tests: Convert unit tests to TAP
[urcu.git] / urcu-call-rcu-impl.h
1 /*
2 * urcu-call-rcu.c
3 *
4 * Userspace RCU library - batch memory reclamation with kernel API
5 *
6 * Copyright (c) 2010 Paul E. McKenney <paulmck@linux.vnet.ibm.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #define _GNU_SOURCE
24 #define _LGPL_SOURCE
25 #include <stdio.h>
26 #include <pthread.h>
27 #include <signal.h>
28 #include <assert.h>
29 #include <stdlib.h>
30 #include <stdint.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <poll.h>
34 #include <sys/time.h>
35 #include <unistd.h>
36 #include <sched.h>
37
38 #include "config.h"
39 #include "urcu/wfcqueue.h"
40 #include "urcu-call-rcu.h"
41 #include "urcu-pointer.h"
42 #include "urcu/list.h"
43 #include "urcu/futex.h"
44 #include "urcu/tls-compat.h"
45 #include "urcu/ref.h"
46 #include "urcu-die.h"
47
48 #define SET_AFFINITY_CHECK_PERIOD (1U << 8) /* 256 */
49 #define SET_AFFINITY_CHECK_PERIOD_MASK (SET_AFFINITY_CHECK_PERIOD - 1)
50
51 /* Data structure that identifies a call_rcu thread. */
52
53 struct call_rcu_data {
54 /*
55 * We do not align head on a different cache-line than tail
56 * mainly because call_rcu callback-invocation threads use
57 * batching ("splice") to get an entire list of callbacks, which
58 * effectively empties the queue, and requires to touch the tail
59 * anyway.
60 */
61 struct cds_wfcq_tail cbs_tail;
62 struct cds_wfcq_head cbs_head;
63 unsigned long flags;
64 int32_t futex;
65 unsigned long qlen; /* maintained for debugging. */
66 pthread_t tid;
67 int cpu_affinity;
68 unsigned long gp_count;
69 struct cds_list_head list;
70 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
71
72 struct call_rcu_completion {
73 int barrier_count;
74 int32_t futex;
75 struct urcu_ref ref;
76 };
77
78 struct call_rcu_completion_work {
79 struct rcu_head head;
80 struct call_rcu_completion *completion;
81 };
82
83 /*
84 * List of all call_rcu_data structures to keep valgrind happy.
85 * Protected by call_rcu_mutex.
86 */
87
88 static CDS_LIST_HEAD(call_rcu_data_list);
89
90 /* Link a thread using call_rcu() to its call_rcu thread. */
91
92 static DEFINE_URCU_TLS(struct call_rcu_data *, thread_call_rcu_data);
93
94 /*
95 * Guard call_rcu thread creation and atfork handlers.
96 */
97 static pthread_mutex_t call_rcu_mutex = PTHREAD_MUTEX_INITIALIZER;
98
99 /* If a given thread does not have its own call_rcu thread, this is default. */
100
101 static struct call_rcu_data *default_call_rcu_data;
102
103 /*
104 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
105 * available, then we can have call_rcu threads assigned to individual
106 * CPUs rather than only to specific threads.
107 */
108
109 #ifdef HAVE_SCHED_GETCPU
110
111 static int urcu_sched_getcpu(void)
112 {
113 return sched_getcpu();
114 }
115
116 #else /* #ifdef HAVE_SCHED_GETCPU */
117
118 static int urcu_sched_getcpu(void)
119 {
120 return -1;
121 }
122
123 #endif /* #else #ifdef HAVE_SCHED_GETCPU */
124
125 #if defined(HAVE_SYSCONF) && defined(HAVE_SCHED_GETCPU)
126
127 /*
128 * Pointer to array of pointers to per-CPU call_rcu_data structures
129 * and # CPUs. per_cpu_call_rcu_data is a RCU-protected pointer to an
130 * array of RCU-protected pointers to call_rcu_data. call_rcu acts as a
131 * RCU read-side and reads per_cpu_call_rcu_data and the per-cpu pointer
132 * without mutex. The call_rcu_mutex protects updates.
133 */
134
135 static struct call_rcu_data **per_cpu_call_rcu_data;
136 static long maxcpus;
137
138 static void maxcpus_reset(void)
139 {
140 maxcpus = 0;
141 }
142
143 /* Allocate the array if it has not already been allocated. */
144
145 static void alloc_cpu_call_rcu_data(void)
146 {
147 struct call_rcu_data **p;
148 static int warned = 0;
149
150 if (maxcpus != 0)
151 return;
152 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
153 if (maxcpus <= 0) {
154 return;
155 }
156 p = malloc(maxcpus * sizeof(*per_cpu_call_rcu_data));
157 if (p != NULL) {
158 memset(p, '\0', maxcpus * sizeof(*per_cpu_call_rcu_data));
159 rcu_set_pointer(&per_cpu_call_rcu_data, p);
160 } else {
161 if (!warned) {
162 fprintf(stderr, "[error] liburcu: unable to allocate per-CPU pointer array\n");
163 }
164 warned = 1;
165 }
166 }
167
168 #else /* #if defined(HAVE_SYSCONF) && defined(HAVE_SCHED_GETCPU) */
169
170 /*
171 * per_cpu_call_rcu_data should be constant, but some functions below, used both
172 * for cases where cpu number is available and not available, assume it it not
173 * constant.
174 */
175 static struct call_rcu_data **per_cpu_call_rcu_data = NULL;
176 static const long maxcpus = -1;
177
178 static void maxcpus_reset(void)
179 {
180 }
181
182 static void alloc_cpu_call_rcu_data(void)
183 {
184 }
185
186 #endif /* #else #if defined(HAVE_SYSCONF) && defined(HAVE_SCHED_GETCPU) */
187
188 /* Acquire the specified pthread mutex. */
189
190 static void call_rcu_lock(pthread_mutex_t *pmp)
191 {
192 int ret;
193
194 ret = pthread_mutex_lock(pmp);
195 if (ret)
196 urcu_die(ret);
197 }
198
199 /* Release the specified pthread mutex. */
200
201 static void call_rcu_unlock(pthread_mutex_t *pmp)
202 {
203 int ret;
204
205 ret = pthread_mutex_unlock(pmp);
206 if (ret)
207 urcu_die(ret);
208 }
209
210 /*
211 * Periodically retry setting CPU affinity if we migrate.
212 * Losing affinity can be caused by CPU hotunplug/hotplug, or by
213 * cpuset(7).
214 */
215 #if HAVE_SCHED_SETAFFINITY
216 static
217 int set_thread_cpu_affinity(struct call_rcu_data *crdp)
218 {
219 cpu_set_t mask;
220 int ret;
221
222 if (crdp->cpu_affinity < 0)
223 return 0;
224 if (++crdp->gp_count & SET_AFFINITY_CHECK_PERIOD_MASK)
225 return 0;
226 if (urcu_sched_getcpu() == crdp->cpu_affinity)
227 return 0;
228
229 CPU_ZERO(&mask);
230 CPU_SET(crdp->cpu_affinity, &mask);
231 #if SCHED_SETAFFINITY_ARGS == 2
232 ret = sched_setaffinity(0, &mask);
233 #else
234 ret = sched_setaffinity(0, sizeof(mask), &mask);
235 #endif
236 /*
237 * EINVAL is fine: can be caused by hotunplugged CPUs, or by
238 * cpuset(7). This is why we should always retry if we detect
239 * migration.
240 */
241 if (ret && errno == EINVAL) {
242 ret = 0;
243 errno = 0;
244 }
245 return ret;
246 }
247 #else
248 static
249 int set_thread_cpu_affinity(struct call_rcu_data *crdp)
250 {
251 return 0;
252 }
253 #endif
254
255 static void call_rcu_wait(struct call_rcu_data *crdp)
256 {
257 /* Read call_rcu list before read futex */
258 cmm_smp_mb();
259 if (uatomic_read(&crdp->futex) == -1)
260 futex_async(&crdp->futex, FUTEX_WAIT, -1,
261 NULL, NULL, 0);
262 }
263
264 static void call_rcu_wake_up(struct call_rcu_data *crdp)
265 {
266 /* Write to call_rcu list before reading/writing futex */
267 cmm_smp_mb();
268 if (caa_unlikely(uatomic_read(&crdp->futex) == -1)) {
269 uatomic_set(&crdp->futex, 0);
270 futex_async(&crdp->futex, FUTEX_WAKE, 1,
271 NULL, NULL, 0);
272 }
273 }
274
275 static void call_rcu_completion_wait(struct call_rcu_completion *completion)
276 {
277 /* Read completion barrier count before read futex */
278 cmm_smp_mb();
279 if (uatomic_read(&completion->futex) == -1)
280 futex_async(&completion->futex, FUTEX_WAIT, -1,
281 NULL, NULL, 0);
282 }
283
284 static void call_rcu_completion_wake_up(struct call_rcu_completion *completion)
285 {
286 /* Write to completion barrier count before reading/writing futex */
287 cmm_smp_mb();
288 if (caa_unlikely(uatomic_read(&completion->futex) == -1)) {
289 uatomic_set(&completion->futex, 0);
290 futex_async(&completion->futex, FUTEX_WAKE, 1,
291 NULL, NULL, 0);
292 }
293 }
294
295 /* This is the code run by each call_rcu thread. */
296
297 static void *call_rcu_thread(void *arg)
298 {
299 unsigned long cbcount;
300 struct call_rcu_data *crdp = (struct call_rcu_data *) arg;
301 int rt = !!(uatomic_read(&crdp->flags) & URCU_CALL_RCU_RT);
302
303 if (set_thread_cpu_affinity(crdp))
304 urcu_die(errno);
305
306 /*
307 * If callbacks take a read-side lock, we need to be registered.
308 */
309 rcu_register_thread();
310
311 URCU_TLS(thread_call_rcu_data) = crdp;
312 if (!rt) {
313 uatomic_dec(&crdp->futex);
314 /* Decrement futex before reading call_rcu list */
315 cmm_smp_mb();
316 }
317 for (;;) {
318 struct cds_wfcq_head cbs_tmp_head;
319 struct cds_wfcq_tail cbs_tmp_tail;
320 struct cds_wfcq_node *cbs, *cbs_tmp_n;
321 enum cds_wfcq_ret splice_ret;
322
323 if (set_thread_cpu_affinity(crdp))
324 urcu_die(errno);
325
326 if (uatomic_read(&crdp->flags) & URCU_CALL_RCU_PAUSE) {
327 /*
328 * Pause requested. Become quiescent: remove
329 * ourself from all global lists, and don't
330 * process any callback. The callback lists may
331 * still be non-empty though.
332 */
333 rcu_unregister_thread();
334 cmm_smp_mb__before_uatomic_or();
335 uatomic_or(&crdp->flags, URCU_CALL_RCU_PAUSED);
336 while ((uatomic_read(&crdp->flags) & URCU_CALL_RCU_PAUSE) != 0)
337 (void) poll(NULL, 0, 1);
338 uatomic_and(&crdp->flags, ~URCU_CALL_RCU_PAUSED);
339 cmm_smp_mb__after_uatomic_and();
340 rcu_register_thread();
341 }
342
343 cds_wfcq_init(&cbs_tmp_head, &cbs_tmp_tail);
344 splice_ret = __cds_wfcq_splice_blocking(&cbs_tmp_head,
345 &cbs_tmp_tail, &crdp->cbs_head, &crdp->cbs_tail);
346 assert(splice_ret != CDS_WFCQ_RET_WOULDBLOCK);
347 assert(splice_ret != CDS_WFCQ_RET_DEST_NON_EMPTY);
348 if (splice_ret != CDS_WFCQ_RET_SRC_EMPTY) {
349 synchronize_rcu();
350 cbcount = 0;
351 __cds_wfcq_for_each_blocking_safe(&cbs_tmp_head,
352 &cbs_tmp_tail, cbs, cbs_tmp_n) {
353 struct rcu_head *rhp;
354
355 rhp = caa_container_of(cbs,
356 struct rcu_head, next);
357 rhp->func(rhp);
358 cbcount++;
359 }
360 uatomic_sub(&crdp->qlen, cbcount);
361 }
362 if (uatomic_read(&crdp->flags) & URCU_CALL_RCU_STOP)
363 break;
364 rcu_thread_offline();
365 if (!rt) {
366 if (cds_wfcq_empty(&crdp->cbs_head,
367 &crdp->cbs_tail)) {
368 call_rcu_wait(crdp);
369 (void) poll(NULL, 0, 10);
370 uatomic_dec(&crdp->futex);
371 /*
372 * Decrement futex before reading
373 * call_rcu list.
374 */
375 cmm_smp_mb();
376 } else {
377 (void) poll(NULL, 0, 10);
378 }
379 } else {
380 (void) poll(NULL, 0, 10);
381 }
382 rcu_thread_online();
383 }
384 if (!rt) {
385 /*
386 * Read call_rcu list before write futex.
387 */
388 cmm_smp_mb();
389 uatomic_set(&crdp->futex, 0);
390 }
391 uatomic_or(&crdp->flags, URCU_CALL_RCU_STOPPED);
392 rcu_unregister_thread();
393 return NULL;
394 }
395
396 /*
397 * Create both a call_rcu thread and the corresponding call_rcu_data
398 * structure, linking the structure in as specified. Caller must hold
399 * call_rcu_mutex.
400 */
401
402 static void call_rcu_data_init(struct call_rcu_data **crdpp,
403 unsigned long flags,
404 int cpu_affinity)
405 {
406 struct call_rcu_data *crdp;
407 int ret;
408
409 crdp = malloc(sizeof(*crdp));
410 if (crdp == NULL)
411 urcu_die(errno);
412 memset(crdp, '\0', sizeof(*crdp));
413 cds_wfcq_init(&crdp->cbs_head, &crdp->cbs_tail);
414 crdp->qlen = 0;
415 crdp->futex = 0;
416 crdp->flags = flags;
417 cds_list_add(&crdp->list, &call_rcu_data_list);
418 crdp->cpu_affinity = cpu_affinity;
419 crdp->gp_count = 0;
420 cmm_smp_mb(); /* Structure initialized before pointer is planted. */
421 *crdpp = crdp;
422 ret = pthread_create(&crdp->tid, NULL, call_rcu_thread, crdp);
423 if (ret)
424 urcu_die(ret);
425 }
426
427 /*
428 * Return a pointer to the call_rcu_data structure for the specified
429 * CPU, returning NULL if there is none. We cannot automatically
430 * created it because the platform we are running on might not define
431 * urcu_sched_getcpu().
432 *
433 * The call to this function and use of the returned call_rcu_data
434 * should be protected by RCU read-side lock.
435 */
436
437 struct call_rcu_data *get_cpu_call_rcu_data(int cpu)
438 {
439 static int warned = 0;
440 struct call_rcu_data **pcpu_crdp;
441
442 pcpu_crdp = rcu_dereference(per_cpu_call_rcu_data);
443 if (pcpu_crdp == NULL)
444 return NULL;
445 if (!warned && maxcpus > 0 && (cpu < 0 || maxcpus <= cpu)) {
446 fprintf(stderr, "[error] liburcu: get CPU # out of range\n");
447 warned = 1;
448 }
449 if (cpu < 0 || maxcpus <= cpu)
450 return NULL;
451 return rcu_dereference(pcpu_crdp[cpu]);
452 }
453
454 /*
455 * Return the tid corresponding to the call_rcu thread whose
456 * call_rcu_data structure is specified.
457 */
458
459 pthread_t get_call_rcu_thread(struct call_rcu_data *crdp)
460 {
461 return crdp->tid;
462 }
463
464 /*
465 * Create a call_rcu_data structure (with thread) and return a pointer.
466 */
467
468 static struct call_rcu_data *__create_call_rcu_data(unsigned long flags,
469 int cpu_affinity)
470 {
471 struct call_rcu_data *crdp;
472
473 call_rcu_data_init(&crdp, flags, cpu_affinity);
474 return crdp;
475 }
476
477 struct call_rcu_data *create_call_rcu_data(unsigned long flags,
478 int cpu_affinity)
479 {
480 struct call_rcu_data *crdp;
481
482 call_rcu_lock(&call_rcu_mutex);
483 crdp = __create_call_rcu_data(flags, cpu_affinity);
484 call_rcu_unlock(&call_rcu_mutex);
485 return crdp;
486 }
487
488 /*
489 * Set the specified CPU to use the specified call_rcu_data structure.
490 *
491 * Use NULL to remove a CPU's call_rcu_data structure, but it is
492 * the caller's responsibility to dispose of the removed structure.
493 * Use get_cpu_call_rcu_data() to obtain a pointer to the old structure
494 * (prior to NULLing it out, of course).
495 *
496 * The caller must wait for a grace-period to pass between return from
497 * set_cpu_call_rcu_data() and call to call_rcu_data_free() passing the
498 * previous call rcu data as argument.
499 */
500
501 int set_cpu_call_rcu_data(int cpu, struct call_rcu_data *crdp)
502 {
503 static int warned = 0;
504
505 call_rcu_lock(&call_rcu_mutex);
506 alloc_cpu_call_rcu_data();
507 if (cpu < 0 || maxcpus <= cpu) {
508 if (!warned) {
509 fprintf(stderr, "[error] liburcu: set CPU # out of range\n");
510 warned = 1;
511 }
512 call_rcu_unlock(&call_rcu_mutex);
513 errno = EINVAL;
514 return -EINVAL;
515 }
516
517 if (per_cpu_call_rcu_data == NULL) {
518 call_rcu_unlock(&call_rcu_mutex);
519 errno = ENOMEM;
520 return -ENOMEM;
521 }
522
523 if (per_cpu_call_rcu_data[cpu] != NULL && crdp != NULL) {
524 call_rcu_unlock(&call_rcu_mutex);
525 errno = EEXIST;
526 return -EEXIST;
527 }
528
529 rcu_set_pointer(&per_cpu_call_rcu_data[cpu], crdp);
530 call_rcu_unlock(&call_rcu_mutex);
531 return 0;
532 }
533
534 /*
535 * Return a pointer to the default call_rcu_data structure, creating
536 * one if need be. Because we never free call_rcu_data structures,
537 * we don't need to be in an RCU read-side critical section.
538 */
539
540 struct call_rcu_data *get_default_call_rcu_data(void)
541 {
542 if (default_call_rcu_data != NULL)
543 return rcu_dereference(default_call_rcu_data);
544 call_rcu_lock(&call_rcu_mutex);
545 if (default_call_rcu_data != NULL) {
546 call_rcu_unlock(&call_rcu_mutex);
547 return default_call_rcu_data;
548 }
549 call_rcu_data_init(&default_call_rcu_data, 0, -1);
550 call_rcu_unlock(&call_rcu_mutex);
551 return default_call_rcu_data;
552 }
553
554 /*
555 * Return the call_rcu_data structure that applies to the currently
556 * running thread. Any call_rcu_data structure assigned specifically
557 * to this thread has first priority, followed by any call_rcu_data
558 * structure assigned to the CPU on which the thread is running,
559 * followed by the default call_rcu_data structure. If there is not
560 * yet a default call_rcu_data structure, one will be created.
561 *
562 * Calls to this function and use of the returned call_rcu_data should
563 * be protected by RCU read-side lock.
564 */
565 struct call_rcu_data *get_call_rcu_data(void)
566 {
567 struct call_rcu_data *crd;
568
569 if (URCU_TLS(thread_call_rcu_data) != NULL)
570 return URCU_TLS(thread_call_rcu_data);
571
572 if (maxcpus > 0) {
573 crd = get_cpu_call_rcu_data(urcu_sched_getcpu());
574 if (crd)
575 return crd;
576 }
577
578 return get_default_call_rcu_data();
579 }
580
581 /*
582 * Return a pointer to this task's call_rcu_data if there is one.
583 */
584
585 struct call_rcu_data *get_thread_call_rcu_data(void)
586 {
587 return URCU_TLS(thread_call_rcu_data);
588 }
589
590 /*
591 * Set this task's call_rcu_data structure as specified, regardless
592 * of whether or not this task already had one. (This allows switching
593 * to and from real-time call_rcu threads, for example.)
594 *
595 * Use NULL to remove a thread's call_rcu_data structure, but it is
596 * the caller's responsibility to dispose of the removed structure.
597 * Use get_thread_call_rcu_data() to obtain a pointer to the old structure
598 * (prior to NULLing it out, of course).
599 */
600
601 void set_thread_call_rcu_data(struct call_rcu_data *crdp)
602 {
603 URCU_TLS(thread_call_rcu_data) = crdp;
604 }
605
606 /*
607 * Create a separate call_rcu thread for each CPU. This does not
608 * replace a pre-existing call_rcu thread -- use the set_cpu_call_rcu_data()
609 * function if you want that behavior. Should be paired with
610 * free_all_cpu_call_rcu_data() to teardown these call_rcu worker
611 * threads.
612 */
613
614 int create_all_cpu_call_rcu_data(unsigned long flags)
615 {
616 int i;
617 struct call_rcu_data *crdp;
618 int ret;
619
620 call_rcu_lock(&call_rcu_mutex);
621 alloc_cpu_call_rcu_data();
622 call_rcu_unlock(&call_rcu_mutex);
623 if (maxcpus <= 0) {
624 errno = EINVAL;
625 return -EINVAL;
626 }
627 if (per_cpu_call_rcu_data == NULL) {
628 errno = ENOMEM;
629 return -ENOMEM;
630 }
631 for (i = 0; i < maxcpus; i++) {
632 call_rcu_lock(&call_rcu_mutex);
633 if (get_cpu_call_rcu_data(i)) {
634 call_rcu_unlock(&call_rcu_mutex);
635 continue;
636 }
637 crdp = __create_call_rcu_data(flags, i);
638 if (crdp == NULL) {
639 call_rcu_unlock(&call_rcu_mutex);
640 errno = ENOMEM;
641 return -ENOMEM;
642 }
643 call_rcu_unlock(&call_rcu_mutex);
644 if ((ret = set_cpu_call_rcu_data(i, crdp)) != 0) {
645 call_rcu_data_free(crdp);
646
647 /* it has been created by other thread */
648 if (ret == -EEXIST)
649 continue;
650
651 return ret;
652 }
653 }
654 return 0;
655 }
656
657 /*
658 * Wake up the call_rcu thread corresponding to the specified
659 * call_rcu_data structure.
660 */
661 static void wake_call_rcu_thread(struct call_rcu_data *crdp)
662 {
663 if (!(_CMM_LOAD_SHARED(crdp->flags) & URCU_CALL_RCU_RT))
664 call_rcu_wake_up(crdp);
665 }
666
667 static void _call_rcu(struct rcu_head *head,
668 void (*func)(struct rcu_head *head),
669 struct call_rcu_data *crdp)
670 {
671 cds_wfcq_node_init(&head->next);
672 head->func = func;
673 cds_wfcq_enqueue(&crdp->cbs_head, &crdp->cbs_tail, &head->next);
674 uatomic_inc(&crdp->qlen);
675 wake_call_rcu_thread(crdp);
676 }
677
678 /*
679 * Schedule a function to be invoked after a following grace period.
680 * This is the only function that must be called -- the others are
681 * only present to allow applications to tune their use of RCU for
682 * maximum performance.
683 *
684 * Note that unless a call_rcu thread has not already been created,
685 * the first invocation of call_rcu() will create one. So, if you
686 * need the first invocation of call_rcu() to be fast, make sure
687 * to create a call_rcu thread first. One way to accomplish this is
688 * "get_call_rcu_data();", and another is create_all_cpu_call_rcu_data().
689 *
690 * call_rcu must be called by registered RCU read-side threads.
691 */
692 void call_rcu(struct rcu_head *head,
693 void (*func)(struct rcu_head *head))
694 {
695 struct call_rcu_data *crdp;
696
697 /* Holding rcu read-side lock across use of per-cpu crdp */
698 _rcu_read_lock();
699 crdp = get_call_rcu_data();
700 _call_rcu(head, func, crdp);
701 _rcu_read_unlock();
702 }
703
704 /*
705 * Free up the specified call_rcu_data structure, terminating the
706 * associated call_rcu thread. The caller must have previously
707 * removed the call_rcu_data structure from per-thread or per-CPU
708 * usage. For example, set_cpu_call_rcu_data(cpu, NULL) for per-CPU
709 * call_rcu_data structures or set_thread_call_rcu_data(NULL) for
710 * per-thread call_rcu_data structures.
711 *
712 * We silently refuse to free up the default call_rcu_data structure
713 * because that is where we put any leftover callbacks. Note that
714 * the possibility of self-spawning callbacks makes it impossible
715 * to execute all the callbacks in finite time without putting any
716 * newly spawned callbacks somewhere else. The "somewhere else" of
717 * last resort is the default call_rcu_data structure.
718 *
719 * We also silently refuse to free NULL pointers. This simplifies
720 * the calling code.
721 *
722 * The caller must wait for a grace-period to pass between return from
723 * set_cpu_call_rcu_data() and call to call_rcu_data_free() passing the
724 * previous call rcu data as argument.
725 *
726 * Note: introducing __cds_wfcq_splice_blocking() in this function fixed
727 * a list corruption bug in the 0.7.x series. The equivalent fix
728 * appeared in 0.6.8 for the stable-0.6 branch.
729 */
730 void call_rcu_data_free(struct call_rcu_data *crdp)
731 {
732 if (crdp == NULL || crdp == default_call_rcu_data) {
733 return;
734 }
735 if ((uatomic_read(&crdp->flags) & URCU_CALL_RCU_STOPPED) == 0) {
736 uatomic_or(&crdp->flags, URCU_CALL_RCU_STOP);
737 wake_call_rcu_thread(crdp);
738 while ((uatomic_read(&crdp->flags) & URCU_CALL_RCU_STOPPED) == 0)
739 (void) poll(NULL, 0, 1);
740 }
741 if (!cds_wfcq_empty(&crdp->cbs_head, &crdp->cbs_tail)) {
742 /* Create default call rcu data if need be */
743 (void) get_default_call_rcu_data();
744 __cds_wfcq_splice_blocking(&default_call_rcu_data->cbs_head,
745 &default_call_rcu_data->cbs_tail,
746 &crdp->cbs_head, &crdp->cbs_tail);
747 uatomic_add(&default_call_rcu_data->qlen,
748 uatomic_read(&crdp->qlen));
749 wake_call_rcu_thread(default_call_rcu_data);
750 }
751
752 call_rcu_lock(&call_rcu_mutex);
753 cds_list_del(&crdp->list);
754 call_rcu_unlock(&call_rcu_mutex);
755
756 free(crdp);
757 }
758
759 /*
760 * Clean up all the per-CPU call_rcu threads.
761 */
762 void free_all_cpu_call_rcu_data(void)
763 {
764 int cpu;
765 struct call_rcu_data **crdp;
766 static int warned = 0;
767
768 if (maxcpus <= 0)
769 return;
770
771 crdp = malloc(sizeof(*crdp) * maxcpus);
772 if (!crdp) {
773 if (!warned) {
774 fprintf(stderr, "[error] liburcu: unable to allocate per-CPU pointer array\n");
775 }
776 warned = 1;
777 return;
778 }
779
780 for (cpu = 0; cpu < maxcpus; cpu++) {
781 crdp[cpu] = get_cpu_call_rcu_data(cpu);
782 if (crdp[cpu] == NULL)
783 continue;
784 set_cpu_call_rcu_data(cpu, NULL);
785 }
786 /*
787 * Wait for call_rcu sites acting as RCU readers of the
788 * call_rcu_data to become quiescent.
789 */
790 synchronize_rcu();
791 for (cpu = 0; cpu < maxcpus; cpu++) {
792 if (crdp[cpu] == NULL)
793 continue;
794 call_rcu_data_free(crdp[cpu]);
795 }
796 free(crdp);
797 }
798
799 static
800 void free_completion(struct urcu_ref *ref)
801 {
802 struct call_rcu_completion *completion;
803
804 completion = caa_container_of(ref, struct call_rcu_completion, ref);
805 free(completion);
806 }
807
808 static
809 void _rcu_barrier_complete(struct rcu_head *head)
810 {
811 struct call_rcu_completion_work *work;
812 struct call_rcu_completion *completion;
813
814 work = caa_container_of(head, struct call_rcu_completion_work, head);
815 completion = work->completion;
816 if (!uatomic_sub_return(&completion->barrier_count, 1))
817 call_rcu_completion_wake_up(completion);
818 urcu_ref_put(&completion->ref, free_completion);
819 free(work);
820 }
821
822 /*
823 * Wait for all in-flight call_rcu callbacks to complete execution.
824 */
825 void rcu_barrier(void)
826 {
827 struct call_rcu_data *crdp;
828 struct call_rcu_completion *completion;
829 int count = 0;
830 int was_online;
831
832 /* Put in offline state in QSBR. */
833 was_online = _rcu_read_ongoing();
834 if (was_online)
835 rcu_thread_offline();
836 /*
837 * Calling a rcu_barrier() within a RCU read-side critical
838 * section is an error.
839 */
840 if (_rcu_read_ongoing()) {
841 static int warned = 0;
842
843 if (!warned) {
844 fprintf(stderr, "[error] liburcu: rcu_barrier() called from within RCU read-side critical section.\n");
845 }
846 warned = 1;
847 goto online;
848 }
849
850 completion = calloc(sizeof(*completion), 1);
851 if (!completion)
852 urcu_die(errno);
853
854 call_rcu_lock(&call_rcu_mutex);
855 cds_list_for_each_entry(crdp, &call_rcu_data_list, list)
856 count++;
857
858 /* Referenced by rcu_barrier() and each call_rcu thread. */
859 urcu_ref_set(&completion->ref, count + 1);
860 completion->barrier_count = count;
861
862 cds_list_for_each_entry(crdp, &call_rcu_data_list, list) {
863 struct call_rcu_completion_work *work;
864
865 work = calloc(sizeof(*work), 1);
866 if (!work)
867 urcu_die(errno);
868 work->completion = completion;
869 _call_rcu(&work->head, _rcu_barrier_complete, crdp);
870 }
871 call_rcu_unlock(&call_rcu_mutex);
872
873 /* Wait for them */
874 for (;;) {
875 uatomic_dec(&completion->futex);
876 /* Decrement futex before reading barrier_count */
877 cmm_smp_mb();
878 if (!uatomic_read(&completion->barrier_count))
879 break;
880 call_rcu_completion_wait(completion);
881 }
882
883 urcu_ref_put(&completion->ref, free_completion);
884
885 online:
886 if (was_online)
887 rcu_thread_online();
888 }
889
890 /*
891 * Acquire the call_rcu_mutex in order to ensure that the child sees
892 * all of the call_rcu() data structures in a consistent state. Ensure
893 * that all call_rcu threads are in a quiescent state across fork.
894 * Suitable for pthread_atfork() and friends.
895 */
896 void call_rcu_before_fork(void)
897 {
898 struct call_rcu_data *crdp;
899
900 call_rcu_lock(&call_rcu_mutex);
901
902 cds_list_for_each_entry(crdp, &call_rcu_data_list, list) {
903 uatomic_or(&crdp->flags, URCU_CALL_RCU_PAUSE);
904 cmm_smp_mb__after_uatomic_or();
905 wake_call_rcu_thread(crdp);
906 }
907 cds_list_for_each_entry(crdp, &call_rcu_data_list, list) {
908 while ((uatomic_read(&crdp->flags) & URCU_CALL_RCU_PAUSED) == 0)
909 (void) poll(NULL, 0, 1);
910 }
911 }
912
913 /*
914 * Clean up call_rcu data structures in the parent of a successful fork()
915 * that is not followed by exec() in the child. Suitable for
916 * pthread_atfork() and friends.
917 */
918 void call_rcu_after_fork_parent(void)
919 {
920 struct call_rcu_data *crdp;
921
922 cds_list_for_each_entry(crdp, &call_rcu_data_list, list)
923 uatomic_and(&crdp->flags, ~URCU_CALL_RCU_PAUSE);
924 cds_list_for_each_entry(crdp, &call_rcu_data_list, list) {
925 while ((uatomic_read(&crdp->flags) & URCU_CALL_RCU_PAUSED) != 0)
926 (void) poll(NULL, 0, 1);
927 }
928 call_rcu_unlock(&call_rcu_mutex);
929 }
930
931 /*
932 * Clean up call_rcu data structures in the child of a successful fork()
933 * that is not followed by exec(). Suitable for pthread_atfork() and
934 * friends.
935 */
936 void call_rcu_after_fork_child(void)
937 {
938 struct call_rcu_data *crdp, *next;
939
940 /* Release the mutex. */
941 call_rcu_unlock(&call_rcu_mutex);
942
943 /* Do nothing when call_rcu() has not been used */
944 if (cds_list_empty(&call_rcu_data_list))
945 return;
946
947 /*
948 * Allocate a new default call_rcu_data structure in order
949 * to get a working call_rcu thread to go with it.
950 */
951 default_call_rcu_data = NULL;
952 (void)get_default_call_rcu_data();
953
954 /* Cleanup call_rcu_data pointers before use */
955 maxcpus_reset();
956 free(per_cpu_call_rcu_data);
957 rcu_set_pointer(&per_cpu_call_rcu_data, NULL);
958 URCU_TLS(thread_call_rcu_data) = NULL;
959
960 /*
961 * Dispose of all of the rest of the call_rcu_data structures.
962 * Leftover call_rcu callbacks will be merged into the new
963 * default call_rcu thread queue.
964 */
965 cds_list_for_each_entry_safe(crdp, next, &call_rcu_data_list, list) {
966 if (crdp == default_call_rcu_data)
967 continue;
968 uatomic_set(&crdp->flags, URCU_CALL_RCU_STOPPED);
969 call_rcu_data_free(crdp);
970 }
971 }
This page took 0.049077 seconds and 4 git commands to generate.