Add legend for build scenario diagram symbols
[lttng-docs.git] / 2.8 / lttng-docs-2.8.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.8, 25 October 2016
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/welcome.txt[]
11
12
13 include::../common/audience.txt[]
14
15
16 [[chapters]]
17 === What's in this documentation?
18
19 The LTTng Documentation is divided into the following sections:
20
21 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
22 rudiments of software tracing and the rationale behind the
23 LTTng project.
24 +
25 You can skip this section if you’re familiar with software tracing and
26 with the LTTng project.
27
28 * **<<installing-lttng,Installation>>** describes the steps to
29 install the LTTng packages on common Linux distributions and from
30 their sources.
31 +
32 You can skip this section if you already properly installed LTTng on
33 your target system.
34
35 * **<<getting-started,Quick start>>** is a concise guide to
36 getting started quickly with LTTng kernel and user space tracing.
37 +
38 We recommend this section if you're new to LTTng or to software tracing
39 in general.
40 +
41 You can skip this section if you're not new to LTTng.
42
43 * **<<core-concepts,Core concepts>>** explains the concepts at
44 the heart of LTTng.
45 +
46 It's a good idea to become familiar with the core concepts
47 before attempting to use the toolkit.
48
49 * **<<plumbing,Components of LTTng>>** describes the various components
50 of the LTTng machinery, like the daemons, the libraries, and the
51 command-line interface.
52 * **<<instrumenting,Instrumentation>>** shows different ways to
53 instrument user applications and the Linux kernel.
54 +
55 Instrumenting source code is essential to provide a meaningful
56 source of events.
57 +
58 You can skip this section if you do not have a programming background.
59
60 * **<<controlling-tracing,Tracing control>>** is divided into topics
61 which demonstrate how to use the vast array of features that
62 LTTng{nbsp}{revision} offers.
63 * **<<reference,Reference>>** contains reference tables.
64 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
65 to LTTng or to the field of software tracing.
66
67
68 include::../common/convention.txt[]
69
70
71 include::../common/acknowledgements.txt[]
72
73
74 [[whats-new]]
75 == What's new in LTTng {revision}?
76
77 * **Tracing control**:
78 ** You can attach <<java-application-context,Java application-specific
79 context fields>> to a <<channel,channel>> with the
80 man:lttng-add-context(1) command:
81 +
82 --
83 [role="term"]
84 ----
85 lttng add-context --jul --type='$app.retriever:cur_msg_id'
86 ----
87 --
88 +
89 Here, `$app` is the prefix of all application-specific context fields,
90 `retriever` names a _context information retriever_ defined at the
91 application level, and `cur_msg_id` names a context field read from this
92 retriever.
93 +
94 Both the `java.util.logging` and Apache log4j <<domain,tracing domains>>
95 are supported.
96
97 ** You can use Java application-specific <<adding-context,context>>
98 fields in the <<enabling-disabling-events,filter expression>> of an
99 <<event,event rule>>:
100 +
101 --
102 [role="term"]
103 ----
104 lttng enable-event --log4j my_logger \
105 --filter='$app.retriever:cur_msg_id == 23'
106 ----
107 --
108
109 ** New `lttng status` command which is the equivalent of +lttng list
110 __CUR__+, where +__CUR__+ is the name of the current
111 <<tracing-session,tracing session>>.
112 +
113 See man:lttng-status(1).
114
115 ** New `lttng metadata regenerate` command to
116 <<metadata-regenerate,regenerate the metadata file of an LTTng
117 trace>> at any moment. This command is meant to be used to resample
118 the wall time following a major
119 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
120 so that a system which boots with an incorrect wall time can be
121 traced before its wall time is NTP-corrected.
122 +
123 See man:lttng-metadata(1).
124
125 ** New command-line interface warnings when <<event,event records>> or
126 whole sub-buffers are
127 <<channel-overwrite-mode-vs-discard-mode,lost>>. The warning messages
128 are printed when a <<tracing-session,tracing session>> is
129 <<basic-tracing-session-control,stopped>> (man:lttng-stop(1)
130 command).
131
132 * **User space tracing**:
133 ** Shared object base address dump in order to map <<event,event
134 records>> to original source location (file and line number).
135 +
136 If you attach the `ip` and `vpid` <<adding-context,context fields>> to a
137 user space <<channel,channel>> and if you use the
138 <<liblttng-ust-dl,path:{liblttng-ust-dl.so} helper>>, you can retrieve
139 the source location where a given event record was generated.
140 +
141 The http://diamon.org/babeltrace/[Babeltrace] trace viewer supports this
142 state dump and those context fields since version 1.4 to print the
143 source location of a given event record. http://tracecompass.org/[Trace
144 Compass] also supports this since version 2.0.
145
146 ** A <<java-application,Java application>> which uses
147 `java.util.logging` now adds an LTTng-UST log handler to the desired
148 JUL loggers.
149 +
150 The previous workflow was to initialize the LTTng-UST Java agent
151 by calling `LTTngAgent.getLTTngAgent()`. This had the effect of adding
152 an LTTng-UST log handler to the root loggers.
153
154 ** A <<java-application,Java application>> which uses Apache log4j now
155 adds an LTTng-UST log appender to the desired log4j loggers.
156 +
157 The previous workflow was to initialize the LTTng-UST Java agent
158 by calling `LTTngAgent.getLTTngAgent()`. This had the effect of adding
159 an LTTng-UST appender to the root loggers.
160
161 ** Any <<java-application,Java application>> can provide
162 <<java-application-context,dynamic context fields>> while running
163 thanks to a new API provided by the <<lttng-ust-agents,LTTng-UST Java
164 agent>>. You can require LTTng to record specific context fields in
165 event records, and you can use them in the filter expression of
166 <<event,event rules>>.
167
168 * **Linux kernel tracing**:
169 ** The LTTng kernel modules can now be built into a Linux kernel image,
170 that is, not as loadable modules.
171 +
172 Follow the project's
173 https://github.com/lttng/lttng-modules/blob/stable-{revision}/README.md#kernel-built-in-support[`README.md`]
174 file to learn how.
175
176 ** New instrumentation:
177 *** ARM64 architecture support.
178 *** x86 page faults.
179 *** x86 `irq_vectors`.
180 ** New <<adding-context,context fields>>:
181 *** `interruptible`
182 *** `preemptible`
183 *** `need_reschedule`
184 *** `migratable` (specific to RT-Preempt)
185 ** Clock source plugin support for advanced cases where a custom source
186 of time is needed to timestamp LTTng event records.
187 +
188 See https://github.com/lttng/lttng-modules/blob/stable-{revision}/lttng-clock.h[`lttng-clock.h`]
189 for an overview of the small API.
190
191 * **Documentation**:
192 ** The link:/man[man pages] of the man:lttng(1) command-line tool are
193 split into one man page per command (à la Git), for example:
194 +
195 --
196 [role="term"]
197 ----
198 man lttng-enable-event
199 ----
200 --
201 +
202 You can also use the `--help` option of any man:lttng(1) command to
203 open its man page.
204 +
205 The content and formatting of all the LTTng man pages has improved
206 dramatically.
207
208
209 [[nuts-and-bolts]]
210 == Nuts and bolts
211
212 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
213 generation_ is a modern toolkit for tracing Linux systems and
214 applications. So your first question might be:
215 **what is tracing?**
216
217
218 [[what-is-tracing]]
219 === What is tracing?
220
221 As the history of software engineering progressed and led to what
222 we now take for granted--complex, numerous and
223 interdependent software applications running in parallel on
224 sophisticated operating systems like Linux--the authors of such
225 components, software developers, began feeling a natural
226 urge to have tools that would ensure the robustness and good performance
227 of their masterpieces.
228
229 One major achievement in this field is, inarguably, the
230 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
231 an essential tool for developers to find and fix bugs. But even the best
232 debugger won't help make your software run faster, and nowadays, faster
233 software means either more work done by the same hardware, or cheaper
234 hardware for the same work.
235
236 A _profiler_ is often the tool of choice to identify performance
237 bottlenecks. Profiling is suitable to identify _where_ performance is
238 lost in a given software. The profiler outputs a profile, a statistical
239 summary of observed events, which you may use to discover which
240 functions took the most time to execute. However, a profiler won't
241 report _why_ some identified functions are the bottleneck. Bottlenecks
242 might only occur when specific conditions are met, conditions that are
243 sometimes impossible to capture by a statistical profiler, or impossible
244 to reproduce with an application altered by the overhead of an
245 event-based profiler. For a thorough investigation of software
246 performance issues, a history of execution is essential, with the
247 recorded values of variables and context fields you choose, and
248 with as little influence as possible on the instrumented software. This
249 is where tracing comes in handy.
250
251 _Tracing_ is a technique used to understand what goes on in a running
252 software system. The software used for tracing is called a _tracer_,
253 which is conceptually similar to a tape recorder. When recording,
254 specific instrumentation points placed in the software source code
255 generate events that are saved on a giant tape: a _trace_ file. You
256 can trace user applications and the operating system at the same time,
257 opening the possibility of resolving a wide range of problems that would
258 otherwise be extremely challenging.
259
260 Tracing is often compared to _logging_. However, tracers and loggers are
261 two different tools, serving two different purposes. Tracers are
262 designed to record much lower-level events that occur much more
263 frequently than log messages, often in the range of thousands per
264 second, with very little execution overhead. Logging is more appropriate
265 for a very high-level analysis of less frequent events: user accesses,
266 exceptional conditions (errors and warnings, for example), database
267 transactions, instant messaging communications, and such. Simply put,
268 logging is one of the many use cases that can be satisfied with tracing.
269
270 The list of recorded events inside a trace file can be read manually
271 like a log file for the maximum level of detail, but it is generally
272 much more interesting to perform application-specific analyses to
273 produce reduced statistics and graphs that are useful to resolve a
274 given problem. Trace viewers and analyzers are specialized tools
275 designed to do this.
276
277 In the end, this is what LTTng is: a powerful, open source set of
278 tools to trace the Linux kernel and user applications at the same time.
279 LTTng is composed of several components actively maintained and
280 developed by its link:/community/#where[community].
281
282
283 [[lttng-alternatives]]
284 === Alternatives to noch:{LTTng}
285
286 Excluding proprietary solutions, a few competing software tracers
287 exist for Linux:
288
289 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
290 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
291 user scripts and is responsible for loading code into the
292 Linux kernel for further execution and collecting the outputted data.
293 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
294 subsystem in the Linux kernel in which a virtual machine can execute
295 programs passed from the user space to the kernel. You can attach
296 such programs to tracepoints and KProbes thanks to a system call, and
297 they can output data to the user space when executed thanks to
298 different mechanisms (pipe, VM register values, and eBPF maps, to name
299 a few).
300 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
301 is the de facto function tracer of the Linux kernel. Its user
302 interface is a set of special files in sysfs.
303 * https://perf.wiki.kernel.org/[perf] is
304 a performance analyzing tool for Linux which supports hardware
305 performance counters, tracepoints, as well as other counters and
306 types of probes. perf's controlling utility is the cmd:perf command
307 line/curses tool.
308 * http://linux.die.net/man/1/strace[strace]
309 is a command-line utility which records system calls made by a
310 user process, as well as signal deliveries and changes of process
311 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
312 to fulfill its function.
313 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
314 analyze Linux kernel events. You write scripts, or _chisels_ in
315 sysdig's jargon, in Lua and sysdig executes them while the system is
316 being traced or afterwards. sysdig's interface is the cmd:sysdig
317 command-line tool as well as the curses-based cmd:csysdig tool.
318 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
319 user space tracer which uses custom user scripts to produce plain text
320 traces. SystemTap converts the scripts to the C language, and then
321 compiles them as Linux kernel modules which are loaded to produce
322 trace data. SystemTap's primary user interface is the cmd:stap
323 command-line tool.
324
325 The main distinctive features of LTTng is that it produces correlated
326 kernel and user space traces, as well as doing so with the lowest
327 overhead amongst other solutions. It produces trace files in the
328 http://diamon.org/ctf[CTF] format, a file format optimized
329 for the production and analyses of multi-gigabyte data.
330
331 LTTng is the result of more than 10 years of active open source
332 development by a community of passionate developers.
333 LTTng{nbsp}{revision} is currently available on major desktop and server
334 Linux distributions.
335
336 The main interface for tracing control is a single command-line tool
337 named cmd:lttng. The latter can create several tracing sessions, enable
338 and disable events on the fly, filter events efficiently with custom
339 user expressions, start and stop tracing, and much more. LTTng can
340 record the traces on the file system or send them over the network, and
341 keep them totally or partially. You can view the traces once tracing
342 becomes inactive or in real-time.
343
344 <<installing-lttng,Install LTTng now>> and
345 <<getting-started,start tracing>>!
346
347
348 [[installing-lttng]]
349 == Installation
350
351 **LTTng** is a set of software <<plumbing,components>> which interact to
352 <<instrumenting,instrument>> the Linux kernel and user applications, and
353 to <<controlling-tracing,control tracing>> (start and stop
354 tracing, enable and disable event rules, and the rest). Those
355 components are bundled into the following packages:
356
357 * **LTTng-tools**: Libraries and command-line interface to
358 control tracing.
359 * **LTTng-modules**: Linux kernel modules to instrument and
360 trace the kernel.
361 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
362 trace user applications.
363
364 Most distributions mark the LTTng-modules and LTTng-UST packages as
365 optional when installing LTTng-tools (which is always required). In the
366 following sections, we always provide the steps to install all three,
367 but note that:
368
369 * You only need to install LTTng-modules if you intend to trace the
370 Linux kernel.
371 * You only need to install LTTng-UST if you intend to trace user
372 applications.
373
374 [role="growable"]
375 .Availability of LTTng{nbsp}{revision} for major Linux distributions.
376 |====
377 |Distribution |Available in releases |Alternatives
378
379 |Ubuntu
380 |<<ubuntu,Ubuntu{nbsp}16.10 _Yakkety Yak_>>
381 |LTTng{nbsp}{revision} for Ubuntu{nbsp}14.04 _Trusty Tahr_
382 and Ubuntu{nbsp}16.04 _Xenial Xerus_:
383 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
384
385 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
386 other Ubuntu releases.
387
388 |Fedora
389 |_Not available_
390 |LTTng{nbsp}{revision} for Fedora{nbsp}25 and Fedora{nbsp}26 (not
391 released yet).
392
393 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
394 other Fedora releases.
395
396 |Debian
397 |<<debian,Debian "stretch" (testing)>>
398 |
399 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
400 previous Debian releases.
401
402 |openSUSE
403 |_Not available_
404 |LTTng{nbsp}2.7 for openSUSE Leap{nbsp}42.1.
405
406 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
407 other openSUSE releases.
408
409 |Arch Linux
410 |Latest AUR packages.
411 |
412
413 |Alpine Linux
414 |<<alpine-linux,Alpine Linux "edge">>
415 |LTTng{nbsp}{revision} for Alpine Linux{nbsp}3.5 (not released yet).
416
417 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
418 other Alpine Linux releases.
419
420 |RHEL and SLES
421 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
422 |
423
424 |Buildroot
425 |_Not available_
426 |LTTng{nbsp}{revision} for Buildroot{nbsp}2016.11 (not released yet).
427
428 LTTng{nbsp}2.7 for Buildroot{nbsp}2016.02, Buildroot{nbsp}2016.05,
429 and Buildroot{nbsp}2016.08.
430
431 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
432 other Buildroot releases.
433
434 |OpenEmbedded and Yocto
435 |<<oe-yocto,Yocto Project{nbsp}2.2 _Morty_>> (`openembedded-core` layer)
436 |<<building-from-source,Build LTTng{nbsp}{revision} from source>> for
437 other OpenEmbedded releases.
438 |====
439
440
441 [[ubuntu]]
442 === [[ubuntu-official-repositories]]Ubuntu
443
444 LTTng{nbsp}{revision} is available on Ubuntu{nbsp}16.10 _Yakkety Yak_.
445 For previous releases of Ubuntu, <<ubuntu-ppa,use the LTTng
446 Stable{nbsp}{revision} PPA>>.
447
448 To install LTTng{nbsp}{revision} on Ubuntu 16.10{nbsp}_Yakkety Yak_:
449
450 . Install the main LTTng{nbsp}{revision} packages:
451 +
452 --
453 [role="term"]
454 ----
455 sudo apt-get install lttng-tools
456 sudo apt-get install lttng-modules-dkms
457 sudo apt-get install liblttng-ust-dev
458 ----
459 --
460
461 . **If you need to instrument and trace
462 <<java-application,Java applications>>**, install the LTTng-UST
463 Java agent:
464 +
465 --
466 [role="term"]
467 ----
468 sudo apt-get install liblttng-ust-agent-java
469 ----
470 --
471
472 . **If you need to instrument and trace
473 <<python-application,Python applications>>**, install the
474 LTTng-UST Python agent:
475 +
476 --
477 [role="term"]
478 ----
479 sudo apt-get install python3-lttngust
480 ----
481 --
482
483
484 [[ubuntu-ppa]]
485 ==== noch:{LTTng} Stable {revision} PPA
486
487 The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
488 Stable{nbsp}{revision} PPA] offers the latest stable
489 LTTng{nbsp}{revision} packages for:
490
491 * Ubuntu{nbsp}14.04 _Trusty Tahr_
492 * Ubuntu{nbsp}16.04 _Xenial Xerus_
493
494 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
495
496 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
497 list of packages:
498 +
499 --
500 [role="term"]
501 ----
502 sudo apt-add-repository ppa:lttng/stable-2.8
503 sudo apt-get update
504 ----
505 --
506
507 . Install the main LTTng{nbsp}{revision} packages:
508 +
509 --
510 [role="term"]
511 ----
512 sudo apt-get install lttng-tools
513 sudo apt-get install lttng-modules-dkms
514 sudo apt-get install liblttng-ust-dev
515 ----
516 --
517
518 . **If you need to instrument and trace
519 <<java-application,Java applications>>**, install the LTTng-UST
520 Java agent:
521 +
522 --
523 [role="term"]
524 ----
525 sudo apt-get install liblttng-ust-agent-java
526 ----
527 --
528
529 . **If you need to instrument and trace
530 <<python-application,Python applications>>**, install the
531 LTTng-UST Python agent:
532 +
533 --
534 [role="term"]
535 ----
536 sudo apt-get install python3-lttngust
537 ----
538 --
539
540
541 [[debian]]
542 === Debian
543
544 To install LTTng{nbsp}{revision} on Debian "stretch" (testing):
545
546 . Install the main LTTng{nbsp}{revision} packages:
547 +
548 --
549 [role="term"]
550 ----
551 sudo apt-get install lttng-modules-dkms
552 sudo apt-get install liblttng-ust-dev
553 sudo apt-get install lttng-tools
554 ----
555 --
556
557 . **If you need to instrument and trace <<java-application,Java
558 applications>>**, install the LTTng-UST Java agent:
559 +
560 --
561 [role="term"]
562 ----
563 sudo apt-get install liblttng-ust-agent-java
564 ----
565 --
566
567 . **If you need to instrument and trace <<python-application,Python
568 applications>>**, install the LTTng-UST Python agent:
569 +
570 --
571 [role="term"]
572 ----
573 sudo apt-get install python3-lttngust
574 ----
575 --
576
577
578 [[alpine-linux]]
579 === Alpine Linux
580
581 To install LTTng{nbsp}{revision} (tracing control and user space
582 tracing) on Alpine Linux "edge":
583
584 . Make sure your system is
585 https://wiki.alpinelinux.org/wiki/Edge[configured for "edge"].
586 . Enable the _testing_ repository by uncommenting the corresponding
587 line in path:{/etc/apk/repositories}.
588 . Add the LTTng packages:
589 +
590 --
591 [role="term"]
592 ----
593 sudo apk add lttng-tools
594 sudo apk add lttng-ust-dev
595 ----
596 --
597
598 To install LTTng-modules{nbsp}{revision} (Linux kernel tracing support)
599 on Alpine Linux "edge":
600
601 . Add the vanilla Linux kernel:
602 +
603 --
604 [role="term"]
605 ----
606 apk add linux-vanilla linux-vanilla-dev
607 ----
608 --
609
610 . Reboot with the vanilla Linux kernel.
611 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
612 +
613 --
614 [role="term"]
615 ----
616 cd $(mktemp -d) &&
617 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
618 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
619 cd lttng-modules-2.8.* &&
620 make &&
621 sudo make modules_install &&
622 sudo depmod -a
623 ----
624 --
625
626
627 [[oe-yocto]]
628 === OpenEmbedded and Yocto
629
630 LTTng{nbsp}{revision} recipes are available in the
631 http://layers.openembedded.org/layerindex/branch/master/layer/openembedded-core/[`openembedded-core`]
632 layer for Yocto Project{nbsp}2.2 _Morty_ under the following names:
633
634 * `lttng-tools`
635 * `lttng-modules`
636 * `lttng-ust`
637
638 With BitBake, the simplest way to include LTTng recipes in your target
639 image is to add them to `IMAGE_INSTALL_append` in path:{conf/local.conf}:
640
641 ----
642 IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"
643 ----
644
645 If you use Hob:
646
647 . Select a machine and an image recipe.
648 . Click **Edit image recipe**.
649 . Under the **All recipes** tab, search for **lttng**.
650 . Check the desired LTTng recipes.
651
652 [IMPORTANT]
653 .Java and Python application instrumentation and tracing
654 ====
655 If you need to instrument and trace <<java-application,Java
656 applications>> on openSUSE, you need to build and install
657 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
658 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
659 `--enable-java-agent-all` options to the `configure` script, depending
660 on which Java logging framework you use.
661
662 If you need to instrument and trace <<python-application,Python
663 applications>> on openSUSE, you need to build and install
664 LTTng-UST{nbsp}{revision} from source and pass the
665 `--enable-python-agent` option to the `configure` script.
666 ====
667
668
669 [[enterprise-distributions]]
670 === RHEL, SUSE, and other enterprise distributions
671
672 To install LTTng on enterprise Linux distributions, such as Red Hat
673 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
674 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
675
676
677 [[building-from-source]]
678 === Build from source
679
680 To build and install LTTng{nbsp}{revision} from source:
681
682 . Using your distribution's package manager, or from source, install
683 the following dependencies of LTTng-tools and LTTng-UST:
684 +
685 --
686 * https://sourceforge.net/projects/libuuid/[libuuid]
687 * http://directory.fsf.org/wiki/Popt[popt]
688 * http://liburcu.org/[Userspace RCU]
689 * http://www.xmlsoft.org/[libxml2]
690 --
691
692 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
693 +
694 --
695 [role="term"]
696 ----
697 cd $(mktemp -d) &&
698 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
699 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
700 cd lttng-modules-2.8.* &&
701 make &&
702 sudo make modules_install &&
703 sudo depmod -a
704 ----
705 --
706
707 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
708 +
709 --
710 [role="term"]
711 ----
712 cd $(mktemp -d) &&
713 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.8.tar.bz2 &&
714 tar -xf lttng-ust-latest-2.8.tar.bz2 &&
715 cd lttng-ust-2.8.* &&
716 ./configure &&
717 make &&
718 sudo make install &&
719 sudo ldconfig
720 ----
721 --
722 +
723 --
724 [IMPORTANT]
725 .Java and Python application tracing
726 ====
727 If you need to instrument and trace <<java-application,Java
728 applications>>, pass the `--enable-java-agent-jul`,
729 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
730 `configure` script, depending on which Java logging framework you use.
731
732 If you need to instrument and trace <<python-application,Python
733 applications>>, pass the `--enable-python-agent` option to the
734 `configure` script. You can set the `PYTHON` environment variable to the
735 path to the Python interpreter for which to install the LTTng-UST Python
736 agent package.
737 ====
738 --
739 +
740 --
741 [NOTE]
742 ====
743 By default, LTTng-UST libraries are installed to
744 dir:{/usr/local/lib}, which is the de facto directory in which to
745 keep self-compiled and third-party libraries.
746
747 When <<building-tracepoint-providers-and-user-application,linking an
748 instrumented user application with `liblttng-ust`>>:
749
750 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
751 variable.
752 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
753 man:gcc(1), man:g++(1), or man:clang(1).
754 ====
755 --
756
757 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
758 +
759 --
760 [role="term"]
761 ----
762 cd $(mktemp -d) &&
763 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
764 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
765 cd lttng-tools-2.8.* &&
766 ./configure &&
767 make &&
768 sudo make install &&
769 sudo ldconfig
770 ----
771 --
772
773 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
774 previous steps automatically for a given version of LTTng and confine
775 the installed files in a specific directory. This can be useful to test
776 LTTng without installing it on your system.
777
778
779 [[getting-started]]
780 == Quick start
781
782 This is a short guide to get started quickly with LTTng kernel and user
783 space tracing.
784
785 Before you follow this guide, make sure to <<installing-lttng,install>>
786 LTTng.
787
788 This tutorial walks you through the steps to:
789
790 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
791 . <<tracing-your-own-user-application,Trace a user application>> written
792 in C.
793 . <<viewing-and-analyzing-your-traces,View and analyze the
794 recorded events>>.
795
796
797 [[tracing-the-linux-kernel]]
798 === Trace the Linux kernel
799
800 The following command lines start with cmd:sudo because you need root
801 privileges to trace the Linux kernel. You can avoid using cmd:sudo if
802 your Unix user is a member of the <<lttng-sessiond,tracing group>>.
803
804 . Create a <<tracing-session,tracing session>>:
805 +
806 --
807 [role="term"]
808 ----
809 sudo lttng create my-kernel-session
810 ----
811 --
812
813 . List the available kernel tracepoints and system calls:
814 +
815 --
816 [role="term"]
817 ----
818 lttng list --kernel
819 ----
820 --
821
822 . Create an <<event,event rule>> which matches the desired event names,
823 for example `sched_switch` and `sched_process_fork`:
824 +
825 --
826 [role="term"]
827 ----
828 sudo lttng enable-event --kernel sched_switch,sched_process_fork
829 ----
830 --
831 +
832 You can also create an event rule which _matches_ all the Linux kernel
833 tracepoints (this will generate a lot of data when tracing):
834 +
835 --
836 [role="term"]
837 ----
838 sudo lttng enable-event --kernel --all
839 ----
840 --
841
842 . Start tracing:
843 +
844 --
845 [role="term"]
846 ----
847 sudo lttng start
848 ----
849 --
850
851 . Do some operation on your system for a few seconds. For example,
852 load a website, or list the files of a directory.
853 . Stop tracing and destroy the tracing session:
854 +
855 --
856 [role="term"]
857 ----
858 sudo lttng stop
859 sudo lttng destroy
860 ----
861 --
862 +
863 The man:lttng-destroy(1) command does not destroy the trace data; it
864 only destroys the state of the tracing session.
865
866 By default, LTTng saves the traces in
867 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
868 where +__name__+ is the tracing session name. Note that the
869 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
870
871 See <<viewing-and-analyzing-your-traces,View and analyze the
872 recorded events>> to view the recorded events.
873
874
875 [[tracing-your-own-user-application]]
876 === Trace a user application
877
878 This section steps you through a simple example to trace a
879 _Hello world_ program written in C.
880
881 To create the traceable user application:
882
883 . Create the tracepoint provider header file, which defines the
884 tracepoints and the events they can generate:
885 +
886 --
887 [source,c]
888 .path:{hello-tp.h}
889 ----
890 #undef TRACEPOINT_PROVIDER
891 #define TRACEPOINT_PROVIDER hello_world
892
893 #undef TRACEPOINT_INCLUDE
894 #define TRACEPOINT_INCLUDE "./hello-tp.h"
895
896 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
897 #define _HELLO_TP_H
898
899 #include <lttng/tracepoint.h>
900
901 TRACEPOINT_EVENT(
902 hello_world,
903 my_first_tracepoint,
904 TP_ARGS(
905 int, my_integer_arg,
906 char*, my_string_arg
907 ),
908 TP_FIELDS(
909 ctf_string(my_string_field, my_string_arg)
910 ctf_integer(int, my_integer_field, my_integer_arg)
911 )
912 )
913
914 #endif /* _HELLO_TP_H */
915
916 #include <lttng/tracepoint-event.h>
917 ----
918 --
919
920 . Create the tracepoint provider package source file:
921 +
922 --
923 [source,c]
924 .path:{hello-tp.c}
925 ----
926 #define TRACEPOINT_CREATE_PROBES
927 #define TRACEPOINT_DEFINE
928
929 #include "hello-tp.h"
930 ----
931 --
932
933 . Build the tracepoint provider package:
934 +
935 --
936 [role="term"]
937 ----
938 gcc -c -I. hello-tp.c
939 ----
940 --
941
942 . Create the _Hello World_ application source file:
943 +
944 --
945 [source,c]
946 .path:{hello.c}
947 ----
948 #include <stdio.h>
949 #include "hello-tp.h"
950
951 int main(int argc, char *argv[])
952 {
953 int x;
954
955 puts("Hello, World!\nPress Enter to continue...");
956
957 /*
958 * The following getchar() call is only placed here for the purpose
959 * of this demonstration, to pause the application in order for
960 * you to have time to list its tracepoints. It is not
961 * needed otherwise.
962 */
963 getchar();
964
965 /*
966 * A tracepoint() call.
967 *
968 * Arguments, as defined in hello-tp.h:
969 *
970 * 1. Tracepoint provider name (required)
971 * 2. Tracepoint name (required)
972 * 3. my_integer_arg (first user-defined argument)
973 * 4. my_string_arg (second user-defined argument)
974 *
975 * Notice the tracepoint provider and tracepoint names are
976 * NOT strings: they are in fact parts of variables that the
977 * macros in hello-tp.h create.
978 */
979 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
980
981 for (x = 0; x < argc; ++x) {
982 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
983 }
984
985 puts("Quitting now!");
986 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
987
988 return 0;
989 }
990 ----
991 --
992
993 . Build the application:
994 +
995 --
996 [role="term"]
997 ----
998 gcc -c hello.c
999 ----
1000 --
1001
1002 . Link the application with the tracepoint provider package,
1003 `liblttng-ust`, and `libdl`:
1004 +
1005 --
1006 [role="term"]
1007 ----
1008 gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
1009 ----
1010 --
1011
1012 Here's the whole build process:
1013
1014 [role="img-100"]
1015 .User space tracing tutorial's build steps.
1016 image::ust-flow.png[]
1017
1018 To trace the user application:
1019
1020 . Run the application with a few arguments:
1021 +
1022 --
1023 [role="term"]
1024 ----
1025 ./hello world and beyond
1026 ----
1027 --
1028 +
1029 You see:
1030 +
1031 --
1032 ----
1033 Hello, World!
1034 Press Enter to continue...
1035 ----
1036 --
1037
1038 . Start an LTTng <<lttng-sessiond,session daemon>>:
1039 +
1040 --
1041 [role="term"]
1042 ----
1043 lttng-sessiond --daemonize
1044 ----
1045 --
1046 +
1047 Note that a session daemon might already be running, for example as
1048 a service that the distribution's service manager started.
1049
1050 . List the available user space tracepoints:
1051 +
1052 --
1053 [role="term"]
1054 ----
1055 lttng list --userspace
1056 ----
1057 --
1058 +
1059 You see the `hello_world:my_first_tracepoint` tracepoint listed
1060 under the `./hello` process.
1061
1062 . Create a <<tracing-session,tracing session>>:
1063 +
1064 --
1065 [role="term"]
1066 ----
1067 lttng create my-user-space-session
1068 ----
1069 --
1070
1071 . Create an <<event,event rule>> which matches the
1072 `hello_world:my_first_tracepoint` event name:
1073 +
1074 --
1075 [role="term"]
1076 ----
1077 lttng enable-event --userspace hello_world:my_first_tracepoint
1078 ----
1079 --
1080
1081 . Start tracing:
1082 +
1083 --
1084 [role="term"]
1085 ----
1086 lttng start
1087 ----
1088 --
1089
1090 . Go back to the running `hello` application and press Enter. The
1091 program executes all `tracepoint()` instrumentation points and exits.
1092 . Stop tracing and destroy the tracing session:
1093 +
1094 --
1095 [role="term"]
1096 ----
1097 sudo lttng stop
1098 sudo lttng destroy
1099 ----
1100 --
1101 +
1102 The man:lttng-destroy(1) command does not destroy the trace data; it
1103 only destroys the state of the tracing session.
1104
1105 By default, LTTng saves the traces in
1106 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
1107 where +__name__+ is the tracing session name. Note that the
1108 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
1109
1110 See <<viewing-and-analyzing-your-traces,View and analyze the
1111 recorded events>> to view the recorded events.
1112
1113
1114 [[viewing-and-analyzing-your-traces]]
1115 === View and analyze the recorded events
1116
1117 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
1118 kernel>> and <<tracing-your-own-user-application,Trace a user
1119 application>> tutorials, you can inspect the recorded events.
1120
1121 Many tools are available to read LTTng traces:
1122
1123 * **cmd:babeltrace** is a command-line utility which converts trace
1124 formats; it supports the format that LTTng produces, CTF, as well as a
1125 basic text output which can be ++grep++ed. The cmd:babeltrace command
1126 is part of the http://diamon.org/babeltrace[Babeltrace] project.
1127 * Babeltrace also includes
1128 **https://www.python.org/[Python] bindings** so
1129 that you can easily open and read an LTTng trace with your own script,
1130 benefiting from the power of Python.
1131 * http://tracecompass.org/[**Trace Compass**]
1132 is a graphical user interface for viewing and analyzing any type of
1133 logs or traces, including LTTng's.
1134 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
1135 project which includes many high-level analyses of LTTng kernel
1136 traces, like scheduling statistics, interrupt frequency distribution,
1137 top CPU usage, and more.
1138
1139 NOTE: This section assumes that the traces recorded during the previous
1140 tutorials were saved to their default location, in the
1141 dir:{$LTTNG_HOME/lttng-traces} directory. Note that the env:LTTNG_HOME
1142 environment variable defaults to `$HOME` if not set.
1143
1144
1145 [[viewing-and-analyzing-your-traces-bt]]
1146 ==== Use the cmd:babeltrace command-line tool
1147
1148 The simplest way to list all the recorded events of a trace is to pass
1149 its path to cmd:babeltrace with no options:
1150
1151 [role="term"]
1152 ----
1153 babeltrace ~/lttng-traces/my-user-space-session*
1154 ----
1155
1156 cmd:babeltrace finds all traces recursively within the given path and
1157 prints all their events, merging them in chronological order.
1158
1159 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
1160 further filtering:
1161
1162 [role="term"]
1163 ----
1164 babeltrace ~/lttng-traces/my-kernel-session* | grep sys_
1165 ----
1166
1167 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
1168 count the recorded events:
1169
1170 [role="term"]
1171 ----
1172 babeltrace ~/lttng-traces/my-kernel-session* | grep sys_read | wc --lines
1173 ----
1174
1175
1176 [[viewing-and-analyzing-your-traces-bt-python]]
1177 ==== Use the Babeltrace Python bindings
1178
1179 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
1180 is useful to isolate events by simple matching using man:grep(1) and
1181 similar utilities. However, more elaborate filters, such as keeping only
1182 event records with a field value falling within a specific range, are
1183 not trivial to write using a shell. Moreover, reductions and even the
1184 most basic computations involving multiple event records are virtually
1185 impossible to implement.
1186
1187 Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
1188 to read the event records of an LTTng trace sequentially and compute the
1189 desired information.
1190
1191 The following script accepts an LTTng Linux kernel trace path as its
1192 first argument and prints the short names of the top 5 running processes
1193 on CPU 0 during the whole trace:
1194
1195 [source,python]
1196 .path:{top5proc.py}
1197 ----
1198 from collections import Counter
1199 import babeltrace
1200 import sys
1201
1202
1203 def top5proc():
1204 if len(sys.argv) != 2:
1205 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
1206 print(msg, file=sys.stderr)
1207 return False
1208
1209 # A trace collection contains one or more traces
1210 col = babeltrace.TraceCollection()
1211
1212 # Add the trace provided by the user (LTTng traces always have
1213 # the 'ctf' format)
1214 if col.add_trace(sys.argv[1], 'ctf') is None:
1215 raise RuntimeError('Cannot add trace')
1216
1217 # This counter dict contains execution times:
1218 #
1219 # task command name -> total execution time (ns)
1220 exec_times = Counter()
1221
1222 # This contains the last `sched_switch` timestamp
1223 last_ts = None
1224
1225 # Iterate on events
1226 for event in col.events:
1227 # Keep only `sched_switch` events
1228 if event.name != 'sched_switch':
1229 continue
1230
1231 # Keep only events which happened on CPU 0
1232 if event['cpu_id'] != 0:
1233 continue
1234
1235 # Event timestamp
1236 cur_ts = event.timestamp
1237
1238 if last_ts is None:
1239 # We start here
1240 last_ts = cur_ts
1241
1242 # Previous task command (short) name
1243 prev_comm = event['prev_comm']
1244
1245 # Initialize entry in our dict if not yet done
1246 if prev_comm not in exec_times:
1247 exec_times[prev_comm] = 0
1248
1249 # Compute previous command execution time
1250 diff = cur_ts - last_ts
1251
1252 # Update execution time of this command
1253 exec_times[prev_comm] += diff
1254
1255 # Update last timestamp
1256 last_ts = cur_ts
1257
1258 # Display top 5
1259 for name, ns in exec_times.most_common(5):
1260 s = ns / 1000000000
1261 print('{:20}{} s'.format(name, s))
1262
1263 return True
1264
1265
1266 if __name__ == '__main__':
1267 sys.exit(0 if top5proc() else 1)
1268 ----
1269
1270 Run this script:
1271
1272 [role="term"]
1273 ----
1274 python3 top5proc.py ~/lttng-traces/my-kernel-session*/kernel
1275 ----
1276
1277 Output example:
1278
1279 ----
1280 swapper/0 48.607245889 s
1281 chromium 7.192738188 s
1282 pavucontrol 0.709894415 s
1283 Compositor 0.660867933 s
1284 Xorg.bin 0.616753786 s
1285 ----
1286
1287 Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1288 weren't using the CPU that much when tracing, its first position in the
1289 list makes sense.
1290
1291
1292 [[core-concepts]]
1293 == [[understanding-lttng]]Core concepts
1294
1295 From a user's perspective, the LTTng system is built on a few concepts,
1296 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1297 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1298 Understanding how those objects relate to eachother is key in mastering
1299 the toolkit.
1300
1301 The core concepts are:
1302
1303 * <<tracing-session,Tracing session>>
1304 * <<domain,Tracing domain>>
1305 * <<channel,Channel and ring buffer>>
1306 * <<"event","Instrumentation point, event rule, event, and event record">>
1307
1308
1309 [[tracing-session]]
1310 === Tracing session
1311
1312 A _tracing session_ is a stateful dialogue between you and
1313 a <<lttng-sessiond,session daemon>>. You can
1314 <<creating-destroying-tracing-sessions,create a new tracing
1315 session>> with the `lttng create` command.
1316
1317 Anything that you do when you control LTTng tracers happens within a
1318 tracing session. In particular, a tracing session:
1319
1320 * Has its own name.
1321 * Has its own set of trace files.
1322 * Has its own state of activity (started or stopped).
1323 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1324 snapshot, or live).
1325 * Has its own <<channel,channels>> which have their own
1326 <<event,event rules>>.
1327
1328 [role="img-100"]
1329 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1330 image::concepts.png[]
1331
1332 Those attributes and objects are completely isolated between different
1333 tracing sessions.
1334
1335 A tracing session is analogous to a cash machine session:
1336 the operations you do on the banking system through the cash machine do
1337 not alter the data of other users of the same system. In the case of
1338 the cash machine, a session lasts as long as your bank card is inside.
1339 In the case of LTTng, a tracing session lasts from the `lttng create`
1340 command to the `lttng destroy` command.
1341
1342 [role="img-100"]
1343 .Each Unix user has its own set of tracing sessions.
1344 image::many-sessions.png[]
1345
1346
1347 [[tracing-session-mode]]
1348 ==== Tracing session mode
1349
1350 LTTng can send the generated trace data to different locations. The
1351 _tracing session mode_ dictates where to send it. The following modes
1352 are available in LTTng{nbsp}{revision}:
1353
1354 Local mode::
1355 LTTng writes the traces to the file system of the machine being traced
1356 (target system).
1357
1358 Network streaming mode::
1359 LTTng sends the traces over the network to a
1360 <<lttng-relayd,relay daemon>> running on a remote system.
1361
1362 Snapshot mode::
1363 LTTng does not write the traces by default. Instead, you can request
1364 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1365 current tracing buffers, and to write it to the target's file system
1366 or to send it over the network to a <<lttng-relayd,relay daemon>>
1367 running on a remote system.
1368
1369 Live mode::
1370 This mode is similar to the network streaming mode, but a live
1371 trace viewer can connect to the distant relay daemon to
1372 <<lttng-live,view event records as LTTng generates them>> by
1373 the tracers.
1374
1375
1376 [[domain]]
1377 === Tracing domain
1378
1379 A _tracing domain_ is a namespace for event sources. A tracing domain
1380 has its own properties and features.
1381
1382 There are currently five available tracing domains:
1383
1384 * Linux kernel
1385 * User space
1386 * `java.util.logging` (JUL)
1387 * log4j
1388 * Python
1389
1390 You must specify a tracing domain when using some commands to avoid
1391 ambiguity. For example, since all the domains support named tracepoints
1392 as event sources (instrumentation points that you manually insert in the
1393 source code), you need to specify a tracing domain when
1394 <<enabling-disabling-events,creating an event rule>> because all the
1395 tracing domains could have tracepoints with the same names.
1396
1397 Some features are reserved to specific tracing domains. Dynamic function
1398 entry and return instrumentation points, for example, are currently only
1399 supported in the Linux kernel tracing domain, but support for other
1400 tracing domains could be added in the future.
1401
1402 You can create <<channel,channels>> in the Linux kernel and user space
1403 tracing domains. The other tracing domains have a single default
1404 channel.
1405
1406
1407 [[channel]]
1408 === Channel and ring buffer
1409
1410 A _channel_ is an object which is responsible for a set of ring buffers.
1411 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1412 tracer emits an event, it can record it to one or more
1413 sub-buffers. The attributes of a channel determine what to do when
1414 there's no space left for a new event record because all sub-buffers
1415 are full, where to send a full sub-buffer, and other behaviours.
1416
1417 A channel is always associated to a <<domain,tracing domain>>. The
1418 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1419 a default channel which you cannot configure.
1420
1421 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1422 an event, it records it to the sub-buffers of all
1423 the enabled channels with a satisfied event rule, as long as those
1424 channels are part of active <<tracing-session,tracing sessions>>.
1425
1426
1427 [[channel-buffering-schemes]]
1428 ==== Per-user vs. per-process buffering schemes
1429
1430 A channel has at least one ring buffer _per CPU_. LTTng always
1431 records an event to the ring buffer associated to the CPU on which it
1432 occurred.
1433
1434 Two _buffering schemes_ are available when you
1435 <<enabling-disabling-channels,create a channel>> in the
1436 user space <<domain,tracing domain>>:
1437
1438 Per-user buffering::
1439 Allocate one set of ring buffers--one per CPU--shared by all the
1440 instrumented processes of each Unix user.
1441 +
1442 --
1443 [role="img-100"]
1444 .Per-user buffering scheme.
1445 image::per-user-buffering.png[]
1446 --
1447
1448 Per-process buffering::
1449 Allocate one set of ring buffers--one per CPU--for each
1450 instrumented process.
1451 +
1452 --
1453 [role="img-100"]
1454 .Per-process buffering scheme.
1455 image::per-process-buffering.png[]
1456 --
1457 +
1458 The per-process buffering scheme tends to consume more memory than the
1459 per-user option because systems generally have more instrumented
1460 processes than Unix users running instrumented processes. However, the
1461 per-process buffering scheme ensures that one process having a high
1462 event throughput won't fill all the shared sub-buffers of the same
1463 user, only its own.
1464
1465 The Linux kernel tracing domain has only one available buffering scheme
1466 which is to allocate a single set of ring buffers for the whole system.
1467 This scheme is similar to the per-user option, but with a single, global
1468 user "running" the kernel.
1469
1470
1471 [[channel-overwrite-mode-vs-discard-mode]]
1472 ==== Overwrite vs. discard event loss modes
1473
1474 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1475 arc in the following animation) of a specific channel's ring buffer.
1476 When there's no space left in a sub-buffer, the tracer marks it as
1477 consumable (red) and another, empty sub-buffer starts receiving the
1478 following event records. A <<lttng-consumerd,consumer daemon>>
1479 eventually consumes the marked sub-buffer (returns to white).
1480
1481 [NOTE]
1482 [role="docsvg-channel-subbuf-anim"]
1483 ====
1484 {note-no-anim}
1485 ====
1486
1487 In an ideal world, sub-buffers are consumed faster than they are filled,
1488 as is the case in the previous animation. In the real world,
1489 however, all sub-buffers can be full at some point, leaving no space to
1490 record the following events.
1491
1492 By design, LTTng is a _non-blocking_ tracer: when no empty sub-buffer is
1493 available, it is acceptable to lose event records when the alternative
1494 would be to cause substantial delays in the instrumented application's
1495 execution. LTTng privileges performance over integrity; it aims at
1496 perturbing the traced system as little as possible in order to make
1497 tracing of subtle race conditions and rare interrupt cascades possible.
1498
1499 When it comes to losing event records because no empty sub-buffer is
1500 available, the channel's _event loss mode_ determines what to do. The
1501 available event loss modes are:
1502
1503 Discard mode::
1504 Drop the newest event records until a the tracer
1505 releases a sub-buffer.
1506
1507 Overwrite mode::
1508 Clear the sub-buffer containing the oldest event records and start
1509 writing the newest event records there.
1510 +
1511 This mode is sometimes called _flight recorder mode_ because it's
1512 similar to a
1513 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1514 always keep a fixed amount of the latest data.
1515
1516 Which mechanism you should choose depends on your context: prioritize
1517 the newest or the oldest event records in the ring buffer?
1518
1519 Beware that, in overwrite mode, the tracer abandons a whole sub-buffer
1520 as soon as a there's no space left for a new event record, whereas in
1521 discard mode, the tracer only discards the event record that doesn't
1522 fit.
1523
1524 In discard mode, LTTng increments a count of lost event records when
1525 an event record is lost and saves this count to the trace. In
1526 overwrite mode, LTTng keeps no information when it overwrites a
1527 sub-buffer before consuming it.
1528
1529 There are a few ways to decrease your probability of losing event
1530 records.
1531 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1532 how you can fine-une the sub-buffer count and size of a channel to
1533 virtually stop losing event records, though at the cost of greater
1534 memory usage.
1535
1536
1537 [[channel-subbuf-size-vs-subbuf-count]]
1538 ==== Sub-buffer count and size
1539
1540 When you <<enabling-disabling-channels,create a channel>>, you can
1541 set its number of sub-buffers and their size.
1542
1543 Note that there is noticeable CPU overhead introduced when
1544 switching sub-buffers (marking a full one as consumable and switching
1545 to an empty one for the following events to be recorded). Knowing this,
1546 the following list presents a few practical situations along with how
1547 to configure the sub-buffer count and size for them:
1548
1549 * **High event throughput**: In general, prefer bigger sub-buffers to
1550 lower the risk of losing event records.
1551 +
1552 Having bigger sub-buffers also ensures a lower sub-buffer switching
1553 frequency.
1554 +
1555 The number of sub-buffers is only meaningful if you create the channel
1556 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1557 other sub-buffers are left unaltered.
1558
1559 * **Low event throughput**: In general, prefer smaller sub-buffers
1560 since the risk of losing event records is low.
1561 +
1562 Because events occur less frequently, the sub-buffer switching frequency
1563 should remain low and thus the tracer's overhead should not be a
1564 problem.
1565
1566 * **Low memory system**: If your target system has a low memory
1567 limit, prefer fewer first, then smaller sub-buffers.
1568 +
1569 Even if the system is limited in memory, you want to keep the
1570 sub-buffers as big as possible to avoid a high sub-buffer switching
1571 frequency.
1572
1573 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1574 which means event data is very compact. For example, the average
1575 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1576 sub-buffer size of 1{nbsp}MiB is considered big.
1577
1578 The previous situations highlight the major trade-off between a few big
1579 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1580 frequency vs. how much data is lost in overwrite mode. Assuming a
1581 constant event throughput and using the overwrite mode, the two
1582 following configurations have the same ring buffer total size:
1583
1584 [NOTE]
1585 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1586 ====
1587 {note-no-anim}
1588 ====
1589
1590 * **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1591 switching frequency, but if a sub-buffer overwrite happens, half of
1592 the event records so far (4{nbsp}MiB) are definitely lost.
1593 * **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1594 overhead as the previous configuration, but if a sub-buffer
1595 overwrite happens, only the eighth of event records so far are
1596 definitely lost.
1597
1598 In discard mode, the sub-buffers count parameter is pointless: use two
1599 sub-buffers and set their size according to the requirements of your
1600 situation.
1601
1602
1603 [[channel-switch-timer]]
1604 ==== Switch timer period
1605
1606 The _switch timer period_ is an important configurable attribute of
1607 a channel to ensure periodic sub-buffer flushing.
1608
1609 When the _switch timer_ expires, a sub-buffer switch happens. You can
1610 set the switch timer period attribute when you
1611 <<enabling-disabling-channels,create a channel>> to ensure that event
1612 data is consumed and committed to trace files or to a distant relay
1613 daemon periodically in case of a low event throughput.
1614
1615 [NOTE]
1616 [role="docsvg-channel-switch-timer"]
1617 ====
1618 {note-no-anim}
1619 ====
1620
1621 This attribute is also convenient when you use big sub-buffers to cope
1622 with a sporadic high event throughput, even if the throughput is
1623 normally low.
1624
1625
1626 [[channel-read-timer]]
1627 ==== Read timer period
1628
1629 By default, the LTTng tracers use a notification mechanism to signal a
1630 full sub-buffer so that a consumer daemon can consume it. When such
1631 notifications must be avoided, for example in real-time applications,
1632 you can use the channel's _read timer_ instead. When the read timer
1633 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1634 consumable sub-buffers.
1635
1636
1637 [[tracefile-rotation]]
1638 ==== Trace file count and size
1639
1640 By default, trace files can grow as large as needed. You can set the
1641 maximum size of each trace file that a channel writes when you
1642 <<enabling-disabling-channels,create a channel>>. When the size of
1643 a trace file reaches the channel's fixed maximum size, LTTng creates
1644 another file to contain the next event records. LTTng appends a file
1645 count to each trace file name in this case.
1646
1647 If you set the trace file size attribute when you create a channel, the
1648 maximum number of trace files that LTTng creates is _unlimited_ by
1649 default. To limit them, you can also set a maximum number of trace
1650 files. When the number of trace files reaches the channel's fixed
1651 maximum count, the oldest trace file is overwritten. This mechanism is
1652 called _trace file rotation_.
1653
1654
1655 [[event]]
1656 === Instrumentation point, event rule, event, and event record
1657
1658 An _event rule_ is a set of conditions which must be **all** satisfied
1659 for LTTng to record an occuring event.
1660
1661 You set the conditions when you <<enabling-disabling-events,create
1662 an event rule>>.
1663
1664 You always attach an event rule to <<channel,channel>> when you create
1665 it.
1666
1667 When an event passes the conditions of an event rule, LTTng records it
1668 in one of the attached channel's sub-buffers.
1669
1670 The available conditions, as of LTTng{nbsp}{revision}, are:
1671
1672 * The event rule _is enabled_.
1673 * The instrumentation point's type _is{nbsp}T_.
1674 * The instrumentation point's name (sometimes called _event name_)
1675 _matches{nbsp}N_, but _is not{nbsp}E_.
1676 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1677 _is exactly{nbsp}L_.
1678 * The fields of the event's payload _satisfy_ a filter
1679 expression{nbsp}__F__.
1680
1681 As you can see, all the conditions but the dynamic filter are related to
1682 the event rule's status or to the instrumentation point, not to the
1683 occurring events. This is why, without a filter, checking if an event
1684 passes an event rule is not a dynamic task: when you create or modify an
1685 event rule, all the tracers of its tracing domain enable or disable the
1686 instrumentation points themselves once. This is possible because the
1687 attributes of an instrumentation point (type, name, and log level) are
1688 defined statically. In other words, without a dynamic filter, the tracer
1689 _does not evaluate_ the arguments of an instrumentation point unless it
1690 matches an enabled event rule.
1691
1692 Note that, for LTTng to record an event, the <<channel,channel>> to
1693 which a matching event rule is attached must also be enabled, and the
1694 tracing session owning this channel must be active.
1695
1696 [role="img-100"]
1697 .Logical path from an instrumentation point to an event record.
1698 image::event-rule.png[]
1699
1700 .Event, event record, or event rule?
1701 ****
1702 With so many similar terms, it's easy to get confused.
1703
1704 An **event** is the consequence of the execution of an _instrumentation
1705 point_, like a tracepoint that you manually place in some source code,
1706 or a Linux kernel KProbe. An event is said to _occur_ at a specific
1707 time. Different actions can be taken upon the occurance of an event,
1708 like record the event's payload to a buffer.
1709
1710 An **event record** is the representation of an event in a sub-buffer. A
1711 tracer is responsible for capturing the payload of an event, current
1712 context variables, the event's ID, and the event's timestamp. LTTng
1713 can append this sub-buffer to a trace file.
1714
1715 An **event rule** is a set of conditions which must all be satisfied for
1716 LTTng to record an occuring event. Events still occur without
1717 satisfying event rules, but LTTng does not record them.
1718 ****
1719
1720
1721 [[plumbing]]
1722 == Components of noch:{LTTng}
1723
1724 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1725 to call LTTng a simple _tool_ since it is composed of multiple
1726 interacting components. This section describes those components,
1727 explains their respective roles, and shows how they connect together to
1728 form the LTTng ecosystem.
1729
1730 The following diagram shows how the most important components of LTTng
1731 interact with user applications, the Linux kernel, and you:
1732
1733 [role="img-100"]
1734 .Control and trace data paths between LTTng components.
1735 image::plumbing.png[]
1736
1737 The LTTng project incorporates:
1738
1739 * **LTTng-tools**: Libraries and command-line interface to
1740 control tracing sessions.
1741 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1742 ** <<lttng-consumerd,Consumer daemon>> (man:lttng-consumerd(8)).
1743 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1744 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1745 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1746 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1747 applications.
1748 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1749 headers to instrument and trace any native user application.
1750 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1751 *** `liblttng-ust-libc-wrapper`
1752 *** `liblttng-ust-pthread-wrapper`
1753 *** `liblttng-ust-cyg-profile`
1754 *** `liblttng-ust-cyg-profile-fast`
1755 *** `liblttng-ust-dl`
1756 ** User space tracepoint provider source files generator command-line
1757 tool (man:lttng-gen-tp(1)).
1758 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1759 Java applications using `java.util.logging` or
1760 Apache log4j 1.2 logging.
1761 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1762 Python applications using the standard `logging` package.
1763 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1764 the kernel.
1765 ** LTTng kernel tracer module.
1766 ** Tracing ring buffer kernel modules.
1767 ** Probe kernel modules.
1768 ** LTTng logger kernel module.
1769
1770
1771 [[lttng-cli]]
1772 === Tracing control command-line interface
1773
1774 [role="img-100"]
1775 .The tracing control command-line interface.
1776 image::plumbing-lttng-cli.png[]
1777
1778 The _man:lttng(1) command-line tool_ is the standard user interface to
1779 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1780 is part of LTTng-tools.
1781
1782 The cmd:lttng tool is linked with
1783 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1784 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1785
1786 The cmd:lttng tool has a Git-like interface:
1787
1788 [role="term"]
1789 ----
1790 lttng <general options> <command> <command options>
1791 ----
1792
1793 The <<controlling-tracing,Tracing control>> section explores the
1794 available features of LTTng using the cmd:lttng tool.
1795
1796
1797 [[liblttng-ctl-lttng]]
1798 === Tracing control library
1799
1800 [role="img-100"]
1801 .The tracing control library.
1802 image::plumbing-liblttng-ctl.png[]
1803
1804 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1805 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1806 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1807
1808 The <<lttng-cli,cmd:lttng command-line tool>>
1809 is linked with `liblttng-ctl`.
1810
1811 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1812 "master" header:
1813
1814 [source,c]
1815 ----
1816 #include <lttng/lttng.h>
1817 ----
1818
1819 Some objects are referenced by name (C string), such as tracing
1820 sessions, but most of them require to create a handle first using
1821 `lttng_create_handle()`.
1822
1823 The best available developer documentation for `liblttng-ctl` is, as of
1824 LTTng{nbsp}{revision}, its installed header files. Every function and
1825 structure is thoroughly documented.
1826
1827
1828 [[lttng-ust]]
1829 === User space tracing library
1830
1831 [role="img-100"]
1832 .The user space tracing library.
1833 image::plumbing-liblttng-ust.png[]
1834
1835 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1836 is the LTTng user space tracer. It receives commands from a
1837 <<lttng-sessiond,session daemon>>, for example to
1838 enable and disable specific instrumentation points, and writes event
1839 records to ring buffers shared with a
1840 <<lttng-consumerd,consumer daemon>>.
1841 `liblttng-ust` is part of LTTng-UST.
1842
1843 Public C header files are installed beside `liblttng-ust` to
1844 instrument any <<c-application,C or $$C++$$ application>>.
1845
1846 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1847 packages, use their own library providing tracepoints which is
1848 linked with `liblttng-ust`.
1849
1850 An application or library does not have to initialize `liblttng-ust`
1851 manually: its constructor does the necessary tasks to properly register
1852 to a session daemon. The initialization phase also enables the
1853 instrumentation points matching the <<event,event rules>> that you
1854 already created.
1855
1856
1857 [[lttng-ust-agents]]
1858 === User space tracing agents
1859
1860 [role="img-100"]
1861 .The user space tracing agents.
1862 image::plumbing-lttng-ust-agents.png[]
1863
1864 The _LTTng-UST Java and Python agents_ are regular Java and Python
1865 packages which add LTTng tracing capabilities to the
1866 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1867
1868 In the case of Java, the
1869 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1870 core logging facilities] and
1871 https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1872 Note that Apache Log4{nbsp}2 is not supported.
1873
1874 In the case of Python, the standard
1875 https://docs.python.org/3/library/logging.html[`logging`] package
1876 is supported. Both Python 2 and Python 3 modules can import the
1877 LTTng-UST Python agent package.
1878
1879 The applications using the LTTng-UST agents are in the
1880 `java.util.logging` (JUL),
1881 log4j, and Python <<domain,tracing domains>>.
1882
1883 Both agents use the same mechanism to trace the log statements. When an
1884 agent is initialized, it creates a log handler that attaches to the root
1885 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1886 When the application executes a log statement, it is passed to the
1887 agent's log handler by the root logger. The agent's log handler calls a
1888 native function in a tracepoint provider package shared library linked
1889 with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1890 other fields, like its logger name and its log level. This native
1891 function contains a user space instrumentation point, hence tracing the
1892 log statement.
1893
1894 The log level condition of an
1895 <<event,event rule>> is considered when tracing
1896 a Java or a Python application, and it's compatible with the standard
1897 JUL, log4j, and Python log levels.
1898
1899
1900 [[lttng-modules]]
1901 === LTTng kernel modules
1902
1903 [role="img-100"]
1904 .The LTTng kernel modules.
1905 image::plumbing-lttng-modules.png[]
1906
1907 The _LTTng kernel modules_ are a set of Linux kernel modules
1908 which implement the kernel tracer of the LTTng project. The LTTng
1909 kernel modules are part of LTTng-modules.
1910
1911 The LTTng kernel modules include:
1912
1913 * A set of _probe_ modules.
1914 +
1915 Each module attaches to a specific subsystem
1916 of the Linux kernel using its tracepoint instrument points. There are
1917 also modules to attach to the entry and return points of the Linux
1918 system call functions.
1919
1920 * _Ring buffer_ modules.
1921 +
1922 A ring buffer implementation is provided as kernel modules. The LTTng
1923 kernel tracer writes to the ring buffer; a
1924 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1925
1926 * The _LTTng kernel tracer_ module.
1927 * The _LTTng logger_ module.
1928 +
1929 The LTTng logger module implements the special path:{/proc/lttng-logger}
1930 file so that any executable can generate LTTng events by opening and
1931 writing to this file.
1932 +
1933 See <<proc-lttng-logger-abi,LTTng logger>>.
1934
1935 Generally, you do not have to load the LTTng kernel modules manually
1936 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1937 daemon>> loads the necessary modules when starting. If you have extra
1938 probe modules, you can specify to load them to the session daemon on
1939 the command line.
1940
1941 The LTTng kernel modules are installed in
1942 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1943 the kernel release (see `uname --kernel-release`).
1944
1945
1946 [[lttng-sessiond]]
1947 === Session daemon
1948
1949 [role="img-100"]
1950 .The session daemon.
1951 image::plumbing-sessiond.png[]
1952
1953 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1954 managing tracing sessions and for controlling the various components of
1955 LTTng. The session daemon is part of LTTng-tools.
1956
1957 The session daemon sends control requests to and receives control
1958 responses from:
1959
1960 * The <<lttng-ust,user space tracing library>>.
1961 +
1962 Any instance of the user space tracing library first registers to
1963 a session daemon. Then, the session daemon can send requests to
1964 this instance, such as:
1965 +
1966 --
1967 ** Get the list of tracepoints.
1968 ** Share an <<event,event rule>> so that the user space tracing library
1969 can enable or disable tracepoints. Amongst the possible conditions
1970 of an event rule is a filter expression which `liblttng-ust` evalutes
1971 when an event occurs.
1972 ** Share <<channel,channel>> attributes and ring buffer locations.
1973 --
1974 +
1975 The session daemon and the user space tracing library use a Unix
1976 domain socket for their communication.
1977
1978 * The <<lttng-ust-agents,user space tracing agents>>.
1979 +
1980 Any instance of a user space tracing agent first registers to
1981 a session daemon. Then, the session daemon can send requests to
1982 this instance, such as:
1983 +
1984 --
1985 ** Get the list of loggers.
1986 ** Enable or disable a specific logger.
1987 --
1988 +
1989 The session daemon and the user space tracing agent use a TCP connection
1990 for their communication.
1991
1992 * The <<lttng-modules,LTTng kernel tracer>>.
1993 * The <<lttng-consumerd,consumer daemon>>.
1994 +
1995 The session daemon sends requests to the consumer daemon to instruct
1996 it where to send the trace data streams, amongst other information.
1997
1998 * The <<lttng-relayd,relay daemon>>.
1999
2000 The session daemon receives commands from the
2001 <<liblttng-ctl-lttng,tracing control library>>.
2002
2003 The root session daemon loads the appropriate
2004 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
2005 a <<lttng-consumerd,consumer daemon>> as soon as you create
2006 an <<event,event rule>>.
2007
2008 The session daemon does not send and receive trace data: this is the
2009 role of the <<lttng-consumerd,consumer daemon>> and
2010 <<lttng-relayd,relay daemon>>. It does, however, generate the
2011 http://diamon.org/ctf/[CTF] metadata stream.
2012
2013 Each Unix user can have its own session daemon instance. The
2014 tracing sessions managed by different session daemons are completely
2015 independent.
2016
2017 The root user's session daemon is the only one which is
2018 allowed to control the LTTng kernel tracer, and its spawned consumer
2019 daemon is the only one which is allowed to consume trace data from the
2020 LTTng kernel tracer. Note, however, that any Unix user which is a member
2021 of the <<tracing-group,tracing group>> is allowed
2022 to create <<channel,channels>> in the
2023 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
2024 kernel.
2025
2026 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
2027 session daemon when using its `create` command if none is currently
2028 running. You can also start the session daemon manually.
2029
2030
2031 [[lttng-consumerd]]
2032 === Consumer daemon
2033
2034 [role="img-100"]
2035 .The consumer daemon.
2036 image::plumbing-consumerd.png[]
2037
2038 The _consumer daemon_, man:lttng-consumerd(8), is a daemon which shares
2039 ring buffers with user applications or with the LTTng kernel modules to
2040 collect trace data and send it to some location (on disk or to a
2041 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
2042 is part of LTTng-tools.
2043
2044 You do not start a consumer daemon manually: a consumer daemon is always
2045 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
2046 <<event,event rule>>, that is, before you start tracing. When you kill
2047 its owner session daemon, the consumer daemon also exits because it is
2048 the session daemon's child process. Command-line options of
2049 man:lttng-sessiond(8) target the consumer daemon process.
2050
2051 There are up to two running consumer daemons per Unix user, whereas only
2052 one session daemon can run per user. This is because each process can be
2053 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
2054 and 64-bit processes, it is more efficient to have separate
2055 corresponding 32-bit and 64-bit consumer daemons. The root user is an
2056 exception: it can have up to _three_ running consumer daemons: 32-bit
2057 and 64-bit instances for its user applications, and one more
2058 reserved for collecting kernel trace data.
2059
2060
2061 [[lttng-relayd]]
2062 === Relay daemon
2063
2064 [role="img-100"]
2065 .The relay daemon.
2066 image::plumbing-relayd.png[]
2067
2068 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
2069 between remote session and consumer daemons, local trace files, and a
2070 remote live trace viewer. The relay daemon is part of LTTng-tools.
2071
2072 The main purpose of the relay daemon is to implement a receiver of
2073 <<sending-trace-data-over-the-network,trace data over the network>>.
2074 This is useful when the target system does not have much file system
2075 space to record trace files locally.
2076
2077 The relay daemon is also a server to which a
2078 <<lttng-live,live trace viewer>> can
2079 connect. The live trace viewer sends requests to the relay daemon to
2080 receive trace data as the target system emits events. The
2081 communication protocol is named _LTTng live_; it is used over TCP
2082 connections.
2083
2084 Note that you can start the relay daemon on the target system directly.
2085 This is the setup of choice when the use case is to view events as
2086 the target system emits them without the need of a remote system.
2087
2088
2089 [[instrumenting]]
2090 == [[using-lttng]]Instrumentation
2091
2092 There are many examples of tracing and monitoring in our everyday life:
2093
2094 * You have access to real-time and historical weather reports and
2095 forecasts thanks to weather stations installed around the country.
2096 * You know your heart is safe thanks to an electrocardiogram.
2097 * You make sure not to drive your car too fast and to have enough fuel
2098 to reach your destination thanks to gauges visible on your dashboard.
2099
2100 All the previous examples have something in common: they rely on
2101 **instruments**. Without the electrodes attached to the surface of your
2102 body's skin, cardiac monitoring is futile.
2103
2104 LTTng, as a tracer, is no different from those real life examples. If
2105 you're about to trace a software system or, in other words, record its
2106 history of execution, you better have **instrumentation points** in the
2107 subject you're tracing, that is, the actual software.
2108
2109 Various ways were developed to instrument a piece of software for LTTng
2110 tracing. The most straightforward one is to manually place
2111 instrumentation points, called _tracepoints_, in the software's source
2112 code. It is also possible to add instrumentation points dynamically in
2113 the Linux kernel <<domain,tracing domain>>.
2114
2115 If you're only interested in tracing the Linux kernel, your
2116 instrumentation needs are probably already covered by LTTng's built-in
2117 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
2118 user application which is already instrumented for LTTng tracing.
2119 In such cases, you can skip this whole section and read the topics of
2120 the <<controlling-tracing,Tracing control>> section.
2121
2122 Many methods are available to instrument a piece of software for LTTng
2123 tracing. They are:
2124
2125 * <<c-application,User space instrumentation for C and $$C++$$
2126 applications>>.
2127 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
2128 * <<java-application,User space Java agent>>.
2129 * <<python-application,User space Python agent>>.
2130 * <<proc-lttng-logger-abi,LTTng logger>>.
2131 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
2132
2133
2134 [[c-application]]
2135 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
2136
2137 The procedure to instrument a C or $$C++$$ user application with
2138 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
2139
2140 . <<tracepoint-provider,Create the source files of a tracepoint provider
2141 package>>.
2142 . <<probing-the-application-source-code,Add tracepoints to
2143 the application's source code>>.
2144 . <<building-tracepoint-providers-and-user-application,Build and link
2145 a tracepoint provider package and the user application>>.
2146
2147 If you need quick, man:printf(3)-like instrumentation, you can skip
2148 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
2149 instead.
2150
2151 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
2152 instrument a user application with `liblttng-ust`.
2153
2154
2155 [[tracepoint-provider]]
2156 ==== Create the source files of a tracepoint provider package
2157
2158 A _tracepoint provider_ is a set of compiled functions which provide
2159 **tracepoints** to an application, the type of instrumentation point
2160 supported by LTTng-UST. Those functions can emit events with
2161 user-defined fields and serialize those events as event records to one
2162 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
2163 macro, which you <<probing-the-application-source-code,insert in a user
2164 application's source code>>, calls those functions.
2165
2166 A _tracepoint provider package_ is an object file (`.o`) or a shared
2167 library (`.so`) which contains one or more tracepoint providers.
2168 Its source files are:
2169
2170 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
2171 * A <<tpp-source,tracepoint provider package source>> (`.c`).
2172
2173 A tracepoint provider package is dynamically linked with `liblttng-ust`,
2174 the LTTng user space tracer, at run time.
2175
2176 [role="img-100"]
2177 .User application linked with `liblttng-ust` and containing a tracepoint provider.
2178 image::ust-app.png[]
2179
2180 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
2181 skip creating and using a tracepoint provider and use
2182 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
2183
2184
2185 [[tpp-header]]
2186 ===== Create a tracepoint provider header file template
2187
2188 A _tracepoint provider header file_ contains the tracepoint
2189 definitions of a tracepoint provider.
2190
2191 To create a tracepoint provider header file:
2192
2193 . Start from this template:
2194 +
2195 --
2196 [source,c]
2197 .Tracepoint provider header file template (`.h` file extension).
2198 ----
2199 #undef TRACEPOINT_PROVIDER
2200 #define TRACEPOINT_PROVIDER provider_name
2201
2202 #undef TRACEPOINT_INCLUDE
2203 #define TRACEPOINT_INCLUDE "./tp.h"
2204
2205 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
2206 #define _TP_H
2207
2208 #include <lttng/tracepoint.h>
2209
2210 /*
2211 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2212 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2213 */
2214
2215 #endif /* _TP_H */
2216
2217 #include <lttng/tracepoint-event.h>
2218 ----
2219 --
2220
2221 . Replace:
2222 +
2223 * `provider_name` with the name of your tracepoint provider.
2224 * `"tp.h"` with the name of your tracepoint provider header file.
2225
2226 . Below the `#include <lttng/tracepoint.h>` line, put your
2227 <<defining-tracepoints,tracepoint definitions>>.
2228
2229 Your tracepoint provider name must be unique amongst all the possible
2230 tracepoint provider names used on the same target system. We
2231 suggest to include the name of your project or company in the name,
2232 for example, `org_lttng_my_project_tpp`.
2233
2234 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2235 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2236 write are the <<defining-tracepoints,tracepoint definitions>>.
2237
2238
2239 [[defining-tracepoints]]
2240 ===== Create a tracepoint definition
2241
2242 A _tracepoint definition_ defines, for a given tracepoint:
2243
2244 * Its **input arguments**. They are the macro parameters that the
2245 `tracepoint()` macro accepts for this particular tracepoint
2246 in the user application's source code.
2247 * Its **output event fields**. They are the sources of event fields
2248 that form the payload of any event that the execution of the
2249 `tracepoint()` macro emits for this particular tracepoint.
2250
2251 You can create a tracepoint definition by using the
2252 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2253 line in the
2254 <<tpp-header,tracepoint provider header file template>>.
2255
2256 The syntax of the `TRACEPOINT_EVENT()` macro is:
2257
2258 [source,c]
2259 .`TRACEPOINT_EVENT()` macro syntax.
2260 ----
2261 TRACEPOINT_EVENT(
2262 /* Tracepoint provider name */
2263 provider_name,
2264
2265 /* Tracepoint name */
2266 tracepoint_name,
2267
2268 /* Input arguments */
2269 TP_ARGS(
2270 arguments
2271 ),
2272
2273 /* Output event fields */
2274 TP_FIELDS(
2275 fields
2276 )
2277 )
2278 ----
2279
2280 Replace:
2281
2282 * `provider_name` with your tracepoint provider name.
2283 * `tracepoint_name` with your tracepoint name.
2284 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2285 * `fields` with the <<tpp-def-output-fields,output event field>>
2286 definitions.
2287
2288 This tracepoint emits events named `provider_name:tracepoint_name`.
2289
2290 [IMPORTANT]
2291 .Event name's length limitation
2292 ====
2293 The concatenation of the tracepoint provider name and the
2294 tracepoint name must not exceed **254 characters**. If it does, the
2295 instrumented application compiles and runs, but LTTng throws multiple
2296 warnings and you could experience serious issues.
2297 ====
2298
2299 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2300
2301 [source,c]
2302 .`TP_ARGS()` macro syntax.
2303 ----
2304 TP_ARGS(
2305 type, arg_name
2306 )
2307 ----
2308
2309 Replace:
2310
2311 * `type` with the C type of the argument.
2312 * `arg_name` with the argument name.
2313
2314 You can repeat `type` and `arg_name` up to 10 times to have
2315 more than one argument.
2316
2317 .`TP_ARGS()` usage with three arguments.
2318 ====
2319 [source,c]
2320 ----
2321 TP_ARGS(
2322 int, count,
2323 float, ratio,
2324 const char*, query
2325 )
2326 ----
2327 ====
2328
2329 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2330 tracepoint definition with no input arguments.
2331
2332 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2333 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2334 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2335 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2336 one event field.
2337
2338 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2339 C expression that the tracer evalutes at the `tracepoint()` macro site
2340 in the application's source code. This expression provides a field's
2341 source of data. The argument expression can include input argument names
2342 listed in the `TP_ARGS()` macro.
2343
2344 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2345 must be unique within a given tracepoint definition.
2346
2347 Here's a complete tracepoint definition example:
2348
2349 .Tracepoint definition.
2350 ====
2351 The following tracepoint definition defines a tracepoint which takes
2352 three input arguments and has four output event fields.
2353
2354 [source,c]
2355 ----
2356 #include "my-custom-structure.h"
2357
2358 TRACEPOINT_EVENT(
2359 my_provider,
2360 my_tracepoint,
2361 TP_ARGS(
2362 const struct my_custom_structure*, my_custom_structure,
2363 float, ratio,
2364 const char*, query
2365 ),
2366 TP_FIELDS(
2367 ctf_string(query_field, query)
2368 ctf_float(double, ratio_field, ratio)
2369 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2370 ctf_integer(int, send_size, my_custom_structure->send_size)
2371 )
2372 )
2373 ----
2374
2375 You can refer to this tracepoint definition with the `tracepoint()`
2376 macro in your application's source code like this:
2377
2378 [source,c]
2379 ----
2380 tracepoint(my_provider, my_tracepoint,
2381 my_structure, some_ratio, the_query);
2382 ----
2383 ====
2384
2385 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2386 if they satisfy an enabled <<event,event rule>>.
2387
2388
2389 [[using-tracepoint-classes]]
2390 ===== Use a tracepoint class
2391
2392 A _tracepoint class_ is a class of tracepoints which share the same
2393 output event field definitions. A _tracepoint instance_ is one
2394 instance of such a defined tracepoint class, with its own tracepoint
2395 name.
2396
2397 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2398 shorthand which defines both a tracepoint class and a tracepoint
2399 instance at the same time.
2400
2401 When you build a tracepoint provider package, the C or $$C++$$ compiler
2402 creates one serialization function for each **tracepoint class**. A
2403 serialization function is responsible for serializing the event fields
2404 of a tracepoint to a sub-buffer when tracing.
2405
2406 For various performance reasons, when your situation requires multiple
2407 tracepoint definitions with different names, but with the same event
2408 fields, we recommend that you manually create a tracepoint class
2409 and instantiate as many tracepoint instances as needed. One positive
2410 effect of such a design, amongst other advantages, is that all
2411 tracepoint instances of the same tracepoint class reuse the same
2412 serialization function, thus reducing
2413 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2414
2415 .Use a tracepoint class and tracepoint instances.
2416 ====
2417 Consider the following three tracepoint definitions:
2418
2419 [source,c]
2420 ----
2421 TRACEPOINT_EVENT(
2422 my_app,
2423 get_account,
2424 TP_ARGS(
2425 int, userid,
2426 size_t, len
2427 ),
2428 TP_FIELDS(
2429 ctf_integer(int, userid, userid)
2430 ctf_integer(size_t, len, len)
2431 )
2432 )
2433
2434 TRACEPOINT_EVENT(
2435 my_app,
2436 get_settings,
2437 TP_ARGS(
2438 int, userid,
2439 size_t, len
2440 ),
2441 TP_FIELDS(
2442 ctf_integer(int, userid, userid)
2443 ctf_integer(size_t, len, len)
2444 )
2445 )
2446
2447 TRACEPOINT_EVENT(
2448 my_app,
2449 get_transaction,
2450 TP_ARGS(
2451 int, userid,
2452 size_t, len
2453 ),
2454 TP_FIELDS(
2455 ctf_integer(int, userid, userid)
2456 ctf_integer(size_t, len, len)
2457 )
2458 )
2459 ----
2460
2461 In this case, we create three tracepoint classes, with one implicit
2462 tracepoint instance for each of them: `get_account`, `get_settings`, and
2463 `get_transaction`. However, they all share the same event field names
2464 and types. Hence three identical, yet independent serialization
2465 functions are created when you build the tracepoint provider package.
2466
2467 A better design choice is to define a single tracepoint class and three
2468 tracepoint instances:
2469
2470 [source,c]
2471 ----
2472 /* The tracepoint class */
2473 TRACEPOINT_EVENT_CLASS(
2474 /* Tracepoint provider name */
2475 my_app,
2476
2477 /* Tracepoint class name */
2478 my_class,
2479
2480 /* Input arguments */
2481 TP_ARGS(
2482 int, userid,
2483 size_t, len
2484 ),
2485
2486 /* Output event fields */
2487 TP_FIELDS(
2488 ctf_integer(int, userid, userid)
2489 ctf_integer(size_t, len, len)
2490 )
2491 )
2492
2493 /* The tracepoint instances */
2494 TRACEPOINT_EVENT_INSTANCE(
2495 /* Tracepoint provider name */
2496 my_app,
2497
2498 /* Tracepoint class name */
2499 my_class,
2500
2501 /* Tracepoint name */
2502 get_account,
2503
2504 /* Input arguments */
2505 TP_ARGS(
2506 int, userid,
2507 size_t, len
2508 )
2509 )
2510 TRACEPOINT_EVENT_INSTANCE(
2511 my_app,
2512 my_class,
2513 get_settings,
2514 TP_ARGS(
2515 int, userid,
2516 size_t, len
2517 )
2518 )
2519 TRACEPOINT_EVENT_INSTANCE(
2520 my_app,
2521 my_class,
2522 get_transaction,
2523 TP_ARGS(
2524 int, userid,
2525 size_t, len
2526 )
2527 )
2528 ----
2529 ====
2530
2531
2532 [[assigning-log-levels]]
2533 ===== Assign a log level to a tracepoint definition
2534
2535 You can assign an optional _log level_ to a
2536 <<defining-tracepoints,tracepoint definition>>.
2537
2538 Assigning different levels of severity to tracepoint definitions can
2539 be useful: when you <<enabling-disabling-events,create an event rule>>,
2540 you can target tracepoints having a log level as severe as a specific
2541 value.
2542
2543 The concept of LTTng-UST log levels is similar to the levels found
2544 in typical logging frameworks:
2545
2546 * In a logging framework, the log level is given by the function
2547 or method name you use at the log statement site: `debug()`,
2548 `info()`, `warn()`, `error()`, and so on.
2549 * In LTTng-UST, you statically assign the log level to a tracepoint
2550 definition; any `tracepoint()` macro invocation which refers to
2551 this definition has this log level.
2552
2553 You can assign a log level to a tracepoint definition with the
2554 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2555 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2556 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2557 tracepoint.
2558
2559 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2560
2561 [source,c]
2562 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2563 ----
2564 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2565 ----
2566
2567 Replace:
2568
2569 * `provider_name` with the tracepoint provider name.
2570 * `tracepoint_name` with the tracepoint name.
2571 * `log_level` with the log level to assign to the tracepoint
2572 definition named `tracepoint_name` in the `provider_name`
2573 tracepoint provider.
2574 +
2575 See man:lttng-ust(3) for a list of available log level names.
2576
2577 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2578 ====
2579 [source,c]
2580 ----
2581 /* Tracepoint definition */
2582 TRACEPOINT_EVENT(
2583 my_app,
2584 get_transaction,
2585 TP_ARGS(
2586 int, userid,
2587 size_t, len
2588 ),
2589 TP_FIELDS(
2590 ctf_integer(int, userid, userid)
2591 ctf_integer(size_t, len, len)
2592 )
2593 )
2594
2595 /* Log level assignment */
2596 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2597 ----
2598 ====
2599
2600
2601 [[tpp-source]]
2602 ===== Create a tracepoint provider package source file
2603
2604 A _tracepoint provider package source file_ is a C source file which
2605 includes a <<tpp-header,tracepoint provider header file>> to expand its
2606 macros into event serialization and other functions.
2607
2608 You can always use the following tracepoint provider package source
2609 file template:
2610
2611 [source,c]
2612 .Tracepoint provider package source file template.
2613 ----
2614 #define TRACEPOINT_CREATE_PROBES
2615
2616 #include "tp.h"
2617 ----
2618
2619 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2620 header file>> name. You may also include more than one tracepoint
2621 provider header file here to create a tracepoint provider package
2622 holding more than one tracepoint providers.
2623
2624
2625 [[probing-the-application-source-code]]
2626 ==== Add tracepoints to an application's source code
2627
2628 Once you <<tpp-header,create a tracepoint provider header file>>, you
2629 can use the `tracepoint()` macro in your application's
2630 source code to insert the tracepoints that this header
2631 <<defining-tracepoints,defines>>.
2632
2633 The `tracepoint()` macro takes at least two parameters: the tracepoint
2634 provider name and the tracepoint name. The corresponding tracepoint
2635 definition defines the other parameters.
2636
2637 .`tracepoint()` usage.
2638 ====
2639 The following <<defining-tracepoints,tracepoint definition>> defines a
2640 tracepoint which takes two input arguments and has two output event
2641 fields.
2642
2643 [source,c]
2644 .Tracepoint provider header file.
2645 ----
2646 #include "my-custom-structure.h"
2647
2648 TRACEPOINT_EVENT(
2649 my_provider,
2650 my_tracepoint,
2651 TP_ARGS(
2652 int, argc,
2653 const char*, cmd_name
2654 ),
2655 TP_FIELDS(
2656 ctf_string(cmd_name, cmd_name)
2657 ctf_integer(int, number_of_args, argc)
2658 )
2659 )
2660 ----
2661
2662 You can refer to this tracepoint definition with the `tracepoint()`
2663 macro in your application's source code like this:
2664
2665 [source,c]
2666 .Application's source file.
2667 ----
2668 #include "tp.h"
2669
2670 int main(int argc, char* argv[])
2671 {
2672 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2673
2674 return 0;
2675 }
2676 ----
2677
2678 Note how the application's source code includes
2679 the tracepoint provider header file containing the tracepoint
2680 definitions to use, path:{tp.h}.
2681 ====
2682
2683 .`tracepoint()` usage with a complex tracepoint definition.
2684 ====
2685 Consider this complex tracepoint definition, where multiple event
2686 fields refer to the same input arguments in their argument expression
2687 parameter:
2688
2689 [source,c]
2690 .Tracepoint provider header file.
2691 ----
2692 /* For `struct stat` */
2693 #include <sys/types.h>
2694 #include <sys/stat.h>
2695 #include <unistd.h>
2696
2697 TRACEPOINT_EVENT(
2698 my_provider,
2699 my_tracepoint,
2700 TP_ARGS(
2701 int, my_int_arg,
2702 char*, my_str_arg,
2703 struct stat*, st
2704 ),
2705 TP_FIELDS(
2706 ctf_integer(int, my_constant_field, 23 + 17)
2707 ctf_integer(int, my_int_arg_field, my_int_arg)
2708 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2709 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2710 my_str_arg[2] + my_str_arg[3])
2711 ctf_string(my_str_arg_field, my_str_arg)
2712 ctf_integer_hex(off_t, size_field, st->st_size)
2713 ctf_float(double, size_dbl_field, (double) st->st_size)
2714 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2715 size_t, strlen(my_str_arg) / 2)
2716 )
2717 )
2718 ----
2719
2720 You can refer to this tracepoint definition with the `tracepoint()`
2721 macro in your application's source code like this:
2722
2723 [source,c]
2724 .Application's source file.
2725 ----
2726 #define TRACEPOINT_DEFINE
2727 #include "tp.h"
2728
2729 int main(void)
2730 {
2731 struct stat s;
2732
2733 stat("/etc/fstab", &s);
2734 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2735
2736 return 0;
2737 }
2738 ----
2739
2740 If you look at the event record that LTTng writes when tracing this
2741 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2742 it should look like this:
2743
2744 .Event record fields
2745 |====
2746 |Field's name |Field's value
2747 |`my_constant_field` |40
2748 |`my_int_arg_field` |23
2749 |`my_int_arg_field2` |529
2750 |`sum4_field` |389
2751 |`my_str_arg_field` |`Hello, World!`
2752 |`size_field` |0x12d
2753 |`size_dbl_field` |301.0
2754 |`half_my_str_arg_field` |`Hello,`
2755 |====
2756 ====
2757
2758 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2759 compute--they use the call stack, for example. To avoid this
2760 computation when the tracepoint is disabled, you can use the
2761 `tracepoint_enabled()` and `do_tracepoint()` macros.
2762
2763 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2764 is:
2765
2766 [source,c]
2767 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2768 ----
2769 tracepoint_enabled(provider_name, tracepoint_name)
2770 do_tracepoint(provider_name, tracepoint_name, ...)
2771 ----
2772
2773 Replace:
2774
2775 * `provider_name` with the tracepoint provider name.
2776 * `tracepoint_name` with the tracepoint name.
2777
2778 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2779 `tracepoint_name` from the provider named `provider_name` is enabled
2780 **at run time**.
2781
2782 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2783 if the tracepoint is enabled. Using `tracepoint()` with
2784 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2785 the `tracepoint_enabled()` check, thus a race condition is
2786 possible in this situation:
2787
2788 [source,c]
2789 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2790 ----
2791 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2792 stuff = prepare_stuff();
2793 }
2794
2795 tracepoint(my_provider, my_tracepoint, stuff);
2796 ----
2797
2798 If the tracepoint is enabled after the condition, then `stuff` is not
2799 prepared: the emitted event will either contain wrong data, or the whole
2800 application could crash (segmentation fault, for example).
2801
2802 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2803 `STAP_PROBEV()` call. If you need it, you must emit
2804 this call yourself.
2805
2806
2807 [[building-tracepoint-providers-and-user-application]]
2808 ==== Build and link a tracepoint provider package and an application
2809
2810 Once you have one or more <<tpp-header,tracepoint provider header
2811 files>> and a <<tpp-source,tracepoint provider package source file>>,
2812 you can create the tracepoint provider package by compiling its source
2813 file. From here, multiple build and run scenarios are possible. The
2814 following table shows common application and library configurations
2815 along with the required command lines to achieve them.
2816
2817 In the following diagrams, we use the following file names:
2818
2819 `app`::
2820 Executable application.
2821
2822 `app.o`::
2823 Application's object file.
2824
2825 `tpp.o`::
2826 Tracepoint provider package object file.
2827
2828 `tpp.a`::
2829 Tracepoint provider package archive file.
2830
2831 `libtpp.so`::
2832 Tracepoint provider package shared object file.
2833
2834 `emon.o`::
2835 User library object file.
2836
2837 `libemon.so`::
2838 User library shared object file.
2839
2840 We use the following symbols in the diagrams of table below:
2841
2842 [role="img-100"]
2843 .Symbols used in the build scenario diagrams.
2844 image::ust-sit-symbols.png[]
2845
2846 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2847 variable in the following instructions.
2848
2849 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2850 .Common tracepoint provider package scenarios.
2851 |====
2852 |Scenario |Instructions
2853
2854 |
2855 The instrumented application is statically linked with
2856 the tracepoint provider package object.
2857
2858 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2859
2860 |
2861 include::../common/ust-sit-step-tp-o.txt[]
2862
2863 To build the instrumented application:
2864
2865 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2866 +
2867 --
2868 [source,c]
2869 ----
2870 #define TRACEPOINT_DEFINE
2871 ----
2872 --
2873
2874 . Compile the application source file:
2875 +
2876 --
2877 [role="term"]
2878 ----
2879 gcc -c app.c
2880 ----
2881 --
2882
2883 . Build the application:
2884 +
2885 --
2886 [role="term"]
2887 ----
2888 gcc -o app app.o tpp.o -llttng-ust -ldl
2889 ----
2890 --
2891
2892 To run the instrumented application:
2893
2894 * Start the application:
2895 +
2896 --
2897 [role="term"]
2898 ----
2899 ./app
2900 ----
2901 --
2902
2903 |
2904 The instrumented application is statically linked with the
2905 tracepoint provider package archive file.
2906
2907 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2908
2909 |
2910 To create the tracepoint provider package archive file:
2911
2912 . Compile the <<tpp-source,tracepoint provider package source file>>:
2913 +
2914 --
2915 [role="term"]
2916 ----
2917 gcc -I. -c tpp.c
2918 ----
2919 --
2920
2921 . Create the tracepoint provider package archive file:
2922 +
2923 --
2924 [role="term"]
2925 ----
2926 ar rcs tpp.a tpp.o
2927 ----
2928 --
2929
2930 To build the instrumented application:
2931
2932 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2933 +
2934 --
2935 [source,c]
2936 ----
2937 #define TRACEPOINT_DEFINE
2938 ----
2939 --
2940
2941 . Compile the application source file:
2942 +
2943 --
2944 [role="term"]
2945 ----
2946 gcc -c app.c
2947 ----
2948 --
2949
2950 . Build the application:
2951 +
2952 --
2953 [role="term"]
2954 ----
2955 gcc -o app app.o tpp.a -llttng-ust -ldl
2956 ----
2957 --
2958
2959 To run the instrumented application:
2960
2961 * Start the application:
2962 +
2963 --
2964 [role="term"]
2965 ----
2966 ./app
2967 ----
2968 --
2969
2970 |
2971 The instrumented application is linked with the tracepoint provider
2972 package shared object.
2973
2974 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2975
2976 |
2977 include::../common/ust-sit-step-tp-so.txt[]
2978
2979 To build the instrumented application:
2980
2981 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2982 +
2983 --
2984 [source,c]
2985 ----
2986 #define TRACEPOINT_DEFINE
2987 ----
2988 --
2989
2990 . Compile the application source file:
2991 +
2992 --
2993 [role="term"]
2994 ----
2995 gcc -c app.c
2996 ----
2997 --
2998
2999 . Build the application:
3000 +
3001 --
3002 [role="term"]
3003 ----
3004 gcc -o app app.o -ldl -L. -ltpp
3005 ----
3006 --
3007
3008 To run the instrumented application:
3009
3010 * Start the application:
3011 +
3012 --
3013 [role="term"]
3014 ----
3015 ./app
3016 ----
3017 --
3018
3019 |
3020 The tracepoint provider package shared object is preloaded before the
3021 instrumented application starts.
3022
3023 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
3024
3025 |
3026 include::../common/ust-sit-step-tp-so.txt[]
3027
3028 To build the instrumented application:
3029
3030 . In path:{app.c}, before including path:{tpp.h}, add the
3031 following lines:
3032 +
3033 --
3034 [source,c]
3035 ----
3036 #define TRACEPOINT_DEFINE
3037 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3038 ----
3039 --
3040
3041 . Compile the application source file:
3042 +
3043 --
3044 [role="term"]
3045 ----
3046 gcc -c app.c
3047 ----
3048 --
3049
3050 . Build the application:
3051 +
3052 --
3053 [role="term"]
3054 ----
3055 gcc -o app app.o -ldl
3056 ----
3057 --
3058
3059 To run the instrumented application with tracing support:
3060
3061 * Preload the tracepoint provider package shared object and
3062 start the application:
3063 +
3064 --
3065 [role="term"]
3066 ----
3067 LD_PRELOAD=./libtpp.so ./app
3068 ----
3069 --
3070
3071 To run the instrumented application without tracing support:
3072
3073 * Start the application:
3074 +
3075 --
3076 [role="term"]
3077 ----
3078 ./app
3079 ----
3080 --
3081
3082 |
3083 The instrumented application dynamically loads the tracepoint provider
3084 package shared object.
3085
3086 See the <<dlclose-warning,warning about `dlclose()`>>.
3087
3088 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
3089
3090 |
3091 include::../common/ust-sit-step-tp-so.txt[]
3092
3093 To build the instrumented application:
3094
3095 . In path:{app.c}, before including path:{tpp.h}, add the
3096 following lines:
3097 +
3098 --
3099 [source,c]
3100 ----
3101 #define TRACEPOINT_DEFINE
3102 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3103 ----
3104 --
3105
3106 . Compile the application source file:
3107 +
3108 --
3109 [role="term"]
3110 ----
3111 gcc -c app.c
3112 ----
3113 --
3114
3115 . Build the application:
3116 +
3117 --
3118 [role="term"]
3119 ----
3120 gcc -o app app.o -ldl
3121 ----
3122 --
3123
3124 To run the instrumented application:
3125
3126 * Start the application:
3127 +
3128 --
3129 [role="term"]
3130 ----
3131 ./app
3132 ----
3133 --
3134
3135 |
3136 The application is linked with the instrumented user library.
3137
3138 The instrumented user library is statically linked with the tracepoint
3139 provider package object file.
3140
3141 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
3142
3143 |
3144 include::../common/ust-sit-step-tp-o-fpic.txt[]
3145
3146 To build the instrumented user library:
3147
3148 . In path:{emon.c}, before including path:{tpp.h}, add the
3149 following line:
3150 +
3151 --
3152 [source,c]
3153 ----
3154 #define TRACEPOINT_DEFINE
3155 ----
3156 --
3157
3158 . Compile the user library source file:
3159 +
3160 --
3161 [role="term"]
3162 ----
3163 gcc -I. -fpic -c emon.c
3164 ----
3165 --
3166
3167 . Build the user library shared object:
3168 +
3169 --
3170 [role="term"]
3171 ----
3172 gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
3173 ----
3174 --
3175
3176 To build the application:
3177
3178 . Compile the application source file:
3179 +
3180 --
3181 [role="term"]
3182 ----
3183 gcc -c app.c
3184 ----
3185 --
3186
3187 . Build the application:
3188 +
3189 --
3190 [role="term"]
3191 ----
3192 gcc -o app app.o -L. -lemon
3193 ----
3194 --
3195
3196 To run the application:
3197
3198 * Start the application:
3199 +
3200 --
3201 [role="term"]
3202 ----
3203 ./app
3204 ----
3205 --
3206
3207 |
3208 The application is linked with the instrumented user library.
3209
3210 The instrumented user library is linked with the tracepoint provider
3211 package shared object.
3212
3213 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3214
3215 |
3216 include::../common/ust-sit-step-tp-so.txt[]
3217
3218 To build the instrumented user library:
3219
3220 . In path:{emon.c}, before including path:{tpp.h}, add the
3221 following line:
3222 +
3223 --
3224 [source,c]
3225 ----
3226 #define TRACEPOINT_DEFINE
3227 ----
3228 --
3229
3230 . Compile the user library source file:
3231 +
3232 --
3233 [role="term"]
3234 ----
3235 gcc -I. -fpic -c emon.c
3236 ----
3237 --
3238
3239 . Build the user library shared object:
3240 +
3241 --
3242 [role="term"]
3243 ----
3244 gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3245 ----
3246 --
3247
3248 To build the application:
3249
3250 . Compile the application source file:
3251 +
3252 --
3253 [role="term"]
3254 ----
3255 gcc -c app.c
3256 ----
3257 --
3258
3259 . Build the application:
3260 +
3261 --
3262 [role="term"]
3263 ----
3264 gcc -o app app.o -L. -lemon
3265 ----
3266 --
3267
3268 To run the application:
3269
3270 * Start the application:
3271 +
3272 --
3273 [role="term"]
3274 ----
3275 ./app
3276 ----
3277 --
3278
3279 |
3280 The tracepoint provider package shared object is preloaded before the
3281 application starts.
3282
3283 The application is linked with the instrumented user library.
3284
3285 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3286
3287 |
3288 include::../common/ust-sit-step-tp-so.txt[]
3289
3290 To build the instrumented user library:
3291
3292 . In path:{emon.c}, before including path:{tpp.h}, add the
3293 following line:
3294 +
3295 --
3296 [source,c]
3297 ----
3298 #define TRACEPOINT_DEFINE
3299 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3300 ----
3301 --
3302
3303 . Compile the user library source file:
3304 +
3305 --
3306 [role="term"]
3307 ----
3308 gcc -I. -fpic -c emon.c
3309 ----
3310 --
3311
3312 . Build the user library shared object:
3313 +
3314 --
3315 [role="term"]
3316 ----
3317 gcc -shared -o libemon.so emon.o -ldl
3318 ----
3319 --
3320
3321 To build the application:
3322
3323 . Compile the application source file:
3324 +
3325 --
3326 [role="term"]
3327 ----
3328 gcc -c app.c
3329 ----
3330 --
3331
3332 . Build the application:
3333 +
3334 --
3335 [role="term"]
3336 ----
3337 gcc -o app app.o -L. -lemon
3338 ----
3339 --
3340
3341 To run the application with tracing support:
3342
3343 * Preload the tracepoint provider package shared object and
3344 start the application:
3345 +
3346 --
3347 [role="term"]
3348 ----
3349 LD_PRELOAD=./libtpp.so ./app
3350 ----
3351 --
3352
3353 To run the application without tracing support:
3354
3355 * Start the application:
3356 +
3357 --
3358 [role="term"]
3359 ----
3360 ./app
3361 ----
3362 --
3363
3364 |
3365 The application is linked with the instrumented user library.
3366
3367 The instrumented user library dynamically loads the tracepoint provider
3368 package shared object.
3369
3370 See the <<dlclose-warning,warning about `dlclose()`>>.
3371
3372 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3373
3374 |
3375 include::../common/ust-sit-step-tp-so.txt[]
3376
3377 To build the instrumented user library:
3378
3379 . In path:{emon.c}, before including path:{tpp.h}, add the
3380 following line:
3381 +
3382 --
3383 [source,c]
3384 ----
3385 #define TRACEPOINT_DEFINE
3386 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3387 ----
3388 --
3389
3390 . Compile the user library source file:
3391 +
3392 --
3393 [role="term"]
3394 ----
3395 gcc -I. -fpic -c emon.c
3396 ----
3397 --
3398
3399 . Build the user library shared object:
3400 +
3401 --
3402 [role="term"]
3403 ----
3404 gcc -shared -o libemon.so emon.o -ldl
3405 ----
3406 --
3407
3408 To build the application:
3409
3410 . Compile the application source file:
3411 +
3412 --
3413 [role="term"]
3414 ----
3415 gcc -c app.c
3416 ----
3417 --
3418
3419 . Build the application:
3420 +
3421 --
3422 [role="term"]
3423 ----
3424 gcc -o app app.o -L. -lemon
3425 ----
3426 --
3427
3428 To run the application:
3429
3430 * Start the application:
3431 +
3432 --
3433 [role="term"]
3434 ----
3435 ./app
3436 ----
3437 --
3438
3439 |
3440 The application dynamically loads the instrumented user library.
3441
3442 The instrumented user library is linked with the tracepoint provider
3443 package shared object.
3444
3445 See the <<dlclose-warning,warning about `dlclose()`>>.
3446
3447 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3448
3449 |
3450 include::../common/ust-sit-step-tp-so.txt[]
3451
3452 To build the instrumented user library:
3453
3454 . In path:{emon.c}, before including path:{tpp.h}, add the
3455 following line:
3456 +
3457 --
3458 [source,c]
3459 ----
3460 #define TRACEPOINT_DEFINE
3461 ----
3462 --
3463
3464 . Compile the user library source file:
3465 +
3466 --
3467 [role="term"]
3468 ----
3469 gcc -I. -fpic -c emon.c
3470 ----
3471 --
3472
3473 . Build the user library shared object:
3474 +
3475 --
3476 [role="term"]
3477 ----
3478 gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3479 ----
3480 --
3481
3482 To build the application:
3483
3484 . Compile the application source file:
3485 +
3486 --
3487 [role="term"]
3488 ----
3489 gcc -c app.c
3490 ----
3491 --
3492
3493 . Build the application:
3494 +
3495 --
3496 [role="term"]
3497 ----
3498 gcc -o app app.o -ldl -L. -lemon
3499 ----
3500 --
3501
3502 To run the application:
3503
3504 * Start the application:
3505 +
3506 --
3507 [role="term"]
3508 ----
3509 ./app
3510 ----
3511 --
3512
3513 |
3514 The application dynamically loads the instrumented user library.
3515
3516 The instrumented user library dynamically loads the tracepoint provider
3517 package shared object.
3518
3519 See the <<dlclose-warning,warning about `dlclose()`>>.
3520
3521 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3522
3523 |
3524 include::../common/ust-sit-step-tp-so.txt[]
3525
3526 To build the instrumented user library:
3527
3528 . In path:{emon.c}, before including path:{tpp.h}, add the
3529 following line:
3530 +
3531 --
3532 [source,c]
3533 ----
3534 #define TRACEPOINT_DEFINE
3535 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3536 ----
3537 --
3538
3539 . Compile the user library source file:
3540 +
3541 --
3542 [role="term"]
3543 ----
3544 gcc -I. -fpic -c emon.c
3545 ----
3546 --
3547
3548 . Build the user library shared object:
3549 +
3550 --
3551 [role="term"]
3552 ----
3553 gcc -shared -o libemon.so emon.o -ldl
3554 ----
3555 --
3556
3557 To build the application:
3558
3559 . Compile the application source file:
3560 +
3561 --
3562 [role="term"]
3563 ----
3564 gcc -c app.c
3565 ----
3566 --
3567
3568 . Build the application:
3569 +
3570 --
3571 [role="term"]
3572 ----
3573 gcc -o app app.o -ldl -L. -lemon
3574 ----
3575 --
3576
3577 To run the application:
3578
3579 * Start the application:
3580 +
3581 --
3582 [role="term"]
3583 ----
3584 ./app
3585 ----
3586 --
3587
3588 |
3589 The tracepoint provider package shared object is preloaded before the
3590 application starts.
3591
3592 The application dynamically loads the instrumented user library.
3593
3594 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3595
3596 |
3597 include::../common/ust-sit-step-tp-so.txt[]
3598
3599 To build the instrumented user library:
3600
3601 . In path:{emon.c}, before including path:{tpp.h}, add the
3602 following line:
3603 +
3604 --
3605 [source,c]
3606 ----
3607 #define TRACEPOINT_DEFINE
3608 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3609 ----
3610 --
3611
3612 . Compile the user library source file:
3613 +
3614 --
3615 [role="term"]
3616 ----
3617 gcc -I. -fpic -c emon.c
3618 ----
3619 --
3620
3621 . Build the user library shared object:
3622 +
3623 --
3624 [role="term"]
3625 ----
3626 gcc -shared -o libemon.so emon.o -ldl
3627 ----
3628 --
3629
3630 To build the application:
3631
3632 . Compile the application source file:
3633 +
3634 --
3635 [role="term"]
3636 ----
3637 gcc -c app.c
3638 ----
3639 --
3640
3641 . Build the application:
3642 +
3643 --
3644 [role="term"]
3645 ----
3646 gcc -o app app.o -L. -lemon
3647 ----
3648 --
3649
3650 To run the application with tracing support:
3651
3652 * Preload the tracepoint provider package shared object and
3653 start the application:
3654 +
3655 --
3656 [role="term"]
3657 ----
3658 LD_PRELOAD=./libtpp.so ./app
3659 ----
3660 --
3661
3662 To run the application without tracing support:
3663
3664 * Start the application:
3665 +
3666 --
3667 [role="term"]
3668 ----
3669 ./app
3670 ----
3671 --
3672
3673 |
3674 The application is statically linked with the tracepoint provider
3675 package object file.
3676
3677 The application is linked with the instrumented user library.
3678
3679 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3680
3681 |
3682 include::../common/ust-sit-step-tp-o.txt[]
3683
3684 To build the instrumented user library:
3685
3686 . In path:{emon.c}, before including path:{tpp.h}, add the
3687 following line:
3688 +
3689 --
3690 [source,c]
3691 ----
3692 #define TRACEPOINT_DEFINE
3693 ----
3694 --
3695
3696 . Compile the user library source file:
3697 +
3698 --
3699 [role="term"]
3700 ----
3701 gcc -I. -fpic -c emon.c
3702 ----
3703 --
3704
3705 . Build the user library shared object:
3706 +
3707 --
3708 [role="term"]
3709 ----
3710 gcc -shared -o libemon.so emon.o
3711 ----
3712 --
3713
3714 To build the application:
3715
3716 . Compile the application source file:
3717 +
3718 --
3719 [role="term"]
3720 ----
3721 gcc -c app.c
3722 ----
3723 --
3724
3725 . Build the application:
3726 +
3727 --
3728 [role="term"]
3729 ----
3730 gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3731 ----
3732 --
3733
3734 To run the instrumented application:
3735
3736 * Start the application:
3737 +
3738 --
3739 [role="term"]
3740 ----
3741 ./app
3742 ----
3743 --
3744
3745 |
3746 The application is statically linked with the tracepoint provider
3747 package object file.
3748
3749 The application dynamically loads the instrumented user library.
3750
3751 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3752
3753 |
3754 include::../common/ust-sit-step-tp-o.txt[]
3755
3756 To build the application:
3757
3758 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3759 +
3760 --
3761 [source,c]
3762 ----
3763 #define TRACEPOINT_DEFINE
3764 ----
3765 --
3766
3767 . Compile the application source file:
3768 +
3769 --
3770 [role="term"]
3771 ----
3772 gcc -c app.c
3773 ----
3774 --
3775
3776 . Build the application:
3777 +
3778 --
3779 [role="term"]
3780 ----
3781 gcc -Wl,--export-dynamic -o app app.o tpp.o \
3782 -llttng-ust -ldl
3783 ----
3784 --
3785 +
3786 The `--export-dynamic` option passed to the linker is necessary for the
3787 dynamically loaded library to ``see'' the tracepoint symbols defined in
3788 the application.
3789
3790 To build the instrumented user library:
3791
3792 . Compile the user library source file:
3793 +
3794 --
3795 [role="term"]
3796 ----
3797 gcc -I. -fpic -c emon.c
3798 ----
3799 --
3800
3801 . Build the user library shared object:
3802 +
3803 --
3804 [role="term"]
3805 ----
3806 gcc -shared -o libemon.so emon.o
3807 ----
3808 --
3809
3810 To run the application:
3811
3812 * Start the application:
3813 +
3814 --
3815 [role="term"]
3816 ----
3817 ./app
3818 ----
3819 --
3820 |====
3821
3822 [[dlclose-warning]]
3823 [IMPORTANT]
3824 .Do not use man:dlclose(3) on a tracepoint provider package
3825 ====
3826 Never use man:dlclose(3) on any shared object which:
3827
3828 * Is linked with, statically or dynamically, a tracepoint provider
3829 package.
3830 * Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3831 package shared object.
3832
3833 This is currently considered **unsafe** due to a lack of reference
3834 counting from LTTng-UST to the shared object.
3835
3836 A known workaround (available since glibc 2.2) is to use the
3837 `RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3838 effect of not unloading the loaded shared object, even if man:dlclose(3)
3839 is called.
3840
3841 You can also preload the tracepoint provider package shared object with
3842 the env:LD_PRELOAD environment variable to overcome this limitation.
3843 ====
3844
3845
3846 [[using-lttng-ust-with-daemons]]
3847 ===== Use noch:{LTTng-UST} with daemons
3848
3849 If your instrumented application calls man:fork(2), man:clone(2),
3850 or BSD's man:rfork(2), without a following man:exec(3)-family
3851 system call, you must preload the path:{liblttng-ust-fork.so} shared
3852 object when starting the application.
3853
3854 [role="term"]
3855 ----
3856 LD_PRELOAD=liblttng-ust-fork.so ./my-app
3857 ----
3858
3859 If your tracepoint provider package is
3860 a shared library which you also preload, you must put both
3861 shared objects in env:LD_PRELOAD:
3862
3863 [role="term"]
3864 ----
3865 LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3866 ----
3867
3868
3869 [[lttng-ust-pkg-config]]
3870 ===== Use noch:{pkg-config}
3871
3872 On some distributions, LTTng-UST ships with a
3873 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3874 metadata file. If this is your case, then you can use cmd:pkg-config to
3875 build an application on the command line:
3876
3877 [role="term"]
3878 ----
3879 gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3880 ----
3881
3882
3883 [[instrumenting-32-bit-app-on-64-bit-system]]
3884 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3885
3886 In order to trace a 32-bit application running on a 64-bit system,
3887 LTTng must use a dedicated 32-bit
3888 <<lttng-consumerd,consumer daemon>>.
3889
3890 The following steps show how to build and install a 32-bit consumer
3891 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3892 build and install the 32-bit LTTng-UST libraries, and how to build and
3893 link an instrumented 32-bit application in that context.
3894
3895 To build a 32-bit instrumented application for a 64-bit target system,
3896 assuming you have a fresh target system with no installed Userspace RCU
3897 or LTTng packages:
3898
3899 . Download, build, and install a 32-bit version of Userspace RCU:
3900 +
3901 --
3902 [role="term"]
3903 ----
3904 cd $(mktemp -d) &&
3905 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3906 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3907 cd userspace-rcu-0.9.* &&
3908 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3909 make &&
3910 sudo make install &&
3911 sudo ldconfig
3912 ----
3913 --
3914
3915 . Using your distribution's package manager, or from source, install
3916 the following 32-bit versions of the following dependencies of
3917 LTTng-tools and LTTng-UST:
3918 +
3919 --
3920 * https://sourceforge.net/projects/libuuid/[libuuid]
3921 * http://directory.fsf.org/wiki/Popt[popt]
3922 * http://www.xmlsoft.org/[libxml2]
3923 --
3924
3925 . Download, build, and install a 32-bit version of the latest
3926 LTTng-UST{nbsp}{revision}:
3927 +
3928 --
3929 [role="term"]
3930 ----
3931 cd $(mktemp -d) &&
3932 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.8.tar.bz2 &&
3933 tar -xf lttng-ust-latest-2.8.tar.bz2 &&
3934 cd lttng-ust-2.8.* &&
3935 ./configure --libdir=/usr/local/lib32 \
3936 CFLAGS=-m32 CXXFLAGS=-m32 \
3937 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3938 make &&
3939 sudo make install &&
3940 sudo ldconfig
3941 ----
3942 --
3943 +
3944 [NOTE]
3945 ====
3946 Depending on your distribution,
3947 32-bit libraries could be installed at a different location than
3948 `/usr/lib32`. For example, Debian is known to install
3949 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3950
3951 In this case, make sure to set `LDFLAGS` to all the
3952 relevant 32-bit library paths, for example:
3953
3954 [role="term"]
3955 ----
3956 LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3957 ----
3958 ====
3959
3960 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
3961 the 32-bit consumer daemon:
3962 +
3963 --
3964 [role="term"]
3965 ----
3966 cd $(mktemp -d) &&
3967 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
3968 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
3969 cd lttng-tools-2.8.* &&
3970 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3971 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3972 make &&
3973 cd src/bin/lttng-consumerd &&
3974 sudo make install &&
3975 sudo ldconfig
3976 ----
3977 --
3978
3979 . From your distribution or from source,
3980 <<installing-lttng,install>> the 64-bit versions of
3981 LTTng-UST and Userspace RCU.
3982 . Download, build, and install the 64-bit version of the
3983 latest LTTng-tools{nbsp}{revision}:
3984 +
3985 --
3986 [role="term"]
3987 ----
3988 cd $(mktemp -d) &&
3989 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
3990 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
3991 cd lttng-tools-2.8.* &&
3992 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
3993 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
3994 make &&
3995 sudo make install &&
3996 sudo ldconfig
3997 ----
3998 --
3999
4000 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
4001 when linking your 32-bit application:
4002 +
4003 ----
4004 -m32 -L/usr/lib32 -L/usr/local/lib32 \
4005 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
4006 ----
4007 +
4008 For example, let's rebuild the quick start example in
4009 <<tracing-your-own-user-application,Trace a user application>> as an
4010 instrumented 32-bit application:
4011 +
4012 --
4013 [role="term"]
4014 ----
4015 gcc -m32 -c -I. hello-tp.c
4016 gcc -m32 -c hello.c
4017 gcc -m32 -o hello hello.o hello-tp.o \
4018 -L/usr/lib32 -L/usr/local/lib32 \
4019 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
4020 -llttng-ust -ldl
4021 ----
4022 --
4023
4024 No special action is required to execute the 32-bit application and
4025 to trace it: use the command-line man:lttng(1) tool as usual.
4026
4027
4028 [role="since-2.5"]
4029 [[tracef]]
4030 ==== Use `tracef()`
4031
4032 man:tracef(3) is a small LTTng-UST API designed for quick,
4033 man:printf(3)-like instrumentation without the burden of
4034 <<tracepoint-provider,creating>> and
4035 <<building-tracepoint-providers-and-user-application,building>>
4036 a tracepoint provider package.
4037
4038 To use `tracef()` in your application:
4039
4040 . In the C or C++ source files where you need to use `tracef()`,
4041 include `<lttng/tracef.h>`:
4042 +
4043 --
4044 [source,c]
4045 ----
4046 #include <lttng/tracef.h>
4047 ----
4048 --
4049
4050 . In the application's source code, use `tracef()` like you would use
4051 man:printf(3):
4052 +
4053 --
4054 [source,c]
4055 ----
4056 /* ... */
4057
4058 tracef("my message: %d (%s)", my_integer, my_string);
4059
4060 /* ... */
4061 ----
4062 --
4063
4064 . Link your application with `liblttng-ust`:
4065 +
4066 --
4067 [role="term"]
4068 ----
4069 gcc -o app app.c -llttng-ust
4070 ----
4071 --
4072
4073 To trace the events that `tracef()` calls emit:
4074
4075 * <<enabling-disabling-events,Create an event rule>> which matches the
4076 `lttng_ust_tracef:*` event name:
4077 +
4078 --
4079 [role="term"]
4080 ----
4081 lttng enable-event --userspace 'lttng_ust_tracef:*'
4082 ----
4083 --
4084
4085 [IMPORTANT]
4086 .Limitations of `tracef()`
4087 ====
4088 The `tracef()` utility function was developed to make user space tracing
4089 super simple, albeit with notable disadvantages compared to
4090 <<defining-tracepoints,user-defined tracepoints>>:
4091
4092 * All the emitted events have the same tracepoint provider and
4093 tracepoint names, respectively `lttng_ust_tracef` and `event`.
4094 * There is no static type checking.
4095 * The only event record field you actually get, named `msg`, is a string
4096 potentially containing the values you passed to `tracef()`
4097 using your own format string. This also means that you cannot filter
4098 events with a custom expression at run time because there are no
4099 isolated fields.
4100 * Since `tracef()` uses the C standard library's man:vasprintf(3)
4101 function behind the scenes to format the strings at run time, its
4102 expected performance is lower than with user-defined tracepoints,
4103 which do not require a conversion to a string.
4104
4105 Taking this into consideration, `tracef()` is useful for some quick
4106 prototyping and debugging, but you should not consider it for any
4107 permanent and serious applicative instrumentation.
4108 ====
4109
4110
4111 [role="since-2.7"]
4112 [[tracelog]]
4113 ==== Use `tracelog()`
4114
4115 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
4116 the difference that it accepts an additional log level parameter.
4117
4118 The goal of `tracelog()` is to ease the migration from logging to
4119 tracing.
4120
4121 To use `tracelog()` in your application:
4122
4123 . In the C or C++ source files where you need to use `tracelog()`,
4124 include `<lttng/tracelog.h>`:
4125 +
4126 --
4127 [source,c]
4128 ----
4129 #include <lttng/tracelog.h>
4130 ----
4131 --
4132
4133 . In the application's source code, use `tracelog()` like you would use
4134 man:printf(3), except for the first parameter which is the log
4135 level:
4136 +
4137 --
4138 [source,c]
4139 ----
4140 /* ... */
4141
4142 tracelog(TRACE_WARNING, "my message: %d (%s)",
4143 my_integer, my_string);
4144
4145 /* ... */
4146 ----
4147 --
4148 +
4149 See man:lttng-ust(3) for a list of available log level names.
4150
4151 . Link your application with `liblttng-ust`:
4152 +
4153 --
4154 [role="term"]
4155 ----
4156 gcc -o app app.c -llttng-ust
4157 ----
4158 --
4159
4160 To trace the events that `tracelog()` calls emit with a log level
4161 _as severe as_ a specific log level:
4162
4163 * <<enabling-disabling-events,Create an event rule>> which matches the
4164 `lttng_ust_tracelog:*` event name and a minimum level
4165 of severity:
4166 +
4167 --
4168 [role="term"]
4169 ----
4170 lttng enable-event --userspace 'lttng_ust_tracelog:*'
4171 --loglevel=TRACE_WARNING
4172 ----
4173 --
4174
4175 To trace the events that `tracelog()` calls emit with a
4176 _specific log level_:
4177
4178 * Create an event rule which matches the `lttng_ust_tracelog:*`
4179 event name and a specific log level:
4180 +
4181 --
4182 [role="term"]
4183 ----
4184 lttng enable-event --userspace 'lttng_ust_tracelog:*'
4185 --loglevel-only=TRACE_INFO
4186 ----
4187 --
4188
4189
4190 [[prebuilt-ust-helpers]]
4191 === Prebuilt user space tracing helpers
4192
4193 The LTTng-UST package provides a few helpers in the form or preloadable
4194 shared objects which automatically instrument system functions and
4195 calls.
4196
4197 The helper shared objects are normally found in dir:{/usr/lib}. If you
4198 built LTTng-UST <<building-from-source,from source>>, they are probably
4199 located in dir:{/usr/local/lib}.
4200
4201 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4202 are:
4203
4204 path:{liblttng-ust-libc-wrapper.so}::
4205 path:{liblttng-ust-pthread-wrapper.so}::
4206 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4207 memory and POSIX threads function tracing>>.
4208
4209 path:{liblttng-ust-cyg-profile.so}::
4210 path:{liblttng-ust-cyg-profile-fast.so}::
4211 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4212
4213 path:{liblttng-ust-dl.so}::
4214 <<liblttng-ust-dl,Dynamic linker tracing>>.
4215
4216 To use a user space tracing helper with any user application:
4217
4218 * Preload the helper shared object when you start the application:
4219 +
4220 --
4221 [role="term"]
4222 ----
4223 LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4224 ----
4225 --
4226 +
4227 You can preload more than one helper:
4228 +
4229 --
4230 [role="term"]
4231 ----
4232 LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4233 ----
4234 --
4235
4236
4237 [role="since-2.3"]
4238 [[liblttng-ust-libc-pthread-wrapper]]
4239 ==== Instrument C standard library memory and POSIX threads functions
4240
4241 The path:{liblttng-ust-libc-wrapper.so} and
4242 path:{liblttng-ust-pthread-wrapper.so} helpers
4243 add instrumentation to some C standard library and POSIX
4244 threads functions.
4245
4246 [role="growable"]
4247 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4248 |====
4249 |TP provider name |TP name |Instrumented function
4250
4251 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4252 |`calloc` |man:calloc(3)
4253 |`realloc` |man:realloc(3)
4254 |`free` |man:free(3)
4255 |`memalign` |man:memalign(3)
4256 |`posix_memalign` |man:posix_memalign(3)
4257 |====
4258
4259 [role="growable"]
4260 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4261 |====
4262 |TP provider name |TP name |Instrumented function
4263
4264 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4265 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4266 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4267 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4268 |====
4269
4270 When you preload the shared object, it replaces the functions listed
4271 in the previous tables by wrappers which contain tracepoints and call
4272 the replaced functions.
4273
4274
4275 [[liblttng-ust-cyg-profile]]
4276 ==== Instrument function entry and exit
4277
4278 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4279 to the entry and exit points of functions.
4280
4281 man:gcc(1) and man:clang(1) have an option named
4282 https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html[`-finstrument-functions`]
4283 which generates instrumentation calls for entry and exit to functions.
4284 The LTTng-UST function tracing helpers,
4285 path:{liblttng-ust-cyg-profile.so} and
4286 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4287 to add tracepoints to the two generated functions (which contain
4288 `cyg_profile` in their names, hence the helper's name).
4289
4290 To use the LTTng-UST function tracing helper, the source files to
4291 instrument must be built using the `-finstrument-functions` compiler
4292 flag.
4293
4294 There are two versions of the LTTng-UST function tracing helper:
4295
4296 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4297 that you should only use when it can be _guaranteed_ that the
4298 complete event stream is recorded without any lost event record.
4299 Any kind of duplicate information is left out.
4300 +
4301 Assuming no event record is lost, having only the function addresses on
4302 entry is enough to create a call graph, since an event record always
4303 contains the ID of the CPU that generated it.
4304 +
4305 You can use a tool like
4306 https://sourceware.org/binutils/docs/binutils/addr2line.html[cmd:addr2line]
4307 to convert function addresses back to source file names and
4308 line numbers.
4309
4310 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4311 which also works in use cases where event records might get discarded or
4312 not recorded from application startup.
4313 In these cases, the trace analyzer needs more information to be
4314 able to reconstruct the program flow.
4315
4316 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4317 points of this helper.
4318
4319 All the tracepoints that this helper provides have the
4320 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4321
4322 TIP: It's sometimes a good idea to limit the number of source files that
4323 you compile with the `-finstrument-functions` option to prevent LTTng
4324 from writing an excessive amount of trace data at run time. When using
4325 man:gcc(1), you can use the
4326 `-finstrument-functions-exclude-function-list` option to avoid
4327 instrument entries and exits of specific function names.
4328
4329
4330 [role="since-2.4"]
4331 [[liblttng-ust-dl]]
4332 ==== Instrument the dynamic linker
4333
4334 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4335 man:dlopen(3) and man:dlclose(3) function calls.
4336
4337 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4338 of this helper.
4339
4340
4341 [role="since-2.4"]
4342 [[java-application]]
4343 === User space Java agent
4344
4345 You can instrument any Java application which uses one of the following
4346 logging frameworks:
4347
4348 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4349 (JUL) core logging facilities.
4350 * http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4351 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4352
4353 [role="img-100"]
4354 .LTTng-UST Java agent imported by a Java application.
4355 image::java-app.png[]
4356
4357 Note that the methods described below are new in LTTng{nbsp}{revision}.
4358 Previous LTTng versions use another technique.
4359
4360 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4361 and https://ci.lttng.org/[continuous integration], thus this version is
4362 directly supported. However, the LTTng-UST Java agent is also tested
4363 with OpenJDK{nbsp}7.
4364
4365
4366 [role="since-2.8"]
4367 [[jul]]
4368 ==== Use the LTTng-UST Java agent for `java.util.logging`
4369
4370 To use the LTTng-UST Java agent in a Java application which uses
4371 `java.util.logging` (JUL):
4372
4373 . In the Java application's source code, import the LTTng-UST
4374 log handler package for `java.util.logging`:
4375 +
4376 --
4377 [source,java]
4378 ----
4379 import org.lttng.ust.agent.jul.LttngLogHandler;
4380 ----
4381 --
4382
4383 . Create an LTTng-UST JUL log handler:
4384 +
4385 --
4386 [source,java]
4387 ----
4388 Handler lttngUstLogHandler = new LttngLogHandler();
4389 ----
4390 --
4391
4392 . Add this handler to the JUL loggers which should emit LTTng events:
4393 +
4394 --
4395 [source,java]
4396 ----
4397 Logger myLogger = Logger.getLogger("some-logger");
4398
4399 myLogger.addHandler(lttngUstLogHandler);
4400 ----
4401 --
4402
4403 . Use `java.util.logging` log statements and configuration as usual.
4404 The loggers with an attached LTTng-UST log handler can emit
4405 LTTng events.
4406
4407 . Before exiting the application, remove the LTTng-UST log handler from
4408 the loggers attached to it and call its `close()` method:
4409 +
4410 --
4411 [source,java]
4412 ----
4413 myLogger.removeHandler(lttngUstLogHandler);
4414 lttngUstLogHandler.close();
4415 ----
4416 --
4417 +
4418 This is not strictly necessary, but it is recommended for a clean
4419 disposal of the handler's resources.
4420
4421 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4422 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4423 in the
4424 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4425 path] when you build the Java application.
4426 +
4427 The JAR files are typically located in dir:{/usr/share/java}.
4428 +
4429 IMPORTANT: The LTTng-UST Java agent must be
4430 <<installing-lttng,installed>> for the logging framework your
4431 application uses.
4432
4433 .Use the LTTng-UST Java agent for `java.util.logging`.
4434 ====
4435 [source,java]
4436 .path:{Test.java}
4437 ----
4438 import java.io.IOException;
4439 import java.util.logging.Handler;
4440 import java.util.logging.Logger;
4441 import org.lttng.ust.agent.jul.LttngLogHandler;
4442
4443 public class Test
4444 {
4445 private static final int answer = 42;
4446
4447 public static void main(String[] argv) throws Exception
4448 {
4449 // Create a logger
4450 Logger logger = Logger.getLogger("jello");
4451
4452 // Create an LTTng-UST log handler
4453 Handler lttngUstLogHandler = new LttngLogHandler();
4454
4455 // Add the LTTng-UST log handler to our logger
4456 logger.addHandler(lttngUstLogHandler);
4457
4458 // Log at will!
4459 logger.info("some info");
4460 logger.warning("some warning");
4461 Thread.sleep(500);
4462 logger.finer("finer information; the answer is " + answer);
4463 Thread.sleep(123);
4464 logger.severe("error!");
4465
4466 // Not mandatory, but cleaner
4467 logger.removeHandler(lttngUstLogHandler);
4468 lttngUstLogHandler.close();
4469 }
4470 }
4471 ----
4472
4473 Build this example:
4474
4475 [role="term"]
4476 ----
4477 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4478 ----
4479
4480 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4481 <<enabling-disabling-events,create an event rule>> matching the
4482 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4483
4484 [role="term"]
4485 ----
4486 lttng create
4487 lttng enable-event --jul jello
4488 lttng start
4489 ----
4490
4491 Run the compiled class:
4492
4493 [role="term"]
4494 ----
4495 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4496 ----
4497
4498 <<basic-tracing-session-control,Stop tracing>> and inspect the
4499 recorded events:
4500
4501 [role="term"]
4502 ----
4503 lttng stop
4504 lttng view
4505 ----
4506 ====
4507
4508 You can use the opt:lttng-enable-event(1):--loglevel or
4509 opt:lttng-enable-event(1):--loglevel-only option of the
4510 man:lttng-enable-event(1) command to target a range of JUL log levels
4511 or a specific JUL log level.
4512
4513
4514 [role="since-2.8"]
4515 [[log4j]]
4516 ==== Use the LTTng-UST Java agent for Apache log4j
4517
4518 To use the LTTng-UST Java agent in a Java application which uses
4519 Apache log4j 1.2:
4520
4521 . In the Java application's source code, import the LTTng-UST
4522 log appender package for Apache log4j:
4523 +
4524 --
4525 [source,java]
4526 ----
4527 import org.lttng.ust.agent.log4j.LttngLogAppender;
4528 ----
4529 --
4530
4531 . Create an LTTng-UST log4j log appender:
4532 +
4533 --
4534 [source,java]
4535 ----
4536 Appender lttngUstLogAppender = new LttngLogAppender();
4537 ----
4538 --
4539
4540 . Add this appender to the log4j loggers which should emit LTTng events:
4541 +
4542 --
4543 [source,java]
4544 ----
4545 Logger myLogger = Logger.getLogger("some-logger");
4546
4547 myLogger.addAppender(lttngUstLogAppender);
4548 ----
4549 --
4550
4551 . Use Apache log4j log statements and configuration as usual. The
4552 loggers with an attached LTTng-UST log appender can emit LTTng events.
4553
4554 . Before exiting the application, remove the LTTng-UST log appender from
4555 the loggers attached to it and call its `close()` method:
4556 +
4557 --
4558 [source,java]
4559 ----
4560 myLogger.removeAppender(lttngUstLogAppender);
4561 lttngUstLogAppender.close();
4562 ----
4563 --
4564 +
4565 This is not strictly necessary, but it is recommended for a clean
4566 disposal of the appender's resources.
4567
4568 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4569 files, path:{lttng-ust-agent-common.jar} and
4570 path:{lttng-ust-agent-log4j.jar}, in the
4571 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4572 path] when you build the Java application.
4573 +
4574 The JAR files are typically located in dir:{/usr/share/java}.
4575 +
4576 IMPORTANT: The LTTng-UST Java agent must be
4577 <<installing-lttng,installed>> for the logging framework your
4578 application uses.
4579
4580 .Use the LTTng-UST Java agent for Apache log4j.
4581 ====
4582 [source,java]
4583 .path:{Test.java}
4584 ----
4585 import org.apache.log4j.Appender;
4586 import org.apache.log4j.Logger;
4587 import org.lttng.ust.agent.log4j.LttngLogAppender;
4588
4589 public class Test
4590 {
4591 private static final int answer = 42;
4592
4593 public static void main(String[] argv) throws Exception
4594 {
4595 // Create a logger
4596 Logger logger = Logger.getLogger("jello");
4597
4598 // Create an LTTng-UST log appender
4599 Appender lttngUstLogAppender = new LttngLogAppender();
4600
4601 // Add the LTTng-UST log appender to our logger
4602 logger.addAppender(lttngUstLogAppender);
4603
4604 // Log at will!
4605 logger.info("some info");
4606 logger.warn("some warning");
4607 Thread.sleep(500);
4608 logger.debug("debug information; the answer is " + answer);
4609 Thread.sleep(123);
4610 logger.fatal("error!");
4611
4612 // Not mandatory, but cleaner
4613 logger.removeAppender(lttngUstLogAppender);
4614 lttngUstLogAppender.close();
4615 }
4616 }
4617
4618 ----
4619
4620 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4621 file):
4622
4623 [role="term"]
4624 ----
4625 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4626 ----
4627
4628 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4629 <<enabling-disabling-events,create an event rule>> matching the
4630 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4631
4632 [role="term"]
4633 ----
4634 lttng create
4635 lttng enable-event --log4j jello
4636 lttng start
4637 ----
4638
4639 Run the compiled class:
4640
4641 [role="term"]
4642 ----
4643 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4644 ----
4645
4646 <<basic-tracing-session-control,Stop tracing>> and inspect the
4647 recorded events:
4648
4649 [role="term"]
4650 ----
4651 lttng stop
4652 lttng view
4653 ----
4654 ====
4655
4656 You can use the opt:lttng-enable-event(1):--loglevel or
4657 opt:lttng-enable-event(1):--loglevel-only option of the
4658 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4659 or a specific log4j log level.
4660
4661
4662 [role="since-2.8"]
4663 [[java-application-context]]
4664 ==== Provide application-specific context fields in a Java application
4665
4666 A Java application-specific context field is a piece of state provided
4667 by the application which <<adding-context,you can add>>, using the
4668 man:lttng-add-context(1) command, to each <<event,event record>>
4669 produced by the log statements of this application.
4670
4671 For example, a given object might have a current request ID variable.
4672 You can create a context information retriever for this object and
4673 assign a name to this current request ID. You can then, using the
4674 man:lttng-add-context(1) command, add this context field by name to
4675 the JUL or log4j <<channel,channel>>.
4676
4677 To provide application-specific context fields in a Java application:
4678
4679 . In the Java application's source code, import the LTTng-UST
4680 Java agent context classes and interfaces:
4681 +
4682 --
4683 [source,java]
4684 ----
4685 import org.lttng.ust.agent.context.ContextInfoManager;
4686 import org.lttng.ust.agent.context.IContextInfoRetriever;
4687 ----
4688 --
4689
4690 . Create a context information retriever class, that is, a class which
4691 implements the `IContextInfoRetriever` interface:
4692 +
4693 --
4694 [source,java]
4695 ----
4696 class MyContextInfoRetriever implements IContextInfoRetriever
4697 {
4698 @Override
4699 public Object retrieveContextInfo(String key)
4700 {
4701 if (key.equals("intCtx")) {
4702 return (short) 17;
4703 } else if (key.equals("strContext")) {
4704 return "context value!";
4705 } else {
4706 return null;
4707 }
4708 }
4709 }
4710 ----
4711 --
4712 +
4713 This `retrieveContextInfo()` method is the only member of the
4714 `IContextInfoRetriever` interface. Its role is to return the current
4715 value of a state by name to create a context field. The names of the
4716 context fields and which state variables they return depends on your
4717 specific scenario.
4718 +
4719 All primitive types and objects are supported as context fields.
4720 When `retrieveContextInfo()` returns an object, the context field
4721 serializer calls its `toString()` method to add a string field to
4722 event records. The method can also return `null`, which means that
4723 no context field is available for the required name.
4724
4725 . Register an instance of your context information retriever class to
4726 the context information manager singleton:
4727 +
4728 --
4729 [source,java]
4730 ----
4731 IContextInfoRetriever cir = new MyContextInfoRetriever();
4732 ContextInfoManager cim = ContextInfoManager.getInstance();
4733 cim.registerContextInfoRetriever("retrieverName", cir);
4734 ----
4735 --
4736
4737 . Before exiting the application, remove your context information
4738 retriever from the context information manager singleton:
4739 +
4740 --
4741 [source,java]
4742 ----
4743 ContextInfoManager cim = ContextInfoManager.getInstance();
4744 cim.unregisterContextInfoRetriever("retrieverName");
4745 ----
4746 --
4747 +
4748 This is not strictly necessary, but it is recommended for a clean
4749 disposal of some manager's resources.
4750
4751 . Build your Java application with LTTng-UST Java agent support as
4752 usual, following the procedure for either the <<jul,JUL>> or
4753 <<log4j,Apache log4j>> framework.
4754
4755
4756 .Provide application-specific context fields in a Java application.
4757 ====
4758 [source,java]
4759 .path:{Test.java}
4760 ----
4761 import java.util.logging.Handler;
4762 import java.util.logging.Logger;
4763 import org.lttng.ust.agent.jul.LttngLogHandler;
4764 import org.lttng.ust.agent.context.ContextInfoManager;
4765 import org.lttng.ust.agent.context.IContextInfoRetriever;
4766
4767 public class Test
4768 {
4769 // Our context information retriever class
4770 private static class MyContextInfoRetriever
4771 implements IContextInfoRetriever
4772 {
4773 @Override
4774 public Object retrieveContextInfo(String key) {
4775 if (key.equals("intCtx")) {
4776 return (short) 17;
4777 } else if (key.equals("strContext")) {
4778 return "context value!";
4779 } else {
4780 return null;
4781 }
4782 }
4783 }
4784
4785 private static final int answer = 42;
4786
4787 public static void main(String args[]) throws Exception
4788 {
4789 // Get the context information manager instance
4790 ContextInfoManager cim = ContextInfoManager.getInstance();
4791
4792 // Create and register our context information retriever
4793 IContextInfoRetriever cir = new MyContextInfoRetriever();
4794 cim.registerContextInfoRetriever("myRetriever", cir);
4795
4796 // Create a logger
4797 Logger logger = Logger.getLogger("jello");
4798
4799 // Create an LTTng-UST log handler
4800 Handler lttngUstLogHandler = new LttngLogHandler();
4801
4802 // Add the LTTng-UST log handler to our logger
4803 logger.addHandler(lttngUstLogHandler);
4804
4805 // Log at will!
4806 logger.info("some info");
4807 logger.warning("some warning");
4808 Thread.sleep(500);
4809 logger.finer("finer information; the answer is " + answer);
4810 Thread.sleep(123);
4811 logger.severe("error!");
4812
4813 // Not mandatory, but cleaner
4814 logger.removeHandler(lttngUstLogHandler);
4815 lttngUstLogHandler.close();
4816 cim.unregisterContextInfoRetriever("myRetriever");
4817 }
4818 }
4819 ----
4820
4821 Build this example:
4822
4823 [role="term"]
4824 ----
4825 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4826 ----
4827
4828 <<creating-destroying-tracing-sessions,Create a tracing session>>
4829 and <<enabling-disabling-events,create an event rule>> matching the
4830 `jello` JUL logger:
4831
4832 [role="term"]
4833 ----
4834 lttng create
4835 lttng enable-event --jul jello
4836 ----
4837
4838 <<adding-context,Add the application-specific context fields>> to the
4839 JUL channel:
4840
4841 [role="term"]
4842 ----
4843 lttng add-context --jul --type='$app.myRetriever:intCtx'
4844 lttng add-context --jul --type='$app.myRetriever:strContext'
4845 ----
4846
4847 <<basic-tracing-session-control,Start tracing>>:
4848
4849 [role="term"]
4850 ----
4851 lttng start
4852 ----
4853
4854 Run the compiled class:
4855
4856 [role="term"]
4857 ----
4858 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4859 ----
4860
4861 <<basic-tracing-session-control,Stop tracing>> and inspect the
4862 recorded events:
4863
4864 [role="term"]
4865 ----
4866 lttng stop
4867 lttng view
4868 ----
4869 ====
4870
4871
4872 [role="since-2.7"]
4873 [[python-application]]
4874 === User space Python agent
4875
4876 You can instrument a Python 2 or Python 3 application which uses the
4877 standard https://docs.python.org/3/library/logging.html[`logging`]
4878 package.
4879
4880 Each log statement emits an LTTng event once the
4881 application module imports the
4882 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4883
4884 [role="img-100"]
4885 .A Python application importing the LTTng-UST Python agent.
4886 image::python-app.png[]
4887
4888 To use the LTTng-UST Python agent:
4889
4890 . In the Python application's source code, import the LTTng-UST Python
4891 agent:
4892 +
4893 --
4894 [source,python]
4895 ----
4896 import lttngust
4897 ----
4898 --
4899 +
4900 The LTTng-UST Python agent automatically adds its logging handler to the
4901 root logger at import time.
4902 +
4903 Any log statement that the application executes before this import does
4904 not emit an LTTng event.
4905 +
4906 IMPORTANT: The LTTng-UST Python agent must be
4907 <<installing-lttng,installed>>.
4908
4909 . Use log statements and logging configuration as usual.
4910 Since the LTTng-UST Python agent adds a handler to the _root_
4911 logger, you can trace any log statement from any logger.
4912
4913 .Use the LTTng-UST Python agent.
4914 ====
4915 [source,python]
4916 .path:{test.py}
4917 ----
4918 import lttngust
4919 import logging
4920 import time
4921
4922
4923 def example():
4924 logging.basicConfig()
4925 logger = logging.getLogger('my-logger')
4926
4927 while True:
4928 logger.debug('debug message')
4929 logger.info('info message')
4930 logger.warn('warn message')
4931 logger.error('error message')
4932 logger.critical('critical message')
4933 time.sleep(1)
4934
4935
4936 if __name__ == '__main__':
4937 example()
4938 ----
4939
4940 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
4941 logging handler which prints to the standard error stream, is not
4942 strictly required for LTTng-UST tracing to work, but in versions of
4943 Python preceding 3.2, you could see a warning message which indicates
4944 that no handler exists for the logger `my-logger`.
4945
4946 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4947 <<enabling-disabling-events,create an event rule>> matching the
4948 `my-logger` Python logger, and <<basic-tracing-session-control,start
4949 tracing>>:
4950
4951 [role="term"]
4952 ----
4953 lttng create
4954 lttng enable-event --python my-logger
4955 lttng start
4956 ----
4957
4958 Run the Python script:
4959
4960 [role="term"]
4961 ----
4962 python test.py
4963 ----
4964
4965 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4966 events:
4967
4968 [role="term"]
4969 ----
4970 lttng stop
4971 lttng view
4972 ----
4973 ====
4974
4975 You can use the opt:lttng-enable-event(1):--loglevel or
4976 opt:lttng-enable-event(1):--loglevel-only option of the
4977 man:lttng-enable-event(1) command to target a range of Python log levels
4978 or a specific Python log level.
4979
4980 When an application imports the LTTng-UST Python agent, the agent tries
4981 to register to a <<lttng-sessiond,session daemon>>. Note that you must
4982 <<start-sessiond,start the session daemon>> _before_ you run the Python
4983 application. If a session daemon is found, the agent tries to register
4984 to it during 5{nbsp}seconds, after which the application continues
4985 without LTTng tracing support. You can override this timeout value with
4986 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
4987 (milliseconds).
4988
4989 If the session daemon stops while a Python application with an imported
4990 LTTng-UST Python agent runs, the agent retries to connect and to
4991 register to a session daemon every 3{nbsp}seconds. You can override this
4992 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
4993 variable.
4994
4995
4996 [role="since-2.5"]
4997 [[proc-lttng-logger-abi]]
4998 === LTTng logger
4999
5000 The `lttng-tracer` Linux kernel module, part of
5001 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
5002 path:{/proc/lttng-logger} when it's loaded. Any application can write
5003 text data to this file to emit an LTTng event.
5004
5005 [role="img-100"]
5006 .An application writes to the LTTng logger file to emit an LTTng event.
5007 image::lttng-logger.png[]
5008
5009 The LTTng logger is the quickest method--not the most efficient,
5010 however--to add instrumentation to an application. It is designed
5011 mostly to instrument shell scripts:
5012
5013 [role="term"]
5014 ----
5015 echo "Some message, some $variable" > /proc/lttng-logger
5016 ----
5017
5018 Any event that the LTTng logger emits is named `lttng_logger` and
5019 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
5020 other instrumentation points in the kernel tracing domain, **any Unix
5021 user** can <<enabling-disabling-events,create an event rule>> which
5022 matches its event name, not only the root user or users in the tracing
5023 group.
5024
5025 To use the LTTng logger:
5026
5027 * From any application, write text data to the path:{/proc/lttng-logger}
5028 file.
5029
5030 The `msg` field of `lttng_logger` event records contains the
5031 recorded message.
5032
5033 NOTE: The maximum message length of an LTTng logger event is
5034 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
5035 than one event to contain the remaining data.
5036
5037 You should not use the LTTng logger to trace a user application which
5038 can be instrumented in a more efficient way, namely:
5039
5040 * <<c-application,C and $$C++$$ applications>>.
5041 * <<java-application,Java applications>>.
5042 * <<python-application,Python applications>>.
5043
5044 .Use the LTTng logger.
5045 ====
5046 [source,bash]
5047 .path:{test.bash}
5048 ----
5049 echo 'Hello, World!' > /proc/lttng-logger
5050 sleep 2
5051 df --human-readable --print-type / > /proc/lttng-logger
5052 ----
5053
5054 <<creating-destroying-tracing-sessions,Create a tracing session>>,
5055 <<enabling-disabling-events,create an event rule>> matching the
5056 `lttng_logger` Linux kernel tracepoint, and
5057 <<basic-tracing-session-control,start tracing>>:
5058
5059 [role="term"]
5060 ----
5061 lttng create
5062 lttng enable-event --kernel lttng_logger
5063 lttng start
5064 ----
5065
5066 Run the Bash script:
5067
5068 [role="term"]
5069 ----
5070 bash test.bash
5071 ----
5072
5073 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
5074 events:
5075
5076 [role="term"]
5077 ----
5078 lttng stop
5079 lttng view
5080 ----
5081 ====
5082
5083
5084 [[instrumenting-linux-kernel]]
5085 === LTTng kernel tracepoints
5086
5087 NOTE: This section shows how to _add_ instrumentation points to the
5088 Linux kernel. The kernel's subsystems are already thoroughly
5089 instrumented at strategic places for LTTng when you
5090 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
5091 package.
5092
5093 ////
5094 There are two methods to instrument the Linux kernel:
5095
5096 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
5097 tracepoint which uses the `TRACE_EVENT()` API.
5098 +
5099 Choose this if you want to instrumentation a Linux kernel tree with an
5100 instrumentation point compatible with ftrace, perf, and SystemTap.
5101
5102 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
5103 instrument an out-of-tree kernel module.
5104 +
5105 Choose this if you don't need ftrace, perf, or SystemTap support.
5106 ////
5107
5108
5109 [[linux-add-lttng-layer]]
5110 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
5111
5112 This section shows how to add an LTTng layer to existing ftrace
5113 instrumentation using the `TRACE_EVENT()` API.
5114
5115 This section does not document the `TRACE_EVENT()` macro. You can
5116 read the following articles to learn more about this API:
5117
5118 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
5119 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
5120 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
5121
5122 The following procedure assumes that your ftrace tracepoints are
5123 correctly defined in their own header and that they are created in
5124 one source file using the `CREATE_TRACE_POINTS` definition.
5125
5126 To add an LTTng layer over an existing ftrace tracepoint:
5127
5128 . Make sure the following kernel configuration options are
5129 enabled:
5130 +
5131 --
5132 * `CONFIG_MODULES`
5133 * `CONFIG_KALLSYMS`
5134 * `CONFIG_HIGH_RES_TIMERS`
5135 * `CONFIG_TRACEPOINTS`
5136 --
5137
5138 . Build the Linux source tree with your custom ftrace tracepoints.
5139 . Boot the resulting Linux image on your target system.
5140 +
5141 Confirm that the tracepoints exist by looking for their names in the
5142 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
5143 is your subsystem's name.
5144
5145 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
5146 +
5147 --
5148 [role="term"]
5149 ----
5150 cd $(mktemp -d) &&
5151 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
5152 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
5153 cd lttng-modules-2.8.*
5154 ----
5155 --
5156
5157 . In dir:{instrumentation/events/lttng-module}, relative to the root
5158 of the LTTng-modules source tree, create a header file named
5159 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5160 LTTng-modules tracepoint definitions using the LTTng-modules
5161 macros in it.
5162 +
5163 Start with this template:
5164 +
5165 --
5166 [source,c]
5167 .path:{instrumentation/events/lttng-module/my_subsys.h}
5168 ----
5169 #undef TRACE_SYSTEM
5170 #define TRACE_SYSTEM my_subsys
5171
5172 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5173 #define _LTTNG_MY_SUBSYS_H
5174
5175 #include "../../../probes/lttng-tracepoint-event.h"
5176 #include <linux/tracepoint.h>
5177
5178 LTTNG_TRACEPOINT_EVENT(
5179 /*
5180 * Format is identical to TRACE_EVENT()'s version for the three
5181 * following macro parameters:
5182 */
5183 my_subsys_my_event,
5184 TP_PROTO(int my_int, const char *my_string),
5185 TP_ARGS(my_int, my_string),
5186
5187 /* LTTng-modules specific macros */
5188 TP_FIELDS(
5189 ctf_integer(int, my_int_field, my_int)
5190 ctf_string(my_bar_field, my_bar)
5191 )
5192 )
5193
5194 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5195
5196 #include "../../../probes/define_trace.h"
5197 ----
5198 --
5199 +
5200 The entries in the `TP_FIELDS()` section are the list of fields for the
5201 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5202 ftrace's `TRACE_EVENT()` macro.
5203 +
5204 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5205 complete description of the available `ctf_*()` macros.
5206
5207 . Create the LTTng-modules probe's kernel module C source file,
5208 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5209 subsystem name:
5210 +
5211 --
5212 [source,c]
5213 .path:{probes/lttng-probe-my-subsys.c}
5214 ----
5215 #include <linux/module.h>
5216 #include "../lttng-tracer.h"
5217
5218 /*
5219 * Build-time verification of mismatch between mainline
5220 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5221 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5222 */
5223 #include <trace/events/my_subsys.h>
5224
5225 /* Create LTTng tracepoint probes */
5226 #define LTTNG_PACKAGE_BUILD
5227 #define CREATE_TRACE_POINTS
5228 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5229
5230 #include "../instrumentation/events/lttng-module/my_subsys.h"
5231
5232 MODULE_LICENSE("GPL and additional rights");
5233 MODULE_AUTHOR("Your name <your-email>");
5234 MODULE_DESCRIPTION("LTTng my_subsys probes");
5235 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5236 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5237 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5238 LTTNG_MODULES_EXTRAVERSION);
5239 ----
5240 --
5241
5242 . Edit path:{probes/Makefile} and add your new kernel module object
5243 next to the existing ones:
5244 +
5245 --
5246 [source,make]
5247 .path:{probes/Makefile}
5248 ----
5249 # ...
5250
5251 obj-m += lttng-probe-module.o
5252 obj-m += lttng-probe-power.o
5253
5254 obj-m += lttng-probe-my-subsys.o
5255
5256 # ...
5257 ----
5258 --
5259
5260 . Build and install the LTTng kernel modules:
5261 +
5262 --
5263 [role="term"]
5264 ----
5265 make KERNELDIR=/path/to/linux
5266 sudo make modules_install
5267 ----
5268 --
5269 +
5270 Replace `/path/to/linux` with the path to the Linux source tree where
5271 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5272
5273 Note that you can also use the
5274 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5275 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5276 C code that need to be executed before the event fields are recorded.
5277
5278 The best way to learn how to use the previous LTTng-modules macros is to
5279 inspect the existing LTTng-modules tracepoint definitions in the
5280 dir:{instrumentation/events/lttng-module} header files. Compare them
5281 with the Linux kernel mainline versions in the
5282 dir:{include/trace/events} directory of the Linux source tree.
5283
5284
5285 [role="since-2.7"]
5286 [[lttng-tracepoint-event-code]]
5287 ===== Use custom C code to access the data for tracepoint fields
5288
5289 Although we recommended to always use the
5290 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5291 the arguments and fields of an LTTng-modules tracepoint when possible,
5292 sometimes you need a more complex process to access the data that the
5293 tracer records as event record fields. In other words, you need local
5294 variables and multiple C{nbsp}statements instead of simple
5295 argument-based expressions that you pass to the
5296 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5297
5298 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5299 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5300 a block of C{nbsp}code to be executed before LTTng records the fields.
5301 The structure of this macro is:
5302
5303 [source,c]
5304 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5305 ----
5306 LTTNG_TRACEPOINT_EVENT_CODE(
5307 /*
5308 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5309 * version for the following three macro parameters:
5310 */
5311 my_subsys_my_event,
5312 TP_PROTO(int my_int, const char *my_string),
5313 TP_ARGS(my_int, my_string),
5314
5315 /* Declarations of custom local variables */
5316 TP_locvar(
5317 int a = 0;
5318 unsigned long b = 0;
5319 const char *name = "(undefined)";
5320 struct my_struct *my_struct;
5321 ),
5322
5323 /*
5324 * Custom code which uses both tracepoint arguments
5325 * (in TP_ARGS()) and local variables (in TP_locvar()).
5326 *
5327 * Local variables are actually members of a structure pointed
5328 * to by the special variable tp_locvar.
5329 */
5330 TP_code(
5331 if (my_int) {
5332 tp_locvar->a = my_int + 17;
5333 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5334 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5335 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5336 put_my_struct(tp_locvar->my_struct);
5337
5338 if (tp_locvar->b) {
5339 tp_locvar->a = 1;
5340 }
5341 }
5342 ),
5343
5344 /*
5345 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5346 * version for this, except that tp_locvar members can be
5347 * used in the argument expression parameters of
5348 * the ctf_*() macros.
5349 */
5350 TP_FIELDS(
5351 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5352 ctf_integer(int, my_struct_a, tp_locvar->a)
5353 ctf_string(my_string_field, my_string)
5354 ctf_string(my_struct_name, tp_locvar->name)
5355 )
5356 )
5357 ----
5358
5359 IMPORTANT: The C code defined in `TP_code()` must not have any side
5360 effects when executed. In particular, the code must not allocate
5361 memory or get resources without deallocating this memory or putting
5362 those resources afterwards.
5363
5364
5365 [[instrumenting-linux-kernel-tracing]]
5366 ==== Load and unload a custom probe kernel module
5367
5368 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5369 kernel module>> in the kernel before it can emit LTTng events.
5370
5371 To load the default probe kernel modules and a custom probe kernel
5372 module:
5373
5374 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5375 probe modules to load when starting a root <<lttng-sessiond,session
5376 daemon>>:
5377 +
5378 --
5379 .Load the `my_subsys`, `usb`, and the default probe modules.
5380 ====
5381 [role="term"]
5382 ----
5383 sudo lttng-sessiond --extra-kmod-probes=my_subsys,usb
5384 ----
5385 ====
5386 --
5387 +
5388 You only need to pass the subsystem name, not the whole kernel module
5389 name.
5390
5391 To load _only_ a given custom probe kernel module:
5392
5393 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5394 modules to load when starting a root session daemon:
5395 +
5396 --
5397 .Load only the `my_subsys` and `usb` probe modules.
5398 ====
5399 [role="term"]
5400 ----
5401 sudo lttng-sessiond --kmod-probes=my_subsys,usb
5402 ----
5403 ====
5404 --
5405
5406 To confirm that a probe module is loaded:
5407
5408 * Use man:lsmod(8):
5409 +
5410 --
5411 [role="term"]
5412 ----
5413 lsmod | grep lttng_probe_usb
5414 ----
5415 --
5416
5417 To unload the loaded probe modules:
5418
5419 * Kill the session daemon with `SIGTERM`:
5420 +
5421 --
5422 [role="term"]
5423 ----
5424 sudo pkill lttng-sessiond
5425 ----
5426 --
5427 +
5428 You can also use man:modprobe(8)'s `--remove` option if the session
5429 daemon terminates abnormally.
5430
5431
5432 [[controlling-tracing]]
5433 == Tracing control
5434
5435 Once an application or a Linux kernel is
5436 <<instrumenting,instrumented>> for LTTng tracing,
5437 you can _trace_ it.
5438
5439 This section is divided in topics on how to use the various
5440 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5441 command-line tool>>, to _control_ the LTTng daemons and tracers.
5442
5443 NOTE: In the following subsections, we refer to an man:lttng(1) command
5444 using its man page name. For example, instead of _Run the `create`
5445 command to..._, we use _Run the man:lttng-create(1) command to..._.
5446
5447
5448 [[start-sessiond]]
5449 === Start a session daemon
5450
5451 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5452 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5453 command-line tool.
5454
5455 You will see the following error when you run a command while no session
5456 daemon is running:
5457
5458 ----
5459 Error: No session daemon is available
5460 ----
5461
5462 The only command that automatically runs a session daemon is
5463 man:lttng-create(1), which you use to
5464 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5465 this is most of the time the first operation that you do, sometimes it's
5466 not. Some examples are:
5467
5468 * <<list-instrumentation-points,List the available instrumentation points>>.
5469 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5470
5471 [[tracing-group]] Each Unix user must have its own running session
5472 daemon to trace user applications. The session daemon that the root user
5473 starts is the only one allowed to control the LTTng kernel tracer. Users
5474 that are part of the _tracing group_ can control the root session
5475 daemon. The default tracing group name is `tracing`; you can set it to
5476 something else with the opt:lttng-sessiond(8):--group option when you
5477 start the root session daemon.
5478
5479 To start a user session daemon:
5480
5481 * Run man:lttng-sessiond(8):
5482 +
5483 --
5484 [role="term"]
5485 ----
5486 lttng-sessiond --daemonize
5487 ----
5488 --
5489
5490 To start the root session daemon:
5491
5492 * Run man:lttng-sessiond(8) as the root user:
5493 +
5494 --
5495 [role="term"]
5496 ----
5497 sudo lttng-sessiond --daemonize
5498 ----
5499 --
5500
5501 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5502 start the session daemon in foreground.
5503
5504 To stop a session daemon, use man:kill(1) on its process ID (standard
5505 `TERM` signal).
5506
5507 Note that some Linux distributions could manage the LTTng session daemon
5508 as a service. In this case, you should use the service manager to
5509 start, restart, and stop session daemons.
5510
5511
5512 [[creating-destroying-tracing-sessions]]
5513 === Create and destroy a tracing session
5514
5515 Almost all the LTTng control operations happen in the scope of
5516 a <<tracing-session,tracing session>>, which is the dialogue between the
5517 <<lttng-sessiond,session daemon>> and you.
5518
5519 To create a tracing session with a generated name:
5520
5521 * Use the man:lttng-create(1) command:
5522 +
5523 --
5524 [role="term"]
5525 ----
5526 lttng create
5527 ----
5528 --
5529
5530 The created tracing session's name is `auto` followed by the
5531 creation date.
5532
5533 To create a tracing session with a specific name:
5534
5535 * Use the optional argument of the man:lttng-create(1) command:
5536 +
5537 --
5538 [role="term"]
5539 ----
5540 lttng create my-session
5541 ----
5542 --
5543 +
5544 Replace `my-session` with the specific tracing session name.
5545
5546 LTTng appends the creation date to the created tracing session's name.
5547
5548 LTTng writes the traces of a tracing session in
5549 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5550 name of the tracing session. Note that the env:LTTNG_HOME environment
5551 variable defaults to `$HOME` if not set.
5552
5553 To output LTTng traces to a non-default location:
5554
5555 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5556 +
5557 --
5558 [role="term"]
5559 ----
5560 lttng create --output=/tmp/some-directory my-session
5561 ----
5562 --
5563
5564 You may create as many tracing sessions as you wish.
5565
5566 To list all the existing tracing sessions for your Unix user:
5567
5568 * Use the man:lttng-list(1) command:
5569 +
5570 --
5571 [role="term"]
5572 ----
5573 lttng list
5574 ----
5575 --
5576
5577 When you create a tracing session, it is set as the _current tracing
5578 session_. The following man:lttng(1) commands operate on the current
5579 tracing session when you don't specify one:
5580
5581 [role="list-3-cols"]
5582 * `add-context`
5583 * `destroy`
5584 * `disable-channel`
5585 * `disable-event`
5586 * `enable-channel`
5587 * `enable-event`
5588 * `load`
5589 * `save`
5590 * `snapshot`
5591 * `start`
5592 * `stop`
5593 * `track`
5594 * `untrack`
5595 * `view`
5596
5597 To change the current tracing session:
5598
5599 * Use the man:lttng-set-session(1) command:
5600 +
5601 --
5602 [role="term"]
5603 ----
5604 lttng set-session new-session
5605 ----
5606 --
5607 +
5608 Replace `new-session` by the name of the new current tracing session.
5609
5610 When you are done tracing in a given tracing session, you can destroy
5611 it. This operation frees the resources taken by the tracing session
5612 to destroy; it does not destroy the trace data that LTTng wrote for
5613 this tracing session.
5614
5615 To destroy the current tracing session:
5616
5617 * Use the man:lttng-destroy(1) command:
5618 +
5619 --
5620 [role="term"]
5621 ----
5622 lttng destroy
5623 ----
5624 --
5625
5626
5627 [[list-instrumentation-points]]
5628 === List the available instrumentation points
5629
5630 The <<lttng-sessiond,session daemon>> can query the running instrumented
5631 user applications and the Linux kernel to get a list of available
5632 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5633 they are tracepoints and system calls. For the user space tracing
5634 domain, they are tracepoints. For the other tracing domains, they are
5635 logger names.
5636
5637 To list the available instrumentation points:
5638
5639 * Use the man:lttng-list(1) command with the requested tracing domain's
5640 option amongst:
5641 +
5642 --
5643 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5644 must be a root user, or it must be a member of the
5645 <<tracing-group,tracing group>>).
5646 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5647 kernel system calls (your Unix user must be a root user, or it must be
5648 a member of the tracing group).
5649 * opt:lttng-list(1):--userspace: user space tracepoints.
5650 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5651 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5652 * opt:lttng-list(1):--python: Python loggers.
5653 --
5654
5655 .List the available user space tracepoints.
5656 ====
5657 [role="term"]
5658 ----
5659 lttng list --userspace
5660 ----
5661 ====
5662
5663 .List the available Linux kernel system call tracepoints.
5664 ====
5665 [role="term"]
5666 ----
5667 lttng list --kernel --syscall
5668 ----
5669 ====
5670
5671
5672 [[enabling-disabling-events]]
5673 === Create and enable an event rule
5674
5675 Once you <<creating-destroying-tracing-sessions,create a tracing
5676 session>>, you can create <<event,event rules>> with the
5677 man:lttng-enable-event(1) command.
5678
5679 You specify each condition with a command-line option. The available
5680 condition options are shown in the following table.
5681
5682 [role="growable",cols="asciidoc,asciidoc,default"]
5683 .Condition command-line options for the man:lttng-enable-event(1) command.
5684 |====
5685 |Option |Description |Applicable tracing domains
5686
5687 |
5688 One of:
5689
5690 . `--syscall`
5691 . +--probe=__ADDR__+
5692 . +--function=__ADDR__+
5693
5694 |
5695 Instead of using the default _tracepoint_ instrumentation type, use:
5696
5697 . A Linux system call.
5698 . A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5699 . The entry and return points of a Linux function (symbol or address).
5700
5701 |Linux kernel.
5702
5703 |First positional argument.
5704
5705 |
5706 Tracepoint or system call name. In the case of a Linux KProbe or
5707 function, this is a custom name given to the event rule. With the
5708 JUL, log4j, and Python domains, this is a logger name.
5709
5710 With a tracepoint, logger, or system call name, the last character
5711 can be `*` to match anything that remains.
5712
5713 |All.
5714
5715 |
5716 One of:
5717
5718 . +--loglevel=__LEVEL__+
5719 . +--loglevel-only=__LEVEL__+
5720
5721 |
5722 . Match only tracepoints or log statements with a logging level at
5723 least as severe as +__LEVEL__+.
5724 . Match only tracepoints or log statements with a logging level
5725 equal to +__LEVEL__+.
5726
5727 See man:lttng-enable-event(1) for the list of available logging level
5728 names.
5729
5730 |User space, JUL, log4j, and Python.
5731
5732 |+--exclude=__EXCLUSIONS__+
5733
5734 |
5735 When you use a `*` character at the end of the tracepoint or logger
5736 name (first positional argument), exclude the specific names in the
5737 comma-delimited list +__EXCLUSIONS__+.
5738
5739 |
5740 User space, JUL, log4j, and Python.
5741
5742 |+--filter=__EXPR__+
5743
5744 |
5745 Match only events which satisfy the expression +__EXPR__+.
5746
5747 See man:lttng-enable-event(1) to learn more about the syntax of a
5748 filter expression.
5749
5750 |All.
5751
5752 |====
5753
5754 You attach an event rule to a <<channel,channel>> on creation. If you do
5755 not specify the channel with the opt:lttng-enable-event(1):--channel
5756 option, and if the event rule to create is the first in its
5757 <<domain,tracing domain>> for a given tracing session, then LTTng
5758 creates a _default channel_ for you. This default channel is reused in
5759 subsequent invocations of the man:lttng-enable-event(1) command for the
5760 same tracing domain.
5761
5762 An event rule is always enabled at creation time.
5763
5764 The following examples show how you can combine the previous
5765 command-line options to create simple to more complex event rules.
5766
5767 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5768 ====
5769 [role="term"]
5770 ----
5771 lttng enable-event --kernel sched_switch
5772 ----
5773 ====
5774
5775 .Create an event rule matching four Linux kernel system calls (default channel).
5776 ====
5777 [role="term"]
5778 ----
5779 lttng enable-event --kernel --syscall open,write,read,close
5780 ----
5781 ====
5782
5783 .Create event rules matching tracepoints with filter expressions (default channel).
5784 ====
5785 [role="term"]
5786 ----
5787 lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5788 ----
5789
5790 [role="term"]
5791 ----
5792 lttng enable-event --kernel --all \
5793 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5794 ----
5795
5796 [role="term"]
5797 ----
5798 lttng enable-event --jul my_logger \
5799 --filter='$app.retriever:cur_msg_id > 3'
5800 ----
5801
5802 IMPORTANT: Make sure to always quote the filter string when you
5803 use man:lttng(1) from a shell.
5804 ====
5805
5806 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5807 ====
5808 [role="term"]
5809 ----
5810 lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5811 ----
5812
5813 IMPORTANT: Make sure to always quote the wildcard character when you
5814 use man:lttng(1) from a shell.
5815 ====
5816
5817 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5818 ====
5819 [role="term"]
5820 ----
5821 lttng enable-event --python my-app.'*' \
5822 --exclude='my-app.module,my-app.hello'
5823 ----
5824 ====
5825
5826 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5827 ====
5828 [role="term"]
5829 ----
5830 lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5831 ----
5832 ====
5833
5834 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5835 ====
5836 [role="term"]
5837 ----
5838 lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5839 ----
5840 ====
5841
5842 The event rules of a given channel form a whitelist: as soon as an
5843 emitted event passes one of them, LTTng can record the event. For
5844 example, an event named `my_app:my_tracepoint` emitted from a user space
5845 tracepoint with a `TRACE_ERROR` log level passes both of the following
5846 rules:
5847
5848 [role="term"]
5849 ----
5850 lttng enable-event --userspace my_app:my_tracepoint
5851 lttng enable-event --userspace my_app:my_tracepoint \
5852 --loglevel=TRACE_INFO
5853 ----
5854
5855 The second event rule is redundant: the first one includes
5856 the second one.
5857
5858
5859 [[disable-event-rule]]
5860 === Disable an event rule
5861
5862 To disable an event rule that you <<enabling-disabling-events,created>>
5863 previously, use the man:lttng-disable-event(1) command. This command
5864 disables _all_ the event rules (of a given tracing domain and channel)
5865 which match an instrumentation point. The other conditions are not
5866 supported as of LTTng{nbsp}{revision}.
5867
5868 The LTTng tracer does not record an emitted event which passes
5869 a _disabled_ event rule.
5870
5871 .Disable an event rule matching a Python logger (default channel).
5872 ====
5873 [role="term"]
5874 ----
5875 lttng disable-event --python my-logger
5876 ----
5877 ====
5878
5879 .Disable an event rule matching all `java.util.logging` loggers (default channel).
5880 ====
5881 [role="term"]
5882 ----
5883 lttng disable-event --jul '*'
5884 ----
5885 ====
5886
5887 .Disable _all_ the event rules of the default channel.
5888 ====
5889 The opt:lttng-disable-event(1):--all-events option is not, like the
5890 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
5891 equivalent of the event name `*` (wildcard): it disables _all_ the event
5892 rules of a given channel.
5893
5894 [role="term"]
5895 ----
5896 lttng disable-event --jul --all-events
5897 ----
5898 ====
5899
5900 NOTE: You cannot delete an event rule once you create it.
5901
5902
5903 [[status]]
5904 === Get the status of a tracing session
5905
5906 To get the status of the current tracing session, that is, its
5907 parameters, its channels, event rules, and their attributes:
5908
5909 * Use the man:lttng-status(1) command:
5910 +
5911 --
5912 [role="term"]
5913 ----
5914 lttng status
5915 ----
5916 --
5917 +
5918
5919 To get the status of any tracing session:
5920
5921 * Use the man:lttng-list(1) command with the tracing session's name:
5922 +
5923 --
5924 [role="term"]
5925 ----
5926 lttng list my-session
5927 ----
5928 --
5929 +
5930 Replace `my-session` with the desired tracing session's name.
5931
5932
5933 [[basic-tracing-session-control]]
5934 === Start and stop a tracing session
5935
5936 Once you <<creating-destroying-tracing-sessions,create a tracing
5937 session>> and
5938 <<enabling-disabling-events,create one or more event rules>>,
5939 you can start and stop the tracers for this tracing session.
5940
5941 To start tracing in the current tracing session:
5942
5943 * Use the man:lttng-start(1) command:
5944 +
5945 --
5946 [role="term"]
5947 ----
5948 lttng start
5949 ----
5950 --
5951
5952 LTTng is very flexible: you can launch user applications before
5953 or after the you start the tracers. The tracers only record the events
5954 if they pass enabled event rules and if they occur while the tracers are
5955 started.
5956
5957 To stop tracing in the current tracing session:
5958
5959 * Use the man:lttng-stop(1) command:
5960 +
5961 --
5962 [role="term"]
5963 ----
5964 lttng stop
5965 ----
5966 --
5967 +
5968 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
5969 records>> or lost sub-buffers since the last time you ran
5970 man:lttng-start(1), warnings are printed when you run the
5971 man:lttng-stop(1) command.
5972
5973
5974 [[enabling-disabling-channels]]
5975 === Create a channel
5976
5977 Once you create a tracing session, you can create a <<channel,channel>>
5978 with the man:lttng-enable-channel(1) command.
5979
5980 Note that LTTng automatically creates a default channel when, for a
5981 given <<domain,tracing domain>>, no channels exist and you
5982 <<enabling-disabling-events,create>> the first event rule. This default
5983 channel is named `channel0` and its attributes are set to reasonable
5984 values. Therefore, you only need to create a channel when you need
5985 non-default attributes.
5986
5987 You specify each non-default channel attribute with a command-line
5988 option when you use the man:lttng-enable-channel(1) command. The
5989 available command-line options are:
5990
5991 [role="growable",cols="asciidoc,asciidoc"]
5992 .Command-line options for the man:lttng-enable-channel(1) command.
5993 |====
5994 |Option |Description
5995
5996 |`--overwrite`
5997
5998 |
5999 Use the _overwrite_
6000 <<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
6001 the default _discard_ mode.
6002
6003 |`--buffers-pid` (user space tracing domain only)
6004
6005 |
6006 Use the per-process <<channel-buffering-schemes,buffering scheme>>
6007 instead of the default per-user buffering scheme.
6008
6009 |+--subbuf-size=__SIZE__+
6010
6011 |
6012 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
6013 either for each Unix user (default), or for each instrumented process.
6014
6015 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6016
6017 |+--num-subbuf=__COUNT__+
6018
6019 |
6020 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
6021 for each Unix user (default), or for each instrumented process.
6022
6023 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6024
6025 |+--tracefile-size=__SIZE__+
6026
6027 |
6028 Set the maximum size of each trace file that this channel writes within
6029 a stream to +__SIZE__+ bytes instead of no maximum.
6030
6031 See <<tracefile-rotation,Trace file count and size>>.
6032
6033 |+--tracefile-count=__COUNT__+
6034
6035 |
6036 Limit the number of trace files that this channel creates to
6037 +__COUNT__+ channels instead of no limit.
6038
6039 See <<tracefile-rotation,Trace file count and size>>.
6040
6041 |+--switch-timer=__PERIODUS__+
6042
6043 |
6044 Set the <<channel-switch-timer,switch timer period>>
6045 to +__PERIODUS__+{nbsp}µs.
6046
6047 |+--read-timer=__PERIODUS__+
6048
6049 |
6050 Set the <<channel-read-timer,read timer period>>
6051 to +__PERIODUS__+{nbsp}µs.
6052
6053 |+--output=__TYPE__+ (Linux kernel tracing domain only)
6054
6055 |
6056 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
6057
6058 |====
6059
6060 You can only create a channel in the Linux kernel and user space
6061 <<domain,tracing domains>>: other tracing domains have their own channel
6062 created on the fly when <<enabling-disabling-events,creating event
6063 rules>>.
6064
6065 [IMPORTANT]
6066 ====
6067 Because of a current LTTng limitation, you must create all channels
6068 _before_ you <<basic-tracing-session-control,start tracing>> in a given
6069 tracing session, that is, before the first time you run
6070 man:lttng-start(1).
6071
6072 Since LTTng automatically creates a default channel when you use the
6073 man:lttng-enable-event(1) command with a specific tracing domain, you
6074 cannot, for example, create a Linux kernel event rule, start tracing,
6075 and then create a user space event rule, because no user space channel
6076 exists yet and it's too late to create one.
6077
6078 For this reason, make sure to configure your channels properly
6079 before starting the tracers for the first time!
6080 ====
6081
6082 The following examples show how you can combine the previous
6083 command-line options to create simple to more complex channels.
6084
6085 .Create a Linux kernel channel with default attributes.
6086 ====
6087 [role="term"]
6088 ----
6089 lttng enable-channel --kernel my-channel
6090 ----
6091 ====
6092
6093 .Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6094 ====
6095 [role="term"]
6096 ----
6097 lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6098 --buffers-pid my-channel
6099 ----
6100 ====
6101
6102 .Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
6103 ====
6104 [role="term"]
6105 ----
6106 lttng enable-channel --kernel --tracefile-count=8 \
6107 --tracefile-size=4194304 my-channel
6108 ----
6109 ====
6110
6111 .Create a user space channel in overwrite (or _flight recorder_) mode.
6112 ====
6113 [role="term"]
6114 ----
6115 lttng enable-channel --userspace --overwrite my-channel
6116 ----
6117 ====
6118
6119 You can <<enabling-disabling-events,create>> the same event rule in
6120 two different channels:
6121
6122 [role="term"]
6123 ----
6124 lttng enable-event --userspace --channel=my-channel app:tp
6125 lttng enable-event --userspace --channel=other-channel app:tp
6126 ----
6127
6128 If both channels are enabled, when a tracepoint named `app:tp` is
6129 reached, LTTng records two events, one for each channel.
6130
6131
6132 [[disable-channel]]
6133 === Disable a channel
6134
6135 To disable a specific channel that you <<enabling-disabling-channels,created>>
6136 previously, use the man:lttng-disable-channel(1) command.
6137
6138 .Disable a specific Linux kernel channel.
6139 ====
6140 [role="term"]
6141 ----
6142 lttng disable-channel --kernel my-channel
6143 ----
6144 ====
6145
6146 The state of a channel precedes the individual states of event rules
6147 attached to it: event rules which belong to a disabled channel, even if
6148 they are enabled, are also considered disabled.
6149
6150
6151 [[adding-context]]
6152 === Add context fields to a channel
6153
6154 Event record fields in trace files provide important information about
6155 events that occured previously, but sometimes some external context may
6156 help you solve a problem faster. Examples of context fields are:
6157
6158 * The **process ID**, **thread ID**, **process name**, and
6159 **process priority** of the thread in which the event occurs.
6160 * The **hostname** of the system on which the event occurs.
6161 * The current values of many possible **performance counters** using
6162 perf, for example:
6163 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6164 ** Cache misses.
6165 ** Branch instructions, misses, and loads.
6166 ** CPU faults.
6167 * Any context defined at the application level (supported for the
6168 JUL and log4j <<domain,tracing domains>>).
6169
6170 To get the full list of available context fields, see
6171 `lttng add-context --list`. Some context fields are reserved for a
6172 specific <<domain,tracing domain>> (Linux kernel or user space).
6173
6174 You add context fields to <<channel,channels>>. All the events
6175 that a channel with added context fields records contain those fields.
6176
6177 To add context fields to one or all the channels of a given tracing
6178 session:
6179
6180 * Use the man:lttng-add-context(1) command.
6181
6182 .Add context fields to all the channels of the current tracing session.
6183 ====
6184 The following command line adds the virtual process identifier and
6185 the per-thread CPU cycles count fields to all the user space channels
6186 of the current tracing session.
6187
6188 [role="term"]
6189 ----
6190 lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6191 ----
6192 ====
6193
6194 .Add a context field to a specific channel.
6195 ====
6196 The following command line adds the thread identifier context field
6197 to the Linux kernel channel named `my-channel` in the current
6198 tracing session.
6199
6200 [role="term"]
6201 ----
6202 lttng add-context --kernel --channel=my-channel --type=tid
6203 ----
6204 ====
6205
6206 .Add an application-specific context field to a specific channel.
6207 ====
6208 The following command line adds the `cur_msg_id` context field of the
6209 `retriever` context retriever for all the instrumented
6210 <<java-application,Java applications>> recording <<event,event records>>
6211 in the channel named `my-channel`:
6212
6213 [role="term"]
6214 ----
6215 lttng add-context --kernel --channel=my-channel \
6216 --type='$app:retriever:cur_msg_id'
6217 ----
6218
6219 IMPORTANT: Make sure to always quote the `$` character when you
6220 use man:lttng-add-context(1) from a shell.
6221 ====
6222
6223 NOTE: You cannot remove context fields from a channel once you add it.
6224
6225
6226 [role="since-2.7"]
6227 [[pid-tracking]]
6228 === Track process IDs
6229
6230 It's often useful to allow only specific process IDs (PIDs) to emit
6231 events. For example, you may wish to record all the system calls made by
6232 a given process (à la http://linux.die.net/man/1/strace[strace]).
6233
6234 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6235 purpose. Both commands operate on a whitelist of process IDs. You _add_
6236 entries to this whitelist with the man:lttng-track(1) command and remove
6237 entries with the man:lttng-untrack(1) command. Any process which has one
6238 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6239 an enabled <<event,event rule>>.
6240
6241 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6242 process with a given tracked ID exit and another process be given this
6243 ID, then the latter would also be allowed to emit events.
6244
6245 .Track and untrack process IDs.
6246 ====
6247 For the sake of the following example, assume the target system has 16
6248 possible PIDs.
6249
6250 When you
6251 <<creating-destroying-tracing-sessions,create a tracing session>>,
6252 the whitelist contains all the possible PIDs:
6253
6254 [role="img-100"]
6255 .All PIDs are tracked.
6256 image::track-all.png[]
6257
6258 When the whitelist is full and you use the man:lttng-track(1) command to
6259 specify some PIDs to track, LTTng first clears the whitelist, then it
6260 tracks the specific PIDs. After:
6261
6262 [role="term"]
6263 ----
6264 lttng track --pid=3,4,7,10,13
6265 ----
6266
6267 the whitelist is:
6268
6269 [role="img-100"]
6270 .PIDs 3, 4, 7, 10, and 13 are tracked.
6271 image::track-3-4-7-10-13.png[]
6272
6273 You can add more PIDs to the whitelist afterwards:
6274
6275 [role="term"]
6276 ----
6277 lttng track --pid=1,15,16
6278 ----
6279
6280 The result is:
6281
6282 [role="img-100"]
6283 .PIDs 1, 15, and 16 are added to the whitelist.
6284 image::track-1-3-4-7-10-13-15-16.png[]
6285
6286 The man:lttng-untrack(1) command removes entries from the PID tracker's
6287 whitelist. Given the previous example, the following command:
6288
6289 [role="term"]
6290 ----
6291 lttng untrack --pid=3,7,10,13
6292 ----
6293
6294 leads to this whitelist:
6295
6296 [role="img-100"]
6297 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6298 image::track-1-4-15-16.png[]
6299
6300 LTTng can track all possible PIDs again using the opt:track(1):--all
6301 option:
6302
6303 [role="term"]
6304 ----
6305 lttng track --pid --all
6306 ----
6307
6308 The result is, again:
6309
6310 [role="img-100"]
6311 .All PIDs are tracked.
6312 image::track-all.png[]
6313 ====
6314
6315 .Track only specific PIDs
6316 ====
6317 A very typical use case with PID tracking is to start with an empty
6318 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6319 then add PIDs manually while tracers are active. You can accomplish this
6320 by using the opt:lttng-untrack(1):--all option of the
6321 man:lttng-untrack(1) command to clear the whitelist after you
6322 <<creating-destroying-tracing-sessions,create a tracing session>>:
6323
6324 [role="term"]
6325 ----
6326 lttng untrack --pid --all
6327 ----
6328
6329 gives:
6330
6331 [role="img-100"]
6332 .No PIDs are tracked.
6333 image::untrack-all.png[]
6334
6335 If you trace with this whitelist configuration, the tracer records no
6336 events for this <<domain,tracing domain>> because no processes are
6337 tracked. You can use the man:lttng-track(1) command as usual to track
6338 specific PIDs, for example:
6339
6340 [role="term"]
6341 ----
6342 lttng track --pid=6,11
6343 ----
6344
6345 Result:
6346
6347 [role="img-100"]
6348 .PIDs 6 and 11 are tracked.
6349 image::track-6-11.png[]
6350 ====
6351
6352
6353 [role="since-2.5"]
6354 [[saving-loading-tracing-session]]
6355 === Save and load tracing session configurations
6356
6357 Configuring a <<tracing-session,tracing session>> can be long. Some of
6358 the tasks involved are:
6359
6360 * <<enabling-disabling-channels,Create channels>> with
6361 specific attributes.
6362 * <<adding-context,Add context fields>> to specific channels.
6363 * <<enabling-disabling-events,Create event rules>> with specific log
6364 level and filter conditions.
6365
6366 If you use LTTng to solve real world problems, chances are you have to
6367 record events using the same tracing session setup over and over,
6368 modifying a few variables each time in your instrumented program
6369 or environment. To avoid constant tracing session reconfiguration,
6370 the man:lttng(1) command-line tool can save and load tracing session
6371 configurations to/from XML files.
6372
6373 To save a given tracing session configuration:
6374
6375 * Use the man:lttng-save(1) command:
6376 +
6377 --
6378 [role="term"]
6379 ----
6380 lttng save my-session
6381 ----
6382 --
6383 +
6384 Replace `my-session` with the name of the tracing session to save.
6385
6386 LTTng saves tracing session configurations to
6387 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6388 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6389 the opt:lttng-save(1):--output-path option to change this destination
6390 directory.
6391
6392 LTTng saves all configuration parameters, for example:
6393
6394 * The tracing session name.
6395 * The trace data output path.
6396 * The channels with their state and all their attributes.
6397 * The context fields you added to channels.
6398 * The event rules with their state, log level and filter conditions.
6399
6400 To load a tracing session:
6401
6402 * Use the man:lttng-load(1) command:
6403 +
6404 --
6405 [role="term"]
6406 ----
6407 lttng load my-session
6408 ----
6409 --
6410 +
6411 Replace `my-session` with the name of the tracing session to load.
6412
6413 When LTTng loads a configuration, it restores your saved tracing session
6414 as if you just configured it manually.
6415
6416 See man:lttng(1) for the complete list of command-line options. You
6417 can also save and load all many sessions at a time, and decide in which
6418 directory to output the XML files.
6419
6420
6421 [[sending-trace-data-over-the-network]]
6422 === Send trace data over the network
6423
6424 LTTng can send the recorded trace data to a remote system over the
6425 network instead of writing it to the local file system.
6426
6427 To send the trace data over the network:
6428
6429 . On the _remote_ system (which can also be the target system),
6430 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6431 +
6432 --
6433 [role="term"]
6434 ----
6435 lttng-relayd
6436 ----
6437 --
6438
6439 . On the _target_ system, create a tracing session configured to
6440 send trace data over the network:
6441 +
6442 --
6443 [role="term"]
6444 ----
6445 lttng create my-session --set-url=net://remote-system
6446 ----
6447 --
6448 +
6449 Replace `remote-system` by the host name or IP address of the
6450 remote system. See man:lttng-create(1) for the exact URL format.
6451
6452 . On the target system, use the man:lttng(1) command-line tool as usual.
6453 When tracing is active, the target's consumer daemon sends sub-buffers
6454 to the relay daemon running on the remote system intead of flushing
6455 them to the local file system. The relay daemon writes the received
6456 packets to the local file system.
6457
6458 The relay daemon writes trace files to
6459 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6460 +__hostname__+ is the host name of the target system and +__session__+
6461 is the tracing session name. Note that the env:LTTNG_HOME environment
6462 variable defaults to `$HOME` if not set. Use the
6463 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6464 trace files to another base directory.
6465
6466
6467 [role="since-2.4"]
6468 [[lttng-live]]
6469 === View events as LTTng emits them (noch:{LTTng} live)
6470
6471 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6472 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6473 display events as LTTng emits them on the target system while tracing is
6474 active.
6475
6476 The relay daemon creates a _tee_: it forwards the trace data to both
6477 the local file system and to connected live viewers:
6478
6479 [role="img-90"]
6480 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6481 image::live.png[]
6482
6483 To use LTTng live:
6484
6485 . On the _target system_, create a <<tracing-session,tracing session>>
6486 in _live mode_:
6487 +
6488 --
6489 [role="term"]
6490 ----
6491 lttng create --live my-session
6492 ----
6493 --
6494 +
6495 This spawns a local relay daemon.
6496
6497 . Start the live viewer and configure it to connect to the relay
6498 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6499 +
6500 --
6501 [role="term"]
6502 ----
6503 babeltrace --input-format=lttng-live net://localhost/host/hostname/my-session
6504 ----
6505 --
6506 +
6507 Replace:
6508 +
6509 --
6510 * `hostname` with the host name of the target system.
6511 * `my-session` with the name of the tracing session to view.
6512 --
6513
6514 . Configure the tracing session as usual with the man:lttng(1)
6515 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6516
6517 You can list the available live tracing sessions with Babeltrace:
6518
6519 [role="term"]
6520 ----
6521 babeltrace --input-format=lttng-live net://localhost
6522 ----
6523
6524 You can start the relay daemon on another system. In this case, you need
6525 to specify the relay daemon's URL when you create the tracing session
6526 with the opt:lttng-create(1):--set-url option. You also need to replace
6527 `localhost` in the procedure above with the host name of the system on
6528 which the relay daemon is running.
6529
6530 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6531 command-line options.
6532
6533
6534 [role="since-2.3"]
6535 [[taking-a-snapshot]]
6536 === Take a snapshot of the current sub-buffers of a tracing session
6537
6538 The normal behavior of LTTng is to append full sub-buffers to growing
6539 trace data files. This is ideal to keep a full history of the events
6540 that occurred on the target system, but it can
6541 represent too much data in some situations. For example, you may wish
6542 to trace your application continuously until some critical situation
6543 happens, in which case you only need the latest few recorded
6544 events to perform the desired analysis, not multi-gigabyte trace files.
6545
6546 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6547 current sub-buffers of a given <<tracing-session,tracing session>>.
6548 LTTng can write the snapshot to the local file system or send it over
6549 the network.
6550
6551 To take a snapshot:
6552
6553 . Create a tracing session in _snapshot mode_:
6554 +
6555 --
6556 [role="term"]
6557 ----
6558 lttng create --snapshot my-session
6559 ----
6560 --
6561 +
6562 The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6563 <<channel,channels>> created in this mode is automatically set to
6564 _overwrite_ (flight recorder mode).
6565
6566 . Configure the tracing session as usual with the man:lttng(1)
6567 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6568
6569 . **Optional**: When you need to take a snapshot,
6570 <<basic-tracing-session-control,stop tracing>>.
6571 +
6572 You can take a snapshot when the tracers are active, but if you stop
6573 them first, you are sure that the data in the sub-buffers does not
6574 change before you actually take the snapshot.
6575
6576 . Take a snapshot:
6577 +
6578 --
6579 [role="term"]
6580 ----
6581 lttng snapshot record --name=my-first-snapshot
6582 ----
6583 --
6584 +
6585 LTTng writes the current sub-buffers of all the current tracing
6586 session's channels to trace files on the local file system. Those trace
6587 files have `my-first-snapshot` in their name.
6588
6589 There is no difference between the format of a normal trace file and the
6590 format of a snapshot: viewers of LTTng traces also support LTTng
6591 snapshots.
6592
6593 By default, LTTng writes snapshot files to the path shown by
6594 `lttng snapshot list-output`. You can change this path or decide to send
6595 snapshots over the network using either:
6596
6597 . An output path or URL that you specify when you create the
6598 tracing session.
6599 . An snapshot output path or URL that you add using
6600 `lttng snapshot add-output`
6601 . An output path or URL that you provide directly to the
6602 `lttng snapshot record` command.
6603
6604 Method 3 overrides method 2, which overrides method 1. When you
6605 specify a URL, a relay daemon must listen on a remote system (see
6606 <<sending-trace-data-over-the-network,Send trace data over the network>>).
6607
6608
6609 [role="since-2.6"]
6610 [[mi]]
6611 === Use the machine interface
6612
6613 With any command of the man:lttng(1) command-line tool, you can set the
6614 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6615 XML machine interface output, for example:
6616
6617 [role="term"]
6618 ----
6619 lttng --mi=xml enable-event --kernel --syscall open
6620 ----
6621
6622 A schema definition (XSD) is
6623 https://github.com/lttng/lttng-tools/blob/stable-2.8/src/common/mi-lttng-3.0.xsd[available]
6624 to ease the integration with external tools as much as possible.
6625
6626
6627 [role="since-2.8"]
6628 [[metadata-regenerate]]
6629 === Regenerate the metadata of an LTTng trace
6630
6631 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6632 data stream files and a metadata file. This metadata file contains,
6633 amongst other things, information about the offset of the clock sources
6634 used to timestamp <<event,event records>> when tracing.
6635
6636 If, once a <<tracing-session,tracing session>> is
6637 <<basic-tracing-session-control,started>>, a major
6638 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6639 happens, the trace's clock offset also needs to be updated. You
6640 can use the man:lttng-metadata(1) command to do so.
6641
6642 The main use case of this command is to allow a system to boot with
6643 an incorrect wall time and trace it with LTTng before its wall time
6644 is corrected. Once the system is known to be in a state where its
6645 wall time is correct, it can run `lttng metadata regenerate`.
6646
6647 To regenerate the metadata of an LTTng trace:
6648
6649 * Use the `regenerate` action of the man:lttng-metadata(1) command:
6650 +
6651 --
6652 [role="term"]
6653 ----
6654 lttng metadata regenerate
6655 ----
6656 --
6657
6658 [IMPORTANT]
6659 ====
6660 `lttng metadata regenerate` has the following limitations:
6661
6662 * Tracing session <<creating-destroying-tracing-sessions,created>>
6663 in non-live mode.
6664 * User space <<channel,channels>>, if any, using
6665 <<channel-buffering-schemes,per-user buffering>>.
6666 ====
6667
6668
6669 [role="since-2.7"]
6670 [[persistent-memory-file-systems]]
6671 === Record trace data on persistent memory file systems
6672
6673 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6674 (NVRAM) is random-access memory that retains its information when power
6675 is turned off (non-volatile). Systems with such memory can store data
6676 structures in RAM and retrieve them after a reboot, without flushing
6677 to typical _storage_.
6678
6679 Linux supports NVRAM file systems thanks to either
6680 http://pramfs.sourceforge.net/[PRAMFS] or
6681 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6682 (requires Linux 4.1+).
6683
6684 This section does not describe how to operate such file systems;
6685 we assume that you have a working persistent memory file system.
6686
6687 When you create a <<tracing-session,tracing session>>, you can specify
6688 the path of the shared memory holding the sub-buffers. If you specify a
6689 location on an NVRAM file system, then you can retrieve the latest
6690 recorded trace data when the system reboots after a crash.
6691
6692 To record trace data on a persistent memory file system and retrieve the
6693 trace data after a system crash:
6694
6695 . Create a tracing session with a sub-buffer shared memory path located
6696 on an NVRAM file system:
6697 +
6698 --
6699 [role="term"]
6700 ----
6701 lttng create --shm-path=/path/to/shm
6702 ----
6703 --
6704
6705 . Configure the tracing session as usual with the man:lttng(1)
6706 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6707
6708 . After a system crash, use the man:lttng-crash(1) command-line tool to
6709 view the trace data recorded on the NVRAM file system:
6710 +
6711 --
6712 [role="term"]
6713 ----
6714 lttng-crash /path/to/shm
6715 ----
6716 --
6717
6718 The binary layout of the ring buffer files is not exactly the same as
6719 the trace files layout. This is why you need to use man:lttng-crash(1)
6720 instead of your preferred trace viewer directly.
6721
6722 To convert the ring buffer files to LTTng trace files:
6723
6724 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6725 +
6726 --
6727 [role="term"]
6728 ----
6729 lttng-crash --extract=/path/to/trace /path/to/shm
6730 ----
6731 --
6732
6733
6734 [[reference]]
6735 == Reference
6736
6737 [[lttng-modules-ref]]
6738 === noch:{LTTng-modules}
6739
6740 [role="since-2.7"]
6741 [[lttng-modules-tp-fields]]
6742 ==== Tracepoint fields macros (for `TP_FIELDS()`)
6743
6744 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
6745 tracepoint fields, which must be listed within `TP_FIELDS()` in
6746 `LTTNG_TRACEPOINT_EVENT()`, are:
6747
6748 [role="func-desc growable",cols="asciidoc,asciidoc"]
6749 .Available macros to define LTTng-modules tracepoint fields
6750 |====
6751 |Macro |Description and parameters
6752
6753 |
6754 +ctf_integer(__t__, __n__, __e__)+
6755
6756 +ctf_integer_nowrite(__t__, __n__, __e__)+
6757
6758 +ctf_user_integer(__t__, __n__, __e__)+
6759
6760 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
6761 |
6762 Standard integer, displayed in base 10.
6763
6764 +__t__+::
6765 Integer C type (`int`, `long`, `size_t`, ...).
6766
6767 +__n__+::
6768 Field name.
6769
6770 +__e__+::
6771 Argument expression.
6772
6773 |
6774 +ctf_integer_hex(__t__, __n__, __e__)+
6775
6776 +ctf_user_integer_hex(__t__, __n__, __e__)+
6777 |
6778 Standard integer, displayed in base 16.
6779
6780 +__t__+::
6781 Integer C type.
6782
6783 +__n__+::
6784 Field name.
6785
6786 +__e__+::
6787 Argument expression.
6788
6789 |+ctf_integer_oct(__t__, __n__, __e__)+
6790 |
6791 Standard integer, displayed in base 8.
6792
6793 +__t__+::
6794 Integer C type.
6795
6796 +__n__+::
6797 Field name.
6798
6799 +__e__+::
6800 Argument expression.
6801
6802 |
6803 +ctf_integer_network(__t__, __n__, __e__)+
6804
6805 +ctf_user_integer_network(__t__, __n__, __e__)+
6806 |
6807 Integer in network byte order (big-endian), displayed in base 10.
6808
6809 +__t__+::
6810 Integer C type.
6811
6812 +__n__+::
6813 Field name.
6814
6815 +__e__+::
6816 Argument expression.
6817
6818 |
6819 +ctf_integer_network_hex(__t__, __n__, __e__)+
6820
6821 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
6822 |
6823 Integer in network byte order, displayed in base 16.
6824
6825 +__t__+::
6826 Integer C type.
6827
6828 +__n__+::
6829 Field name.
6830
6831 +__e__+::
6832 Argument expression.
6833
6834 |
6835 +ctf_string(__n__, __e__)+
6836
6837 +ctf_string_nowrite(__n__, __e__)+
6838
6839 +ctf_user_string(__n__, __e__)+
6840
6841 +ctf_user_string_nowrite(__n__, __e__)+
6842 |
6843 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
6844
6845 +__n__+::
6846 Field name.
6847
6848 +__e__+::
6849 Argument expression.
6850
6851 |
6852 +ctf_array(__t__, __n__, __e__, __s__)+
6853
6854 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
6855
6856 +ctf_user_array(__t__, __n__, __e__, __s__)+
6857
6858 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
6859 |
6860 Statically-sized array of integers.
6861
6862 +__t__+::
6863 Array element C type.
6864
6865 +__n__+::
6866 Field name.
6867
6868 +__e__+::
6869 Argument expression.
6870
6871 +__s__+::
6872 Number of elements.
6873
6874 |
6875 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
6876
6877 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6878
6879 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
6880
6881 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6882 |
6883 Statically-sized array of bits.
6884
6885 The type of +__e__+ must be an integer type. +__s__+ is the number
6886 of elements of such type in +__e__+, not the number of bits.
6887
6888 +__t__+::
6889 Array element C type.
6890
6891 +__n__+::
6892 Field name.
6893
6894 +__e__+::
6895 Argument expression.
6896
6897 +__s__+::
6898 Number of elements.
6899
6900 |
6901 +ctf_array_text(__t__, __n__, __e__, __s__)+
6902
6903 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
6904
6905 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
6906
6907 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
6908 |
6909 Statically-sized array, printed as text.
6910
6911 The string does not need to be null-terminated.
6912
6913 +__t__+::
6914 Array element C type (always `char`).
6915
6916 +__n__+::
6917 Field name.
6918
6919 +__e__+::
6920 Argument expression.
6921
6922 +__s__+::
6923 Number of elements.
6924
6925 |
6926 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
6927
6928 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
6929
6930 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
6931
6932 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
6933 |
6934 Dynamically-sized array of integers.
6935
6936 The type of +__E__+ must be unsigned.
6937
6938 +__t__+::
6939 Array element C type.
6940
6941 +__n__+::
6942 Field name.
6943
6944 +__e__+::
6945 Argument expression.
6946
6947 +__T__+::
6948 Length expression C type.
6949
6950 +__E__+::
6951 Length expression.
6952
6953 |
6954 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
6955
6956 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
6957 |
6958 Dynamically-sized array of integers, displayed in base 16.
6959
6960 The type of +__E__+ must be unsigned.
6961
6962 +__t__+::
6963 Array element C type.
6964
6965 +__n__+::
6966 Field name.
6967
6968 +__e__+::
6969 Argument expression.
6970
6971 +__T__+::
6972 Length expression C type.
6973
6974 +__E__+::
6975 Length expression.
6976
6977 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
6978 |
6979 Dynamically-sized array of integers in network byte order (big-endian),
6980 displayed in base 10.
6981
6982 The type of +__E__+ must be unsigned.
6983
6984 +__t__+::
6985 Array element C type.
6986
6987 +__n__+::
6988 Field name.
6989
6990 +__e__+::
6991 Argument expression.
6992
6993 +__T__+::
6994 Length expression C type.
6995
6996 +__E__+::
6997 Length expression.
6998
6999 |
7000 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7001
7002 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7003
7004 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7005
7006 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7007 |
7008 Dynamically-sized array of bits.
7009
7010 The type of +__e__+ must be an integer type. +__s__+ is the number
7011 of elements of such type in +__e__+, not the number of bits.
7012
7013 The type of +__E__+ must be unsigned.
7014
7015 +__t__+::
7016 Array element C type.
7017
7018 +__n__+::
7019 Field name.
7020
7021 +__e__+::
7022 Argument expression.
7023
7024 +__T__+::
7025 Length expression C type.
7026
7027 +__E__+::
7028 Length expression.
7029
7030 |
7031 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7032
7033 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7034
7035 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7036
7037 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7038 |
7039 Dynamically-sized array, displayed as text.
7040
7041 The string does not need to be null-terminated.
7042
7043 The type of +__E__+ must be unsigned.
7044
7045 The behaviour is undefined if +__e__+ is `NULL`.
7046
7047 +__t__+::
7048 Sequence element C type (always `char`).
7049
7050 +__n__+::
7051 Field name.
7052
7053 +__e__+::
7054 Argument expression.
7055
7056 +__T__+::
7057 Length expression C type.
7058
7059 +__E__+::
7060 Length expression.
7061 |====
7062
7063 Use the `_user` versions when the argument expression, `e`, is
7064 a user space address. In the cases of `ctf_user_integer*()` and
7065 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7066 be addressable.
7067
7068 The `_nowrite` versions omit themselves from the session trace, but are
7069 otherwise identical. This means the `_nowrite` fields won't be written
7070 in the recorded trace. Their primary purpose is to make some
7071 of the event context available to the
7072 <<enabling-disabling-events,event filters>> without having to
7073 commit the data to sub-buffers.
7074
7075
7076 [[glossary]]
7077 == Glossary
7078
7079 Terms related to LTTng and to tracing in general:
7080
7081 Babeltrace::
7082 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7083 the cmd:babeltrace command, some libraries, and Python bindings.
7084
7085 <<channel-buffering-schemes,buffering scheme>>::
7086 A layout of sub-buffers applied to a given channel.
7087
7088 <<channel,channel>>::
7089 An entity which is responsible for a set of ring buffers.
7090 +
7091 <<event,Event rules>> are always attached to a specific channel.
7092
7093 clock::
7094 A reference of time for a tracer.
7095
7096 <<lttng-consumerd,consumer daemon>>::
7097 A process which is responsible for consuming the full sub-buffers
7098 and write them to a file system or send them over the network.
7099
7100 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
7101 mode in which the tracer _discards_ new event records when there's no
7102 sub-buffer space left to store them.
7103
7104 event::
7105 The consequence of the execution of an instrumentation
7106 point, like a tracepoint that you manually place in some source code,
7107 or a Linux kernel KProbe.
7108 +
7109 An event is said to _occur_ at a specific time. Different actions can
7110 be taken upon the occurance of an event, like record the event's payload
7111 to a sub-buffer.
7112
7113 <<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
7114 The mechanism by which event records of a given channel are lost
7115 (not recorded) when there is no sub-buffer space left to store them.
7116
7117 [[def-event-name]]event name::
7118 The name of an event, which is also the name of the event record.
7119 This is also called the _instrumentation point name_.
7120
7121 event record::
7122 A record, in a trace, of the payload of an event which occured.
7123
7124 <<event,event rule>>::
7125 Set of conditions which must be satisfied for one or more occuring
7126 events to be recorded.
7127
7128 `java.util.logging`::
7129 Java platform's
7130 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7131
7132 <<instrumenting,instrumentation>>::
7133 The use of LTTng probes to make a piece of software traceable.
7134
7135 instrumentation point::
7136 A point in the execution path of a piece of software that, when
7137 reached by this execution, can emit an event.
7138
7139 instrumentation point name::
7140 See _<<def-event-name,event name>>_.
7141
7142 log4j::
7143 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7144 developed by the Apache Software Foundation.
7145
7146 log level::
7147 Level of severity of a log statement or user space
7148 instrumentation point.
7149
7150 LTTng::
7151 The _Linux Trace Toolkit: next generation_ project.
7152
7153 <<lttng-cli,cmd:lttng>>::
7154 A command-line tool provided by the LTTng-tools project which you
7155 can use to send and receive control messages to and from a
7156 session daemon.
7157
7158 LTTng analyses::
7159 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7160 which is a set of analyzing programs that are used to obtain a
7161 higher level view of an LTTng trace.
7162
7163 cmd:lttng-consumerd::
7164 The name of the consumer daemon program.
7165
7166 cmd:lttng-crash::
7167 A utility provided by the LTTng-tools project which can convert
7168 ring buffer files (usually
7169 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7170 to trace files.
7171
7172 LTTng Documentation::
7173 This document.
7174
7175 <<lttng-live,LTTng live>>::
7176 A communication protocol between the relay daemon and live viewers
7177 which makes it possible to see events "live", as they are received by
7178 the relay daemon.
7179
7180 <<lttng-modules,LTTng-modules>>::
7181 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7182 which contains the Linux kernel modules to make the Linux kernel
7183 instrumentation points available for LTTng tracing.
7184
7185 cmd:lttng-relayd::
7186 The name of the relay daemon program.
7187
7188 cmd:lttng-sessiond::
7189 The name of the session daemon program.
7190
7191 LTTng-tools::
7192 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7193 contains the various programs and libraries used to
7194 <<controlling-tracing,control tracing>>.
7195
7196 <<lttng-ust,LTTng-UST>>::
7197 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7198 contains libraries to instrument user applications.
7199
7200 <<lttng-ust-agents,LTTng-UST Java agent>>::
7201 A Java package provided by the LTTng-UST project to allow the
7202 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
7203 logging statements.
7204
7205 <<lttng-ust-agents,LTTng-UST Python agent>>::
7206 A Python package provided by the LTTng-UST project to allow the
7207 LTTng instrumentation of Python logging statements.
7208
7209 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7210 The event loss mode in which new event records overwrite older
7211 event records when there's no sub-buffer space left to store them.
7212
7213 <<channel-buffering-schemes,per-process buffering>>::
7214 A buffering scheme in which each instrumented process has its own
7215 sub-buffers for a given user space channel.
7216
7217 <<channel-buffering-schemes,per-user buffering>>::
7218 A buffering scheme in which all the processes of a Unix user share the
7219 same sub-buffer for a given user space channel.
7220
7221 <<lttng-relayd,relay daemon>>::
7222 A process which is responsible for receiving the trace data sent by
7223 a distant consumer daemon.
7224
7225 ring buffer::
7226 A set of sub-buffers.
7227
7228 <<lttng-sessiond,session daemon>>::
7229 A process which receives control commands from you and orchestrates
7230 the tracers and various LTTng daemons.
7231
7232 <<taking-a-snapshot,snapshot>>::
7233 A copy of the current data of all the sub-buffers of a given tracing
7234 session, saved as trace files.
7235
7236 sub-buffer::
7237 One part of an LTTng ring buffer which contains event records.
7238
7239 timestamp::
7240 The time information attached to an event when it is emitted.
7241
7242 trace (_noun_)::
7243 A set of files which are the concatenations of one or more
7244 flushed sub-buffers.
7245
7246 trace (_verb_)::
7247 The action of recording the events emitted by an application
7248 or by a system, or to initiate such recording by controlling
7249 a tracer.
7250
7251 Trace Compass::
7252 The http://tracecompass.org[Trace Compass] project and application.
7253
7254 tracepoint::
7255 An instrumentation point using the tracepoint mechanism of the Linux
7256 kernel or of LTTng-UST.
7257
7258 tracepoint definition::
7259 The definition of a single tracepoint.
7260
7261 tracepoint name::
7262 The name of a tracepoint.
7263
7264 tracepoint provider::
7265 A set of functions providing tracepoints to an instrumented user
7266 application.
7267 +
7268 Not to be confused with a _tracepoint provider package_: many tracepoint
7269 providers can exist within a tracepoint provider package.
7270
7271 tracepoint provider package::
7272 One or more tracepoint providers compiled as an object file or as
7273 a shared library.
7274
7275 tracer::
7276 A software which records emitted events.
7277
7278 <<domain,tracing domain>>::
7279 A namespace for event sources.
7280
7281 tracing group::
7282 The Unix group in which a Unix user can be to be allowed to trace the
7283 Linux kernel.
7284
7285 <<tracing-session,tracing session>>::
7286 A stateful dialogue between you and a <<lttng-sessiond,session
7287 daemon>>.
7288
7289 user application::
7290 An application running in user space, as opposed to a Linux kernel
7291 module, for example.
This page took 0.180891 seconds and 4 git commands to generate.