call_rcu implementation: add missing static
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /*
160 * Per-CPU split-counters lazily update the global counter each 1024
161 * addition/removal. It automatically keeps track of resize required.
162 * We use the bucket length as indicator for need to expand for small
163 * tables and machines lacking per-cpu data suppport.
164 */
165 #define COUNT_COMMIT_ORDER 10
166 #define CHAIN_LEN_TARGET 1
167 #define CHAIN_LEN_RESIZE_THRESHOLD 3
168
169 /*
170 * Define the minimum table size.
171 */
172 //#define MIN_TABLE_SIZE 128
173 #define MIN_TABLE_SIZE 1
174
175 #if (CAA_BITS_PER_LONG == 32)
176 #define MAX_TABLE_ORDER 32
177 #else
178 #define MAX_TABLE_ORDER 64
179 #endif
180
181 #ifndef min
182 #define min(a, b) ((a) < (b) ? (a) : (b))
183 #endif
184
185 #ifndef max
186 #define max(a, b) ((a) > (b) ? (a) : (b))
187 #endif
188
189 /*
190 * The removed flag needs to be updated atomically with the pointer.
191 * The dummy flag does not require to be updated atomically with the
192 * pointer, but it is added as a pointer low bit flag to save space.
193 */
194 #define REMOVED_FLAG (1UL << 0)
195 #define DUMMY_FLAG (1UL << 1)
196 #define FLAGS_MASK ((1UL << 2) - 1)
197
198 /* Value of the end pointer. Should not interact with flags. */
199 #define END_VALUE 0x4
200
201 struct ht_items_count {
202 unsigned long add, remove;
203 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
204
205 struct rcu_level {
206 struct rcu_head head;
207 struct _cds_lfht_node nodes[0];
208 };
209
210 struct rcu_table {
211 unsigned long size; /* always a power of 2, shared (RCU) */
212 unsigned long resize_target;
213 int resize_initiated;
214 struct rcu_level *tbl[MAX_TABLE_ORDER];
215 };
216
217 struct cds_lfht {
218 struct rcu_table t;
219 cds_lfht_hash_fct hash_fct;
220 cds_lfht_compare_fct compare_fct;
221 unsigned long hash_seed;
222 int flags;
223 /*
224 * We need to put the work threads offline (QSBR) when taking this
225 * mutex, because we use synchronize_rcu within this mutex critical
226 * section, which waits on read-side critical sections, and could
227 * therefore cause grace-period deadlock if we hold off RCU G.P.
228 * completion.
229 */
230 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
231 unsigned int in_progress_resize, in_progress_destroy;
232 void (*cds_lfht_call_rcu)(struct rcu_head *head,
233 void (*func)(struct rcu_head *head));
234 void (*cds_lfht_synchronize_rcu)(void);
235 void (*cds_lfht_rcu_read_lock)(void);
236 void (*cds_lfht_rcu_read_unlock)(void);
237 void (*cds_lfht_rcu_thread_offline)(void);
238 void (*cds_lfht_rcu_thread_online)(void);
239 unsigned long count; /* global approximate item count */
240 struct ht_items_count *percpu_count; /* per-cpu item count */
241 };
242
243 struct rcu_resize_work {
244 struct rcu_head head;
245 struct cds_lfht *ht;
246 };
247
248 static
249 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
250 unsigned long size,
251 struct cds_lfht_node *node,
252 int unique, int dummy);
253
254 /*
255 * Algorithm to reverse bits in a word by lookup table, extended to
256 * 64-bit words.
257 * Source:
258 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
259 * Originally from Public Domain.
260 */
261
262 static const uint8_t BitReverseTable256[256] =
263 {
264 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
265 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
266 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
267 R6(0), R6(2), R6(1), R6(3)
268 };
269 #undef R2
270 #undef R4
271 #undef R6
272
273 static
274 uint8_t bit_reverse_u8(uint8_t v)
275 {
276 return BitReverseTable256[v];
277 }
278
279 static __attribute__((unused))
280 uint32_t bit_reverse_u32(uint32_t v)
281 {
282 return ((uint32_t) bit_reverse_u8(v) << 24) |
283 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
284 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
285 ((uint32_t) bit_reverse_u8(v >> 24));
286 }
287
288 static __attribute__((unused))
289 uint64_t bit_reverse_u64(uint64_t v)
290 {
291 return ((uint64_t) bit_reverse_u8(v) << 56) |
292 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
293 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
294 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
295 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
296 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
297 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
298 ((uint64_t) bit_reverse_u8(v >> 56));
299 }
300
301 static
302 unsigned long bit_reverse_ulong(unsigned long v)
303 {
304 #if (CAA_BITS_PER_LONG == 32)
305 return bit_reverse_u32(v);
306 #else
307 return bit_reverse_u64(v);
308 #endif
309 }
310
311 /*
312 * fls: returns the position of the most significant bit.
313 * Returns 0 if no bit is set, else returns the position of the most
314 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
315 */
316 #if defined(__i386) || defined(__x86_64)
317 static inline
318 unsigned int fls_u32(uint32_t x)
319 {
320 int r;
321
322 asm("bsrl %1,%0\n\t"
323 "jnz 1f\n\t"
324 "movl $-1,%0\n\t"
325 "1:\n\t"
326 : "=r" (r) : "rm" (x));
327 return r + 1;
328 }
329 #define HAS_FLS_U32
330 #endif
331
332 #if defined(__x86_64)
333 static inline
334 unsigned int fls_u64(uint64_t x)
335 {
336 long r;
337
338 asm("bsrq %1,%0\n\t"
339 "jnz 1f\n\t"
340 "movq $-1,%0\n\t"
341 "1:\n\t"
342 : "=r" (r) : "rm" (x));
343 return r + 1;
344 }
345 #define HAS_FLS_U64
346 #endif
347
348 #ifndef HAS_FLS_U64
349 static __attribute__((unused))
350 unsigned int fls_u64(uint64_t x)
351 {
352 unsigned int r = 64;
353
354 if (!x)
355 return 0;
356
357 if (!(x & 0xFFFFFFFF00000000ULL)) {
358 x <<= 32;
359 r -= 32;
360 }
361 if (!(x & 0xFFFF000000000000ULL)) {
362 x <<= 16;
363 r -= 16;
364 }
365 if (!(x & 0xFF00000000000000ULL)) {
366 x <<= 8;
367 r -= 8;
368 }
369 if (!(x & 0xF000000000000000ULL)) {
370 x <<= 4;
371 r -= 4;
372 }
373 if (!(x & 0xC000000000000000ULL)) {
374 x <<= 2;
375 r -= 2;
376 }
377 if (!(x & 0x8000000000000000ULL)) {
378 x <<= 1;
379 r -= 1;
380 }
381 return r;
382 }
383 #endif
384
385 #ifndef HAS_FLS_U32
386 static __attribute__((unused))
387 unsigned int fls_u32(uint32_t x)
388 {
389 unsigned int r = 32;
390
391 if (!x)
392 return 0;
393 if (!(x & 0xFFFF0000U)) {
394 x <<= 16;
395 r -= 16;
396 }
397 if (!(x & 0xFF000000U)) {
398 x <<= 8;
399 r -= 8;
400 }
401 if (!(x & 0xF0000000U)) {
402 x <<= 4;
403 r -= 4;
404 }
405 if (!(x & 0xC0000000U)) {
406 x <<= 2;
407 r -= 2;
408 }
409 if (!(x & 0x80000000U)) {
410 x <<= 1;
411 r -= 1;
412 }
413 return r;
414 }
415 #endif
416
417 unsigned int fls_ulong(unsigned long x)
418 {
419 #if (CAA_BITS_PER_lONG == 32)
420 return fls_u32(x);
421 #else
422 return fls_u64(x);
423 #endif
424 }
425
426 int get_count_order_u32(uint32_t x)
427 {
428 int order;
429
430 order = fls_u32(x) - 1;
431 if (x & (x - 1))
432 order++;
433 return order;
434 }
435
436 int get_count_order_ulong(unsigned long x)
437 {
438 int order;
439
440 order = fls_ulong(x) - 1;
441 if (x & (x - 1))
442 order++;
443 return order;
444 }
445
446 #ifdef POISON_FREE
447 #define poison_free(ptr) \
448 do { \
449 memset(ptr, 0x42, sizeof(*(ptr))); \
450 free(ptr); \
451 } while (0)
452 #else
453 #define poison_free(ptr) free(ptr)
454 #endif
455
456 static
457 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
458
459 /*
460 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
461 * available, then we support hash table item accounting.
462 * In the unfortunate event the number of CPUs reported would be
463 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
464 */
465 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
466
467 static
468 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
469 unsigned long count);
470
471 static long nr_cpus_mask = -1;
472
473 static
474 struct ht_items_count *alloc_per_cpu_items_count(void)
475 {
476 struct ht_items_count *count;
477
478 switch (nr_cpus_mask) {
479 case -2:
480 return NULL;
481 case -1:
482 {
483 long maxcpus;
484
485 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
486 if (maxcpus <= 0) {
487 nr_cpus_mask = -2;
488 return NULL;
489 }
490 /*
491 * round up number of CPUs to next power of two, so we
492 * can use & for modulo.
493 */
494 maxcpus = 1UL << get_count_order_ulong(maxcpus);
495 nr_cpus_mask = maxcpus - 1;
496 }
497 /* Fall-through */
498 default:
499 return calloc(nr_cpus_mask + 1, sizeof(*count));
500 }
501 }
502
503 static
504 void free_per_cpu_items_count(struct ht_items_count *count)
505 {
506 poison_free(count);
507 }
508
509 static
510 int ht_get_cpu(void)
511 {
512 int cpu;
513
514 assert(nr_cpus_mask >= 0);
515 cpu = sched_getcpu();
516 if (unlikely(cpu < 0))
517 return cpu;
518 else
519 return cpu & nr_cpus_mask;
520 }
521
522 static
523 void ht_count_add(struct cds_lfht *ht, unsigned long size)
524 {
525 unsigned long percpu_count;
526 int cpu;
527
528 if (unlikely(!ht->percpu_count))
529 return;
530 cpu = ht_get_cpu();
531 if (unlikely(cpu < 0))
532 return;
533 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
534 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
535 unsigned long count;
536
537 dbg_printf("add percpu %lu\n", percpu_count);
538 count = uatomic_add_return(&ht->count,
539 1UL << COUNT_COMMIT_ORDER);
540 /* If power of 2 */
541 if (!(count & (count - 1))) {
542 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
543 return;
544 dbg_printf("add set global %lu\n", count);
545 cds_lfht_resize_lazy_count(ht, size,
546 count >> (CHAIN_LEN_TARGET - 1));
547 }
548 }
549 }
550
551 static
552 void ht_count_remove(struct cds_lfht *ht, unsigned long size)
553 {
554 unsigned long percpu_count;
555 int cpu;
556
557 if (unlikely(!ht->percpu_count))
558 return;
559 cpu = ht_get_cpu();
560 if (unlikely(cpu < 0))
561 return;
562 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].remove, -1);
563 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
564 unsigned long count;
565
566 dbg_printf("remove percpu %lu\n", percpu_count);
567 count = uatomic_add_return(&ht->count,
568 -(1UL << COUNT_COMMIT_ORDER));
569 /* If power of 2 */
570 if (!(count & (count - 1))) {
571 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
572 return;
573 dbg_printf("remove set global %lu\n", count);
574 cds_lfht_resize_lazy_count(ht, size,
575 count >> (CHAIN_LEN_TARGET - 1));
576 }
577 }
578 }
579
580 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
581
582 static const long nr_cpus_mask = -1;
583
584 static
585 struct ht_items_count *alloc_per_cpu_items_count(void)
586 {
587 return NULL;
588 }
589
590 static
591 void free_per_cpu_items_count(struct ht_items_count *count)
592 {
593 }
594
595 static
596 void ht_count_add(struct cds_lfht *ht, unsigned long size)
597 {
598 }
599
600 static
601 void ht_count_remove(struct cds_lfht *ht, unsigned long size)
602 {
603 }
604
605 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
606
607
608 static
609 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
610 {
611 unsigned long count;
612
613 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
614 return;
615 count = uatomic_read(&ht->count);
616 /*
617 * Use bucket-local length for small table expand and for
618 * environments lacking per-cpu data support.
619 */
620 if (count >= (1UL << COUNT_COMMIT_ORDER))
621 return;
622 if (chain_len > 100)
623 dbg_printf("WARNING: large chain length: %u.\n",
624 chain_len);
625 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
626 cds_lfht_resize_lazy(ht, size,
627 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
628 }
629
630 static
631 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
632 {
633 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
634 }
635
636 static
637 int is_removed(struct cds_lfht_node *node)
638 {
639 return ((unsigned long) node) & REMOVED_FLAG;
640 }
641
642 static
643 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
644 {
645 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
646 }
647
648 static
649 int is_dummy(struct cds_lfht_node *node)
650 {
651 return ((unsigned long) node) & DUMMY_FLAG;
652 }
653
654 static
655 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
656 {
657 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
658 }
659
660 static
661 struct cds_lfht_node *get_end(void)
662 {
663 return (struct cds_lfht_node *) END_VALUE;
664 }
665
666 static
667 int is_end(struct cds_lfht_node *node)
668 {
669 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
670 }
671
672 static
673 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
674 {
675 unsigned long old1, old2;
676
677 old1 = uatomic_read(ptr);
678 do {
679 old2 = old1;
680 if (old2 >= v)
681 return old2;
682 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
683 return v;
684 }
685
686 static
687 void cds_lfht_free_level(struct rcu_head *head)
688 {
689 struct rcu_level *l =
690 caa_container_of(head, struct rcu_level, head);
691 poison_free(l);
692 }
693
694 /*
695 * Remove all logically deleted nodes from a bucket up to a certain node key.
696 */
697 static
698 int _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
699 {
700 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
701
702 assert(!is_dummy(dummy));
703 assert(!is_removed(dummy));
704 assert(!is_dummy(node));
705 assert(!is_removed(node));
706 for (;;) {
707 iter_prev = dummy;
708 /* We can always skip the dummy node initially */
709 iter = rcu_dereference(iter_prev->p.next);
710 if (unlikely(iter == NULL)) {
711 /*
712 * We are executing concurrently with a hash table
713 * expand, so we see a dummy node with NULL next value.
714 * Help expand by linking this node into the list and
715 * retry.
716 */
717 return 1;
718 }
719 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
720 /*
721 * We should never be called with dummy (start of chain)
722 * and logically removed node (end of path compression
723 * marker) being the actual same node. This would be a
724 * bug in the algorithm implementation.
725 */
726 assert(dummy != node);
727 for (;;) {
728 assert(iter != NULL);
729 if (unlikely(is_end(iter)))
730 return 0;
731 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
732 return 0;
733 next = rcu_dereference(clear_flag(iter)->p.next);
734 if (likely(is_removed(next)))
735 break;
736 iter_prev = clear_flag(iter);
737 iter = next;
738 }
739 assert(!is_removed(iter));
740 if (is_dummy(iter))
741 new_next = flag_dummy(clear_flag(next));
742 else
743 new_next = clear_flag(next);
744 assert(new_next != NULL);
745 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
746 }
747 return 0;
748 }
749
750 static
751 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
752 unsigned long size,
753 struct cds_lfht_node *node,
754 int unique, int dummy)
755 {
756 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
757 *dummy_node;
758 struct _cds_lfht_node *lookup;
759 unsigned long hash, index, order;
760 int force_dummy = 0;
761
762 assert(!is_dummy(node));
763 assert(!is_removed(node));
764 if (!size) {
765 assert(dummy);
766 node->p.next = flag_dummy(get_end());
767 return node; /* Initial first add (head) */
768 }
769 hash = bit_reverse_ulong(node->p.reverse_hash);
770 for (;;) {
771 uint32_t chain_len = 0;
772
773 /*
774 * iter_prev points to the non-removed node prior to the
775 * insert location.
776 */
777 index = hash & (size - 1);
778 order = get_count_order_ulong(index + 1);
779 lookup = &ht->t.tbl[order]->nodes[index & ((!order ? 0 : (1UL << (order - 1))) - 1)];
780 iter_prev = (struct cds_lfht_node *) lookup;
781 /* We can always skip the dummy node initially */
782 iter = rcu_dereference(iter_prev->p.next);
783 if (unlikely(iter == NULL)) {
784 /*
785 * We are executing concurrently with a hash table
786 * expand, so we see a dummy node with NULL next value.
787 * Help expand by linking this node into the list and
788 * retry.
789 */
790 (void) _cds_lfht_add(ht, size >> 1, iter_prev, 0, 1);
791 continue; /* retry */
792 }
793 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
794 for (;;) {
795 assert(iter != NULL);
796 /*
797 * When adding a dummy node, we allow concurrent
798 * add/removal to help. If we find the dummy node in
799 * place, skip its insertion.
800 */
801 if (unlikely(dummy && clear_flag(iter) == node))
802 return node;
803 if (unlikely(is_end(iter)))
804 goto insert;
805 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
806 goto insert;
807 next = rcu_dereference(clear_flag(iter)->p.next);
808 if (unlikely(is_removed(next)))
809 goto gc_node;
810 if (unique
811 && !is_dummy(next)
812 && !ht->compare_fct(node->key, node->key_len,
813 clear_flag(iter)->key,
814 clear_flag(iter)->key_len))
815 return clear_flag(iter);
816 /* Only account for identical reverse hash once */
817 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
818 && !is_dummy(next))
819 check_resize(ht, size, ++chain_len);
820 iter_prev = clear_flag(iter);
821 iter = next;
822 }
823 insert:
824 assert(node != clear_flag(iter));
825 assert(!is_removed(iter_prev));
826 assert(!is_removed(iter));
827 assert(iter_prev != node);
828 if (!dummy) {
829 node->p.next = clear_flag(iter);
830 } else {
831 /*
832 * Dummy node insertion is performed concurrently (help
833 * scheme). We try to link its next node, and if this
834 * succeeds, it _means_ it's us who link this dummy node
835 * into the table. force_dummy is set as soon as we
836 * succeed this cmpxchg within this function.
837 */
838 if (!force_dummy) {
839 if (uatomic_cmpxchg(&node->p.next, NULL,
840 flag_dummy(clear_flag(iter))) != NULL) {
841 return NULL;
842 }
843 force_dummy = 1;
844 } else {
845 node->p.next = flag_dummy(clear_flag(iter));
846 }
847 }
848 if (is_dummy(iter))
849 new_node = flag_dummy(node);
850 else
851 new_node = node;
852 assert(new_node != NULL);
853 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
854 new_node) != iter)
855 continue; /* retry */
856 else
857 goto gc_end;
858 gc_node:
859 assert(!is_removed(iter));
860 if (is_dummy(iter))
861 new_next = flag_dummy(clear_flag(next));
862 else
863 new_next = clear_flag(next);
864 assert(new_next != NULL);
865 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
866 /* retry */
867 }
868 gc_end:
869 /* Garbage collect logically removed nodes in the bucket */
870 index = hash & (size - 1);
871 order = get_count_order_ulong(index + 1);
872 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
873 dummy_node = (struct cds_lfht_node *) lookup;
874 if (_cds_lfht_gc_bucket(dummy_node, node)) {
875 /* Help expand */
876 (void) _cds_lfht_add(ht, size >> 1, dummy_node, 0, 1);
877 goto gc_end; /* retry */
878 }
879 return node;
880 }
881
882 static
883 int _cds_lfht_remove(struct cds_lfht *ht, unsigned long size,
884 struct cds_lfht_node *node,
885 int dummy_removal)
886 {
887 struct cds_lfht_node *dummy, *next, *old;
888 struct _cds_lfht_node *lookup;
889 int flagged = 0;
890 unsigned long hash, index, order;
891
892 /* logically delete the node */
893 assert(!is_dummy(node));
894 assert(!is_removed(node));
895 old = rcu_dereference(node->p.next);
896 do {
897 next = old;
898 if (unlikely(is_removed(next)))
899 goto end;
900 if (dummy_removal)
901 assert(is_dummy(next));
902 else
903 assert(!is_dummy(next));
904 assert(next != NULL);
905 old = uatomic_cmpxchg(&node->p.next, next,
906 flag_removed(next));
907 } while (old != next);
908
909 /* We performed the (logical) deletion. */
910 flagged = 1;
911
912 /*
913 * Ensure that the node is not visible to readers anymore: lookup for
914 * the node, and remove it (along with any other logically removed node)
915 * if found.
916 */
917 gc_retry:
918 hash = bit_reverse_ulong(node->p.reverse_hash);
919 assert(size > 0);
920 index = hash & (size - 1);
921 order = get_count_order_ulong(index + 1);
922 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
923 dummy = (struct cds_lfht_node *) lookup;
924 if (_cds_lfht_gc_bucket(dummy, node)) {
925 /* Help expand */
926 (void) _cds_lfht_add(ht, size >> 1, dummy, 0, 1);
927 goto gc_retry; /* retry */
928 }
929 end:
930 /*
931 * Only the flagging action indicated that we (and no other)
932 * removed the node from the hash.
933 */
934 if (flagged) {
935 assert(is_removed(rcu_dereference(node->p.next)));
936 return 0;
937 } else
938 return -ENOENT;
939 }
940
941 static
942 void init_table_hash(struct cds_lfht *ht, unsigned long i,
943 unsigned long len)
944 {
945 unsigned long j;
946
947 for (j = 0; j < len; j++) {
948 struct cds_lfht_node *new_node =
949 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
950
951 dbg_printf("init hash entry: i %lu j %lu hash %lu\n",
952 i, j, !i ? 0 : (1UL << (i - 1)) + j);
953 new_node->p.reverse_hash =
954 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
955 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
956 break;
957 }
958 }
959
960 /*
961 * Holding RCU read lock to protect _cds_lfht_add against memory
962 * reclaim that could be performed by other call_rcu worker threads (ABA
963 * problem).
964 */
965 static
966 void init_table_link(struct cds_lfht *ht, unsigned long i, unsigned long len)
967 {
968 unsigned long j;
969
970 ht->cds_lfht_rcu_thread_online();
971 ht->cds_lfht_rcu_read_lock();
972 for (j = 0; j < len; j++) {
973 struct cds_lfht_node *new_node =
974 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
975
976 dbg_printf("init link: i %lu j %lu hash %lu\n",
977 i, j, !i ? 0 : (1UL << (i - 1)) + j);
978 (void) _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
979 new_node, 0, 1);
980 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
981 break;
982 }
983 ht->cds_lfht_rcu_read_unlock();
984 ht->cds_lfht_rcu_thread_offline();
985 }
986
987 static
988 void init_table(struct cds_lfht *ht,
989 unsigned long first_order, unsigned long len_order)
990 {
991 unsigned long i, end_order;
992
993 dbg_printf("init table: first_order %lu end_order %lu\n",
994 first_order, first_order + len_order);
995 end_order = first_order + len_order;
996 for (i = first_order; i < end_order; i++) {
997 unsigned long len;
998
999 len = !i ? 1 : 1UL << (i - 1);
1000 dbg_printf("init order %lu len: %lu\n", i, len);
1001
1002 /* Stop expand if the resize target changes under us */
1003 if (CMM_LOAD_SHARED(ht->t.resize_target) < (!i ? 1 : (1UL << i)))
1004 break;
1005
1006 ht->t.tbl[i] = calloc(1, sizeof(struct rcu_level)
1007 + (len * sizeof(struct _cds_lfht_node)));
1008
1009 /* Set all dummy nodes reverse hash values for a level */
1010 init_table_hash(ht, i, len);
1011
1012 /*
1013 * Update table size. At this point, concurrent add/remove see
1014 * dummy nodes with correctly initialized reverse hash value,
1015 * but with NULL next pointers. If they do, they can help us
1016 * link the dummy nodes into the list and retry.
1017 */
1018 cmm_smp_wmb(); /* populate data before RCU size */
1019 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
1020
1021 /*
1022 * Link all dummy nodes into the table. Concurrent
1023 * add/remove are helping us.
1024 */
1025 init_table_link(ht, i, len);
1026
1027 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
1028 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1029 break;
1030 }
1031 }
1032
1033 /*
1034 * Holding RCU read lock to protect _cds_lfht_remove against memory
1035 * reclaim that could be performed by other call_rcu worker threads (ABA
1036 * problem).
1037 * For a single level, we logically remove and garbage collect each node.
1038 *
1039 * As a design choice, we perform logical removal and garbage collection on a
1040 * node-per-node basis to simplify this algorithm. We also assume keeping good
1041 * cache locality of the operation would overweight possible performance gain
1042 * that could be achieved by batching garbage collection for multiple levels.
1043 * However, this would have to be justified by benchmarks.
1044 *
1045 * Concurrent removal and add operations are helping us perform garbage
1046 * collection of logically removed nodes. We guarantee that all logically
1047 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1048 * invoked to free a hole level of dummy nodes (after a grace period).
1049 *
1050 * Logical removal and garbage collection can therefore be done in batch or on a
1051 * node-per-node basis, as long as the guarantee above holds.
1052 */
1053 static
1054 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1055 {
1056 unsigned long j;
1057
1058 ht->cds_lfht_rcu_thread_online();
1059 ht->cds_lfht_rcu_read_lock();
1060 for (j = 0; j < len; j++) {
1061 struct cds_lfht_node *fini_node =
1062 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1063
1064 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1065 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1066 fini_node->p.reverse_hash =
1067 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1068 (void) _cds_lfht_remove(ht, !i ? 0 : (1UL << (i - 1)),
1069 fini_node, 1);
1070 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1071 break;
1072 }
1073 ht->cds_lfht_rcu_read_unlock();
1074 ht->cds_lfht_rcu_thread_offline();
1075 }
1076
1077 static
1078 void fini_table(struct cds_lfht *ht,
1079 unsigned long first_order, unsigned long len_order)
1080 {
1081 long i, end_order;
1082
1083 dbg_printf("fini table: first_order %lu end_order %lu\n",
1084 first_order, first_order + len_order);
1085 end_order = first_order + len_order;
1086 assert(first_order > 0);
1087 for (i = end_order - 1; i >= first_order; i--) {
1088 unsigned long len;
1089
1090 len = !i ? 1 : 1UL << (i - 1);
1091 dbg_printf("fini order %lu len: %lu\n", i, len);
1092
1093 /* Stop shrink if the resize target changes under us */
1094 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1095 break;
1096
1097 cmm_smp_wmb(); /* populate data before RCU size */
1098 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1099
1100 /*
1101 * We need to wait for all add operations to reach Q.S. (and
1102 * thus use the new table for lookups) before we can start
1103 * releasing the old dummy nodes. Otherwise their lookup will
1104 * return a logically removed node as insert position.
1105 */
1106 ht->cds_lfht_synchronize_rcu();
1107
1108 /*
1109 * Set "removed" flag in dummy nodes about to be removed.
1110 * Unlink all now-logically-removed dummy node pointers.
1111 * Concurrent add/remove operation are helping us doing
1112 * the gc.
1113 */
1114 remove_table(ht, i, len);
1115
1116 ht->cds_lfht_call_rcu(&ht->t.tbl[i]->head, cds_lfht_free_level);
1117
1118 dbg_printf("fini new size: %lu\n", 1UL << i);
1119 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1120 break;
1121 }
1122 }
1123
1124 struct cds_lfht *cds_lfht_new(cds_lfht_hash_fct hash_fct,
1125 cds_lfht_compare_fct compare_fct,
1126 unsigned long hash_seed,
1127 unsigned long init_size,
1128 int flags,
1129 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1130 void (*func)(struct rcu_head *head)),
1131 void (*cds_lfht_synchronize_rcu)(void),
1132 void (*cds_lfht_rcu_read_lock)(void),
1133 void (*cds_lfht_rcu_read_unlock)(void),
1134 void (*cds_lfht_rcu_thread_offline)(void),
1135 void (*cds_lfht_rcu_thread_online)(void))
1136 {
1137 struct cds_lfht *ht;
1138 unsigned long order;
1139
1140 /* init_size must be power of two */
1141 if (init_size && (init_size & (init_size - 1)))
1142 return NULL;
1143 ht = calloc(1, sizeof(struct cds_lfht));
1144 ht->hash_fct = hash_fct;
1145 ht->compare_fct = compare_fct;
1146 ht->hash_seed = hash_seed;
1147 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1148 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1149 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1150 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1151 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1152 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1153 ht->percpu_count = alloc_per_cpu_items_count();
1154 /* this mutex should not nest in read-side C.S. */
1155 pthread_mutex_init(&ht->resize_mutex, NULL);
1156 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
1157 ht->flags = flags;
1158 ht->cds_lfht_rcu_thread_offline();
1159 pthread_mutex_lock(&ht->resize_mutex);
1160 ht->t.resize_target = 1UL << (order - 1);
1161 init_table(ht, 0, order);
1162 pthread_mutex_unlock(&ht->resize_mutex);
1163 ht->cds_lfht_rcu_thread_online();
1164 return ht;
1165 }
1166
1167 struct cds_lfht_node *cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len)
1168 {
1169 struct cds_lfht_node *node, *next, *dummy_node;
1170 struct _cds_lfht_node *lookup;
1171 unsigned long hash, reverse_hash, index, order, size;
1172
1173 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1174 reverse_hash = bit_reverse_ulong(hash);
1175
1176 restart:
1177 size = rcu_dereference(ht->t.size);
1178 index = hash & (size - 1);
1179 order = get_count_order_ulong(index + 1);
1180 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1))) - 1)];
1181 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
1182 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
1183 dummy_node = (struct cds_lfht_node *) lookup;
1184 /* We can always skip the dummy node initially */
1185 node = rcu_dereference(dummy_node->p.next);
1186 if (unlikely(node == NULL)) {
1187 /*
1188 * We are executing concurrently with a hash table
1189 * expand, so we see a dummy node with NULL next value.
1190 * Help expand by linking this node into the list and
1191 * retry.
1192 */
1193 (void) _cds_lfht_add(ht, size >> 1, dummy_node, 0, 1);
1194 goto restart; /* retry */
1195 }
1196 node = clear_flag(node);
1197 for (;;) {
1198 if (unlikely(is_end(node))) {
1199 node = NULL;
1200 break;
1201 }
1202 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1203 node = NULL;
1204 break;
1205 }
1206 next = rcu_dereference(node->p.next);
1207 if (likely(!is_removed(next))
1208 && !is_dummy(next)
1209 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1210 break;
1211 }
1212 node = clear_flag(next);
1213 }
1214 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1215 return node;
1216 }
1217
1218 struct cds_lfht_node *cds_lfht_next(struct cds_lfht *ht,
1219 struct cds_lfht_node *node)
1220 {
1221 struct cds_lfht_node *next;
1222 unsigned long reverse_hash;
1223 void *key;
1224 size_t key_len;
1225
1226 reverse_hash = node->p.reverse_hash;
1227 key = node->key;
1228 key_len = node->key_len;
1229 next = rcu_dereference(node->p.next);
1230 node = clear_flag(next);
1231
1232 for (;;) {
1233 if (unlikely(is_end(node))) {
1234 node = NULL;
1235 break;
1236 }
1237 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1238 node = NULL;
1239 break;
1240 }
1241 next = rcu_dereference(node->p.next);
1242 if (likely(!is_removed(next))
1243 && !is_dummy(next)
1244 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1245 break;
1246 }
1247 node = clear_flag(next);
1248 }
1249 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1250 return node;
1251 }
1252
1253 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1254 {
1255 unsigned long hash, size;
1256
1257 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1258 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1259
1260 size = rcu_dereference(ht->t.size);
1261 (void) _cds_lfht_add(ht, size, node, 0, 0);
1262 ht_count_add(ht, size);
1263 }
1264
1265 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1266 struct cds_lfht_node *node)
1267 {
1268 unsigned long hash, size;
1269 struct cds_lfht_node *ret;
1270
1271 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1272 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1273
1274 size = rcu_dereference(ht->t.size);
1275 ret = _cds_lfht_add(ht, size, node, 1, 0);
1276 if (ret == node)
1277 ht_count_add(ht, size);
1278 return ret;
1279 }
1280
1281 int cds_lfht_remove(struct cds_lfht *ht, struct cds_lfht_node *node)
1282 {
1283 unsigned long size;
1284 int ret;
1285
1286 size = rcu_dereference(ht->t.size);
1287 ret = _cds_lfht_remove(ht, size, node, 0);
1288 if (!ret)
1289 ht_count_remove(ht, size);
1290 return ret;
1291 }
1292
1293 static
1294 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1295 {
1296 struct cds_lfht_node *node;
1297 struct _cds_lfht_node *lookup;
1298 unsigned long order, i, size;
1299
1300 /* Check that the table is empty */
1301 lookup = &ht->t.tbl[0]->nodes[0];
1302 node = (struct cds_lfht_node *) lookup;
1303 do {
1304 node = clear_flag(node)->p.next;
1305 if (!is_dummy(node))
1306 return -EPERM;
1307 assert(!is_removed(node));
1308 } while (!is_end(node));
1309 /*
1310 * size accessed without rcu_dereference because hash table is
1311 * being destroyed.
1312 */
1313 size = ht->t.size;
1314 /* Internal sanity check: all nodes left should be dummy */
1315 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1316 unsigned long len;
1317
1318 len = !order ? 1 : 1UL << (order - 1);
1319 for (i = 0; i < len; i++) {
1320 dbg_printf("delete order %lu i %lu hash %lu\n",
1321 order, i,
1322 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1323 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1324 }
1325 poison_free(ht->t.tbl[order]);
1326 }
1327 return 0;
1328 }
1329
1330 /*
1331 * Should only be called when no more concurrent readers nor writers can
1332 * possibly access the table.
1333 */
1334 int cds_lfht_destroy(struct cds_lfht *ht)
1335 {
1336 int ret;
1337
1338 /* Wait for in-flight resize operations to complete */
1339 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1340 while (uatomic_read(&ht->in_progress_resize))
1341 poll(NULL, 0, 100); /* wait for 100ms */
1342 ret = cds_lfht_delete_dummy(ht);
1343 if (ret)
1344 return ret;
1345 free_per_cpu_items_count(ht->percpu_count);
1346 poison_free(ht);
1347 return ret;
1348 }
1349
1350 void cds_lfht_count_nodes(struct cds_lfht *ht,
1351 unsigned long *count,
1352 unsigned long *removed)
1353 {
1354 struct cds_lfht_node *node, *next;
1355 struct _cds_lfht_node *lookup;
1356 unsigned long nr_dummy = 0;
1357
1358 *count = 0;
1359 *removed = 0;
1360
1361 /* Count non-dummy nodes in the table */
1362 lookup = &ht->t.tbl[0]->nodes[0];
1363 node = (struct cds_lfht_node *) lookup;
1364 do {
1365 next = rcu_dereference(node->p.next);
1366 if (is_removed(next)) {
1367 assert(!is_dummy(next));
1368 (*removed)++;
1369 } else if (!is_dummy(next))
1370 (*count)++;
1371 else
1372 (nr_dummy)++;
1373 node = clear_flag(next);
1374 } while (!is_end(node));
1375 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1376 }
1377
1378 /* called with resize mutex held */
1379 static
1380 void _do_cds_lfht_grow(struct cds_lfht *ht,
1381 unsigned long old_size, unsigned long new_size)
1382 {
1383 unsigned long old_order, new_order;
1384
1385 old_order = get_count_order_ulong(old_size) + 1;
1386 new_order = get_count_order_ulong(new_size) + 1;
1387 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1388 old_size, old_order, new_size, new_order);
1389 assert(new_size > old_size);
1390 init_table(ht, old_order, new_order - old_order);
1391 }
1392
1393 /* called with resize mutex held */
1394 static
1395 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1396 unsigned long old_size, unsigned long new_size)
1397 {
1398 unsigned long old_order, new_order;
1399
1400 new_size = max(new_size, MIN_TABLE_SIZE);
1401 old_order = get_count_order_ulong(old_size) + 1;
1402 new_order = get_count_order_ulong(new_size) + 1;
1403 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1404 old_size, old_order, new_size, new_order);
1405 assert(new_size < old_size);
1406
1407 /* Remove and unlink all dummy nodes to remove. */
1408 fini_table(ht, new_order, old_order - new_order);
1409 }
1410
1411
1412 /* called with resize mutex held */
1413 static
1414 void _do_cds_lfht_resize(struct cds_lfht *ht)
1415 {
1416 unsigned long new_size, old_size;
1417
1418 /*
1419 * Resize table, re-do if the target size has changed under us.
1420 */
1421 do {
1422 ht->t.resize_initiated = 1;
1423 old_size = ht->t.size;
1424 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1425 if (old_size < new_size)
1426 _do_cds_lfht_grow(ht, old_size, new_size);
1427 else if (old_size > new_size)
1428 _do_cds_lfht_shrink(ht, old_size, new_size);
1429 ht->t.resize_initiated = 0;
1430 /* write resize_initiated before read resize_target */
1431 cmm_smp_mb();
1432 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1433 }
1434
1435 static
1436 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1437 int growth_order)
1438 {
1439 return _uatomic_max(&ht->t.resize_target,
1440 size << growth_order);
1441 }
1442
1443 static
1444 void resize_target_update_count(struct cds_lfht *ht,
1445 unsigned long count)
1446 {
1447 count = max(count, MIN_TABLE_SIZE);
1448 uatomic_set(&ht->t.resize_target, count);
1449 }
1450
1451 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1452 {
1453 resize_target_update_count(ht, new_size);
1454 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1455 ht->cds_lfht_rcu_thread_offline();
1456 pthread_mutex_lock(&ht->resize_mutex);
1457 _do_cds_lfht_resize(ht);
1458 pthread_mutex_unlock(&ht->resize_mutex);
1459 ht->cds_lfht_rcu_thread_online();
1460 }
1461
1462 static
1463 void do_resize_cb(struct rcu_head *head)
1464 {
1465 struct rcu_resize_work *work =
1466 caa_container_of(head, struct rcu_resize_work, head);
1467 struct cds_lfht *ht = work->ht;
1468
1469 ht->cds_lfht_rcu_thread_offline();
1470 pthread_mutex_lock(&ht->resize_mutex);
1471 _do_cds_lfht_resize(ht);
1472 pthread_mutex_unlock(&ht->resize_mutex);
1473 ht->cds_lfht_rcu_thread_online();
1474 poison_free(work);
1475 cmm_smp_mb(); /* finish resize before decrement */
1476 uatomic_dec(&ht->in_progress_resize);
1477 }
1478
1479 static
1480 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1481 {
1482 struct rcu_resize_work *work;
1483 unsigned long target_size;
1484
1485 target_size = resize_target_update(ht, size, growth);
1486 /* Store resize_target before read resize_initiated */
1487 cmm_smp_mb();
1488 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1489 uatomic_inc(&ht->in_progress_resize);
1490 cmm_smp_mb(); /* increment resize count before calling it */
1491 work = malloc(sizeof(*work));
1492 work->ht = ht;
1493 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1494 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1495 }
1496 }
1497
1498 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1499
1500 static
1501 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1502 unsigned long count)
1503 {
1504 struct rcu_resize_work *work;
1505
1506 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1507 return;
1508 resize_target_update_count(ht, count);
1509 /* Store resize_target before read resize_initiated */
1510 cmm_smp_mb();
1511 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1512 uatomic_inc(&ht->in_progress_resize);
1513 cmm_smp_mb(); /* increment resize count before calling it */
1514 work = malloc(sizeof(*work));
1515 work->ht = ht;
1516 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1517 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1518 }
1519 }
1520
1521 #endif
This page took 0.061693 seconds and 5 git commands to generate.