 ----
3387 --
3388
3389 . Compile the user library source file:
3390 +
3391 --
3392 [role="term"]
3393 ----
3394 gcc -I. -fpic -c emon.c
3395 ----
3396 --
3397
3398 . Build the user library shared object:
3399 +
3400 --
3401 [role="term"]
3402 ----
3403 gcc -shared -o libemon.so emon.o -ldl
3404 ----
3405 --
3406
3407 To build the application:
3408
3409 . Compile the application source file:
3410 +
3411 --
3412 [role="term"]
3413 ----
3414 gcc -c app.c
3415 ----
3416 --
3417
3418 . Build the application:
3419 +
3420 --
3421 [role="term"]
3422 ----
3423 gcc -o app app.o -L. -lemon
3424 ----
3425 --
3426
3427 To run the application:
3428
3429 * Start the application:
3430 +
3431 --
3432 [role="term"]
3433 ----
3434 ./app
3435 ----
3436 --
3437
3438 |
3439 The application dynamically loads the instrumented user library.
3440
3441 The instrumented user library is linked with the tracepoint provider
3442 package shared object.
3443
3444 See the <<dlclose-warning,warning about `dlclose()`>>.
3445
3446 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3447
3448 |
3449 include::../common/ust-sit-step-tp-so.txt[]
3450
3451 To build the instrumented user library:
3452
3453 . In path:{emon.c}, before including path:{tpp.h}, add the
3454 following line:
3455 +
3456 --
3457 [source,c]
3458 ----
3459 #define TRACEPOINT_DEFINE
3460 ----
3461 --
3462
3463 . Compile the user library source file:
3464 +
3465 --
3466 [role="term"]
3467 ----
3468 gcc -I. -fpic -c emon.c
3469 ----
3470 --
3471
3472 . Build the user library shared object:
3473 +
3474 --
3475 [role="term"]
3476 ----
3477 gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3478 ----
3479 --
3480
3481 To build the application:
3482
3483 . Compile the application source file:
3484 +
3485 --
3486 [role="term"]
3487 ----
3488 gcc -c app.c
3489 ----
3490 --
3491
3492 . Build the application:
3493 +
3494 --
3495 [role="term"]
3496 ----
3497 gcc -o app app.o -ldl -L. -lemon
3498 ----
3499 --
3500
3501 To run the application:
3502
3503 * Start the application:
3504 +
3505 --
3506 [role="term"]
3507 ----
3508 ./app
3509 ----
3510 --
3511
3512 |
3513 The application dynamically loads the instrumented user library.
3514
3515 The instrumented user library dynamically loads the tracepoint provider
3516 package shared object.
3517
3518 See the <<dlclose-warning,warning about `dlclose()`>>.
3519
3520 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3521
3522 |
3523 include::../common/ust-sit-step-tp-so.txt[]
3524
3525 To build the instrumented user library:
3526
3527 . In path:{emon.c}, before including path:{tpp.h}, add the
3528 following line:
3529 +
3530 --
3531 [source,c]
3532 ----
3533 #define TRACEPOINT_DEFINE
3534 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3535 ----
3536 --
3537
3538 . Compile the user library source file:
3539 +
3540 --
3541 [role="term"]
3542 ----
3543 gcc -I. -fpic -c emon.c
3544 ----
3545 --
3546
3547 . Build the user library shared object:
3548 +
3549 --
3550 [role="term"]
3551 ----
3552 gcc -shared -o libemon.so emon.o -ldl
3553 ----
3554 --
3555
3556 To build the application:
3557
3558 . Compile the application source file:
3559 +
3560 --
3561 [role="term"]
3562 ----
3563 gcc -c app.c
3564 ----
3565 --
3566
3567 . Build the application:
3568 +
3569 --
3570 [role="term"]
3571 ----
3572 gcc -o app app.o -ldl -L. -lemon
3573 ----
3574 --
3575
3576 To run the application:
3577
3578 * Start the application:
3579 +
3580 --
3581 [role="term"]
3582 ----
3583 ./app
3584 ----
3585 --
3586
3587 |
3588 The tracepoint provider package shared object is preloaded before the
3589 application starts.
3590
3591 The application dynamically loads the instrumented user library.
3592
3593 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3594
3595 |
3596 include::../common/ust-sit-step-tp-so.txt[]
3597
3598 To build the instrumented user library:
3599
3600 . In path:{emon.c}, before including path:{tpp.h}, add the
3601 following line:
3602 +
3603 --
3604 [source,c]
3605 ----
3606 #define TRACEPOINT_DEFINE
3607 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3608 ----
3609 --
3610
3611 . Compile the user library source file:
3612 +
3613 --
3614 [role="term"]
3615 ----
3616 gcc -I. -fpic -c emon.c
3617 ----
3618 --
3619
3620 . Build the user library shared object:
3621 +
3622 --
3623 [role="term"]
3624 ----
3625 gcc -shared -o libemon.so emon.o -ldl
3626 ----
3627 --
3628
3629 To build the application:
3630
3631 . Compile the application source file:
3632 +
3633 --
3634 [role="term"]
3635 ----
3636 gcc -c app.c
3637 ----
3638 --
3639
3640 . Build the application:
3641 +
3642 --
3643 [role="term"]
3644 ----
3645 gcc -o app app.o -L. -lemon
3646 ----
3647 --
3648
3649 To run the application with tracing support:
3650
3651 * Preload the tracepoint provider package shared object and
3652 start the application:
3653 +
3654 --
3655 [role="term"]
3656 ----
3657 LD_PRELOAD=./libtpp.so ./app
3658 ----
3659 --
3660
3661 To run the application without tracing support:
3662
3663 * Start the application:
3664 +
3665 --
3666 [role="term"]
3667 ----
3668 ./app
3669 ----
3670 --
3671
3672 |
3673 The application is statically linked with the tracepoint provider
3674 package object file.
3675
3676 The application is linked with the instrumented user library.
3677
3678 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3679
3680 |
3681 include::../common/ust-sit-step-tp-o.txt[]
3682
3683 To build the instrumented user library:
3684
3685 . In path:{emon.c}, before including path:{tpp.h}, add the
3686 following line:
3687 +
3688 --
3689 [source,c]
3690 ----
3691 #define TRACEPOINT_DEFINE
3692 ----
3693 --
3694
3695 . Compile the user library source file:
3696 +
3697 --
3698 [role="term"]
3699 ----
3700 gcc -I. -fpic -c emon.c
3701 ----
3702 --
3703
3704 . Build the user library shared object:
3705 +
3706 --
3707 [role="term"]
3708 ----
3709 gcc -shared -o libemon.so emon.o
3710 ----
3711 --
3712
3713 To build the application:
3714
3715 . Compile the application source file:
3716 +
3717 --
3718 [role="term"]
3719 ----
3720 gcc -c app.c
3721 ----
3722 --
3723
3724 . Build the application:
3725 +
3726 --
3727 [role="term"]
3728 ----
3729 gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3730 ----
3731 --
3732
3733 To run the instrumented application:
3734
3735 * Start the application:
3736 +
3737 --
3738 [role="term"]
3739 ----
3740 ./app
3741 ----
3742 --
3743
3744 |
3745 The application is statically linked with the tracepoint provider
3746 package object file.
3747
3748 The application dynamically loads the instrumented user library.
3749
3750 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3751
3752 |
3753 include::../common/ust-sit-step-tp-o.txt[]
3754
3755 To build the application:
3756
3757 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3758 +
3759 --
3760 [source,c]
3761 ----
3762 #define TRACEPOINT_DEFINE
3763 ----
3764 --
3765
3766 . Compile the application source file:
3767 +
3768 --
3769 [role="term"]
3770 ----
3771 gcc -c app.c
3772 ----
3773 --
3774
3775 . Build the application:
3776 +
3777 --
3778 [role="term"]
3779 ----
3780 gcc -Wl,--export-dynamic -o app app.o tpp.o \
3781 -llttng-ust -ldl
3782 ----
3783 --
3784 +
3785 The `--export-dynamic` option passed to the linker is necessary for the
3786 dynamically loaded library to ``see'' the tracepoint symbols defined in
3787 the application.
3788
3789 To build the instrumented user library:
3790
3791 . Compile the user library source file:
3792 +
3793 --
3794 [role="term"]
3795 ----
3796 gcc -I. -fpic -c emon.c
3797 ----
3798 --
3799
3800 . Build the user library shared object:
3801 +
3802 --
3803 [role="term"]
3804 ----
3805 gcc -shared -o libemon.so emon.o
3806 ----
3807 --
3808
3809 To run the application:
3810
3811 * Start the application:
3812 +
3813 --
3814 [role="term"]
3815 ----
3816 ./app
3817 ----
3818 --
3819 |====
3820
3821 [[dlclose-warning]]
3822 [IMPORTANT]
3823 .Do not use man:dlclose(3) on a tracepoint provider package
3824 ====
3825 Never use man:dlclose(3) on any shared object which:
3826
3827 * Is linked with, statically or dynamically, a tracepoint provider
3828 package.
3829 * Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3830 package shared object.
3831
3832 This is currently considered **unsafe** due to a lack of reference
3833 counting from LTTng-UST to the shared object.
3834
3835 A known workaround (available since glibc 2.2) is to use the
3836 `RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3837 effect of not unloading the loaded shared object, even if man:dlclose(3)
3838 is called.
3839
3840 You can also preload the tracepoint provider package shared object with
3841 the env:LD_PRELOAD environment variable to overcome this limitation.
3842 ====
3843
3844
3845 [[using-lttng-ust-with-daemons]]
3846 ===== Use noch:{LTTng-UST} with daemons
3847
3848 If your instrumented application calls man:fork(2), man:clone(2),
3849 or BSD's man:rfork(2), without a following man:exec(3)-family
3850 system call, you must preload the path:{liblttng-ust-fork.so} shared
3851 object when starting the application.
3852
3853 [role="term"]
3854 ----
3855 LD_PRELOAD=liblttng-ust-fork.so ./my-app
3856 ----
3857
3858 If your tracepoint provider package is
3859 a shared library which you also preload, you must put both
3860 shared objects in env:LD_PRELOAD:
3861
3862 [role="term"]
3863 ----
3864 LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3865 ----
3866
3867
3868 [[lttng-ust-pkg-config]]
3869 ===== Use noch:{pkg-config}
3870
3871 On some distributions, LTTng-UST ships with a
3872 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3873 metadata file. If this is your case, then you can use cmd:pkg-config to
3874 build an application on the command line:
3875
3876 [role="term"]
3877 ----
3878 gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3879 ----
3880
3881
3882 [[instrumenting-32-bit-app-on-64-bit-system]]
3883 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3884
3885 In order to trace a 32-bit application running on a 64-bit system,
3886 LTTng must use a dedicated 32-bit
3887 <<lttng-consumerd,consumer daemon>>.
3888
3889 The following steps show how to build and install a 32-bit consumer
3890 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3891 build and install the 32-bit LTTng-UST libraries, and how to build and
3892 link an instrumented 32-bit application in that context.
3893
3894 To build a 32-bit instrumented application for a 64-bit target system,
3895 assuming you have a fresh target system with no installed Userspace RCU
3896 or LTTng packages:
3897
3898 . Download, build, and install a 32-bit version of Userspace RCU:
3899 +
3900 --
3901 [role="term"]
3902 ----
3903 cd $(mktemp -d) &&
3904 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3905 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3906 cd userspace-rcu-0.9.* &&
3907 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3908 make &&
3909 sudo make install &&
3910 sudo ldconfig
3911 ----
3912 --
3913
3914 . Using your distribution's package manager, or from source, install
3915 the following 32-bit versions of the following dependencies of
3916 LTTng-tools and LTTng-UST:
3917 +
3918 --
3919 * https://sourceforge.net/projects/libuuid/[libuuid]
3920 * http://directory.fsf.org/wiki/Popt[popt]
3921 * http://www.xmlsoft.org/[libxml2]
3922 --
3923
3924 . Download, build, and install a 32-bit version of the latest
3925 LTTng-UST{nbsp}{revision}:
3926 +
3927 --
3928 [role="term"]
3929 ----
3930 cd $(mktemp -d) &&
3931 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.8.tar.bz2 &&
3932 tar -xf lttng-ust-latest-2.8.tar.bz2 &&
3933 cd lttng-ust-2.8.* &&
3934 ./configure --libdir=/usr/local/lib32 \
3935 CFLAGS=-m32 CXXFLAGS=-m32 \
3936 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3937 make &&
3938 sudo make install &&
3939 sudo ldconfig
3940 ----
3941 --
3942 +
3943 [NOTE]
3944 ====
3945 Depending on your distribution,
3946 32-bit libraries could be installed at a different location than
3947 `/usr/lib32`. For example, Debian is known to install
3948 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3949
3950 In this case, make sure to set `LDFLAGS` to all the
3951 relevant 32-bit library paths, for example:
3952
3953 [role="term"]
3954 ----
3955 LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3956 ----
3957 ====
3958
3959 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
3960 the 32-bit consumer daemon:
3961 +
3962 --
3963 [role="term"]
3964 ----
3965 cd $(mktemp -d) &&
3966 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
3967 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
3968 cd lttng-tools-2.8.* &&
3969 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3970 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3971 make &&
3972 cd src/bin/lttng-consumerd &&
3973 sudo make install &&
3974 sudo ldconfig
3975 ----
3976 --
3977
3978 . From your distribution or from source,
3979 <<installing-lttng,install>> the 64-bit versions of
3980 LTTng-UST and Userspace RCU.
3981 . Download, build, and install the 64-bit version of the
3982 latest LTTng-tools{nbsp}{revision}:
3983 +
3984 --
3985 [role="term"]
3986 ----
3987 cd $(mktemp -d) &&
3988 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
3989 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
3990 cd lttng-tools-2.8.* &&
3991 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
3992 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
3993 make &&
3994 sudo make install &&
3995 sudo ldconfig
3996 ----
3997 --
3998
3999 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
4000 when linking your 32-bit application:
4001 +
4002 ----
4003 -m32 -L/usr/lib32 -L/usr/local/lib32 \
4004 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
4005 ----
4006 +
4007 For example, let's rebuild the quick start example in
4008 <<tracing-your-own-user-application,Trace a user application>> as an
4009 instrumented 32-bit application:
4010 +
4011 --
4012 [role="term"]
4013 ----
4014 gcc -m32 -c -I. hello-tp.c
4015 gcc -m32 -c hello.c
4016 gcc -m32 -o hello hello.o hello-tp.o \
4017 -L/usr/lib32 -L/usr/local/lib32 \
4018 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
4019 -llttng-ust -ldl
4020 ----
4021 --
4022
4023 No special action is required to execute the 32-bit application and
4024 to trace it: use the command-line man:lttng(1) tool as usual.
4025
4026
4027 [role="since-2.5"]
4028 [[tracef]]
4029 ==== Use `tracef()`
4030
4031 man:tracef(3) is a small LTTng-UST API designed for quick,
4032 man:printf(3)-like instrumentation without the burden of
4033 <<tracepoint-provider,creating>> and
4034 <<building-tracepoint-providers-and-user-application,building>>
4035 a tracepoint provider package.
4036
4037 To use `tracef()` in your application:
4038
4039 . In the C or C++ source files where you need to use `tracef()`,
4040 include `<lttng/tracef.h>`:
4041 +
4042 --
4043 [source,c]
4044 ----
4045 #include <lttng/tracef.h>
4046 ----
4047 --
4048
4049 . In the application's source code, use `tracef()` like you would use
4050 man:printf(3):
4051 +
4052 --
4053 [source,c]
4054 ----
4055 /* ... */
4056
4057 tracef("my message: %d (%s)", my_integer, my_string);
4058
4059 /* ... */
4060 ----
4061 --
4062
4063 . Link your application with `liblttng-ust`:
4064 +
4065 --
4066 [role="term"]
4067 ----
4068 gcc -o app app.c -llttng-ust
4069 ----
4070 --
4071
4072 To trace the events that `tracef()` calls emit:
4073
4074 * <<enabling-disabling-events,Create an event rule>> which matches the
4075 `lttng_ust_tracef:*` event name:
4076 +
4077 --
4078 [role="term"]
4079 ----
4080 lttng enable-event --userspace 'lttng_ust_tracef:*'
4081 ----
4082 --
4083
4084 [IMPORTANT]
4085 .Limitations of `tracef()`
4086 ====
4087 The `tracef()` utility function was developed to make user space tracing
4088 super simple, albeit with notable disadvantages compared to
4089 <<defining-tracepoints,user-defined tracepoints>>:
4090
4091 * All the emitted events have the same tracepoint provider and
4092 tracepoint names, respectively `lttng_ust_tracef` and `event`.
4093 * There is no static type checking.
4094 * The only event record field you actually get, named `msg`, is a string
4095 potentially containing the values you passed to `tracef()`
4096 using your own format string. This also means that you cannot filter
4097 events with a custom expression at run time because there are no
4098 isolated fields.
4099 * Since `tracef()` uses the C standard library's man:vasprintf(3)
4100 function behind the scenes to format the strings at run time, its
4101 expected performance is lower than with user-defined tracepoints,
4102 which do not require a conversion to a string.
4103
4104 Taking this into consideration, `tracef()` is useful for some quick
4105 prototyping and debugging, but you should not consider it for any
4106 permanent and serious applicative instrumentation.
4107 ====
4108
4109
4110 [role="since-2.7"]
4111 [[tracelog]]
4112 ==== Use `tracelog()`
4113
4114 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
4115 the difference that it accepts an additional log level parameter.
4116
4117 The goal of `tracelog()` is to ease the migration from logging to
4118 tracing.
4119
4120 To use `tracelog()` in your application:
4121
4122 . In the C or C++ source files where you need to use `tracelog()`,
4123 include `<lttng/tracelog.h>`:
4124 +
4125 --
4126 [source,c]
4127 ----
4128 #include <lttng/tracelog.h>
4129 ----
4130 --
4131
4132 . In the application's source code, use `tracelog()` like you would use
4133 man:printf(3), except for the first parameter which is the log
4134 level:
4135 +
4136 --
4137 [source,c]
4138 ----
4139 /* ... */
4140
4141 tracelog(TRACE_WARNING, "my message: %d (%s)",
4142 my_integer, my_string);
4143
4144 /* ... */
4145 ----
4146 --
4147 +
4148 See man:lttng-ust(3) for a list of available log level names.
4149
4150 . Link your application with `liblttng-ust`:
4151 +
4152 --
4153 [role="term"]
4154 ----
4155 gcc -o app app.c -llttng-ust
4156 ----
4157 --
4158
4159 To trace the events that `tracelog()` calls emit with a log level
4160 _as severe as_ a specific log level:
4161
4162 * <<enabling-disabling-events,Create an event rule>> which matches the
4163 `lttng_ust_tracelog:*` event name and a minimum level
4164 of severity:
4165 +
4166 --
4167 [role="term"]
4168 ----
4169 lttng enable-event --userspace 'lttng_ust_tracelog:*'
4170 --loglevel=TRACE_WARNING
4171 ----
4172 --
4173
4174 To trace the events that `tracelog()` calls emit with a
4175 _specific log level_:
4176
4177 * Create an event rule which matches the `lttng_ust_tracelog:*`
4178 event name and a specific log level:
4179 +
4180 --
4181 [role="term"]
4182 ----
4183 lttng enable-event --userspace 'lttng_ust_tracelog:*'
4184 --loglevel-only=TRACE_INFO
4185 ----
4186 --
4187
4188
4189 [[prebuilt-ust-helpers]]
4190 === Prebuilt user space tracing helpers
4191
4192 The LTTng-UST package provides a few helpers in the form or preloadable
4193 shared objects which automatically instrument system functions and
4194 calls.
4195
4196 The helper shared objects are normally found in dir:{/usr/lib}. If you
4197 built LTTng-UST <<building-from-source,from source>>, they are probably
4198 located in dir:{/usr/local/lib}.
4199
4200 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4201 are:
4202
4203 path:{liblttng-ust-libc-wrapper.so}::
4204 path:{liblttng-ust-pthread-wrapper.so}::
4205 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4206 memory and POSIX threads function tracing>>.
4207
4208 path:{liblttng-ust-cyg-profile.so}::
4209 path:{liblttng-ust-cyg-profile-fast.so}::
4210 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4211
4212 path:{liblttng-ust-dl.so}::
4213 <<liblttng-ust-dl,Dynamic linker tracing>>.
4214
4215 To use a user space tracing helper with any user application:
4216
4217 * Preload the helper shared object when you start the application:
4218 +
4219 --
4220 [role="term"]
4221 ----
4222 LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4223 ----
4224 --
4225 +
4226 You can preload more than one helper:
4227 +
4228 --
4229 [role="term"]
4230 ----
4231 LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4232 ----
4233 --
4234
4235
4236 [role="since-2.3"]
4237 [[liblttng-ust-libc-pthread-wrapper]]
4238 ==== Instrument C standard library memory and POSIX threads functions
4239
4240 The path:{liblttng-ust-libc-wrapper.so} and
4241 path:{liblttng-ust-pthread-wrapper.so} helpers
4242 add instrumentation to some C standard library and POSIX
4243 threads functions.
4244
4245 [role="growable"]
4246 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4247 |====
4248 |TP provider name |TP name |Instrumented function
4249
4250 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4251 |`calloc` |man:calloc(3)
4252 |`realloc` |man:realloc(3)
4253 |`free` |man:free(3)
4254 |`memalign` |man:memalign(3)
4255 |`posix_memalign` |man:posix_memalign(3)
4256 |====
4257
4258 [role="growable"]
4259 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4260 |====
4261 |TP provider name |TP name |Instrumented function
4262
4263 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4264 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4265 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4266 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4267 |====
4268
4269 When you preload the shared object, it replaces the functions listed
4270 in the previous tables by wrappers which contain tracepoints and call
4271 the replaced functions.
4272
4273
4274 [[liblttng-ust-cyg-profile]]
4275 ==== Instrument function entry and exit
4276
4277 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4278 to the entry and exit points of functions.
4279
4280 man:gcc(1) and man:clang(1) have an option named
4281 https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html[`-finstrument-functions`]
4282 which generates instrumentation calls for entry and exit to functions.
4283 The LTTng-UST function tracing helpers,
4284 path:{liblttng-ust-cyg-profile.so} and
4285 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4286 to add tracepoints to the two generated functions (which contain
4287 `cyg_profile` in their names, hence the helper's name).
4288
4289 To use the LTTng-UST function tracing helper, the source files to
4290 instrument must be built using the `-finstrument-functions` compiler
4291 flag.
4292
4293 There are two versions of the LTTng-UST function tracing helper:
4294
4295 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4296 that you should only use when it can be _guaranteed_ that the
4297 complete event stream is recorded without any lost event record.
4298 Any kind of duplicate information is left out.
4299 +
4300 Assuming no event record is lost, having only the function addresses on
4301 entry is enough to create a call graph, since an event record always
4302 contains the ID of the CPU that generated it.
4303 +
4304 You can use a tool like
4305 https://sourceware.org/binutils/docs/binutils/addr2line.html[cmd:addr2line]
4306 to convert function addresses back to source file names and
4307 line numbers.
4308
4309 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4310 which also works in use cases where event records might get discarded or
4311 not recorded from application startup.
4312 In these cases, the trace analyzer needs more information to be
4313 able to reconstruct the program flow.
4314
4315 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4316 points of this helper.
4317
4318 All the tracepoints that this helper provides have the
4319 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4320
4321 TIP: It's sometimes a good idea to limit the number of source files that
4322 you compile with the `-finstrument-functions` option to prevent LTTng
4323 from writing an excessive amount of trace data at run time. When using
4324 man:gcc(1), you can use the
4325 `-finstrument-functions-exclude-function-list` option to avoid
4326 instrument entries and exits of specific function names.
4327
4328
4329 [role="since-2.4"]
4330 [[liblttng-ust-dl]]
4331 ==== Instrument the dynamic linker
4332
4333 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4334 man:dlopen(3) and man:dlclose(3) function calls.
4335
4336 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4337 of this helper.
4338
4339
4340 [role="since-2.4"]
4341 [[java-application]]
4342 === User space Java agent
4343
4344 You can instrument any Java application which uses one of the following
4345 logging frameworks:
4346
4347 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4348 (JUL) core logging facilities.
4349 * http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4350 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4351
4352 [role="img-100"]
4353 .LTTng-UST Java agent imported by a Java application.
4354 image::java-app.png[]
4355
4356 Note that the methods described below are new in LTTng{nbsp}{revision}.
4357 Previous LTTng versions use another technique.
4358
4359 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4360 and https://ci.lttng.org/[continuous integration], thus this version is
4361 directly supported. However, the LTTng-UST Java agent is also tested
4362 with OpenJDK{nbsp}7.
4363
4364
4365 [role="since-2.8"]
4366 [[jul]]
4367 ==== Use the LTTng-UST Java agent for `java.util.logging`
4368
4369 To use the LTTng-UST Java agent in a Java application which uses
4370 `java.util.logging` (JUL):
4371
4372 . In the Java application's source code, import the LTTng-UST
4373 log handler package for `java.util.logging`:
4374 +
4375 --
4376 [source,java]
4377 ----
4378 import org.lttng.ust.agent.jul.LttngLogHandler;
4379 ----
4380 --
4381
4382 . Create an LTTng-UST JUL log handler:
4383 +
4384 --
4385 [source,java]
4386 ----
4387 Handler lttngUstLogHandler = new LttngLogHandler();
4388 ----
4389 --
4390
4391 . Add this handler to the JUL loggers which should emit LTTng events:
4392 +
4393 --
4394 [source,java]
4395 ----
4396 Logger myLogger = Logger.getLogger("some-logger");
4397
4398 myLogger.addHandler(lttngUstLogHandler);
4399 ----
4400 --
4401
4402 . Use `java.util.logging` log statements and configuration as usual.
4403 The loggers with an attached LTTng-UST log handler can emit
4404 LTTng events.
4405
4406 . Before exiting the application, remove the LTTng-UST log handler from
4407 the loggers attached to it and call its `close()` method:
4408 +
4409 --
4410 [source,java]
4411 ----
4412 myLogger.removeHandler(lttngUstLogHandler);
4413 lttngUstLogHandler.close();
4414 ----
4415 --
4416 +
4417 This is not strictly necessary, but it is recommended for a clean
4418 disposal of the handler's resources.
4419
4420 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4421 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4422 in the
4423 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4424 path] when you build the Java application.
4425 +
4426 The JAR files are typically located in dir:{/usr/share/java}.
4427 +
4428 IMPORTANT: The LTTng-UST Java agent must be
4429 <<installing-lttng,installed>> for the logging framework your
4430 application uses.
4431
4432 .Use the LTTng-UST Java agent for `java.util.logging`.
4433 ====
4434 [source,java]
4435 .path:{Test.java}
4436 ----
4437 import java.io.IOException;
4438 import java.util.logging.Handler;
4439 import java.util.logging.Logger;
4440 import org.lttng.ust.agent.jul.LttngLogHandler;
4441
4442 public class Test
4443 {
4444 private static final int answer = 42;
4445
4446 public static void main(String[] argv) throws Exception
4447 {
4448 // Create a logger
4449 Logger logger = Logger.getLogger("jello");
4450
4451 // Create an LTTng-UST log handler
4452 Handler lttngUstLogHandler = new LttngLogHandler();
4453
4454 // Add the LTTng-UST log handler to our logger
4455 logger.addHandler(lttngUstLogHandler);
4456
4457 // Log at will!
4458 logger.info("some info");
4459 logger.warning("some warning");
4460 Thread.sleep(500);
4461 logger.finer("finer information; the answer is " + answer);
4462 Thread.sleep(123);
4463 logger.severe("error!");
4464
4465 // Not mandatory, but cleaner
4466 logger.removeHandler(lttngUstLogHandler);
4467 lttngUstLogHandler.close();
4468 }
4469 }
4470 ----
4471
4472 Build this example:
4473
4474 [role="term"]
4475 ----
4476 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4477 ----
4478
4479 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4480 <<enabling-disabling-events,create an event rule>> matching the
4481 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4482
4483 [role="term"]
4484 ----
4485 lttng create
4486 lttng enable-event --jul jello
4487 lttng start
4488 ----
4489
4490 Run the compiled class:
4491
4492 [role="term"]
4493 ----
4494 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4495 ----
4496
4497 <<basic-tracing-session-control,Stop tracing>> and inspect the
4498 recorded events:
4499
4500 [role="term"]
4501 ----
4502 lttng stop
4503 lttng view
4504 ----
4505 ====
4506
4507 You can use the opt:lttng-enable-event(1):--loglevel or
4508 opt:lttng-enable-event(1):--loglevel-only option of the
4509 man:lttng-enable-event(1) command to target a range of JUL log levels
4510 or a specific JUL log level.
4511
4512
4513 [role="since-2.8"]
4514 [[log4j]]
4515 ==== Use the LTTng-UST Java agent for Apache log4j
4516
4517 To use the LTTng-UST Java agent in a Java application which uses
4518 Apache log4j 1.2:
4519
4520 . In the Java application's source code, import the LTTng-UST
4521 log appender package for Apache log4j:
4522 +
4523 --
4524 [source,java]
4525 ----
4526 import org.lttng.ust.agent.log4j.LttngLogAppender;
4527 ----
4528 --
4529
4530 . Create an LTTng-UST log4j log appender:
4531 +
4532 --
4533 [source,java]
4534 ----
4535 Appender lttngUstLogAppender = new LttngLogAppender();
4536 ----
4537 --
4538
4539 . Add this appender to the log4j loggers which should emit LTTng events:
4540 +
4541 --
4542 [source,java]
4543 ----
4544 Logger myLogger = Logger.getLogger("some-logger");
4545
4546 myLogger.addAppender(lttngUstLogAppender);
4547 ----
4548 --
4549
4550 . Use Apache log4j log statements and configuration as usual. The
4551 loggers with an attached LTTng-UST log appender can emit LTTng events.
4552
4553 . Before exiting the application, remove the LTTng-UST log appender from
4554 the loggers attached to it and call its `close()` method:
4555 +
4556 --
4557 [source,java]
4558 ----
4559 myLogger.removeAppender(lttngUstLogAppender);
4560 lttngUstLogAppender.close();
4561 ----
4562 --
4563 +
4564 This is not strictly necessary, but it is recommended for a clean
4565 disposal of the appender's resources.
4566
4567 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4568 files, path:{lttng-ust-agent-common.jar} and
4569 path:{lttng-ust-agent-log4j.jar}, in the
4570 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4571 path] when you build the Java application.
4572 +
4573 The JAR files are typically located in dir:{/usr/share/java}.
4574 +
4575 IMPORTANT: The LTTng-UST Java agent must be
4576 <<installing-lttng,installed>> for the logging framework your
4577 application uses.
4578
4579 .Use the LTTng-UST Java agent for Apache log4j.
4580 ====
4581 [source,java]
4582 .path:{Test.java}
4583 ----
4584 import org.apache.log4j.Appender;
4585 import org.apache.log4j.Logger;
4586 import org.lttng.ust.agent.log4j.LttngLogAppender;
4587
4588 public class Test
4589 {
4590 private static final int answer = 42;
4591
4592 public static void main(String[] argv) throws Exception
4593 {
4594 // Create a logger
4595 Logger logger = Logger.getLogger("jello");
4596
4597 // Create an LTTng-UST log appender
4598 Appender lttngUstLogAppender = new LttngLogAppender();
4599
4600 // Add the LTTng-UST log appender to our logger
4601 logger.addAppender(lttngUstLogAppender);
4602
4603 // Log at will!
4604 logger.info("some info");
4605 logger.warn("some warning");
4606 Thread.sleep(500);
4607 logger.debug("debug information; the answer is " + answer);
4608 Thread.sleep(123);
4609 logger.fatal("error!");
4610
4611 // Not mandatory, but cleaner
4612 logger.removeAppender(lttngUstLogAppender);
4613 lttngUstLogAppender.close();
4614 }
4615 }
4616
4617 ----
4618
4619 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4620 file):
4621
4622 [role="term"]
4623 ----
4624 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4625 ----
4626
4627 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4628 <<enabling-disabling-events,create an event rule>> matching the
4629 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4630
4631 [role="term"]
4632 ----
4633 lttng create
4634 lttng enable-event --log4j jello
4635 lttng start
4636 ----
4637
4638 Run the compiled class:
4639
4640 [role="term"]
4641 ----
4642 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4643 ----
4644
4645 <<basic-tracing-session-control,Stop tracing>> and inspect the
4646 recorded events:
4647
4648 [role="term"]
4649 ----
4650 lttng stop
4651 lttng view
4652 ----
4653 ====
4654
4655 You can use the opt:lttng-enable-event(1):--loglevel or
4656 opt:lttng-enable-event(1):--loglevel-only option of the
4657 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4658 or a specific log4j log level.
4659
4660
4661 [role="since-2.8"]
4662 [[java-application-context]]
4663 ==== Provide application-specific context fields in a Java application
4664
4665 A Java application-specific context field is a piece of state provided
4666 by the application which <<adding-context,you can add>>, using the
4667 man:lttng-add-context(1) command, to each <<event,event record>>
4668 produced by the log statements of this application.
4669
4670 For example, a given object might have a current request ID variable.
4671 You can create a context information retriever for this object and
4672 assign a name to this current request ID. You can then, using the
4673 man:lttng-add-context(1) command, add this context field by name to
4674 the JUL or log4j <<channel,channel>>.
4675
4676 To provide application-specific context fields in a Java application:
4677
4678 . In the Java application's source code, import the LTTng-UST
4679 Java agent context classes and interfaces:
4680 +
4681 --
4682 [source,java]
4683 ----
4684 import org.lttng.ust.agent.context.ContextInfoManager;
4685 import org.lttng.ust.agent.context.IContextInfoRetriever;
4686 ----
4687 --
4688
4689 . Create a context information retriever class, that is, a class which
4690 implements the `IContextInfoRetriever` interface:
4691 +
4692 --
4693 [source,java]
4694 ----
4695 class MyContextInfoRetriever implements IContextInfoRetriever
4696 {
4697 @Override
4698 public Object retrieveContextInfo(String key)
4699 {
4700 if (key.equals("intCtx")) {
4701 return (short) 17;
4702 } else if (key.equals("strContext")) {
4703 return "context value!";
4704 } else {
4705 return null;
4706 }
4707 }
4708 }
4709 ----
4710 --
4711 +
4712 This `retrieveContextInfo()` method is the only member of the
4713 `IContextInfoRetriever` interface. Its role is to return the current
4714 value of a state by name to create a context field. The names of the
4715 context fields and which state variables they return depends on your
4716 specific scenario.
4717 +
4718 All primitive types and objects are supported as context fields.
4719 When `retrieveContextInfo()` returns an object, the context field
4720 serializer calls its `toString()` method to add a string field to
4721 event records. The method can also return `null`, which means that
4722 no context field is available for the required name.
4723
4724 . Register an instance of your context information retriever class to
4725 the context information manager singleton:
4726 +
4727 --
4728 [source,java]
4729 ----
4730 IContextInfoRetriever cir = new MyContextInfoRetriever();
4731 ContextInfoManager cim = ContextInfoManager.getInstance();
4732 cim.registerContextInfoRetriever("retrieverName", cir);
4733 ----
4734 --
4735
4736 . Before exiting the application, remove your context information
4737 retriever from the context information manager singleton:
4738 +
4739 --
4740 [source,java]
4741 ----
4742 ContextInfoManager cim = ContextInfoManager.getInstance();
4743 cim.unregisterContextInfoRetriever("retrieverName");
4744 ----
4745 --
4746 +
4747 This is not strictly necessary, but it is recommended for a clean
4748 disposal of some manager's resources.
4749
4750 . Build your Java application with LTTng-UST Java agent support as
4751 usual, following the procedure for either the <<jul,JUL>> or
4752 <<log4j,Apache log4j>> framework.
4753
4754
4755 .Provide application-specific context fields in a Java application.
4756 ====
4757 [source,java]
4758 .path:{Test.java}
4759 ----
4760 import java.util.logging.Handler;
4761 import java.util.logging.Logger;
4762 import org.lttng.ust.agent.jul.LttngLogHandler;
4763 import org.lttng.ust.agent.context.ContextInfoManager;
4764 import org.lttng.ust.agent.context.IContextInfoRetriever;
4765
4766 public class Test
4767 {
4768 // Our context information retriever class
4769 private static class MyContextInfoRetriever
4770 implements IContextInfoRetriever
4771 {
4772 @Override
4773 public Object retrieveContextInfo(String key) {
4774 if (key.equals("intCtx")) {
4775 return (short) 17;
4776 } else if (key.equals("strContext")) {
4777 return "context value!";
4778 } else {
4779 return null;
4780 }
4781 }
4782 }
4783
4784 private static final int answer = 42;
4785
4786 public static void main(String args[]) throws Exception
4787 {
4788 // Get the context information manager instance
4789 ContextInfoManager cim = ContextInfoManager.getInstance();
4790
4791 // Create and register our context information retriever
4792 IContextInfoRetriever cir = new MyContextInfoRetriever();
4793 cim.registerContextInfoRetriever("myRetriever", cir);
4794
4795 // Create a logger
4796 Logger logger = Logger.getLogger("jello");
4797
4798 // Create an LTTng-UST log handler
4799 Handler lttngUstLogHandler = new LttngLogHandler();
4800
4801 // Add the LTTng-UST log handler to our logger
4802 logger.addHandler(lttngUstLogHandler);
4803
4804 // Log at will!
4805 logger.info("some info");
4806 logger.warning("some warning");
4807 Thread.sleep(500);
4808 logger.finer("finer information; the answer is " + answer);
4809 Thread.sleep(123);
4810 logger.severe("error!");
4811
4812 // Not mandatory, but cleaner
4813 logger.removeHandler(lttngUstLogHandler);
4814 lttngUstLogHandler.close();
4815 cim.unregisterContextInfoRetriever("myRetriever");
4816 }
4817 }
4818 ----
4819
4820 Build this example:
4821
4822 [role="term"]
4823 ----
4824 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4825 ----
4826
4827 <<creating-destroying-tracing-sessions,Create a tracing session>>
4828 and <<enabling-disabling-events,create an event rule>> matching the
4829 `jello` JUL logger:
4830
4831 [role="term"]
4832 ----
4833 lttng create
4834 lttng enable-event --jul jello
4835 ----
4836
4837 <<adding-context,Add the application-specific context fields>> to the
4838 JUL channel:
4839
4840 [role="term"]
4841 ----
4842 lttng add-context --jul --type='$app.myRetriever:intCtx'
4843 lttng add-context --jul --type='$app.myRetriever:strContext'
4844 ----
4845
4846 <<basic-tracing-session-control,Start tracing>>:
4847
4848 [role="term"]
4849 ----
4850 lttng start
4851 ----
4852
4853 Run the compiled class:
4854
4855 [role="term"]
4856 ----
4857 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4858 ----
4859
4860 <<basic-tracing-session-control,Stop tracing>> and inspect the
4861 recorded events:
4862
4863 [role="term"]
4864 ----
4865 lttng stop
4866 lttng view
4867 ----
4868 ====
4869
4870
4871 [role="since-2.7"]
4872 [[python-application]]
4873 === User space Python agent
4874
4875 You can instrument a Python 2 or Python 3 application which uses the
4876 standard https://docs.python.org/3/library/logging.html[`logging`]
4877 package.
4878
4879 Each log statement emits an LTTng event once the
4880 application module imports the
4881 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4882
4883 [role="img-100"]
4884 .A Python application importing the LTTng-UST Python agent.
4885 image::python-app.png[]
4886
4887 To use the LTTng-UST Python agent:
4888
4889 . In the Python application's source code, import the LTTng-UST Python
4890 agent:
4891 +
4892 --
4893 [source,python]
4894 ----
4895 import lttngust
4896 ----
4897 --
4898 +
4899 The LTTng-UST Python agent automatically adds its logging handler to the
4900 root logger at import time.
4901 +
4902 Any log statement that the application executes before this import does
4903 not emit an LTTng event.
4904 +
4905 IMPORTANT: The LTTng-UST Python agent must be
4906 <<installing-lttng,installed>>.
4907
4908 . Use log statements and logging configuration as usual.
4909 Since the LTTng-UST Python agent adds a handler to the _root_
4910 logger, you can trace any log statement from any logger.
4911
4912 .Use the LTTng-UST Python agent.
4913 ====
4914 [source,python]
4915 .path:{test.py}
4916 ----
4917 import lttngust
4918 import logging
4919 import time
4920
4921
4922 def example():
4923 logging.basicConfig()
4924 logger = logging.getLogger('my-logger')
4925
4926 while True:
4927 logger.debug('debug message')
4928 logger.info('info message')
4929 logger.warn('warn message')
4930 logger.error('error message')
4931 logger.critical('critical message')
4932 time.sleep(1)
4933
4934
4935 if __name__ == '__main__':
4936 example()
4937 ----
4938
4939 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
4940 logging handler which prints to the standard error stream, is not
4941 strictly required for LTTng-UST tracing to work, but in versions of
4942 Python preceding 3.2, you could see a warning message which indicates
4943 that no handler exists for the logger `my-logger`.
4944
4945 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4946 <<enabling-disabling-events,create an event rule>> matching the
4947 `my-logger` Python logger, and <<basic-tracing-session-control,start
4948 tracing>>:
4949
4950 [role="term"]
4951 ----
4952 lttng create
4953 lttng enable-event --python my-logger
4954 lttng start
4955 ----
4956
4957 Run the Python script:
4958
4959 [role="term"]
4960 ----
4961 python test.py
4962 ----
4963
4964 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4965 events:
4966
4967 [role="term"]
4968 ----
4969 lttng stop
4970 lttng view
4971 ----
4972 ====
4973
4974 You can use the opt:lttng-enable-event(1):--loglevel or
4975 opt:lttng-enable-event(1):--loglevel-only option of the
4976 man:lttng-enable-event(1) command to target a range of Python log levels
4977 or a specific Python log level.
4978
4979 When an application imports the LTTng-UST Python agent, the agent tries
4980 to register to a <<lttng-sessiond,session daemon>>. Note that you must
4981 <<start-sessiond,start the session daemon>> _before_ you run the Python
4982 application. If a session daemon is found, the agent tries to register
4983 to it during 5{nbsp}seconds, after which the application continues
4984 without LTTng tracing support. You can override this timeout value with
4985 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
4986 (milliseconds).
4987
4988 If the session daemon stops while a Python application with an imported
4989 LTTng-UST Python agent runs, the agent retries to connect and to
4990 register to a session daemon every 3{nbsp}seconds. You can override this
4991 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
4992 variable.
4993
4994
4995 [role="since-2.5"]
4996 [[proc-lttng-logger-abi]]
4997 === LTTng logger
4998
4999 The `lttng-tracer` Linux kernel module, part of
5000 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
5001 path:{/proc/lttng-logger} when it's loaded. Any application can write
5002 text data to this file to emit an LTTng event.
5003
5004 [role="img-100"]
5005 .An application writes to the LTTng logger file to emit an LTTng event.
5006 image::lttng-logger.png[]
5007
5008 The LTTng logger is the quickest method--not the most efficient,
5009 however--to add instrumentation to an application. It is designed
5010 mostly to instrument shell scripts:
5011
5012 [role="term"]
5013 ----
5014 echo "Some message, some $variable" > /proc/lttng-logger
5015 ----
5016
5017 Any event that the LTTng logger emits is named `lttng_logger` and
5018 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
5019 other instrumentation points in the kernel tracing domain, **any Unix
5020 user** can <<enabling-disabling-events,create an event rule>> which
5021 matches its event name, not only the root user or users in the tracing
5022 group.
5023
5024 To use the LTTng logger:
5025
5026 * From any application, write text data to the path:{/proc/lttng-logger}
5027 file.
5028
5029 The `msg` field of `lttng_logger` event records contains the
5030 recorded message.
5031
5032 NOTE: The maximum message length of an LTTng logger event is
5033 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
5034 than one event to contain the remaining data.
5035
5036 You should not use the LTTng logger to trace a user application which
5037 can be instrumented in a more efficient way, namely:
5038
5039 * <<c-application,C and $$C++$$ applications>>.
5040 * <<java-application,Java applications>>.
5041 * <<python-application,Python applications>>.
5042
5043 .Use the LTTng logger.
5044 ====
5045 [source,bash]
5046 .path:{test.bash}
5047 ----
5048 echo 'Hello, World!' > /proc/lttng-logger
5049 sleep 2
5050 df --human-readable --print-type / > /proc/lttng-logger
5051 ----
5052
5053 <<creating-destroying-tracing-sessions,Create a tracing session>>,
5054 <<enabling-disabling-events,create an event rule>> matching the
5055 `lttng_logger` Linux kernel tracepoint, and
5056 <<basic-tracing-session-control,start tracing>>:
5057
5058 [role="term"]
5059 ----
5060 lttng create
5061 lttng enable-event --kernel lttng_logger
5062 lttng start
5063 ----
5064
5065 Run the Bash script:
5066
5067 [role="term"]
5068 ----
5069 bash test.bash
5070 ----
5071
5072 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
5073 events:
5074
5075 [role="term"]
5076 ----
5077 lttng stop
5078 lttng view
5079 ----
5080 ====
5081
5082
5083 [[instrumenting-linux-kernel]]
5084 === LTTng kernel tracepoints
5085
5086 NOTE: This section shows how to _add_ instrumentation points to the
5087 Linux kernel. The kernel's subsystems are already thoroughly
5088 instrumented at strategic places for LTTng when you
5089 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
5090 package.
5091
5092 ////
5093 There are two methods to instrument the Linux kernel:
5094
5095 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
5096 tracepoint which uses the `TRACE_EVENT()` API.
5097 +
5098 Choose this if you want to instrumentation a Linux kernel tree with an
5099 instrumentation point compatible with ftrace, perf, and SystemTap.
5100
5101 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
5102 instrument an out-of-tree kernel module.
5103 +
5104 Choose this if you don't need ftrace, perf, or SystemTap support.
5105 ////
5106
5107
5108 [[linux-add-lttng-layer]]
5109 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
5110
5111 This section shows how to add an LTTng layer to existing ftrace
5112 instrumentation using the `TRACE_EVENT()` API.
5113
5114 This section does not document the `TRACE_EVENT()` macro. You can
5115 read the following articles to learn more about this API:
5116
5117 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
5118 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
5119 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
5120
5121 The following procedure assumes that your ftrace tracepoints are
5122 correctly defined in their own header and that they are created in
5123 one source file using the `CREATE_TRACE_POINTS` definition.
5124
5125 To add an LTTng layer over an existing ftrace tracepoint:
5126
5127 . Make sure the following kernel configuration options are
5128 enabled:
5129 +
5130 --
5131 * `CONFIG_MODULES`
5132 * `CONFIG_KALLSYMS`
5133 * `CONFIG_HIGH_RES_TIMERS`
5134 * `CONFIG_TRACEPOINTS`
5135 --
5136
5137 . Build the Linux source tree with your custom ftrace tracepoints.
5138 . Boot the resulting Linux image on your target system.
5139 +
5140 Confirm that the tracepoints exist by looking for their names in the
5141 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
5142 is your subsystem's name.
5143
5144 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
5145 +
5146 --
5147 [role="term"]
5148 ----
5149 cd $(mktemp -d) &&
5150 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
5151 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
5152 cd lttng-modules-2.8.*
5153 ----
5154 --
5155
5156 . In dir:{instrumentation/events/lttng-module}, relative to the root
5157 of the LTTng-modules source tree, create a header file named
5158 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5159 LTTng-modules tracepoint definitions using the LTTng-modules
5160 macros in it.
5161 +
5162 Start with this template:
5163 +
5164 --
5165 [source,c]
5166 .path:{instrumentation/events/lttng-module/my_subsys.h}
5167 ----
5168 #undef TRACE_SYSTEM
5169 #define TRACE_SYSTEM my_subsys
5170
5171 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5172 #define _LTTNG_MY_SUBSYS_H
5173
5174 #include "../../../probes/lttng-tracepoint-event.h"
5175 #include <linux/tracepoint.h>
5176
5177 LTTNG_TRACEPOINT_EVENT(
5178 /*
5179 * Format is identical to TRACE_EVENT()'s version for the three
5180 * following macro parameters:
5181 */
5182 my_subsys_my_event,
5183 TP_PROTO(int my_int, const char *my_string),
5184 TP_ARGS(my_int, my_string),
5185
5186 /* LTTng-modules specific macros */
5187 TP_FIELDS(
5188 ctf_integer(int, my_int_field, my_int)
5189 ctf_string(my_bar_field, my_bar)
5190 )
5191 )
5192
5193 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5194
5195 #include "../../../probes/define_trace.h"
5196 ----
5197 --
5198 +
5199 The entries in the `TP_FIELDS()` section are the list of fields for the
5200 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5201 ftrace's `TRACE_EVENT()` macro.
5202 +
5203 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5204 complete description of the available `ctf_*()` macros.
5205
5206 . Create the LTTng-modules probe's kernel module C source file,
5207 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5208 subsystem name:
5209 +
5210 --
5211 [source,c]
5212 .path:{probes/lttng-probe-my-subsys.c}
5213 ----
5214 #include <linux/module.h>
5215 #include "../lttng-tracer.h"
5216
5217 /*
5218 * Build-time verification of mismatch between mainline
5219 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5220 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5221 */
5222 #include <trace/events/my_subsys.h>
5223
5224 /* Create LTTng tracepoint probes */
5225 #define LTTNG_PACKAGE_BUILD
5226 #define CREATE_TRACE_POINTS
5227 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5228
5229 #include "../instrumentation/events/lttng-module/my_subsys.h"
5230
5231 MODULE_LICENSE("GPL and additional rights");
5232 MODULE_AUTHOR("Your name <your-email>");
5233 MODULE_DESCRIPTION("LTTng my_subsys probes");
5234 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5235 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5236 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5237 LTTNG_MODULES_EXTRAVERSION);
5238 ----
5239 --
5240
5241 . Edit path:{probes/Makefile} and add your new kernel module object
5242 next to the existing ones:
5243 +
5244 --
5245 [source,make]
5246 .path:{probes/Makefile}
5247 ----
5248 # ...
5249
5250 obj-m += lttng-probe-module.o
5251 obj-m += lttng-probe-power.o
5252
5253 obj-m += lttng-probe-my-subsys.o
5254
5255 # ...
5256 ----
5257 --
5258
5259 . Build and install the LTTng kernel modules:
5260 +
5261 --
5262 [role="term"]
5263 ----
5264 make KERNELDIR=/path/to/linux
5265 sudo make modules_install
5266 ----
5267 --
5268 +
5269 Replace `/path/to/linux` with the path to the Linux source tree where
5270 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5271
5272 Note that you can also use the
5273 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5274 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5275 C code that need to be executed before the event fields are recorded.
5276
5277 The best way to learn how to use the previous LTTng-modules macros is to
5278 inspect the existing LTTng-modules tracepoint definitions in the
5279 dir:{instrumentation/events/lttng-module} header files. Compare them
5280 with the Linux kernel mainline versions in the
5281 dir:{include/trace/events} directory of the Linux source tree.
5282
5283
5284 [role="since-2.7"]
5285 [[lttng-tracepoint-event-code]]
5286 ===== Use custom C code to access the data for tracepoint fields
5287
5288 Although we recommended to always use the
5289 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5290 the arguments and fields of an LTTng-modules tracepoint when possible,
5291 sometimes you need a more complex process to access the data that the
5292 tracer records as event record fields. In other words, you need local
5293 variables and multiple C{nbsp}statements instead of simple
5294 argument-based expressions that you pass to the
5295 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5296
5297 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5298 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5299 a block of C{nbsp}code to be executed before LTTng records the fields.
5300 The structure of this macro is:
5301
5302 [source,c]
5303 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5304 ----
5305 LTTNG_TRACEPOINT_EVENT_CODE(
5306 /*
5307 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5308 * version for the following three macro parameters:
5309 */
5310 my_subsys_my_event,
5311 TP_PROTO(int my_int, const char *my_string),
5312 TP_ARGS(my_int, my_string),
5313
5314 /* Declarations of custom local variables */
5315 TP_locvar(
5316 int a = 0;
5317 unsigned long b = 0;
5318 const char *name = "(undefined)";
5319 struct my_struct *my_struct;
5320 ),
5321
5322 /*
5323 * Custom code which uses both tracepoint arguments
5324 * (in TP_ARGS()) and local variables (in TP_locvar()).
5325 *
5326 * Local variables are actually members of a structure pointed
5327 * to by the special variable tp_locvar.
5328 */
5329 TP_code(
5330 if (my_int) {
5331 tp_locvar->a = my_int + 17;
5332 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5333 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5334 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5335 put_my_struct(tp_locvar->my_struct);
5336
5337 if (tp_locvar->b) {
5338 tp_locvar->a = 1;
5339 }
5340 }
5341 ),
5342
5343 /*
5344 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5345 * version for this, except that tp_locvar members can be
5346 * used in the argument expression parameters of
5347 * the ctf_*() macros.
5348 */
5349 TP_FIELDS(
5350 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5351 ctf_integer(int, my_struct_a, tp_locvar->a)
5352 ctf_string(my_string_field, my_string)
5353 ctf_string(my_struct_name, tp_locvar->name)
5354 )
5355 )
5356 ----
5357
5358 IMPORTANT: The C code defined in `TP_code()` must not have any side
5359 effects when executed. In particular, the code must not allocate
5360 memory or get resources without deallocating this memory or putting
5361 those resources afterwards.
5362
5363
5364 [[instrumenting-linux-kernel-tracing]]
5365 ==== Load and unload a custom probe kernel module
5366
5367 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5368 kernel module>> in the kernel before it can emit LTTng events.
5369
5370 To load the default probe kernel modules and a custom probe kernel
5371 module:
5372
5373 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5374 probe modules to load when starting a root <<lttng-sessiond,session
5375 daemon>>:
5376 +
5377 --
5378 .Load the `my_subsys`, `usb`, and the default probe modules.
5379 ====
5380 [role="term"]
5381 ----
5382 sudo lttng-sessiond --extra-kmod-probes=my_subsys,usb
5383 ----
5384 ====
5385 --
5386 +
5387 You only need to pass the subsystem name, not the whole kernel module
5388 name.
5389
5390 To load _only_ a given custom probe kernel module:
5391
5392 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5393 modules to load when starting a root session daemon:
5394 +
5395 --
5396 .Load only the `my_subsys` and `usb` probe modules.
5397 ====
5398 [role="term"]
5399 ----
5400 sudo lttng-sessiond --kmod-probes=my_subsys,usb
5401 ----
5402 ====
5403 --
5404
5405 To confirm that a probe module is loaded:
5406
5407 * Use man:lsmod(8):
5408 +
5409 --
5410 [role="term"]
5411 ----
5412 lsmod | grep lttng_probe_usb
5413 ----
5414 --
5415
5416 To unload the loaded probe modules:
5417
5418 * Kill the session daemon with `SIGTERM`:
5419 +
5420 --
5421 [role="term"]
5422 ----
5423 sudo pkill lttng-sessiond
5424 ----
5425 --
5426 +
5427 You can also use man:modprobe(8)'s `--remove` option if the session
5428 daemon terminates abnormally.
5429
5430
5431 [[controlling-tracing]]
5432 == Tracing control
5433
5434 Once an application or a Linux kernel is
5435 <<instrumenting,instrumented>> for LTTng tracing,
5436 you can _trace_ it.
5437
5438 This section is divided in topics on how to use the various
5439 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5440 command-line tool>>, to _control_ the LTTng daemons and tracers.
5441
5442 NOTE: In the following subsections, we refer to an man:lttng(1) command
5443 using its man page name. For example, instead of _Run the `create`
5444 command to..._, we use _Run the man:lttng-create(1) command to..._.
5445
5446
5447 [[start-sessiond]]
5448 === Start a session daemon
5449
5450 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5451 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5452 command-line tool.
5453
5454 You will see the following error when you run a command while no session
5455 daemon is running:
5456
5457 ----
5458 Error: No session daemon is available
5459 ----
5460
5461 The only command that automatically runs a session daemon is
5462 man:lttng-create(1), which you use to
5463 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5464 this is most of the time the first operation that you do, sometimes it's
5465 not. Some examples are:
5466
5467 * <<list-instrumentation-points,List the available instrumentation points>>.
5468 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5469
5470 [[tracing-group]] Each Unix user must have its own running session
5471 daemon to trace user applications. The session daemon that the root user
5472 starts is the only one allowed to control the LTTng kernel tracer. Users
5473 that are part of the _tracing group_ can control the root session
5474 daemon. The default tracing group name is `tracing`; you can set it to
5475 something else with the opt:lttng-sessiond(8):--group option when you
5476 start the root session daemon.
5477
5478 To start a user session daemon:
5479
5480 * Run man:lttng-sessiond(8):
5481 +
5482 --
5483 [role="term"]
5484 ----
5485 lttng-sessiond --daemonize
5486 ----
5487 --
5488
5489 To start the root session daemon:
5490
5491 * Run man:lttng-sessiond(8) as the root user:
5492 +
5493 --
5494 [role="term"]
5495 ----
5496 sudo lttng-sessiond --daemonize
5497 ----
5498 --
5499
5500 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5501 start the session daemon in foreground.
5502
5503 To stop a session daemon, use man:kill(1) on its process ID (standard
5504 `TERM` signal).
5505
5506 Note that some Linux distributions could manage the LTTng session daemon
5507 as a service. In this case, you should use the service manager to
5508 start, restart, and stop session daemons.
5509
5510
5511 [[creating-destroying-tracing-sessions]]
5512 === Create and destroy a tracing session
5513
5514 Almost all the LTTng control operations happen in the scope of
5515 a <<tracing-session,tracing session>>, which is the dialogue between the
5516 <<lttng-sessiond,session daemon>> and you.
5517
5518 To create a tracing session with a generated name:
5519
5520 * Use the man:lttng-create(1) command:
5521 +
5522 --
5523 [role="term"]
5524 ----
5525 lttng create
5526 ----
5527 --
5528
5529 The created tracing session's name is `auto` followed by the
5530 creation date.
5531
5532 To create a tracing session with a specific name:
5533
5534 * Use the optional argument of the man:lttng-create(1) command:
5535 +
5536 --
5537 [role="term"]
5538 ----
5539 lttng create my-session
5540 ----
5541 --
5542 +
5543 Replace `my-session` with the specific tracing session name.
5544
5545 LTTng appends the creation date to the created tracing session's name.
5546
5547 LTTng writes the traces of a tracing session in
5548 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5549 name of the tracing session. Note that the env:LTTNG_HOME environment
5550 variable defaults to `$HOME` if not set.
5551
5552 To output LTTng traces to a non-default location:
5553
5554 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5555 +
5556 --
5557 [role="term"]
5558 ----
5559 lttng create --output=/tmp/some-directory my-session
5560 ----
5561 --
5562
5563 You may create as many tracing sessions as you wish.
5564
5565 To list all the existing tracing sessions for your Unix user:
5566
5567 * Use the man:lttng-list(1) command:
5568 +
5569 --
5570 [role="term"]
5571 ----
5572 lttng list
5573 ----
5574 --
5575
5576 When you create a tracing session, it is set as the _current tracing
5577 session_. The following man:lttng(1) commands operate on the current
5578 tracing session when you don't specify one:
5579
5580 [role="list-3-cols"]
5581 * `add-context`
5582 * `destroy`
5583 * `disable-channel`
5584 * `disable-event`
5585 * `enable-channel`
5586 * `enable-event`
5587 * `load`
5588 * `save`
5589 * `snapshot`
5590 * `start`
5591 * `stop`
5592 * `track`
5593 * `untrack`
5594 * `view`
5595
5596 To change the current tracing session:
5597
5598 * Use the man:lttng-set-session(1) command:
5599 +
5600 --
5601 [role="term"]
5602 ----
5603 lttng set-session new-session
5604 ----
5605 --
5606 +
5607 Replace `new-session` by the name of the new current tracing session.
5608
5609 When you are done tracing in a given tracing session, you can destroy
5610 it. This operation frees the resources taken by the tracing session
5611 to destroy; it does not destroy the trace data that LTTng wrote for
5612 this tracing session.
5613
5614 To destroy the current tracing session:
5615
5616 * Use the man:lttng-destroy(1) command:
5617 +
5618 --
5619 [role="term"]
5620 ----
5621 lttng destroy
5622 ----
5623 --
5624
5625
5626 [[list-instrumentation-points]]
5627 === List the available instrumentation points
5628
5629 The <<lttng-sessiond,session daemon>> can query the running instrumented
5630 user applications and the Linux kernel to get a list of available
5631 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5632 they are tracepoints and system calls. For the user space tracing
5633 domain, they are tracepoints. For the other tracing domains, they are
5634 logger names.
5635
5636 To list the available instrumentation points:
5637
5638 * Use the man:lttng-list(1) command with the requested tracing domain's
5639 option amongst:
5640 +
5641 --
5642 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5643 must be a root user, or it must be a member of the
5644 <<tracing-group,tracing group>>).
5645 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5646 kernel system calls (your Unix user must be a root user, or it must be
5647 a member of the tracing group).
5648 * opt:lttng-list(1):--userspace: user space tracepoints.
5649 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5650 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5651 * opt:lttng-list(1):--python: Python loggers.
5652 --
5653
5654 .List the available user space tracepoints.
5655 ====
5656 [role="term"]
5657 ----
5658 lttng list --userspace
5659 ----
5660 ====
5661
5662 .List the available Linux kernel system call tracepoints.
5663 ====
5664 [role="term"]
5665 ----
5666 lttng list --kernel --syscall
5667 ----
5668 ====
5669
5670
5671 [[enabling-disabling-events]]
5672 === Create and enable an event rule
5673
5674 Once you <<creating-destroying-tracing-sessions,create a tracing
5675 session>>, you can create <<event,event rules>> with the
5676 man:lttng-enable-event(1) command.
5677
5678 You specify each condition with a command-line option. The available
5679 condition options are shown in the following table.
5680
5681 [role="growable",cols="asciidoc,asciidoc,default"]
5682 .Condition command-line options for the man:lttng-enable-event(1) command.
5683 |====
5684 |Option |Description |Applicable tracing domains
5685
5686 |
5687 One of:
5688
5689 . `--syscall`
5690 . +--probe=__ADDR__+
5691 . +--function=__ADDR__+
5692
5693 |
5694 Instead of using the default _tracepoint_ instrumentation type, use:
5695
5696 . A Linux system call.
5697 . A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5698 . The entry and return points of a Linux function (symbol or address).
5699
5700 |Linux kernel.
5701
5702 |First positional argument.
5703
5704 |
5705 Tracepoint or system call name. In the case of a Linux KProbe or
5706 function, this is a custom name given to the event rule. With the
5707 JUL, log4j, and Python domains, this is a logger name.
5708
5709 With a tracepoint, logger, or system call name, the last character
5710 can be `*` to match anything that remains.
5711
5712 |All.
5713
5714 |
5715 One of:
5716
5717 . +--loglevel=__LEVEL__+
5718 . +--loglevel-only=__LEVEL__+
5719
5720 |
5721 . Match only tracepoints or log statements with a logging level at
5722 least as severe as +__LEVEL__+.
5723 . Match only tracepoints or log statements with a logging level
5724 equal to +__LEVEL__+.
5725
5726 See man:lttng-enable-event(1) for the list of available logging level
5727 names.
5728
5729 |User space, JUL, log4j, and Python.
5730
5731 |+--exclude=__EXCLUSIONS__+
5732
5733 |
5734 When you use a `*` character at the end of the tracepoint or logger
5735 name (first positional argument), exclude the specific names in the
5736 comma-delimited list +__EXCLUSIONS__+.
5737
5738 |
5739 User space, JUL, log4j, and Python.
5740
5741 |+--filter=__EXPR__+
5742
5743 |
5744 Match only events which satisfy the expression +__EXPR__+.
5745
5746 See man:lttng-enable-event(1) to learn more about the syntax of a
5747 filter expression.
5748
5749 |All.
5750
5751 |====
5752
5753 You attach an event rule to a <<channel,channel>> on creation. If you do
5754 not specify the channel with the opt:lttng-enable-event(1):--channel
5755 option, and if the event rule to create is the first in its
5756 <<domain,tracing domain>> for a given tracing session, then LTTng
5757 creates a _default channel_ for you. This default channel is reused in
5758 subsequent invocations of the man:lttng-enable-event(1) command for the
5759 same tracing domain.
5760
5761 An event rule is always enabled at creation time.
5762
5763 The following examples show how you can combine the previous
5764 command-line options to create simple to more complex event rules.
5765
5766 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5767 ====
5768 [role="term"]
5769 ----
5770 lttng enable-event --kernel sched_switch
5771 ----
5772 ====
5773
5774 .Create an event rule matching four Linux kernel system calls (default channel).
5775 ====
5776 [role="term"]
5777 ----
5778 lttng enable-event --kernel --syscall open,write,read,close
5779 ----
5780 ====
5781
5782 .Create event rules matching tracepoints with filter expressions (default channel).
5783 ====
5784 [role="term"]
5785 ----
5786 lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5787 ----
5788
5789 [role="term"]
5790 ----
5791 lttng enable-event --kernel --all \
5792 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5793 ----
5794
5795 [role="term"]
5796 ----
5797 lttng enable-event --jul my_logger \
5798 --filter='$app.retriever:cur_msg_id > 3'
5799 ----
5800
5801 IMPORTANT: Make sure to always quote the filter string when you
5802 use man:lttng(1) from a shell.
5803 ====
5804
5805 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5806 ====
5807 [role="term"]
5808 ----
5809 lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5810 ----
5811
5812 IMPORTANT: Make sure to always quote the wildcard character when you
5813 use man:lttng(1) from a shell.
5814 ====
5815
5816 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5817 ====
5818 [role="term"]
5819 ----
5820 lttng enable-event --python my-app.'*' \
5821 --exclude='my-app.module,my-app.hello'
5822 ----
5823 ====
5824
5825 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5826 ====
5827 [role="term"]
5828 ----
5829 lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5830 ----
5831 ====
5832
5833 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5834 ====
5835 [role="term"]
5836 ----
5837 lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5838 ----
5839 ====
5840
5841 The event rules of a given channel form a whitelist: as soon as an
5842 emitted event passes one of them, LTTng can record the event. For
5843 example, an event named `my_app:my_tracepoint` emitted from a user space
5844 tracepoint with a `TRACE_ERROR` log level passes both of the following
5845 rules:
5846
5847 [role="term"]
5848 ----
5849 lttng enable-event --userspace my_app:my_tracepoint
5850 lttng enable-event --userspace my_app:my_tracepoint \
5851 --loglevel=TRACE_INFO
5852 ----
5853
5854 The second event rule is redundant: the first one includes
5855 the second one.
5856
5857
5858 [[disable-event-rule]]
5859 === Disable an event rule
5860
5861 To disable an event rule that you <<enabling-disabling-events,created>>
5862 previously, use the man:lttng-disable-event(1) command. This command
5863 disables _all_ the event rules (of a given tracing domain and channel)
5864 which match an instrumentation point. The other conditions are not
5865 supported as of LTTng{nbsp}{revision}.
5866
5867 The LTTng tracer does not record an emitted event which passes
5868 a _disabled_ event rule.
5869
5870 .Disable an event rule matching a Python logger (default channel).
5871 ====
5872 [role="term"]
5873 ----
5874 lttng disable-event --python my-logger
5875 ----
5876 ====
5877
5878 .Disable an event rule matching all `java.util.logging` loggers (default channel).
5879 ====
5880 [role="term"]
5881 ----
5882 lttng disable-event --jul '*'
5883 ----
5884 ====
5885
5886 .Disable _all_ the event rules of the default channel.
5887 ====
5888 The opt:lttng-disable-event(1):--all-events option is not, like the
5889 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
5890 equivalent of the event name `*` (wildcard): it disables _all_ the event
5891 rules of a given channel.
5892
5893 [role="term"]
5894 ----
5895 lttng disable-event --jul --all-events
5896 ----
5897 ====
5898
5899 NOTE: You cannot delete an event rule once you create it.
5900
5901
5902 [[status]]
5903 === Get the status of a tracing session
5904
5905 To get the status of the current tracing session, that is, its
5906 parameters, its channels, event rules, and their attributes:
5907
5908 * Use the man:lttng-status(1) command:
5909 +
5910 --
5911 [role="term"]
5912 ----
5913 lttng status
5914 ----
5915 --
5916 +
5917
5918 To get the status of any tracing session:
5919
5920 * Use the man:lttng-list(1) command with the tracing session's name:
5921 +
5922 --
5923 [role="term"]
5924 ----
5925 lttng list my-session
5926 ----
5927 --
5928 +
5929 Replace `my-session` with the desired tracing session's name.
5930
5931
5932 [[basic-tracing-session-control]]
5933 === Start and stop a tracing session
5934
5935 Once you <<creating-destroying-tracing-sessions,create a tracing
5936 session>> and
5937 <<enabling-disabling-events,create one or more event rules>>,
5938 you can start and stop the tracers for this tracing session.
5939
5940 To start tracing in the current tracing session:
5941
5942 * Use the man:lttng-start(1) command:
5943 +
5944 --
5945 [role="term"]
5946 ----
5947 lttng start
5948 ----
5949 --
5950
5951 LTTng is very flexible: you can launch user applications before
5952 or after the you start the tracers. The tracers only record the events
5953 if they pass enabled event rules and if they occur while the tracers are
5954 started.
5955
5956 To stop tracing in the current tracing session:
5957
5958 * Use the man:lttng-stop(1) command:
5959 +
5960 --
5961 [role="term"]
5962 ----
5963 lttng stop
5964 ----
5965 --
5966 +
5967 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
5968 records>> or lost sub-buffers since the last time you ran
5969 man:lttng-start(1), warnings are printed when you run the
5970 man:lttng-stop(1) command.
5971
5972
5973 [[enabling-disabling-channels]]
5974 === Create a channel
5975
5976 Once you create a tracing session, you can create a <<channel,channel>>
5977 with the man:lttng-enable-channel(1) command.
5978
5979 Note that LTTng automatically creates a default channel when, for a
5980 given <<domain,tracing domain>>, no channels exist and you
5981 <<enabling-disabling-events,create>> the first event rule. This default
5982 channel is named `channel0` and its attributes are set to reasonable
5983 values. Therefore, you only need to create a channel when you need
5984 non-default attributes.
5985
5986 You specify each non-default channel attribute with a command-line
5987 option when you use the man:lttng-enable-channel(1) command. The
5988 available command-line options are:
5989
5990 [role="growable",cols="asciidoc,asciidoc"]
5991 .Command-line options for the man:lttng-enable-channel(1) command.
5992 |====
5993 |Option |Description
5994
5995 |`--overwrite`
5996
5997 |
5998 Use the _overwrite_
5999 <<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
6000 the default _discard_ mode.
6001
6002 |`--buffers-pid` (user space tracing domain only)
6003
6004 |
6005 Use the per-process <<channel-buffering-schemes,buffering scheme>>
6006 instead of the default per-user buffering scheme.
6007
6008 |+--subbuf-size=__SIZE__+
6009
6010 |
6011 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
6012 either for each Unix user (default), or for each instrumented process.
6013
6014 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6015
6016 |+--num-subbuf=__COUNT__+
6017
6018 |
6019 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
6020 for each Unix user (default), or for each instrumented process.
6021
6022 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6023
6024 |+--tracefile-size=__SIZE__+
6025
6026 |
6027 Set the maximum size of each trace file that this channel writes within
6028 a stream to +__SIZE__+ bytes instead of no maximum.
6029
6030 See <<tracefile-rotation,Trace file count and size>>.
6031
6032 |+--tracefile-count=__COUNT__+
6033
6034 |
6035 Limit the number of trace files that this channel creates to
6036 +__COUNT__+ channels instead of no limit.
6037
6038 See <<tracefile-rotation,Trace file count and size>>.
6039
6040 |+--switch-timer=__PERIODUS__+
6041
6042 |
6043 Set the <<channel-switch-timer,switch timer period>>
6044 to +__PERIODUS__+{nbsp}µs.
6045
6046 |+--read-timer=__PERIODUS__+
6047
6048 |
6049 Set the <<channel-read-timer,read timer period>>
6050 to +__PERIODUS__+{nbsp}µs.
6051
6052 |+--output=__TYPE__+ (Linux kernel tracing domain only)
6053
6054 |
6055 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
6056
6057 |====
6058
6059 You can only create a channel in the Linux kernel and user space
6060 <<domain,tracing domains>>: other tracing domains have their own channel
6061 created on the fly when <<enabling-disabling-events,creating event
6062 rules>>.
6063
6064 [IMPORTANT]
6065 ====
6066 Because of a current LTTng limitation, you must create all channels
6067 _before_ you <<basic-tracing-session-control,start tracing>> in a given
6068 tracing session, that is, before the first time you run
6069 man:lttng-start(1).
6070
6071 Since LTTng automatically creates a default channel when you use the
6072 man:lttng-enable-event(1) command with a specific tracing domain, you
6073 cannot, for example, create a Linux kernel event rule, start tracing,
6074 and then create a user space event rule, because no user space channel
6075 exists yet and it's too late to create one.
6076
6077 For this reason, make sure to configure your channels properly
6078 before starting the tracers for the first time!
6079 ====
6080
6081 The following examples show how you can combine the previous
6082 command-line options to create simple to more complex channels.
6083
6084 .Create a Linux kernel channel with default attributes.
6085 ====
6086 [role="term"]
6087 ----
6088 lttng enable-channel --kernel my-channel
6089 ----
6090 ====
6091
6092 .Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6093 ====
6094 [role="term"]
6095 ----
6096 lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6097 --buffers-pid my-channel
6098 ----
6099 ====
6100
6101 .Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
6102 ====
6103 [role="term"]
6104 ----
6105 lttng enable-channel --kernel --tracefile-count=8 \
6106 --tracefile-size=4194304 my-channel
6107 ----
6108 ====
6109
6110 .Create a user space channel in overwrite (or _flight recorder_) mode.
6111 ====
6112 [role="term"]
6113 ----
6114 lttng enable-channel --userspace --overwrite my-channel
6115 ----
6116 ====
6117
6118 You can <<enabling-disabling-events,create>> the same event rule in
6119 two different channels:
6120
6121 [role="term"]
6122 ----
6123 lttng enable-event --userspace --channel=my-channel app:tp
6124 lttng enable-event --userspace --channel=other-channel app:tp
6125 ----
6126
6127 If both channels are enabled, when a tracepoint named `app:tp` is
6128 reached, LTTng records two events, one for each channel.
6129
6130
6131 [[disable-channel]]
6132 === Disable a channel
6133
6134 To disable a specific channel that you <<enabling-disabling-channels,created>>
6135 previously, use the man:lttng-disable-channel(1) command.
6136
6137 .Disable a specific Linux kernel channel.
6138 ====
6139 [role="term"]
6140 ----
6141 lttng disable-channel --kernel my-channel
6142 ----
6143 ====
6144
6145 The state of a channel precedes the individual states of event rules
6146 attached to it: event rules which belong to a disabled channel, even if
6147 they are enabled, are also considered disabled.
6148
6149
6150 [[adding-context]]
6151 === Add context fields to a channel
6152
6153 Event record fields in trace files provide important information about
6154 events that occured previously, but sometimes some external context may
6155 help you solve a problem faster. Examples of context fields are:
6156
6157 * The **process ID**, **thread ID**, **process name**, and
6158 **process priority** of the thread in which the event occurs.
6159 * The **hostname** of the system on which the event occurs.
6160 * The current values of many possible **performance counters** using
6161 perf, for example:
6162 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6163 ** Cache misses.
6164 ** Branch instructions, misses, and loads.
6165 ** CPU faults.
6166 * Any context defined at the application level (supported for the
6167 JUL and log4j <<domain,tracing domains>>).
6168
6169 To get the full list of available context fields, see
6170 `lttng add-context --list`. Some context fields are reserved for a
6171 specific <<domain,tracing domain>> (Linux kernel or user space).
6172
6173 You add context fields to <<channel,channels>>. All the events
6174 that a channel with added context fields records contain those fields.
6175
6176 To add context fields to one or all the channels of a given tracing
6177 session:
6178
6179 * Use the man:lttng-add-context(1) command.
6180
6181 .Add context fields to all the channels of the current tracing session.
6182 ====
6183 The following command line adds the virtual process identifier and
6184 the per-thread CPU cycles count fields to all the user space channels
6185 of the current tracing session.
6186
6187 [role="term"]
6188 ----
6189 lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6190 ----
6191 ====
6192
6193 .Add a context field to a specific channel.
6194 ====
6195 The following command line adds the thread identifier context field
6196 to the Linux kernel channel named `my-channel` in the current
6197 tracing session.
6198
6199 [role="term"]
6200 ----
6201 lttng add-context --kernel --channel=my-channel --type=tid
6202 ----
6203 ====
6204
6205 .Add an application-specific context field to a specific channel.
6206 ====
6207 The following command line adds the `cur_msg_id` context field of the
6208 `retriever` context retriever for all the instrumented
6209 <<java-application,Java applications>> recording <<event,event records>>
6210 in the channel named `my-channel`:
6211
6212 [role="term"]
6213 ----
6214 lttng add-context --kernel --channel=my-channel \
6215 --type='$app:retriever:cur_msg_id'
6216 ----
6217
6218 IMPORTANT: Make sure to always quote the `$` character when you
6219 use man:lttng-add-context(1) from a shell.
6220 ====
6221
6222 NOTE: You cannot remove context fields from a channel once you add it.
6223
6224
6225 [role="since-2.7"]
6226 [[pid-tracking]]
6227 === Track process IDs
6228
6229 It's often useful to allow only specific process IDs (PIDs) to emit
6230 events. For example, you may wish to record all the system calls made by
6231 a given process (à la http://linux.die.net/man/1/strace[strace]).
6232
6233 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6234 purpose. Both commands operate on a whitelist of process IDs. You _add_
6235 entries to this whitelist with the man:lttng-track(1) command and remove
6236 entries with the man:lttng-untrack(1) command. Any process which has one
6237 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6238 an enabled <<event,event rule>>.
6239
6240 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6241 process with a given tracked ID exit and another process be given this
6242 ID, then the latter would also be allowed to emit events.
6243
6244 .Track and untrack process IDs.
6245 ====
6246 For the sake of the following example, assume the target system has 16
6247 possible PIDs.
6248
6249 When you
6250 <<creating-destroying-tracing-sessions,create a tracing session>>,
6251 the whitelist contains all the possible PIDs:
6252
6253 [role="img-100"]
6254 .All PIDs are tracked.
6255 image::track-all.png[]
6256
6257 When the whitelist is full and you use the man:lttng-track(1) command to
6258 specify some PIDs to track, LTTng first clears the whitelist, then it
6259 tracks the specific PIDs. After:
6260
6261 [role="term"]
6262 ----
6263 lttng track --pid=3,4,7,10,13
6264 ----
6265
6266 the whitelist is:
6267
6268 [role="img-100"]
6269 .PIDs 3, 4, 7, 10, and 13 are tracked.
6270 image::track-3-4-7-10-13.png[]
6271
6272 You can add more PIDs to the whitelist afterwards:
6273
6274 [role="term"]
6275 ----
6276 lttng track --pid=1,15,16
6277 ----
6278
6279 The result is:
6280
6281 [role="img-100"]
6282 .PIDs 1, 15, and 16 are added to the whitelist.
6283 image::track-1-3-4-7-10-13-15-16.png[]
6284
6285 The man:lttng-untrack(1) command removes entries from the PID tracker's
6286 whitelist. Given the previous example, the following command:
6287
6288 [role="term"]
6289 ----
6290 lttng untrack --pid=3,7,10,13
6291 ----
6292
6293 leads to this whitelist:
6294
6295 [role="img-100"]
6296 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6297 image::track-1-4-15-16.png[]
6298
6299 LTTng can track all possible PIDs again using the opt:track(1):--all
6300 option:
6301
6302 [role="term"]
6303 ----
6304 lttng track --pid --all
6305 ----
6306
6307 The result is, again:
6308
6309 [role="img-100"]
6310 .All PIDs are tracked.
6311 image::track-all.png[]
6312 ====
6313
6314 .Track only specific PIDs
6315 ====
6316 A very typical use case with PID tracking is to start with an empty
6317 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6318 then add PIDs manually while tracers are active. You can accomplish this
6319 by using the opt:lttng-untrack(1):--all option of the
6320 man:lttng-untrack(1) command to clear the whitelist after you
6321 <<creating-destroying-tracing-sessions,create a tracing session>>:
6322
6323 [role="term"]
6324 ----
6325 lttng untrack --pid --all
6326 ----
6327
6328 gives:
6329
6330 [role="img-100"]
6331 .No PIDs are tracked.
6332 image::untrack-all.png[]
6333
6334 If you trace with this whitelist configuration, the tracer records no
6335 events for this <<domain,tracing domain>> because no processes are
6336 tracked. You can use the man:lttng-track(1) command as usual to track
6337 specific PIDs, for example:
6338
6339 [role="term"]
6340 ----
6341 lttng track --pid=6,11
6342 ----
6343
6344 Result:
6345
6346 [role="img-100"]
6347 .PIDs 6 and 11 are tracked.
6348 image::track-6-11.png[]
6349 ====
6350
6351
6352 [role="since-2.5"]
6353 [[saving-loading-tracing-session]]
6354 === Save and load tracing session configurations
6355
6356 Configuring a <<tracing-session,tracing session>> can be long. Some of
6357 the tasks involved are:
6358
6359 * <<enabling-disabling-channels,Create channels>> with
6360 specific attributes.
6361 * <<adding-context,Add context fields>> to specific channels.
6362 * <<enabling-disabling-events,Create event rules>> with specific log
6363 level and filter conditions.
6364
6365 If you use LTTng to solve real world problems, chances are you have to
6366 record events using the same tracing session setup over and over,
6367 modifying a few variables each time in your instrumented program
6368 or environment. To avoid constant tracing session reconfiguration,
6369 the man:lttng(1) command-line tool can save and load tracing session
6370 configurations to/from XML files.
6371
6372 To save a given tracing session configuration:
6373
6374 * Use the man:lttng-save(1) command:
6375 +
6376 --
6377 [role="term"]
6378 ----
6379 lttng save my-session
6380 ----
6381 --
6382 +
6383 Replace `my-session` with the name of the tracing session to save.
6384
6385 LTTng saves tracing session configurations to
6386 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6387 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6388 the opt:lttng-save(1):--output-path option to change this destination
6389 directory.
6390
6391 LTTng saves all configuration parameters, for example:
6392
6393 * The tracing session name.
6394 * The trace data output path.
6395 * The channels with their state and all their attributes.
6396 * The context fields you added to channels.
6397 * The event rules with their state, log level and filter conditions.
6398
6399 To load a tracing session:
6400
6401 * Use the man:lttng-load(1) command:
6402 +
6403 --
6404 [role="term"]
6405 ----
6406 lttng load my-session
6407 ----
6408 --
6409 +
6410 Replace `my-session` with the name of the tracing session to load.
6411
6412 When LTTng loads a configuration, it restores your saved tracing session
6413 as if you just configured it manually.
6414
6415 See man:lttng(1) for the complete list of command-line options. You
6416 can also save and load all many sessions at a time, and decide in which
6417 directory to output the XML files.
6418
6419
6420 [[sending-trace-data-over-the-network]]
6421 === Send trace data over the network
6422
6423 LTTng can send the recorded trace data to a remote system over the
6424 network instead of writing it to the local file system.
6425
6426 To send the trace data over the network:
6427
6428 . On the _remote_ system (which can also be the target system),
6429 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6430 +
6431 --
6432 [role="term"]
6433 ----
6434 lttng-relayd
6435 ----
6436 --
6437
6438 . On the _target_ system, create a tracing session configured to
6439 send trace data over the network:
6440 +
6441 --
6442 [role="term"]
6443 ----
6444 lttng create my-session --set-url=net://remote-system
6445 ----
6446 --
6447 +
6448 Replace `remote-system` by the host name or IP address of the
6449 remote system. See man:lttng-create(1) for the exact URL format.
6450
6451 . On the target system, use the man:lttng(1) command-line tool as usual.
6452 When tracing is active, the target's consumer daemon sends sub-buffers
6453 to the relay daemon running on the remote system intead of flushing
6454 them to the local file system. The relay daemon writes the received
6455 packets to the local file system.
6456
6457 The relay daemon writes trace files to
6458 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6459 +__hostname__+ is the host name of the target system and +__session__+
6460 is the tracing session name. Note that the env:LTTNG_HOME environment
6461 variable defaults to `$HOME` if not set. Use the
6462 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6463 trace files to another base directory.
6464
6465
6466 [role="since-2.4"]
6467 [[lttng-live]]
6468 === View events as LTTng emits them (noch:{LTTng} live)
6469
6470 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6471 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6472 display events as LTTng emits them on the target system while tracing is
6473 active.
6474
6475 The relay daemon creates a _tee_: it forwards the trace data to both
6476 the local file system and to connected live viewers:
6477
6478 [role="img-90"]
6479 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6480 image::live.png[]
6481
6482 To use LTTng live:
6483
6484 . On the _target system_, create a <<tracing-session,tracing session>>
6485 in _live mode_:
6486 +
6487 --
6488 [role="term"]
6489 ----
6490 lttng create --live my-session
6491 ----
6492 --
6493 +
6494 This spawns a local relay daemon.
6495
6496 . Start the live viewer and configure it to connect to the relay
6497 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6498 +
6499 --
6500 [role="term"]
6501 ----
6502 babeltrace --input-format=lttng-live net://localhost/host/hostname/my-session
6503 ----
6504 --
6505 +
6506 Replace:
6507 +
6508 --
6509 * `hostname` with the host name of the target system.
6510 * `my-session` with the name of the tracing session to view.
6511 --
6512
6513 . Configure the tracing session as usual with the man:lttng(1)
6514 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6515
6516 You can list the available live tracing sessions with Babeltrace:
6517
6518 [role="term"]
6519 ----
6520 babeltrace --input-format=lttng-live net://localhost
6521 ----
6522
6523 You can start the relay daemon on another system. In this case, you need
6524 to specify the relay daemon's URL when you create the tracing session
6525 with the opt:lttng-create(1):--set-url option. You also need to replace
6526 `localhost` in the procedure above with the host name of the system on
6527 which the relay daemon is running.
6528
6529 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6530 command-line options.
6531
6532
6533 [role="since-2.3"]
6534 [[taking-a-snapshot]]
6535 === Take a snapshot of the current sub-buffers of a tracing session
6536
6537 The normal behavior of LTTng is to append full sub-buffers to growing
6538 trace data files. This is ideal to keep a full history of the events
6539 that occurred on the target system, but it can
6540 represent too much data in some situations. For example, you may wish
6541 to trace your application continuously until some critical situation
6542 happens, in which case you only need the latest few recorded
6543 events to perform the desired analysis, not multi-gigabyte trace files.
6544
6545 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6546 current sub-buffers of a given <<tracing-session,tracing session>>.
6547 LTTng can write the snapshot to the local file system or send it over
6548 the network.
6549
6550 To take a snapshot:
6551
6552 . Create a tracing session in _snapshot mode_:
6553 +
6554 --
6555 [role="term"]
6556 ----
6557 lttng create --snapshot my-session
6558 ----
6559 --
6560 +
6561 The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6562 <<channel,channels>> created in this mode is automatically set to
6563 _overwrite_ (flight recorder mode).
6564
6565 . Configure the tracing session as usual with the man:lttng(1)
6566 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6567
6568 . **Optional**: When you need to take a snapshot,
6569 <<basic-tracing-session-control,stop tracing>>.
6570 +
6571 You can take a snapshot when the tracers are active, but if you stop
6572 them first, you are sure that the data in the sub-buffers does not
6573 change before you actually take the snapshot.
6574
6575 . Take a snapshot:
6576 +
6577 --
6578 [role="term"]
6579 ----
6580 lttng snapshot record --name=my-first-snapshot
6581 ----
6582 --
6583 +
6584 LTTng writes the current sub-buffers of all the current tracing
6585 session's channels to trace files on the local file system. Those trace
6586 files have `my-first-snapshot` in their name.
6587
6588 There is no difference between the format of a normal trace file and the
6589 format of a snapshot: viewers of LTTng traces also support LTTng
6590 snapshots.
6591
6592 By default, LTTng writes snapshot files to the path shown by
6593 `lttng snapshot list-output`. You can change this path or decide to send
6594 snapshots over the network using either:
6595
6596 . An output path or URL that you specify when you create the
6597 tracing session.
6598 . An snapshot output path or URL that you add using
6599 `lttng snapshot add-output`
6600 . An output path or URL that you provide directly to the
6601 `lttng snapshot record` command.
6602
6603 Method 3 overrides method 2, which overrides method 1. When you
6604 specify a URL, a relay daemon must listen on a remote system (see
6605 <<sending-trace-data-over-the-network,Send trace data over the network>>).
6606
6607
6608 [role="since-2.6"]
6609 [[mi]]
6610 === Use the machine interface
6611
6612 With any command of the man:lttng(1) command-line tool, you can set the
6613 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6614 XML machine interface output, for example:
6615
6616 [role="term"]
6617 ----
6618 lttng --mi=xml enable-event --kernel --syscall open
6619 ----
6620
6621 A schema definition (XSD) is
6622 https://github.com/lttng/lttng-tools/blob/stable-2.8/src/common/mi-lttng-3.0.xsd[available]
6623 to ease the integration with external tools as much as possible.
6624
6625
6626 [role="since-2.8"]
6627 [[metadata-regenerate]]
6628 === Regenerate the metadata of an LTTng trace
6629
6630 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6631 data stream files and a metadata file. This metadata file contains,
6632 amongst other things, information about the offset of the clock sources
6633 used to timestamp <<event,event records>> when tracing.
6634
6635 If, once a <<tracing-session,tracing session>> is
6636 <<basic-tracing-session-control,started>>, a major
6637 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6638 happens, the trace's clock offset also needs to be updated. You
6639 can use the man:lttng-metadata(1) command to do so.
6640
6641 The main use case of this command is to allow a system to boot with
6642 an incorrect wall time and trace it with LTTng before its wall time
6643 is corrected. Once the system is known to be in a state where its
6644 wall time is correct, it can run `lttng metadata regenerate`.
6645
6646 To regenerate the metadata of an LTTng trace:
6647
6648 * Use the `regenerate` action of the man:lttng-metadata(1) command:
6649 +
6650 --
6651 [role="term"]
6652 ----
6653 lttng metadata regenerate
6654 ----
6655 --
6656
6657 [IMPORTANT]
6658 ====
6659 `lttng metadata regenerate` has the following limitations:
6660
6661 * Tracing session <<creating-destroying-tracing-sessions,created>>
6662 in non-live mode.
6663 * User space <<channel,channels>>, if any, using
6664 <<channel-buffering-schemes,per-user buffering>>.
6665 ====
6666
6667
6668 [role="since-2.7"]
6669 [[persistent-memory-file-systems]]
6670 === Record trace data on persistent memory file systems
6671
6672 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6673 (NVRAM) is random-access memory that retains its information when power
6674 is turned off (non-volatile). Systems with such memory can store data
6675 structures in RAM and retrieve them after a reboot, without flushing
6676 to typical _storage_.
6677
6678 Linux supports NVRAM file systems thanks to either
6679 http://pramfs.sourceforge.net/[PRAMFS] or
6680 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6681 (requires Linux 4.1+).
6682
6683 This section does not describe how to operate such file systems;
6684 we assume that you have a working persistent memory file system.
6685
6686 When you create a <<tracing-session,tracing session>>, you can specify
6687 the path of the shared memory holding the sub-buffers. If you specify a
6688 location on an NVRAM file system, then you can retrieve the latest
6689 recorded trace data when the system reboots after a crash.
6690
6691 To record trace data on a persistent memory file system and retrieve the
6692 trace data after a system crash:
6693
6694 . Create a tracing session with a sub-buffer shared memory path located
6695 on an NVRAM file system:
6696 +
6697 --
6698 [role="term"]
6699 ----
6700 lttng create --shm-path=/path/to/shm
6701 ----
6702 --
6703
6704 . Configure the tracing session as usual with the man:lttng(1)
6705 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6706
6707 . After a system crash, use the man:lttng-crash(1) command-line tool to
6708 view the trace data recorded on the NVRAM file system:
6709 +
6710 --
6711 [role="term"]
6712 ----
6713 lttng-crash /path/to/shm
6714 ----
6715 --
6716
6717 The binary layout of the ring buffer files is not exactly the same as
6718 the trace files layout. This is why you need to use man:lttng-crash(1)
6719 instead of your preferred trace viewer directly.
6720
6721 To convert the ring buffer files to LTTng trace files:
6722
6723 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6724 +
6725 --
6726 [role="term"]
6727 ----
6728 lttng-crash --extract=/path/to/trace /path/to/shm
6729 ----
6730 --
6731
6732
6733 [[reference]]
6734 == Reference
6735
6736 [[lttng-modules-ref]]
6737 === noch:{LTTng-modules}
6738
6739 [role="since-2.7"]
6740 [[lttng-modules-tp-fields]]
6741 ==== Tracepoint fields macros (for `TP_FIELDS()`)
6742
6743 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
6744 tracepoint fields, which must be listed within `TP_FIELDS()` in
6745 `LTTNG_TRACEPOINT_EVENT()`, are:
6746
6747 [role="func-desc growable",cols="asciidoc,asciidoc"]
6748 .Available macros to define LTTng-modules tracepoint fields
6749 |====
6750 |Macro |Description and parameters
6751
6752 |
6753 +ctf_integer(__t__, __n__, __e__)+
6754
6755 +ctf_integer_nowrite(__t__, __n__, __e__)+
6756
6757 +ctf_user_integer(__t__, __n__, __e__)+
6758
6759 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
6760 |
6761 Standard integer, displayed in base 10.
6762
6763 +__t__+::
6764 Integer C type (`int`, `long`, `size_t`, ...).
6765
6766 +__n__+::
6767 Field name.
6768
6769 +__e__+::
6770 Argument expression.
6771
6772 |
6773 +ctf_integer_hex(__t__, __n__, __e__)+
6774
6775 +ctf_user_integer_hex(__t__, __n__, __e__)+
6776 |
6777 Standard integer, displayed in base 16.
6778
6779 +__t__+::
6780 Integer C type.
6781
6782 +__n__+::
6783 Field name.
6784
6785 +__e__+::
6786 Argument expression.
6787
6788 |+ctf_integer_oct(__t__, __n__, __e__)+
6789 |
6790 Standard integer, displayed in base 8.
6791
6792 +__t__+::
6793 Integer C type.
6794
6795 +__n__+::
6796 Field name.
6797
6798 +__e__+::
6799 Argument expression.
6800
6801 |
6802 +ctf_integer_network(__t__, __n__, __e__)+
6803
6804 +ctf_user_integer_network(__t__, __n__, __e__)+
6805 |
6806 Integer in network byte order (big-endian), displayed in base 10.
6807
6808 +__t__+::
6809 Integer C type.
6810
6811 +__n__+::
6812 Field name.
6813
6814 +__e__+::
6815 Argument expression.
6816
6817 |
6818 +ctf_integer_network_hex(__t__, __n__, __e__)+
6819
6820 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
6821 |
6822 Integer in network byte order, displayed in base 16.
6823
6824 +__t__+::
6825 Integer C type.
6826
6827 +__n__+::
6828 Field name.
6829
6830 +__e__+::
6831 Argument expression.
6832
6833 |
6834 +ctf_string(__n__, __e__)+
6835
6836 +ctf_string_nowrite(__n__, __e__)+
6837
6838 +ctf_user_string(__n__, __e__)+
6839
6840 +ctf_user_string_nowrite(__n__, __e__)+
6841 |
6842 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
6843
6844 +__n__+::
6845 Field name.
6846
6847 +__e__+::
6848 Argument expression.
6849
6850 |
6851 +ctf_array(__t__, __n__, __e__, __s__)+
6852
6853 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
6854
6855 +ctf_user_array(__t__, __n__, __e__, __s__)+
6856
6857 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
6858 |
6859 Statically-sized array of integers.
6860
6861 +__t__+::
6862 Array element C type.
6863
6864 +__n__+::
6865 Field name.
6866
6867 +__e__+::
6868 Argument expression.
6869
6870 +__s__+::
6871 Number of elements.
6872
6873 |
6874 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
6875
6876 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6877
6878 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
6879
6880 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6881 |
6882 Statically-sized array of bits.
6883
6884 The type of +__e__+ must be an integer type. +__s__+ is the number
6885 of elements of such type in +__e__+, not the number of bits.
6886
6887 +__t__+::
6888 Array element C type.
6889
6890 +__n__+::
6891 Field name.
6892
6893 +__e__+::
6894 Argument expression.
6895
6896 +__s__+::
6897 Number of elements.
6898
6899 |
6900 +ctf_array_text(__t__, __n__, __e__, __s__)+
6901
6902 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
6903
6904 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
6905
6906 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
6907 |
6908 Statically-sized array, printed as text.
6909
6910 The string does not need to be null-terminated.
6911
6912 +__t__+::
6913 Array element C type (always `char`).
6914
6915 +__n__+::
6916 Field name.
6917
6918 +__e__+::
6919 Argument expression.
6920
6921 +__s__+::
6922 Number of elements.
6923
6924 |
6925 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
6926
6927 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
6928
6929 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
6930
6931 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
6932 |
6933 Dynamically-sized array of integers.
6934
6935 The type of +__E__+ must be unsigned.
6936
6937 +__t__+::
6938 Array element C type.
6939
6940 +__n__+::
6941 Field name.
6942
6943 +__e__+::
6944 Argument expression.
6945
6946 +__T__+::
6947 Length expression C type.
6948
6949 +__E__+::
6950 Length expression.
6951
6952 |
6953 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
6954
6955 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
6956 |
6957 Dynamically-sized array of integers, displayed in base 16.
6958
6959 The type of +__E__+ must be unsigned.
6960
6961 +__t__+::
6962 Array element C type.
6963
6964 +__n__+::
6965 Field name.
6966
6967 +__e__+::
6968 Argument expression.
6969
6970 +__T__+::
6971 Length expression C type.
6972
6973 +__E__+::
6974 Length expression.
6975
6976 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
6977 |
6978 Dynamically-sized array of integers in network byte order (big-endian),
6979 displayed in base 10.
6980
6981 The type of +__E__+ must be unsigned.
6982
6983 +__t__+::
6984 Array element C type.
6985
6986 +__n__+::
6987 Field name.
6988
6989 +__e__+::
6990 Argument expression.
6991
6992 +__T__+::
6993 Length expression C type.
6994
6995 +__E__+::
6996 Length expression.
6997
6998 |
6999 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7000
7001 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7002
7003 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7004
7005 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7006 |
7007 Dynamically-sized array of bits.
7008
7009 The type of +__e__+ must be an integer type. +__s__+ is the number
7010 of elements of such type in +__e__+, not the number of bits.
7011
7012 The type of +__E__+ must be unsigned.
7013
7014 +__t__+::
7015 Array element C type.
7016
7017 +__n__+::
7018 Field name.
7019
7020 +__e__+::
7021 Argument expression.
7022
7023 +__T__+::
7024 Length expression C type.
7025
7026 +__E__+::
7027 Length expression.
7028
7029 |
7030 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7031
7032 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7033
7034 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7035
7036 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7037 |
7038 Dynamically-sized array, displayed as text.
7039
7040 The string does not need to be null-terminated.
7041
7042 The type of +__E__+ must be unsigned.
7043
7044 The behaviour is undefined if +__e__+ is `NULL`.
7045
7046 +__t__+::
7047 Sequence element C type (always `char`).
7048
7049 +__n__+::
7050 Field name.
7051
7052 +__e__+::
7053 Argument expression.
7054
7055 +__T__+::
7056 Length expression C type.
7057
7058 +__E__+::
7059 Length expression.
7060 |====
7061
7062 Use the `_user` versions when the argument expression, `e`, is
7063 a user space address. In the cases of `ctf_user_integer*()` and
7064 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7065 be addressable.
7066
7067 The `_nowrite` versions omit themselves from the session trace, but are
7068 otherwise identical. This means the `_nowrite` fields won't be written
7069 in the recorded trace. Their primary purpose is to make some
7070 of the event context available to the
7071 <<enabling-disabling-events,event filters>> without having to
7072 commit the data to sub-buffers.
7073
7074
7075 [[glossary]]
7076 == Glossary
7077
7078 Terms related to LTTng and to tracing in general:
7079
7080 Babeltrace::
7081 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7082 the cmd:babeltrace command, some libraries, and Python bindings.
7083
7084 <<channel-buffering-schemes,buffering scheme>>::
7085 A layout of sub-buffers applied to a given channel.
7086
7087 <<channel,channel>>::
7088 An entity which is responsible for a set of ring buffers.
7089 +
7090 <<event,Event rules>> are always attached to a specific channel.
7091
7092 clock::
7093 A reference of time for a tracer.
7094
7095 <<lttng-consumerd,consumer daemon>>::
7096 A process which is responsible for consuming the full sub-buffers
7097 and write them to a file system or send them over the network.
7098
7099 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
7100 mode in which the tracer _discards_ new event records when there's no
7101 sub-buffer space left to store them.
7102
7103 event::
7104 The consequence of the execution of an instrumentation
7105 point, like a tracepoint that you manually place in some source code,
7106 or a Linux kernel KProbe.
7107 +
7108 An event is said to _occur_ at a specific time. Different actions can
7109 be taken upon the occurance of an event, like record the event's payload
7110 to a sub-buffer.
7111
7112 <<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
7113 The mechanism by which event records of a given channel are lost
7114 (not recorded) when there is no sub-buffer space left to store them.
7115
7116 [[def-event-name]]event name::
7117 The name of an event, which is also the name of the event record.
7118 This is also called the _instrumentation point name_.
7119
7120 event record::
7121 A record, in a trace, of the payload of an event which occured.
7122
7123 <<event,event rule>>::
7124 Set of conditions which must be satisfied for one or more occuring
7125 events to be recorded.
7126
7127 `java.util.logging`::
7128 Java platform's
7129 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7130
7131 <<instrumenting,instrumentation>>::
7132 The use of LTTng probes to make a piece of software traceable.
7133
7134 instrumentation point::
7135 A point in the execution path of a piece of software that, when
7136 reached by this execution, can emit an event.
7137
7138 instrumentation point name::
7139 See _<<def-event-name,event name>>_.
7140
7141 log4j::
7142 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7143 developed by the Apache Software Foundation.
7144
7145 log level::
7146 Level of severity of a log statement or user space
7147 instrumentation point.
7148
7149 LTTng::
7150 The _Linux Trace Toolkit: next generation_ project.
7151
7152 <<lttng-cli,cmd:lttng>>::
7153 A command-line tool provided by the LTTng-tools project which you
7154 can use to send and receive control messages to and from a
7155 session daemon.
7156
7157 LTTng analyses::
7158 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7159 which is a set of analyzing programs that are used to obtain a
7160 higher level view of an LTTng trace.
7161
7162 cmd:lttng-consumerd::
7163 The name of the consumer daemon program.
7164
7165 cmd:lttng-crash::
7166 A utility provided by the LTTng-tools project which can convert
7167 ring buffer files (usually
7168 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7169 to trace files.
7170
7171 LTTng Documentation::
7172 This document.
7173
7174 <<lttng-live,LTTng live>>::
7175 A communication protocol between the relay daemon and live viewers
7176 which makes it possible to see events "live", as they are received by
7177 the relay daemon.
7178
7179 <<lttng-modules,LTTng-modules>>::
7180 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7181 which contains the Linux kernel modules to make the Linux kernel
7182 instrumentation points available for LTTng tracing.
7183
7184 cmd:lttng-relayd::
7185 The name of the relay daemon program.
7186
7187 cmd:lttng-sessiond::
7188 The name of the session daemon program.
7189
7190 LTTng-tools::
7191 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7192 contains the various programs and libraries used to
7193 <<controlling-tracing,control tracing>>.
7194
7195 <<lttng-ust,LTTng-UST>>::
7196 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7197 contains libraries to instrument user applications.
7198
7199 <<lttng-ust-agents,LTTng-UST Java agent>>::
7200 A Java package provided by the LTTng-UST project to allow the
7201 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
7202 logging statements.
7203
7204 <<lttng-ust-agents,LTTng-UST Python agent>>::
7205 A Python package provided by the LTTng-UST project to allow the
7206 LTTng instrumentation of Python logging statements.
7207
7208 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7209 The event loss mode in which new event records overwrite older
7210 event records when there's no sub-buffer space left to store them.
7211
7212 <<channel-buffering-schemes,per-process buffering>>::
7213 A buffering scheme in which each instrumented process has its own
7214 sub-buffers for a given user space channel.
7215
7216 <<channel-buffering-schemes,per-user buffering>>::
7217 A buffering scheme in which all the processes of a Unix user share the
7218 same sub-buffer for a given user space channel.
7219
7220 <<lttng-relayd,relay daemon>>::
7221 A process which is responsible for receiving the trace data sent by
7222 a distant consumer daemon.
7223
7224 ring buffer::
7225 A set of sub-buffers.
7226
7227 <<lttng-sessiond,session daemon>>::
7228 A process which receives control commands from you and orchestrates
7229 the tracers and various LTTng daemons.
7230
7231 <<taking-a-snapshot,snapshot>>::
7232 A copy of the current data of all the sub-buffers of a given tracing
7233 session, saved as trace files.
7234
7235 sub-buffer::
7236 One part of an LTTng ring buffer which contains event records.
7237
7238 timestamp::
7239 The time information attached to an event when it is emitted.
7240
7241 trace (_noun_)::
7242 A set of files which are the concatenations of one or more
7243 flushed sub-buffers.
7244
7245 trace (_verb_)::
7246 The action of recording the events emitted by an application
7247 or by a system, or to initiate such recording by controlling
7248 a tracer.
7249
7250 Trace Compass::
7251 The http://tracecompass.org[Trace Compass] project and application.
7252
7253 tracepoint::
7254 An instrumentation point using the tracepoint mechanism of the Linux
7255 kernel or of LTTng-UST.
7256
7257 tracepoint definition::
7258 The definition of a single tracepoint.
7259
7260 tracepoint name::
7261 The name of a tracepoint.
7262
7263 tracepoint provider::
7264 A set of functions providing tracepoints to an instrumented user
7265 application.
7266 +
7267 Not to be confused with a _tracepoint provider package_: many tracepoint
7268 providers can exist within a tracepoint provider package.
7269
7270 tracepoint provider package::
7271 One or more tracepoint providers compiled as an object file or as
7272 a shared library.
7273
7274 tracer::
7275 A software which records emitted events.
7276
7277 <<domain,tracing domain>>::
7278 A namespace for event sources.
7279
7280 tracing group::
7281 The Unix group in which a Unix user can be to be allowed to trace the
7282 Linux kernel.
7283
7284 <<tracing-session,tracing session>>::
7285 A stateful dialogue between you and a <<lttng-sessiond,session
7286 daemon>>.
7287
7288 user application::
7289 An application running in user space, as opposed to a Linux kernel
7290 module, for example.
This page took 0.173326 seconds and 5 git commands to generate.