rculfhash: parallelize resize
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /*
160 * Per-CPU split-counters lazily update the global counter each 1024
161 * addition/removal. It automatically keeps track of resize required.
162 * We use the bucket length as indicator for need to expand for small
163 * tables and machines lacking per-cpu data suppport.
164 */
165 #define COUNT_COMMIT_ORDER 10
166 #define CHAIN_LEN_TARGET 1
167 #define CHAIN_LEN_RESIZE_THRESHOLD 3
168
169 /*
170 * Define the minimum table size.
171 */
172 #define MIN_TABLE_SIZE 1
173
174 #if (CAA_BITS_PER_LONG == 32)
175 #define MAX_TABLE_ORDER 32
176 #else
177 #define MAX_TABLE_ORDER 64
178 #endif
179
180 /*
181 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
182 */
183 #define MIN_PARTITION_PER_THREAD 4096
184
185 #ifndef min
186 #define min(a, b) ((a) < (b) ? (a) : (b))
187 #endif
188
189 #ifndef max
190 #define max(a, b) ((a) > (b) ? (a) : (b))
191 #endif
192
193 /*
194 * The removed flag needs to be updated atomically with the pointer.
195 * The dummy flag does not require to be updated atomically with the
196 * pointer, but it is added as a pointer low bit flag to save space.
197 */
198 #define REMOVED_FLAG (1UL << 0)
199 #define DUMMY_FLAG (1UL << 1)
200 #define FLAGS_MASK ((1UL << 2) - 1)
201
202 /* Value of the end pointer. Should not interact with flags. */
203 #define END_VALUE NULL
204
205 struct ht_items_count {
206 unsigned long add, remove;
207 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
208
209 struct rcu_level {
210 struct rcu_head head;
211 struct _cds_lfht_node nodes[0];
212 };
213
214 struct rcu_table {
215 unsigned long size; /* always a power of 2, shared (RCU) */
216 unsigned long resize_target;
217 int resize_initiated;
218 struct rcu_level *tbl[MAX_TABLE_ORDER];
219 };
220
221 struct cds_lfht {
222 struct rcu_table t;
223 cds_lfht_hash_fct hash_fct;
224 cds_lfht_compare_fct compare_fct;
225 unsigned long hash_seed;
226 int flags;
227 /*
228 * We need to put the work threads offline (QSBR) when taking this
229 * mutex, because we use synchronize_rcu within this mutex critical
230 * section, which waits on read-side critical sections, and could
231 * therefore cause grace-period deadlock if we hold off RCU G.P.
232 * completion.
233 */
234 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
235 unsigned int in_progress_resize, in_progress_destroy;
236 void (*cds_lfht_call_rcu)(struct rcu_head *head,
237 void (*func)(struct rcu_head *head));
238 void (*cds_lfht_synchronize_rcu)(void);
239 void (*cds_lfht_rcu_read_lock)(void);
240 void (*cds_lfht_rcu_read_unlock)(void);
241 void (*cds_lfht_rcu_thread_offline)(void);
242 void (*cds_lfht_rcu_thread_online)(void);
243 void (*cds_lfht_rcu_register_thread)(void);
244 void (*cds_lfht_rcu_unregister_thread)(void);
245 pthread_attr_t *resize_attr; /* Resize threads attributes */
246 unsigned long count; /* global approximate item count */
247 struct ht_items_count *percpu_count; /* per-cpu item count */
248 };
249
250 struct rcu_resize_work {
251 struct rcu_head head;
252 struct cds_lfht *ht;
253 };
254
255 struct partition_resize_work {
256 struct rcu_head head;
257 struct cds_lfht *ht;
258 unsigned long i, start, len;
259 void (*fct)(struct cds_lfht *ht, unsigned long i,
260 unsigned long start, unsigned long len);
261 };
262
263 static
264 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
265 unsigned long size,
266 struct cds_lfht_node *node,
267 int unique, int dummy);
268
269 /*
270 * Algorithm to reverse bits in a word by lookup table, extended to
271 * 64-bit words.
272 * Source:
273 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
274 * Originally from Public Domain.
275 */
276
277 static const uint8_t BitReverseTable256[256] =
278 {
279 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
280 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
281 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
282 R6(0), R6(2), R6(1), R6(3)
283 };
284 #undef R2
285 #undef R4
286 #undef R6
287
288 static
289 uint8_t bit_reverse_u8(uint8_t v)
290 {
291 return BitReverseTable256[v];
292 }
293
294 static __attribute__((unused))
295 uint32_t bit_reverse_u32(uint32_t v)
296 {
297 return ((uint32_t) bit_reverse_u8(v) << 24) |
298 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
299 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
300 ((uint32_t) bit_reverse_u8(v >> 24));
301 }
302
303 static __attribute__((unused))
304 uint64_t bit_reverse_u64(uint64_t v)
305 {
306 return ((uint64_t) bit_reverse_u8(v) << 56) |
307 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
308 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
309 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
310 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
311 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
312 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
313 ((uint64_t) bit_reverse_u8(v >> 56));
314 }
315
316 static
317 unsigned long bit_reverse_ulong(unsigned long v)
318 {
319 #if (CAA_BITS_PER_LONG == 32)
320 return bit_reverse_u32(v);
321 #else
322 return bit_reverse_u64(v);
323 #endif
324 }
325
326 /*
327 * fls: returns the position of the most significant bit.
328 * Returns 0 if no bit is set, else returns the position of the most
329 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
330 */
331 #if defined(__i386) || defined(__x86_64)
332 static inline
333 unsigned int fls_u32(uint32_t x)
334 {
335 int r;
336
337 asm("bsrl %1,%0\n\t"
338 "jnz 1f\n\t"
339 "movl $-1,%0\n\t"
340 "1:\n\t"
341 : "=r" (r) : "rm" (x));
342 return r + 1;
343 }
344 #define HAS_FLS_U32
345 #endif
346
347 #if defined(__x86_64)
348 static inline
349 unsigned int fls_u64(uint64_t x)
350 {
351 long r;
352
353 asm("bsrq %1,%0\n\t"
354 "jnz 1f\n\t"
355 "movq $-1,%0\n\t"
356 "1:\n\t"
357 : "=r" (r) : "rm" (x));
358 return r + 1;
359 }
360 #define HAS_FLS_U64
361 #endif
362
363 #ifndef HAS_FLS_U64
364 static __attribute__((unused))
365 unsigned int fls_u64(uint64_t x)
366 {
367 unsigned int r = 64;
368
369 if (!x)
370 return 0;
371
372 if (!(x & 0xFFFFFFFF00000000ULL)) {
373 x <<= 32;
374 r -= 32;
375 }
376 if (!(x & 0xFFFF000000000000ULL)) {
377 x <<= 16;
378 r -= 16;
379 }
380 if (!(x & 0xFF00000000000000ULL)) {
381 x <<= 8;
382 r -= 8;
383 }
384 if (!(x & 0xF000000000000000ULL)) {
385 x <<= 4;
386 r -= 4;
387 }
388 if (!(x & 0xC000000000000000ULL)) {
389 x <<= 2;
390 r -= 2;
391 }
392 if (!(x & 0x8000000000000000ULL)) {
393 x <<= 1;
394 r -= 1;
395 }
396 return r;
397 }
398 #endif
399
400 #ifndef HAS_FLS_U32
401 static __attribute__((unused))
402 unsigned int fls_u32(uint32_t x)
403 {
404 unsigned int r = 32;
405
406 if (!x)
407 return 0;
408 if (!(x & 0xFFFF0000U)) {
409 x <<= 16;
410 r -= 16;
411 }
412 if (!(x & 0xFF000000U)) {
413 x <<= 8;
414 r -= 8;
415 }
416 if (!(x & 0xF0000000U)) {
417 x <<= 4;
418 r -= 4;
419 }
420 if (!(x & 0xC0000000U)) {
421 x <<= 2;
422 r -= 2;
423 }
424 if (!(x & 0x80000000U)) {
425 x <<= 1;
426 r -= 1;
427 }
428 return r;
429 }
430 #endif
431
432 unsigned int fls_ulong(unsigned long x)
433 {
434 #if (CAA_BITS_PER_lONG == 32)
435 return fls_u32(x);
436 #else
437 return fls_u64(x);
438 #endif
439 }
440
441 int get_count_order_u32(uint32_t x)
442 {
443 int order;
444
445 order = fls_u32(x) - 1;
446 if (x & (x - 1))
447 order++;
448 return order;
449 }
450
451 int get_count_order_ulong(unsigned long x)
452 {
453 int order;
454
455 order = fls_ulong(x) - 1;
456 if (x & (x - 1))
457 order++;
458 return order;
459 }
460
461 #ifdef POISON_FREE
462 #define poison_free(ptr) \
463 do { \
464 memset(ptr, 0x42, sizeof(*(ptr))); \
465 free(ptr); \
466 } while (0)
467 #else
468 #define poison_free(ptr) free(ptr)
469 #endif
470
471 static
472 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
473
474 /*
475 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
476 * available, then we support hash table item accounting.
477 * In the unfortunate event the number of CPUs reported would be
478 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
479 */
480 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
481
482 static
483 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
484 unsigned long count);
485
486 static long nr_cpus_mask = -1;
487
488 static
489 struct ht_items_count *alloc_per_cpu_items_count(void)
490 {
491 struct ht_items_count *count;
492
493 switch (nr_cpus_mask) {
494 case -2:
495 return NULL;
496 case -1:
497 {
498 long maxcpus;
499
500 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
501 if (maxcpus <= 0) {
502 nr_cpus_mask = -2;
503 return NULL;
504 }
505 /*
506 * round up number of CPUs to next power of two, so we
507 * can use & for modulo.
508 */
509 maxcpus = 1UL << get_count_order_ulong(maxcpus);
510 nr_cpus_mask = maxcpus - 1;
511 }
512 /* Fall-through */
513 default:
514 return calloc(nr_cpus_mask + 1, sizeof(*count));
515 }
516 }
517
518 static
519 void free_per_cpu_items_count(struct ht_items_count *count)
520 {
521 poison_free(count);
522 }
523
524 static
525 int ht_get_cpu(void)
526 {
527 int cpu;
528
529 assert(nr_cpus_mask >= 0);
530 cpu = sched_getcpu();
531 if (unlikely(cpu < 0))
532 return cpu;
533 else
534 return cpu & nr_cpus_mask;
535 }
536
537 static
538 void ht_count_add(struct cds_lfht *ht, unsigned long size)
539 {
540 unsigned long percpu_count;
541 int cpu;
542
543 if (unlikely(!ht->percpu_count))
544 return;
545 cpu = ht_get_cpu();
546 if (unlikely(cpu < 0))
547 return;
548 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
549 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
550 unsigned long count;
551
552 dbg_printf("add percpu %lu\n", percpu_count);
553 count = uatomic_add_return(&ht->count,
554 1UL << COUNT_COMMIT_ORDER);
555 /* If power of 2 */
556 if (!(count & (count - 1))) {
557 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
558 return;
559 dbg_printf("add set global %lu\n", count);
560 cds_lfht_resize_lazy_count(ht, size,
561 count >> (CHAIN_LEN_TARGET - 1));
562 }
563 }
564 }
565
566 static
567 void ht_count_remove(struct cds_lfht *ht, unsigned long size)
568 {
569 unsigned long percpu_count;
570 int cpu;
571
572 if (unlikely(!ht->percpu_count))
573 return;
574 cpu = ht_get_cpu();
575 if (unlikely(cpu < 0))
576 return;
577 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].remove, -1);
578 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
579 unsigned long count;
580
581 dbg_printf("remove percpu %lu\n", percpu_count);
582 count = uatomic_add_return(&ht->count,
583 -(1UL << COUNT_COMMIT_ORDER));
584 /* If power of 2 */
585 if (!(count & (count - 1))) {
586 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
587 return;
588 dbg_printf("remove set global %lu\n", count);
589 cds_lfht_resize_lazy_count(ht, size,
590 count >> (CHAIN_LEN_TARGET - 1));
591 }
592 }
593 }
594
595 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
596
597 static const long nr_cpus_mask = -1;
598
599 static
600 struct ht_items_count *alloc_per_cpu_items_count(void)
601 {
602 return NULL;
603 }
604
605 static
606 void free_per_cpu_items_count(struct ht_items_count *count)
607 {
608 }
609
610 static
611 void ht_count_add(struct cds_lfht *ht, unsigned long size)
612 {
613 }
614
615 static
616 void ht_count_remove(struct cds_lfht *ht, unsigned long size)
617 {
618 }
619
620 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
621
622
623 static
624 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
625 {
626 unsigned long count;
627
628 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
629 return;
630 count = uatomic_read(&ht->count);
631 /*
632 * Use bucket-local length for small table expand and for
633 * environments lacking per-cpu data support.
634 */
635 if (count >= (1UL << COUNT_COMMIT_ORDER))
636 return;
637 if (chain_len > 100)
638 dbg_printf("WARNING: large chain length: %u.\n",
639 chain_len);
640 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
641 cds_lfht_resize_lazy(ht, size,
642 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
643 }
644
645 static
646 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
647 {
648 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
649 }
650
651 static
652 int is_removed(struct cds_lfht_node *node)
653 {
654 return ((unsigned long) node) & REMOVED_FLAG;
655 }
656
657 static
658 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
659 {
660 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
661 }
662
663 static
664 int is_dummy(struct cds_lfht_node *node)
665 {
666 return ((unsigned long) node) & DUMMY_FLAG;
667 }
668
669 static
670 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
671 {
672 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
673 }
674
675 static
676 struct cds_lfht_node *get_end(void)
677 {
678 return (struct cds_lfht_node *) END_VALUE;
679 }
680
681 static
682 int is_end(struct cds_lfht_node *node)
683 {
684 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
685 }
686
687 static
688 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
689 {
690 unsigned long old1, old2;
691
692 old1 = uatomic_read(ptr);
693 do {
694 old2 = old1;
695 if (old2 >= v)
696 return old2;
697 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
698 return v;
699 }
700
701 static
702 void cds_lfht_free_level(struct rcu_head *head)
703 {
704 struct rcu_level *l =
705 caa_container_of(head, struct rcu_level, head);
706 poison_free(l);
707 }
708
709 /*
710 * Remove all logically deleted nodes from a bucket up to a certain node key.
711 */
712 static
713 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
714 {
715 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
716
717 assert(!is_dummy(dummy));
718 assert(!is_removed(dummy));
719 assert(!is_dummy(node));
720 assert(!is_removed(node));
721 for (;;) {
722 iter_prev = dummy;
723 /* We can always skip the dummy node initially */
724 iter = rcu_dereference(iter_prev->p.next);
725 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
726 /*
727 * We should never be called with dummy (start of chain)
728 * and logically removed node (end of path compression
729 * marker) being the actual same node. This would be a
730 * bug in the algorithm implementation.
731 */
732 assert(dummy != node);
733 for (;;) {
734 if (unlikely(is_end(iter)))
735 return;
736 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
737 return;
738 next = rcu_dereference(clear_flag(iter)->p.next);
739 if (likely(is_removed(next)))
740 break;
741 iter_prev = clear_flag(iter);
742 iter = next;
743 }
744 assert(!is_removed(iter));
745 if (is_dummy(iter))
746 new_next = flag_dummy(clear_flag(next));
747 else
748 new_next = clear_flag(next);
749 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
750 }
751 return;
752 }
753
754 static
755 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
756 unsigned long size,
757 struct cds_lfht_node *node,
758 int unique, int dummy)
759 {
760 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
761 *dummy_node;
762 struct _cds_lfht_node *lookup;
763 unsigned long hash, index, order;
764
765 assert(!is_dummy(node));
766 assert(!is_removed(node));
767 if (!size) {
768 assert(dummy);
769 node->p.next = flag_dummy(get_end());
770 return node; /* Initial first add (head) */
771 }
772 hash = bit_reverse_ulong(node->p.reverse_hash);
773 for (;;) {
774 uint32_t chain_len = 0;
775
776 /*
777 * iter_prev points to the non-removed node prior to the
778 * insert location.
779 */
780 index = hash & (size - 1);
781 order = get_count_order_ulong(index + 1);
782 lookup = &ht->t.tbl[order]->nodes[index & ((!order ? 0 : (1UL << (order - 1))) - 1)];
783 iter_prev = (struct cds_lfht_node *) lookup;
784 /* We can always skip the dummy node initially */
785 iter = rcu_dereference(iter_prev->p.next);
786 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
787 for (;;) {
788 if (unlikely(is_end(iter)))
789 goto insert;
790 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
791 goto insert;
792 next = rcu_dereference(clear_flag(iter)->p.next);
793 if (unlikely(is_removed(next)))
794 goto gc_node;
795 if (unique
796 && !is_dummy(next)
797 && !ht->compare_fct(node->key, node->key_len,
798 clear_flag(iter)->key,
799 clear_flag(iter)->key_len))
800 return clear_flag(iter);
801 /* Only account for identical reverse hash once */
802 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
803 && !is_dummy(next))
804 check_resize(ht, size, ++chain_len);
805 iter_prev = clear_flag(iter);
806 iter = next;
807 }
808 insert:
809 assert(node != clear_flag(iter));
810 assert(!is_removed(iter_prev));
811 assert(!is_removed(iter));
812 assert(iter_prev != node);
813 if (!dummy)
814 node->p.next = clear_flag(iter);
815 else
816 node->p.next = flag_dummy(clear_flag(iter));
817 if (is_dummy(iter))
818 new_node = flag_dummy(node);
819 else
820 new_node = node;
821 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
822 new_node) != iter)
823 continue; /* retry */
824 else
825 goto gc_end;
826 gc_node:
827 assert(!is_removed(iter));
828 if (is_dummy(iter))
829 new_next = flag_dummy(clear_flag(next));
830 else
831 new_next = clear_flag(next);
832 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
833 /* retry */
834 }
835 gc_end:
836 /* Garbage collect logically removed nodes in the bucket */
837 index = hash & (size - 1);
838 order = get_count_order_ulong(index + 1);
839 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
840 dummy_node = (struct cds_lfht_node *) lookup;
841 _cds_lfht_gc_bucket(dummy_node, node);
842 return node;
843 }
844
845 static
846 int _cds_lfht_remove(struct cds_lfht *ht, unsigned long size,
847 struct cds_lfht_node *node,
848 int dummy_removal)
849 {
850 struct cds_lfht_node *dummy, *next, *old;
851 struct _cds_lfht_node *lookup;
852 int flagged = 0;
853 unsigned long hash, index, order;
854
855 /* logically delete the node */
856 assert(!is_dummy(node));
857 assert(!is_removed(node));
858 old = rcu_dereference(node->p.next);
859 do {
860 next = old;
861 if (unlikely(is_removed(next)))
862 goto end;
863 if (dummy_removal)
864 assert(is_dummy(next));
865 else
866 assert(!is_dummy(next));
867 old = uatomic_cmpxchg(&node->p.next, next,
868 flag_removed(next));
869 } while (old != next);
870
871 /* We performed the (logical) deletion. */
872 flagged = 1;
873
874 /*
875 * Ensure that the node is not visible to readers anymore: lookup for
876 * the node, and remove it (along with any other logically removed node)
877 * if found.
878 */
879 hash = bit_reverse_ulong(node->p.reverse_hash);
880 assert(size > 0);
881 index = hash & (size - 1);
882 order = get_count_order_ulong(index + 1);
883 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
884 dummy = (struct cds_lfht_node *) lookup;
885 _cds_lfht_gc_bucket(dummy, node);
886 end:
887 /*
888 * Only the flagging action indicated that we (and no other)
889 * removed the node from the hash.
890 */
891 if (flagged) {
892 assert(is_removed(rcu_dereference(node->p.next)));
893 return 0;
894 } else
895 return -ENOENT;
896 }
897
898 static
899 void *partition_resize_thread(void *arg)
900 {
901 struct partition_resize_work *work = arg;
902
903 work->ht->cds_lfht_rcu_register_thread();
904 work->fct(work->ht, work->i, work->start, work->len);
905 work->ht->cds_lfht_rcu_unregister_thread();
906 return NULL;
907 }
908
909 static
910 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
911 unsigned long len,
912 void (*fct)(struct cds_lfht *ht, unsigned long i,
913 unsigned long start, unsigned long len))
914 {
915 unsigned long partition_len;
916 struct partition_resize_work *work;
917 int cpu, ret;
918 pthread_t *thread_id;
919
920 /* Note: nr_cpus_mask + 1 is always power of 2 */
921 partition_len = len >> get_count_order_ulong(nr_cpus_mask + 1);
922 work = calloc(nr_cpus_mask + 1, sizeof(*work));
923 thread_id = calloc(nr_cpus_mask + 1, sizeof(*thread_id));
924 assert(work);
925 for (cpu = 0; cpu < nr_cpus_mask + 1; cpu++) {
926 work[cpu].ht = ht;
927 work[cpu].i = i;
928 work[cpu].len = partition_len;
929 work[cpu].start = cpu * partition_len;
930 work[cpu].fct = fct;
931 ret = pthread_create(&thread_id[cpu], ht->resize_attr,
932 partition_resize_thread, &work[cpu]);
933 assert(!ret);
934 }
935 for (cpu = 0; cpu < nr_cpus_mask + 1; cpu++) {
936 ret = pthread_join(thread_id[cpu], NULL);
937 assert(!ret);
938 }
939 free(work);
940 free(thread_id);
941 }
942
943 /*
944 * Holding RCU read lock to protect _cds_lfht_add against memory
945 * reclaim that could be performed by other call_rcu worker threads (ABA
946 * problem).
947 *
948 * When we reach a certain length, we can split this population phase over
949 * many worker threads, based on the number of CPUs available in the system.
950 * This should therefore take care of not having the expand lagging behind too
951 * many concurrent insertion threads by using the scheduler's ability to
952 * schedule dummy node population fairly with insertions.
953 */
954 static
955 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
956 unsigned long start, unsigned long len)
957 {
958 unsigned long j;
959
960 ht->cds_lfht_rcu_read_lock();
961 for (j = start; j < start + len; j++) {
962 struct cds_lfht_node *new_node =
963 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
964
965 dbg_printf("init populate: i %lu j %lu hash %lu\n",
966 i, j, !i ? 0 : (1UL << (i - 1)) + j);
967 new_node->p.reverse_hash =
968 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
969 (void) _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
970 new_node, 0, 1);
971 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
972 break;
973 }
974 ht->cds_lfht_rcu_read_unlock();
975 }
976
977 static
978 void init_table_populate(struct cds_lfht *ht, unsigned long i,
979 unsigned long len)
980 {
981 assert(nr_cpus_mask != -1);
982 if (nr_cpus_mask < 0 || len < (nr_cpus_mask + 1) * MIN_PARTITION_PER_THREAD) {
983 ht->cds_lfht_rcu_thread_online();
984 init_table_populate_partition(ht, i, 0, len);
985 ht->cds_lfht_rcu_thread_offline();
986 return;
987 }
988 partition_resize_helper(ht, i, len, init_table_populate_partition);
989 }
990
991 static
992 void init_table(struct cds_lfht *ht,
993 unsigned long first_order, unsigned long len_order)
994 {
995 unsigned long i, end_order;
996
997 dbg_printf("init table: first_order %lu end_order %lu\n",
998 first_order, first_order + len_order);
999 end_order = first_order + len_order;
1000 for (i = first_order; i < end_order; i++) {
1001 unsigned long len;
1002
1003 len = !i ? 1 : 1UL << (i - 1);
1004 dbg_printf("init order %lu len: %lu\n", i, len);
1005
1006 /* Stop expand if the resize target changes under us */
1007 if (CMM_LOAD_SHARED(ht->t.resize_target) < (!i ? 1 : (1UL << i)))
1008 break;
1009
1010 ht->t.tbl[i] = calloc(1, sizeof(struct rcu_level)
1011 + (len * sizeof(struct _cds_lfht_node)));
1012 assert(ht->t.tbl[i]);
1013
1014 /*
1015 * Set all dummy nodes reverse hash values for a level and
1016 * link all dummy nodes into the table.
1017 */
1018 init_table_populate(ht, i, len);
1019
1020 /*
1021 * Update table size.
1022 */
1023 cmm_smp_wmb(); /* populate data before RCU size */
1024 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
1025
1026 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
1027 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1028 break;
1029 }
1030 }
1031
1032 /*
1033 * Holding RCU read lock to protect _cds_lfht_remove against memory
1034 * reclaim that could be performed by other call_rcu worker threads (ABA
1035 * problem).
1036 * For a single level, we logically remove and garbage collect each node.
1037 *
1038 * As a design choice, we perform logical removal and garbage collection on a
1039 * node-per-node basis to simplify this algorithm. We also assume keeping good
1040 * cache locality of the operation would overweight possible performance gain
1041 * that could be achieved by batching garbage collection for multiple levels.
1042 * However, this would have to be justified by benchmarks.
1043 *
1044 * Concurrent removal and add operations are helping us perform garbage
1045 * collection of logically removed nodes. We guarantee that all logically
1046 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1047 * invoked to free a hole level of dummy nodes (after a grace period).
1048 *
1049 * Logical removal and garbage collection can therefore be done in batch or on a
1050 * node-per-node basis, as long as the guarantee above holds.
1051 *
1052 * When we reach a certain length, we can split this removal over many worker
1053 * threads, based on the number of CPUs available in the system. This should
1054 * take care of not letting resize process lag behind too many concurrent
1055 * updater threads actively inserting into the hash table.
1056 */
1057 static
1058 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1059 unsigned long start, unsigned long len)
1060 {
1061 unsigned long j;
1062
1063 ht->cds_lfht_rcu_read_lock();
1064 for (j = start; j < start + len; j++) {
1065 struct cds_lfht_node *fini_node =
1066 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1067
1068 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1069 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1070 fini_node->p.reverse_hash =
1071 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1072 (void) _cds_lfht_remove(ht, !i ? 0 : (1UL << (i - 1)),
1073 fini_node, 1);
1074 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1075 break;
1076 }
1077 ht->cds_lfht_rcu_read_unlock();
1078 }
1079
1080 static
1081 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1082 {
1083
1084 assert(nr_cpus_mask != -1);
1085 if (nr_cpus_mask < 0 || len < (nr_cpus_mask + 1) * MIN_PARTITION_PER_THREAD) {
1086 ht->cds_lfht_rcu_thread_online();
1087 remove_table_partition(ht, i, 0, len);
1088 ht->cds_lfht_rcu_thread_offline();
1089 return;
1090 }
1091 partition_resize_helper(ht, i, len, remove_table_partition);
1092 }
1093
1094 static
1095 void fini_table(struct cds_lfht *ht,
1096 unsigned long first_order, unsigned long len_order)
1097 {
1098 long i, end_order;
1099
1100 dbg_printf("fini table: first_order %lu end_order %lu\n",
1101 first_order, first_order + len_order);
1102 end_order = first_order + len_order;
1103 assert(first_order > 0);
1104 for (i = end_order - 1; i >= first_order; i--) {
1105 unsigned long len;
1106
1107 len = !i ? 1 : 1UL << (i - 1);
1108 dbg_printf("fini order %lu len: %lu\n", i, len);
1109
1110 /* Stop shrink if the resize target changes under us */
1111 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1112 break;
1113
1114 cmm_smp_wmb(); /* populate data before RCU size */
1115 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1116
1117 /*
1118 * We need to wait for all add operations to reach Q.S. (and
1119 * thus use the new table for lookups) before we can start
1120 * releasing the old dummy nodes. Otherwise their lookup will
1121 * return a logically removed node as insert position.
1122 */
1123 ht->cds_lfht_synchronize_rcu();
1124
1125 /*
1126 * Set "removed" flag in dummy nodes about to be removed.
1127 * Unlink all now-logically-removed dummy node pointers.
1128 * Concurrent add/remove operation are helping us doing
1129 * the gc.
1130 */
1131 remove_table(ht, i, len);
1132
1133 ht->cds_lfht_call_rcu(&ht->t.tbl[i]->head, cds_lfht_free_level);
1134
1135 dbg_printf("fini new size: %lu\n", 1UL << i);
1136 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1137 break;
1138 }
1139 }
1140
1141 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1142 cds_lfht_compare_fct compare_fct,
1143 unsigned long hash_seed,
1144 unsigned long init_size,
1145 int flags,
1146 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1147 void (*func)(struct rcu_head *head)),
1148 void (*cds_lfht_synchronize_rcu)(void),
1149 void (*cds_lfht_rcu_read_lock)(void),
1150 void (*cds_lfht_rcu_read_unlock)(void),
1151 void (*cds_lfht_rcu_thread_offline)(void),
1152 void (*cds_lfht_rcu_thread_online)(void),
1153 void (*cds_lfht_rcu_register_thread)(void),
1154 void (*cds_lfht_rcu_unregister_thread)(void),
1155 pthread_attr_t *attr)
1156 {
1157 struct cds_lfht *ht;
1158 unsigned long order;
1159
1160 /* init_size must be power of two */
1161 if (init_size && (init_size & (init_size - 1)))
1162 return NULL;
1163 ht = calloc(1, sizeof(struct cds_lfht));
1164 assert(ht);
1165 ht->hash_fct = hash_fct;
1166 ht->compare_fct = compare_fct;
1167 ht->hash_seed = hash_seed;
1168 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1169 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1170 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1171 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1172 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1173 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1174 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1175 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1176 ht->resize_attr = attr;
1177 ht->percpu_count = alloc_per_cpu_items_count();
1178 /* this mutex should not nest in read-side C.S. */
1179 pthread_mutex_init(&ht->resize_mutex, NULL);
1180 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
1181 ht->flags = flags;
1182 ht->cds_lfht_rcu_thread_offline();
1183 pthread_mutex_lock(&ht->resize_mutex);
1184 ht->t.resize_target = 1UL << (order - 1);
1185 init_table(ht, 0, order);
1186 pthread_mutex_unlock(&ht->resize_mutex);
1187 ht->cds_lfht_rcu_thread_online();
1188 return ht;
1189 }
1190
1191 struct cds_lfht_node *cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len)
1192 {
1193 struct cds_lfht_node *node, *next, *dummy_node;
1194 struct _cds_lfht_node *lookup;
1195 unsigned long hash, reverse_hash, index, order, size;
1196
1197 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1198 reverse_hash = bit_reverse_ulong(hash);
1199
1200 size = rcu_dereference(ht->t.size);
1201 index = hash & (size - 1);
1202 order = get_count_order_ulong(index + 1);
1203 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1))) - 1)];
1204 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
1205 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
1206 dummy_node = (struct cds_lfht_node *) lookup;
1207 /* We can always skip the dummy node initially */
1208 node = rcu_dereference(dummy_node->p.next);
1209 node = clear_flag(node);
1210 for (;;) {
1211 if (unlikely(is_end(node))) {
1212 node = NULL;
1213 break;
1214 }
1215 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1216 node = NULL;
1217 break;
1218 }
1219 next = rcu_dereference(node->p.next);
1220 if (likely(!is_removed(next))
1221 && !is_dummy(next)
1222 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1223 break;
1224 }
1225 node = clear_flag(next);
1226 }
1227 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1228 return node;
1229 }
1230
1231 struct cds_lfht_node *cds_lfht_next(struct cds_lfht *ht,
1232 struct cds_lfht_node *node)
1233 {
1234 struct cds_lfht_node *next;
1235 unsigned long reverse_hash;
1236 void *key;
1237 size_t key_len;
1238
1239 reverse_hash = node->p.reverse_hash;
1240 key = node->key;
1241 key_len = node->key_len;
1242 next = rcu_dereference(node->p.next);
1243 node = clear_flag(next);
1244
1245 for (;;) {
1246 if (unlikely(is_end(node))) {
1247 node = NULL;
1248 break;
1249 }
1250 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1251 node = NULL;
1252 break;
1253 }
1254 next = rcu_dereference(node->p.next);
1255 if (likely(!is_removed(next))
1256 && !is_dummy(next)
1257 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1258 break;
1259 }
1260 node = clear_flag(next);
1261 }
1262 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1263 return node;
1264 }
1265
1266 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1267 {
1268 unsigned long hash, size;
1269
1270 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1271 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1272
1273 size = rcu_dereference(ht->t.size);
1274 (void) _cds_lfht_add(ht, size, node, 0, 0);
1275 ht_count_add(ht, size);
1276 }
1277
1278 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1279 struct cds_lfht_node *node)
1280 {
1281 unsigned long hash, size;
1282 struct cds_lfht_node *ret;
1283
1284 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1285 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1286
1287 size = rcu_dereference(ht->t.size);
1288 ret = _cds_lfht_add(ht, size, node, 1, 0);
1289 if (ret == node)
1290 ht_count_add(ht, size);
1291 return ret;
1292 }
1293
1294 int cds_lfht_remove(struct cds_lfht *ht, struct cds_lfht_node *node)
1295 {
1296 unsigned long size;
1297 int ret;
1298
1299 size = rcu_dereference(ht->t.size);
1300 ret = _cds_lfht_remove(ht, size, node, 0);
1301 if (!ret)
1302 ht_count_remove(ht, size);
1303 return ret;
1304 }
1305
1306 static
1307 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1308 {
1309 struct cds_lfht_node *node;
1310 struct _cds_lfht_node *lookup;
1311 unsigned long order, i, size;
1312
1313 /* Check that the table is empty */
1314 lookup = &ht->t.tbl[0]->nodes[0];
1315 node = (struct cds_lfht_node *) lookup;
1316 do {
1317 node = clear_flag(node)->p.next;
1318 if (!is_dummy(node))
1319 return -EPERM;
1320 assert(!is_removed(node));
1321 } while (!is_end(node));
1322 /*
1323 * size accessed without rcu_dereference because hash table is
1324 * being destroyed.
1325 */
1326 size = ht->t.size;
1327 /* Internal sanity check: all nodes left should be dummy */
1328 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1329 unsigned long len;
1330
1331 len = !order ? 1 : 1UL << (order - 1);
1332 for (i = 0; i < len; i++) {
1333 dbg_printf("delete order %lu i %lu hash %lu\n",
1334 order, i,
1335 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1336 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1337 }
1338 poison_free(ht->t.tbl[order]);
1339 }
1340 return 0;
1341 }
1342
1343 /*
1344 * Should only be called when no more concurrent readers nor writers can
1345 * possibly access the table.
1346 */
1347 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1348 {
1349 int ret;
1350
1351 /* Wait for in-flight resize operations to complete */
1352 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1353 while (uatomic_read(&ht->in_progress_resize))
1354 poll(NULL, 0, 100); /* wait for 100ms */
1355 ret = cds_lfht_delete_dummy(ht);
1356 if (ret)
1357 return ret;
1358 free_per_cpu_items_count(ht->percpu_count);
1359 if (attr)
1360 *attr = ht->resize_attr;
1361 poison_free(ht);
1362 return ret;
1363 }
1364
1365 void cds_lfht_count_nodes(struct cds_lfht *ht,
1366 unsigned long *count,
1367 unsigned long *removed)
1368 {
1369 struct cds_lfht_node *node, *next;
1370 struct _cds_lfht_node *lookup;
1371 unsigned long nr_dummy = 0;
1372
1373 *count = 0;
1374 *removed = 0;
1375
1376 /* Count non-dummy nodes in the table */
1377 lookup = &ht->t.tbl[0]->nodes[0];
1378 node = (struct cds_lfht_node *) lookup;
1379 do {
1380 next = rcu_dereference(node->p.next);
1381 if (is_removed(next)) {
1382 assert(!is_dummy(next));
1383 (*removed)++;
1384 } else if (!is_dummy(next))
1385 (*count)++;
1386 else
1387 (nr_dummy)++;
1388 node = clear_flag(next);
1389 } while (!is_end(node));
1390 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1391 }
1392
1393 /* called with resize mutex held */
1394 static
1395 void _do_cds_lfht_grow(struct cds_lfht *ht,
1396 unsigned long old_size, unsigned long new_size)
1397 {
1398 unsigned long old_order, new_order;
1399
1400 old_order = get_count_order_ulong(old_size) + 1;
1401 new_order = get_count_order_ulong(new_size) + 1;
1402 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1403 old_size, old_order, new_size, new_order);
1404 assert(new_size > old_size);
1405 init_table(ht, old_order, new_order - old_order);
1406 }
1407
1408 /* called with resize mutex held */
1409 static
1410 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1411 unsigned long old_size, unsigned long new_size)
1412 {
1413 unsigned long old_order, new_order;
1414
1415 new_size = max(new_size, MIN_TABLE_SIZE);
1416 old_order = get_count_order_ulong(old_size) + 1;
1417 new_order = get_count_order_ulong(new_size) + 1;
1418 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1419 old_size, old_order, new_size, new_order);
1420 assert(new_size < old_size);
1421
1422 /* Remove and unlink all dummy nodes to remove. */
1423 fini_table(ht, new_order, old_order - new_order);
1424 }
1425
1426
1427 /* called with resize mutex held */
1428 static
1429 void _do_cds_lfht_resize(struct cds_lfht *ht)
1430 {
1431 unsigned long new_size, old_size;
1432
1433 /*
1434 * Resize table, re-do if the target size has changed under us.
1435 */
1436 do {
1437 ht->t.resize_initiated = 1;
1438 old_size = ht->t.size;
1439 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1440 if (old_size < new_size)
1441 _do_cds_lfht_grow(ht, old_size, new_size);
1442 else if (old_size > new_size)
1443 _do_cds_lfht_shrink(ht, old_size, new_size);
1444 ht->t.resize_initiated = 0;
1445 /* write resize_initiated before read resize_target */
1446 cmm_smp_mb();
1447 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1448 }
1449
1450 static
1451 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1452 int growth_order)
1453 {
1454 return _uatomic_max(&ht->t.resize_target,
1455 size << growth_order);
1456 }
1457
1458 static
1459 void resize_target_update_count(struct cds_lfht *ht,
1460 unsigned long count)
1461 {
1462 count = max(count, MIN_TABLE_SIZE);
1463 uatomic_set(&ht->t.resize_target, count);
1464 }
1465
1466 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1467 {
1468 resize_target_update_count(ht, new_size);
1469 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1470 ht->cds_lfht_rcu_thread_offline();
1471 pthread_mutex_lock(&ht->resize_mutex);
1472 _do_cds_lfht_resize(ht);
1473 pthread_mutex_unlock(&ht->resize_mutex);
1474 ht->cds_lfht_rcu_thread_online();
1475 }
1476
1477 static
1478 void do_resize_cb(struct rcu_head *head)
1479 {
1480 struct rcu_resize_work *work =
1481 caa_container_of(head, struct rcu_resize_work, head);
1482 struct cds_lfht *ht = work->ht;
1483
1484 ht->cds_lfht_rcu_thread_offline();
1485 pthread_mutex_lock(&ht->resize_mutex);
1486 _do_cds_lfht_resize(ht);
1487 pthread_mutex_unlock(&ht->resize_mutex);
1488 ht->cds_lfht_rcu_thread_online();
1489 poison_free(work);
1490 cmm_smp_mb(); /* finish resize before decrement */
1491 uatomic_dec(&ht->in_progress_resize);
1492 }
1493
1494 static
1495 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1496 {
1497 struct rcu_resize_work *work;
1498 unsigned long target_size;
1499
1500 target_size = resize_target_update(ht, size, growth);
1501 /* Store resize_target before read resize_initiated */
1502 cmm_smp_mb();
1503 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1504 uatomic_inc(&ht->in_progress_resize);
1505 cmm_smp_mb(); /* increment resize count before calling it */
1506 work = malloc(sizeof(*work));
1507 work->ht = ht;
1508 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1509 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1510 }
1511 }
1512
1513 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1514
1515 static
1516 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1517 unsigned long count)
1518 {
1519 struct rcu_resize_work *work;
1520
1521 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1522 return;
1523 resize_target_update_count(ht, count);
1524 /* Store resize_target before read resize_initiated */
1525 cmm_smp_mb();
1526 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1527 uatomic_inc(&ht->in_progress_resize);
1528 cmm_smp_mb(); /* increment resize count before calling it */
1529 work = malloc(sizeof(*work));
1530 work->ht = ht;
1531 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1532 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1533 }
1534 }
1535
1536 #endif
This page took 0.060931 seconds and 5 git commands to generate.