Cleanup headers
[urcu.git] / urcu.c
1 /*
2 * urcu.c
3 *
4 * Userspace RCU library
5 *
6 * Copyright (c) 2009 Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
7 * Copyright (c) 2009 Paul E. McKenney, IBM Corporation.
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 * IBM's contributions to this file may be relicensed under LGPLv2 or later.
24 */
25
26 #include <stdio.h>
27 #include <pthread.h>
28 #include <signal.h>
29 #include <assert.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <poll.h>
34
35 #include "urcu-static.h"
36 /* Do not #define _LGPL_SOURCE to ensure we can emit the wrapper symbols */
37 #include "urcu.h"
38
39 #ifndef URCU_MB
40 static int init_done;
41
42 void __attribute__((constructor)) urcu_init(void);
43 void __attribute__((destructor)) urcu_exit(void);
44 #else
45 void urcu_init(void)
46 {
47 }
48 #endif
49
50 static pthread_mutex_t urcu_mutex = PTHREAD_MUTEX_INITIALIZER;
51
52 int gp_futex;
53
54 /*
55 * Global grace period counter.
56 * Contains the current RCU_GP_CTR_BIT.
57 * Also has a RCU_GP_COUNT of 1, to accelerate the reader fast path.
58 * Written to only by writer with mutex taken. Read by both writer and readers.
59 */
60 long urcu_gp_ctr = RCU_GP_COUNT;
61
62 /*
63 * Written to only by each individual reader. Read by both the reader and the
64 * writers.
65 */
66 long __thread urcu_active_readers;
67
68 /* Thread IDs of registered readers */
69 #define INIT_NUM_THREADS 4
70
71 struct reader_registry {
72 pthread_t tid;
73 long *urcu_active_readers;
74 char *need_mb;
75 };
76
77 #ifdef DEBUG_YIELD
78 unsigned int yield_active;
79 unsigned int __thread rand_yield;
80 #endif
81
82 static struct reader_registry *registry;
83 static char __thread need_mb;
84 static int num_readers, alloc_readers;
85
86 static void internal_urcu_lock(void)
87 {
88 int ret;
89
90 #ifndef DISTRUST_SIGNALS_EXTREME
91 ret = pthread_mutex_lock(&urcu_mutex);
92 if (ret) {
93 perror("Error in pthread mutex lock");
94 exit(-1);
95 }
96 #else /* #ifndef DISTRUST_SIGNALS_EXTREME */
97 while ((ret = pthread_mutex_trylock(&urcu_mutex)) != 0) {
98 if (ret != EBUSY && ret != EINTR) {
99 printf("ret = %d, errno = %d\n", ret, errno);
100 perror("Error in pthread mutex lock");
101 exit(-1);
102 }
103 if (need_mb) {
104 smp_mb();
105 need_mb = 0;
106 smp_mb();
107 }
108 poll(NULL,0,10);
109 }
110 #endif /* #else #ifndef DISTRUST_SIGNALS_EXTREME */
111 }
112
113 static void internal_urcu_unlock(void)
114 {
115 int ret;
116
117 ret = pthread_mutex_unlock(&urcu_mutex);
118 if (ret) {
119 perror("Error in pthread mutex unlock");
120 exit(-1);
121 }
122 }
123
124 /*
125 * called with urcu_mutex held.
126 */
127 static void switch_next_urcu_qparity(void)
128 {
129 STORE_SHARED(urcu_gp_ctr, urcu_gp_ctr ^ RCU_GP_CTR_BIT);
130 }
131
132 #ifdef URCU_MB
133 static void force_mb_single_thread(struct reader_registry *index)
134 {
135 smp_mb();
136 }
137
138 static void force_mb_all_threads(void)
139 {
140 smp_mb();
141 }
142 #else /* #ifdef URCU_MB */
143 static void force_mb_single_thread(struct reader_registry *index)
144 {
145 assert(registry);
146 /*
147 * pthread_kill has a smp_mb(). But beware, we assume it performs
148 * a cache flush on architectures with non-coherent cache. Let's play
149 * safe and don't assume anything : we use smp_mc() to make sure the
150 * cache flush is enforced.
151 */
152 *index->need_mb = 1;
153 smp_mc(); /* write ->need_mb before sending the signals */
154 pthread_kill(index->tid, SIGURCU);
155 smp_mb();
156 /*
157 * Wait for sighandler (and thus mb()) to execute on every thread.
158 * BUSY-LOOP.
159 */
160 while (*index->need_mb) {
161 poll(NULL, 0, 1);
162 }
163 smp_mb(); /* read ->need_mb before ending the barrier */
164 }
165
166 static void force_mb_all_threads(void)
167 {
168 struct reader_registry *index;
169 /*
170 * Ask for each threads to execute a smp_mb() so we can consider the
171 * compiler barriers around rcu read lock as real memory barriers.
172 */
173 if (!registry)
174 return;
175 /*
176 * pthread_kill has a smp_mb(). But beware, we assume it performs
177 * a cache flush on architectures with non-coherent cache. Let's play
178 * safe and don't assume anything : we use smp_mc() to make sure the
179 * cache flush is enforced.
180 */
181 for (index = registry; index < registry + num_readers; index++) {
182 *index->need_mb = 1;
183 smp_mc(); /* write need_mb before sending the signal */
184 pthread_kill(index->tid, SIGURCU);
185 }
186 /*
187 * Wait for sighandler (and thus mb()) to execute on every thread.
188 *
189 * Note that the pthread_kill() will never be executed on systems
190 * that correctly deliver signals in a timely manner. However, it
191 * is not uncommon for kernels to have bugs that can result in
192 * lost or unduly delayed signals.
193 *
194 * If you are seeing the below pthread_kill() executing much at
195 * all, we suggest testing the underlying kernel and filing the
196 * relevant bug report. For Linux kernels, we recommend getting
197 * the Linux Test Project (LTP).
198 */
199 for (index = registry; index < registry + num_readers; index++) {
200 while (*index->need_mb) {
201 pthread_kill(index->tid, SIGURCU);
202 poll(NULL, 0, 1);
203 }
204 }
205 smp_mb(); /* read ->need_mb before ending the barrier */
206 }
207 #endif /* #else #ifdef URCU_MB */
208
209 /*
210 * synchronize_rcu() waiting. Single thread.
211 */
212 static void wait_gp(struct reader_registry *index)
213 {
214 uatomic_dec(&gp_futex);
215 force_mb_single_thread(index); /* Write futex before read reader_gp */
216 if (!rcu_old_gp_ongoing(index->urcu_active_readers)) {
217 /* Read reader_gp before write futex */
218 force_mb_single_thread(index);
219 /* Callbacks are queued, don't wait. */
220 uatomic_set(&gp_futex, 0);
221 } else {
222 /* Read reader_gp before read futex */
223 force_mb_single_thread(index);
224 if (uatomic_read(&gp_futex) == -1)
225 futex(&gp_futex, FUTEX_WAIT, -1,
226 NULL, NULL, 0);
227 }
228 }
229
230 void wait_for_quiescent_state(void)
231 {
232 struct reader_registry *index;
233
234 if (!registry)
235 return;
236 /*
237 * Wait for each thread urcu_active_readers count to become 0.
238 */
239 for (index = registry; index < registry + num_readers; index++) {
240 int wait_loops = 0;
241 #ifndef HAS_INCOHERENT_CACHES
242 while (rcu_old_gp_ongoing(index->urcu_active_readers)) {
243 if (wait_loops++ == RCU_QS_ACTIVE_ATTEMPTS) {
244 wait_gp(index);
245 } else {
246 cpu_relax();
247 }
248 }
249 #else /* #ifndef HAS_INCOHERENT_CACHES */
250 /*
251 * BUSY-LOOP. Force the reader thread to commit its
252 * urcu_active_readers update to memory if we wait for too long.
253 */
254 while (rcu_old_gp_ongoing(index->urcu_active_readers)) {
255 switch (wait_loops++) {
256 case RCU_QS_ACTIVE_ATTEMPTS:
257 wait_gp(index);
258 break;
259 case KICK_READER_LOOPS:
260 force_mb_single_thread(index);
261 wait_loops = 0;
262 break;
263 default:
264 cpu_relax();
265 }
266 }
267 #endif /* #else #ifndef HAS_INCOHERENT_CACHES */
268 }
269 }
270
271 void synchronize_rcu(void)
272 {
273 internal_urcu_lock();
274
275 /* All threads should read qparity before accessing data structure
276 * where new ptr points to. Must be done within internal_urcu_lock
277 * because it iterates on reader threads.*/
278 /* Write new ptr before changing the qparity */
279 force_mb_all_threads();
280
281 switch_next_urcu_qparity(); /* 0 -> 1 */
282
283 /*
284 * Must commit qparity update to memory before waiting for parity
285 * 0 quiescent state. Failure to do so could result in the writer
286 * waiting forever while new readers are always accessing data (no
287 * progress).
288 * Ensured by STORE_SHARED and LOAD_SHARED.
289 */
290
291 /*
292 * Adding a smp_mb() which is _not_ formally required, but makes the
293 * model easier to understand. It does not have a big performance impact
294 * anyway, given this is the write-side.
295 */
296 smp_mb();
297
298 /*
299 * Wait for previous parity to be empty of readers.
300 */
301 wait_for_quiescent_state(); /* Wait readers in parity 0 */
302
303 /*
304 * Must finish waiting for quiescent state for parity 0 before
305 * committing qparity update to memory. Failure to do so could result in
306 * the writer waiting forever while new readers are always accessing
307 * data (no progress).
308 * Ensured by STORE_SHARED and LOAD_SHARED.
309 */
310
311 /*
312 * Adding a smp_mb() which is _not_ formally required, but makes the
313 * model easier to understand. It does not have a big performance impact
314 * anyway, given this is the write-side.
315 */
316 smp_mb();
317
318 switch_next_urcu_qparity(); /* 1 -> 0 */
319
320 /*
321 * Must commit qparity update to memory before waiting for parity
322 * 1 quiescent state. Failure to do so could result in the writer
323 * waiting forever while new readers are always accessing data (no
324 * progress).
325 * Ensured by STORE_SHARED and LOAD_SHARED.
326 */
327
328 /*
329 * Adding a smp_mb() which is _not_ formally required, but makes the
330 * model easier to understand. It does not have a big performance impact
331 * anyway, given this is the write-side.
332 */
333 smp_mb();
334
335 /*
336 * Wait for previous parity to be empty of readers.
337 */
338 wait_for_quiescent_state(); /* Wait readers in parity 1 */
339
340 /* Finish waiting for reader threads before letting the old ptr being
341 * freed. Must be done within internal_urcu_lock because it iterates on
342 * reader threads. */
343 force_mb_all_threads();
344
345 internal_urcu_unlock();
346 }
347
348 /*
349 * library wrappers to be used by non-LGPL compatible source code.
350 */
351
352 void rcu_read_lock(void)
353 {
354 _rcu_read_lock();
355 }
356
357 void rcu_read_unlock(void)
358 {
359 _rcu_read_unlock();
360 }
361
362 void *rcu_dereference(void *p)
363 {
364 return _rcu_dereference(p);
365 }
366
367 void *rcu_assign_pointer_sym(void **p, void *v)
368 {
369 wmb();
370 return STORE_SHARED(p, v);
371 }
372
373 void *rcu_xchg_pointer_sym(void **p, void *v)
374 {
375 wmb();
376 return uatomic_xchg(p, v);
377 }
378
379 void *rcu_cmpxchg_pointer_sym(void **p, void *old, void *_new)
380 {
381 wmb();
382 return uatomic_cmpxchg(p, old, _new);
383 }
384
385 void *rcu_publish_content_sym(void **p, void *v)
386 {
387 void *oldptr;
388
389 oldptr = _rcu_xchg_pointer(p, v);
390 synchronize_rcu();
391 return oldptr;
392 }
393
394 static void rcu_add_reader(pthread_t id)
395 {
396 struct reader_registry *oldarray;
397
398 if (!registry) {
399 alloc_readers = INIT_NUM_THREADS;
400 num_readers = 0;
401 registry =
402 malloc(sizeof(struct reader_registry) * alloc_readers);
403 }
404 if (alloc_readers < num_readers + 1) {
405 oldarray = registry;
406 registry = malloc(sizeof(struct reader_registry)
407 * (alloc_readers << 1));
408 memcpy(registry, oldarray,
409 sizeof(struct reader_registry) * alloc_readers);
410 alloc_readers <<= 1;
411 free(oldarray);
412 }
413 registry[num_readers].tid = id;
414 /* reference to the TLS of _this_ reader thread. */
415 registry[num_readers].urcu_active_readers = &urcu_active_readers;
416 registry[num_readers].need_mb = &need_mb;
417 num_readers++;
418 }
419
420 /*
421 * Never shrink (implementation limitation).
422 * This is O(nb threads). Eventually use a hash table.
423 */
424 static void rcu_remove_reader(pthread_t id)
425 {
426 struct reader_registry *index;
427
428 assert(registry != NULL);
429 for (index = registry; index < registry + num_readers; index++) {
430 if (pthread_equal(index->tid, id)) {
431 memcpy(index, &registry[num_readers - 1],
432 sizeof(struct reader_registry));
433 registry[num_readers - 1].tid = 0;
434 registry[num_readers - 1].urcu_active_readers = NULL;
435 num_readers--;
436 return;
437 }
438 }
439 /* Hrm not found, forgot to register ? */
440 assert(0);
441 }
442
443 void rcu_register_thread(void)
444 {
445 internal_urcu_lock();
446 urcu_init(); /* In case gcc does not support constructor attribute */
447 rcu_add_reader(pthread_self());
448 internal_urcu_unlock();
449 }
450
451 void rcu_unregister_thread(void)
452 {
453 internal_urcu_lock();
454 rcu_remove_reader(pthread_self());
455 internal_urcu_unlock();
456 }
457
458 #ifndef URCU_MB
459 static void sigurcu_handler(int signo, siginfo_t *siginfo, void *context)
460 {
461 /*
462 * Executing this smp_mb() is the only purpose of this signal handler.
463 * It punctually promotes barrier() into smp_mb() on every thread it is
464 * executed on.
465 */
466 smp_mb();
467 need_mb = 0;
468 smp_mb();
469 }
470
471 /*
472 * urcu_init constructor. Called when the library is linked, but also when
473 * reader threads are calling rcu_register_thread().
474 * Should only be called by a single thread at a given time. This is ensured by
475 * holing the internal_urcu_lock() from rcu_register_thread() or by running at
476 * library load time, which should not be executed by multiple threads nor
477 * concurrently with rcu_register_thread() anyway.
478 */
479 void urcu_init(void)
480 {
481 struct sigaction act;
482 int ret;
483
484 if (init_done)
485 return;
486 init_done = 1;
487
488 act.sa_sigaction = sigurcu_handler;
489 act.sa_flags = SA_SIGINFO | SA_RESTART;
490 sigemptyset(&act.sa_mask);
491 ret = sigaction(SIGURCU, &act, NULL);
492 if (ret) {
493 perror("Error in sigaction");
494 exit(-1);
495 }
496 }
497
498 void urcu_exit(void)
499 {
500 struct sigaction act;
501 int ret;
502
503 ret = sigaction(SIGURCU, NULL, &act);
504 if (ret) {
505 perror("Error in sigaction");
506 exit(-1);
507 }
508 assert(act.sa_sigaction == sigurcu_handler);
509 free(registry);
510 }
511 #endif /* #ifndef URCU_MB */
This page took 0.038475 seconds and 4 git commands to generate.