rculfhash: factor out add_replace and replace
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /*
160 * Per-CPU split-counters lazily update the global counter each 1024
161 * addition/removal. It automatically keeps track of resize required.
162 * We use the bucket length as indicator for need to expand for small
163 * tables and machines lacking per-cpu data suppport.
164 */
165 #define COUNT_COMMIT_ORDER 10
166 #define CHAIN_LEN_TARGET 1
167 #define CHAIN_LEN_RESIZE_THRESHOLD 3
168
169 /*
170 * Define the minimum table size.
171 */
172 #define MIN_TABLE_SIZE 1
173
174 #if (CAA_BITS_PER_LONG == 32)
175 #define MAX_TABLE_ORDER 32
176 #else
177 #define MAX_TABLE_ORDER 64
178 #endif
179
180 /*
181 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
182 */
183 #define MIN_PARTITION_PER_THREAD_ORDER 12
184 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
185
186 #ifndef min
187 #define min(a, b) ((a) < (b) ? (a) : (b))
188 #endif
189
190 #ifndef max
191 #define max(a, b) ((a) > (b) ? (a) : (b))
192 #endif
193
194 /*
195 * The removed flag needs to be updated atomically with the pointer.
196 * It indicates that no node must attach to the node scheduled for
197 * removal, and that node garbage collection must be performed.
198 * The dummy flag does not require to be updated atomically with the
199 * pointer, but it is added as a pointer low bit flag to save space.
200 */
201 #define REMOVED_FLAG (1UL << 0)
202 #define DUMMY_FLAG (1UL << 1)
203 #define FLAGS_MASK ((1UL << 2) - 1)
204
205 /* Value of the end pointer. Should not interact with flags. */
206 #define END_VALUE NULL
207
208 struct ht_items_count {
209 unsigned long add, del;
210 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
211
212 struct rcu_level {
213 struct rcu_head head;
214 struct _cds_lfht_node nodes[0];
215 };
216
217 struct rcu_table {
218 unsigned long size; /* always a power of 2, shared (RCU) */
219 unsigned long resize_target;
220 int resize_initiated;
221 struct rcu_level *tbl[MAX_TABLE_ORDER];
222 };
223
224 struct cds_lfht {
225 struct rcu_table t;
226 cds_lfht_hash_fct hash_fct;
227 cds_lfht_compare_fct compare_fct;
228 unsigned long hash_seed;
229 int flags;
230 /*
231 * We need to put the work threads offline (QSBR) when taking this
232 * mutex, because we use synchronize_rcu within this mutex critical
233 * section, which waits on read-side critical sections, and could
234 * therefore cause grace-period deadlock if we hold off RCU G.P.
235 * completion.
236 */
237 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
238 unsigned int in_progress_resize, in_progress_destroy;
239 void (*cds_lfht_call_rcu)(struct rcu_head *head,
240 void (*func)(struct rcu_head *head));
241 void (*cds_lfht_synchronize_rcu)(void);
242 void (*cds_lfht_rcu_read_lock)(void);
243 void (*cds_lfht_rcu_read_unlock)(void);
244 void (*cds_lfht_rcu_thread_offline)(void);
245 void (*cds_lfht_rcu_thread_online)(void);
246 void (*cds_lfht_rcu_register_thread)(void);
247 void (*cds_lfht_rcu_unregister_thread)(void);
248 pthread_attr_t *resize_attr; /* Resize threads attributes */
249 long count; /* global approximate item count */
250 struct ht_items_count *percpu_count; /* per-cpu item count */
251 };
252
253 struct rcu_resize_work {
254 struct rcu_head head;
255 struct cds_lfht *ht;
256 };
257
258 struct partition_resize_work {
259 struct rcu_head head;
260 struct cds_lfht *ht;
261 unsigned long i, start, len;
262 void (*fct)(struct cds_lfht *ht, unsigned long i,
263 unsigned long start, unsigned long len);
264 };
265
266 enum add_mode {
267 ADD_DEFAULT = 0,
268 ADD_UNIQUE = 1,
269 ADD_REPLACE = 2,
270 };
271
272 static
273 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
274 unsigned long size,
275 struct cds_lfht_node *node,
276 enum add_mode mode, int dummy);
277
278 /*
279 * Algorithm to reverse bits in a word by lookup table, extended to
280 * 64-bit words.
281 * Source:
282 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
283 * Originally from Public Domain.
284 */
285
286 static const uint8_t BitReverseTable256[256] =
287 {
288 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
289 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
290 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
291 R6(0), R6(2), R6(1), R6(3)
292 };
293 #undef R2
294 #undef R4
295 #undef R6
296
297 static
298 uint8_t bit_reverse_u8(uint8_t v)
299 {
300 return BitReverseTable256[v];
301 }
302
303 static __attribute__((unused))
304 uint32_t bit_reverse_u32(uint32_t v)
305 {
306 return ((uint32_t) bit_reverse_u8(v) << 24) |
307 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
308 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
309 ((uint32_t) bit_reverse_u8(v >> 24));
310 }
311
312 static __attribute__((unused))
313 uint64_t bit_reverse_u64(uint64_t v)
314 {
315 return ((uint64_t) bit_reverse_u8(v) << 56) |
316 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
317 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
318 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
319 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
320 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
321 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
322 ((uint64_t) bit_reverse_u8(v >> 56));
323 }
324
325 static
326 unsigned long bit_reverse_ulong(unsigned long v)
327 {
328 #if (CAA_BITS_PER_LONG == 32)
329 return bit_reverse_u32(v);
330 #else
331 return bit_reverse_u64(v);
332 #endif
333 }
334
335 /*
336 * fls: returns the position of the most significant bit.
337 * Returns 0 if no bit is set, else returns the position of the most
338 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
339 */
340 #if defined(__i386) || defined(__x86_64)
341 static inline
342 unsigned int fls_u32(uint32_t x)
343 {
344 int r;
345
346 asm("bsrl %1,%0\n\t"
347 "jnz 1f\n\t"
348 "movl $-1,%0\n\t"
349 "1:\n\t"
350 : "=r" (r) : "rm" (x));
351 return r + 1;
352 }
353 #define HAS_FLS_U32
354 #endif
355
356 #if defined(__x86_64)
357 static inline
358 unsigned int fls_u64(uint64_t x)
359 {
360 long r;
361
362 asm("bsrq %1,%0\n\t"
363 "jnz 1f\n\t"
364 "movq $-1,%0\n\t"
365 "1:\n\t"
366 : "=r" (r) : "rm" (x));
367 return r + 1;
368 }
369 #define HAS_FLS_U64
370 #endif
371
372 #ifndef HAS_FLS_U64
373 static __attribute__((unused))
374 unsigned int fls_u64(uint64_t x)
375 {
376 unsigned int r = 64;
377
378 if (!x)
379 return 0;
380
381 if (!(x & 0xFFFFFFFF00000000ULL)) {
382 x <<= 32;
383 r -= 32;
384 }
385 if (!(x & 0xFFFF000000000000ULL)) {
386 x <<= 16;
387 r -= 16;
388 }
389 if (!(x & 0xFF00000000000000ULL)) {
390 x <<= 8;
391 r -= 8;
392 }
393 if (!(x & 0xF000000000000000ULL)) {
394 x <<= 4;
395 r -= 4;
396 }
397 if (!(x & 0xC000000000000000ULL)) {
398 x <<= 2;
399 r -= 2;
400 }
401 if (!(x & 0x8000000000000000ULL)) {
402 x <<= 1;
403 r -= 1;
404 }
405 return r;
406 }
407 #endif
408
409 #ifndef HAS_FLS_U32
410 static __attribute__((unused))
411 unsigned int fls_u32(uint32_t x)
412 {
413 unsigned int r = 32;
414
415 if (!x)
416 return 0;
417 if (!(x & 0xFFFF0000U)) {
418 x <<= 16;
419 r -= 16;
420 }
421 if (!(x & 0xFF000000U)) {
422 x <<= 8;
423 r -= 8;
424 }
425 if (!(x & 0xF0000000U)) {
426 x <<= 4;
427 r -= 4;
428 }
429 if (!(x & 0xC0000000U)) {
430 x <<= 2;
431 r -= 2;
432 }
433 if (!(x & 0x80000000U)) {
434 x <<= 1;
435 r -= 1;
436 }
437 return r;
438 }
439 #endif
440
441 unsigned int fls_ulong(unsigned long x)
442 {
443 #if (CAA_BITS_PER_lONG == 32)
444 return fls_u32(x);
445 #else
446 return fls_u64(x);
447 #endif
448 }
449
450 int get_count_order_u32(uint32_t x)
451 {
452 int order;
453
454 order = fls_u32(x) - 1;
455 if (x & (x - 1))
456 order++;
457 return order;
458 }
459
460 int get_count_order_ulong(unsigned long x)
461 {
462 int order;
463
464 order = fls_ulong(x) - 1;
465 if (x & (x - 1))
466 order++;
467 return order;
468 }
469
470 #ifdef POISON_FREE
471 #define poison_free(ptr) \
472 do { \
473 memset(ptr, 0x42, sizeof(*(ptr))); \
474 free(ptr); \
475 } while (0)
476 #else
477 #define poison_free(ptr) free(ptr)
478 #endif
479
480 static
481 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
482
483 /*
484 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
485 * available, then we support hash table item accounting.
486 * In the unfortunate event the number of CPUs reported would be
487 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
488 */
489 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
490
491 static
492 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
493 unsigned long count);
494
495 static long nr_cpus_mask = -1;
496
497 static
498 struct ht_items_count *alloc_per_cpu_items_count(void)
499 {
500 struct ht_items_count *count;
501
502 switch (nr_cpus_mask) {
503 case -2:
504 return NULL;
505 case -1:
506 {
507 long maxcpus;
508
509 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
510 if (maxcpus <= 0) {
511 nr_cpus_mask = -2;
512 return NULL;
513 }
514 /*
515 * round up number of CPUs to next power of two, so we
516 * can use & for modulo.
517 */
518 maxcpus = 1UL << get_count_order_ulong(maxcpus);
519 nr_cpus_mask = maxcpus - 1;
520 }
521 /* Fall-through */
522 default:
523 return calloc(nr_cpus_mask + 1, sizeof(*count));
524 }
525 }
526
527 static
528 void free_per_cpu_items_count(struct ht_items_count *count)
529 {
530 poison_free(count);
531 }
532
533 static
534 int ht_get_cpu(void)
535 {
536 int cpu;
537
538 assert(nr_cpus_mask >= 0);
539 cpu = sched_getcpu();
540 if (unlikely(cpu < 0))
541 return cpu;
542 else
543 return cpu & nr_cpus_mask;
544 }
545
546 static
547 void ht_count_add(struct cds_lfht *ht, unsigned long size)
548 {
549 unsigned long percpu_count;
550 int cpu;
551
552 if (unlikely(!ht->percpu_count))
553 return;
554 cpu = ht_get_cpu();
555 if (unlikely(cpu < 0))
556 return;
557 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
558 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
559 long count;
560
561 dbg_printf("add percpu %lu\n", percpu_count);
562 count = uatomic_add_return(&ht->count,
563 1UL << COUNT_COMMIT_ORDER);
564 /* If power of 2 */
565 if (!(count & (count - 1))) {
566 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
567 return;
568 dbg_printf("add set global %ld\n", count);
569 cds_lfht_resize_lazy_count(ht, size,
570 count >> (CHAIN_LEN_TARGET - 1));
571 }
572 }
573 }
574
575 static
576 void ht_count_del(struct cds_lfht *ht, unsigned long size)
577 {
578 unsigned long percpu_count;
579 int cpu;
580
581 if (unlikely(!ht->percpu_count))
582 return;
583 cpu = ht_get_cpu();
584 if (unlikely(cpu < 0))
585 return;
586 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].del, 1);
587 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
588 long count;
589
590 dbg_printf("del percpu %lu\n", percpu_count);
591 count = uatomic_add_return(&ht->count,
592 -(1UL << COUNT_COMMIT_ORDER));
593 /* If power of 2 */
594 if (!(count & (count - 1))) {
595 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
596 return;
597 dbg_printf("del set global %ld\n", count);
598 /*
599 * Don't shrink table if the number of nodes is below a
600 * certain threshold.
601 */
602 if (count < (1UL << COUNT_COMMIT_ORDER) * (nr_cpus_mask + 1))
603 return;
604 cds_lfht_resize_lazy_count(ht, size,
605 count >> (CHAIN_LEN_TARGET - 1));
606 }
607 }
608 }
609
610 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
611
612 static const long nr_cpus_mask = -1;
613
614 static
615 struct ht_items_count *alloc_per_cpu_items_count(void)
616 {
617 return NULL;
618 }
619
620 static
621 void free_per_cpu_items_count(struct ht_items_count *count)
622 {
623 }
624
625 static
626 void ht_count_add(struct cds_lfht *ht, unsigned long size)
627 {
628 }
629
630 static
631 void ht_count_del(struct cds_lfht *ht, unsigned long size)
632 {
633 }
634
635 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
636
637
638 static
639 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
640 {
641 unsigned long count;
642
643 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
644 return;
645 count = uatomic_read(&ht->count);
646 /*
647 * Use bucket-local length for small table expand and for
648 * environments lacking per-cpu data support.
649 */
650 if (count >= (1UL << COUNT_COMMIT_ORDER))
651 return;
652 if (chain_len > 100)
653 dbg_printf("WARNING: large chain length: %u.\n",
654 chain_len);
655 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
656 cds_lfht_resize_lazy(ht, size,
657 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
658 }
659
660 static
661 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
662 {
663 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
664 }
665
666 static
667 int is_removed(struct cds_lfht_node *node)
668 {
669 return ((unsigned long) node) & REMOVED_FLAG;
670 }
671
672 static
673 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
674 {
675 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
676 }
677
678 static
679 int is_dummy(struct cds_lfht_node *node)
680 {
681 return ((unsigned long) node) & DUMMY_FLAG;
682 }
683
684 static
685 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
686 {
687 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
688 }
689
690 static
691 struct cds_lfht_node *get_end(void)
692 {
693 return (struct cds_lfht_node *) END_VALUE;
694 }
695
696 static
697 int is_end(struct cds_lfht_node *node)
698 {
699 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
700 }
701
702 static
703 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
704 {
705 unsigned long old1, old2;
706
707 old1 = uatomic_read(ptr);
708 do {
709 old2 = old1;
710 if (old2 >= v)
711 return old2;
712 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
713 return v;
714 }
715
716 static
717 void cds_lfht_free_level(struct rcu_head *head)
718 {
719 struct rcu_level *l =
720 caa_container_of(head, struct rcu_level, head);
721 poison_free(l);
722 }
723
724 /*
725 * Remove all logically deleted nodes from a bucket up to a certain node key.
726 */
727 static
728 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
729 {
730 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
731
732 assert(!is_dummy(dummy));
733 assert(!is_removed(dummy));
734 assert(!is_dummy(node));
735 assert(!is_removed(node));
736 for (;;) {
737 iter_prev = dummy;
738 /* We can always skip the dummy node initially */
739 iter = rcu_dereference(iter_prev->p.next);
740 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
741 /*
742 * We should never be called with dummy (start of chain)
743 * and logically removed node (end of path compression
744 * marker) being the actual same node. This would be a
745 * bug in the algorithm implementation.
746 */
747 assert(dummy != node);
748 for (;;) {
749 if (unlikely(is_end(iter)))
750 return;
751 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
752 return;
753 next = rcu_dereference(clear_flag(iter)->p.next);
754 if (likely(is_removed(next)))
755 break;
756 iter_prev = clear_flag(iter);
757 iter = next;
758 }
759 assert(!is_removed(iter));
760 if (is_dummy(iter))
761 new_next = flag_dummy(clear_flag(next));
762 else
763 new_next = clear_flag(next);
764 if (is_removed(iter))
765 new_next = flag_removed(new_next);
766 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
767 }
768 return;
769 }
770
771 static
772 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
773 struct cds_lfht_node *old_node,
774 struct cds_lfht_node *ret_next,
775 struct cds_lfht_node *new_node)
776 {
777 struct cds_lfht_node *dummy, *old_next;
778 struct _cds_lfht_node *lookup;
779 int flagged = 0;
780 unsigned long hash, index, order;
781
782 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
783 goto end;
784
785 assert(!is_removed(old_node));
786 assert(!is_dummy(old_node));
787 assert(!is_removed(new_node));
788 assert(!is_dummy(new_node));
789 assert(new_node != old_node);
790 do {
791 /* Insert after node to be replaced */
792 old_next = ret_next;
793 if (is_removed(old_next)) {
794 /*
795 * Too late, the old node has been removed under us
796 * between lookup and replace. Fail.
797 */
798 goto end;
799 }
800 assert(!is_dummy(old_next));
801 assert(new_node != clear_flag(old_next));
802 new_node->p.next = clear_flag(old_next);
803 /*
804 * Here is the whole trick for lock-free replace: we add
805 * the replacement node _after_ the node we want to
806 * replace by atomically setting its next pointer at the
807 * same time we set its removal flag. Given that
808 * the lookups/get next use an iterator aware of the
809 * next pointer, they will either skip the old node due
810 * to the removal flag and see the new node, or use
811 * the old node, but will not see the new one.
812 */
813 ret_next = uatomic_cmpxchg(&old_node->p.next,
814 old_next, flag_removed(new_node));
815 } while (ret_next != old_next);
816
817 /* We performed the replacement. */
818 flagged = 1;
819
820 /*
821 * Ensure that the old node is not visible to readers anymore:
822 * lookup for the node, and remove it (along with any other
823 * logically removed node) if found.
824 */
825 hash = bit_reverse_ulong(old_node->p.reverse_hash);
826 assert(size > 0);
827 index = hash & (size - 1);
828 order = get_count_order_ulong(index + 1);
829 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
830 dummy = (struct cds_lfht_node *) lookup;
831 _cds_lfht_gc_bucket(dummy, new_node);
832 end:
833 /*
834 * Only the flagging action indicated that we (and no other)
835 * replaced the node from the hash table.
836 */
837 if (flagged) {
838 assert(is_removed(rcu_dereference(old_node->p.next)));
839 return 0;
840 } else {
841 return -ENOENT;
842 }
843 }
844
845 static
846 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
847 unsigned long size,
848 struct cds_lfht_node *node,
849 enum add_mode mode, int dummy)
850 {
851 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
852 *dummy_node, *return_node;
853 struct _cds_lfht_node *lookup;
854 unsigned long hash, index, order;
855
856 assert(!is_dummy(node));
857 assert(!is_removed(node));
858 if (!size) {
859 assert(dummy);
860 node->p.next = flag_dummy(get_end());
861 return node; /* Initial first add (head) */
862 }
863 hash = bit_reverse_ulong(node->p.reverse_hash);
864 for (;;) {
865 uint32_t chain_len = 0;
866
867 /*
868 * iter_prev points to the non-removed node prior to the
869 * insert location.
870 */
871 index = hash & (size - 1);
872 order = get_count_order_ulong(index + 1);
873 lookup = &ht->t.tbl[order]->nodes[index & ((!order ? 0 : (1UL << (order - 1))) - 1)];
874 iter_prev = (struct cds_lfht_node *) lookup;
875 /* We can always skip the dummy node initially */
876 iter = rcu_dereference(iter_prev->p.next);
877 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
878 for (;;) {
879 if (unlikely(is_end(iter)))
880 goto insert;
881 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
882 goto insert;
883 next = rcu_dereference(clear_flag(iter)->p.next);
884 if (unlikely(is_removed(next)))
885 goto gc_node;
886 if ((mode == ADD_UNIQUE || mode == ADD_REPLACE)
887 && !is_dummy(next)
888 && !ht->compare_fct(node->key, node->key_len,
889 clear_flag(iter)->key,
890 clear_flag(iter)->key_len)) {
891 if (mode == ADD_UNIQUE)
892 return clear_flag(iter);
893 else /* mode == ADD_REPLACE */
894 goto replace;
895 }
896 /* Only account for identical reverse hash once */
897 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
898 && !is_dummy(next))
899 check_resize(ht, size, ++chain_len);
900 iter_prev = clear_flag(iter);
901 iter = next;
902 }
903
904 insert:
905 assert(node != clear_flag(iter));
906 assert(!is_removed(iter_prev));
907 assert(!is_removed(iter));
908 assert(iter_prev != node);
909 if (!dummy)
910 node->p.next = clear_flag(iter);
911 else
912 node->p.next = flag_dummy(clear_flag(iter));
913 if (is_dummy(iter))
914 new_node = flag_dummy(node);
915 else
916 new_node = node;
917 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
918 new_node) != iter) {
919 continue; /* retry */
920 } else {
921 if (mode == ADD_REPLACE)
922 return_node = NULL;
923 else /* ADD_DEFAULT and ADD_UNIQUE */
924 return_node = node;
925 goto gc_end;
926 }
927
928 replace:
929
930 if (!_cds_lfht_replace(ht, size, clear_flag(iter), next,
931 node)) {
932 return_node = clear_flag(iter);
933 goto end; /* gc already done */
934 } else {
935 continue; /* retry */
936 }
937
938 gc_node:
939 assert(!is_removed(iter));
940 if (is_dummy(iter))
941 new_next = flag_dummy(clear_flag(next));
942 else
943 new_next = clear_flag(next);
944 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
945 /* retry */
946 }
947 gc_end:
948 /* Garbage collect logically removed nodes in the bucket */
949 index = hash & (size - 1);
950 order = get_count_order_ulong(index + 1);
951 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
952 dummy_node = (struct cds_lfht_node *) lookup;
953 _cds_lfht_gc_bucket(dummy_node, node);
954 end:
955 return return_node;
956 }
957
958 static
959 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
960 struct cds_lfht_node *node,
961 int dummy_removal)
962 {
963 struct cds_lfht_node *dummy, *next, *old;
964 struct _cds_lfht_node *lookup;
965 int flagged = 0;
966 unsigned long hash, index, order;
967
968 if (!node) /* Return -ENOENT if asked to delete NULL node */
969 goto end;
970
971 /* logically delete the node */
972 assert(!is_dummy(node));
973 assert(!is_removed(node));
974 old = rcu_dereference(node->p.next);
975 do {
976 struct cds_lfht_node *new_next;
977
978 next = old;
979 if (unlikely(is_removed(next)))
980 goto end;
981 if (dummy_removal)
982 assert(is_dummy(next));
983 else
984 assert(!is_dummy(next));
985 new_next = flag_removed(next);
986 old = uatomic_cmpxchg(&node->p.next, next, new_next);
987 } while (old != next);
988
989 /* We performed the (logical) deletion. */
990 flagged = 1;
991
992 /*
993 * Ensure that the node is not visible to readers anymore: lookup for
994 * the node, and remove it (along with any other logically removed node)
995 * if found.
996 */
997 hash = bit_reverse_ulong(node->p.reverse_hash);
998 assert(size > 0);
999 index = hash & (size - 1);
1000 order = get_count_order_ulong(index + 1);
1001 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
1002 dummy = (struct cds_lfht_node *) lookup;
1003 _cds_lfht_gc_bucket(dummy, node);
1004 end:
1005 /*
1006 * Only the flagging action indicated that we (and no other)
1007 * removed the node from the hash.
1008 */
1009 if (flagged) {
1010 assert(is_removed(rcu_dereference(node->p.next)));
1011 return 0;
1012 } else {
1013 return -ENOENT;
1014 }
1015 }
1016
1017 static
1018 void *partition_resize_thread(void *arg)
1019 {
1020 struct partition_resize_work *work = arg;
1021
1022 work->ht->cds_lfht_rcu_register_thread();
1023 work->fct(work->ht, work->i, work->start, work->len);
1024 work->ht->cds_lfht_rcu_unregister_thread();
1025 return NULL;
1026 }
1027
1028 static
1029 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1030 unsigned long len,
1031 void (*fct)(struct cds_lfht *ht, unsigned long i,
1032 unsigned long start, unsigned long len))
1033 {
1034 unsigned long partition_len;
1035 struct partition_resize_work *work;
1036 int thread, ret;
1037 unsigned long nr_threads;
1038 pthread_t *thread_id;
1039
1040 /*
1041 * Note: nr_cpus_mask + 1 is always power of 2.
1042 * We spawn just the number of threads we need to satisfy the minimum
1043 * partition size, up to the number of CPUs in the system.
1044 */
1045 nr_threads = min(nr_cpus_mask + 1,
1046 len >> MIN_PARTITION_PER_THREAD_ORDER);
1047 partition_len = len >> get_count_order_ulong(nr_threads);
1048 work = calloc(nr_threads, sizeof(*work));
1049 thread_id = calloc(nr_threads, sizeof(*thread_id));
1050 assert(work);
1051 for (thread = 0; thread < nr_threads; thread++) {
1052 work[thread].ht = ht;
1053 work[thread].i = i;
1054 work[thread].len = partition_len;
1055 work[thread].start = thread * partition_len;
1056 work[thread].fct = fct;
1057 ret = pthread_create(&thread_id[thread], ht->resize_attr,
1058 partition_resize_thread, &work[thread]);
1059 assert(!ret);
1060 }
1061 for (thread = 0; thread < nr_threads; thread++) {
1062 ret = pthread_join(thread_id[thread], NULL);
1063 assert(!ret);
1064 }
1065 free(work);
1066 free(thread_id);
1067 }
1068
1069 /*
1070 * Holding RCU read lock to protect _cds_lfht_add against memory
1071 * reclaim that could be performed by other call_rcu worker threads (ABA
1072 * problem).
1073 *
1074 * When we reach a certain length, we can split this population phase over
1075 * many worker threads, based on the number of CPUs available in the system.
1076 * This should therefore take care of not having the expand lagging behind too
1077 * many concurrent insertion threads by using the scheduler's ability to
1078 * schedule dummy node population fairly with insertions.
1079 */
1080 static
1081 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1082 unsigned long start, unsigned long len)
1083 {
1084 unsigned long j;
1085
1086 ht->cds_lfht_rcu_read_lock();
1087 for (j = start; j < start + len; j++) {
1088 struct cds_lfht_node *new_node =
1089 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1090
1091 dbg_printf("init populate: i %lu j %lu hash %lu\n",
1092 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1093 new_node->p.reverse_hash =
1094 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1095 (void) _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
1096 new_node, ADD_DEFAULT, 1);
1097 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1098 break;
1099 }
1100 ht->cds_lfht_rcu_read_unlock();
1101 }
1102
1103 static
1104 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1105 unsigned long len)
1106 {
1107 assert(nr_cpus_mask != -1);
1108 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1109 ht->cds_lfht_rcu_thread_online();
1110 init_table_populate_partition(ht, i, 0, len);
1111 ht->cds_lfht_rcu_thread_offline();
1112 return;
1113 }
1114 partition_resize_helper(ht, i, len, init_table_populate_partition);
1115 }
1116
1117 static
1118 void init_table(struct cds_lfht *ht,
1119 unsigned long first_order, unsigned long len_order)
1120 {
1121 unsigned long i, end_order;
1122
1123 dbg_printf("init table: first_order %lu end_order %lu\n",
1124 first_order, first_order + len_order);
1125 end_order = first_order + len_order;
1126 for (i = first_order; i < end_order; i++) {
1127 unsigned long len;
1128
1129 len = !i ? 1 : 1UL << (i - 1);
1130 dbg_printf("init order %lu len: %lu\n", i, len);
1131
1132 /* Stop expand if the resize target changes under us */
1133 if (CMM_LOAD_SHARED(ht->t.resize_target) < (!i ? 1 : (1UL << i)))
1134 break;
1135
1136 ht->t.tbl[i] = calloc(1, sizeof(struct rcu_level)
1137 + (len * sizeof(struct _cds_lfht_node)));
1138 assert(ht->t.tbl[i]);
1139
1140 /*
1141 * Set all dummy nodes reverse hash values for a level and
1142 * link all dummy nodes into the table.
1143 */
1144 init_table_populate(ht, i, len);
1145
1146 /*
1147 * Update table size.
1148 */
1149 cmm_smp_wmb(); /* populate data before RCU size */
1150 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
1151
1152 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
1153 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1154 break;
1155 }
1156 }
1157
1158 /*
1159 * Holding RCU read lock to protect _cds_lfht_remove against memory
1160 * reclaim that could be performed by other call_rcu worker threads (ABA
1161 * problem).
1162 * For a single level, we logically remove and garbage collect each node.
1163 *
1164 * As a design choice, we perform logical removal and garbage collection on a
1165 * node-per-node basis to simplify this algorithm. We also assume keeping good
1166 * cache locality of the operation would overweight possible performance gain
1167 * that could be achieved by batching garbage collection for multiple levels.
1168 * However, this would have to be justified by benchmarks.
1169 *
1170 * Concurrent removal and add operations are helping us perform garbage
1171 * collection of logically removed nodes. We guarantee that all logically
1172 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1173 * invoked to free a hole level of dummy nodes (after a grace period).
1174 *
1175 * Logical removal and garbage collection can therefore be done in batch or on a
1176 * node-per-node basis, as long as the guarantee above holds.
1177 *
1178 * When we reach a certain length, we can split this removal over many worker
1179 * threads, based on the number of CPUs available in the system. This should
1180 * take care of not letting resize process lag behind too many concurrent
1181 * updater threads actively inserting into the hash table.
1182 */
1183 static
1184 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1185 unsigned long start, unsigned long len)
1186 {
1187 unsigned long j;
1188
1189 ht->cds_lfht_rcu_read_lock();
1190 for (j = start; j < start + len; j++) {
1191 struct cds_lfht_node *fini_node =
1192 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1193
1194 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1195 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1196 fini_node->p.reverse_hash =
1197 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1198 (void) _cds_lfht_del(ht, !i ? 0 : (1UL << (i - 1)),
1199 fini_node, 1);
1200 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1201 break;
1202 }
1203 ht->cds_lfht_rcu_read_unlock();
1204 }
1205
1206 static
1207 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1208 {
1209
1210 assert(nr_cpus_mask != -1);
1211 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1212 ht->cds_lfht_rcu_thread_online();
1213 remove_table_partition(ht, i, 0, len);
1214 ht->cds_lfht_rcu_thread_offline();
1215 return;
1216 }
1217 partition_resize_helper(ht, i, len, remove_table_partition);
1218 }
1219
1220 static
1221 void fini_table(struct cds_lfht *ht,
1222 unsigned long first_order, unsigned long len_order)
1223 {
1224 long i, end_order;
1225
1226 dbg_printf("fini table: first_order %lu end_order %lu\n",
1227 first_order, first_order + len_order);
1228 end_order = first_order + len_order;
1229 assert(first_order > 0);
1230 for (i = end_order - 1; i >= first_order; i--) {
1231 unsigned long len;
1232
1233 len = !i ? 1 : 1UL << (i - 1);
1234 dbg_printf("fini order %lu len: %lu\n", i, len);
1235
1236 /* Stop shrink if the resize target changes under us */
1237 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1238 break;
1239
1240 cmm_smp_wmb(); /* populate data before RCU size */
1241 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1242
1243 /*
1244 * We need to wait for all add operations to reach Q.S. (and
1245 * thus use the new table for lookups) before we can start
1246 * releasing the old dummy nodes. Otherwise their lookup will
1247 * return a logically removed node as insert position.
1248 */
1249 ht->cds_lfht_synchronize_rcu();
1250
1251 /*
1252 * Set "removed" flag in dummy nodes about to be removed.
1253 * Unlink all now-logically-removed dummy node pointers.
1254 * Concurrent add/remove operation are helping us doing
1255 * the gc.
1256 */
1257 remove_table(ht, i, len);
1258
1259 ht->cds_lfht_call_rcu(&ht->t.tbl[i]->head, cds_lfht_free_level);
1260
1261 dbg_printf("fini new size: %lu\n", 1UL << i);
1262 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1263 break;
1264 }
1265 }
1266
1267 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1268 cds_lfht_compare_fct compare_fct,
1269 unsigned long hash_seed,
1270 unsigned long init_size,
1271 int flags,
1272 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1273 void (*func)(struct rcu_head *head)),
1274 void (*cds_lfht_synchronize_rcu)(void),
1275 void (*cds_lfht_rcu_read_lock)(void),
1276 void (*cds_lfht_rcu_read_unlock)(void),
1277 void (*cds_lfht_rcu_thread_offline)(void),
1278 void (*cds_lfht_rcu_thread_online)(void),
1279 void (*cds_lfht_rcu_register_thread)(void),
1280 void (*cds_lfht_rcu_unregister_thread)(void),
1281 pthread_attr_t *attr)
1282 {
1283 struct cds_lfht *ht;
1284 unsigned long order;
1285
1286 /* init_size must be power of two */
1287 if (init_size && (init_size & (init_size - 1)))
1288 return NULL;
1289 ht = calloc(1, sizeof(struct cds_lfht));
1290 assert(ht);
1291 ht->hash_fct = hash_fct;
1292 ht->compare_fct = compare_fct;
1293 ht->hash_seed = hash_seed;
1294 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1295 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1296 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1297 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1298 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1299 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1300 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1301 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1302 ht->resize_attr = attr;
1303 ht->percpu_count = alloc_per_cpu_items_count();
1304 /* this mutex should not nest in read-side C.S. */
1305 pthread_mutex_init(&ht->resize_mutex, NULL);
1306 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
1307 ht->flags = flags;
1308 ht->cds_lfht_rcu_thread_offline();
1309 pthread_mutex_lock(&ht->resize_mutex);
1310 ht->t.resize_target = 1UL << (order - 1);
1311 init_table(ht, 0, order);
1312 pthread_mutex_unlock(&ht->resize_mutex);
1313 ht->cds_lfht_rcu_thread_online();
1314 return ht;
1315 }
1316
1317 void cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len,
1318 struct cds_lfht_iter *iter)
1319 {
1320 struct cds_lfht_node *node, *next, *dummy_node;
1321 struct _cds_lfht_node *lookup;
1322 unsigned long hash, reverse_hash, index, order, size;
1323
1324 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1325 reverse_hash = bit_reverse_ulong(hash);
1326
1327 size = rcu_dereference(ht->t.size);
1328 index = hash & (size - 1);
1329 order = get_count_order_ulong(index + 1);
1330 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1))) - 1)];
1331 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
1332 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
1333 dummy_node = (struct cds_lfht_node *) lookup;
1334 /* We can always skip the dummy node initially */
1335 node = rcu_dereference(dummy_node->p.next);
1336 node = clear_flag(node);
1337 for (;;) {
1338 if (unlikely(is_end(node))) {
1339 node = next = NULL;
1340 break;
1341 }
1342 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1343 node = next = NULL;
1344 break;
1345 }
1346 next = rcu_dereference(node->p.next);
1347 if (likely(!is_removed(next))
1348 && !is_dummy(next)
1349 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1350 break;
1351 }
1352 node = clear_flag(next);
1353 }
1354 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1355 iter->node = node;
1356 iter->next = next;
1357 }
1358
1359 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1360 {
1361 struct cds_lfht_node *node, *next;
1362 unsigned long reverse_hash;
1363 void *key;
1364 size_t key_len;
1365
1366 node = iter->node;
1367 reverse_hash = node->p.reverse_hash;
1368 key = node->key;
1369 key_len = node->key_len;
1370 next = iter->next;
1371 node = clear_flag(next);
1372
1373 for (;;) {
1374 if (unlikely(is_end(node))) {
1375 node = next = NULL;
1376 break;
1377 }
1378 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1379 node = next = NULL;
1380 break;
1381 }
1382 next = rcu_dereference(node->p.next);
1383 if (likely(!is_removed(next))
1384 && !is_dummy(next)
1385 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1386 break;
1387 }
1388 node = clear_flag(next);
1389 }
1390 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1391 iter->node = node;
1392 iter->next = next;
1393 }
1394
1395 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1396 {
1397 unsigned long hash, size;
1398
1399 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1400 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1401
1402 size = rcu_dereference(ht->t.size);
1403 (void) _cds_lfht_add(ht, size, node, ADD_DEFAULT, 0);
1404 ht_count_add(ht, size);
1405 }
1406
1407 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1408 struct cds_lfht_node *node)
1409 {
1410 unsigned long hash, size;
1411 struct cds_lfht_node *ret;
1412
1413 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1414 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1415
1416 size = rcu_dereference(ht->t.size);
1417 ret = _cds_lfht_add(ht, size, node, ADD_UNIQUE, 0);
1418 if (ret == node)
1419 ht_count_add(ht, size);
1420 return ret;
1421 }
1422
1423 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1424 struct cds_lfht_node *node)
1425 {
1426 unsigned long hash, size;
1427 struct cds_lfht_node *ret;
1428
1429 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1430 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1431
1432 size = rcu_dereference(ht->t.size);
1433 ret = _cds_lfht_add(ht, size, node, ADD_REPLACE, 0);
1434 if (ret == NULL)
1435 ht_count_add(ht, size);
1436 return ret;
1437 }
1438
1439 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1440 struct cds_lfht_node *new_node)
1441 {
1442 unsigned long size;
1443
1444 size = rcu_dereference(ht->t.size);
1445 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1446 new_node);
1447 }
1448
1449 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1450 {
1451 unsigned long size;
1452 int ret;
1453
1454 size = rcu_dereference(ht->t.size);
1455 ret = _cds_lfht_del(ht, size, iter->node, 0);
1456 if (!ret)
1457 ht_count_del(ht, size);
1458 return ret;
1459 }
1460
1461 static
1462 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1463 {
1464 struct cds_lfht_node *node;
1465 struct _cds_lfht_node *lookup;
1466 unsigned long order, i, size;
1467
1468 /* Check that the table is empty */
1469 lookup = &ht->t.tbl[0]->nodes[0];
1470 node = (struct cds_lfht_node *) lookup;
1471 do {
1472 node = clear_flag(node)->p.next;
1473 if (!is_dummy(node))
1474 return -EPERM;
1475 assert(!is_removed(node));
1476 } while (!is_end(node));
1477 /*
1478 * size accessed without rcu_dereference because hash table is
1479 * being destroyed.
1480 */
1481 size = ht->t.size;
1482 /* Internal sanity check: all nodes left should be dummy */
1483 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1484 unsigned long len;
1485
1486 len = !order ? 1 : 1UL << (order - 1);
1487 for (i = 0; i < len; i++) {
1488 dbg_printf("delete order %lu i %lu hash %lu\n",
1489 order, i,
1490 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1491 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1492 }
1493 poison_free(ht->t.tbl[order]);
1494 }
1495 return 0;
1496 }
1497
1498 /*
1499 * Should only be called when no more concurrent readers nor writers can
1500 * possibly access the table.
1501 */
1502 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1503 {
1504 int ret;
1505
1506 /* Wait for in-flight resize operations to complete */
1507 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1508 while (uatomic_read(&ht->in_progress_resize))
1509 poll(NULL, 0, 100); /* wait for 100ms */
1510 ret = cds_lfht_delete_dummy(ht);
1511 if (ret)
1512 return ret;
1513 free_per_cpu_items_count(ht->percpu_count);
1514 if (attr)
1515 *attr = ht->resize_attr;
1516 poison_free(ht);
1517 return ret;
1518 }
1519
1520 void cds_lfht_count_nodes(struct cds_lfht *ht,
1521 long *approx_before,
1522 unsigned long *count,
1523 unsigned long *removed,
1524 long *approx_after)
1525 {
1526 struct cds_lfht_node *node, *next;
1527 struct _cds_lfht_node *lookup;
1528 unsigned long nr_dummy = 0;
1529
1530 *approx_before = 0;
1531 if (nr_cpus_mask >= 0) {
1532 int i;
1533
1534 for (i = 0; i < nr_cpus_mask + 1; i++) {
1535 *approx_before += uatomic_read(&ht->percpu_count[i].add);
1536 *approx_before -= uatomic_read(&ht->percpu_count[i].del);
1537 }
1538 }
1539
1540 *count = 0;
1541 *removed = 0;
1542
1543 /* Count non-dummy nodes in the table */
1544 lookup = &ht->t.tbl[0]->nodes[0];
1545 node = (struct cds_lfht_node *) lookup;
1546 do {
1547 next = rcu_dereference(node->p.next);
1548 if (is_removed(next)) {
1549 if (!is_dummy(next))
1550 (*removed)++;
1551 else
1552 (nr_dummy)++;
1553 } else if (!is_dummy(next))
1554 (*count)++;
1555 else
1556 (nr_dummy)++;
1557 node = clear_flag(next);
1558 } while (!is_end(node));
1559 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1560 *approx_after = 0;
1561 if (nr_cpus_mask >= 0) {
1562 int i;
1563
1564 for (i = 0; i < nr_cpus_mask + 1; i++) {
1565 *approx_after += uatomic_read(&ht->percpu_count[i].add);
1566 *approx_after -= uatomic_read(&ht->percpu_count[i].del);
1567 }
1568 }
1569 }
1570
1571 /* called with resize mutex held */
1572 static
1573 void _do_cds_lfht_grow(struct cds_lfht *ht,
1574 unsigned long old_size, unsigned long new_size)
1575 {
1576 unsigned long old_order, new_order;
1577
1578 old_order = get_count_order_ulong(old_size) + 1;
1579 new_order = get_count_order_ulong(new_size) + 1;
1580 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1581 old_size, old_order, new_size, new_order);
1582 assert(new_size > old_size);
1583 init_table(ht, old_order, new_order - old_order);
1584 }
1585
1586 /* called with resize mutex held */
1587 static
1588 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1589 unsigned long old_size, unsigned long new_size)
1590 {
1591 unsigned long old_order, new_order;
1592
1593 new_size = max(new_size, MIN_TABLE_SIZE);
1594 old_order = get_count_order_ulong(old_size) + 1;
1595 new_order = get_count_order_ulong(new_size) + 1;
1596 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1597 old_size, old_order, new_size, new_order);
1598 assert(new_size < old_size);
1599
1600 /* Remove and unlink all dummy nodes to remove. */
1601 fini_table(ht, new_order, old_order - new_order);
1602 }
1603
1604
1605 /* called with resize mutex held */
1606 static
1607 void _do_cds_lfht_resize(struct cds_lfht *ht)
1608 {
1609 unsigned long new_size, old_size;
1610
1611 /*
1612 * Resize table, re-do if the target size has changed under us.
1613 */
1614 do {
1615 ht->t.resize_initiated = 1;
1616 old_size = ht->t.size;
1617 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1618 if (old_size < new_size)
1619 _do_cds_lfht_grow(ht, old_size, new_size);
1620 else if (old_size > new_size)
1621 _do_cds_lfht_shrink(ht, old_size, new_size);
1622 ht->t.resize_initiated = 0;
1623 /* write resize_initiated before read resize_target */
1624 cmm_smp_mb();
1625 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1626 }
1627
1628 static
1629 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1630 int growth_order)
1631 {
1632 return _uatomic_max(&ht->t.resize_target,
1633 size << growth_order);
1634 }
1635
1636 static
1637 void resize_target_update_count(struct cds_lfht *ht,
1638 unsigned long count)
1639 {
1640 count = max(count, MIN_TABLE_SIZE);
1641 uatomic_set(&ht->t.resize_target, count);
1642 }
1643
1644 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1645 {
1646 resize_target_update_count(ht, new_size);
1647 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1648 ht->cds_lfht_rcu_thread_offline();
1649 pthread_mutex_lock(&ht->resize_mutex);
1650 _do_cds_lfht_resize(ht);
1651 pthread_mutex_unlock(&ht->resize_mutex);
1652 ht->cds_lfht_rcu_thread_online();
1653 }
1654
1655 static
1656 void do_resize_cb(struct rcu_head *head)
1657 {
1658 struct rcu_resize_work *work =
1659 caa_container_of(head, struct rcu_resize_work, head);
1660 struct cds_lfht *ht = work->ht;
1661
1662 ht->cds_lfht_rcu_thread_offline();
1663 pthread_mutex_lock(&ht->resize_mutex);
1664 _do_cds_lfht_resize(ht);
1665 pthread_mutex_unlock(&ht->resize_mutex);
1666 ht->cds_lfht_rcu_thread_online();
1667 poison_free(work);
1668 cmm_smp_mb(); /* finish resize before decrement */
1669 uatomic_dec(&ht->in_progress_resize);
1670 }
1671
1672 static
1673 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1674 {
1675 struct rcu_resize_work *work;
1676 unsigned long target_size;
1677
1678 target_size = resize_target_update(ht, size, growth);
1679 /* Store resize_target before read resize_initiated */
1680 cmm_smp_mb();
1681 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1682 uatomic_inc(&ht->in_progress_resize);
1683 cmm_smp_mb(); /* increment resize count before calling it */
1684 work = malloc(sizeof(*work));
1685 work->ht = ht;
1686 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1687 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1688 }
1689 }
1690
1691 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1692
1693 static
1694 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1695 unsigned long count)
1696 {
1697 struct rcu_resize_work *work;
1698
1699 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1700 return;
1701 resize_target_update_count(ht, count);
1702 /* Store resize_target before read resize_initiated */
1703 cmm_smp_mb();
1704 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1705 uatomic_inc(&ht->in_progress_resize);
1706 cmm_smp_mb(); /* increment resize count before calling it */
1707 work = malloc(sizeof(*work));
1708 work->ht = ht;
1709 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1710 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1711 }
1712 }
1713
1714 #endif
This page took 0.066279 seconds and 5 git commands to generate.