it is not required that ht->t.size >= ht->min_table_size anymore
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups and use the returned objects safely by delaying
38 * memory reclaim of a grace period.
39 * - Add and remove operations are lock-free, and do not need to
40 * allocate memory. They need to be executed within RCU read-side
41 * critical section to ensure the objects they read are valid and to
42 * deal with the cmpxchg ABA problem.
43 * - add and add_unique operations are supported. add_unique checks if
44 * the node key already exists in the hash table. It ensures no key
45 * duplicata exists.
46 * - The resize operation executes concurrently with add/remove/lookup.
47 * - Hash table nodes are contained within a split-ordered list. This
48 * list is ordered by incrementing reversed-bits-hash value.
49 * - An index of bucket nodes is kept. These bucket nodes are the hash
50 * table "buckets", and they are also chained together in the
51 * split-ordered list, which allows recursive expansion.
52 * - The resize operation for small tables only allows expanding the hash table.
53 * It is triggered automatically by detecting long chains in the add
54 * operation.
55 * - The resize operation for larger tables (and available through an
56 * API) allows both expanding and shrinking the hash table.
57 * - Split-counters are used to keep track of the number of
58 * nodes within the hash table for automatic resize triggering.
59 * - Resize operation initiated by long chain detection is executed by a
60 * call_rcu thread, which keeps lock-freedom of add and remove.
61 * - Resize operations are protected by a mutex.
62 * - The removal operation is split in two parts: first, a "removed"
63 * flag is set in the next pointer within the node to remove. Then,
64 * a "garbage collection" is performed in the bucket containing the
65 * removed node (from the start of the bucket up to the removed node).
66 * All encountered nodes with "removed" flag set in their next
67 * pointers are removed from the linked-list. If the cmpxchg used for
68 * removal fails (due to concurrent garbage-collection or concurrent
69 * add), we retry from the beginning of the bucket. This ensures that
70 * the node with "removed" flag set is removed from the hash table
71 * (not visible to lookups anymore) before the RCU read-side critical
72 * section held across removal ends. Furthermore, this ensures that
73 * the node with "removed" flag set is removed from the linked-list
74 * before its memory is reclaimed. Only the thread which removal
75 * successfully set the "removed" flag (with a cmpxchg) into a node's
76 * next pointer is considered to have succeeded its removal (and thus
77 * owns the node to reclaim). Because we garbage-collect starting from
78 * an invariant node (the start-of-bucket bucket node) up to the
79 * "removed" node (or find a reverse-hash that is higher), we are sure
80 * that a successful traversal of the chain leads to a chain that is
81 * present in the linked-list (the start node is never removed) and
82 * that is does not contain the "removed" node anymore, even if
83 * concurrent delete/add operations are changing the structure of the
84 * list concurrently.
85 * - The add operation performs gargage collection of buckets if it
86 * encounters nodes with removed flag set in the bucket where it wants
87 * to add its new node. This ensures lock-freedom of add operation by
88 * helping the remover unlink nodes from the list rather than to wait
89 * for it do to so.
90 * - A RCU "order table" indexed by log2(hash index) is copied and
91 * expanded by the resize operation. This order table allows finding
92 * the "bucket node" tables.
93 * - There is one bucket node table per hash index order. The size of
94 * each bucket node table is half the number of hashes contained in
95 * this order (except for order 0).
96 * - synchronzie_rcu is used to garbage-collect the old bucket node table.
97 * - The per-order bucket node tables contain a compact version of the
98 * hash table nodes. These tables are invariant after they are
99 * populated into the hash table.
100 *
101 * Bucket node tables:
102 *
103 * hash table hash table the last all bucket node tables
104 * order size bucket node 0 1 2 3 4 5 6(index)
105 * table size
106 * 0 1 1 1
107 * 1 2 1 1 1
108 * 2 4 2 1 1 2
109 * 3 8 4 1 1 2 4
110 * 4 16 8 1 1 2 4 8
111 * 5 32 16 1 1 2 4 8 16
112 * 6 64 32 1 1 2 4 8 16 32
113 *
114 * When growing/shrinking, we only focus on the last bucket node table
115 * which size is (!order ? 1 : (1 << (order -1))).
116 *
117 * Example for growing/shrinking:
118 * grow hash table from order 5 to 6: init the index=6 bucket node table
119 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
120 *
121 * A bit of ascii art explanation:
122 *
123 * Order index is the off-by-one compare to the actual power of 2 because
124 * we use index 0 to deal with the 0 special-case.
125 *
126 * This shows the nodes for a small table ordered by reversed bits:
127 *
128 * bits reverse
129 * 0 000 000
130 * 4 100 001
131 * 2 010 010
132 * 6 110 011
133 * 1 001 100
134 * 5 101 101
135 * 3 011 110
136 * 7 111 111
137 *
138 * This shows the nodes in order of non-reversed bits, linked by
139 * reversed-bit order.
140 *
141 * order bits reverse
142 * 0 0 000 000
143 * 1 | 1 001 100 <-
144 * 2 | | 2 010 010 <- |
145 * | | | 3 011 110 | <- |
146 * 3 -> | | | 4 100 001 | |
147 * -> | | 5 101 101 |
148 * -> | 6 110 011
149 * -> 7 111 111
150 */
151
152 #define _LGPL_SOURCE
153 #include <stdlib.h>
154 #include <errno.h>
155 #include <assert.h>
156 #include <stdio.h>
157 #include <stdint.h>
158 #include <string.h>
159
160 #include "config.h"
161 #include <urcu.h>
162 #include <urcu-call-rcu.h>
163 #include <urcu/arch.h>
164 #include <urcu/uatomic.h>
165 #include <urcu/compiler.h>
166 #include <urcu/rculfhash.h>
167 #include <stdio.h>
168 #include <pthread.h>
169
170 #ifdef DEBUG
171 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
172 #else
173 #define dbg_printf(fmt, args...)
174 #endif
175
176 /*
177 * Split-counters lazily update the global counter each 1024
178 * addition/removal. It automatically keeps track of resize required.
179 * We use the bucket length as indicator for need to expand for small
180 * tables and machines lacking per-cpu data suppport.
181 */
182 #define COUNT_COMMIT_ORDER 10
183 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
184 #define CHAIN_LEN_TARGET 1
185 #define CHAIN_LEN_RESIZE_THRESHOLD 3
186
187 /*
188 * Define the minimum table size.
189 */
190 #define MIN_TABLE_ORDER 0
191 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
192
193 #if (CAA_BITS_PER_LONG == 32)
194 #define MAX_TABLE_ORDER 32
195 #else
196 #define MAX_TABLE_ORDER 64
197 #endif
198
199 /*
200 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
201 */
202 #define MIN_PARTITION_PER_THREAD_ORDER 12
203 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
204
205 #ifndef min
206 #define min(a, b) ((a) < (b) ? (a) : (b))
207 #endif
208
209 #ifndef max
210 #define max(a, b) ((a) > (b) ? (a) : (b))
211 #endif
212
213 /*
214 * The removed flag needs to be updated atomically with the pointer.
215 * It indicates that no node must attach to the node scheduled for
216 * removal, and that node garbage collection must be performed.
217 * The bucket flag does not require to be updated atomically with the
218 * pointer, but it is added as a pointer low bit flag to save space.
219 */
220 #define REMOVED_FLAG (1UL << 0)
221 #define BUCKET_FLAG (1UL << 1)
222 #define FLAGS_MASK ((1UL << 2) - 1)
223
224 /* Value of the end pointer. Should not interact with flags. */
225 #define END_VALUE NULL
226
227 /*
228 * ht_items_count: Split-counters counting the number of node addition
229 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
230 * is set at hash table creation.
231 *
232 * These are free-running counters, never reset to zero. They count the
233 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
234 * operations to update the global counter. We choose a power-of-2 value
235 * for the trigger to deal with 32 or 64-bit overflow of the counter.
236 */
237 struct ht_items_count {
238 unsigned long add, del;
239 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
240
241 /*
242 * rcu_level: Contains the per order-index-level bucket node table. The
243 * size of each bucket node table is half the number of hashes contained
244 * in this order (except for order 0). The minimum allocation size
245 * parameter allows combining the bucket node arrays of the lowermost
246 * levels to improve cache locality for small index orders.
247 */
248 struct rcu_level {
249 /* Note: manually update allocation length when adding a field */
250 struct cds_lfht_node nodes[0];
251 };
252
253 /*
254 * rcu_table: Contains the size and desired new size if a resize
255 * operation is in progress, as well as the statically-sized array of
256 * rcu_level pointers.
257 */
258 struct rcu_table {
259 unsigned long size; /* always a power of 2, shared (RCU) */
260 unsigned long resize_target;
261 int resize_initiated;
262 struct rcu_level *tbl[MAX_TABLE_ORDER];
263 };
264
265 /*
266 * cds_lfht: Top-level data structure representing a lock-free hash
267 * table. Defined in the implementation file to make it be an opaque
268 * cookie to users.
269 */
270 struct cds_lfht {
271 struct rcu_table t;
272 unsigned long min_alloc_order;
273 unsigned long min_alloc_size;
274 int flags;
275 /*
276 * We need to put the work threads offline (QSBR) when taking this
277 * mutex, because we use synchronize_rcu within this mutex critical
278 * section, which waits on read-side critical sections, and could
279 * therefore cause grace-period deadlock if we hold off RCU G.P.
280 * completion.
281 */
282 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
283 unsigned int in_progress_resize, in_progress_destroy;
284 void (*cds_lfht_call_rcu)(struct rcu_head *head,
285 void (*func)(struct rcu_head *head));
286 void (*cds_lfht_synchronize_rcu)(void);
287 void (*cds_lfht_rcu_read_lock)(void);
288 void (*cds_lfht_rcu_read_unlock)(void);
289 void (*cds_lfht_rcu_thread_offline)(void);
290 void (*cds_lfht_rcu_thread_online)(void);
291 void (*cds_lfht_rcu_register_thread)(void);
292 void (*cds_lfht_rcu_unregister_thread)(void);
293 pthread_attr_t *resize_attr; /* Resize threads attributes */
294 long count; /* global approximate item count */
295 struct ht_items_count *split_count; /* split item count */
296 };
297
298 /*
299 * rcu_resize_work: Contains arguments passed to RCU worker thread
300 * responsible for performing lazy resize.
301 */
302 struct rcu_resize_work {
303 struct rcu_head head;
304 struct cds_lfht *ht;
305 };
306
307 /*
308 * partition_resize_work: Contains arguments passed to worker threads
309 * executing the hash table resize on partitions of the hash table
310 * assigned to each processor's worker thread.
311 */
312 struct partition_resize_work {
313 pthread_t thread_id;
314 struct cds_lfht *ht;
315 unsigned long i, start, len;
316 void (*fct)(struct cds_lfht *ht, unsigned long i,
317 unsigned long start, unsigned long len);
318 };
319
320 static
321 void _cds_lfht_add(struct cds_lfht *ht,
322 cds_lfht_match_fct match,
323 const void *key,
324 unsigned long size,
325 struct cds_lfht_node *node,
326 struct cds_lfht_iter *unique_ret,
327 int bucket);
328
329 /*
330 * Algorithm to reverse bits in a word by lookup table, extended to
331 * 64-bit words.
332 * Source:
333 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
334 * Originally from Public Domain.
335 */
336
337 static const uint8_t BitReverseTable256[256] =
338 {
339 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
340 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
341 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
342 R6(0), R6(2), R6(1), R6(3)
343 };
344 #undef R2
345 #undef R4
346 #undef R6
347
348 static
349 uint8_t bit_reverse_u8(uint8_t v)
350 {
351 return BitReverseTable256[v];
352 }
353
354 static __attribute__((unused))
355 uint32_t bit_reverse_u32(uint32_t v)
356 {
357 return ((uint32_t) bit_reverse_u8(v) << 24) |
358 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
359 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
360 ((uint32_t) bit_reverse_u8(v >> 24));
361 }
362
363 static __attribute__((unused))
364 uint64_t bit_reverse_u64(uint64_t v)
365 {
366 return ((uint64_t) bit_reverse_u8(v) << 56) |
367 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
368 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
369 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
370 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
371 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
372 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
373 ((uint64_t) bit_reverse_u8(v >> 56));
374 }
375
376 static
377 unsigned long bit_reverse_ulong(unsigned long v)
378 {
379 #if (CAA_BITS_PER_LONG == 32)
380 return bit_reverse_u32(v);
381 #else
382 return bit_reverse_u64(v);
383 #endif
384 }
385
386 /*
387 * fls: returns the position of the most significant bit.
388 * Returns 0 if no bit is set, else returns the position of the most
389 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
390 */
391 #if defined(__i386) || defined(__x86_64)
392 static inline
393 unsigned int fls_u32(uint32_t x)
394 {
395 int r;
396
397 asm("bsrl %1,%0\n\t"
398 "jnz 1f\n\t"
399 "movl $-1,%0\n\t"
400 "1:\n\t"
401 : "=r" (r) : "rm" (x));
402 return r + 1;
403 }
404 #define HAS_FLS_U32
405 #endif
406
407 #if defined(__x86_64)
408 static inline
409 unsigned int fls_u64(uint64_t x)
410 {
411 long r;
412
413 asm("bsrq %1,%0\n\t"
414 "jnz 1f\n\t"
415 "movq $-1,%0\n\t"
416 "1:\n\t"
417 : "=r" (r) : "rm" (x));
418 return r + 1;
419 }
420 #define HAS_FLS_U64
421 #endif
422
423 #ifndef HAS_FLS_U64
424 static __attribute__((unused))
425 unsigned int fls_u64(uint64_t x)
426 {
427 unsigned int r = 64;
428
429 if (!x)
430 return 0;
431
432 if (!(x & 0xFFFFFFFF00000000ULL)) {
433 x <<= 32;
434 r -= 32;
435 }
436 if (!(x & 0xFFFF000000000000ULL)) {
437 x <<= 16;
438 r -= 16;
439 }
440 if (!(x & 0xFF00000000000000ULL)) {
441 x <<= 8;
442 r -= 8;
443 }
444 if (!(x & 0xF000000000000000ULL)) {
445 x <<= 4;
446 r -= 4;
447 }
448 if (!(x & 0xC000000000000000ULL)) {
449 x <<= 2;
450 r -= 2;
451 }
452 if (!(x & 0x8000000000000000ULL)) {
453 x <<= 1;
454 r -= 1;
455 }
456 return r;
457 }
458 #endif
459
460 #ifndef HAS_FLS_U32
461 static __attribute__((unused))
462 unsigned int fls_u32(uint32_t x)
463 {
464 unsigned int r = 32;
465
466 if (!x)
467 return 0;
468 if (!(x & 0xFFFF0000U)) {
469 x <<= 16;
470 r -= 16;
471 }
472 if (!(x & 0xFF000000U)) {
473 x <<= 8;
474 r -= 8;
475 }
476 if (!(x & 0xF0000000U)) {
477 x <<= 4;
478 r -= 4;
479 }
480 if (!(x & 0xC0000000U)) {
481 x <<= 2;
482 r -= 2;
483 }
484 if (!(x & 0x80000000U)) {
485 x <<= 1;
486 r -= 1;
487 }
488 return r;
489 }
490 #endif
491
492 unsigned int fls_ulong(unsigned long x)
493 {
494 #if (CAA_BITS_PER_LONG == 32)
495 return fls_u32(x);
496 #else
497 return fls_u64(x);
498 #endif
499 }
500
501 /*
502 * Return the minimum order for which x <= (1UL << order).
503 * Return -1 if x is 0.
504 */
505 int get_count_order_u32(uint32_t x)
506 {
507 if (!x)
508 return -1;
509
510 return fls_u32(x - 1);
511 }
512
513 /*
514 * Return the minimum order for which x <= (1UL << order).
515 * Return -1 if x is 0.
516 */
517 int get_count_order_ulong(unsigned long x)
518 {
519 if (!x)
520 return -1;
521
522 return fls_ulong(x - 1);
523 }
524
525 #ifdef POISON_FREE
526 #define poison_free(ptr) \
527 do { \
528 if (ptr) { \
529 memset(ptr, 0x42, sizeof(*(ptr))); \
530 free(ptr); \
531 } \
532 } while (0)
533 #else
534 #define poison_free(ptr) free(ptr)
535 #endif
536
537 static
538 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
539
540 static
541 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
542 unsigned long count);
543
544 static long nr_cpus_mask = -1;
545 static long split_count_mask = -1;
546
547 #if defined(HAVE_SYSCONF)
548 static void ht_init_nr_cpus_mask(void)
549 {
550 long maxcpus;
551
552 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
553 if (maxcpus <= 0) {
554 nr_cpus_mask = -2;
555 return;
556 }
557 /*
558 * round up number of CPUs to next power of two, so we
559 * can use & for modulo.
560 */
561 maxcpus = 1UL << get_count_order_ulong(maxcpus);
562 nr_cpus_mask = maxcpus - 1;
563 }
564 #else /* #if defined(HAVE_SYSCONF) */
565 static void ht_init_nr_cpus_mask(void)
566 {
567 nr_cpus_mask = -2;
568 }
569 #endif /* #else #if defined(HAVE_SYSCONF) */
570
571 static
572 void alloc_split_items_count(struct cds_lfht *ht)
573 {
574 struct ht_items_count *count;
575
576 if (nr_cpus_mask == -1) {
577 ht_init_nr_cpus_mask();
578 if (nr_cpus_mask < 0)
579 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
580 else
581 split_count_mask = nr_cpus_mask;
582 }
583
584 assert(split_count_mask >= 0);
585
586 if (ht->flags & CDS_LFHT_ACCOUNTING) {
587 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
588 assert(ht->split_count);
589 } else {
590 ht->split_count = NULL;
591 }
592 }
593
594 static
595 void free_split_items_count(struct cds_lfht *ht)
596 {
597 poison_free(ht->split_count);
598 }
599
600 #if defined(HAVE_SCHED_GETCPU)
601 static
602 int ht_get_split_count_index(unsigned long hash)
603 {
604 int cpu;
605
606 assert(split_count_mask >= 0);
607 cpu = sched_getcpu();
608 if (caa_unlikely(cpu < 0))
609 return hash & split_count_mask;
610 else
611 return cpu & split_count_mask;
612 }
613 #else /* #if defined(HAVE_SCHED_GETCPU) */
614 static
615 int ht_get_split_count_index(unsigned long hash)
616 {
617 return hash & split_count_mask;
618 }
619 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
620
621 static
622 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
623 {
624 unsigned long split_count;
625 int index;
626
627 if (caa_unlikely(!ht->split_count))
628 return;
629 index = ht_get_split_count_index(hash);
630 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
631 if (caa_unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
632 long count;
633
634 dbg_printf("add split count %lu\n", split_count);
635 count = uatomic_add_return(&ht->count,
636 1UL << COUNT_COMMIT_ORDER);
637 /* If power of 2 */
638 if (!(count & (count - 1))) {
639 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
640 return;
641 dbg_printf("add set global %ld\n", count);
642 cds_lfht_resize_lazy_count(ht, size,
643 count >> (CHAIN_LEN_TARGET - 1));
644 }
645 }
646 }
647
648 static
649 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
650 {
651 unsigned long split_count;
652 int index;
653
654 if (caa_unlikely(!ht->split_count))
655 return;
656 index = ht_get_split_count_index(hash);
657 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
658 if (caa_unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
659 long count;
660
661 dbg_printf("del split count %lu\n", split_count);
662 count = uatomic_add_return(&ht->count,
663 -(1UL << COUNT_COMMIT_ORDER));
664 /* If power of 2 */
665 if (!(count & (count - 1))) {
666 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
667 return;
668 dbg_printf("del set global %ld\n", count);
669 /*
670 * Don't shrink table if the number of nodes is below a
671 * certain threshold.
672 */
673 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
674 return;
675 cds_lfht_resize_lazy_count(ht, size,
676 count >> (CHAIN_LEN_TARGET - 1));
677 }
678 }
679 }
680
681 static
682 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
683 {
684 unsigned long count;
685
686 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
687 return;
688 count = uatomic_read(&ht->count);
689 /*
690 * Use bucket-local length for small table expand and for
691 * environments lacking per-cpu data support.
692 */
693 if (count >= (1UL << COUNT_COMMIT_ORDER))
694 return;
695 if (chain_len > 100)
696 dbg_printf("WARNING: large chain length: %u.\n",
697 chain_len);
698 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
699 cds_lfht_resize_lazy_grow(ht, size,
700 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
701 }
702
703 static
704 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
705 {
706 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
707 }
708
709 static
710 int is_removed(struct cds_lfht_node *node)
711 {
712 return ((unsigned long) node) & REMOVED_FLAG;
713 }
714
715 static
716 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
717 {
718 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
719 }
720
721 static
722 int is_bucket(struct cds_lfht_node *node)
723 {
724 return ((unsigned long) node) & BUCKET_FLAG;
725 }
726
727 static
728 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
729 {
730 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
731 }
732
733 static
734 struct cds_lfht_node *get_end(void)
735 {
736 return (struct cds_lfht_node *) END_VALUE;
737 }
738
739 static
740 int is_end(struct cds_lfht_node *node)
741 {
742 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
743 }
744
745 static
746 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
747 unsigned long v)
748 {
749 unsigned long old1, old2;
750
751 old1 = uatomic_read(ptr);
752 do {
753 old2 = old1;
754 if (old2 >= v)
755 return old2;
756 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
757 return old2;
758 }
759
760 static
761 void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
762 {
763 if (order == 0) {
764 ht->t.tbl[0] = calloc(ht->min_alloc_size,
765 sizeof(struct cds_lfht_node));
766 assert(ht->t.tbl[0]);
767 } else if (order > ht->min_alloc_order) {
768 ht->t.tbl[order] = calloc(1UL << (order -1),
769 sizeof(struct cds_lfht_node));
770 assert(ht->t.tbl[order]);
771 }
772 /* Nothing to do for 0 < order && order <= ht->min_alloc_order */
773 }
774
775 /*
776 * cds_lfht_free_bucket_table() should be called with decreasing order.
777 * When cds_lfht_free_bucket_table(0) is called, it means the whole
778 * lfht is destroyed.
779 */
780 static
781 void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
782 {
783 if (order == 0)
784 poison_free(ht->t.tbl[0]);
785 else if (order > ht->min_alloc_order)
786 poison_free(ht->t.tbl[order]);
787 /* Nothing to do for 0 < order && order <= ht->min_alloc_order */
788 }
789
790 static inline
791 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
792 {
793 unsigned long order;
794
795 if ((__builtin_constant_p(index) && index == 0)
796 || index < ht->min_alloc_size) {
797 dbg_printf("bucket index %lu order 0 aridx 0\n", index);
798 return &ht->t.tbl[0]->nodes[index];
799 }
800 /*
801 * equivalent to get_count_order_ulong(index + 1), but optimizes
802 * away the non-existing 0 special-case for
803 * get_count_order_ulong.
804 */
805 order = fls_ulong(index);
806 dbg_printf("bucket index %lu order %lu aridx %lu\n",
807 index, order, index & ((1UL << (order - 1)) - 1));
808 return &ht->t.tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
809 }
810
811 static inline
812 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
813 unsigned long hash)
814 {
815 assert(size > 0);
816 return bucket_at(ht, hash & (size - 1));
817 }
818
819 /*
820 * Remove all logically deleted nodes from a bucket up to a certain node key.
821 */
822 static
823 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
824 {
825 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
826
827 assert(!is_bucket(bucket));
828 assert(!is_removed(bucket));
829 assert(!is_bucket(node));
830 assert(!is_removed(node));
831 for (;;) {
832 iter_prev = bucket;
833 /* We can always skip the bucket node initially */
834 iter = rcu_dereference(iter_prev->next);
835 assert(!is_removed(iter));
836 assert(iter_prev->reverse_hash <= node->reverse_hash);
837 /*
838 * We should never be called with bucket (start of chain)
839 * and logically removed node (end of path compression
840 * marker) being the actual same node. This would be a
841 * bug in the algorithm implementation.
842 */
843 assert(bucket != node);
844 for (;;) {
845 if (caa_unlikely(is_end(iter)))
846 return;
847 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
848 return;
849 next = rcu_dereference(clear_flag(iter)->next);
850 if (caa_likely(is_removed(next)))
851 break;
852 iter_prev = clear_flag(iter);
853 iter = next;
854 }
855 assert(!is_removed(iter));
856 if (is_bucket(iter))
857 new_next = flag_bucket(clear_flag(next));
858 else
859 new_next = clear_flag(next);
860 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
861 }
862 return;
863 }
864
865 static
866 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
867 struct cds_lfht_node *old_node,
868 struct cds_lfht_node *old_next,
869 struct cds_lfht_node *new_node)
870 {
871 struct cds_lfht_node *bucket, *ret_next;
872
873 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
874 return -ENOENT;
875
876 assert(!is_removed(old_node));
877 assert(!is_bucket(old_node));
878 assert(!is_removed(new_node));
879 assert(!is_bucket(new_node));
880 assert(new_node != old_node);
881 for (;;) {
882 /* Insert after node to be replaced */
883 if (is_removed(old_next)) {
884 /*
885 * Too late, the old node has been removed under us
886 * between lookup and replace. Fail.
887 */
888 return -ENOENT;
889 }
890 assert(!is_bucket(old_next));
891 assert(new_node != clear_flag(old_next));
892 new_node->next = clear_flag(old_next);
893 /*
894 * Here is the whole trick for lock-free replace: we add
895 * the replacement node _after_ the node we want to
896 * replace by atomically setting its next pointer at the
897 * same time we set its removal flag. Given that
898 * the lookups/get next use an iterator aware of the
899 * next pointer, they will either skip the old node due
900 * to the removal flag and see the new node, or use
901 * the old node, but will not see the new one.
902 */
903 ret_next = uatomic_cmpxchg(&old_node->next,
904 old_next, flag_removed(new_node));
905 if (ret_next == old_next)
906 break; /* We performed the replacement. */
907 old_next = ret_next;
908 }
909
910 /*
911 * Ensure that the old node is not visible to readers anymore:
912 * lookup for the node, and remove it (along with any other
913 * logically removed node) if found.
914 */
915 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
916 _cds_lfht_gc_bucket(bucket, new_node);
917
918 assert(is_removed(rcu_dereference(old_node->next)));
919 return 0;
920 }
921
922 /*
923 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
924 * mode. A NULL unique_ret allows creation of duplicate keys.
925 */
926 static
927 void _cds_lfht_add(struct cds_lfht *ht,
928 cds_lfht_match_fct match,
929 const void *key,
930 unsigned long size,
931 struct cds_lfht_node *node,
932 struct cds_lfht_iter *unique_ret,
933 int bucket_flag)
934 {
935 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
936 *return_node;
937 struct cds_lfht_node *bucket;
938
939 assert(!is_bucket(node));
940 assert(!is_removed(node));
941 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
942 for (;;) {
943 uint32_t chain_len = 0;
944
945 /*
946 * iter_prev points to the non-removed node prior to the
947 * insert location.
948 */
949 iter_prev = bucket;
950 /* We can always skip the bucket node initially */
951 iter = rcu_dereference(iter_prev->next);
952 assert(iter_prev->reverse_hash <= node->reverse_hash);
953 for (;;) {
954 if (caa_unlikely(is_end(iter)))
955 goto insert;
956 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
957 goto insert;
958
959 /* bucket node is the first node of the identical-hash-value chain */
960 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
961 goto insert;
962
963 next = rcu_dereference(clear_flag(iter)->next);
964 if (caa_unlikely(is_removed(next)))
965 goto gc_node;
966
967 /* uniquely add */
968 if (unique_ret
969 && !is_bucket(next)
970 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
971 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
972
973 /*
974 * uniquely adding inserts the node as the first
975 * node of the identical-hash-value node chain.
976 *
977 * This semantic ensures no duplicated keys
978 * should ever be observable in the table
979 * (including observe one node by one node
980 * by forward iterations)
981 */
982 cds_lfht_next_duplicate(ht, match, key, &d_iter);
983 if (!d_iter.node)
984 goto insert;
985
986 *unique_ret = d_iter;
987 return;
988 }
989
990 /* Only account for identical reverse hash once */
991 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
992 && !is_bucket(next))
993 check_resize(ht, size, ++chain_len);
994 iter_prev = clear_flag(iter);
995 iter = next;
996 }
997
998 insert:
999 assert(node != clear_flag(iter));
1000 assert(!is_removed(iter_prev));
1001 assert(!is_removed(iter));
1002 assert(iter_prev != node);
1003 if (!bucket_flag)
1004 node->next = clear_flag(iter);
1005 else
1006 node->next = flag_bucket(clear_flag(iter));
1007 if (is_bucket(iter))
1008 new_node = flag_bucket(node);
1009 else
1010 new_node = node;
1011 if (uatomic_cmpxchg(&iter_prev->next, iter,
1012 new_node) != iter) {
1013 continue; /* retry */
1014 } else {
1015 return_node = node;
1016 goto end;
1017 }
1018
1019 gc_node:
1020 assert(!is_removed(iter));
1021 if (is_bucket(iter))
1022 new_next = flag_bucket(clear_flag(next));
1023 else
1024 new_next = clear_flag(next);
1025 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1026 /* retry */
1027 }
1028 end:
1029 if (unique_ret) {
1030 unique_ret->node = return_node;
1031 /* unique_ret->next left unset, never used. */
1032 }
1033 }
1034
1035 static
1036 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1037 struct cds_lfht_node *node,
1038 int bucket_removal)
1039 {
1040 struct cds_lfht_node *bucket, *next, *old;
1041
1042 if (!node) /* Return -ENOENT if asked to delete NULL node */
1043 return -ENOENT;
1044
1045 /* logically delete the node */
1046 assert(!is_bucket(node));
1047 assert(!is_removed(node));
1048 old = rcu_dereference(node->next);
1049 do {
1050 struct cds_lfht_node *new_next;
1051
1052 next = old;
1053 if (caa_unlikely(is_removed(next)))
1054 return -ENOENT;
1055 if (bucket_removal)
1056 assert(is_bucket(next));
1057 else
1058 assert(!is_bucket(next));
1059 new_next = flag_removed(next);
1060 old = uatomic_cmpxchg(&node->next, next, new_next);
1061 } while (old != next);
1062 /* We performed the (logical) deletion. */
1063
1064 /*
1065 * Ensure that the node is not visible to readers anymore: lookup for
1066 * the node, and remove it (along with any other logically removed node)
1067 * if found.
1068 */
1069 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1070 _cds_lfht_gc_bucket(bucket, node);
1071
1072 assert(is_removed(rcu_dereference(node->next)));
1073 return 0;
1074 }
1075
1076 static
1077 void *partition_resize_thread(void *arg)
1078 {
1079 struct partition_resize_work *work = arg;
1080
1081 work->ht->cds_lfht_rcu_register_thread();
1082 work->fct(work->ht, work->i, work->start, work->len);
1083 work->ht->cds_lfht_rcu_unregister_thread();
1084 return NULL;
1085 }
1086
1087 static
1088 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1089 unsigned long len,
1090 void (*fct)(struct cds_lfht *ht, unsigned long i,
1091 unsigned long start, unsigned long len))
1092 {
1093 unsigned long partition_len;
1094 struct partition_resize_work *work;
1095 int thread, ret;
1096 unsigned long nr_threads;
1097
1098 /*
1099 * Note: nr_cpus_mask + 1 is always power of 2.
1100 * We spawn just the number of threads we need to satisfy the minimum
1101 * partition size, up to the number of CPUs in the system.
1102 */
1103 if (nr_cpus_mask > 0) {
1104 nr_threads = min(nr_cpus_mask + 1,
1105 len >> MIN_PARTITION_PER_THREAD_ORDER);
1106 } else {
1107 nr_threads = 1;
1108 }
1109 partition_len = len >> get_count_order_ulong(nr_threads);
1110 work = calloc(nr_threads, sizeof(*work));
1111 assert(work);
1112 for (thread = 0; thread < nr_threads; thread++) {
1113 work[thread].ht = ht;
1114 work[thread].i = i;
1115 work[thread].len = partition_len;
1116 work[thread].start = thread * partition_len;
1117 work[thread].fct = fct;
1118 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1119 partition_resize_thread, &work[thread]);
1120 assert(!ret);
1121 }
1122 for (thread = 0; thread < nr_threads; thread++) {
1123 ret = pthread_join(work[thread].thread_id, NULL);
1124 assert(!ret);
1125 }
1126 free(work);
1127 }
1128
1129 /*
1130 * Holding RCU read lock to protect _cds_lfht_add against memory
1131 * reclaim that could be performed by other call_rcu worker threads (ABA
1132 * problem).
1133 *
1134 * When we reach a certain length, we can split this population phase over
1135 * many worker threads, based on the number of CPUs available in the system.
1136 * This should therefore take care of not having the expand lagging behind too
1137 * many concurrent insertion threads by using the scheduler's ability to
1138 * schedule bucket node population fairly with insertions.
1139 */
1140 static
1141 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1142 unsigned long start, unsigned long len)
1143 {
1144 unsigned long j, size = 1UL << (i - 1);
1145
1146 assert(i > MIN_TABLE_ORDER);
1147 ht->cds_lfht_rcu_read_lock();
1148 for (j = size + start; j < size + start + len; j++) {
1149 struct cds_lfht_node *new_node = bucket_at(ht, j);
1150
1151 assert(j >= size && j < (size << 1));
1152 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1153 i, j, j);
1154 new_node->reverse_hash = bit_reverse_ulong(j);
1155 _cds_lfht_add(ht, NULL, NULL, size, new_node, NULL, 1);
1156 }
1157 ht->cds_lfht_rcu_read_unlock();
1158 }
1159
1160 static
1161 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1162 unsigned long len)
1163 {
1164 assert(nr_cpus_mask != -1);
1165 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1166 ht->cds_lfht_rcu_thread_online();
1167 init_table_populate_partition(ht, i, 0, len);
1168 ht->cds_lfht_rcu_thread_offline();
1169 return;
1170 }
1171 partition_resize_helper(ht, i, len, init_table_populate_partition);
1172 }
1173
1174 static
1175 void init_table(struct cds_lfht *ht,
1176 unsigned long first_order, unsigned long last_order)
1177 {
1178 unsigned long i;
1179
1180 dbg_printf("init table: first_order %lu last_order %lu\n",
1181 first_order, last_order);
1182 assert(first_order > MIN_TABLE_ORDER);
1183 for (i = first_order; i <= last_order; i++) {
1184 unsigned long len;
1185
1186 len = 1UL << (i - 1);
1187 dbg_printf("init order %lu len: %lu\n", i, len);
1188
1189 /* Stop expand if the resize target changes under us */
1190 if (CMM_LOAD_SHARED(ht->t.resize_target) < (1UL << i))
1191 break;
1192
1193 cds_lfht_alloc_bucket_table(ht, i);
1194
1195 /*
1196 * Set all bucket nodes reverse hash values for a level and
1197 * link all bucket nodes into the table.
1198 */
1199 init_table_populate(ht, i, len);
1200
1201 /*
1202 * Update table size.
1203 */
1204 cmm_smp_wmb(); /* populate data before RCU size */
1205 CMM_STORE_SHARED(ht->t.size, 1UL << i);
1206
1207 dbg_printf("init new size: %lu\n", 1UL << i);
1208 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1209 break;
1210 }
1211 }
1212
1213 /*
1214 * Holding RCU read lock to protect _cds_lfht_remove against memory
1215 * reclaim that could be performed by other call_rcu worker threads (ABA
1216 * problem).
1217 * For a single level, we logically remove and garbage collect each node.
1218 *
1219 * As a design choice, we perform logical removal and garbage collection on a
1220 * node-per-node basis to simplify this algorithm. We also assume keeping good
1221 * cache locality of the operation would overweight possible performance gain
1222 * that could be achieved by batching garbage collection for multiple levels.
1223 * However, this would have to be justified by benchmarks.
1224 *
1225 * Concurrent removal and add operations are helping us perform garbage
1226 * collection of logically removed nodes. We guarantee that all logically
1227 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1228 * invoked to free a hole level of bucket nodes (after a grace period).
1229 *
1230 * Logical removal and garbage collection can therefore be done in batch or on a
1231 * node-per-node basis, as long as the guarantee above holds.
1232 *
1233 * When we reach a certain length, we can split this removal over many worker
1234 * threads, based on the number of CPUs available in the system. This should
1235 * take care of not letting resize process lag behind too many concurrent
1236 * updater threads actively inserting into the hash table.
1237 */
1238 static
1239 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1240 unsigned long start, unsigned long len)
1241 {
1242 unsigned long j, size = 1UL << (i - 1);
1243
1244 assert(i > MIN_TABLE_ORDER);
1245 ht->cds_lfht_rcu_read_lock();
1246 for (j = size + start; j < size + start + len; j++) {
1247 struct cds_lfht_node *fini_node = bucket_at(ht, j);
1248
1249 assert(j >= size && j < (size << 1));
1250 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1251 i, j, j);
1252 fini_node->reverse_hash = bit_reverse_ulong(j);
1253 (void) _cds_lfht_del(ht, size, fini_node, 1);
1254 }
1255 ht->cds_lfht_rcu_read_unlock();
1256 }
1257
1258 static
1259 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1260 {
1261
1262 assert(nr_cpus_mask != -1);
1263 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1264 ht->cds_lfht_rcu_thread_online();
1265 remove_table_partition(ht, i, 0, len);
1266 ht->cds_lfht_rcu_thread_offline();
1267 return;
1268 }
1269 partition_resize_helper(ht, i, len, remove_table_partition);
1270 }
1271
1272 static
1273 void fini_table(struct cds_lfht *ht,
1274 unsigned long first_order, unsigned long last_order)
1275 {
1276 long i;
1277 unsigned long free_by_rcu_order = 0;
1278
1279 dbg_printf("fini table: first_order %lu last_order %lu\n",
1280 first_order, last_order);
1281 assert(first_order > MIN_TABLE_ORDER);
1282 for (i = last_order; i >= first_order; i--) {
1283 unsigned long len;
1284
1285 len = 1UL << (i - 1);
1286 dbg_printf("fini order %lu len: %lu\n", i, len);
1287
1288 /* Stop shrink if the resize target changes under us */
1289 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1290 break;
1291
1292 cmm_smp_wmb(); /* populate data before RCU size */
1293 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1294
1295 /*
1296 * We need to wait for all add operations to reach Q.S. (and
1297 * thus use the new table for lookups) before we can start
1298 * releasing the old bucket nodes. Otherwise their lookup will
1299 * return a logically removed node as insert position.
1300 */
1301 ht->cds_lfht_synchronize_rcu();
1302 if (free_by_rcu_order)
1303 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1304
1305 /*
1306 * Set "removed" flag in bucket nodes about to be removed.
1307 * Unlink all now-logically-removed bucket node pointers.
1308 * Concurrent add/remove operation are helping us doing
1309 * the gc.
1310 */
1311 remove_table(ht, i, len);
1312
1313 free_by_rcu_order = i;
1314
1315 dbg_printf("fini new size: %lu\n", 1UL << i);
1316 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1317 break;
1318 }
1319
1320 if (free_by_rcu_order) {
1321 ht->cds_lfht_synchronize_rcu();
1322 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1323 }
1324 }
1325
1326 static
1327 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1328 {
1329 struct cds_lfht_node *prev, *node;
1330 unsigned long order, len, i;
1331
1332 cds_lfht_alloc_bucket_table(ht, 0);
1333
1334 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1335 node = bucket_at(ht, 0);
1336 node->next = flag_bucket(get_end());
1337 node->reverse_hash = 0;
1338
1339 for (order = 1; order < get_count_order_ulong(size) + 1; order++) {
1340 len = 1UL << (order - 1);
1341 cds_lfht_alloc_bucket_table(ht, order);
1342
1343 for (i = 0; i < len; i++) {
1344 /*
1345 * Now, we are trying to init the node with the
1346 * hash=(len+i) (which is also a bucket with the
1347 * index=(len+i)) and insert it into the hash table,
1348 * so this node has to be inserted after the bucket
1349 * with the index=(len+i)&(len-1)=i. And because there
1350 * is no other non-bucket node nor bucket node with
1351 * larger index/hash inserted, so the bucket node
1352 * being inserted should be inserted directly linked
1353 * after the bucket node with index=i.
1354 */
1355 prev = bucket_at(ht, i);
1356 node = bucket_at(ht, len + i);
1357
1358 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1359 order, len + i, len + i);
1360 node->reverse_hash = bit_reverse_ulong(len + i);
1361
1362 /* insert after prev */
1363 assert(is_bucket(prev->next));
1364 node->next = prev->next;
1365 prev->next = flag_bucket(node);
1366 }
1367 }
1368 }
1369
1370 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1371 unsigned long min_alloc_size,
1372 int flags,
1373 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1374 void (*func)(struct rcu_head *head)),
1375 void (*cds_lfht_synchronize_rcu)(void),
1376 void (*cds_lfht_rcu_read_lock)(void),
1377 void (*cds_lfht_rcu_read_unlock)(void),
1378 void (*cds_lfht_rcu_thread_offline)(void),
1379 void (*cds_lfht_rcu_thread_online)(void),
1380 void (*cds_lfht_rcu_register_thread)(void),
1381 void (*cds_lfht_rcu_unregister_thread)(void),
1382 pthread_attr_t *attr)
1383 {
1384 struct cds_lfht *ht;
1385 unsigned long order;
1386
1387 /* min_alloc_size must be power of two */
1388 if (!min_alloc_size || (min_alloc_size & (min_alloc_size - 1)))
1389 return NULL;
1390 /* init_size must be power of two */
1391 if (!init_size || (init_size & (init_size - 1)))
1392 return NULL;
1393 min_alloc_size = max(min_alloc_size, MIN_TABLE_SIZE);
1394 init_size = max(init_size, MIN_TABLE_SIZE);
1395 ht = calloc(1, sizeof(struct cds_lfht));
1396 assert(ht);
1397 ht->flags = flags;
1398 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1399 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1400 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1401 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1402 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1403 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1404 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1405 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1406 ht->resize_attr = attr;
1407 alloc_split_items_count(ht);
1408 /* this mutex should not nest in read-side C.S. */
1409 pthread_mutex_init(&ht->resize_mutex, NULL);
1410 order = get_count_order_ulong(init_size);
1411 ht->t.resize_target = 1UL << order;
1412 ht->min_alloc_size = min_alloc_size;
1413 ht->min_alloc_order = get_count_order_ulong(min_alloc_size);
1414 cds_lfht_create_bucket(ht, 1UL << order);
1415 ht->t.size = 1UL << order;
1416 return ht;
1417 }
1418
1419 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1420 cds_lfht_match_fct match, const void *key,
1421 struct cds_lfht_iter *iter)
1422 {
1423 struct cds_lfht_node *node, *next, *bucket;
1424 unsigned long reverse_hash, size;
1425
1426 reverse_hash = bit_reverse_ulong(hash);
1427
1428 size = rcu_dereference(ht->t.size);
1429 bucket = lookup_bucket(ht, size, hash);
1430 /* We can always skip the bucket node initially */
1431 node = rcu_dereference(bucket->next);
1432 node = clear_flag(node);
1433 for (;;) {
1434 if (caa_unlikely(is_end(node))) {
1435 node = next = NULL;
1436 break;
1437 }
1438 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1439 node = next = NULL;
1440 break;
1441 }
1442 next = rcu_dereference(node->next);
1443 assert(node == clear_flag(node));
1444 if (caa_likely(!is_removed(next))
1445 && !is_bucket(next)
1446 && node->reverse_hash == reverse_hash
1447 && caa_likely(match(node, key))) {
1448 break;
1449 }
1450 node = clear_flag(next);
1451 }
1452 assert(!node || !is_bucket(rcu_dereference(node->next)));
1453 iter->node = node;
1454 iter->next = next;
1455 }
1456
1457 void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1458 const void *key, struct cds_lfht_iter *iter)
1459 {
1460 struct cds_lfht_node *node, *next;
1461 unsigned long reverse_hash;
1462
1463 node = iter->node;
1464 reverse_hash = node->reverse_hash;
1465 next = iter->next;
1466 node = clear_flag(next);
1467
1468 for (;;) {
1469 if (caa_unlikely(is_end(node))) {
1470 node = next = NULL;
1471 break;
1472 }
1473 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1474 node = next = NULL;
1475 break;
1476 }
1477 next = rcu_dereference(node->next);
1478 if (caa_likely(!is_removed(next))
1479 && !is_bucket(next)
1480 && caa_likely(match(node, key))) {
1481 break;
1482 }
1483 node = clear_flag(next);
1484 }
1485 assert(!node || !is_bucket(rcu_dereference(node->next)));
1486 iter->node = node;
1487 iter->next = next;
1488 }
1489
1490 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1491 {
1492 struct cds_lfht_node *node, *next;
1493
1494 node = clear_flag(iter->next);
1495 for (;;) {
1496 if (caa_unlikely(is_end(node))) {
1497 node = next = NULL;
1498 break;
1499 }
1500 next = rcu_dereference(node->next);
1501 if (caa_likely(!is_removed(next))
1502 && !is_bucket(next)) {
1503 break;
1504 }
1505 node = clear_flag(next);
1506 }
1507 assert(!node || !is_bucket(rcu_dereference(node->next)));
1508 iter->node = node;
1509 iter->next = next;
1510 }
1511
1512 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1513 {
1514 /*
1515 * Get next after first bucket node. The first bucket node is the
1516 * first node of the linked list.
1517 */
1518 iter->next = bucket_at(ht, 0)->next;
1519 cds_lfht_next(ht, iter);
1520 }
1521
1522 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1523 struct cds_lfht_node *node)
1524 {
1525 unsigned long size;
1526
1527 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1528 size = rcu_dereference(ht->t.size);
1529 _cds_lfht_add(ht, NULL, NULL, size, node, NULL, 0);
1530 ht_count_add(ht, size, hash);
1531 }
1532
1533 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1534 unsigned long hash,
1535 cds_lfht_match_fct match,
1536 const void *key,
1537 struct cds_lfht_node *node)
1538 {
1539 unsigned long size;
1540 struct cds_lfht_iter iter;
1541
1542 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1543 size = rcu_dereference(ht->t.size);
1544 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1545 if (iter.node == node)
1546 ht_count_add(ht, size, hash);
1547 return iter.node;
1548 }
1549
1550 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1551 unsigned long hash,
1552 cds_lfht_match_fct match,
1553 const void *key,
1554 struct cds_lfht_node *node)
1555 {
1556 unsigned long size;
1557 struct cds_lfht_iter iter;
1558
1559 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1560 size = rcu_dereference(ht->t.size);
1561 for (;;) {
1562 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1563 if (iter.node == node) {
1564 ht_count_add(ht, size, hash);
1565 return NULL;
1566 }
1567
1568 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1569 return iter.node;
1570 }
1571 }
1572
1573 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1574 struct cds_lfht_node *new_node)
1575 {
1576 unsigned long size;
1577
1578 size = rcu_dereference(ht->t.size);
1579 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1580 new_node);
1581 }
1582
1583 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1584 {
1585 unsigned long size, hash;
1586 int ret;
1587
1588 size = rcu_dereference(ht->t.size);
1589 ret = _cds_lfht_del(ht, size, iter->node, 0);
1590 if (!ret) {
1591 hash = bit_reverse_ulong(iter->node->reverse_hash);
1592 ht_count_del(ht, size, hash);
1593 }
1594 return ret;
1595 }
1596
1597 static
1598 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1599 {
1600 struct cds_lfht_node *node;
1601 unsigned long order, i, size;
1602
1603 /* Check that the table is empty */
1604 node = bucket_at(ht, 0);
1605 do {
1606 node = clear_flag(node)->next;
1607 if (!is_bucket(node))
1608 return -EPERM;
1609 assert(!is_removed(node));
1610 } while (!is_end(node));
1611 /*
1612 * size accessed without rcu_dereference because hash table is
1613 * being destroyed.
1614 */
1615 size = ht->t.size;
1616 /* Internal sanity check: all nodes left should be bucket */
1617 for (i = 0; i < size; i++) {
1618 node = bucket_at(ht, i);
1619 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1620 i, i, bit_reverse_ulong(node->reverse_hash));
1621 assert(is_bucket(node->next));
1622 }
1623
1624 for (order = get_count_order_ulong(size); (long)order >= 0; order--)
1625 cds_lfht_free_bucket_table(ht, order);
1626
1627 return 0;
1628 }
1629
1630 /*
1631 * Should only be called when no more concurrent readers nor writers can
1632 * possibly access the table.
1633 */
1634 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1635 {
1636 int ret;
1637
1638 /* Wait for in-flight resize operations to complete */
1639 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1640 cmm_smp_mb(); /* Store destroy before load resize */
1641 while (uatomic_read(&ht->in_progress_resize))
1642 poll(NULL, 0, 100); /* wait for 100ms */
1643 ret = cds_lfht_delete_bucket(ht);
1644 if (ret)
1645 return ret;
1646 free_split_items_count(ht);
1647 if (attr)
1648 *attr = ht->resize_attr;
1649 poison_free(ht);
1650 return ret;
1651 }
1652
1653 void cds_lfht_count_nodes(struct cds_lfht *ht,
1654 long *approx_before,
1655 unsigned long *count,
1656 unsigned long *removed,
1657 long *approx_after)
1658 {
1659 struct cds_lfht_node *node, *next;
1660 unsigned long nr_bucket = 0;
1661
1662 *approx_before = 0;
1663 if (ht->split_count) {
1664 int i;
1665
1666 for (i = 0; i < split_count_mask + 1; i++) {
1667 *approx_before += uatomic_read(&ht->split_count[i].add);
1668 *approx_before -= uatomic_read(&ht->split_count[i].del);
1669 }
1670 }
1671
1672 *count = 0;
1673 *removed = 0;
1674
1675 /* Count non-bucket nodes in the table */
1676 node = bucket_at(ht, 0);
1677 do {
1678 next = rcu_dereference(node->next);
1679 if (is_removed(next)) {
1680 if (!is_bucket(next))
1681 (*removed)++;
1682 else
1683 (nr_bucket)++;
1684 } else if (!is_bucket(next))
1685 (*count)++;
1686 else
1687 (nr_bucket)++;
1688 node = clear_flag(next);
1689 } while (!is_end(node));
1690 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1691 *approx_after = 0;
1692 if (ht->split_count) {
1693 int i;
1694
1695 for (i = 0; i < split_count_mask + 1; i++) {
1696 *approx_after += uatomic_read(&ht->split_count[i].add);
1697 *approx_after -= uatomic_read(&ht->split_count[i].del);
1698 }
1699 }
1700 }
1701
1702 /* called with resize mutex held */
1703 static
1704 void _do_cds_lfht_grow(struct cds_lfht *ht,
1705 unsigned long old_size, unsigned long new_size)
1706 {
1707 unsigned long old_order, new_order;
1708
1709 old_order = get_count_order_ulong(old_size);
1710 new_order = get_count_order_ulong(new_size);
1711 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1712 old_size, old_order, new_size, new_order);
1713 assert(new_size > old_size);
1714 init_table(ht, old_order + 1, new_order);
1715 }
1716
1717 /* called with resize mutex held */
1718 static
1719 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1720 unsigned long old_size, unsigned long new_size)
1721 {
1722 unsigned long old_order, new_order;
1723
1724 new_size = max(new_size, MIN_TABLE_SIZE);
1725 old_order = get_count_order_ulong(old_size);
1726 new_order = get_count_order_ulong(new_size);
1727 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1728 old_size, old_order, new_size, new_order);
1729 assert(new_size < old_size);
1730
1731 /* Remove and unlink all bucket nodes to remove. */
1732 fini_table(ht, new_order + 1, old_order);
1733 }
1734
1735
1736 /* called with resize mutex held */
1737 static
1738 void _do_cds_lfht_resize(struct cds_lfht *ht)
1739 {
1740 unsigned long new_size, old_size;
1741
1742 /*
1743 * Resize table, re-do if the target size has changed under us.
1744 */
1745 do {
1746 assert(uatomic_read(&ht->in_progress_resize));
1747 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1748 break;
1749 ht->t.resize_initiated = 1;
1750 old_size = ht->t.size;
1751 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1752 if (old_size < new_size)
1753 _do_cds_lfht_grow(ht, old_size, new_size);
1754 else if (old_size > new_size)
1755 _do_cds_lfht_shrink(ht, old_size, new_size);
1756 ht->t.resize_initiated = 0;
1757 /* write resize_initiated before read resize_target */
1758 cmm_smp_mb();
1759 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1760 }
1761
1762 static
1763 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1764 {
1765 return _uatomic_xchg_monotonic_increase(&ht->t.resize_target, new_size);
1766 }
1767
1768 static
1769 void resize_target_update_count(struct cds_lfht *ht,
1770 unsigned long count)
1771 {
1772 count = max(count, MIN_TABLE_SIZE);
1773 uatomic_set(&ht->t.resize_target, count);
1774 }
1775
1776 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1777 {
1778 resize_target_update_count(ht, new_size);
1779 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1780 ht->cds_lfht_rcu_thread_offline();
1781 pthread_mutex_lock(&ht->resize_mutex);
1782 _do_cds_lfht_resize(ht);
1783 pthread_mutex_unlock(&ht->resize_mutex);
1784 ht->cds_lfht_rcu_thread_online();
1785 }
1786
1787 static
1788 void do_resize_cb(struct rcu_head *head)
1789 {
1790 struct rcu_resize_work *work =
1791 caa_container_of(head, struct rcu_resize_work, head);
1792 struct cds_lfht *ht = work->ht;
1793
1794 ht->cds_lfht_rcu_thread_offline();
1795 pthread_mutex_lock(&ht->resize_mutex);
1796 _do_cds_lfht_resize(ht);
1797 pthread_mutex_unlock(&ht->resize_mutex);
1798 ht->cds_lfht_rcu_thread_online();
1799 poison_free(work);
1800 cmm_smp_mb(); /* finish resize before decrement */
1801 uatomic_dec(&ht->in_progress_resize);
1802 }
1803
1804 static
1805 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1806 {
1807 struct rcu_resize_work *work;
1808
1809 /* Store resize_target before read resize_initiated */
1810 cmm_smp_mb();
1811 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1812 uatomic_inc(&ht->in_progress_resize);
1813 cmm_smp_mb(); /* increment resize count before load destroy */
1814 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1815 uatomic_dec(&ht->in_progress_resize);
1816 return;
1817 }
1818 work = malloc(sizeof(*work));
1819 work->ht = ht;
1820 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1821 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1822 }
1823 }
1824
1825 static
1826 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1827 {
1828 unsigned long target_size = size << growth;
1829
1830 if (resize_target_grow(ht, target_size) >= target_size)
1831 return;
1832
1833 __cds_lfht_resize_lazy_launch(ht);
1834 }
1835
1836 /*
1837 * We favor grow operations over shrink. A shrink operation never occurs
1838 * if a grow operation is queued for lazy execution. A grow operation
1839 * cancels any pending shrink lazy execution.
1840 */
1841 static
1842 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1843 unsigned long count)
1844 {
1845 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1846 return;
1847 count = max(count, MIN_TABLE_SIZE);
1848 if (count == size)
1849 return; /* Already the right size, no resize needed */
1850 if (count > size) { /* lazy grow */
1851 if (resize_target_grow(ht, count) >= count)
1852 return;
1853 } else { /* lazy shrink */
1854 for (;;) {
1855 unsigned long s;
1856
1857 s = uatomic_cmpxchg(&ht->t.resize_target, size, count);
1858 if (s == size)
1859 break; /* no resize needed */
1860 if (s > size)
1861 return; /* growing is/(was just) in progress */
1862 if (s <= count)
1863 return; /* some other thread do shrink */
1864 size = s;
1865 }
1866 }
1867 __cds_lfht_resize_lazy_launch(ht);
1868 }
This page took 0.105916 seconds and 5 git commands to generate.