rculfhash: tweak per-cpu counter resize with thresholds
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Expandable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Expandable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation only allows expanding the hash table.
52 * It is triggered either through an API call or automatically by
53 * detecting long chains in the add operation.
54 * - Resize operation initiated by long chain detection is executed by a
55 * call_rcu thread, which keeps lock-freedom of add and remove.
56 * - Resize operations are protected by a mutex.
57 * - The removal operation is split in two parts: first, a "removed"
58 * flag is set in the next pointer within the node to remove. Then,
59 * a "garbage collection" is performed in the bucket containing the
60 * removed node (from the start of the bucket up to the removed node).
61 * All encountered nodes with "removed" flag set in their next
62 * pointers are removed from the linked-list. If the cmpxchg used for
63 * removal fails (due to concurrent garbage-collection or concurrent
64 * add), we retry from the beginning of the bucket. This ensures that
65 * the node with "removed" flag set is removed from the hash table
66 * (not visible to lookups anymore) before the RCU read-side critical
67 * section held across removal ends. Furthermore, this ensures that
68 * the node with "removed" flag set is removed from the linked-list
69 * before its memory is reclaimed. Only the thread which removal
70 * successfully set the "removed" flag (with a cmpxchg) into a node's
71 * next pointer is considered to have succeeded its removal (and thus
72 * owns the node to reclaim). Because we garbage-collect starting from
73 * an invariant node (the start-of-bucket dummy node) up to the
74 * "removed" node (or find a reverse-hash that is higher), we are sure
75 * that a successful traversal of the chain leads to a chain that is
76 * present in the linked-list (the start node is never removed) and
77 * that is does not contain the "removed" node anymore, even if
78 * concurrent delete/add operations are changing the structure of the
79 * list concurrently.
80 * - The add operation performs gargage collection of buckets if it
81 * encounters nodes with removed flag set in the bucket where it wants
82 * to add its new node. This ensures lock-freedom of add operation by
83 * helping the remover unlink nodes from the list rather than to wait
84 * for it do to so.
85 * - A RCU "order table" indexed by log2(hash index) is copied and
86 * expanded by the resize operation. This order table allows finding
87 * the "dummy node" tables.
88 * - There is one dummy node table per hash index order. The size of
89 * each dummy node table is half the number of hashes contained in
90 * this order.
91 * - call_rcu is used to garbage-collect the old order table.
92 * - The per-order dummy node tables contain a compact version of the
93 * hash table nodes. These tables are invariant after they are
94 * populated into the hash table.
95 */
96
97 #define _LGPL_SOURCE
98 #include <stdlib.h>
99 #include <errno.h>
100 #include <assert.h>
101 #include <stdio.h>
102 #include <stdint.h>
103 #include <string.h>
104
105 #include "config.h"
106 #include <urcu.h>
107 #include <urcu-call-rcu.h>
108 #include <urcu/arch.h>
109 #include <urcu/uatomic.h>
110 #include <urcu/jhash.h>
111 #include <urcu/compiler.h>
112 #include <urcu/rculfhash.h>
113 #include <stdio.h>
114 #include <pthread.h>
115
116 #ifdef DEBUG
117 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
118 #else
119 #define dbg_printf(fmt, args...)
120 #endif
121
122 /*
123 * Per-CPU split-counters lazily update the global counter each 1024
124 * addition/removal. It automatically keeps track of resize required.
125 * We use the bucket length as indicator for need to expand for small
126 * tables and machines lacking per-cpu data suppport.
127 */
128 #define COUNT_COMMIT_ORDER 10
129 #define CHAIN_LEN_TARGET 4
130 #define CHAIN_LEN_RESIZE_THRESHOLD 8
131
132 #ifndef max
133 #define max(a, b) ((a) > (b) ? (a) : (b))
134 #endif
135
136 /*
137 * The removed flag needs to be updated atomically with the pointer.
138 * The dummy flag does not require to be updated atomically with the
139 * pointer, but it is added as a pointer low bit flag to save space.
140 */
141 #define REMOVED_FLAG (1UL << 0)
142 #define DUMMY_FLAG (1UL << 1)
143 #define FLAGS_MASK ((1UL << 2) - 1)
144
145 struct ht_items_count {
146 unsigned long add, remove;
147 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
148
149 struct rcu_table {
150 unsigned long size; /* always a power of 2 */
151 unsigned long resize_target;
152 int resize_initiated;
153 struct rcu_head head;
154 struct _cds_lfht_node *tbl[0];
155 };
156
157 struct cds_lfht {
158 struct rcu_table *t; /* shared */
159 cds_lfht_hash_fct hash_fct;
160 cds_lfht_compare_fct compare_fct;
161 unsigned long hash_seed;
162 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
163 unsigned int in_progress_resize, in_progress_destroy;
164 void (*cds_lfht_call_rcu)(struct rcu_head *head,
165 void (*func)(struct rcu_head *head));
166 unsigned long count; /* global approximate item count */
167 struct ht_items_count *percpu_count; /* per-cpu item count */
168 };
169
170 struct rcu_resize_work {
171 struct rcu_head head;
172 struct cds_lfht *ht;
173 };
174
175 /*
176 * Algorithm to reverse bits in a word by lookup table, extended to
177 * 64-bit words.
178 * Source:
179 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
180 * Originally from Public Domain.
181 */
182
183 static const uint8_t BitReverseTable256[256] =
184 {
185 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
186 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
187 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
188 R6(0), R6(2), R6(1), R6(3)
189 };
190 #undef R2
191 #undef R4
192 #undef R6
193
194 static
195 uint8_t bit_reverse_u8(uint8_t v)
196 {
197 return BitReverseTable256[v];
198 }
199
200 static __attribute__((unused))
201 uint32_t bit_reverse_u32(uint32_t v)
202 {
203 return ((uint32_t) bit_reverse_u8(v) << 24) |
204 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
205 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
206 ((uint32_t) bit_reverse_u8(v >> 24));
207 }
208
209 static __attribute__((unused))
210 uint64_t bit_reverse_u64(uint64_t v)
211 {
212 return ((uint64_t) bit_reverse_u8(v) << 56) |
213 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
214 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
215 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
216 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
217 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
218 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
219 ((uint64_t) bit_reverse_u8(v >> 56));
220 }
221
222 static
223 unsigned long bit_reverse_ulong(unsigned long v)
224 {
225 #if (CAA_BITS_PER_LONG == 32)
226 return bit_reverse_u32(v);
227 #else
228 return bit_reverse_u64(v);
229 #endif
230 }
231
232 /*
233 * fls: returns the position of the most significant bit.
234 * Returns 0 if no bit is set, else returns the position of the most
235 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
236 */
237 #if defined(__i386) || defined(__x86_64)
238 static inline
239 unsigned int fls_u32(uint32_t x)
240 {
241 int r;
242
243 asm("bsrl %1,%0\n\t"
244 "jnz 1f\n\t"
245 "movl $-1,%0\n\t"
246 "1:\n\t"
247 : "=r" (r) : "rm" (x));
248 return r + 1;
249 }
250 #define HAS_FLS_U32
251 #endif
252
253 #if defined(__x86_64)
254 static inline
255 unsigned int fls_u64(uint64_t x)
256 {
257 long r;
258
259 asm("bsrq %1,%0\n\t"
260 "jnz 1f\n\t"
261 "movq $-1,%0\n\t"
262 "1:\n\t"
263 : "=r" (r) : "rm" (x));
264 return r + 1;
265 }
266 #define HAS_FLS_U64
267 #endif
268
269 #ifndef HAS_FLS_U64
270 static __attribute__((unused))
271 unsigned int fls_u64(uint64_t x)
272 {
273 unsigned int r = 64;
274
275 if (!x)
276 return 0;
277
278 if (!(x & 0xFFFFFFFF00000000ULL)) {
279 x <<= 32;
280 r -= 32;
281 }
282 if (!(x & 0xFFFF000000000000ULL)) {
283 x <<= 16;
284 r -= 16;
285 }
286 if (!(x & 0xFF00000000000000ULL)) {
287 x <<= 8;
288 r -= 8;
289 }
290 if (!(x & 0xF000000000000000ULL)) {
291 x <<= 4;
292 r -= 4;
293 }
294 if (!(x & 0xC000000000000000ULL)) {
295 x <<= 2;
296 r -= 2;
297 }
298 if (!(x & 0x8000000000000000ULL)) {
299 x <<= 1;
300 r -= 1;
301 }
302 return r;
303 }
304 #endif
305
306 #ifndef HAS_FLS_U32
307 static __attribute__((unused))
308 unsigned int fls_u32(uint32_t x)
309 {
310 unsigned int r = 32;
311
312 if (!x)
313 return 0;
314 if (!(x & 0xFFFF0000U)) {
315 x <<= 16;
316 r -= 16;
317 }
318 if (!(x & 0xFF000000U)) {
319 x <<= 8;
320 r -= 8;
321 }
322 if (!(x & 0xF0000000U)) {
323 x <<= 4;
324 r -= 4;
325 }
326 if (!(x & 0xC0000000U)) {
327 x <<= 2;
328 r -= 2;
329 }
330 if (!(x & 0x80000000U)) {
331 x <<= 1;
332 r -= 1;
333 }
334 return r;
335 }
336 #endif
337
338 unsigned int fls_ulong(unsigned long x)
339 {
340 #if (CAA_BITS_PER_lONG == 32)
341 return fls_u32(x);
342 #else
343 return fls_u64(x);
344 #endif
345 }
346
347 int get_count_order_u32(uint32_t x)
348 {
349 int order;
350
351 order = fls_u32(x) - 1;
352 if (x & (x - 1))
353 order++;
354 return order;
355 }
356
357 int get_count_order_ulong(unsigned long x)
358 {
359 int order;
360
361 order = fls_ulong(x) - 1;
362 if (x & (x - 1))
363 order++;
364 return order;
365 }
366
367 static
368 void cds_lfht_resize_lazy(struct cds_lfht *ht, struct rcu_table *t, int growth);
369
370 /*
371 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
372 * available, then we support hash table item accounting.
373 * In the unfortunate event the number of CPUs reported would be
374 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
375 */
376 //test #undef HAVE_SCHED_GETCPU
377 #undef HAVE_SCHED_GETCPU
378
379 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
380
381 static
382 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, struct rcu_table *t,
383 unsigned long count);
384
385 static long nr_cpus_mask = -1;
386
387 static
388 struct ht_items_count *alloc_per_cpu_items_count(void)
389 {
390 struct ht_items_count *count;
391
392 switch (nr_cpus_mask) {
393 case -2:
394 return NULL;
395 case -1:
396 {
397 long maxcpus;
398
399 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
400 if (maxcpus <= 0) {
401 nr_cpus_mask = -2;
402 return NULL;
403 }
404 /*
405 * round up number of CPUs to next power of two, so we
406 * can use & for modulo.
407 */
408 maxcpus = 1UL << get_count_order_ulong(maxcpus);
409 nr_cpus_mask = maxcpus - 1;
410 }
411 /* Fall-through */
412 default:
413 return calloc(nr_cpus_mask + 1, sizeof(*count));
414 }
415 }
416
417 static
418 void free_per_cpu_items_count(struct ht_items_count *count)
419 {
420 free(count);
421 }
422
423 static
424 int ht_get_cpu(void)
425 {
426 int cpu;
427
428 assert(nr_cpus_mask >= 0);
429 cpu = sched_getcpu();
430 if (unlikely(cpu < 0))
431 return cpu;
432 else
433 return cpu & nr_cpus_mask;
434 }
435
436 static
437 void ht_count_add(struct cds_lfht *ht, struct rcu_table *t)
438 {
439 unsigned long percpu_count;
440 int cpu;
441
442 if (unlikely(!ht->percpu_count))
443 return;
444 cpu = ht_get_cpu();
445 if (unlikely(cpu < 0))
446 return;
447 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
448 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
449 unsigned long count;
450
451 dbg_printf("add percpu %lu\n", percpu_count);
452 count = uatomic_add_return(&ht->count,
453 1UL << COUNT_COMMIT_ORDER);
454 /* If power of 2 */
455 if (!(count & (count - 1))) {
456 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD)
457 < t->size)
458 return;
459 dbg_printf("add set global %lu\n", count);
460 cds_lfht_resize_lazy_count(ht, t,
461 count >> CHAIN_LEN_TARGET);
462 }
463 }
464 }
465
466 static
467 void ht_count_remove(struct cds_lfht *ht, struct rcu_table *t)
468 {
469 unsigned long percpu_count;
470 int cpu;
471
472 if (unlikely(!ht->percpu_count))
473 return;
474 cpu = ht_get_cpu();
475 if (unlikely(cpu < 0))
476 return;
477 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].remove, -1);
478 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
479 unsigned long count;
480
481 dbg_printf("remove percpu %lu\n", percpu_count);
482 count = uatomic_add_return(&ht->count,
483 -(1UL << COUNT_COMMIT_ORDER));
484 /* If power of 2 */
485 if (!(count & (count - 1))) {
486 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD)
487 >= t->size)
488 return;
489 dbg_printf("remove set global %lu\n", count);
490 cds_lfht_resize_lazy_count(ht, t,
491 count >> CHAIN_LEN_TARGET);
492 }
493 }
494 }
495
496 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
497
498 static const long nr_cpus_mask = -1;
499
500 static
501 struct ht_items_count *alloc_per_cpu_items_count(void)
502 {
503 return NULL;
504 }
505
506 static
507 void free_per_cpu_items_count(struct ht_items_count *count)
508 {
509 }
510
511 static
512 void ht_count_add(struct cds_lfht *ht, struct rcu_table *t)
513 {
514 }
515
516 static
517 void ht_count_remove(struct cds_lfht *ht, struct rcu_table *t)
518 {
519 }
520
521 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
522
523
524 static
525 void check_resize(struct cds_lfht *ht, struct rcu_table *t,
526 uint32_t chain_len)
527 {
528 unsigned long count;
529
530 count = uatomic_read(&ht->count);
531 /*
532 * Use bucket-local length for small table expand and for
533 * environments lacking per-cpu data support.
534 */
535 if (count >= (1UL << COUNT_COMMIT_ORDER))
536 return;
537 if (chain_len > 100)
538 dbg_printf("WARNING: large chain length: %u.\n",
539 chain_len);
540 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
541 cds_lfht_resize_lazy(ht, t,
542 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
543 }
544
545 static
546 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
547 {
548 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
549 }
550
551 static
552 int is_removed(struct cds_lfht_node *node)
553 {
554 return ((unsigned long) node) & REMOVED_FLAG;
555 }
556
557 static
558 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
559 {
560 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
561 }
562
563 static
564 int is_dummy(struct cds_lfht_node *node)
565 {
566 return ((unsigned long) node) & DUMMY_FLAG;
567 }
568
569 static
570 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
571 {
572 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
573 }
574
575 static
576 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
577 {
578 unsigned long old1, old2;
579
580 old1 = uatomic_read(ptr);
581 do {
582 old2 = old1;
583 if (old2 >= v)
584 return old2;
585 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
586 return v;
587 }
588
589 /*
590 * Remove all logically deleted nodes from a bucket up to a certain node key.
591 */
592 static
593 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
594 {
595 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
596
597 for (;;) {
598 iter_prev = dummy;
599 /* We can always skip the dummy node initially */
600 iter = rcu_dereference(iter_prev->p.next);
601 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
602 for (;;) {
603 if (unlikely(!clear_flag(iter)))
604 return;
605 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
606 return;
607 next = rcu_dereference(clear_flag(iter)->p.next);
608 if (likely(is_removed(next)))
609 break;
610 iter_prev = clear_flag(iter);
611 iter = next;
612 }
613 assert(!is_removed(iter));
614 if (is_dummy(iter))
615 new_next = flag_dummy(clear_flag(next));
616 else
617 new_next = clear_flag(next);
618 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
619 }
620 }
621
622 static
623 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht, struct rcu_table *t,
624 struct cds_lfht_node *node, int unique, int dummy)
625 {
626 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
627 *dummy_node;
628 struct _cds_lfht_node *lookup;
629 unsigned long hash, index, order;
630
631 if (!t->size) {
632 assert(dummy);
633 node->p.next = flag_dummy(NULL);
634 return node; /* Initial first add (head) */
635 }
636 hash = bit_reverse_ulong(node->p.reverse_hash);
637 for (;;) {
638 uint32_t chain_len = 0;
639
640 /*
641 * iter_prev points to the non-removed node prior to the
642 * insert location.
643 */
644 index = hash & (t->size - 1);
645 order = get_count_order_ulong(index + 1);
646 lookup = &t->tbl[order][index & ((1UL << (order - 1)) - 1)];
647 iter_prev = (struct cds_lfht_node *) lookup;
648 /* We can always skip the dummy node initially */
649 iter = rcu_dereference(iter_prev->p.next);
650 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
651 for (;;) {
652 if (unlikely(!clear_flag(iter)))
653 goto insert;
654 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
655 goto insert;
656 next = rcu_dereference(clear_flag(iter)->p.next);
657 if (unlikely(is_removed(next)))
658 goto gc_node;
659 if (unique
660 && !is_dummy(next)
661 && !ht->compare_fct(node->key, node->key_len,
662 clear_flag(iter)->key,
663 clear_flag(iter)->key_len))
664 return clear_flag(iter);
665 /* Only account for identical reverse hash once */
666 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
667 && !is_dummy(next))
668 check_resize(ht, t, ++chain_len);
669 iter_prev = clear_flag(iter);
670 iter = next;
671 }
672 insert:
673 assert(node != clear_flag(iter));
674 assert(!is_removed(iter_prev));
675 assert(iter_prev != node);
676 if (!dummy)
677 node->p.next = clear_flag(iter);
678 else
679 node->p.next = flag_dummy(clear_flag(iter));
680 if (is_dummy(iter))
681 new_node = flag_dummy(node);
682 else
683 new_node = node;
684 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
685 new_node) != iter)
686 continue; /* retry */
687 else
688 goto gc_end;
689 gc_node:
690 assert(!is_removed(iter));
691 if (is_dummy(iter))
692 new_next = flag_dummy(clear_flag(next));
693 else
694 new_next = clear_flag(next);
695 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
696 /* retry */
697 }
698 gc_end:
699 /* Garbage collect logically removed nodes in the bucket */
700 index = hash & (t->size - 1);
701 order = get_count_order_ulong(index + 1);
702 lookup = &t->tbl[order][index & ((1UL << (order - 1)) - 1)];
703 dummy_node = (struct cds_lfht_node *) lookup;
704 _cds_lfht_gc_bucket(dummy_node, node);
705 return node;
706 }
707
708 static
709 int _cds_lfht_remove(struct cds_lfht *ht, struct rcu_table *t,
710 struct cds_lfht_node *node)
711 {
712 struct cds_lfht_node *dummy, *next, *old;
713 struct _cds_lfht_node *lookup;
714 int flagged = 0;
715 unsigned long hash, index, order;
716
717 /* logically delete the node */
718 old = rcu_dereference(node->p.next);
719 do {
720 next = old;
721 if (unlikely(is_removed(next)))
722 goto end;
723 assert(!is_dummy(next));
724 old = uatomic_cmpxchg(&node->p.next, next,
725 flag_removed(next));
726 } while (old != next);
727
728 /* We performed the (logical) deletion. */
729 flagged = 1;
730
731 /*
732 * Ensure that the node is not visible to readers anymore: lookup for
733 * the node, and remove it (along with any other logically removed node)
734 * if found.
735 */
736 hash = bit_reverse_ulong(node->p.reverse_hash);
737 index = hash & (t->size - 1);
738 order = get_count_order_ulong(index + 1);
739 lookup = &t->tbl[order][index & ((1UL << (order - 1)) - 1)];
740 dummy = (struct cds_lfht_node *) lookup;
741 _cds_lfht_gc_bucket(dummy, node);
742 end:
743 /*
744 * Only the flagging action indicated that we (and no other)
745 * removed the node from the hash.
746 */
747 if (flagged) {
748 assert(is_removed(rcu_dereference(node->p.next)));
749 return 0;
750 } else
751 return -ENOENT;
752 }
753
754 static
755 void init_table(struct cds_lfht *ht, struct rcu_table *t,
756 unsigned long first_order, unsigned long len_order)
757 {
758 unsigned long i, end_order;
759
760 dbg_printf("init table: first_order %lu end_order %lu\n",
761 first_order, first_order + len_order);
762 end_order = first_order + len_order;
763 t->size = !first_order ? 0 : (1UL << (first_order - 1));
764 for (i = first_order; i < end_order; i++) {
765 unsigned long j, len;
766
767 len = !i ? 1 : 1UL << (i - 1);
768 dbg_printf("init order %lu len: %lu\n", i, len);
769 t->tbl[i] = calloc(len, sizeof(struct _cds_lfht_node));
770 for (j = 0; j < len; j++) {
771 dbg_printf("init entry: i %lu j %lu hash %lu\n",
772 i, j, !i ? 0 : (1UL << (i - 1)) + j);
773 struct cds_lfht_node *new_node =
774 (struct cds_lfht_node *) &t->tbl[i][j];
775 new_node->p.reverse_hash =
776 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
777 (void) _cds_lfht_add(ht, t, new_node, 0, 1);
778 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
779 break;
780 }
781 /* Update table size */
782 t->size = !i ? 1 : (1UL << i);
783 dbg_printf("init new size: %lu\n", t->size);
784 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
785 break;
786 }
787 t->resize_target = t->size;
788 t->resize_initiated = 0;
789 }
790
791 struct cds_lfht *cds_lfht_new(cds_lfht_hash_fct hash_fct,
792 cds_lfht_compare_fct compare_fct,
793 unsigned long hash_seed,
794 unsigned long init_size,
795 void (*cds_lfht_call_rcu)(struct rcu_head *head,
796 void (*func)(struct rcu_head *head)))
797 {
798 struct cds_lfht *ht;
799 unsigned long order;
800
801 /* init_size must be power of two */
802 if (init_size && (init_size & (init_size - 1)))
803 return NULL;
804 ht = calloc(1, sizeof(struct cds_lfht));
805 ht->hash_fct = hash_fct;
806 ht->compare_fct = compare_fct;
807 ht->hash_seed = hash_seed;
808 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
809 ht->in_progress_resize = 0;
810 ht->percpu_count = alloc_per_cpu_items_count();
811 /* this mutex should not nest in read-side C.S. */
812 pthread_mutex_init(&ht->resize_mutex, NULL);
813 order = get_count_order_ulong(max(init_size, 1)) + 1;
814 ht->t = calloc(1, sizeof(struct cds_lfht)
815 + (order * sizeof(struct _cds_lfht_node *)));
816 ht->t->size = 0;
817 pthread_mutex_lock(&ht->resize_mutex);
818 init_table(ht, ht->t, 0, order);
819 pthread_mutex_unlock(&ht->resize_mutex);
820 return ht;
821 }
822
823 struct cds_lfht_node *cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len)
824 {
825 struct rcu_table *t;
826 struct cds_lfht_node *node, *next;
827 struct _cds_lfht_node *lookup;
828 unsigned long hash, reverse_hash, index, order;
829
830 hash = ht->hash_fct(key, key_len, ht->hash_seed);
831 reverse_hash = bit_reverse_ulong(hash);
832
833 t = rcu_dereference(ht->t);
834 index = hash & (t->size - 1);
835 order = get_count_order_ulong(index + 1);
836 lookup = &t->tbl[order][index & ((1UL << (order - 1)) - 1)];
837 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
838 hash, index, order, index & ((1UL << (order - 1)) - 1));
839 node = (struct cds_lfht_node *) lookup;
840 for (;;) {
841 if (unlikely(!node))
842 break;
843 if (unlikely(node->p.reverse_hash > reverse_hash)) {
844 node = NULL;
845 break;
846 }
847 next = rcu_dereference(node->p.next);
848 if (likely(!is_removed(next))
849 && !is_dummy(next)
850 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
851 break;
852 }
853 node = clear_flag(next);
854 }
855 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
856 return node;
857 }
858
859 struct cds_lfht_node *cds_lfht_next(struct cds_lfht *ht,
860 struct cds_lfht_node *node)
861 {
862 struct cds_lfht_node *next;
863 unsigned long reverse_hash;
864 void *key;
865 size_t key_len;
866
867 reverse_hash = node->p.reverse_hash;
868 key = node->key;
869 key_len = node->key_len;
870 next = rcu_dereference(node->p.next);
871 node = clear_flag(next);
872
873 for (;;) {
874 if (unlikely(!node))
875 break;
876 if (unlikely(node->p.reverse_hash > reverse_hash)) {
877 node = NULL;
878 break;
879 }
880 next = rcu_dereference(node->p.next);
881 if (likely(!is_removed(next))
882 && !is_dummy(next)
883 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
884 break;
885 }
886 node = clear_flag(next);
887 }
888 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
889 return node;
890 }
891
892 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
893 {
894 struct rcu_table *t;
895 unsigned long hash;
896
897 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
898 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
899
900 t = rcu_dereference(ht->t);
901 (void) _cds_lfht_add(ht, t, node, 0, 0);
902 ht_count_add(ht, t);
903 }
904
905 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
906 struct cds_lfht_node *node)
907 {
908 struct rcu_table *t;
909 unsigned long hash;
910 struct cds_lfht_node *ret;
911
912 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
913 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
914
915 t = rcu_dereference(ht->t);
916 ret = _cds_lfht_add(ht, t, node, 1, 0);
917 if (ret != node)
918 ht_count_add(ht, t);
919 return ret;
920 }
921
922 int cds_lfht_remove(struct cds_lfht *ht, struct cds_lfht_node *node)
923 {
924 struct rcu_table *t;
925 int ret;
926
927 t = rcu_dereference(ht->t);
928 ret = _cds_lfht_remove(ht, t, node);
929 if (!ret)
930 ht_count_remove(ht, t);
931 return ret;
932 }
933
934 static
935 int cds_lfht_delete_dummy(struct cds_lfht *ht)
936 {
937 struct rcu_table *t;
938 struct cds_lfht_node *node;
939 struct _cds_lfht_node *lookup;
940 unsigned long order, i;
941
942 t = ht->t;
943 /* Check that the table is empty */
944 lookup = &t->tbl[0][0];
945 node = (struct cds_lfht_node *) lookup;
946 do {
947 node = clear_flag(node)->p.next;
948 if (!is_dummy(node))
949 return -EPERM;
950 assert(!is_removed(node));
951 } while (clear_flag(node));
952 /* Internal sanity check: all nodes left should be dummy */
953 for (order = 0; order < get_count_order_ulong(t->size) + 1; order++) {
954 unsigned long len;
955
956 len = !order ? 1 : 1UL << (order - 1);
957 for (i = 0; i < len; i++) {
958 dbg_printf("delete order %lu i %lu hash %lu\n",
959 order, i,
960 bit_reverse_ulong(t->tbl[order][i].reverse_hash));
961 assert(is_dummy(t->tbl[order][i].next));
962 }
963 free(t->tbl[order]);
964 }
965 return 0;
966 }
967
968 /*
969 * Should only be called when no more concurrent readers nor writers can
970 * possibly access the table.
971 */
972 int cds_lfht_destroy(struct cds_lfht *ht)
973 {
974 int ret;
975
976 /* Wait for in-flight resize operations to complete */
977 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
978 while (uatomic_read(&ht->in_progress_resize))
979 poll(NULL, 0, 100); /* wait for 100ms */
980 ret = cds_lfht_delete_dummy(ht);
981 if (ret)
982 return ret;
983 free(ht->t);
984 free_per_cpu_items_count(ht->percpu_count);
985 free(ht);
986 return ret;
987 }
988
989 void cds_lfht_count_nodes(struct cds_lfht *ht,
990 unsigned long *count,
991 unsigned long *removed)
992 {
993 struct rcu_table *t;
994 struct cds_lfht_node *node, *next;
995 struct _cds_lfht_node *lookup;
996 unsigned long nr_dummy = 0;
997
998 *count = 0;
999 *removed = 0;
1000
1001 t = rcu_dereference(ht->t);
1002 /* Count non-dummy nodes in the table */
1003 lookup = &t->tbl[0][0];
1004 node = (struct cds_lfht_node *) lookup;
1005 do {
1006 next = rcu_dereference(node->p.next);
1007 if (is_removed(next)) {
1008 assert(!is_dummy(next));
1009 (*removed)++;
1010 } else if (!is_dummy(next))
1011 (*count)++;
1012 else
1013 (nr_dummy)++;
1014 node = clear_flag(next);
1015 } while (node);
1016 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1017 }
1018
1019 static
1020 void cds_lfht_free_table_cb(struct rcu_head *head)
1021 {
1022 struct rcu_table *t =
1023 caa_container_of(head, struct rcu_table, head);
1024 free(t);
1025 }
1026
1027 /* called with resize mutex held */
1028 static
1029 void _do_cds_lfht_resize(struct cds_lfht *ht)
1030 {
1031 unsigned long new_size, old_size, old_order, new_order;
1032 struct rcu_table *new_t, *old_t;
1033
1034 old_t = ht->t;
1035 old_size = old_t->size;
1036 old_order = get_count_order_ulong(old_size) + 1;
1037
1038 new_size = CMM_LOAD_SHARED(old_t->resize_target);
1039 if (old_size == new_size)
1040 return;
1041 new_order = get_count_order_ulong(new_size) + 1;
1042 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1043 old_size, old_order, new_size, new_order);
1044 new_t = malloc(sizeof(struct cds_lfht)
1045 + (new_order * sizeof(struct _cds_lfht_node *)));
1046 assert(new_size > old_size);
1047 memcpy(&new_t->tbl, &old_t->tbl,
1048 old_order * sizeof(struct _cds_lfht_node *));
1049 init_table(ht, new_t, old_order, new_order - old_order);
1050 /* Changing table and size atomically wrt lookups */
1051 rcu_assign_pointer(ht->t, new_t);
1052 ht->cds_lfht_call_rcu(&old_t->head, cds_lfht_free_table_cb);
1053 }
1054
1055 static
1056 unsigned long resize_target_update(struct rcu_table *t,
1057 int growth_order)
1058 {
1059 return _uatomic_max(&t->resize_target,
1060 t->size << growth_order);
1061 }
1062
1063 void cds_lfht_resize(struct cds_lfht *ht, int growth)
1064 {
1065 struct rcu_table *t = rcu_dereference(ht->t);
1066 unsigned long target_size;
1067
1068 if (growth < 0) {
1069 /*
1070 * Silently refuse to shrink hash table. (not supported)
1071 */
1072 dbg_printf("shrinking hash table not supported.\n");
1073 return;
1074 }
1075
1076 target_size = resize_target_update(t, growth);
1077 if (t->size < target_size) {
1078 CMM_STORE_SHARED(t->resize_initiated, 1);
1079 pthread_mutex_lock(&ht->resize_mutex);
1080 _do_cds_lfht_resize(ht);
1081 pthread_mutex_unlock(&ht->resize_mutex);
1082 }
1083 }
1084
1085 static
1086 void do_resize_cb(struct rcu_head *head)
1087 {
1088 struct rcu_resize_work *work =
1089 caa_container_of(head, struct rcu_resize_work, head);
1090 struct cds_lfht *ht = work->ht;
1091
1092 pthread_mutex_lock(&ht->resize_mutex);
1093 _do_cds_lfht_resize(ht);
1094 pthread_mutex_unlock(&ht->resize_mutex);
1095 free(work);
1096 cmm_smp_mb(); /* finish resize before decrement */
1097 uatomic_dec(&ht->in_progress_resize);
1098 }
1099
1100 static
1101 void cds_lfht_resize_lazy(struct cds_lfht *ht, struct rcu_table *t, int growth)
1102 {
1103 struct rcu_resize_work *work;
1104 unsigned long target_size;
1105
1106 target_size = resize_target_update(t, growth);
1107 if (!CMM_LOAD_SHARED(t->resize_initiated) && t->size < target_size) {
1108 uatomic_inc(&ht->in_progress_resize);
1109 cmm_smp_mb(); /* increment resize count before calling it */
1110 work = malloc(sizeof(*work));
1111 work->ht = ht;
1112 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1113 CMM_STORE_SHARED(t->resize_initiated, 1);
1114 }
1115 }
1116
1117 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1118
1119 static
1120 unsigned long resize_target_update_count(struct rcu_table *t,
1121 unsigned long count)
1122 {
1123 return _uatomic_max(&t->resize_target, count);
1124 }
1125
1126 static
1127 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, struct rcu_table *t,
1128 unsigned long count)
1129 {
1130 struct rcu_resize_work *work;
1131 unsigned long target_size;
1132
1133 target_size = resize_target_update_count(t, count);
1134 if (!CMM_LOAD_SHARED(t->resize_initiated) && t->size < target_size) {
1135 uatomic_inc(&ht->in_progress_resize);
1136 cmm_smp_mb(); /* increment resize count before calling it */
1137 work = malloc(sizeof(*work));
1138 work->ht = ht;
1139 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1140 CMM_STORE_SHARED(t->resize_initiated, 1);
1141 }
1142 }
1143
1144 #endif
This page took 0.052036 seconds and 5 git commands to generate.